Sample records for multivariate analysis tools

  1. Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicolas

    2011-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…

  2. Multivariate Density Estimation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1983-01-01

    Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.

  3. Analysis techniques for multivariate root loci. [a tool in linear control systems

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1980-01-01

    Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

  4. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    EPA Science Inventory

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  5. Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era.

    PubMed

    Ferreira, Ana P; Tobyn, Mike

    2015-01-01

    In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.

  6. Igloo-Plot: a tool for visualization of multidimensional datasets.

    PubMed

    Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S

    2014-01-01

    Advances in science and technology have resulted in an exponential growth of multivariate (or multi-dimensional) datasets which are being generated from various research areas especially in the domain of biological sciences. Visualization and analysis of such data (with the objective of uncovering the hidden patterns therein) is an important and challenging task. We present a tool, called Igloo-Plot, for efficient visualization of multidimensional datasets. The tool addresses some of the key limitations of contemporary multivariate visualization and analysis tools. The visualization layout, not only facilitates an easy identification of clusters of data-points having similar feature compositions, but also the 'marker features' specific to each of these clusters. The applicability of the various functionalities implemented herein is demonstrated using several well studied multi-dimensional datasets. Igloo-Plot is expected to be a valuable resource for researchers working in multivariate data mining studies. Igloo-Plot is available for download from: http://metagenomics.atc.tcs.com/IglooPlot/. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas

    2014-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges. PMID:24465054

  8. Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity.

    PubMed

    Dinov, Ivo D; Christou, Nicolas

    2011-09-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges.

  9. PYCHEM: a multivariate analysis package for python.

    PubMed

    Jarvis, Roger M; Broadhurst, David; Johnson, Helen; O'Boyle, Noel M; Goodacre, Royston

    2006-10-15

    We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of multivariate tools that are available, it has a broad complement of methods that are widely used in the biological sciences. In contrast to tools like MATLAB, PyChem 2.0.0 is easily accessible and free, allows for rapid extension using a range of Python modules and is part of the growing amount of complementary and interoperable scientific software in Python based upon SciPy. One of the attractions of PyChem is that it is an open source project and so there is an opportunity, through collaboration, to increase the scope of the software and to continually evolve a user-friendly platform that has applicability across a wide range of analytical and post-genomic disciplines. http://sourceforge.net/projects/pychem

  10. Nontargeted, Rapid Screening of Extra Virgin Olive Oil Products for Authenticity Using Near-Infrared Spectroscopy in Combination with Conformity Index and Multivariate Statistical Analyses.

    PubMed

    Karunathilaka, Sanjeewa R; Kia, Ali-Reza Fardin; Srigley, Cynthia; Chung, Jin Kyu; Mossoba, Magdi M

    2016-10-01

    A rapid tool for evaluating authenticity was developed and applied to the screening of extra virgin olive oil (EVOO) retail products by using Fourier-transform near infrared (FT-NIR) spectroscopy in combination with univariate and multivariate data analysis methods. Using disposable glass tubes, spectra for 62 reference EVOO, 10 edible oil adulterants, 20 blends consisting of EVOO spiked with adulterants, 88 retail EVOO products and other test samples were rapidly measured in the transmission mode without any sample preparation. The univariate conformity index (CI) and the multivariate supervised soft independent modeling of class analogy (SIMCA) classification tool were used to analyze the various olive oil products which were tested for authenticity against a library of reference EVOO. Better discrimination between the authentic EVOO and some commercial EVOO products was observed with SIMCA than with CI analysis. Approximately 61% of all EVOO commercial products were flagged by SIMCA analysis, suggesting that further analysis be performed to identify quality issues and/or potential adulterants. Due to its simplicity and speed, FT-NIR spectroscopy in combination with multivariate data analysis can be used as a complementary tool to conventional official methods of analysis to rapidly flag EVOO products that may not belong to the class of authentic EVOO. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Python Spectral Analysis Tool (PySAT) for Preprocessing, Multivariate Analysis, and Machine Learning with Point Spectra

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Finch, N.; Clegg, S.; Graff, T.; Morris, R. V.; Laura, J.

    2017-06-01

    We present a Python-based library and graphical interface for the analysis of point spectra. The tool is being developed with a focus on methods used for ChemCam data, but is flexible enough to handle spectra from other instruments.

  12. HEPDOOP: High-Energy Physics Analysis using Hadoop

    NASA Astrophysics Data System (ADS)

    Bhimji, W.; Bristow, T.; Washbrook, A.

    2014-06-01

    We perform a LHC data analysis workflow using tools and data formats that are commonly used in the "Big Data" community outside High Energy Physics (HEP). These include Apache Avro for serialisation to binary files, Pig and Hadoop for mass data processing and Python Scikit-Learn for multi-variate analysis. Comparison is made with the same analysis performed with current HEP tools in ROOT.

  13. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool

    PubMed Central

    Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi

    2016-01-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405

  14. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool.

    PubMed

    Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi

    2015-11-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.

  15. mvMapper: statistical and geographical data exploration and visualization of multivariate analysis of population structure

    USDA-ARS?s Scientific Manuscript database

    Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...

  16. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals

    NASA Astrophysics Data System (ADS)

    Azami, Hamed; Escudero, Javier

    2017-01-01

    Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.

  17. Multivariate statistical analysis: Principles and applications to coorbital streams of meteorite falls

    NASA Technical Reports Server (NTRS)

    Wolf, S. F.; Lipschutz, M. E.

    1993-01-01

    Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.

  18. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  19. Correspondence analysis

    USDA-ARS?s Scientific Manuscript database

    Correspondence analysis is a powerful exploratory multivariate technique for categorical variables with many levels. It is a data analysis tool that characterizes associations between levels of 2 or more categorical variables using graphical representations of the information in a contingency table...

  20. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  1. Early Numeracy Intervention: Does Quantity Discrimination Really Work?

    ERIC Educational Resources Information Center

    Hansmann, Paul

    2013-01-01

    Scope and Method of Study: The current study demonstrates that a taped problem intervention is an effective tool for increasing the early numeracy skill of QD. A taped problems intervention was used with two variations of the quantity discrimination measure (triangle and traditional). A 3x2 doubly multivariate multivariate analysis of variance was…

  2. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  3. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  4. Quality by design case study: an integrated multivariate approach to drug product and process development.

    PubMed

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  5. SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis.

    PubMed

    Aguirre-Gamboa, Raul; Trevino, Victor

    2014-06-01

    MicroRNAs (miRNAs) play a key role in post-transcriptional regulation of mRNA levels. Their function in cancer has been studied by high-throughput methods generating valuable sources of public information. Thus, miRNA signatures predicting cancer clinical outcomes are emerging. An important step to propose miRNA-based biomarkers before clinical validation is their evaluation in independent cohorts. Although it can be carried out using public data, such task is time-consuming and requires a specialized analysis. Therefore, to aid and simplify the evaluation of prognostic miRNA signatures in cancer, we developed SurvMicro, a free and easy-to-use web tool that assesses miRNA signatures from publicly available miRNA profiles using multivariate survival analysis. SurvMicro is composed of a wide and updated database of >40 cohorts in different tissues and a web tool where survival analysis can be done in minutes. We presented evaluations to portray the straightforward functionality of SurvMicro in liver and lung cancer. To our knowledge, SurvMicro is the only bioinformatic tool that aids the evaluation of multivariate prognostic miRNA signatures in cancer. SurvMicro and its tutorial are freely available at http://bioinformatica.mty.itesm.mx/SurvMicro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. SOCR Motion Charts: An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    PubMed Central

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2011-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108

  7. Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan

    2013-01-01

    The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.

  8. New multivariable capabilities of the INCA program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1989-01-01

    The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.

  9. Integrated Data Visualization and Virtual Reality Tool

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  10. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.

    PubMed

    Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E

    2016-07-15

    Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The Python Spectral Analysis Tool (PySAT) for Powerful, Flexible, and Easy Preprocessing and Machine Learning with Point Spectral Data

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.

    2018-04-01

    The PySAT point spectra tool provides a flexible graphical interface, enabling scientists to apply a wide variety of preprocessing and machine learning methods to point spectral data, with an emphasis on multivariate regression.

  12. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices

    NASA Astrophysics Data System (ADS)

    Di Anibal, Carolina V.; Marsal, Lluís F.; Callao, M. Pilar; Ruisánchez, Itziar

    2012-02-01

    Raman spectroscopy combined with multivariate analysis was evaluated as a tool for detecting Sudan I dye in culinary spices. Three Raman modalities were studied: normal Raman, FT-Raman and SERS. The results show that SERS is the most appropriate modality capable of providing a proper Raman signal when a complex matrix is analyzed. To get rid of the spectral noise and background, Savitzky-Golay smoothing with polynomial baseline correction and wavelet transform were applied. Finally, to check whether unadulterated samples can be differentiated from samples adulterated with Sudan I dye, an exploratory analysis such as principal component analysis (PCA) was applied to raw data and data processed with the two mentioned strategies. The results obtained by PCA show that Raman spectra need to be properly treated if useful information is to be obtained and both spectra treatments are appropriate for processing the Raman signal. The proposed methodology shows that SERS combined with appropriate spectra treatment can be used as a practical screening tool to distinguish samples suspicious to be adulterated with Sudan I dye.

  13. A power analysis for multivariate tests of temporal trend in species composition.

    PubMed

    Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel

    2011-10-01

    Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.

  14. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that varymore » as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.« less

  15. Multivariate Classification of Original and Fake Perfumes by Ion Analysis and Ethanol Content.

    PubMed

    Gomes, Clêrton L; de Lima, Ari Clecius A; Loiola, Adonay R; da Silva, Abel B R; Cândido, Manuela C L; Nascimento, Ronaldo F

    2016-07-01

    The increased marketing of fake perfumes has encouraged us to investigate how to identify such products by their chemical characteristics and multivariate analysis. The aim of this study was to present an alternative approach to distinguish original from fake perfumes by means of the investigation of sodium, potassium, chloride ions, and ethanol contents by chemometric tools. For this, 50 perfumes were used (25 original and 25 counterfeit) for the analysis of ions (ion chromatography) and ethanol (gas chromatography). The results demonstrated that the fake perfume had low levels of ethanol and high levels of chloride compared to the original product. The data were treated by chemometric tools such as principal component analysis and linear discriminant analysis. This study proved that the analysis of ethanol is an effective method of distinguishing original from the fake products, and it may potentially be used to assist legal authorities in such cases. © 2016 American Academy of Forensic Sciences.

  16. Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario

    NASA Astrophysics Data System (ADS)

    Ghanate, A. D.; Kothiwale, S.; Singh, S. P.; Bertrand, Dominique; Krishna, C. Murali

    2011-02-01

    Cancer is now recognized as one of the major causes of morbidity and mortality. Histopathological diagnosis, the gold standard, is shown to be subjective, time consuming, prone to interobserver disagreement, and often fails to predict prognosis. Optical spectroscopic methods are being contemplated as adjuncts or alternatives to conventional cancer diagnostics. The most important aspect of these approaches is their objectivity, and multivariate statistical tools play a major role in realizing it. However, rigorous evaluation of the robustness of spectral models is a prerequisite. The utility of Raman spectroscopy in the diagnosis of cancers has been well established. Until now, the specificity and applicability of spectral models have been evaluated for specific cancer types. In this study, we have evaluated the utility of spectroscopic models representing normal and malignant tissues of the breast, cervix, colon, larynx, and oral cavity in a broader perspective, using different multivariate tests. The limit test, which was used in our earlier study, gave high sensitivity but suffered from poor specificity. The performance of other methods such as factorial discriminant analysis and partial least square discriminant analysis are at par with more complex nonlinear methods such as decision trees, but they provide very little information about the classification model. This comparative study thus demonstrates not just the efficacy of Raman spectroscopic models but also the applicability and limitations of different multivariate tools for discrimination under complex conditions such as the multicancer scenario.

  17. Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis

    PubMed Central

    Kwon, Yong-Kook; Ahn, Myung Suk; Park, Jong Suk; Liu, Jang Ryol; In, Dong Su; Min, Byung Whan; Kim, Suk Weon

    2013-01-01

    To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng. PMID:24558311

  18. NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES

    PubMed Central

    He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.

    2017-01-01

    Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225

  19. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel.

    PubMed

    Grapov, Dmitry; Newman, John W

    2012-09-01

    Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010).

  20. mESAdb: microRNA Expression and Sequence Analysis Database

    PubMed Central

    Kaya, Koray D.; Karakülah, Gökhan; Yakıcıer, Cengiz M.; Acar, Aybar C.; Konu, Özlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data. PMID:21177657

  1. mESAdb: microRNA expression and sequence analysis database.

    PubMed

    Kaya, Koray D; Karakülah, Gökhan; Yakicier, Cengiz M; Acar, Aybar C; Konu, Ozlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.

  2. TU-FG-201-05: Varian MPC as a Statistical Process Control Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, A; Rowbottom, C

    Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whethermore » or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity and beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.« less

  3. The choice of prior distribution for a covariance matrix in multivariate meta-analysis: a simulation study.

    PubMed

    Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L

    2015-12-30

    Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data

    PubMed Central

    Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan

    2015-01-01

    The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393

  5. Univariate and multivariate analysis of tannin-impregnated wood species using vibrational spectroscopy.

    PubMed

    Schnabel, Thomas; Musso, Maurizio; Tondi, Gianluca

    2014-01-01

    Vibrational spectroscopy is one of the most powerful tools in polymer science. Three main techniques--Fourier transform infrared spectroscopy (FT-IR), FT-Raman spectroscopy, and FT near-infrared (NIR) spectroscopy--can also be applied to wood science. Here, these three techniques were used to investigate the chemical modification occurring in wood after impregnation with tannin-hexamine preservatives. These spectroscopic techniques have the capacity to detect the externally added tannin. FT-IR has very strong sensitivity to the aromatic peak at around 1610 cm(-1) in the tannin-treated samples, whereas FT-Raman reflects the peak at around 1600 cm(-1) for the externally added tannin. This high efficacy in distinguishing chemical features was demonstrated in univariate analysis and confirmed via cluster analysis. Conversely, the results of the NIR measurements show noticeable sensitivity for small differences. For this technique, multivariate analysis is required and with this chemometric tool, it is also possible to predict the concentration of tannin on the surface.

  6. Multivariate longitudinal data analysis with censored and intermittent missing responses.

    PubMed

    Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun

    2018-05-08

    The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Towards better process understanding: chemometrics and multivariate measurements in manufacturing of solid dosage forms.

    PubMed

    Matero, Sanni; van Den Berg, Frans; Poutiainen, Sami; Rantanen, Jukka; Pajander, Jari

    2013-05-01

    The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim to achieve a thorough understanding and control over the production process. PAT includes the frames for measurement as well as data analyzes and controlling for in-depth understanding, leading to more consistent and safer drug products with less batch rejections. In the optimal situation, by applying these techniques, destructive end-product testing could be avoided. In this paper the most prominent multivariate data analysis measuring tools within tablet manufacturing and basic research on operations are reviewed. Copyright © 2013 Wiley Periodicals, Inc.

  8. Hybrid approach combining chemometrics and likelihood ratio framework for reporting the evidential value of spectra.

    PubMed

    Martyna, Agnieszka; Zadora, Grzegorz; Neocleous, Tereza; Michalska, Aleksandra; Dean, Nema

    2016-08-10

    Many chemometric tools are invaluable and have proven effective in data mining and substantial dimensionality reduction of highly multivariate data. This becomes vital for interpreting various physicochemical data due to rapid development of advanced analytical techniques, delivering much information in a single measurement run. This concerns especially spectra, which are frequently used as the subject of comparative analysis in e.g. forensic sciences. In the presented study the microtraces collected from the scenarios of hit-and-run accidents were analysed. Plastic containers and automotive plastics (e.g. bumpers, headlamp lenses) were subjected to Fourier transform infrared spectrometry and car paints were analysed using Raman spectroscopy. In the forensic context analytical results must be interpreted and reported according to the standards of the interpretation schemes acknowledged in forensic sciences using the likelihood ratio approach. However, for proper construction of LR models for highly multivariate data, such as spectra, chemometric tools must be employed for substantial data compression. Conversion from classical feature representation to distance representation was proposed for revealing hidden data peculiarities and linear discriminant analysis was further applied for minimising the within-sample variability while maximising the between-sample variability. Both techniques enabled substantial reduction of data dimensionality. Univariate and multivariate likelihood ratio models were proposed for such data. It was shown that the combination of chemometric tools and the likelihood ratio approach is capable of solving the comparison problem of highly multivariate and correlated data after proper extraction of the most relevant features and variance information hidden in the data structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fast-NPS-A Markov Chain Monte Carlo-based analysis tool to obtain structural information from single-molecule FRET measurements

    NASA Astrophysics Data System (ADS)

    Eilert, Tobias; Beckers, Maximilian; Drechsler, Florian; Michaelis, Jens

    2017-10-01

    The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative structural information about macromolecules in their natural environment. In the algorithm a Bayesian model gives rise to a multivariate probability distribution describing the uncertainty of the structure determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety of smFRET networks, we established an MCMC based sampling engine that approximates the target distribution and requires no parameter specification by the user at all. For an efficient local exploration we automatically adapt the multivariate proposal kernel according to the shape of the target distribution. In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully adaptive with respect to temperature spacing and number of chains. Since the molecular surrounding of a dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which can be selected for every dye molecule individually. These models allow the user to represent the smFRET network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen model combination is provided. Programme Files doi:http://dx.doi.org/10.17632/7ztzj63r68.1 Licencing provisions: Apache-2.0 Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++ Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for macromolecular structures from smFRET data. Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.

  10. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    USDA-ARS?s Scientific Manuscript database

    Interactive modules for data exploration and visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data sets with a user-friendly interface. Individual modules were designed to provide toolsets to enable interactive ...

  11. Dynamic Factor Analysis Models with Time-Varying Parameters

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian

    2011-01-01

    Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…

  12. Multivariate Analysis As a Support for Diagnostic Flowcharts in Allergic Bronchopulmonary Aspergillosis: A Proof-of-Concept Study.

    PubMed

    Vitte, Joana; Ranque, Stéphane; Carsin, Ania; Gomez, Carine; Romain, Thomas; Cassagne, Carole; Gouitaa, Marion; Baravalle-Einaudi, Mélisande; Bel, Nathalie Stremler-Le; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Gaudart, Jean

    2017-01-01

    Molecular-based allergy diagnosis yields multiple biomarker datasets. The classical diagnostic score for allergic bronchopulmonary aspergillosis (ABPA), a severe disease usually occurring in asthmatic patients and people with cystic fibrosis, comprises succinct immunological criteria formulated in 1977: total IgE, anti- Aspergillus fumigatus ( Af ) IgE, anti- Af "precipitins," and anti- Af IgG. Progress achieved over the last four decades led to multiple IgE and IgG(4) Af biomarkers available with quantitative, standardized, molecular-level reports. These newly available biomarkers have not been included in the current diagnostic criteria, either individually or in algorithms, despite persistent underdiagnosis of ABPA. Large numbers of individual biomarkers may hinder their use in clinical practice. Conversely, multivariate analysis using new tools may bring about a better chance of less diagnostic mistakes. We report here a proof-of-concept work consisting of a three-step multivariate analysis of Af IgE, IgG, and IgG4 biomarkers through a combination of principal component analysis, hierarchical ascendant classification, and classification and regression tree multivariate analysis. The resulting diagnostic algorithms might show the way for novel criteria and improved diagnostic efficiency in Af -sensitized patients at risk for ABPA.

  13. Selection Indices and Multivariate Analysis Show Similar Results in the Evaluation of Growth and Carcass Traits in Beef Cattle

    PubMed Central

    Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel

    2016-01-01

    This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection. PMID:26789008

  14. Selection Indices and Multivariate Analysis Show Similar Results in the Evaluation of Growth and Carcass Traits in Beef Cattle.

    PubMed

    Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel

    2016-01-01

    This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection.

  15. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    PubMed Central

    Grapov, Dmitry; Newman, John W.

    2012-01-01

    Summary: Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Availability and implementation: Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010). Contact: John.Newman@ars.usda.gov Supplementary Information: Installation instructions, tutorials and users manual are available at http://sourceforge.net/projects/imdev/. PMID:22815358

  16. Integrated Multivariate Analysis with Nondetects for the Development of Human Sewage Source-Tracking Tools Using Bacteriophages of Enterococcus faecalis.

    PubMed

    Wangkahad, Bencharong; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2017-02-21

    We developed sewage-specific microbial source tracking (MST) tools using enterococci bacteriophages and evaluated their performance with univariate and multivariate analyses involving data below detection limits. Newly isolated Enterococci faecalis bacterial strains AIM06 (DSM100702) and SR14 (DSM100701) demonstrated 100% specificity and 90% sensitivity to human sewage without detecting 68 animal manure pooled samples of cats, chickens, cows, dogs, ducks, pigs, and pigeons. AIM06 and SR14 bacteriophages were present in human sewage at 2-4 orders of magnitude. A principal component analysis confirmed the importance of both phages as main water quality parameters. The phages presented only in the polluted water, as classified by a cluster analysis, and at median concentrations of 1.71 × 10 2 and 4.27 × 10 2 PFU/100 mL, respectively, higher than nonhost specific RYC2056 phages and sewage-specific KS148 phages (p < 0.05). Interestingly, AIM06 and SR14 phages exhibited significant correlations with each other and with total coliforms, E. coli, enterococci, and biochemical oxygen demand (Kendall's tau = 0.348 to 0.605, p < 0.05), a result supporting their roles as water quality indicators. This research demonstrates the multiregional applicability of enterococci hosts in MST application and highlights the significance of multivariate analysis with nondetects in evaluating the performance of new MST host strains.

  17. NIR monitoring of in-service wood structures

    Treesearch

    Michela Zanetti; Timothy G. Rials; Douglas Rammer

    2005-01-01

    Near infrared spectroscopy (NIRS) was used to study a set of Southern Yellow Pine boards exposed to natural weathering for different periods of exposure time. This non-destructive spectroscopic technique is a very powerful tool to predict the weathering of wood when used in combination with multivariate analysis (Principal Component Analysis, PCA, and Projection to...

  18. Interactive visual analysis promotes exploration of long-term ecological data

    Treesearch

    T.N. Pham; J.A. Jones; R. Metoyer; F.J. Swanson; R.J. Pabst

    2013-01-01

    Long-term ecological data are crucial in helping ecologists understand ecosystem function and environmental change. Nevertheless, these kinds of data sets are difficult to analyze because they are usually large, multivariate, and spatiotemporal. Although existing analysis tools such as statistical methods and spreadsheet software permit rigorous tests of pre-conceived...

  19. Application of Concepts from Cross-Recurrence Analysis in Speech Production: An Overview and Comparison with Other Nonlinear Methods

    ERIC Educational Resources Information Center

    Lancia, Leonardo; Fuchs, Susanne; Tiede, Mark

    2014-01-01

    Purpose: The aim of this article was to introduce an important tool, cross-recurrence analysis, to speech production applications by showing how it can be adapted to evaluate the similarity of multivariate patterns of articulatory motion. The method differs from classical applications of cross-recurrence analysis because no phase space…

  20. MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.

    PubMed

    Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin

    2015-04-01

    Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  1. Assessing Principal Component Regression Prediction of Neurochemicals Detected with Fast-Scan Cyclic Voltammetry

    PubMed Central

    2011-01-01

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586

  2. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    PubMed

    Keithley, Richard B; Wightman, R Mark

    2011-06-07

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.

  3. Multivariate analysis of cytokine profiles in pregnancy complications.

    PubMed

    Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali

    2018-03-01

    The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.

  4. MDAS: an integrated system for metabonomic data analysis.

    PubMed

    Liu, Juan; Li, Bo; Xiong, Jiang-Hui

    2009-03-01

    Metabonomics, the latest 'omics' research field, shows great promise as a tool in biomarker discovery, drug efficacy and toxicity analysis, disease diagnosis and prognosis. One of the major challenges now facing researchers is how to process this data to yield useful information about a biological system, e.g., the mechanism of diseases. Traditional methods employed in metabonomic data analysis use multivariate analysis methods developed independently in chemometrics research. Additionally, with the development of machine learning approaches, some methods such as SVMs also show promise for use in metabonomic data analysis. Aside from the application of general multivariate analysis and machine learning methods to this problem, there is also a need for an integrated tool customized for metabonomic data analysis which can be easily used by biologists to reveal interesting patterns in metabonomic data.In this paper, we present a novel software tool MDAS (Metabonomic Data Analysis System) for metabonomic data analysis which integrates traditional chemometrics methods and newly introduced machine learning approaches. MDAS contains a suite of functional models for metabonomic data analysis and optimizes the flow of data analysis. Several file formats can be accepted as input. The input data can be optionally preprocessed and can then be processed with operations such as feature analysis and dimensionality reduction. The data with reduced dimensionalities can be used for training or testing through machine learning models. The system supplies proper visualization for data preprocessing, feature analysis, and classification which can be a powerful function for users to extract knowledge from the data. MDAS is an integrated platform for metabonomic data analysis, which transforms a complex analysis procedure into a more formalized and simplified one. The software package can be obtained from the authors.

  5. Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis.

    PubMed

    Hall, Gregory J; Clow, Kerin E; Kenny, Jonathan E

    2005-10-01

    As part of a strategy for preventing the introduction of aquatic nuisance species (ANS) to U.S. estuaries, ballast water exchange (BWE) regulations have been imposed. Enforcing these regulations requires a reliable method for determining the port of origin of water in the ballast tanks of ships entering U.S. waters. This study shows that a three-dimensional fluorescence fingerprinting technique, excitation emission matrix (EEM) spectroscopy, holds great promise as a ballast water analysis tool. In our technique, EEMs are analyzed by multivariate classification and curve resolution methods, such as N-way partial least squares Regression-discriminant analysis (NPLS-DA) and parallel factor analysis (PARAFAC). We demonstrate that classification techniques can be used to discriminate among sampling sites less than 10 miles apart, encompassing Boston Harbor and two tributaries in the Mystic River Watershed. To our knowledge, this work is the first to use multivariate analysis to classify water as to location of origin. Furthermore, it is shown that curve resolution can show seasonal features within the multidimensional fluorescence data sets, which correlate with difficulty in classification.

  6. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks

    NASA Astrophysics Data System (ADS)

    Gaitan, S.; ten Veldhuis, J. A. E.

    2015-06-01

    Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.

  7. Discrimination between Bacillus and Alicyclobacillus isolates in apple juice by Fourier transform infrared spectroscopy and multivariate analysis.

    PubMed

    Al-Holy, Murad A; Lin, Mengshi; Alhaj, Omar A; Abu-Goush, Mahmoud H

    2015-02-01

    Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between 4 Alicyclobacillus strains and 4 Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm(-1) reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (for example, principal component analysis and soft independent modeling of class analogy) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these 2 genera. © 2015 Institute of Food Technologists®

  8. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    PubMed

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Modern CACSD using the Robust-Control Toolbox

    NASA Technical Reports Server (NTRS)

    Chiang, Richard Y.; Safonov, Michael G.

    1989-01-01

    The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

  11. EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide

    EPA Science Inventory

    Positive matrix factorization (PMF) is a multivariate factor analysis tool that decomposes a matrix of ambient data into two matrices - factor contributions and factor profiles - which then need to be interpreted by an analyst as to what source types are represented using measure...

  12. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization.

    PubMed

    Tanabe, Kenji

    2016-04-27

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.

  13. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun

    2018-02-01

    It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.

  14. Graphite Web: web tool for gene set analysis exploiting pathway topology

    PubMed Central

    Sales, Gabriele; Calura, Enrica; Martini, Paolo; Romualdi, Chiara

    2013-01-01

    Graphite web is a novel web tool for pathway analyses and network visualization for gene expression data of both microarray and RNA-seq experiments. Several pathway analyses have been proposed either in the univariate or in the global and multivariate context to tackle the complexity and the interpretation of expression results. These methods can be further divided into ‘topological’ and ‘non-topological’ methods according to their ability to gain power from pathway topology. Biological pathways are, in fact, not only gene lists but can be represented through a network where genes and connections are, respectively, nodes and edges. To this day, the most used approaches are non-topological and univariate although they miss the relationship among genes. On the contrary, topological and multivariate approaches are more powerful, but difficult to be used by researchers without bioinformatic skills. Here we present Graphite web, the first public web server for pathway analysis on gene expression data that combines topological and multivariate pathway analyses with an efficient system of interactive network visualizations for easy results interpretation. Specifically, Graphite web implements five different gene set analyses on three model organisms and two pathway databases. Graphite Web is freely available at http://graphiteweb.bio.unipd.it/. PMID:23666626

  15. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.

    PubMed

    Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław

    2017-01-01

    Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).

  16. Study of the questionnaire of the Polytechnic University of Valencia (UPV) teaching staff, using students opinion survey. Statistical treatment

    NASA Astrophysics Data System (ADS)

    Martinez Gomez, Monica

    Quality improvement of university institutions represents the most important challenge in the next years, and the potential tool to achieve it is based on the institutional evaluation in general, and specially the evaluation of the teaching performance. The opinion questionnaire from the students is the most generalised tool used to evaluate the teaching performance at Spanish universities. The general objective of this thesis is to develop a statistical methodology suitable to extract, analyse and interpret the information contained in the Questionnaire of Teaching Evaluation from Student Opinion (CEDA) of the UPV, aimed at optimising its practical use. The study is centred in the application of different multivariate techniques and has been structured in three parts: (1) Evaluation of the reliability, validity and dimensionality of the tool. The multivariate method used for this purpose is the Factorial Analysis. (2) Determination of the capacity of the questionnaire to identify different profiles of lecturers based on the quality perceived by students. This target is conducted with different multivariate classification techniques: hierarchical cluster analysis, non-hierarchical and two-stage analysis. Moreover, those items that best discriminate among the teaching typologies obtained are identified in the questionnaire. (3) Identification of the teaching typologies according to different descriptive characteristics referent to the subject and lecturer, with the use of decision trees. Once identified these typologies, a new discriminant analysis is conducted aimed at identifying those items that best characterise each typology. Finally, a study is carried out with the classification method SIMCA (Soft Independent Modelling of Class Analogy) in order to determine the discriminant loading of every item among the identified teaching typologies, allowing the identification of those that best distinguish the different classes obtained. With the combined use of the proposed techniques, it is expected to optimise the use of CEDA as a measuring tool and an indicator of the teaching quality at the university, that would allow the introduction of actions for the continuous improvement in the teaching processes of the UPV.

  17. Evaluation of in-line Raman data for end-point determination of a coating process: Comparison of Science-Based Calibration, PLS-regression and univariate data analysis.

    PubMed

    Barimani, Shirin; Kleinebudde, Peter

    2017-10-01

    A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  19. Parameters Selection for Bivariate Multiscale Entropy Analysis of Postural Fluctuations in Fallers and Non-Fallers Older Adults.

    PubMed

    Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert

    2016-08-01

    Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.

  20. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    PubMed Central

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  1. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  2. Multisite-multivariable sensitivity analysis of distributed watershed models: enhancing the perceptions from computationally frugal methods

    USDA-ARS?s Scientific Manuscript database

    This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morr...

  3. Comparison of plant cover of river valley fragments by using GIS tools and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Waldon-Rudzionek, Barbara

    2017-11-01

    Selected landscape registers and results of ecological analyses of flora used in studies of transformations of anthropogenic plant cover and river valley landscapes were presented. The results were shown pursuant to a comparison of fragments of two adjacent valleys in north-western Poland.

  4. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide

    EPA Science Inventory

    PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data into two matrices: factor contributions (G) and factor profiles (F). These factor profiles need to be interpreted by the user to identify the source types that may be contributing to the ...

  5. FINGERPRINT ANALYSIS OF CONTAMINANT DATA: A FORENSIC TOOL FOR EVALUATING ENVIRONMENTAL CONTAMINATION

    EPA Science Inventory

    Several studies have been conducted on behalf of the U .S. Environmental Protection Agency (EPA) to identify detection monitoring parameters for specific industries.1,2,3,4,5 One outcome of these studies was the evolution of an empirical multi-variant contaminant fingerprinting p...

  6. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis.

    PubMed

    Liu, Fei; Ye, Lanhan; Peng, Jiyu; Song, Kunlin; Shen, Tingting; Zhang, Chu; He, Yong

    2018-02-27

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

  7. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    PubMed Central

    Ye, Lanhan; Song, Kunlin; Shen, Tingting

    2018-01-01

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445

  8. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  9. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    NASA Astrophysics Data System (ADS)

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  10. GREAT: a web portal for Genome Regulatory Architecture Tools

    PubMed Central

    Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François

    2016-01-01

    GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. PMID:27151196

  11. A systematic review of the relationship factor between women and health professionals within the multivariant analysis of maternal satisfaction.

    PubMed

    Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio

    2016-10-01

    personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Family-Based Rare Variant Association Analysis: A Fast and Efficient Method of Multivariate Phenotype Association Analysis.

    PubMed

    Wang, Longfei; Lee, Sungyoung; Gim, Jungsoo; Qiao, Dandi; Cho, Michael; Elston, Robert C; Silverman, Edwin K; Won, Sungho

    2016-09-01

    Family-based designs have been repeatedly shown to be powerful in detecting the significant rare variants associated with human diseases. Furthermore, human diseases are often defined by the outcomes of multiple phenotypes, and thus we expect multivariate family-based analyses may be very efficient in detecting associations with rare variants. However, few statistical methods implementing this strategy have been developed for family-based designs. In this report, we describe one such implementation: the multivariate family-based rare variant association tool (mFARVAT). mFARVAT is a quasi-likelihood-based score test for rare variant association analysis with multiple phenotypes, and tests both homogeneous and heterogeneous effects of each variant on multiple phenotypes. Simulation results show that the proposed method is generally robust and efficient for various disease models, and we identify some promising candidate genes associated with chronic obstructive pulmonary disease. The software of mFARVAT is freely available at http://healthstat.snu.ac.kr/software/mfarvat/, implemented in C++ and supported on Linux and MS Windows. © 2016 WILEY PERIODICALS, INC.

  13. NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review

    PubMed Central

    Xiao, Li; Wei, Hui; Himmel, Michael E.; Jameel, Hasan; Kelley, Stephen S.

    2014-01-01

    Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR) and pyrolysis-molecular beam mass spectrometry (Py-mbms) are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis) and for building regression models (partial least square regression) between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated. This review aims to serve as a guide for choosing the most effective data analysis methods for NIR and Py-mbms characterization of biomass. PMID:25147552

  14. Multivariate Strategies in Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Hansen, Lars Kai

    2007-01-01

    We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.

  15. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.

    PubMed

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  16. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin

    NASA Astrophysics Data System (ADS)

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  17. The application of nirvana to silvicultural studies

    Treesearch

    Chi-Leung So; Thomas Elder; Leslie Groom; John S. Kush; Jennifer Myszewski; Todd Shupe

    2006-01-01

    Previous results from this laboratory have shown that near infrared (NIR) spectroscopy, coupled with multivariate analysis, can be a powerful tool for the prediction of wood quality. While wood quality measurements are of utility, their determination can be both time and labor intensive, thus limiting their use where large sample sizes are concerned. This paper will...

  18. Linear, multivariable robust control with a mu perspective

    NASA Technical Reports Server (NTRS)

    Packard, Andy; Doyle, John; Balas, Gary

    1993-01-01

    The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

  19. Using sperm morphometry and multivariate analysis to differentiate species of gray Mazama

    PubMed Central

    Duarte, José Maurício Barbanti

    2016-01-01

    There is genetic evidence that the two species of Brazilian gray Mazama, Mazama gouazoubira and Mazama nemorivaga, belong to different genera. This study identified significant differences that separated them into distinct groups, based on characteristics of the spermatozoa and ejaculate of both species. The characteristics that most clearly differentiated between the species were ejaculate colour, white for M. gouazoubira and reddish for M. nemorivaga, and sperm head dimensions. Multivariate analysis of sperm head dimension and format data accurately discriminated three groups for species with total percentage of misclassified of 0.71. The individual analysis, by animal, and the multivariate analysis have also discriminated correctly all five animals (total percentage of misclassified of 13.95%), and the canonical plot has shown three different clusters: Cluster 1, including individuals of M. nemorivaga; Cluster 2, including two individuals of M. gouazoubira; and Cluster 3, including a single individual of M. gouazoubira. The results obtained in this work corroborate the hypothesis of the formation of new genera and species for gray Mazama. Moreover, the easily applied method described herein can be used as an auxiliary tool to identify sibling species of other taxonomic groups. PMID:28018612

  20. Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging.

    PubMed

    Falahati, Farshad; Westman, Eric; Simmons, Andrew

    2014-01-01

    Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.

  1. [Multivariate Adaptive Regression Splines (MARS), an alternative for the analysis of time series].

    PubMed

    Vanegas, Jairo; Vásquez, Fabián

    Multivariate Adaptive Regression Splines (MARS) is a non-parametric modelling method that extends the linear model, incorporating nonlinearities and interactions between variables. It is a flexible tool that automates the construction of predictive models: selecting relevant variables, transforming the predictor variables, processing missing values and preventing overshooting using a self-test. It is also able to predict, taking into account structural factors that might influence the outcome variable, thereby generating hypothetical models. The end result could identify relevant cut-off points in data series. It is rarely used in health, so it is proposed as a tool for the evaluation of relevant public health indicators. For demonstrative purposes, data series regarding the mortality of children under 5 years of age in Costa Rica were used, comprising the period 1978-2008. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Mamajek, Eric E.; Malo, Lison; Riedel, Adric; Rodriguez, David; Lafrenière, David; Faherty, Jacqueline K.; Roy-Loubier, Olivier; Pueyo, Laurent; Robin, Annie C.; Doyon, René

    2018-03-01

    BANYAN Σ is a new Bayesian algorithm to identify members of young stellar associations within 150 pc of the Sun. It includes 27 young associations with ages in the range ∼1–800 Myr, modeled with multivariate Gaussians in six-dimensional (6D) XYZUVW space. It is the first such multi-association classification tool to include the nearest sub-groups of the Sco-Cen OB star-forming region, the IC 2602, IC 2391, Pleiades and Platais 8 clusters, and the ρ Ophiuchi, Corona Australis, and Taurus star formation regions. A model of field stars is built from a mixture of multivariate Gaussians based on the Besançon Galactic model. The algorithm can derive membership probabilities for objects with only sky coordinates and proper motion, but can also include parallax and radial velocity measurements, as well as spectrophotometric distance constraints from sequences in color–magnitude or spectral type–magnitude diagrams. BANYAN Σ benefits from an analytical solution to the Bayesian marginalization integrals over unknown radial velocities and distances that makes it more accurate and significantly faster than its predecessor BANYAN II. A contamination versus hit rate analysis is presented and demonstrates that BANYAN Σ achieves a better classification performance than other moving group tools available in the literature, especially in terms of cross-contamination between young associations. An updated list of bona fide members in the 27 young associations, augmented by the Gaia-DR1 release, as well as all parameters for the 6D multivariate Gaussian models for each association and the Galactic field neighborhood within 300 pc are presented. This new tool will make it possible to analyze large data sets such as the upcoming Gaia-DR2 to identify new young stars. IDL and Python versions of BANYAN Σ are made available with this publication, and a more limited online web tool is available at http://www.exoplanetes.umontreal.ca/banyan/banyansigma.php.

  3. GREAT: a web portal for Genome Regulatory Architecture Tools.

    PubMed

    Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François

    2016-07-08

    GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Initial Assessment of the Risk Assessment and Prediction Tool in a Heterogeneous Neurosurgical Patient Population.

    PubMed

    Piazza, Matthew; Sharma, Nikhil; Osiemo, Benjamin; McClintock, Scott; Missimer, Emily; Gardiner, Diana; Maloney, Eileen; Callahan, Danielle; Smith, J Lachlan; Welch, William; Schuster, James; Grady, M Sean; Malhotra, Neil R

    2018-05-21

    Bundled care payments are increasingly being explored for neurosurgical interventions. In this setting, skilled nursing facility (SNF) is less desirable from a cost perspective than discharge to home, underscoring the need for better preoperative prediction of postoperative disposition. To assess the capability of the Risk Assessment and Prediction Tool (RAPT) and other preoperative variables to determine expected disposition prior to surgery in a heterogeneous neurosurgical cohort, through observational study. Patients aged 50 yr or more undergoing elective neurosurgery were enrolled from June 2016 to February 2017 (n = 623). Logistic regression was used to identify preoperative characteristics predictive of discharge disposition. Results from multivariate analysis were used to create novel grading scales for the prediction of discharge disposition that were subsequently compared to the RAPT Score using Receiver Operating Characteristic analysis. Higher RAPT Score significantly predicted home disposition (P < .001). Age 65 and greater, dichotomized RAPT walk score, and spinal surgery below L2 were independent predictors of SNF discharge in multivariate analysis. A grading scale utilizing these variables had superior discriminatory power between SNF and home/rehab discharge when compared with RAPT score alone (P = .004). Our analysis identified age, lower lumbar/lumbosacral surgery, and RAPT walk score as independent predictors of discharge to SNF, and demonstrated superior predictive power compared with the total RAPT Score when combined in a novel grading scale. These tools may identify patients who may benefit from expedited discharge to subacute care facilities and decrease inpatient hospital resource utilization following surgery.

  5. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.

    PubMed

    Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain

    2002-01-01

    The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.

  6. NIRS Identification of Swietenia Macrophylla is Robust Across Specimens from 27 Countries

    Treesearch

    Maria C.J. Bergo; Tereza C.M. Pastore; Vera T.R. Coradin; Alex C. Wiedenhoeft; Jez W.B. Braga

    2016-01-01

    Big-leaf mahogany is the world’s most valuable widely traded tropical timber species and Near Infrared Spectroscopy (NIRS) has been applied as a tool for discriminating its wood from similar species using multivariate analysis. In this study four look-alike timbers of Swietenia macrophylla (mahogany or big-leaf mahogany), Carapa...

  7. HydroClimATe: hydrologic and climatic analysis toolkit

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  8. Trend Detection and Bivariate Frequency Analysis for Nonstrationary Rainfall Data

    NASA Astrophysics Data System (ADS)

    Joo, K.; Kim, H.; Shin, J. Y.; Heo, J. H.

    2017-12-01

    Multivariate frequency analysis has been developing for hydro-meteorological data such as rainfall, flood, and drought. Particularly, the copula has been used as a useful tool for multivariate probability model which has no limitation on deciding marginal distributions. The time-series rainfall data can be characterized to rainfall event by inter-event time definition (IETD) and each rainfall event has a rainfall depth and rainfall duration. In addition, nonstationarity in rainfall event has been studied recently due to climate change and trend detection of rainfall event is important to determine the data has nonstationarity or not. With the rainfall depth and duration of a rainfall event, trend detection and nonstationary bivariate frequency analysis has performed in this study. 62 stations from Korea Meteorological Association (KMA) over 30 years of hourly recorded data used in this study and the suitability of nonstationary copula for rainfall event has examined by the goodness-of-fit test.

  9. Simultaneous quantitative analysis of olmesartan, amlodipine and hydrochlorothiazide in their combined dosage form utilizing classical and alternating least squares based chemometric methods.

    PubMed

    Darwish, Hany W; Bakheit, Ahmed H; Abdelhameed, Ali S

    2016-03-01

    Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.

  10. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Numerical analysis of the effect of the kind of activating agent and the impregnation ratio on the parameters of the microporous structure of the active carbons

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław

    2015-09-01

    The paper presents the results of the research on the application of the LBET class adsorption models with the fast multivariant identification procedure as a tool for analysing the microporous structure of the active carbons obtained by chemical activation using potassium and sodium hydroxides as an activator. The proposed technique of the fast multivariant fitting of the LBET class models to the empirical adsorption data was employed particularly to evaluate the impact of the used activator and the impregnation ratio on the obtained microporous structure of the carbonaceous adsorbents.

  12. Learning investment indicators through data extension

    NASA Astrophysics Data System (ADS)

    Dvořák, Marek

    2017-07-01

    Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.

  13. Integrated biomarker response in catfish Hypostomus ancistroides by multivariate analysis in the Pirapó River, southern Brazil.

    PubMed

    Ghisi, Nédia C; Oliveira, Elton C; Mendonça Mota, Thais F; Vanzetto, Guilherme V; Roque, Aliciane A; Godinho, Jayson P; Bettim, Franciele Lima; Silva de Assis, Helena Cristina da; Prioli, Alberto J

    2016-10-01

    Aquatic pollutants produce multiple consequences in organisms, populations, communities and ecosystems, affecting the function of organs, reproductive state, population size, species survival and even biodiversity. In order to monitor the health of aquatic organisms, biomarkers have been used as effective tools in environmental risk assessment. The aim of this study is to evaluate, through a multivariate and integrative analysis, the response of the native species Hypostomus ancistroides over a pollution gradient in the main water supply body of northwestern Paraná state (Brazil). The condition factor, micronucleus test and erythrocyte nuclear abnormalities (ENA), comet assay, measurement of the cerebral and muscular enzyme acetylcholinesterase (AChE), and histopathological analysis of liver and gill were evaluated in fishes from three sites of the Pirapó River during the dry and rainy seasons. The multivariate general result showed that the interaction between the seasons and the sites was significant: there are variations in the rates of alterations in the biological parameters, depending on the time of year researched at each site. In general, the best results were observed for the site nearest the spring, and alterations in the parameters at the intermediate and downstream sites. In sum, the results of this study showed the necessity of a multivariate analysis, evaluating several biological parameters, to obtain an integrated response to the effects of the environmental pollutants on the organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Company profile: PGXIS Ltd.

    PubMed

    McCarthy, Alun

    2011-09-01

    Pharmacogenomic Innovative Solutions Ltd (PGXIS) was established in 2007 by a group of pharmacogenomic (PGx) experts to make their expertise available to biotechnology and pharmaceutical companies. PGXIS has subsequently established a network of experts to broaden its access to relevant PGx knowledge and technologies. In addition, it has developed a novel multivariate analysis method called Taxonomy3 which is both a data integration tool and a targeting tool. Together with siRNA methodology from CytoPathfinder Inc., PGXIS now has an extensive range of diverse PGx methodologies focused on enhancing drug development.

  15. Robust detection, isolation and accommodation for sensor failures

    NASA Technical Reports Server (NTRS)

    Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.

    1986-01-01

    The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques

  16. Multivariate analysis, mass balance techniques, and statistical tests as tools in igneous petrology: application to the Sierra de las Cruces volcanic range (Mexican Volcanic Belt).

    PubMed

    Velasco-Tapia, Fernando

    2014-01-01

    Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures).

  17. Multivariable harmonic balance analysis of the neuronal oscillator for leech swimming.

    PubMed

    Chen, Zhiyong; Zheng, Min; Friesen, W Otto; Iwasaki, Tetsuya

    2008-12-01

    Biological systems, and particularly neuronal circuits, embody a very high level of complexity. Mathematical modeling is therefore essential for understanding how large sets of neurons with complex multiple interconnections work as a functional system. With the increase in computing power, it is now possible to numerically integrate a model with many variables to simulate behavior. However, such analysis can be time-consuming and may not reveal the mechanisms underlying the observed phenomena. An alternative, complementary approach is mathematical analysis, which can demonstrate direct and explicit relationships between a property of interest and system parameters. This paper introduces a mathematical tool for analyzing neuronal oscillator circuits based on multivariable harmonic balance (MHB). The tool is applied to a model of the central pattern generator (CPG) for leech swimming, which comprises a chain of weakly coupled segmental oscillators. The results demonstrate the effectiveness of the MHB method and provide analytical explanations for some CPG properties. In particular, the intersegmental phase lag is estimated to be the sum of a nominal value and a perturbation, where the former depends on the structure and span of the neuronal connections and the latter is roughly proportional to the period gradient, communication delay, and the reciprocal of the intersegmental coupling strength.

  18. Combining microwave resonance technology to multivariate data analysis as a novel PAT tool to improve process understanding in fluid bed granulation.

    PubMed

    Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk

    2011-08-01

    A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.

  19. Metabolomics of Ulva lactuca Linnaeus (Chlorophyta) exposed to oil fuels: Fourier transform infrared spectroscopy and multivariate analysis as tools for metabolic fingerprint.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Costa, Christopher; Oliveira, Eva Regina de; Bauer, Claudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2017-01-30

    Fossil fuels, e.g. gasoline and diesel oil, account for substantial share of the pollution that affects marine ecosystems. Environmental metabolomics is an emerging field that may help unravel the effect of these xenobiotics on seaweeds and provide methodologies for biomonitoring coastal ecosystems. In the present study, FTIR and multivariate analysis were used to discriminate metabolic profiles of Ulva lactuca after in vitro exposure to diesel oil and gasoline, in combinations of concentrations (0.001%, 0.01%, 0.1%, and 1.0% - v/v) and times of exposure (30min, 1h, 12h, and 24h). PCA and HCA performed on entire mid-infrared spectral window were able to discriminate diesel oil-exposed thalli from the gasoline-exposed ones. HCA performed on spectral window related to the protein absorbance (1700-1500cm -1 ) enabled the best discrimination between gasoline-exposed samples regarding the time of exposure, and between diesel oil-exposed samples according to the concentration. The results indicate that the combination of FTIR with multivariate analysis is a simple and efficient methodology for metabolic profiling with potential use for biomonitoring strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mapping as a visual health communication tool: promises and dilemmas.

    PubMed

    Parrott, Roxanne; Hopfer, Suellen; Ghetian, Christie; Lengerich, Eugene

    2007-01-01

    In the era of evidence-based public health promotion and planning, the use of maps as a form of evidence to communicate about the multiple determinants of cancer is on the rise. Geographic information systems and mapping technologies make future proliferation of this strategy likely. Yet disease maps as a communication form remain largely unexamined. This content analysis considers the presence of multivariate information, credibility cues, and the communication function of publicly accessible maps for cancer control activities. Thirty-six state comprehensive cancer control plans were publicly available in July 2005 and were reviewed for the presence of maps. Fourteen of the 36 state cancer plans (39%) contained map images (N = 59 static maps). A continuum of map inter activity was observed, with 10 states having interactive mapping tools available to query and map cancer information. Four states had both cancer plans with map images and interactive mapping tools available to the public on their Web sites. Of the 14 state cancer plans that depicted map images, two displayed multivariate data in a single map. Nine of the 10 states with interactive mapping capability offered the option to display multivariate health risk messages. The most frequent content category mapped was cancer incidence and mortality, with stage at diagnosis infrequently available. The most frequent communication function served by the maps reviewed was redundancy, as maps repeated information contained in textual forms. The social and ethical implications for communicating about cancer through the use of visual geographic representations are discussed.

  1. Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design.

    PubMed

    Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup

    2010-10-01

    We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    NASA Astrophysics Data System (ADS)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  3. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  4. Modeling Multi-Variate Gaussian Distributions and Analysis of Higgs Boson Couplings with the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Krohn, Olivia; Armbruster, Aaron; Gao, Yongsheng; Atlas Collaboration

    2017-01-01

    Software tools developed for the purpose of modeling CERN LHC pp collision data to aid in its interpretation are presented. Some measurements are not adequately described by a Gaussian distribution; thus an interpretation assuming Gaussian uncertainties will inevitably introduce bias, necessitating analytical tools to recreate and evaluate non-Gaussian features. One example is the measurements of Higgs boson production rates in different decay channels, and the interpretation of these measurements. The ratios of data to Standard Model expectations (μ) for five arbitrary signals were modeled by building five Poisson distributions with mixed signal contributions such that the measured values of μ are correlated. Algorithms were designed to recreate probability distribution functions of μ as multi-variate Gaussians, where the standard deviation (σ) and correlation coefficients (ρ) are parametrized. There was good success with modeling 1-D likelihood contours of μ, and the multi-dimensional distributions were well modeled within 1- σ but the model began to diverge after 2- σ due to unmerited assumptions in developing ρ. Future plans to improve the algorithms and develop a user-friendly analysis package will also be discussed. NSF International Research Experiences for Students

  5. An open-source software package for multivariate modeling and clustering: applications to air quality management.

    PubMed

    Wang, Xiuquan; Huang, Guohe; Zhao, Shan; Guo, Junhong

    2015-09-01

    This paper presents an open-source software package, rSCA, which is developed based upon a stepwise cluster analysis method and serves as a statistical tool for modeling the relationships between multiple dependent and independent variables. The rSCA package is efficient in dealing with both continuous and discrete variables, as well as nonlinear relationships between the variables. It divides the sample sets of dependent variables into different subsets (or subclusters) through a series of cutting and merging operations based upon the theory of multivariate analysis of variance (MANOVA). The modeling results are given by a cluster tree, which includes both intermediate and leaf subclusters as well as the flow paths from the root of the tree to each leaf subcluster specified by a series of cutting and merging actions. The rSCA package is a handy and easy-to-use tool and is freely available at http://cran.r-project.org/package=rSCA . By applying the developed package to air quality management in an urban environment, we demonstrate its effectiveness in dealing with the complicated relationships among multiple variables in real-world problems.

  6. Multivariate analysis of nystatin and metronidazole in a semi-solid matrix by means of diffuse reflectance NIR spectroscopy and PLS regression.

    PubMed

    Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A

    2006-01-23

    A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.

  7. Unsupervised pattern recognition methods in ciders profiling based on GCE voltammetric signals.

    PubMed

    Jakubowska, Małgorzata; Sordoń, Wanda; Ciepiela, Filip

    2016-07-15

    This work presents a complete methodology of distinguishing between different brands of cider and ageing degrees, based on voltammetric signals, utilizing dedicated data preprocessing procedures and unsupervised multivariate analysis. It was demonstrated that voltammograms recorded on glassy carbon electrode in Britton-Robinson buffer at pH 2 are reproducible for each brand. By application of clustering algorithms and principal component analysis visible homogenous clusters were obtained. Advanced signal processing strategy which included automatic baseline correction, interval scaling and continuous wavelet transform with dedicated mother wavelet, was a key step in the correct recognition of the objects. The results show that voltammetry combined with optimized univariate and multivariate data processing is a sufficient tool to distinguish between ciders from various brands and to evaluate their freshness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation.

    PubMed

    Kandelbauer, A; Kessler, W; Kessler, R W

    2008-03-01

    The laccase-catalysed transformation of indigo carmine (IC) with and without a redox active mediator was studied using online UV-visible spectroscopy. Deconvolution of the mixture spectra obtained during the reaction was performed on a model-free basis using multivariate curve resolution (MCR). Thereby, the time courses of educts, products, and reaction intermediates involved in the transformation were reconstructed without prior mechanistic assumptions. Furthermore, the spectral signature of a reactive intermediate which could not have been detected by a classical hard-modelling approach was extracted from the chemometric analysis. The findings suggest that the combined use of UV-visible spectroscopy and MCR may lead to unexpectedly deep mechanistic evidence otherwise buried in the experimental data. Thus, although rather an unspecific method, UV-visible spectroscopy can prove useful in the monitoring of chemical reactions when combined with MCR. This offers a wide range of chemists a cheap and readily available, highly sensitive tool for chemical reaction online monitoring.

  9. Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques.

    PubMed

    Teutonico, D; Musuamba, F; Maas, H J; Facius, A; Yang, S; Danhof, M; Della Pasqua, O

    2015-10-01

    Clinical Trial Simulations (CTS) are a valuable tool for decision-making during drug development. However, to obtain realistic simulation scenarios, the patients included in the CTS must be representative of the target population. This is particularly important when covariate effects exist that may affect the outcome of a trial. The objective of our investigation was to evaluate and compare CTS results using re-sampling from a population pool and multivariate distributions to simulate patient covariates. COPD was selected as paradigm disease for the purposes of our analysis, FEV1 was used as response measure and the effects of a hypothetical intervention were evaluated in different populations in order to assess the predictive performance of the two methods. Our results show that the multivariate distribution method produces realistic covariate correlations, comparable to the real population. Moreover, it allows simulation of patient characteristics beyond the limits of inclusion and exclusion criteria in historical protocols. Both methods, discrete resampling and multivariate distribution generate realistic pools of virtual patients. However the use of a multivariate distribution enable more flexible simulation scenarios since it is not necessarily bound to the existing covariate combinations in the available clinical data sets.

  10. Order-restricted inference for multivariate longitudinal data with applications to the natural history of hearing loss.

    PubMed

    Rosen, Sophia; Davidov, Ori

    2012-07-20

    Multivariate outcomes are often measured longitudinally. For example, in hearing loss studies, hearing thresholds for each subject are measured repeatedly over time at several frequencies. Thus, each patient is associated with a multivariate longitudinal outcome. The multivariate mixed-effects model is a useful tool for the analysis of such data. There are situations in which the parameters of the model are subject to some restrictions or constraints. For example, it is known that hearing thresholds, at every frequency, increase with age. Moreover, this age-related threshold elevation is monotone in frequency, that is, the higher the frequency, the higher, on average, is the rate of threshold elevation. This means that there is a natural ordering among the different frequencies in the rate of hearing loss. In practice, this amounts to imposing a set of constraints on the different frequencies' regression coefficients modeling the mean effect of time and age at entry to the study on hearing thresholds. The aforementioned constraints should be accounted for in the analysis. The result is a multivariate longitudinal model with restricted parameters. We propose estimation and testing procedures for such models. We show that ignoring the constraints may lead to misleading inferences regarding the direction and the magnitude of various effects. Moreover, simulations show that incorporating the constraints substantially improves the mean squared error of the estimates and the power of the tests. We used this methodology to analyze a real hearing loss study. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Serum dehydroepiandrosterone sulphate, psychosocial factors and musculoskeletal pain in workers.

    PubMed

    Marinelli, A; Prodi, A; Pesel, G; Ronchese, F; Bovenzi, M; Negro, C; Larese Filon, F

    2017-12-30

    The serum level of dehydroepiandrosterone sulphate (DHEA-S) has been suggested as a biological marker of stress. To assess the association between serum DHEA-S, psychosocial factors and musculoskeletal (MS) pain in university workers. The study population included voluntary workers at the scientific departments of the University of Trieste (Italy) who underwent periodical health surveillance from January 2011 to June 2012. DHEA-S level was analysed in serum. The assessment tools included the General Health Questionnaire (GHQ) and a modified Nordic musculoskeletal symptoms questionnaire. The relation between DHEA-S, individual characteristics, pain perception and psychological factors was assessed by means of multivariable linear regression analysis. There were 189 study participants. The study population was characterized by high reward and low effort. Pain perception in the neck, shoulder, upper limbs, upper back and lower back was reported by 42, 32, 19, 29 and 43% of people, respectively. In multivariable regression analysis, gender, age and pain perception in the shoulder and upper limbs were significantly related to serum DHEA-S. Effort and overcommitment were related to shoulder and neck pain but not to DHEA-S. The GHQ score was associated with pain perception in different body sites and inversely to DHEA-S but significance was lost in multivariable regression analysis. DHEA-S was associated with age, gender and perception of MS pain, while effort-reward imbalance dimensions and GHQ score failed to reach the statistical significance in multivariable regression analysis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    PubMed

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  13. Multivariate Pattern Analysis Reveals Category-Related Organization of Semantic Representations in Anterior Temporal Cortex.

    PubMed

    Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian

    2016-09-28

    The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various animal and tool categories, and used multivariate pattern classification of fMRI data to decode the semantic representations of the trained pseudowords. We found that: (1) animal and tool information was organized in category-selective subregions of medial left anterior temporal lobe (LATL); (2) tools, but not animals, were encoded in left inferior parietal lobe; and (3) LATL subregions exhibited distinct patterns of functional connectivity with category-related regions across cortex. Our findings suggest that semantic knowledge in LATL is organized in category-related subregions, providing evidence for the existence of multiple, category-specific semantic representations in the brain. Copyright © 2016 the authors 0270-6474/16/3610089-08$15.00/0.

  14. Process analytical technology in the pharmaceutical industry: a toolkit for continuous improvement.

    PubMed

    Scott, Bradley; Wilcock, Anne

    2006-01-01

    Process analytical technology (PAT) refers to a series of tools used to ensure that quality is built into products while at the same time improving the understanding of processes, increasing efficiency, and decreasing costs. It has not been widely adopted by the pharmaceutical industry. As the setting for this paper, the current pharmaceutical manufacturing paradigm and PAT guidance to date are discussed prior to the review of PAT principles and tools, benefits, and challenges. The PAT toolkit contains process analyzers, multivariate analysis tools, process control tools, and continuous improvement/knowledge management/information technology systems. The integration and implementation of these tools is complex, and has resulted in uncertainty with respect to both regulation and validation. The paucity of staff knowledgeable in this area may complicate adoption. Studies to quantitate the benefits resulting from the adoption of PAT within the pharmaceutical industry would be a valuable addition to the qualitative studies that are currently available.

  15. Multivariate Analysis, Mass Balance Techniques, and Statistical Tests as Tools in Igneous Petrology: Application to the Sierra de las Cruces Volcanic Range (Mexican Volcanic Belt)

    PubMed Central

    Velasco-Tapia, Fernando

    2014-01-01

    Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures). PMID:24737994

  16. Prolonged instability prior to a regime shift

    USGS Publications Warehouse

    Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.

    2014-01-01

    Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.

  17. A new approach in space-time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall

    NASA Astrophysics Data System (ADS)

    Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric

    2002-12-01

    The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.

  18. Monitoring Quality of Biotherapeutic Products Using Multivariate Data Analysis.

    PubMed

    Rathore, Anurag S; Pathak, Mili; Jain, Renu; Jadaun, Gaurav Pratap Singh

    2016-07-01

    Monitoring the quality of pharmaceutical products is a global challenge, heightened by the implications of letting subquality drugs come to the market on public safety. Regulatory agencies do their due diligence at the time of approval as per their prescribed regulations. However, product quality needs to be monitored post-approval as well to ensure patient safety throughout the product life cycle. This is particularly complicated for biotechnology-based therapeutics where seemingly minor changes in process and/or raw material attributes have been shown to have a significant effect on clinical safety and efficacy of the product. This article provides a perspective on the topic of monitoring the quality of biotech therapeutics. In the backdrop of challenges faced by the regulatory agencies, the potential use of multivariate data analysis as a tool for effective monitoring has been proposed. Case studies using data from several insulin biosimilars have been used to illustrate the key concepts.

  19. Discrimination of inflammatory bowel disease using Raman spectroscopy and linear discriminant analysis methods

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Cao, Ming; DuPont, Andrew W.; Scott, Larry D.; Guha, Sushovan; Singhal, Shashideep; Younes, Mamoun; Pence, Isaac; Herline, Alan; Schwartz, David; Xu, Hua; Mahadevan-Jansen, Anita; Bi, Xiaohong

    2016-03-01

    Inflammatory bowel disease (IBD) is an idiopathic disease that is typically characterized by chronic inflammation of the gastrointestinal tract. Recently much effort has been devoted to the development of novel diagnostic tools that can assist physicians for fast, accurate, and automated diagnosis of the disease. Previous research based on Raman spectroscopy has shown promising results in differentiating IBD patients from normal screening cases. In the current study, we examined IBD patients in vivo through a colonoscope-coupled Raman system. Optical diagnosis for IBD discrimination was conducted based on full-range spectra using multivariate statistical methods. Further, we incorporated several feature selection methods in machine learning into the classification model. The diagnostic performance for disease differentiation was significantly improved after feature selection. Our results showed that improved IBD diagnosis can be achieved using Raman spectroscopy in combination with multivariate analysis and feature selection.

  20. Bioprospecting Chemical Diversity and Bioactivity in a Marine Derived Aspergillus terreus.

    PubMed

    Adpressa, Donovon A; Loesgen, Sandra

    2016-02-01

    A comparative metabolomic study of a marine derived fungus (Aspergillus terreus) grown under various culture conditions is presented. The fungus was grown in eleven different culture conditions using solid agar, broth cultures, or grain based media (OSMAC). Multivariate analysis of LC/MS data from the organic extracts revealed drastic differences in the metabolic profiles and guided our subsequent isolation efforts. The compound 7-desmethylcitreoviridin was isolated and identified, and is fully described for the first time. In addition, 16 known fungal metabolites were also isolated and identified. All compounds were elucidated by detailed spectroscopic analysis and tested for antibacterial activities against five human pathogens and tested for cytotoxicity. This study demonstrates that LC/MS based multivariate analysis provides a simple yet powerful tool to analyze the metabolome of a single fungal strain grown under various conditions. This approach allows environmentally-induced changes in metabolite expression to be rapidly visualized, and uses these differences to guide the discovery of new bioactive molecules. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  1. Study of archaeological coins of different dynasties using libs coupled with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.

    2016-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.

  2. SPICE: exploration and analysis of post-cytometric complex multivariate datasets.

    PubMed

    Roederer, Mario; Nozzi, Joshua L; Nason, Martha C

    2011-02-01

    Polychromatic flow cytometry results in complex, multivariate datasets. To date, tools for the aggregate analysis of these datasets across multiple specimens grouped by different categorical variables, such as demographic information, have not been optimized. Often, the exploration of such datasets is accomplished by visualization of patterns with pie charts or bar charts, without easy access to statistical comparisons of measurements that comprise multiple components. Here we report on algorithms and a graphical interface we developed for these purposes. In particular, we discuss thresholding necessary for accurate representation of data in pie charts, the implications for display and comparison of normalized versus unnormalized data, and the effects of averaging when samples with significant background noise are present. Finally, we define a statistic for the nonparametric comparison of complex distributions to test for difference between groups of samples based on multi-component measurements. While originally developed to support the analysis of T cell functional profiles, these techniques are amenable to a broad range of datatypes. Published 2011 Wiley-Liss, Inc.

  3. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control.

    PubMed

    Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija

    2015-08-01

    This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.

  4. The Multi-Isotope Process (MIP) Monitor Project: FY13 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, David E.; Coble, Jamie B.; Jordan, David V.

    The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of “… (minimization of) the risks of nuclear proliferation and terrorism.” The MIP Monitor measures the distribution of the radioactive isotopes in product and waste streams of a nuclear reprocessing facility. These isotopes are monitored online by gamma spectrometry and compared, in near-real-time, to spectral patterns representing “normal” process conditions using multivariate analysis and pattern recognition algorithms. The combination of multivariate analysis and gamma spectroscopy allows us to detect small changes in the gamma spectrum, which may indicatemore » changes in process conditions. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting for systems representing aqueous reprocessing facilities. However, pyroprocessing is emerging as an alternative to aqueous reprocessing techniques.« less

  5. Multivariate approach in popcorn genotypes using the Ward-MLM strategy: morpho-agronomic analysis and incidence of Fusarium spp.

    PubMed

    Kurosawa, R N F; do Amaral Junior, A T; Silva, F H L; Dos Santos, A; Vivas, M; Kamphorst, S H; Pena, G F

    2017-02-08

    The multivariate analyses are useful tools to estimate the genetic variability between accessions. In the breeding programs, the Ward-Modified Location Model (MLM) multivariate method has been a powerful strategy to quantify variability using quantitative and qualitative variables simultaneously. The present study was proposed in view of the dearth of information about popcorn breeding programs under a multivariate approach using the Ward-MLM methodology. The objective of this study was thus to estimate the genetic diversity among 37 genotypes of popcorn aiming to identify divergent groups associated with morpho-agronomic traits and traits related to resistance to Fusarium spp. To this end, 7 qualitative and 17 quantitative variables were analyzed. The experiment was conducted in 2014, at Universidade Estadual do Norte Fluminense, located in Campos dos Goytacazes, RJ, Brazil. The Ward-MLM strategy allowed the identification of four groups as follows: Group I with 10 genotypes, Group II with 11 genotypes, Group III with 9 genotypes, and Group IV with 7 genotypes. Group IV was distant in relation to the other groups, while groups I, II, and III were near. The crosses between genotypes from the other groups with those of group IV allow an exploitation of heterosis. The Ward-MLM strategy provided an appropriate grouping of genotypes; ear weight, ear diameter, and grain yield were the traits that most contributed to the analysis of genetic diversity.

  6. Validation and Development of a Modified Breast Graded Prognostic Assessment As a Tool for Survival in Patients With Breast Cancer and Brain Metastases.

    PubMed

    Subbiah, Ishwaria M; Lei, Xiudong; Weinberg, Jeffrey S; Sulman, Erik P; Chavez-MacGregor, Mariana; Tripathy, Debu; Gupta, Rohan; Varma, Ankur; Chouhan, Jay; Guevarra, Richard P; Valero, Vicente; Gilbert, Mark R; Gonzalez-Angulo, Ana M

    2015-07-10

    Several indices have been developed to predict overall survival (OS) in patients with breast cancer with brain metastases, including the breast graded prognostic assessment (breast-GPA), comprising age, tumor subtype, and Karnofsky performance score. However, number of brain metastases-a highly relevant clinical variable-is less often incorporated into the final model. We sought to validate the existing breast-GPA in an independent larger cohort and refine it integrating number of brain metastases. Data were retrospectively gathered from a prospectively maintained institutional database. Patients with newly diagnosed brain metastases from 1996 to 2013 were identified. After validating the breast-GPA, multivariable Cox regression and recursive partitioning analysis led to the development of the modified breast-GPA. The performances of the breast-GPA and modified breast-GPA were compared using the concordance index. In our cohort of 1,552 patients, the breast-GPA was validated as a prognostic tool for OS (P < .001). In multivariable analysis of the breast-GPA and number of brain metastases (> three v ≤ three), both were independent predictors of OS. We therefore developed the modified breast-GPA integrating a fourth clinical parameter. Recursive partitioning analysis reinforced the prognostic significance of these four factors. Concordance indices were 0.78 (95% CI, 0.77 to 0.80) and 0.84 (95% CI, 0.83 to 0.85) for the breast-GPA and modified breast-GPA, respectively (P < .001). The modified breast-GPA incorporates four simple clinical parameters of high prognostic significance. This index has an immediate role in the clinic as a formative part of the clinician's discussion of prognosis and direction of care and as a potential patient selection tool for clinical trials. © 2015 by American Society of Clinical Oncology.

  7. Screening of anxiety and quality of life in people with epilepsy.

    PubMed

    Gur-Ozmen, Selen; Leibetseder, Annette; Cock, Hannah R; Agrawal, Niruj; von Oertzen, Tim J

    2017-02-01

    Up to 60% of people with epilepsy (PwE) have psychiatric comorbidity including anxiety. Anxiety remains under recognized in PwE. This study investigates if screening tools validated for depression could be used to detect anxiety disorders in PWE. Additionally it analyses the effect of anxiety on QoL. 261 participants with a confirmed diagnosis of epilepsy were included. Neurological Disorders Depression Inventory for Epilepsy (NDDI-E) and Emotional Thermometers (ET), both validated to screen for depression were used. Hospital Anxiety and Depression Scale-Anxiety (HADS-A) with a cut off for moderate and severe anxiety was used as the reference standard. QoL was measured with EQ5-D. Sensitivity, specificity, positive and negative predictive value and ROC analysis as well as multivariate regression analysis were performed. Patients with depression (n=46) were excluded as multivariate regression analysis showed that depression was the only significant determinant of having anxiety in the group. Against HADS-A, NDDI-E and ET-7 showed highest level of accuracy in recognizing anxiety with ET7 being the most effective tool. QoL was significantly reduced in PwE and anxiety. Our study showed that reliable screening for moderate to severe anxiety in PwE without co-morbid depression is feasible with screening tools for depression. The cut off values for anxiety are different from those for depression in ET7 but very similar in NDDI-E. ET7 can be applied to screen simultaneously for depression and "pure" anxiety. Anxiety reduces significantly QoL. We recommend screening as an initial first step to rule out patients who are unlikely to have anxiety. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  8. Spectral discrimination of serum from liver cancer and liver cirrhosis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Tianyue; Li, Xiaozhou; Yu, Ting; Sun, Ruomin; Li, Siqi

    2011-07-01

    In this paper, Raman spectra of human serum were measured using Raman spectroscopy, then the spectra was analyzed by multivariate statistical methods of principal component analysis (PCA). Then linear discriminant analysis (LDA) was utilized to differentiate the loading score of different diseases as the diagnosing algorithm. Artificial neural network (ANN) was used for cross-validation. The diagnosis sensitivity and specificity by PCA-LDA are 88% and 79%, while that of the PCA-ANN are 89% and 95%. It can be seen that modern analyzing method is a useful tool for the analysis of serum spectra for diagnosing diseases.

  9. Associations between anthropometric factors and peripheral neuropathy defined by vibrotactile perception threshold among industrial vibrating tool operators in Japan.

    PubMed

    Takemura, Shigeki; Yoshimasu, Kouichi; Tsuno, Kanami; Fukumoto, Jin; Kuroda, Mototsugu; Miyashita, Kazuhisa

    2016-05-25

    The effect of anthropometric factors on the fingertip vibrotactile perception threshold (VPT) of industrial vibrating tool operators (IVTOs) is not well known. The purpose of this study was to investigate the associations between anthropometric factors and fingertip VPT. We included for analysis two groups of IVTOs: Group 1, predominantly forestry workers (n=325); and Group 2, public servants (n=68). These IVTOs regularly received medical examinations to evaluate hand-arm vibration syndrome. In the examination, measurements of their fingertip VPTs were taken before and after cold-water immersion (10 minutes at 10°C for Group 1 and 5 minutes at 12°C for Group 2). Their body height and weight were measured to calculate the body mass index (BMI). The presence of peripheral neuropathy (PN) was defined as a VPT ≥17.5 dB at 10 minutes after finishing immersion. In the univariate analysis, weight and BMI were associated with a decreased risk of PN in both Groups 1 and 2. The negative association between BMI and PN remained in the multivariate analysis consistently, but weight reached marginal significance only in the multivariate analysis without BMI in both the groups. Age was positively associated with PN consistently in Group 1 but not in Group 2. Years exposed to vibration showed positive association with PN only in the univariate analysis of Group 1. Among IVTOs, factors reflecting body heat production, such as weight and BMI, were associated with a decreased risk of VPT-defined PN, regardless of the task engaged.

  10. Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 6: MARS System - A Sample Problem (Gross Weight of Subsonic Transports)

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Woodbury, N. W.

    1975-01-01

    The Mars system is a tool for rapid prediction of aircraft or engine characteristics based on correlation-regression analysis of past designs stored in the data bases. An example of output obtained from the MARS system, which involves derivation of an expression for gross weight of subsonic transport aircraft in terms of nine independent variables is given. The need is illustrated for careful selection of correlation variables and for continual review of the resulting estimation equations. For Vol. 1, see N76-10089.

  11. Authentication of animal origin of heparin and low molecular weight heparin including ovine, porcine and bovine species using 1D NMR spectroscopy and chemometric tools.

    PubMed

    Monakhova, Yulia B; Diehl, Bernd W K; Fareed, Jawed

    2018-02-05

    High resolution (600MHz) nuclear magnetic resonance (NMR) spectroscopy is used to distinguish heparin and low-molecular weight heparins (LMWHs) produced from porcine, bovine and ovine mucosal tissues as well as their blends. For multivariate analysis several statistical methods such as principal component analysis (PCA), factor discriminant analysis (FDA), partial least squares - discriminant analysis (PLS-DA), linear discriminant analysis (LDA) were utilized for the modeling of NMR data of more than 100 authentic samples. Heparin and LMWH samples from the independent test set (n=15) were 100% correctly classified according to its animal origin. Moreover, by using 1 H NMR coupled with chemometrics and several batches of bovine heparins from two producers were differentiated. Thus, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of animal origin and process based manufacturing difference in heparin products. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing.

    PubMed

    Lommen, Arjen

    2009-04-15

    Hyphenated full-scan MS technology creates large amounts of data. A versatile easy to handle automation tool aiding in the data analysis is very important in handling such a data stream. MetAlign softwareas described in this manuscripthandles a broad range of accurate mass and nominal mass GC/MS and LC/MS data. It is capable of automatic format conversions, accurate mass calculations, baseline corrections, peak-picking, saturation and mass-peak artifact filtering, as well as alignment of up to 1000 data sets. A 100 to 1000-fold data reduction is achieved. MetAlign software output is compatible with most multivariate statistics programs.

  13. Cross multivariate correlation coefficients as screening tool for analysis of concurrent EEG-fMRI recordings.

    PubMed

    Ji, Hong; Petro, Nathan M; Chen, Badong; Yuan, Zejian; Wang, Jianji; Zheng, Nanning; Keil, Andreas

    2018-02-06

    Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis. © 2018 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  14. Using a Grocery List Is Associated With a Healthier Diet and Lower BMI Among Very High-Risk Adults.

    PubMed

    Dubowitz, Tamara; Cohen, Deborah A; Huang, Christina Y; Beckman, Robin A; Collins, Rebecca L

    2015-01-01

    Examine whether use of a grocery list is associated with healthier diet and weight among food desert residents. Cross-sectional analysis of in-person interview data from randomly selected household food shoppers in 2 low-income, primarily African American urban neighborhoods in Pittsburgh, PA with limited access to healthy foods. Multivariate ordinary least-square regressions conducted among 1,372 participants and controlling for sociodemographic factors and other potential confounding variables indicated that although most of the sample (78%) was overweight or obese, consistently using a list was associated with lower body mass index (based on measured height and weight) (adjusted multivariant coefficient = 0.095) and higher dietary quality (based on the Healthy Eating Index-2005) (adjusted multivariant coefficient = 0.103) (P < .05). Shopping with a list may be a useful tool for low-income individuals to improve diet or decrease body mass index. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  15. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models

    NASA Astrophysics Data System (ADS)

    Allen, J. I.; Somerfield, P. J.; Gilbert, F. J.

    2007-01-01

    Marine ecosystem models are becoming increasingly complex and sophisticated, and are being used to estimate the effects of future changes in the earth system with a view to informing important policy decisions. Despite their potential importance, far too little attention has been, and is generally, paid to model errors and the extent to which model outputs actually relate to real-world processes. With the increasing complexity of the models themselves comes an increasing complexity among model results. If we are to develop useful modelling tools for the marine environment we need to be able to understand and quantify the uncertainties inherent in the simulations. Analysing errors within highly multivariate model outputs, and relating them to even more complex and multivariate observational data, are not trivial tasks. Here we describe the application of a series of techniques, including a 2-stage self-organising map (SOM), non-parametric multivariate analysis, and error statistics, to a complex spatio-temporal model run for the period 1988-1989 in the Southern North Sea, coinciding with the North Sea Project which collected a wealth of observational data. We use model output, large spatio-temporally resolved data sets and a combination of methodologies (SOM, MDS, uncertainty metrics) to simplify the problem and to provide tractable information on model performance. The use of a SOM as a clustering tool allows us to simplify the dimensions of the problem while the use of MDS on independent data grouped according to the SOM classification allows us to validate the SOM. The combination of classification and uncertainty metrics allows us to pinpoint the variables and associated processes which require attention in each region. We recommend the use of this combination of techniques for simplifying complex comparisons of model outputs with real data, and analysis of error distributions.

  16. Viewpoints: Interactive Exploration of Large Multivariate Earth and Space Science Data Sets

    NASA Astrophysics Data System (ADS)

    Levit, C.; Gazis, P. R.

    2006-05-01

    Analysis and visualization of extremely large and complex data sets may be one of the most significant challenges facing earth and space science investigators in the forthcoming decades. While advances in hardware speed and storage technology have roughly kept up with (indeed, have driven) increases in database size, the same is not of our abilities to manage the complexity of these data. Current missions, instruments, and simulations produce so much data of such high dimensionality that they outstrip the capabilities of traditional visualization and analysis software. This problem can only be expected to get worse as data volumes increase by orders of magnitude in future missions and in ever-larger supercomputer simulations. For large multivariate data (more than 105 samples or records with more than 5 variables per sample) the interactive graphics response of most existing statistical analysis, machine learning, exploratory data analysis, and/or visualization tools such as Torch, MLC++, Matlab, S++/R, and IDL stutters, stalls, or stops working altogether. Fortunately, the graphics processing units (GPUs) built in to all professional desktop and laptop computers currently on the market are capable of transforming, filtering, and rendering hundreds of millions of points per second. We present a prototype open-source cross-platform application which leverages much of the power latent in the GPU to enable smooth interactive exploration and analysis of large high- dimensional data using a variety of classical and recent techniques. The targeted application is the interactive analysis of large, complex, multivariate data sets, with dimensionalities that may surpass 100 and sample sizes that may exceed 106-108.

  17. Liver Rapid Reference Set Application: Kevin Qu-Quest (2011) — EDRN Public Portal

    Cancer.gov

    We propose to evaluate the performance of a novel serum biomarker panel for early detection of hepatocellular carcinoma (HCC). This panel is based on markers from the ubiquitin-proteasome system (UPS) in combination with the existing known HCC biomarkers, namely, alpha-fetoprotein (AFP), AFP-L3%, and des-y-carboxy prothrombin (DCP). To this end, we applied multivariate logistic regression analysis to optimize this biomarker algorithm tool.

  18. Uncertainty Modeling for Robustness Analysis of Control Upset Prevention and Recovery Systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Khong, Thuan H.; Shin, Jong-Yeob; Kwatny, Harry; Chang, Bor-Chin; Balas, Gary J.

    2005-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and should include various sources of uncertainty. However, formulation of linear fractional transformation (LFT) models for representing system uncertainty can be very difficult for complex parameter-dependent systems. This paper describes a preliminary LFT modeling software tool which uses a matrix-based computational approach that can be directly applied to parametric uncertainty problems involving multivariate matrix polynomial dependencies. Several examples are presented (including an F-16 at an extreme flight condition, a missile model, and a generic example with numerous crossproduct terms), and comparisons are given with other LFT modeling tools that are currently available. The LFT modeling method and preliminary software tool presented in this paper are shown to compare favorably with these methods.

  19. Near-infrared confocal micro-Raman spectroscopy combined with PCA-LDA multivariate analysis for detection of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wang, Yue; Liu, Nenrong; Lin, Duo; Weng, Cuncheng; Zhang, Jixue; Zhu, Lihuan; Chen, Weisheng; Chen, Rong; Feng, Shangyuan

    2013-06-01

    The diagnostic capability of using tissue intrinsic micro-Raman signals to obtain biochemical information from human esophageal tissue is presented in this paper. Near-infrared micro-Raman spectroscopy combined with multivariate analysis was applied for discrimination of esophageal cancer tissue from normal tissue samples. Micro-Raman spectroscopy measurements were performed on 54 esophageal cancer tissues and 55 normal tissues in the 400-1750 cm-1 range. The mean Raman spectra showed significant differences between the two groups. Tentative assignments of the Raman bands in the measured tissue spectra suggested some changes in protein structure, a decrease in the relative amount of lactose, and increases in the percentages of tryptophan, collagen and phenylalanine content in esophageal cancer tissue as compared to those of a normal subject. The diagnostic algorithms based on principal component analysis (PCA) and linear discriminate analysis (LDA) achieved a diagnostic sensitivity of 87.0% and specificity of 70.9% for separating cancer from normal esophageal tissue samples. The result demonstrated that near-infrared micro-Raman spectroscopy combined with PCA-LDA analysis could be an effective and sensitive tool for identification of esophageal cancer.

  20. Predicting trauma patient mortality: ICD [or ICD-10-AM] versus AIS based approaches.

    PubMed

    Willis, Cameron D; Gabbe, Belinda J; Jolley, Damien; Harrison, James E; Cameron, Peter A

    2010-11-01

    The International Classification of Diseases Injury Severity Score (ICISS) has been proposed as an International Classification of Diseases (ICD)-10-based alternative to mortality prediction tools that use Abbreviated Injury Scale (AIS) data, including the Trauma and Injury Severity Score (TRISS). To date, studies have not examined the performance of ICISS using Australian trauma registry data. This study aimed to compare the performance of ICISS with other mortality prediction tools in an Australian trauma registry. This was a retrospective review of prospectively collected data from the Victorian State Trauma Registry. A training dataset was created for model development and a validation dataset for evaluation. The multiplicative ICISS model was compared with a worst injury ICISS approach, Victorian TRISS (V-TRISS, using local coefficients), maximum AIS severity and a multivariable model including ICD-10-AM codes as predictors. Models were investigated for discrimination (C-statistic) and calibration (Hosmer-Lemeshow statistic). The multivariable approach had the highest level of discrimination (C-statistic 0.90) and calibration (H-L 7.65, P= 0.468). Worst injury ICISS, V-TRISS and maximum AIS had similar performance. The multiplicative ICISS produced the lowest level of discrimination (C-statistic 0.80) and poorest calibration (H-L 50.23, P < 0.001). The performance of ICISS may be affected by the data used to develop estimates, the ICD version employed, the methods for deriving estimates and the inclusion of covariates. In this analysis, a multivariable approach using ICD-10-AM codes was the best-performing method. A multivariable ICISS approach may therefore be a useful alternative to AIS-based methods and may have comparable predictive performance to locally derived TRISS models. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  1. Delirium superimposed on dementia: defining disease states and course from longitudinal measurements of a multivariate index using latent class analysis and hidden Markov chains.

    PubMed

    Ciampi, Antonio; Dyachenko, Alina; Cole, Martin; McCusker, Jane

    2011-12-01

    The study of mental disorders in the elderly presents substantial challenges due to population heterogeneity, coexistence of different mental disorders, and diagnostic uncertainty. While reliable tools have been developed to collect relevant data, new approaches to study design and analysis are needed. We focus on a new analytic approach. Our framework is based on latent class analysis and hidden Markov chains. From repeated measurements of a multivariate disease index, we extract the notion of underlying state of a patient at a time point. The course of the disorder is then a sequence of transitions among states. States and transitions are not observable; however, the probability of being in a state at a time point, and the transition probabilities from one state to another over time can be estimated. Data from 444 patients with and without diagnosis of delirium and dementia were available from a previous study. The Delirium Index was measured at diagnosis, and at 2 and 6 months from diagnosis. Four latent classes were identified: fairly healthy, moderately ill, clearly sick, and very sick. Dementia and delirium could not be separated on the basis of these data alone. Indeed, as the probability of delirium increased, so did the probability of decline of mental functions. Eight most probable courses were identified, including good and poor stable courses, and courses exhibiting various patterns of improvement. Latent class analysis and hidden Markov chains offer a promising tool for studying mental disorders in the elderly. Its use may show its full potential as new data become available.

  2. The International Scoring System (ISS) for multiple myeloma remains a robust prognostic tool independently of patients' renal function.

    PubMed

    Dimopoulos, M A; Kastritis, E; Michalis, E; Tsatalas, C; Michael, M; Pouli, A; Kartasis, Z; Delimpasi, S; Gika, D; Zomas, A; Roussou, M; Konstantopoulos, K; Parcharidou, A; Zervas, K; Terpos, E

    2012-03-01

    The International Staging System (ISS) is the most widely used staging system for patients with multiple myeloma (MM). However, serum β2-microglobulin increases in renal impairment (RI) and there have been concerns that ISS-3 stage may include 'up-staged' MM patients in whom elevated β2-microglobulin reflects the degree of renal dysfunction rather than tumor load. In order to assess the impact of RI on the prognostic value of ISS, we analyzed 1516 patients with symptomatic MM and the degree of RI was classified according to the Kidney Disease Outcomes Quality Initiative-Chronic Kidney Disease (CKD) criteria. Forty-eight percent patients had stages 3-5 CKD while 29% of patients had ISS-1, 38% had ISS-2 and 33% ISS-3. The frequency and severity of RI were more common in ISS-3 patients. RI was associated with inferior survival in univariate but not in multivariate analysis. When analyzed separately, ISS-1 and ISS-2 patients with RI had inferior survival in univariate but not in multivariate analysis. In ISS-3 MM patients, RI had no prognostic impact either in univariate or multivariate analysis. Results were similar, when we analyzed only patients with Bence-Jones >200 mg/day. ISS remains unaffected by the degree of RI, even in patients with ISS-3, which includes most patients with renal dysfunction.

  3. Multivariate analysis of volatile compounds detected by headspace solid-phase microextraction/gas chromatography: A tool for sensory classification of cork stoppers.

    PubMed

    Prat, Chantal; Besalú, Emili; Bañeras, Lluís; Anticó, Enriqueta

    2011-06-15

    The volatile fraction of aqueous cork macerates of tainted and non-tainted agglomerate cork stoppers was analysed by headspace solid-phase microextraction (HS-SPME)/gas chromatography. Twenty compounds containing terpenoids, aliphatic alcohols, lignin-related compounds and others were selected and analysed in individual corks. Cork stoppers were previously classified in six different classes according to sensory descriptions including, 2,4,6-trichloroanisole taint and other frequent, non-characteristic odours found in cork. A multivariate analysis of the chromatographic data of 20 selected chemical compounds using linear discriminant analysis models helped in the differentiation of the a priori made groups. The discriminant model selected five compounds as the best combination. Selected compounds appear in the model in the following order; 2,4,6 TCA, fenchyl alcohol, 1-octen-3-ol, benzyl alcohol and benzothiazole. Unfortunately, not all six a priori differentiated sensory classes were clearly discriminated in the model, probably indicating that no measurable differences exist in the chromatographic data for some categories. The predictive analyses of a refined model in which two sensory classes were fused together resulted in a good classification. Prediction rates of control (non-tainted), TCA, musty-earthy-vegetative, vegetative and chemical descriptions were 100%, 100%, 85%, 67.3% and 100%, respectively, when the modified model was used. The multivariate analysis of chromatographic data will help in the classification of stoppers and provide a perfect complement to sensory analyses. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Lithology and mineralogy recognition from geochemical logging tool data using multivariate statistical analysis.

    PubMed

    Konaté, Ahmed Amara; Ma, Huolin; Pan, Heping; Qin, Zhen; Ahmed, Hafizullah Abba; Dembele, N'dji Dit Jacques

    2017-10-01

    The availability of a deep well that penetrates deep into the Ultra High Pressure (UHP) metamorphic rocks is unusual and consequently offers a unique chance to study the metamorphic rocks. One such borehole is located in the southern part of Donghai County in the Sulu UHP metamorphic belt of Eastern China, from the Chinese Continental Scientific Drilling Main hole. This study reports the results obtained from the analysis of oxide log data. A geochemical logging tool provides in situ, gamma ray spectroscopy measurements of major and trace elements in the borehole. Dry weight percent oxide concentration logs obtained for this study were SiO 2 , K 2 O, TiO 2 , H 2 O, CO 2 , Na 2 O, Fe 2 O 3 , FeO, CaO, MnO, MgO, P 2 O 5 and Al 2 O 3 . Cross plot and Principal Component Analysis methods were applied for lithology characterization and mineralogy description respectively. Cross plot analysis allows lithological variations to be characterized. Principal Component Analysis shows that the oxide logs can be summarized by two components related to the feldspar and hydrous minerals. This study has shown that geochemical logging tool data is accurate and adequate to be tremendously useful in UHP metamorphic rocks analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI

    PubMed Central

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-01-01

    In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490

  6. Carbon financial markets: A time-frequency analysis of CO2 prices

    NASA Astrophysics Data System (ADS)

    Sousa, Rita; Aguiar-Conraria, Luís; Soares, Maria Joana

    2014-11-01

    We characterize the interrelation of CO2 prices with energy prices (electricity, gas and coal), and with economic activity. Previous studies have relied on time-domain techniques, such as Vector Auto-Regressions. In this study, we use multivariate wavelet analysis, which operates in the time-frequency domain. Wavelet analysis provides convenient tools to distinguish relations at particular frequencies and at particular time horizons. Our empirical approach has the potential to identify relations getting stronger and then disappearing over specific time intervals and frequencies. We are able to examine the coherency of these variables and lead-lag relations at different frequencies for the time periods in focus.

  7. Central sleep apnea detection from ECG-derived respiratory signals. Application of multivariate recurrence plot analysis.

    PubMed

    Maier, C; Dickhaus, H

    2010-01-01

    This study examines the suitability of recurrence plot analysis for the problem of central sleep apnea (CSA) detection and delineation from ECG-derived respiratory (EDR) signals. A parameter describing the average length of vertical line structures in recurrence plots is calculated at a time resolution of 1 s as 'instantaneous trapping time'. Threshold comparison of this parameter is used to detect ongoing CSA. In data from 26 patients (duration 208 h) we assessed sensitivity for detection of CSA and mixed apnea (MSA) events by comparing the results obtained from 8-channel Holter ECGs to the annotations (860 CSA, 480 MSA) of simultaneously registered polysomnograms. Multivariate combination of the EDR from different ECG leads improved the detection accuracy significantly. When all eight leads were considered, an average instantaneous vertical line length above 5 correctly identified 1126 of the 1340 events (sensitivity 84%) with a total number of 1881 positive detections. We conclude that recurrence plot analysis is a promising tool for detection and delineation of CSA epochs from EDR signals with high time resolution. Moreover, the approach is likewise applicable to directly measured respiratory signals.

  8. Screening and analysis of aconitum alkaloids and their metabolites in rat urine after oral administration of aconite roots extract using LC-TOFMS-based metabolomics.

    PubMed

    Tan, Guangguo; Lou, Ziyang; Jing, Jing; Li, Wuhong; Zhu, Zhenyu; Zhao, Liang; Zhang, Guoqing; Chai, Yifeng

    2011-12-01

    Aconite roots are popularly used in herbal medicines in China. Many cases of accidental and intentional intoxication with this plant have been reported; some of these are fatal because the toxicity of aconitum is very high. It is thus important to detect and identify aconitum alkaloids in biofluids. In this work, an improved method employing LC-TOFMS with multivariate data analysis was developed for screening and analysis of major aconitum alkaloids and their metabolites in rat urine following oral administration of aconite roots extract. Thirty-four signals highlighted by multivariate statistical analyses including 24 parent components and 10 metabolites were screened out and further identified by adjustment of the fragmentor voltage to produce structure-relevant fragment ions. It is helpful for studying aconite roots in toxicology, pharmacology and forensic medicine. This work also confirmed that the metabolomic approach provides effective tools for screening multiple absorbed and metabolic components of Chinese herbal medicines in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Multivariable regression analysis of list experiment data on abortion: results from a large, randomly-selected population based study in Liberia.

    PubMed

    Moseson, Heidi; Gerdts, Caitlin; Dehlendorf, Christine; Hiatt, Robert A; Vittinghoff, Eric

    2017-12-21

    The list experiment is a promising measurement tool for eliciting truthful responses to stigmatized or sensitive health behaviors. However, investigators may be hesitant to adopt the method due to previously untestable assumptions and the perceived inability to conduct multivariable analysis. With a recently developed statistical test that can detect the presence of a design effect - the absence of which is a central assumption of the list experiment method - we sought to test the validity of a list experiment conducted on self-reported abortion in Liberia. We also aim to introduce recently developed multivariable regression estimators for the analysis of list experiment data, to explore relationships between respondent characteristics and having had an abortion - an important component of understanding the experiences of women who have abortions. To test the null hypothesis of no design effect in the Liberian list experiment data, we calculated the percentage of each respondent "type," characterized by response to the control items, and compared these percentages across treatment and control groups with a Bonferroni-adjusted alpha criterion. We then implemented two least squares and two maximum likelihood models (four total), each representing different bias-variance trade-offs, to estimate the association between respondent characteristics and abortion. We find no clear evidence of a design effect in list experiment data from Liberia (p = 0.18), affirming the first key assumption of the method. Multivariable analyses suggest a negative association between education and history of abortion. The retrospective nature of measuring lifetime experience of abortion, however, complicates interpretation of results, as the timing and safety of a respondent's abortion may have influenced her ability to pursue an education. Our work demonstrates that multivariable analyses, as well as statistical testing of a key design assumption, are possible with list experiment data, although with important limitations when considering lifetime measures. We outline how to implement this methodology with list experiment data in future research.

  10. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    PubMed

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  11. PGI chicory (Cichorium intybus L.) traceability by means of HRMAS-NMR spectroscopy: a preliminary study.

    PubMed

    Ritota, Mena; Casciani, Lorena; Valentini, Massimiliano

    2013-05-01

    Analytical traceability of PGI and PDO foods (Protected Geographical Indication and Protected Denomination Origin respectively) is one of the most challenging tasks of current applied research. Here we proposed a metabolomic approach based on the combination of (1)H high-resolution magic angle spinning-nuclear magnetic resonance (HRMAS-NMR) spectroscopy with multivariate analysis, i.e. PLS-DA, as a reliable tool for the traceability of Italian PGI chicories (Cichorium intybus L.), i.e. Radicchio Rosso di Treviso and Radicchio Variegato di Castelfranco, also known as red and red-spotted, respectively. The metabolic profile was gained by means of HRMAS-NMR, and multivariate data analysis allowed us to build statistical models capable of providing clear discrimination among the two varieties and classification according to the geographical origin. Based on Variable Importance in Projection values, the molecular markers for classifying the different types of red chicories analysed were found accounting for both the cultivar and the place of origin. © 2012 Society of Chemical Industry.

  12. Exploratory analysis of TOF-SIMS data from biological surfaces

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Seetharaman; Fletcher, John S.; Henderson, Alex; Lockyer, Nicholas P.; Vickerman, John C.

    2008-12-01

    The application of multivariate analytical tools enables simplification of TOF-SIMS datasets so that useful information can be extracted from complex spectra and images, especially those that do not give readily interpretable results. There is however a challenge in understanding the outputs from such analyses. The problem is complicated when analysing images, given the additional dimensions in the dataset. Here we demonstrate how the application of simple pre-processing routines can enable the interpretation of TOF-SIMS spectra and images. For the spectral data, TOF-SIMS spectra used to discriminate bacterial isolates associated with urinary tract infection were studied. Using different criteria for picking peaks before carrying out PC-DFA enabled identification of the discriminatory information with greater certainty. For the image data, an air-dried salt stressed bacterial sample, discussed in another paper by us in this issue, was studied. Exploration of the image datasets with and without normalisation prior to multivariate analysis by PCA or MAF resulted in different regions of the image being highlighted by the techniques.

  13. Beyond singular values and loop shapes

    NASA Technical Reports Server (NTRS)

    Stein, G.

    1985-01-01

    The status of singular value loop-shaping as a design paradigm for multivariable feedback systems is reviewed. It shows that this paradigm is an effective design tool whenever the problem specifications are spacially round. The tool can be arbitrarily conservative, however, when they are not. This happens because singular value conditions for robust performance are not tight (necessary and sufficient) and can severely overstate actual requirements. An alternate paradign is discussed which overcomes these limitations. The alternative includes a more general problem formulation, a new matrix function mu, and tight conditions for both robust stability and robust performance. The state of the art currently permits analysis of feedback systems within this new paradigm. Synthesis remains a subject of research.

  14. A novel practical scoring for early diagnosis of traumatic bowel injury without obvious solid organ injury in hemodynamically stable patients.

    PubMed

    Zarour, Ahmad; El-Menyar, Ayman; Khattabi, Mazen; Tayyem, Raed; Hamed, Osama; Mahmood, Ismail; Abdelrahman, Husham; Chiu, William; Al-Thani, Hassan

    2014-01-01

    To develop a scoring tool based on clinical and radiological findings for early diagnosis and intervention in hemodynamically stable patients with traumatic bowel and mesenteric injury (TBMI) without obvious solid organ injury (SOI). A retrospective analysis was conducted for all traumatic abdominal injury patients in Qatar from 2008 to 2011. Data included demographics and clinical, radiological and operative findings. Multivariate logistic regression was performed to analyze the predictors for the need of therapeutic laparotomy. A total of 105 patients met the inclusion criteria with a mean age of 33 ± 15. Motor Vehicle Crashes (58%) and fall (21%) were the major MOI. Using Receiver operating characteristic curve, Z-score of >9 was the cutoff point (AUC = 0.98) for high probability of the presence of TBMI requiring surgical intervention. Z-Score >9 was found to have sensitivity (96.7%), specificity (97.4%), PPV (93.5%) and NPV (98.7%). Multivariate regression analysis found Z-score (>9) to be an independent predictor for the need of exploratory laparotomy (OR7.0; 95% CI: 2.46-19.78, p = 0.001). This novel tool for early diagnosis of TBMI is found to be simple and helpful in selecting stable patients with free intra-abdominal fluid without SOI for exploratory Laparotomy. However, further prospective studies are warranted. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Analysis of Anterior Cervical Discectomy and Fusion Healthcare Costs via the Value-Driven Outcomes Tool.

    PubMed

    Reese, Jared C; Karsy, Michael; Twitchell, Spencer; Bisson, Erica F

    2018-04-11

    Examining the costs of single- and multilevel anterior cervical discectomy and fusion (ACDF) is important for the identification of cost drivers and potentially reducing patient costs. A novel tool at our institution provides direct costs for the identification of potential drivers. To assess perioperative healthcare costs for patients undergoing an ACDF. Patients who underwent an elective ACDF between July 2011 and January 2017 were identified retrospectively. Factors adding to total cost were placed into subcategories to identify the most significant contributors, and potential drivers of total cost were evaluated using a multivariable linear regression model. A total of 465 patients (mean, age 53 ± 12 yr, 54% male) met the inclusion criteria for this study. The distribution of total cost was broken down into supplies/implants (39%), facility utilization (37%), physician fees (14%), pharmacy (7%), imaging (2%), and laboratory studies (1%). A multivariable linear regression analysis showed that total cost was significantly affected by the number of levels operated on, operating room time, and length of stay. Costs also showed a narrow distribution with few outliers and did not vary significantly over time. These results suggest that facility utilization and supplies/implants are the predominant cost contributors, accounting for 76% of the total cost of ACDF procedures. Efforts at lowering costs within these categories should make the most impact on providing more cost-effective care.

  16. Molecular monitoring of epithelial-to-mesenchymal transition in breast cancer cells by means of Raman spectroscopy.

    PubMed

    Marro, M; Nieva, C; Sanz-Pamplona, R; Sierra, A

    2014-09-01

    In breast cancer the presence of cells undergoing the epithelial-to-mesenchymal transition is indicative of metastasis progression. Since metabolic features of breast tumour cells are critical in cancer progression and drug resistance, we hypothesized that the lipid content of malignant cells might be a useful indirect measure of cancer progression. In this study Multivariate Curve Resolution was applied to cellular Raman spectra to assess the metabolic composition of breast cancer cells undergoing the epithelial to mesenchymal transition. Multivariate Curve Resolution analysis led to the conclusion that this transition affects the lipid profile of cells, increasing tryptophan but maintaining a low fatty acid content in comparison with highly metastatic cells. Supporting those results, a Partial Least Square-Discriminant analysis was performed to test the ability of Raman spectroscopy to discriminate the initial steps of epithelial to mesenchymal transition in breast cancer cells. We achieved a high level of sensitivity and specificity, 94% and 100%, respectively. In conclusion, Raman microspectroscopy coupled with Multivariate Curve Resolution enables deconvolution and tracking of the molecular content of cancer cells during a biochemical process, being a powerful, rapid, reagent-free and non-invasive tool for identifying metabolic features of breast cancer cell aggressiveness at first stages of malignancy. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sarcopenia predicts 1-year mortality in elderly patients undergoing curative gastrectomy for gastric cancer: a prospective study.

    PubMed

    Huang, Dong-Dong; Chen, Xiao-Xi; Chen, Xi-Yi; Wang, Su-Lin; Shen, Xian; Chen, Xiao-Lei; Yu, Zhen; Zhuang, Cheng-Le

    2016-11-01

    One-year mortality is vital for elderly oncologic patients undergoing surgery. Recent studies have demonstrated that sarcopenia can predict outcomes after major abdominal surgeries, but the association of sarcopenia and 1-year mortality has never been investigated in a prospective study. We conducted a prospective study of elderly patients (≥65 years) who underwent curative gastrectomy for gastric cancer from July 2014 to July 2015. Sarcopenia was determined by the measurements of muscle mass, handgrip strength, and gait speed. Univariate and multivariate analyses were used to identify the risk factors associated with 1-year mortality. A total of 173 patients were included, in which 52 (30.1 %) patients were identified as having sarcopenia. Twenty-four (13.9 %) patients died within 1 year of surgery. Multivariate analysis showed that sarcopenia was an independent risk factor for 1-year mortality. Area under the receiver operating characteristic curve demonstrated an increased predictive power for 1-year mortality with the inclusion of sarcopenia, from 0.835 to 0.868. Solely low muscle mass was not predictive of 1-year mortality in the multivariate analysis. Sarcopenia is predictive of 1-year mortality in elderly patients undergoing gastric cancer surgery. The measurement of muscle function is important for sarcopenia as a preoperative assessment tool.

  18. [Design and implementation of online statistical analysis function in information system of air pollution and health impact monitoring].

    PubMed

    Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun

    2018-01-01

    To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.

  19. TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies

    PubMed Central

    van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.

    2013-01-01

    To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524

  20. Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens.

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2014-01-01

    Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.

  1. Imaging mass spectrometry data reduction: automated feature identification and extraction.

    PubMed

    McDonnell, Liam A; van Remoortere, Alexandra; de Velde, Nico; van Zeijl, René J M; Deelder, André M

    2010-12-01

    Imaging MS now enables the parallel analysis of hundreds of biomolecules, spanning multiple molecular classes, which allows tissues to be described by their molecular content and distribution. When combined with advanced data analysis routines, tissues can be analyzed and classified based solely on their molecular content. Such molecular histology techniques have been used to distinguish regions with differential molecular signatures that could not be distinguished using established histologic tools. However, its potential to provide an independent, complementary analysis of clinical tissues has been limited by the very large file sizes and large number of discrete variables associated with imaging MS experiments. Here we demonstrate data reduction tools, based on automated feature identification and extraction, for peptide, protein, and lipid imaging MS, using multiple imaging MS technologies, that reduce data loads and the number of variables by >100×, and that highlight highly-localized features that can be missed using standard data analysis strategies. It is then demonstrated how these capabilities enable multivariate analysis on large imaging MS datasets spanning multiple tissues. Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  2. 1 H-NMR with Multivariate Analysis for Automobile Lubricant Comparison.

    PubMed

    Kim, Siwon; Yoon, Dahye; Lee, Dong-Kye; Yoon, Changshin; Kim, Suhkmann

    2017-07-01

    Identification of suspected automobile-related lubricants could provide valuable information in forensic cases. We examined that automobile lubricants might exhibit the chemometric characteristics to their individual usages. To compare the degree of clustering in the plots, we co-plotted general industrial oils that were highly dissimilar with automobile lubricants in additive compositions. 1 H-NMR spectroscopy was used with multivariate statistics as a tool for grouping, clustering, and identification of automobile lubricants in laboratory conditions. We analyzed automobile lubricants including automobile engine oils, automobile transmission oils, automobile gear oils, and motorcycle oils. In contrast to the general industrial oils, automobile lubricants showed relatively high tendencies of clustering to their usages. Our pilot study demonstrated that the comparison of known and questioned samples to their usages might be possible in forensic fields. © 2017 American Academy of Forensic Sciences.

  3. Calibration of multivariate scatter plots for exploratory analysis of relations within and between sets of variables in genomic research.

    PubMed

    Graffelman, Jan; van Eeuwijk, Fred

    2005-12-01

    The scatter plot is a well known and easily applicable graphical tool to explore relationships between two quantitative variables. For the exploration of relations between multiple variables, generalisations of the scatter plot are useful. We present an overview of multivariate scatter plots focussing on the following situations. Firstly, we look at a scatter plot for portraying relations between quantitative variables within one data matrix. Secondly, we discuss a similar plot for the case of qualitative variables. Thirdly, we describe scatter plots for the relationships between two sets of variables where we focus on correlations. Finally, we treat plots of the relationships between multiple response and predictor variables, focussing on the matrix of regression coefficients. We will present both known and new results, where an important original contribution concerns a procedure for the inclusion of scales for the variables in multivariate scatter plots. We provide software for drawing such scales. We illustrate the construction and interpretation of the plots by means of examples on data collected in a genomic research program on taste in tomato.

  4. Multivariate probability distribution for sewer system vulnerability assessment under data-limited conditions.

    PubMed

    Del Giudice, G; Padulano, R; Siciliano, D

    2016-01-01

    The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements.

  5. Resemblance profiles as clustering decision criteria: Estimating statistical power, error, and correspondence for a hypothesis test for multivariate structure.

    PubMed

    Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F

    2017-04-01

    Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.

  6. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, S. George

    1994-01-01

    We developed a package to process and analyze the data from the digital version of the Second Palomar Sky Survey. This system, called SKICAT, incorporates the latest in machine learning and expert systems software technology, in order to classify the detected objects objectively and uniformly, and facilitate handling of the enormous data sets from digital sky surveys and other sources. The system provides a powerful, integrated environment for the manipulation and scientific investigation of catalogs from virtually any source. It serves three principal functions: image catalog construction, catalog management, and catalog analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT automates the process of classifying objects within CCD and digitized plate images. To exploit these catalogs, the system also provides tools to merge them into a large, complete database which may be easily queried and modified when new data or better methods of calibrating or classifying become available. The most innovative feature of SKICAT is the facility it provides to experiment with and apply the latest in machine learning technology to the tasks of catalog construction and analysis. SKICAT provides a unique environment for implementing these tools for any number of future scientific purposes. Initial scientific verification and performance tests have been made using galaxy counts and measurements of galaxy clustering from small subsets of the survey data, and a search for very high redshift quasars. All of the tests were successful, and produced new and interesting scientific results. Attachments to this report give detailed accounts of the technical aspects for multivariate statistical analysis of small and moderate-size data sets, called STATPROG. The package was tested extensively on a number of real scientific applications, and has produced real, published results.

  7. Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies

    ERIC Educational Resources Information Center

    Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.

    2012-01-01

    In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…

  8. Application of reiteration of Hankel singular value decomposition in quality control

    NASA Astrophysics Data System (ADS)

    Staniszewski, Michał; Skorupa, Agnieszka; Boguszewicz, Łukasz; Michalczuk, Agnieszka; Wereszczyński, Kamil; Wicher, Magdalena; Konopka, Marek; Sokół, Maria; Polański, Andrzej

    2017-07-01

    Medical centres are obliged to store past medical records, including the results of quality assurance (QA) tests of the medical equipment, which is especially useful in checking reproducibility of medical devices and procedures. Analysis of multivariate time series is an important part of quality control of NMR data. In this work we proposean anomaly detection tool based on Reiteration of Hankel Singular Value Decomposition method. The presented method was compared with external software and authors obtained comparable results.

  9. Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia.

    PubMed

    Mohamed, Ibrahim; Othman, Faridah; Ibrahim, Adriana I N; Alaa-Eldin, M E; Yunus, Rossita M

    2015-01-01

    This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.

  10. Fermentanomics: Relating quality attributes of a monoclonal antibody to cell culture process variables and raw materials using multivariate data analysis.

    PubMed

    Rathore, Anurag S; Kumar Singh, Sumit; Pathak, Mili; Read, Erik K; Brorson, Kurt A; Agarabi, Cyrus D; Khan, Mansoor

    2015-01-01

    Fermentanomics is an emerging field of research and involves understanding the underlying controlled process variables and their effect on process yield and product quality. Although major advancements have occurred in process analytics over the past two decades, accurate real-time measurement of significant quality attributes for a biotech product during production culture is still not feasible. Researchers have used an amalgam of process models and analytical measurements for monitoring and process control during production. This article focuses on using multivariate data analysis as a tool for monitoring the internal bioreactor dynamics, the metabolic state of the cell, and interactions among them during culture. Quality attributes of the monoclonal antibody product that were monitored include glycosylation profile of the final product along with process attributes, such as viable cell density and level of antibody expression. These were related to process variables, raw materials components of the chemically defined hybridoma media, concentration of metabolites formed during the course of the culture, aeration-related parameters, and supplemented raw materials such as glucose, methionine, threonine, tryptophan, and tyrosine. This article demonstrates the utility of multivariate data analysis for correlating the product quality attributes (especially glycosylation) to process variables and raw materials (especially amino acid supplements in cell culture media). The proposed approach can be applied for process optimization to increase product expression, improve consistency of product quality, and target the desired quality attribute profile. © 2015 American Institute of Chemical Engineers.

  11. NCA-LDAS land analysis: Development and performance of a multisensory, multivariate land data assimilation for the National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Jasinski, M. F.; Mocko, D. M.; Rodell, M.; Borak, J.; Li, B.; Beaudoing, H. K.; Peters-Lidard, C. D.

    2017-12-01

    This presentation will describe one of the first successful examples of multisensor, multivariate land data assimilation, encompassing a large suite of soil moisture, snow depth, snow cover and irrigation intensity environmental data records (EDRs) from Scanning Multi-channel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), the Advanced Scatterometer (ASCAT), the Moderate-Resolution Imaging Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2), the Soil Moisture Ocean Salinity (SMOS) mission and the Soil Moisture Active Passive (SMAP) mission. The analysis is performed using the NASA Land Information System (LIS) as an enabling tool for the U.S. National Climate Assessment (NCA). The performance of NCA Land Data Assimilation System (NCA-LDAS) is evaluated by comparing to a number of hydrological reference data products. Results indicate that multivariate assimilation provides systematic improvements in simulated soil moisture and snow depth, with marginal effects on the accuracy of simulated streamflow and ET. An important conclusion is that across all evaluated variables, assimilation of data from increasingly more modern sensors (e.g. SMOS, SMAP, AMSR2, ASCAT) produces more skillful results than assimilation of data from older sensors (e.g. SMMR, SSM/I, AMSR-E). The evaluation also indicates high skill of NCA-LDAS when compared with other land analysis products. Further, drought indicators based on NCA-LDAS output suggest a trend of longer and more severe droughts over parts of Western U.S. during 1979-2015, particularly in the Southwestern U.S.

  12. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  13. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis.

    PubMed

    Yang, Yan-Qin; Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang

    2018-01-01

    In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.

  14. [Application of chemometrics in composition-activity relationship research of traditional Chinese medicine].

    PubMed

    Han, Sheng-Nan

    2014-07-01

    Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.

  15. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis

    PubMed Central

    Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang

    2018-01-01

    In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties. PMID:29494626

  16. Statistical Development of Flood Frequency and Magnitude Equations for the Cosumnes and Mokelumne River Drainage Basins, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Burns, R. G.; Meyer, R. W.; Cornwell, K.

    2003-12-01

    In-basin statistical relations allow for development of regional flood frequency and magnitude equations in the Cosumnes River and Mokelumne River drainage basins. Current equations were derived from data collected through 1975, and do not reflect newer data with some significant flooding. Physical basin characteristics (area, mean basin elevation, slope of longest reach, and mean annual precipitation) were correlated against predicted flood discharges for each of the 5, 10, 25, 50, 100, 200, and 500-year recurrence intervals in a multivariate analysis. Predicted maximum instantaneous flood discharges were determined using the PEAKFQ program with default settings, for 24 stream gages within the study area presumed not affected by flow management practices. For numerical comparisons, GIS-based methods using Spatial Analyst and the Arc Hydro Tools extension were applied to derive physical basin characteristics as predictor variables from a 30m digital elevation model (DEM) and a mean annual precipitation raster (PRISM). In a bivariate analysis, examination of Pearson correlation coefficients, F-statistic, and t & p thresholds show good correlation between area and flood discharges. Similar analyses show poor correlation for mean basin elevation, slope and precipitation, with flood discharge. Bivariate analysis suggests slope may not be an appropriate predictor term for use in the multivariate analysis. Precipitation and elevation correlate very well, demonstrating possible orographic effects. From the multivariate analysis, less than 6% of the variability in the correlation is not explained for flood recurrences up to 25 years. Longer term predictions up to 500 years accrue greater uncertainty with as much as 15% of the variability in the correlation left unexplained.

  17. Characterization of regional cold-hydrothermal inflows enriched in arsenic and associated trace-elements in the southern part of the Duero Basin (Spain), by multivariate statistical analysis.

    PubMed

    Giménez-Forcada, Elena; Vega-Alegre, Marisol; Timón-Sánchez, Susana

    2017-09-01

    Naturally occurring arsenic in groundwater exceeding the limit for potability has been reported along the southern edge of the Cenozoic Duero Basin (CDB) near its contact with the Spanish Central System (SCS). In this area, spatial variability of arsenic is high, peaking at 241μg/L. Forty-seven percent of samples collected contained arsenic above the maximum allowable concentration for drinking water (10μg/L). Correlations of As with other hydrochemical variables were investigated using multivariate statistical analysis (Hierarchical Cluster Analysis, HCA and Principal Component Analysis, PCA). It was found that As, V, Cr and pH are closely related and that there were also close correlations with temperature and Na + . The highest concentrations of arsenic and other associated Potentially Toxic Geogenic Trace Elements (PTGTE) are linked to alkaline NaHCO 3 waters (pH≈9), moderate oxic conditions and temperatures of around 18°C-19°C. The most plausible hypothesis to explain the high arsenic concentrations is the contribution of deeper regional flows with a significant hydrothermal component (cold-hydrothermal waters), flowing through faults in the basement rock. Water mixing and water-rock interactions occur both in the fissured aquifer media (igneous and metasedimentary bedrock) and in the sedimentary environment of the CDB, where agricultural pollution phenomena are also active. A combination of multivariate statistical tools and hydrochemical analysis enabled the distribution pattern of dissolved As and other PTGTE in groundwaters in the study area to be interpreted, and their most likely origin to be established. This methodology could be applied to other sedimentary areas with similar characteristics and problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  19. Simplified tools for evaluating domestic ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maansson, L.G.; Orme, M.

    1999-07-01

    Within an International Energy Agency (IEA) project, Annex 27, experts from 8 countries (Canada, France, Italy, Japan, The Netherlands, Sweden, UK and USA) have developed simplified tools for evaluating domestic ventilation systems during the heating season. Tools for building and user aspects, thermal comfort, noise, energy, life cycle cost, reliability and indoor air quality (IAQ) have been devised. The results can be used both for dwellings at the design stage and after construction. The tools lead to immediate answers and indications about the consequences of different choices that may arise during discussion with clients. This paper presents an introduction tomore » these tools. Examples applications of the indoor air quality and energy simplified tools are also provided. The IAQ tool accounts for constant emission sources, CO{sub 2}, cooking products, tobacco smoke, condensation risks, humidity levels (i.e., for judging the risk for mould and house dust mites), and pressure difference (for identifying the risk for radon or land fill spillage entering the dwelling or problems with indoor combustion appliances). An elaborated set of design parameters were worked out that resulted in about 17,000 combinations. By using multi-variate analysis it was possible to reduce this to 174 combinations for IAQ. In addition, a sensitivity analysis was made using 990 combinations. The results from all the runs were used to develop a simplified tool, as well as quantifying equations relying on the design parameters. A computerized energy tool has also been developed within this project, which takes into account air tightness, climate, window airing pattern, outdoor air flow rate and heat exchange efficiency.« less

  20. Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

    PubMed

    Chieng, Norman; Trnka, Hjalte; Boetker, Johan; Pikal, Michael; Rantanen, Jukka; Grohganz, Holger

    2013-09-15

    The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Analysis and differentiation of paper samples by capillary electrophoresis and multivariate analysis.

    PubMed

    Fernández de la Ossa, Ma Ángeles; Ortega-Ojeda, Fernando; García-Ruiz, Carmen

    2014-11-01

    This work reports an investigation for the analysis of different paper samples using CE with laser-induced detection. Papers from four different manufactures (white-copy paper) and four different paper sources (white and recycled-copy papers, adhesive yellow paper notes and restaurant serviettes) were pulverized by scratching with a surgical scalpel prior to their derivatization with a fluorescent labeling agent, 8-aminopyrene-1,3,6-trisulfonic acid. Methodological conditions were evaluated, specifically the derivatization conditions with the aim to achieve the best S/N signals and the separation conditions in order to obtain optimum values of sensitivity and reproducibility. The best conditions, in terms of fastest, and easiest sample preparation procedure, minimal sample consumption, as well as the use of the simplest and fastest CE-procedure for obtaining the best analytical parameters, were applied to the analysis of the different paper samples. The registered electropherograms were pretreated (normalized and aligned) and subjected to multivariate analysis (principal component analysis). A successful discrimination among paper samples without entanglements was achieved. To the best of our knowledge, this work presents the first approach to achieve a successful differentiation among visually similar white-copy paper samples produced by different manufactures and paper from different paper sources through their direct analysis by CE-LIF and subsequent comparative study of the complete cellulose electropherogram by chemometric tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metacarpophalangeal pattern profile analysis: useful diagnostic tool for differentiating between dyschondrosteosis, Turner syndrome, and hypochondroplasia.

    PubMed

    Laurencikas, E; Sävendahl, L; Jorulf, H

    2006-06-01

    To assess the value of the metacarpophalangeal pattern profile (MCPP) analysis as a diagnostic tool for differentiating between patients with dyschondrosteosis, Turner syndrome, and hypochondroplasia. Radiographic and clinical data from 135 patients between 1 and 51 years of age were collected and analyzed. The study included 25 patients with hypochondroplasia (HCP), 39 with dyschondrosteosis (LWD), and 71 with Turner syndrome (TS). Hand pattern profiles were calculated and compared with those of 110 normal individuals. Pearson correlation coefficient (r) and multivariate discriminant analysis were used for pattern profile analysis. Pattern variability index, a measure of dysmorphogenesis, was calculated for LWD, TS, HCP, and normal controls. Our results demonstrate that patients with LWD, TS, or HCP have distinct pattern profiles that are significantly different from each other and from those of normal controls. Discriminant analysis yielded correct classification of normal versus abnormal individuals in 84% of cases. Classification of the patients into LWD, TS, and HCP groups was successful in 75%. The correct classification rate was higher (85%) when differentiating two pathological groups at a time. Pattern variability index was not helpful for differential diagnosis of LWD, TS, and HCP. Patients with LWD, TS, or HCP have distinct MCPPs and can be successfully differentiated from each other using advanced MCPP analysis. Discriminant analysis is to be preferred over Pearson correlation coefficient because it is a more sensitive and specific technique. MCPP analysis is a helpful tool for differentiating between syndromes with similar clinical and radiological abnormalities.

  3. Independent component analysis-based algorithm for automatic identification of Raman spectra applied to artistic pigments and pigment mixtures.

    PubMed

    González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio

    2015-03-01

    A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.

  4. A system to build distributed multivariate models and manage disparate data sharing policies: implementation in the scalable national network for effectiveness research.

    PubMed

    Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila

    2015-11-01

    Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  5. Assessment of self-organizing maps to analyze sole-carbon source utilization profiles.

    PubMed

    Leflaive, Joséphine; Céréghino, Régis; Danger, Michaël; Lacroix, Gérard; Ten-Hage, Loïc

    2005-07-01

    The use of community-level physiological profiles obtained with Biolog microplates is widely employed to consider the functional diversity of bacterial communities. Biolog produces a great amount of data which analysis has been the subject of many studies. In most cases, after some transformations, these data were investigated with classical multivariate analyses. Here we provided an alternative to this method, that is the use of an artificial intelligence technique, the Self-Organizing Maps (SOM, unsupervised neural network). We used data from a microcosm study of algae-associated bacterial communities placed in various nutritive conditions. Analyses were carried out on the net absorbances at two incubation times for each substrates and on the chemical guild categorization of the total bacterial activity. Compared to Principal Components Analysis and cluster analysis, SOM appeared as a valuable tool for community classification, and to establish clear relationships between clusters of bacterial communities and sole-carbon sources utilization. Specifically, SOM offered a clear bidimensional projection of a relatively large volume of data and were easier to interpret than plots commonly obtained with multivariate analyses. They would be recommended to pattern the temporal evolution of communities' functional diversity.

  6. Tools based on multivariate statistical analysis for classification of soil and groundwater in Apulian agricultural sites.

    PubMed

    Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice

    2017-06-01

    In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.

  7. Exploring the Dynamics of Dyadic Interactions via Hierarchical Segmentation

    ERIC Educational Resources Information Center

    Hsieh, Fushing; Ferrer, Emilio; Chen, Shu-Chun; Chow, Sy-Miin

    2010-01-01

    In this article we present an exploratory tool for extracting systematic patterns from multivariate data. The technique, hierarchical segmentation (HS), can be used to group multivariate time series into segments with similar discrete-state recurrence patterns and it is not restricted by the stationarity assumption. We use a simulation study to…

  8. A Simpli ed, General Approach to Simulating from Multivariate Copula Functions

    Treesearch

    Barry Goodwin

    2012-01-01

    Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses \\probability{...

  9. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis.

    PubMed

    Aguirre-Gamboa, Raul; Gomez-Rueda, Hugo; Martínez-Ledesma, Emmanuel; Martínez-Torteya, Antonio; Chacolla-Huaringa, Rafael; Rodriguez-Barrientos, Alberto; Tamez-Peña, José G; Treviño, Victor

    2013-01-01

    Validation of multi-gene biomarkers for clinical outcomes is one of the most important issues for cancer prognosis. An important source of information for virtual validation is the high number of available cancer datasets. Nevertheless, assessing the prognostic performance of a gene expression signature along datasets is a difficult task for Biologists and Physicians and also time-consuming for Statisticians and Bioinformaticians. Therefore, to facilitate performance comparisons and validations of survival biomarkers for cancer outcomes, we developed SurvExpress, a cancer-wide gene expression database with clinical outcomes and a web-based tool that provides survival analysis and risk assessment of cancer datasets. The main input of SurvExpress is only the biomarker gene list. We generated a cancer database collecting more than 20,000 samples and 130 datasets with censored clinical information covering tumors over 20 tissues. We implemented a web interface to perform biomarker validation and comparisons in this database, where a multivariate survival analysis can be accomplished in about one minute. We show the utility and simplicity of SurvExpress in two biomarker applications for breast and lung cancer. Compared to other tools, SurvExpress is the largest, most versatile, and quickest free tool available. SurvExpress web can be accessed in http://bioinformatica.mty.itesm.mx/SurvExpress (a tutorial is included). The website was implemented in JSP, JavaScript, MySQL, and R.

  10. SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis

    PubMed Central

    Aguirre-Gamboa, Raul; Gomez-Rueda, Hugo; Martínez-Ledesma, Emmanuel; Martínez-Torteya, Antonio; Chacolla-Huaringa, Rafael; Rodriguez-Barrientos, Alberto; Tamez-Peña, José G.; Treviño, Victor

    2013-01-01

    Validation of multi-gene biomarkers for clinical outcomes is one of the most important issues for cancer prognosis. An important source of information for virtual validation is the high number of available cancer datasets. Nevertheless, assessing the prognostic performance of a gene expression signature along datasets is a difficult task for Biologists and Physicians and also time-consuming for Statisticians and Bioinformaticians. Therefore, to facilitate performance comparisons and validations of survival biomarkers for cancer outcomes, we developed SurvExpress, a cancer-wide gene expression database with clinical outcomes and a web-based tool that provides survival analysis and risk assessment of cancer datasets. The main input of SurvExpress is only the biomarker gene list. We generated a cancer database collecting more than 20,000 samples and 130 datasets with censored clinical information covering tumors over 20 tissues. We implemented a web interface to perform biomarker validation and comparisons in this database, where a multivariate survival analysis can be accomplished in about one minute. We show the utility and simplicity of SurvExpress in two biomarker applications for breast and lung cancer. Compared to other tools, SurvExpress is the largest, most versatile, and quickest free tool available. SurvExpress web can be accessed in http://bioinformatica.mty.itesm.mx/SurvExpress (a tutorial is included). The website was implemented in JSP, JavaScript, MySQL, and R. PMID:24066126

  11. HC StratoMineR: A Web-Based Tool for the Rapid Analysis of High-Content Datasets.

    PubMed

    Omta, Wienand A; van Heesbeen, Roy G; Pagliero, Romina J; van der Velden, Lieke M; Lelieveld, Daphne; Nellen, Mehdi; Kramer, Maik; Yeong, Marley; Saeidi, Amir M; Medema, Rene H; Spruit, Marco; Brinkkemper, Sjaak; Klumperman, Judith; Egan, David A

    2016-10-01

    High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization.

  12. Detection of Motor Impairment in Parkinson's Disease Via Mobile Touchscreen Typing.

    PubMed

    Arroyo-Gallego, Teresa; Ledesma-Carbayo, Maria Jesus; Sanchez-Ferro, Alvaro; Butterworth, Ian; Mendoza, Carlos S; Matarazzo, Michele; Montero, Paloma; Lopez-Blanco, Roberto; Puertas-Martin, Veronica; Trincado, Rocio; Giancardo, Luca

    2017-09-01

    Mobile technology is opening a wide range of opportunities for transforming the standard of care for chronic disorders. Using smartphones as tools for longitudinally tracking symptoms could enable personalization of drug regimens and improve patient monitoring. Parkinson's disease (PD) is an ideal candidate for these tools. At present, evaluation of PD signs requires trained experts to quantify motor impairment in the clinic, limiting the frequency and quality of the information available for understanding the status and progression of the disease. Mobile technology can help clinical decision making by completing the information of motor status between hospital visits. This paper presents an algorithm to detect PD by analyzing the typing activity on smartphones independently of the content of the typed text. We propose a set of touchscreen typing features based on a covariance, skewness, and kurtosis analysis of the timing information of the data to capture PD motor signs. We tested these features, both independently and in a multivariate framework, in a population of 21 PD and 23 control subjects, achieving a sensitivity/specificity of 0.81/0.81 for the best performing feature and 0.73/0.84 for the best multivariate method. The results of the alternating finger-tapping, an established motor test, measured in our cohort are 0.75/0.78. This paper contributes to the development of a home-based, high-compliance, and high-frequency PD motor test by analysis of routine typing on touchscreens.

  13. Toward the development of Raman spectroscopy as a nonperturbative online monitoring tool for gasoline adulteration.

    PubMed

    Tan, Khay M; Barman, Ishan; Dingari, Narahara C; Singh, Gajendra P; Chia, Tet F; Tok, Wee L

    2013-02-05

    There is a critical need for a real-time, nonperturbative probe for monitoring the adulteration of automotive gasoline. Running on adulterated fuel leads to a substantive increase in air pollution, because of increased tailpipe emissions of harmful pollutants, as well as a reduction in engine performance. Consequently, both classification of the gasoline type and quantification of the adulteration content are of great significance for quality control. Gasoline adulteration detection is currently carried out in the laboratory with gas chromatography, which is time-consuming and costly. Here, we propose the application of Raman spectroscopic measurements for on-site rapid detection of gasoline adulteration. In this proof-of-principle report, we demonstrate the effectiveness of Raman spectra, in conjunction with multivariate analysis methods, in classifying the base oil types and simultaneously detecting the adulteration content in a wide range of commercial gasoline mixtures, both in their native states and spiked with different adulterants. In particular, we show that Raman spectra acquired with an inexpensive noncooled detector provides adequate specificity to clearly discriminate between the gasoline samples and simultaneously characterize the specific adulterant content with a limit of detection below 5%. Our promising results in this study illustrate, for the first time, the capability and the potential of Raman spectroscopy, together with multivariate analysis, as a low-cost, powerful tool for on-site rapid detection of gasoline adulteration and opens substantive avenues for applications in related fields of quality control in the oil industry.

  14. Image analysis-based modelling for flower number estimation in grapevine.

    PubMed

    Millan, Borja; Aquino, Arturo; Diago, Maria P; Tardaguila, Javier

    2017-02-01

    Grapevine flower number per inflorescence provides valuable information that can be used for assessing yield. Considerable research has been conducted at developing a technological tool, based on image analysis and predictive modelling. However, the behaviour of variety-independent predictive models and yield prediction capabilities on a wide set of varieties has never been evaluated. Inflorescence images from 11 grapevine Vitis vinifera L. varieties were acquired under field conditions. The flower number per inflorescence and the flower number visible in the images were calculated manually, and automatically using an image analysis algorithm. These datasets were used to calibrate and evaluate the behaviour of two linear (single-variable and multivariable) and a nonlinear variety-independent model. As a result, the integrated tool composed of the image analysis algorithm and the nonlinear approach showed the highest performance and robustness (RPD = 8.32, RMSE = 37.1). The yield estimation capabilities of the flower number in conjunction with fruit set rate (R 2  = 0.79) and average berry weight (R 2  = 0.91) were also tested. This study proves the accuracy of flower number per inflorescence estimation using an image analysis algorithm and a nonlinear model that is generally applicable to different grapevine varieties. This provides a fast, non-invasive and reliable tool for estimation of yield at harvest. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Applying multivariate analysis as decision tool for evaluating sediment-specific remediation strategies.

    PubMed

    Pedersen, Kristine B; Lejon, Tore; Jensen, Pernille E; Ottosen, Lisbeth M

    2016-05-01

    Multivariate methodology was employed for finding optimum remediation conditions for electrodialytic remediation of harbour sediment from an Arctic location in Norway. The parts of the experimental domain in which both sediment- and technology-specific remediation objectives were met were identified. Objectives targeted were removal of the sediment-specific pollutants Cu and Pb, while minimising the effect on the sediment matrix by limiting the removal of naturally occurring metals while maintaining low energy consumption. Two different cell designs for electrochemical remediation were tested and final concentrations of Cu and Pb were below background levels in large parts of the experimental domain when operating at low current densities (<0.12 mA/cm(2)). However, energy consumption, remediation times and the effect on naturally occurring metals were different for the 2- and 3-compartment cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Prolonged Instability Prior to a Regime Shift | Science ...

    EPA Pesticide Factsheets

    Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia. This manuscript explores various methods of assessing the transition between alternative states in an ecological system described by a long-term high-resolution paleoecological dataset.

  17. The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: An Assessment of Reliability and Validity

    PubMed Central

    Irvine, Karen-Amanda; Ferguson, Adam R.; Mitchell, Kathleen D.; Beattie, Stephanie B.; Lin, Amity; Stuck, Ellen D.; Huie, J. Russell; Nielson, Jessica L.; Talbott, Jason F.; Inoue, Tomoo; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2014-01-01

    The IBB scale is a recently developed forelimb scale for the assessment of fine control of the forelimb and digits after cervical spinal cord injury [SCI; (1)]. The present paper describes the assessment of inter-rater reliability and face, concurrent and construct validity of this scale following SCI. It demonstrates that the IBB is a reliable and valid scale that is sensitive to severity of SCI and to recovery over time. In addition, the IBB correlates with other outcome measures and is highly predictive of biological measures of tissue pathology. Multivariate analysis using principal component analysis (PCA) demonstrates that the IBB is highly predictive of the syndromic outcome after SCI (2), and is among the best predictors of bio-behavioral function, based on strong construct validity. Altogether, the data suggest that the IBB, especially in concert with other measures, is a reliable and valid tool for assessing neurological deficits in fine motor control of the distal forelimb, and represents a powerful addition to multivariate outcome batteries aimed at documenting recovery of function after cervical SCI in rats. PMID:25071704

  18. Ultraviolet spectroscopy combined with ultra-fast liquid chromatography and multivariate statistical analysis for quality assessment of wild Wolfiporia extensa from different geographical origins.

    PubMed

    Li, Yan; Zhang, Ji; Jin, Hang; Liu, Honggao; Wang, Yuanzhong

    2016-08-05

    A quality assessment system comprised of a tandem technique of ultraviolet (UV) spectroscopy and ultra-fast liquid chromatography (UFLC) aided by multivariate analysis was presented for the determination of geographic origin of Wolfiporia extensa collected from five regions in Yunnan Province of China. Characteristic UV spectroscopic fingerprints of samples were determined based on its methanol extract. UFLC was applied for the determination of pachymic acid (a biomarker) presented in individual test samples. The spectrum data matrix and the content of pachymic acid were integrated and analyzed by partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA). The results showed that chemical properties of samples were clearly dominated by the epidermis and inner part as well as geographical origins. The relationships among samples obtained from these five regions have been also presented. Moreover, an interesting finding implied that geographical origins had much greater influence on the chemical properties of epidermis compared with that of the inner part. This study demonstrated that a rapid tool for accurate discrimination of W. extensa by UV spectroscopy and UFLC could be available for quality control of complicated medicinal mushrooms. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Extracting galactic structure parameters from multivariated density estimation

    NASA Technical Reports Server (NTRS)

    Chen, B.; Creze, M.; Robin, A.; Bienayme, O.

    1992-01-01

    Multivariate statistical analysis, including includes cluster analysis (unsupervised classification), discriminant analysis (supervised classification) and principle component analysis (dimensionlity reduction method), and nonparameter density estimation have been successfully used to search for meaningful associations in the 5-dimensional space of observables between observed points and the sets of simulated points generated from a synthetic approach of galaxy modelling. These methodologies can be applied as the new tools to obtain information about hidden structure otherwise unrecognizable, and place important constraints on the space distribution of various stellar populations in the Milky Way. In this paper, we concentrate on illustrating how to use nonparameter density estimation to substitute for the true densities in both of the simulating sample and real sample in the five-dimensional space. In order to fit model predicted densities to reality, we derive a set of equations which include n lines (where n is the total number of observed points) and m (where m: the numbers of predefined groups) unknown parameters. A least-square estimation will allow us to determine the density law of different groups and components in the Galaxy. The output from our software, which can be used in many research fields, will also give out the systematic error between the model and the observation by a Bayes rule.

  20. Multivariate analysis in thoracic research.

    PubMed

    Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego

    2015-03-01

    Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.

  1. SOURCE APPORTIONMENT RESULTS, UNCERTAINTIES, AND MODELING TOOLS

    EPA Science Inventory

    Advanced multivariate receptor modeling tools are available from the U.S. Environmental Protection Agency (EPA) that use only speciated sample data to identify and quantify sources of air pollution. EPA has developed both EPA Unmix and EPA Positive Matrix Factorization (PMF) and ...

  2. On the potential for the Partial Triadic Analysis to grasp the spatio-temporal variability of groundwater hydrochemistry

    NASA Astrophysics Data System (ADS)

    Gourdol, L.; Hissler, C.; Pfister, L.

    2012-04-01

    The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.

  3. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  5. Advances in metabolome information retrieval: turning chemistry into biology. Part II: biological information recovery.

    PubMed

    Tebani, Abdellah; Afonso, Carlos; Bekri, Soumeya

    2018-05-01

    This work reports the second part of a review intending to give the state of the art of major metabolic phenotyping strategies. It particularly deals with inherent advantages and limits regarding data analysis issues and biological information retrieval tools along with translational challenges. This Part starts with introducing the main data preprocessing strategies of the different metabolomics data. Then, it describes the main data analysis techniques including univariate and multivariate aspects. It also addresses the challenges related to metabolite annotation and characterization. Finally, functional analysis including pathway and network strategies are discussed. The last section of this review is devoted to practical considerations and current challenges and pathways to bring metabolomics into clinical environments.

  6. Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study.

    PubMed

    Prabitha, Vasumathi Gopala; Suchetha, Sambasivan; Jayanthi, Jayaraj Lalitha; Baiju, Kamalasanan Vijayakumary; Rema, Prabhakaran; Anuraj, Koyippurath; Mathews, Anita; Sebastian, Paul; Subhash, Narayanan

    2016-01-01

    Diffuse reflectance (DR) spectroscopy is a non-invasive, real-time, and cost-effective tool for early detection of malignant changes in squamous epithelial tissues. The present study aims to evaluate the diagnostic power of diffuse reflectance spectroscopy for non-invasive discrimination of cervical lesions in vivo. A clinical trial was carried out on 48 sites in 34 patients by recording DR spectra using a point-monitoring device with white light illumination. The acquired data were analyzed and classified using multivariate statistical analysis based on principal component analysis (PCA) and linear discriminant analysis (LDA). Diagnostic accuracies were validated using random number generators. The receiver operating characteristic (ROC) curves were plotted for evaluating the discriminating power of the proposed statistical technique. An algorithm was developed and used to classify non-diseased (normal) from diseased sites (abnormal) with a sensitivity of 72 % and specificity of 87 %. While low-grade squamous intraepithelial lesion (LSIL) could be discriminated from normal with a sensitivity of 56 % and specificity of 80 %, and high-grade squamous intraepithelial lesion (HSIL) from normal with a sensitivity of 89 % and specificity of 97 %, LSIL could be discriminated from HSIL with 100 % sensitivity and specificity. The areas under the ROC curves were 0.993 (95 % confidence interval (CI) 0.0 to 1) and 1 (95 % CI 1) for the discrimination of HSIL from normal and HSIL from LSIL, respectively. The results of the study show that DR spectroscopy could be used along with multivariate analytical techniques as a non-invasive technique to monitor cervical disease status in real time.

  7. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  8. Estimation and Psychometric Analysis of Component Profile Scores via Multivariate Generalizability Theory

    ERIC Educational Resources Information Center

    Grochowalski, Joseph H.

    2015-01-01

    Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…

  9. FT-IR spectroscopy and multivariate analysis as an auxiliary tool for diagnosis of mental disorders: Bipolar and schizophrenia cases

    NASA Astrophysics Data System (ADS)

    Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.

    2016-01-01

    In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.

  10. Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer's: Do Regions Outside the Hippocampus Matter?

    PubMed Central

    Tanpitukpongse, Teerath P.; Mazurowski, Maciej A.; Ikhena, John; Petrella, Jeffrey R.

    2016-01-01

    Background and Purpose To assess prognostic efficacy of individual versus combined regional volumetrics in two commercially-available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer's disease. Materials and Methods Data was obtained through the Alzheimer's Disease Neuroimaging Initiative. 192 subjects (mean age 74.8 years, 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1WI MRI sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant® and Neuroreader™. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated using a univariable approach employing individual regional brain volumes, as well as two multivariable approaches (multiple regression and random forest), combining multiple volumes. Results On univariable analysis of 11 NeuroQuant® and 11 Neuroreader™ regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69 NeuroQuant®, 0.68 Neuroreader™), and was not significantly different (p > 0.05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63 logistic regression, 0.60 random forest NeuroQuant®; 0.65 logistic regression, 0.62 random forest Neuroreader™). Conclusion Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer's disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in MCI, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker. PMID:28057634

  11. Discrimination of irradiated MOX fuel from UOX fuel by multivariate statistical analysis of simulated activities of gamma-emitting isotopes

    NASA Astrophysics Data System (ADS)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.

    2018-03-01

    This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.

  12. A Combined Approach of Infrared Spectroscopy and Multivariate Analysis for the Simultaneous Determination of Sugars and Fructans in Strawberry Juices During Storage.

    PubMed

    Cassani, Lucía; Santos, Mauricio; Gerbino, Esteban; Del Rosario Moreira, María; Gómez-Zavaglia, Andrea

    2018-03-01

    In this work, a Fourier transform mid-infrared spectroscopy (FTIR)-based method was developed for simultaneously quantifying simple sugars and exogenously added fructooligosaccharides (FOS) in strawberry juices preserved for up to 14 d using nonthermal techniques (geraniol and vanillin+ultrasound). The main spectral differences were observed in the 1200 to 900 cm -1 region. The presence of FOS was identified by the typical bands at 1134, 1034, and 935 cm -1 . During storage, a significant decrease of sucrose was concomitant to an increase of glucose and fructose in juices stored without any previous preservation treatment, as determined by high-performance liquid chromatography (HPLC). A principal component analysis was performed on the FTIR spectra corresponding to the different treatments. The groups observed explained more than 94% of the variance and were related to changes in the carbohydrate composition during storage. Then, different partial least square models (PLS) were defined to determine the concentrations of glucose, sucrose, fructose, and those of exogenously added FOS with degrees of polymerization within 3 and 5. The carbohydrates' concentrations determined by HPLC were used as reference method. The models were validated with independent sets of data. The mean of predicted values fitted nicely those obtained by HPLC (correlation and R 2  > 0.97), thus supporting the use of the PLS models to monitor the quality of strawberry juices in unknown samples. In conclusion, FTIR spectroscopy appears as an adequate analytical tool to quick assess whether juice formulations meet specifications in terms of authenticity, contamination and/or deterioration. FTIR spectroscopy provided a method potentially transferable to the food industry when associated with the multivariate analysis. The robust 21 PLS models defined in this work provided reliable tools for the rapid monitoring of juices' authenticity and/or deterioration. In this regard, FTIR associated to multivariate analysis enabled the determination of different sugars in a single measurement without the need of pure sugars as standards. This experimental simplicity supports the use of FTIR at the production line, and also contributes to save time in determining carbohydrates' composition and stability, in an environmentally friendly way. © 2017 Institute of Food Technologists®.

  13. Evaluation of an inpatient fall risk screening tool to identify the most critical fall risk factors in inpatients.

    PubMed

    Hou, Wen-Hsuan; Kang, Chun-Mei; Ho, Mu-Hsing; Kuo, Jessie Ming-Chuan; Chen, Hsiao-Lien; Chang, Wen-Yin

    2017-03-01

    To evaluate the accuracy of the inpatient fall risk screening tool and to identify the most critical fall risk factors in inpatients. Variations exist in several screening tools applied in acute care hospitals for examining risk factors for falls and identifying high-risk inpatients. Secondary data analysis. A subset of inpatient data for the period from June 2011-June 2014 was extracted from the nursing information system and adverse event reporting system of an 818-bed teaching medical centre in Taipei. Data were analysed using descriptive statistics, receiver operating characteristic curve analysis and logistic regression analysis. During the study period, 205 fallers and 37,232 nonfallers were identified. The results revealed that the inpatient fall risk screening tool (cut-off point of ≥3) had a low sensitivity level (60%), satisfactory specificity (87%), a positive predictive value of 2·0% and a negative predictive value of 99%. The receiver operating characteristic curve analysis revealed an area under the curve of 0·805 (sensitivity, 71·8%; specificity, 78%). To increase the sensitivity values, the Youden index suggests at least 1·5 points to be the most suitable cut-off point for the inpatient fall risk screening tool. Multivariate logistic regression analysis revealed a considerably increased fall risk in patients with impaired balance and impaired elimination. The fall risk factor was also significantly associated with days of hospital stay and with admission to surgical wards. The findings can raise awareness about the two most critical risk factors for falls among future clinical nurses and other healthcare professionals and thus facilitate the development of fall prevention interventions. This study highlights the needs for redefining the cut-off points of the inpatient fall risk screening tool to effectively identify inpatients at a high risk of falls. Furthermore, inpatients with impaired balance and impaired elimination should be closely monitored by nurses to prevent falling during hospitalisations. © 2016 John Wiley & Sons Ltd.

  14. Multivariate Genetic Correlates of the Auditory Paired Stimuli-Based P2 Event-Related Potential in the Psychosis Dimension From the BSNIP Study.

    PubMed

    Mokhtari, Mohammadreza; Narayanan, Balaji; Hamm, Jordan P; Soh, Pauline; Calhoun, Vince D; Ruaño, Gualberto; Kocherla, Mohan; Windemuth, Andreas; Clementz, Brett A; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Pearlson, Godfrey D

    2016-05-01

    The complex molecular etiology of psychosis in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is not well defined, presumably due to their multifactorial genetic architecture. Neurobiological correlates of psychosis can be identified through genetic associations of intermediate phenotypes such as event-related potential (ERP) from auditory paired stimulus processing (APSP). Various ERP components of APSP are heritable and aberrant in SZ, PBP and their relatives, but their multivariate genetic factors are less explored. We investigated the multivariate polygenic association of ERP from 64-sensor auditory paired stimulus data in 149 SZ, 209 PBP probands, and 99 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Multivariate association of 64-channel APSP waveforms with a subset of 16 999 single nucleotide polymorphisms (SNPs) (reduced from 1 million SNP array) was examined using parallel independent component analysis (Para-ICA). Biological pathways associated with the genes were assessed using enrichment-based analysis tools. Para-ICA identified 2 ERP components, of which one was significantly correlated with a genetic network comprising multiple linearly coupled gene variants that explained ~4% of the ERP phenotype variance. Enrichment analysis revealed epidermal growth factor, endocannabinoid signaling, glutamatergic synapse and maltohexaose transport associated with P2 component of the N1-P2 ERP waveform. This ERP component also showed deficits in SZ and PBP. Aberrant P2 component in psychosis was associated with gene networks regulating several fundamental biologic functions, either general or specific to nervous system development. The pathways and processes underlying the gene clusters play a crucial role in brain function, plausibly implicated in psychosis. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap

    PubMed Central

    Metsalu, Tauno; Vilo, Jaak

    2015-01-01

    The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/. PMID:25969447

  16. Direct analysis in real time mass spectrometry, a process analytical technology tool for real-time process monitoring in botanical drug manufacturing.

    PubMed

    Wang, Lu; Zeng, Shanshan; Chen, Teng; Qu, Haibin

    2014-03-01

    A promising process analytical technology (PAT) tool has been introduced for batch processes monitoring. Direct analysis in real time mass spectrometry (DART-MS), a means of rapid fingerprint analysis, was applied to a percolation process with multi-constituent substances for an anti-cancer botanical preparation. Fifteen batches were carried out, including ten normal operations and five abnormal batches with artificial variations. The obtained multivariate data were analyzed by a multi-way partial least squares (MPLS) model. Control trajectories were derived from eight normal batches, and the qualification was tested by R(2) and Q(2). Accuracy and diagnosis capability of the batch model were then validated by the remaining batches. Assisted with high performance liquid chromatography (HPLC) determination, process faults were explained by corresponding variable contributions. Furthermore, a batch level model was developed to compare and assess the model performance. The present study has demonstrated that DART-MS is very promising in process monitoring in botanical manufacturing. Compared with general PAT tools, DART-MS offers a particular account on effective compositions and can be potentially used to improve batch quality and process consistency of samples in complex matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Can we discover double Higgs production at the LHC?

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Ghosh, Tathagata; Sinha, Kuver

    2017-08-01

    We explore double Higgs production via gluon fusion in the b b ¯γ γ channel at the high-luminosity LHC using machine learning tools. We first propose a Bayesian optimization approach to select cuts on kinematic variables, obtaining a 30%-50% increase in the significance compared to current results in the literature. We show that this improvement persists once systematic uncertainties are taken into account. We next use boosted decision trees (BDT) to further discriminate signal and background events. Our analysis shows that a joint optimization of kinematic cuts and BDT hyperparameters results in an appreciable improvement in the significance. Finally, we perform a multivariate analysis of the output scores of the BDT. We find that assuming a very low level of systematics, the techniques proposed here will be able to confirm the production of a pair of standard model Higgs bosons at 5 σ level with 3 ab-1 of data. Assuming a more realistic projection of the level of systematics, around 10%, the optimization of cuts to train BDTs combined with a multivariate analysis delivers a respectable significance of 4.6 σ . Even assuming large systematics of 20%, our analysis predicts a 3.6 σ significance, which represents at least strong evidence in favor of double Higgs production. We carefully incorporate background contributions coming from light flavor jets or c jets being misidentified as b jets and jets being misidentified as photons in our analysis.

  18. NASA Tech Briefs, December 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Video Mosaicking for Inspection of Gas Pipelines; Shuttle-Data-Tape XML Translator; Highly Reliable, High-Speed, Unidirectional Serial Data Links; Data-Analysis System for Entry, Descent, and Landing; Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes; Multiple Embedded Processors for Fault-Tolerant Computing; Hybrid Power Management; Magnetometer Based on Optoelectronic Microwave Oscillator; Program Predicts Time Courses of Human/ Computer Interactions; Chimera Grid Tools; Astronomer's Proposal Tool; Conservative Patch Algorithm and Mesh Sequencing for PAB3D; Fitting Nonlinear Curves by Use of Optimization Techniques; Tool for Viewing Faults Under Terrain; Automated Synthesis of Long Communication Delays for Testing; Solving Nonlinear Euler Equations With Arbitrary Accuracy; Self-Organizing-Map Program for Analyzing Multivariate Data; Tool for Sizing Analysis of the Advanced Life Support System; Control Software for a High-Performance Telerobot; Java Radar Analysis Tool; Architecture for Verifiable Software; Tool for Ranking Research Options; Enhanced, Partially Redundant Emergency Notification System; Close-Call Action Log Form; Task Description Language; Improved Small-Particle Powders for Plasma Spraying; Bonding-Compatible Corrosion Inhibitor for Rinsing Metals; Wipes, Coatings, and Patches for Detecting Hydrazines; Rotating Vessels for Growing Protein Crystals; Oscillating-Linear-Drive Vacuum Compressor for CO2; Mechanically Biased, Hinged Pairs of Piezoelectric Benders; Apparatus for Precise Indium-Bump Bonding of Microchips; Radiation Dosimetry via Automated Fluorescence Microscopy; Multistage Magnetic Separator of Cells and Proteins; Elastic-Tether Suits for Artificial Gravity and Exercise; Multichannel Brain-Signal-Amplifying and Digitizing System; Ester-Based Electrolytes for Low-Temperature Li-Ion Cells; Hygrometer for Detecting Water in Partially Enclosed Volumes; Radio-Frequency Plasma Cleaning of a Penning Malmberg Trap; Reduction of Flap Side Edge Noise - the Blowing Flap; and Preventing Accidental Ignition of Upper-Stage Rocket Motors.

  19. Interactive and coordinated visualization approaches for biological data analysis.

    PubMed

    Cruz, António; Arrais, Joel P; Machado, Penousal

    2018-03-26

    The field of computational biology has become largely dependent on data visualization tools to analyze the increasing quantities of data gathered through the use of new and growing technologies. Aside from the volume, which often results in large amounts of noise and complex relationships with no clear structure, the visualization of biological data sets is hindered by their heterogeneity, as data are obtained from different sources and contain a wide variety of attributes, including spatial and temporal information. This requires visualization approaches that are able to not only represent various data structures simultaneously but also provide exploratory methods that allow the identification of meaningful relationships that would not be perceptible through data analysis algorithms alone. In this article, we present a survey of visualization approaches applied to the analysis of biological data. We focus on graph-based visualizations and tools that use coordinated multiple views to represent high-dimensional multivariate data, in particular time series gene expression, protein-protein interaction networks and biological pathways. We then discuss how these methods can be used to help solve the current challenges surrounding the visualization of complex biological data sets.

  20. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  1. A note on a simplified and general approach to simulating from multivariate copula functions

    Treesearch

    Barry K. Goodwin

    2013-01-01

    Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses ‘Probability-...

  2. Forensic discrimination of blue ballpoint pens on documents by laser ablation inductively coupled plasma mass spectrometry and multivariate analysis.

    PubMed

    Alamilla, Francisco; Calcerrada, Matías; García-Ruiz, Carmen; Torre, Mercedes

    2013-05-10

    The differentiation of blue ballpoint pen inks written on documents through an LA-ICP-MS methodology is proposed. Small common office paper portions containing ink strokes from 21 blue pens of known origin were cut and measured without any sample preparation. In a first step, Mg, Ca and Sr were proposed as internal standards (ISs) and used in order to normalize elemental intensities and subtract background signals from the paper. Then, specific criteria were designed and employed to identify target elements (Li, V, Mn, Co, Ni, Cu, Zn, Zr, Sn, W and Pb) which resulted independent of the IS chosen in a 98% of the cases and allowed a qualitative clustering of the samples. In a second step, an elemental-related ratio (ink ratio) based on the targets previously identified was used to obtain mass independent intensities and perform pairwise comparisons by means of multivariate statistical analyses (MANOVA, Tukey's HSD and T2 Hotelling). This treatment improved the discrimination power (DP) and provided objective results, achieving a complete differentiation among different brands and a partial differentiation within pen inks from the same brands. The designed data treatment, together with the use of multivariate statistical tools, represents an easy and useful tool for differentiating among blue ballpoint pen inks, with hardly sample destruction and without the need for methodological calibrations, being its use potentially advantageous from a forensic-practice standpoint. To test the procedure, it was applied to analyze real handwritten questioned contracts, previously studied by the Department of Forensic Document Exams of the Criminalistics Service of Civil Guard (Spain). The results showed that all questioned ink entries were clustered in the same group, being those different from the remaining ink on the document. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Multivariate Models for Normal and Binary Responses in Intervention Studies

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen

    2016-01-01

    Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…

  4. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    NASA Astrophysics Data System (ADS)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  5. Development of a prediction model for residual disease in newly diagnosed advanced ovarian cancer.

    PubMed

    Janco, Jo Marie Tran; Glaser, Gretchen; Kim, Bohyun; McGree, Michaela E; Weaver, Amy L; Cliby, William A; Dowdy, Sean C; Bakkum-Gamez, Jamie N

    2015-07-01

    To construct a tool, using computed tomography (CT) imaging and preoperative clinical variables, to estimate successful primary cytoreduction for advanced epithelial ovarian cancer (EOC). Women who underwent primary cytoreductive surgery for stage IIIC/IV EOC at Mayo Clinic between 1/2/2003 and 12/30/2011 and had preoperative CT images of the abdomen and pelvis within 90days prior to their surgery available for review were included. CT images were reviewed for large-volume ascites, diffuse peritoneal thickening (DPT), omental cake, lymphadenopathy (LP), and spleen or liver involvement. Preoperative factors included age, body mass index (BMI), Eastern Cooperative Oncology Group performance status (ECOG PS), American Society of Anesthesiologists (ASA) score, albumin, CA-125, and thrombocytosis. Two prediction models were developed to estimate the probability of (i) complete and (ii) suboptimal cytoreduction (residual disease (RD) >1cm) using multivariable logistic analysis with backward and stepwise variable selection methods. Internal validation was assessed using bootstrap resampling to derive an optimism-corrected estimate of the c-index. 279 patients met inclusion criteria: 143 had complete cytoreduction, 26 had suboptimal cytoreduction (RD>1cm), and 110 had measurable RD ≤1cm. On multivariable analysis, age, absence of ascites, omental cake, and DPT on CT imaging independently predicted complete cytoreduction (c-index=0.748). Conversely, predictors of suboptimal cytoreduction were ECOG PS, DPT, and LP on preoperative CT imaging (c-index=0.685). The generated models serve as preoperative evaluation tools that may improve counseling and selection for primary surgery, but need to be externally validated. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Screening and analysis of potential anti-tumor components from the stipe of Ganoderma sinense using high-performance liquid chromatography/time-of-flight mass spectrometry with multivariate statistical tool.

    PubMed

    Chan, Kar-Man; Yue, Grace Gar-Lee; Li, Ping; Wong, Eric Chun-Wai; Lee, Julia Kin-Ming; Kennelly, Edward J; Lau, Clara Bik-San

    2017-03-03

    According to Chinese Pharmacopoeia 2015 edition, Ganoderma (Lingzhi) is a species complex that comprise of Ganoderma lucidum and Ganoderma sinense. The bioactivity and chemical composition of G. lucidium had been studied extensively, and it was shown to possess antitumor activities in pharmacological studies. In contrast, G. sinense has not been studied in great detail. Our previous studies found that the stipe of G. sinense exhibited more potent antitumor activity than the pileus. To identify the antitumor compounds in the stipe of G. sinense, we studied its chemical components by merging the bioactivity results with liquid chromatography-mass spectrometry-based chemometrics. The stipe of G. sinense was extracted with water, followed by ethanol precipitation and liquid-liquid partition. The resulting residue was fractionated using column chromatography. The antitumor activity of these fractions were analysed using MTT assay in murine breast tumor 4T1 cells, and their chemical components were studied using the LC-QTOF-MS with multivariate statistical tools. The chemometric and MS/MS analysis correlated bioactivity with five known cytotoxic compounds, 4-hyroxyphenylacetate, 9-oxo-(10E,12E)-octadecadienoic acid, 3-phenyl-2-propenoic acid, 13-oxo-(9E,11E)-octadecadienoic acid and lingzhine C, from the stipe of G. sinense. To the best of our knowledge, 4-hyroxyphenylacetate, 3-phenyl-2-propenoic acid and lingzhine C are firstly reported to be found in G. sinense. These five compounds will be investigated for their antitumor activities in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2016-05-01

    A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.

  8. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  9. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data.

    PubMed

    Marco-Ramell, Anna; Palau-Rodriguez, Magali; Alay, Ania; Tulipani, Sara; Urpi-Sarda, Mireia; Sanchez-Pla, Alex; Andres-Lacueva, Cristina

    2018-01-02

    Bioinformatic tools for the enrichment of 'omics' datasets facilitate interpretation and understanding of data. To date few are suitable for metabolomics datasets. The main objective of this work is to give a critical overview, for the first time, of the performance of these tools. To that aim, datasets from metabolomic repositories were selected and enriched data were created. Both types of data were analysed with these tools and outputs were thoroughly examined. An exploratory multivariate analysis of the most used tools for the enrichment of metabolite sets, based on a non-metric multidimensional scaling (NMDS) of Jaccard's distances, was performed and mirrored their diversity. Codes (identifiers) of the metabolites of the datasets were searched in different metabolite databases (HMDB, KEGG, PubChem, ChEBI, BioCyc/HumanCyc, LipidMAPS, ChemSpider, METLIN and Recon2). The databases that presented more identifiers of the metabolites of the dataset were PubChem, followed by METLIN and ChEBI. However, these databases had duplicated entries and might present false positives. The performance of over-representation analysis (ORA) tools, including BioCyc/HumanCyc, ConsensusPathDB, IMPaLA, MBRole, MetaboAnalyst, Metabox, MetExplore, MPEA, PathVisio and Reactome and the mapping tool KEGGREST, was examined. Results were mostly consistent among tools and between real and enriched data despite the variability of the tools. Nevertheless, a few controversial results such as differences in the total number of metabolites were also found. Disease-based enrichment analyses were also assessed, but they were not found to be accurate probably due to the fact that metabolite disease sets are not up-to-date and the difficulty of predicting diseases from a list of metabolites. We have extensively reviewed the state-of-the-art of the available range of tools for metabolomic datasets, the completeness of metabolite databases, the performance of ORA methods and disease-based analyses. Despite the variability of the tools, they provided consistent results independent of their analytic approach. However, more work on the completeness of metabolite and pathway databases is required, which strongly affects the accuracy of enrichment analyses. Improvements will be translated into more accurate and global insights of the metabolome.

  10. Shell shape variation of queen conch Strombus gigas (Mesograstropoda: Strombidae) from Southwest Caribbean.

    PubMed

    Márquez, Edna Judith; Restrepo-Escobar, Natalia; Montoya-Herrera, Francisco Luis

    2016-12-01

    The endangered species Strombus gigas is a marine gastropod of significant economic importance through the Greater Caribbean region. In contrast to phenotypic plasticity, the role of genetics on shell variations in S. gigas has not been addressed so far, despite its importance in evolution, management and conservation of this species. This work used geometric morphometrics to investigate the phenotypic variation of 219 shells of S. gigas from eight sites of the Colombian Southwest Caribbean. Differences in mean size between sexes and among sites were contrasted by analysis of variance. Allometry was tested by multivariate regression and the hypothesis of common slope was contrasted by covariance multivariate analysis. Differences in the shell shape among sites were analyzed by principal component analysis. Sexual size dimorphism was not significant, whereas sexual shape dimorphism was significant and variable across sites. Differences in the shell shape among sites were concordant with genetic differences based on microsatellite data, supporting its genetic background. Besides, differences in the shell shape between populations genetically similar suggest a role of phenotypic plasticity in the morphometric variation of the shell shape. These outcomes evidence the role of genetic background and phenotypic plasticity in the shell shape of S. gigas. Thus, geometric morphometrics of shell shape may constitute a complementary tool to explore the genetic diversity of this species.

  11. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  12. Diagnostics for Confounding of Time-varying and Other Joint Exposures.

    PubMed

    Jackson, John W

    2016-11-01

    The effects of joint exposures (or exposure regimes) include those of adhering to assigned treatment versus placebo in a randomized controlled trial, duration of exposure in a cohort study, interactions between exposures, and direct effects of exposure, among others. Unlike the setting of a single point exposure (e.g., propensity score matching), there are few tools to describe confounding for joint exposures or how well a method resolves it. Investigators need tools that describe confounding in ways that are conceptually grounded and intuitive for those who read, review, and use applied research to guide policy. We revisit the implications of exchangeability conditions that hold in sequentially randomized trials, and the bias structure that motivates the use of g-methods, such as marginal structural models. From these, we develop covariate balance diagnostics for joint exposures that can (1) describe time-varying confounding, (2) assess whether covariates are predicted by prior exposures given their past, the indication for g-methods, and (3) describe residual confounding after inverse probability weighting. For each diagnostic, we present time-specific metrics that encompass a wide class of joint exposures, including regimes of multivariate time-varying exposures in censored data, with multivariate point exposures as a special case. We outline how to estimate these directly or with regression and how to average them over person-time. Using a simulated example, we show how these metrics can be presented graphically. This conceptually grounded framework can potentially aid the transparent design, analysis, and reporting of studies that examine joint exposures. We provide easy-to-use tools to implement it.

  13. Applying the metro map to software development management

    NASA Astrophysics Data System (ADS)

    Aguirregoitia, Amaia; Dolado, J. Javier; Presedo, Concepción

    2010-01-01

    This paper presents MetroMap, a new graphical representation model for controlling and managing the software development process. Metromap uses metaphors and visual representation techniques to explore several key indicators in order to support problem detection and resolution. The resulting visualization addresses diverse management tasks, such as tracking of deviations from the plan, analysis of patterns of failure detection and correction, overall assessment of change management policies, and estimation of product quality. The proposed visualization uses a metaphor with a metro map along with various interactive techniques to represent information concerning the software development process and to deal efficiently with multivariate visual queries. Finally, the paper shows the implementation of the tool in JavaFX with data of a real project and the results of testing the tool with the aforementioned data and users attempting several information retrieval tasks. The conclusion shows the results of analyzing user response time and efficiency using the MetroMap visualization system. The utility of the tool was positively evaluated.

  14. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  15. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad Allen

    EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statistical associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can selectmore » a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.« less

  17. Simultaneous grouping and ranking with combination of SOM and TOPSIS for selection of preferable analytical procedure for furan determination in food.

    PubMed

    Jędrkiewicz, Renata; Tsakovski, Stefan; Lavenu, Aurore; Namieśnik, Jacek; Tobiszewski, Marek

    2018-02-01

    Novel methodology for grouping and ranking with application of self-organizing maps and multicriteria decision analysis is presented. The dataset consists of 22 objects that are analytical procedures applied to furan determination in food samples. They are described by 10 variables, referred to their analytical performance, environmental and economic aspects. Multivariate statistics analysis allows to limit the amount of input data for ranking analysis. Assessment results show that the most beneficial procedures are based on microextraction techniques with GC-MS final determination. It is presented how the information obtained from both tools complement each other. The applicability of combination of grouping and ranking is also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multivariate Statistical Analysis Software Technologies for Astrophysical Research Involving Large Data Bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, S. G.

    1994-01-01

    We developed a package to process and analyze the data from the digital version of the Second Palomar Sky Survey. This system, called SKICAT, incorporates the latest in machine learning and expert systems software technology, in order to classify the detected objects objectively and uniformly, and facilitate handling of the enormous data sets from digital sky surveys and other sources. The system provides a powerful, integrated environment for the manipulation and scientific investigation of catalogs from virtually any source. It serves three principal functions: image catalog construction, catalog management, and catalog analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT automates the process of classifying objects within CCD and digitized plate images. To exploit these catalogs, the system also provides tools to merge them into a large, complex database which may be easily queried and modified when new data or better methods of calibrating or classifying become available. The most innovative feature of SKICAT is the facility it provides to experiment with and apply the latest in machine learning technology to the tasks of catalog construction and analysis. SKICAT provides a unique environment for implementing these tools for any number of future scientific purposes. Initial scientific verification and performance tests have been made using galaxy counts and measurements of galaxy clustering from small subsets of the survey data, and a search for very high redshift quasars. All of the tests were successful and produced new and interesting scientific results. Attachments to this report give detailed accounts of the technical aspects of the SKICAT system, and of some of the scientific results achieved to date. We also developed a user-friendly package for multivariate statistical analysis of small and moderate-size data sets, called STATPROG. The package was tested extensively on a number of real scientific applications and has produced real, published results.

  19. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  20. Multivariate Longitudinal Analysis with Bivariate Correlation Test

    PubMed Central

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692

  1. Multivariate Longitudinal Analysis with Bivariate Correlation Test.

    PubMed

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

  2. A modal analysis of flexible aircraft dynamics with handling qualities implications

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1983-01-01

    A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.

  3. Suicidality among pregnant women in Brazil: prevalence and risk factors.

    PubMed

    Castro e Couto, Tiago; Brancaglion, Mayra Yara Martins; Cardoso, Mauro Nogueira; Faria, Gustavo Coutinho; Garcia, Frederico Duarte; Nicolato, Rodrigo; Aguiar, Regina Amélia Lopes P; Leite, Henrique Vitor; Corrêa, Humberto

    2016-04-01

    Suicide is one of the major causes of preventable death. We evaluated suicidality among pregnant women who participated in prenatal care in Brazil. A total of 255 patients were assessed using semi-structured interviews as well as the Edinburgh Postnatal Depression Scale (EPDS), Beck Depression Inventory (BDI), and Mini-International Neuropsychiatric Interview (MINI) Plus. Thereafter, Stata 12 was used to identify the significant predictors of current suicide risk (CSR) among participants using univariate and multivariate analyses (p < 0.05). According to MINI Plus module C, the lifetime suicide attempt rate was 12.55%. The overall CSR was 23.53%, distributed across risk levels of low (12.55%), moderate (1.18%), and high (9.80%). Our rates approximate those found in another Brazilian study (18.4%). Antenatal depression (AD), lifetime bipolar disorder, and any current anxiety disorder (as measured using the MINI) as well as BDI scores ≥15 and EPDS scores ≥11 were identified as positive risk factors in a univariate analysis (p < 0.001). These factors changed after a multivariate analysis was employed, and only years of education [odds ratio (OR) = 0.45; 95% confidence intervals (CIs) = 0.21-0.99], AD (OR = 3.42; 95% CIs = 1.37-8.53), and EPDS scores ≥11 (OR = 4.44; 95% CIs = 1.97-9.97) remained independent risk factors. AD and other psychiatric disorders were the primary risk factors for suicidality, although only the former remained an independent factor after a multivariate analysis. More than 10 years of education and EPDS scores ≥11 were also independent factors; the latter can be used as a screening tool for suicide risk.

  4. A screening method based on UV-Visible spectroscopy and multivariate analysis to assess addition of filler juices and water to pomegranate juices.

    PubMed

    Boggia, Raffaella; Casolino, Maria Chiara; Hysenaj, Vilma; Oliveri, Paolo; Zunin, Paola

    2013-10-15

    Consumer demand for pomegranate juice has considerably grown, during the last years, for its potential health benefits. Since it is an expensive functional food, cheaper fruit juices addition (i.e., grape and apple juices) or its simple dilution, or polyphenols subtraction are deceptively used. At present, time-consuming analyses are used to control the quality of this product. Furthermore these analyses are expensive and require well-trained analysts. Thus, the purpose of this study was to propose a high-speed and easy-to-use shortcut. Based on UV-VIS spectroscopy and chemometrics, a screening method is proposed to quickly screening some common fillers of pomegranate juice that could decrease the antiradical scavenging capacity of pure products. The analytical method was applied to laboratory prepared juices, to commercial juices and to representative experimental mixtures at different levels of water and filler juices. The outcomes were evaluated by means of multivariate exploratory analysis. The results indicate that the proposed strategy can be a useful screening tool to assess addition of filler juices and water to pomegranate juices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Comparative evaluation of the powder and compression properties of various grades and brands of microcrystalline cellulose by multivariate methods.

    PubMed

    Haware, Rahul V; Bauer-Brandl, Annette; Tho, Ingunn

    2010-01-01

    The present work challenges a newly developed approach to tablet formulation development by using chemically identical materials (grades and brands of microcrystalline cellulose). Tablet properties with respect to process and formulation parameters (e.g. compression speed, added lubricant and Emcompress fractions) were evaluated by 2(3)-factorial designs. Tablets of constant true volume were prepared on a compaction simulator at constant pressure (approx. 100 MPa). The highly repeatable and accurate force-displacement data obtained was evaluated by simple 'in-die' Heckel method and work descriptors. Relationships and interactions between formulation, process and tablet parameters were identified and quantified by multivariate analysis techniques; principal component analysis (PCA) and partial least square regressions (PLS). The method proved to be able to distinguish between different grades of MCC and even between two different brands of the same grade (Avicel PH 101 and Vivapur 101). One example of interaction was studied in more detail by mixed level design: The interaction effect of lubricant and Emcompress on elastic recovery of Avicel PH 102 was demonstrated to be complex and non-linear using the development tool under investigation.

  6. An R package for the integrated analysis of metabolomics and spectral data.

    PubMed

    Costa, Christopher; Maraschin, Marcelo; Rocha, Miguel

    2016-06-01

    Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as nuclear magnetic resonance, gas or liquid chromatography, mass spectrometry, infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests.

    PubMed

    Simoneau, Gabrielle; Levis, Brooke; Cuijpers, Pim; Ioannidis, John P A; Patten, Scott B; Shrier, Ian; Bombardier, Charles H; de Lima Osório, Flavia; Fann, Jesse R; Gjerdingen, Dwenda; Lamers, Femke; Lotrakul, Manote; Löwe, Bernd; Shaaban, Juwita; Stafford, Lesley; van Weert, Henk C P M; Whooley, Mary A; Wittkampf, Karin A; Yeung, Albert S; Thombs, Brett D; Benedetti, Andrea

    2017-11-01

    Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Use of dirichlet distributions and orthogonal projection techniques for the fluctuation analysis of steady-state multivariate birth-death systems

    NASA Astrophysics Data System (ADS)

    Palombi, Filippo; Toti, Simona

    2015-05-01

    Approximate weak solutions of the Fokker-Planck equation represent a useful tool to analyze the equilibrium fluctuations of birth-death systems, as they provide a quantitative knowledge lying in between numerical simulations and exact analytic arguments. In this paper, we adapt the general mathematical formalism known as the Ritz-Galerkin method for partial differential equations to the Fokker-Planck equation with time-independent polynomial drift and diffusion coefficients on the simplex. Then, we show how the method works in two examples, namely the binary and multi-state voter models with zealots.

  9. Sensitive analytical method for simultaneous analysis of some vasoconstrictors with highly overlapped analytical signals

    NASA Astrophysics Data System (ADS)

    Nikolić, G. S.; Žerajić, S.; Cakić, M.

    2011-10-01

    Multivariate calibration method is a powerful mathematical tool that can be applied in analytical chemistry when the analytical signals are highly overlapped. The method with regression by partial least squares is proposed for the simultaneous spectrophotometric determination of adrenergic vasoconstrictors in decongestive solution containing two active components: phenyleprine hydrochloride and trimazoline hydrochloride. These sympathomimetic agents are that frequently associated in pharmaceutical formulations against the common cold. The proposed method, which is, simple and rapid, offers the advantages of sensitivity and wide range of determinations without the need for extraction of the vasoconstrictors. In order to minimize the optimal factors necessary to obtain the calibration matrix by multivariate calibration, different parameters were evaluated. The adequate selection of the spectral regions proved to be important on the number of factors. In order to simultaneously quantify both hydrochlorides among excipients, the spectral region between 250 and 290 nm was selected. A recovery for the vasoconstrictor was 98-101%. The developed method was applied to assay of two decongestive pharmaceutical preparations.

  10. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  11. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    NASA Astrophysics Data System (ADS)

    Muhammad, Syahidah; Frew, Russell; Hayman, Alan

    2015-02-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  12. Big-Data RHEED analysis for understanding epitaxial film growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence.more » This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.« less

  13. Compound-specific isotope analysis of diesel fuels in a forensic investigation

    PubMed Central

    Muhammad, Syahidah A.; Frew, Russell D.; Hayman, Alan R.

    2015-01-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples. PMID:25774366

  14. The advancement of the built environment research through employment of structural equation modeling (SEM)

    NASA Astrophysics Data System (ADS)

    Wasilah, S.; Fahmyddin, T.

    2018-03-01

    The employment of structural equation modeling (SEM) in research has taken an increasing attention in among researchers in built environment. There is a gap to understand the attributes, application, and importance of this approach in data analysis in built environment study. This paper intends to provide fundamental comprehension of SEM method in data analysis, unveiling attributes, employment and significance and bestow cases to assess associations amongst variables and constructs. The study uses some main literature to grasp the essence of SEM regarding with built environment research. The better acknowledgment of this analytical tool may assist the researcher in the built environment to analyze data under complex research questions and to test multivariate models in a single study.

  15. Visualization and statistical comparisons of microbial communities using R packages on Phylochip data.

    PubMed

    Holmes, Susan; Alekseyenko, Alexander; Timme, Alden; Nelson, Tyrrell; Pasricha, Pankaj Jay; Spormann, Alfred

    2011-01-01

    This article explains the statistical and computational methodology used to analyze species abundances collected using the LNBL Phylochip in a study of Irritable Bowel Syndrome (IBS) in rats. Some tools already available for the analysis of ordinary microarray data are useful in this type of statistical analysis. For instance in correcting for multiple testing we use Family Wise Error rate control and step-down tests (available in the multtest package). Once the most significant species are chosen we use the hypergeometric tests familiar for testing GO categories to test specific phyla and families. We provide examples of normalization, multivariate projections, batch effect detection and integration of phylogenetic covariation, as well as tree equalization and robustification methods.

  16. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Objective. Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. Approach. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. Main results. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. Significance. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  17. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects.

    PubMed

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  18. Polytopic vector analysis in igneous petrology: Application to lunar petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Ehrlich, R.

    1993-01-01

    Lunar samples represent a heterogeneous assemblage of rocks with complex inter-relationships that are difficult to decipher using standard petrogenetic approaches. These inter-relationships reflect several distinct petrogenetic trends as well as thermomechanical mixing of distinct components. Additional complications arise from the unequal quality of chemical analyses and from the fact that many samples (e.g., breccia clasts) are too small to be representative of the system from which they derived. Polytopic vector analysis (PVA) is a multi-variate procedure used as a tool for exploratory data analysis. PVA allows the analyst to classify samples and clarifies relationships among heterogenous samples with complex petrogenetic histories. It differs from orthogonal factor analysis in that it uses non-orthogonal multivariate sample vectors to extract sample endmember compositions. The output from a Q-mode (sample based) factor analysis is the initial step in PVA. The Q-mode analysis, using criteria established by Miesch and Klovan and Miesch, is used to determine the number of endmembers in the data system. The second step involves determination of endmembers and mixing proportions with all output expressed in the same geochemical variable as the input. The composition of endmembers is derived by analysis of the variability of the data set. Endmembers need not be present in the data set, nor is it necessary for their composition to be known a priori. A set of any endmembers defines a 'polytope' or classification figure (triangle for a three component system, tetrahedron for a four component system, a 'five-tope' in four dimensions for five component system, et cetera).

  19. Assessment of cardio-respiratory interactions in preterm infants by bivariate autoregressive modeling and surrogate data analysis.

    PubMed

    Indic, Premananda; Bloch-Salisbury, Elisabeth; Bednarek, Frank; Brown, Emery N; Paydarfar, David; Barbieri, Riccardo

    2011-07-01

    Cardio-respiratory interactions are weak at the earliest stages of human development, suggesting that assessment of their presence and integrity may be an important indicator of development in infants. Despite the valuable research devoted to infant development, there is still a need for specifically targeted standards and methods to assess cardiopulmonary functions in the early stages of life. We present a new methodological framework for the analysis of cardiovascular variables in preterm infants. Our approach is based on a set of mathematical tools that have been successful in quantifying important cardiovascular control mechanisms in adult humans, here specifically adapted to reflect the physiology of the developing cardiovascular system. We applied our methodology in a study of cardio-respiratory responses for 11 preterm infants. We quantified cardio-respiratory interactions using specifically tailored multivariate autoregressive analysis and calculated the coherence as well as gain using causal approaches. The significance of the interactions in each subject was determined by surrogate data analysis. The method was tested in control conditions as well as in two different experimental conditions; with and without use of mild mechanosensory intervention. Our multivariate analysis revealed a significantly higher coherence, as confirmed by surrogate data analysis, in the frequency range associated with eupneic breathing compared to the other ranges. Our analysis validates the models behind our new approaches, and our results confirm the presence of cardio-respiratory coupling in early stages of development, particularly during periods of mild mechanosensory intervention, thus encouraging further application of our approach. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Multivariate Analysis of Effects of Asthmatic Patient Respiratory Profiles on the In Vitro Performance of a Reservoir Multidose and a Capsule-Based Dry Powder Inhaler.

    PubMed

    Buttini, Francesca; Pasquali, Irene; Brambilla, Gaetano; Copelli, Diego; Alberi, Massimiliano Dagli; Balducci, Anna Giulia; Bettini, Ruggero; Sisti, Viviana

    2016-03-01

    The aim of this work was to evaluate the effect of two different dry powder inhalers, of the NGI induction port and Alberta throat and of the actual inspiratory profiles of asthmatic patients on in-vitro drug inhalation performances. The two devices considered were a reservoir multidose and a capsule-based inhaler. The formulation used to test the inhalers was a combination of formoterol fumarate and beclomethasone dipropionate. A breath simulator was used to mimic inhalatory patterns previously determined in vivo. A multivariate approach was adopted to estimate the significance of the effect of the investigated variables in the explored domain. Breath simulator was a useful tool to mimic in vitro the in vivo inspiratory profiles of asthmatic patients. The type of throat coupled with the impactor did not affect the aerodynamic distribution of the investigated formulation. However, the type of inhaler and inspiratory profiles affected the respirable dose of drugs. The multivariate statistical approach demonstrated that the multidose inhaler, released efficiently a high fine particle mass independently from the inspiratory profiles adopted. Differently, the single dose capsule inhaler, showed a significant decrease of fine particle mass of both drugs when the device was activated using the minimum inspiratory volume (592 mL).

  1. Combined cumulative sum (CUSUM) and chronological environmental analysis as a tool to improve the learning environment for linear-probe endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) trainees: a pilot study.

    PubMed

    Norisue, Yasuhiro; Tokuda, Yasuharu; Juarez, Mayrol; Uchimido, Ryo; Fujitani, Shigeki; Stoeckel, David A

    2017-02-07

    Cumulative sum (CUSUM) analysis can be used to continuously monitor the performance of an individual or process and detect deviations from a preset or standard level of achievement. However, no previous study has evaluated the utility of CUSUM analysis in facilitating timely environmental assessment and interventions to improve performance of linear-probe endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). The aim of this study was to evaluate the usefulness of combined CUSUM and chronological environmental analysis as a tool to improve the learning environment for EBUS-TBNA trainees. This study was an observational chart review. To determine if performance was acceptable, CUSUM analysis was used to track procedural outcomes of trainees in EBUS-TBNA. To investigate chronological changes in the learning environment, multivariate logistic regression analysis was used to compare several indices before and after time points when significant changes occurred in proficiency. Presence of an additional attending bronchoscopist was inversely associated with nonproficiency (odds ratio, 0.117; 95% confidence interval, 0-0.749; P = 0.019). Other factors, including presence of an on-site cytopathologist and dose of sedatives used, were not significantly associated with duration of nonproficiency. Combined CUSUM and chronological environmental analysis may be useful in hastening interventions that improve performance of EBUS-TBNA.

  2. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a 'black box' approach and how to avoid them

    NASA Astrophysics Data System (ADS)

    Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.

    2018-06-01

    The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.

  3. Multivariate methods to visualise colour-space and colour discrimination data.

    PubMed

    Hastings, Gareth D; Rubin, Alan

    2015-01-01

    Despite most modern colour spaces treating colour as three-dimensional (3-D), colour data is usually not visualised in 3-D (and two-dimensional (2-D) projection-plane segments and multiple 2-D perspective views are used instead). The objectives of this article are firstly, to introduce a truly 3-D percept of colour space using stereo-pairs, secondly to view colour discrimination data using that platform, and thirdly to apply formal statistics and multivariate methods to analyse the data in 3-D. This is the first demonstration of the software that generated stereo-pairs of RGB colour space, as well as of a new computerised procedure that investigated colour discrimination by measuring colour just noticeable differences (JND). An initial pilot study and thorough investigation of instrument repeatability were performed. Thereafter, to demonstrate the capabilities of the software, five colour-normal and one colour-deficient subject were examined using the JND procedure and multivariate methods of data analysis. Scatter plots of responses were meaningfully examined in 3-D and were useful in evaluating multivariate normality as well as identifying outliers. The extent and direction of the difference between each JND response and the stimulus colour point was calculated and appreciated in 3-D. Ellipsoidal surfaces of constant probability density (distribution ellipsoids) were fitted to response data; the volumes of these ellipsoids appeared useful in differentiating the colour-deficient subject from the colour-normals. Hypothesis tests of variances and covariances showed many statistically significant differences between the results of the colour-deficient subject and those of the colour-normals, while far fewer differences were found when comparing within colour-normals. The 3-D visualisation of colour data using stereo-pairs, as well as the statistics and multivariate methods of analysis employed, were found to be unique and useful tools in the representation and study of colour. Many additional studies using these methods along with the JND and other procedures have been identified and will be reported in future publications. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  4. Analysis tools for the interplay between genome layout and regulation.

    PubMed

    Bouyioukos, Costas; Elati, Mohamed; Képès, François

    2016-06-06

    Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.

  5. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  6. Multivariate Cluster Analysis.

    ERIC Educational Resources Information Center

    McRae, Douglas J.

    Procedures for grouping students into homogeneous subsets have long interested educational researchers. The research reported in this paper is an investigation of a set of objective grouping procedures based on multivariate analysis considerations. Four multivariate functions that might serve as criteria for adequate grouping are given and…

  7. Infrared imaging spectroscopy and chemometric tools for in situ analysis of an imiquimod pharmaceutical preparation presented as cream

    NASA Astrophysics Data System (ADS)

    Carneiro, Renato Lajarim; Poppi, Ronei Jesus

    2014-01-01

    In the present work the homogeneity of a pharmaceutical formulation presented as a cream was studied using infrared imaging spectroscopy and chemometric methodologies such as principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). A cream formulation, presented as an emulsion, was prepared using imiquimod as the active pharmaceutical ingredient (API) and the excipients: water, vaseline, an emulsifier and a carboxylic acid in order to dissolve the API. After exposure at 45 °C during 3 months to perform accelerated stability test, the presence of some crystals was observed, indicating homogeneity problems in the formulation. PCA exploratory analysis showed that the crystal composition was different from the composition of the emulsion, since the score maps presented crystal structures in the emulsion. MCR-ALS estimated the spectra of the crystals and the emulsion. The crystals presented amine and C-H bands, suggesting that the precipitate was a salt formed by carboxylic acid and imiquimod. These results indicate the potential of infrared imaging spectroscopy in conjunction with chemometric methodologies as an analytical tool to ensure the quality of cream formulations in the pharmaceutical industry.

  8. Application of concepts from cross-recurrence analysis in speech production: an overview and comparison with other nonlinear methods.

    PubMed

    Lancia, Leonardo; Fuchs, Susanne; Tiede, Mark

    2014-06-01

    The aim of this article was to introduce an important tool, cross-recurrence analysis, to speech production applications by showing how it can be adapted to evaluate the similarity of multivariate patterns of articulatory motion. The method differs from classical applications of cross-recurrence analysis because no phase space reconstruction is conducted, and a cleaning algorithm removes the artifacts from the recurrence plot. The main features of the proposed approach are robustness to nonstationarity and efficient separation of amplitude variability from temporal variability. The authors tested these claims by applying their method to synthetic stimuli whose variability had been carefully controlled. The proposed method was also demonstrated in a practical application: It was used to investigate the role of biomechanical constraints in articulatory reorganization as a consequence of speeded repetition of CVCV utterances containing a labial and a coronal consonant. Overall, the proposed approach provided more reliable results than other methods, particularly in the presence of high variability. The proposed method is a useful and appropriate tool for quantifying similarity and dissimilarity in patterns of speech articulator movement, especially in such research areas as speech errors and pathologies, where unpredictable divergent behavior is expected.

  9. Chemometrics Methods for Specificity, Authenticity and Traceability Analysis of Olive Oils: Principles, Classifications and Applications.

    PubMed

    Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil

    2016-11-17

    Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends' preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors.

  10. Multivariate data analysis methods for the interpretation of microbial flow cytometric data.

    PubMed

    Davey, Hazel M; Davey, Christopher L

    2011-01-01

    Flow cytometry is an important technique in cell biology and immunology and has been applied by many groups to the analysis of microorganisms. This has been made possible by developments in hardware that is now sensitive enough to be used routinely for analysis of microbes. However, in contrast to advances in the technology that underpin flow cytometry, there has not been concomitant progress in the software tools required to analyse, display and disseminate the data and manual analysis, of individual samples remains a limiting aspect of the technology. We present two new data sets that illustrate common applications of flow cytometry in microbiology and demonstrate the application of manual data analysis, automated visualisation (including the first description of a new piece of software we are developing to facilitate this), genetic programming, principal components analysis and artificial neural nets to these data. The data analysis methods described here are equally applicable to flow cytometric applications with other cell types.

  11. Time-series panel analysis (TSPA): multivariate modeling of temporal associations in psychotherapy process.

    PubMed

    Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang

    2014-10-01

    Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. A simple rapid approach using coupled multivariate statistical methods, GIS and trajectory models to delineate areas of common oil spill risk

    NASA Astrophysics Data System (ADS)

    Guillen, George; Rainey, Gail; Morin, Michelle

    2004-04-01

    Currently, the Minerals Management Service uses the Oil Spill Risk Analysis model (OSRAM) to predict the movement of potential oil spills greater than 1000 bbl originating from offshore oil and gas facilities. OSRAM generates oil spill trajectories using meteorological and hydrological data input from either actual physical measurements or estimates generated from other hydrological models. OSRAM and many other models produce output matrices of average, maximum and minimum contact probabilities to specific landfall or target segments (columns) from oil spills at specific points (rows). Analysts and managers are often interested in identifying geographic areas or groups of facilities that pose similar risks to specific targets or groups of targets if a spill occurred. Unfortunately, due to the potentially large matrix generated by many spill models, this question is difficult to answer without the use of data reduction and visualization methods. In our study we utilized a multivariate statistical method called cluster analysis to group areas of similar risk based on potential distribution of landfall target trajectory probabilities. We also utilized ArcView™ GIS to display spill launch point groupings. The combination of GIS and multivariate statistical techniques in the post-processing of trajectory model output is a powerful tool for identifying and delineating areas of similar risk from multiple spill sources. We strongly encourage modelers, statistical and GIS software programmers to closely collaborate to produce a more seamless integration of these technologies and approaches to analyzing data. They are complimentary methods that strengthen the overall assessment of spill risks.

  13. WHIDE—a web tool for visual data mining colocation patterns in multivariate bioimages

    PubMed Central

    Kölling, Jan; Langenkämper, Daniel; Abouna, Sylvie; Khan, Michael; Nattkemper, Tim W.

    2012-01-01

    Motivation: Bioimaging techniques rapidly develop toward higher resolution and dimension. The increase in dimension is achieved by different techniques such as multitag fluorescence imaging, Matrix Assisted Laser Desorption / Ionization (MALDI) imaging or Raman imaging, which record for each pixel an N-dimensional intensity array, representing local abundances of molecules, residues or interaction patterns. The analysis of such multivariate bioimages (MBIs) calls for new approaches to support users in the analysis of both feature domains: space (i.e. sample morphology) and molecular colocation or interaction. In this article, we present our approach WHIDE (Web-based Hyperbolic Image Data Explorer) that combines principles from computational learning, dimension reduction and visualization in a free web application. Results: We applied WHIDE to a set of MBI recorded using the multitag fluorescence imaging Toponome Imaging System. The MBI show field of view in tissue sections from a colon cancer study and we compare tissue from normal/healthy colon with tissue classified as tumor. Our results show, that WHIDE efficiently reduces the complexity of the data by mapping each of the pixels to a cluster, referred to as Molecular Co-Expression Phenotypes and provides a structural basis for a sophisticated multimodal visualization, which combines topology preserving pseudocoloring with information visualization. The wide range of WHIDE's applicability is demonstrated with examples from toponome imaging, high content screens and MALDI imaging (shown in the Supplementary Material). Availability and implementation: The WHIDE tool can be accessed via the BioIMAX website http://ani.cebitec.uni-bielefeld.de/BioIMAX/; Login: whidetestuser; Password: whidetest. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: tim.nattkemper@uni-bielefeld.de PMID:22390938

  14. Identifying patients with cost-related medication non-adherence: a big-data approach.

    PubMed

    Zhang, James X; Meltzer, David O

    2016-08-01

    Millions of Americans encounter access barriers to medication due to cost; however, to date, there is no effective screening tool that identifies patients at risk of cost-related medication non-adherence (CRN). By utilizing a big-data approach to combining the survey data and electronic health records (EHRs), this study aimed to develop a method of identifying patients at risk of CRN. CRN data were collected by surveying patients about CRN behaviors in the past 3 months. By matching the dates of patients' receipt of monthly Social Security (SS) payments and the dates of prescription orders for 559 Medicare beneficiaries who were primary SS claimants at high risk of hospitalization in an urban academic medical center, this study identified patients who ordered their outpatient prescription within 2 days of receipt of monthly SS payments in 2014. The predictive power of this information on CRN was assessed using multivariate logistic regression analysis. Among the 559 Medicare patients at high risk of hospitalization, 137 (25%) reported CRN. Among those with CRN, 96 (70%) had ordered prescriptions on receipt of SS payments one or more times in 2014. The area under the Receiver Operating Curve was 0.70 using the predictive model in multivariate logistic regression analysis. With a new approach to combining the survey data and EHR data, patients' behavior in delaying filling of prescription until funds from SS checks become available can be measured, providing some predictive value for cost-related medication non-adherence. The big-data approach is a valuable tool to identify patients at risk of CRN and can be further expanded to the general population and sub-populations, providing a meaningful risk-stratification for CRN and facilitating physician-patient communication to reduce CRN.

  15. Validation of the Italian Version of the Caregiver Abuse Screen among Family Caregivers of Older People with Alzheimer's Disease.

    PubMed

    Melchiorre, Maria Gabriella; Di Rosa, Mirko; Barbabella, Francesco; Barbini, Norma; Lattanzio, Fabrizia; Chiatti, Carlos

    2017-01-01

    Introduction . Elder abuse is often a hidden phenomenon and, in many cases, screening practices are difficult to implement among older people with dementia. The Caregiver Abuse Screen (CASE) is a useful tool which is administered to family caregivers for detecting their potential abusive behavior. Objectives . To validate the Italian version of the CASE tool in the context of family caregiving of older people with Alzheimer's disease (AD) and to identify risk factors for elder abuse in Italy. Methods . The CASE test was administered to 438 caregivers, recruited in the Up-Tech study. Validity and reliability were evaluated using Spearman's correlation coefficients, principal-component analysis, and Cronbach's alphas. The association between the CASE and other variables potentially associated with elder abuse was also analyzed. Results . The factor analysis suggested the presence of a single factor, with a strong internal consistency (Cronbach's alpha = 0.86). CASE score was strongly correlated with well-known risk factors of abuse. At multivariate level, main factors associated with CASE total score were caregiver burden and AD-related behavioral disturbances. Conclusions . The Italian version of the CASE is a reliable and consistent screening tool for tackling the risk of being or becoming perpetrators of abuse by family caregivers of people with AD.

  16. The Representation of Object-Directed Action and Function Knowledge in the Human Brain

    PubMed Central

    Chen, Quanjing; Garcea, Frank E.; Mahon, Bradford Z.

    2016-01-01

    The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. PMID:25595179

  17. Validation of the Italian Version of the Caregiver Abuse Screen among Family Caregivers of Older People with Alzheimer's Disease

    PubMed Central

    Di Rosa, Mirko; Barbabella, Francesco; Barbini, Norma; Chiatti, Carlos

    2017-01-01

    Introduction. Elder abuse is often a hidden phenomenon and, in many cases, screening practices are difficult to implement among older people with dementia. The Caregiver Abuse Screen (CASE) is a useful tool which is administered to family caregivers for detecting their potential abusive behavior. Objectives. To validate the Italian version of the CASE tool in the context of family caregiving of older people with Alzheimer's disease (AD) and to identify risk factors for elder abuse in Italy. Methods. The CASE test was administered to 438 caregivers, recruited in the Up-Tech study. Validity and reliability were evaluated using Spearman's correlation coefficients, principal-component analysis, and Cronbach's alphas. The association between the CASE and other variables potentially associated with elder abuse was also analyzed. Results. The factor analysis suggested the presence of a single factor, with a strong internal consistency (Cronbach's alpha = 0.86). CASE score was strongly correlated with well-known risk factors of abuse. At multivariate level, main factors associated with CASE total score were caregiver burden and AD-related behavioral disturbances. Conclusions. The Italian version of the CASE is a reliable and consistent screening tool for tackling the risk of being or becoming perpetrators of abuse by family caregivers of people with AD. PMID:28265571

  18. Scientific Visualization Tools for Enhancement of Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Rodriguez, W. J.; Chaudhury, S. R.

    2001-05-01

    Undergraduate research projects that utilize remote sensing satellite instrument data to investigate atmospheric phenomena pose many challenges. A significant challenge is processing large amounts of multi-dimensional data. Remote sensing data initially requires mining; filtering of undesirable spectral, instrumental, or environmental features; and subsequently sorting and reformatting to files for easy and quick access. The data must then be transformed according to the needs of the investigation(s) and displayed for interpretation. These multidimensional datasets require views that can range from two-dimensional plots to multivariable-multidimensional scientific visualizations with animations. Science undergraduate students generally find these data processing tasks daunting. Generally, researchers are required to fully understand the intricacies of the dataset and write computer programs or rely on commercially available software, which may not be trivial to use. In the time that undergraduate researchers have available for their research projects, learning the data formats, programming languages, and/or visualization packages is impractical. When dealing with large multi-dimensional data sets appropriate Scientific Visualization tools are imperative in allowing students to have a meaningful and pleasant research experience, while producing valuable scientific research results. The BEST Lab at Norfolk State University has been creating tools for multivariable-multidimensional analysis of Earth Science data. EzSAGE and SAGE4D have been developed to sort, analyze and visualize SAGE II (Stratospheric Aerosol and Gas Experiment) data with ease. Three- and four-dimensional visualizations in interactive environments can be produced. EzSAGE provides atmospheric slices in three-dimensions where the researcher can change the scales in the three-dimensions, color tables and degree of smoothing interactively to focus on particular phenomena. SAGE4D provides a navigable four-dimensional interactive environment. These tools allow students to make higher order decisions based on large multidimensional sets of data while diminishing the level of frustration that results from dealing with the details of processing large data sets.

  19. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  20. Experimental validation of docking and capture using space robotics testbeds

    NASA Technical Reports Server (NTRS)

    Spofford, John; Schmitz, Eric; Hoff, William

    1991-01-01

    This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.

  1. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  2. Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models

    PubMed Central

    Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.

    2014-01-01

    Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071

  3. Dynamic analysis environment for nuclear forensic analyses

    NASA Astrophysics Data System (ADS)

    Stork, C. L.; Ummel, C. C.; Stuart, D. S.; Bodily, S.; Goldblum, B. L.

    2017-01-01

    A Dynamic Analysis Environment (DAE) software package is introduced to facilitate group inclusion/exclusion method testing, evaluation and comparison for pre-detonation nuclear forensics applications. Employing DAE, the multivariate signatures of a questioned material can be compared to the signatures for different, known groups, enabling the linking of the questioned material to its potential process, location, or fabrication facility. Advantages of using DAE for group inclusion/exclusion include built-in query tools for retrieving data of interest from a database, the recording and documentation of all analysis steps, a clear visualization of the analysis steps intelligible to a non-expert, and the ability to integrate analysis tools developed in different programming languages. Two group inclusion/exclusion methods are implemented in DAE: principal component analysis, a parametric feature extraction method, and k nearest neighbors, a nonparametric pattern recognition method. Spent Fuel Isotopic Composition (SFCOMPO), an open source international database of isotopic compositions for spent nuclear fuels (SNF) from 14 reactors, is used to construct PCA and KNN models for known reactor groups, and 20 simulated SNF samples are utilized in evaluating the performance of these group inclusion/exclusion models. For all 20 simulated samples, PCA in conjunction with the Q statistic correctly excludes a large percentage of reactor groups and correctly includes the true reactor of origination. Employing KNN, 14 of the 20 simulated samples are classified to their true reactor of origination.

  4. Methodology to assess clinical liver safety data.

    PubMed

    Merz, Michael; Lee, Kwan R; Kullak-Ublick, Gerd A; Brueckner, Andreas; Watkins, Paul B

    2014-11-01

    Analysis of liver safety data has to be multivariate by nature and needs to take into account time dependency of observations. Current standard tools for liver safety assessment such as summary tables, individual data listings, and narratives address these requirements to a limited extent only. Using graphics in the context of a systematic workflow including predefined graph templates is a valuable addition to standard instruments, helping to ensure completeness of evaluation, and supporting both hypothesis generation and testing. Employing graphical workflows interactively allows analysis in a team-based setting and facilitates identification of the most suitable graphics for publishing and regulatory reporting. Another important tool is statistical outlier detection, accounting for the fact that for assessment of Drug-Induced Liver Injury, identification and thorough evaluation of extreme values has much more relevance than measures of central tendency in the data. Taken together, systematical graphical data exploration and statistical outlier detection may have the potential to significantly improve assessment and interpretation of clinical liver safety data. A workshop was convened to discuss best practices for the assessment of drug-induced liver injury (DILI) in clinical trials.

  5. Three-dimensional anthropometric techniques applied to the fabrication of burn masks and the quantification of wound healing

    NASA Astrophysics Data System (ADS)

    Whitestone, Jennifer J.; Geisen, Glen R.; McQuiston, Barbara K.

    1997-03-01

    Anthropometric surveys conducted by the military provide comprehensive human body measurement data that are human interface requirements for successful mission performance of weapon systems, including cockpits, protective equipment, and clothing. The application of human body dimensions to model humans and human-machine performance begins with engineering anthropometry. There are two critical elements to engineering anthropometry: data acquisition and data analysis. First, the human body is captured dimensionally with either traditional anthropometric tools, such as calipers and tape measures, or with advanced image acquisition systems, such as a laser scanner. Next, numerous statistical analysis tools, such as multivariate modeling and feature envelopes, are used to effectively transition these data for design and evaluation of equipment and work environments. Recently, Air Force technology transfer allowed researchers at the Computerized Anthropometric Research and Design (CARD) Laboratory at Wright-Patterson Air Force Base to work with the Dayton, Ohio area medical community in assessing the rate of wound healing and improving the fit of total contract burn masks. This paper describes the successful application of CARD Lab engineering anthropometry to two medically oriented human interface problems.

  6. Multiplex analysis of cytokines as biomarkers that differentiate benign and malignant thyroid diseases

    PubMed Central

    Linkov, Faina; Ferris, Robert L.; Yurkovetsky, Zoya; Marrangoni, Adele; Velikokhatnaya, Lyudmila; Gooding, William; Nolan, Brian; Winans, Matthew; Siegel, Eric R.; Lokshin, Anna; Stack, Brendan C.

    2008-01-01

    Thyroid cancer incidence is increasing, and its diagnosis can be challenging. Fine needle biopsy, the principal clinical tool to make a tissue diagnosis, leads to inconclusive diagnoses in up to 30% of the cases, leading to surgery. Advances in proteomics are improving abilities to diagnose malignant conditions using small samples of tissue or body fluids. We hypothesized that analysis of serum growth factors would uncover diagnostically informative differences between benign and malignant thyroid conditions. Using xMAP profiling, we evaluated concentrations of 19 cytokines, chemokines, and growth factors. We used sera from 23 patients with cancer (Malignant group), 24 patients with benign nodular thyroid disease (Benign group), and 23 healthy subjects (Normal group). In univariate analysis, five factors (epithelial growth factor, hepatocyte growth factor, Interleukins-5 and -8, and regulated upon activation, normally T-expressed and presumably secreted (RANTES) distinguished subjects with thyroid disease from the Normal group. In multivariate analysis, the set {Interleukin-8, hepatocyte growth factor, monocyte-induced γ interferon, interleukin-12 p40} achieved noteworthy discrimination between Benign and Malignant groups (area under the receiver operating characteristics curve was 0.81 (95% confidence interval: 0.65–0.90)). Multiplex panels of serum biomarkers may be promising tools to diagnose cancer in patients presenting with evidence of nodular thyroid disease. PMID:19234619

  7. Prognostic Significance of Tumor Necrosis in Hilar Cholangiocarcinoma.

    PubMed

    Atanasov, Georgi; Schierle, Katrin; Hau, Hans-Michael; Dietel, Corinna; Krenzien, Felix; Brandl, Andreas; Wiltberger, Georg; Englisch, Julianna Paulina; Robson, Simon C; Reutzel-Selke, Anja; Pascher, Andreas; Jonas, Sven; Pratschke, Johann; Benzing, Christian; Schmelzle, Moritz

    2017-02-01

    Tumor necrosis and peritumoral fibrosis have both been suggested to have a prognostic value in selected solid tumors. However, little is known regarding their influence on tumor progression and prognosis in hilar cholangiocarcinoma (HC). Surgically resected tumor specimens of HC (n = 47) were analyzed for formation of necrosis and extent of peritumoral fibrosis. Tumor necrosis and grade of fibrosis were assessed histologically and correlated with clinicopathological characteristics, tumor recurrence, and patients' survival. Univariate Kaplan-Meier analysis and a stepwise multivariable Cox regression model were applied. Mild peritumoral fibrosis was evident in 12 tumor samples, moderate peritumoral fibrosis in 20, and high-grade fibrosis in 15. Necrosis was evident in 19 of 47 tumor samples. Patients with tumors characterized by necrosis showed a significantly decreased 5-year recurrence-free survival (37.9 vs. 25.7 %; p < .05) and a significantly decreased 5-year overall survival (42.6 vs. 12.4 %; p < .05), when compared with patients with tumors showing no necrosis. R status, tumor recurrence, and tumor necrosis were of prognostic value in the univariate analysis (all p < .05). Multivariate survival analysis confirmed tumor necrosis (p = .038) as the only independent prognostic variable. The assessment of tumor necrosis appears as a valuable additional prognostic tool in routine histopathological evaluation of HC. These observations might have implications for monitoring and more individualized multimodal therapeutic strategies.

  8. Metabolic profiling for the identification of Huntington biomarkers by on-line solid-phase extraction capillary electrophoresis mass spectrometry combined with advanced data analysis tools.

    PubMed

    Pont, Laura; Benavente, Fernando; Jaumot, Joaquim; Tauler, Romà; Alberch, Jordi; Ginés, Silvia; Barbosa, José; Sanz-Nebot, Victoria

    2016-03-01

    In this work, an untargeted metabolomic approach based on sensitive analysis by on-line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS) in combination with multivariate data analysis is proposed as an efficient method for the identification of biomarkers of Huntington's disease (HD) progression in plasma. For this purpose, plasma samples from wild-type (wt) and HD (R6/1) mice of different ages (8, 12, and 30 weeks), were analyzed by C18 -SPE-CE-MS in order to obtain the characteristic electrophoretic profiles of low molecular mass compounds. Then, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the multiple full scan MS datasets. This strategy permitted the resolution of a large number of metabolites being characterized by their electrophoretic peaks and their corresponding mass spectra. A total number of 29 compounds were relevant to discriminate between wt and HD plasma samples, as well as to follow-up the HD progression. The intracellular signaling was found to be the most affected metabolic pathway in HD mice after 12 weeks of birth, when mice already showed motor coordination deficiencies and cognitive decline. This fact agreed with the atrophy and dysfunction of specific neurons, loss of several types of receptors, and changed expression of neurotransmitters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    PubMed

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  10. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I + II + III supernatant in human albumin separation

    NASA Astrophysics Data System (ADS)

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-01

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.

  11. Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer Disease: Do Regions Outside the Hippocampus Matter?

    PubMed

    Tanpitukpongse, T P; Mazurowski, M A; Ikhena, J; Petrella, J R

    2017-03-01

    Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease. Data were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes. On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different ( P > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader). Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker. © 2017 by American Journal of Neuroradiology.

  12. Platelet to lymphocyte ratio as a novel prognostic tool for gallbladder carcinoma

    PubMed Central

    Pang, Qing; Zhang, Ling-Qiang; Wang, Rui-Tao; Bi, Jian-Bin; Zhang, Jing-Yao; Qu, Kai; Liu, Su-Shun; Song, Si-Dong; Xu, Xin-Sen; Wang, Zhi-Xin; Liu, Chang

    2015-01-01

    AIM: To preliminarily investigate the prognostic significance of the platelet to lymphocyte ratio (PLR) in patients with gallbladder carcinoma (GBC). METHODS: Clinical data of 316 surgical GBC patients were analyzed retrospectively, and preoperative serum platelet and lymphocyte counts were used to calculate the PLR. The optimal cut-off value of the PLR for detecting death was determined by the receiver operating characteristic (ROC) curve. The primary outcome was overall survival, which was estimated by the Kaplan-Meier method. The log-rank test was used to compare the differences in survival. Then, we conducted multivariate Cox analysis to assess the independent effect of the PLR on the survival of GBC patients. RESULTS: For the PLR, the area under the ROC curve was 0.620 (95%CI: 0.542-0.698, P = 0.040) in detecting death. The cut-off value for the PLR was determined to be 117.7, with 73.6% sensitivity and 53.2% specificity. The PLR was found to be significantly positively correlated with CA125 serum level, tumor-node-metastasis (TNM) stage, and tumor differentiation. Univariate analysis identified carcinoembryonic antigen (CEA), CA125 and CA199 levels, PLR, TNM stage, and the degree of differentiation as significant prognostic factors for GBC when they were expressed as binary data. Multivariate analysis showed that CA125 > 35 U/mL, CA199 > 39 U/mL, PLR ≥ 117.7, and TNM stage IV were independently associated with poor survival in GBC. When expressed as a continuous variable, the PLR was still an independent predictor for survival, with a hazard ratio of 1.018 (95%CI: 1.001-1.037 per 10-unit increase, P = 0.043). CONCLUSION: The PLR could be used as a simple, inexpensive, and valuable tool for predicting the prognosis of GBC patients. PMID:26074706

  13. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I+II+III supernatant in human albumin separation.

    PubMed

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-15

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (R p 2 ), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Automated pre-processing and multivariate vibrational spectra analysis software for rapid results in clinical settings

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, T.; Kumar, P.; Fillipe, L.

    2018-02-01

    Vibrational spectroscopy, especially FTIR and Raman, has shown enormous potential in disease diagnosis, especially in cancers. Their potential for detecting varied pathological conditions are regularly reported. However, to prove their applicability in clinics, large multi-center multi-national studies need to be undertaken; and these will result in enormous amount of data. A parallel effort to develop analytical methods, including user-friendly software that can quickly pre-process data and subject them to required multivariate analysis is warranted in order to obtain results in real time. This study reports a MATLAB based script that can automatically import data, preprocess spectra— interpolation, derivatives, normalization, and then carry out Principal Component Analysis (PCA) followed by Linear Discriminant Analysis (LDA) of the first 10 PCs; all with a single click. The software has been verified on data obtained from cell lines, animal models, and in vivo patient datasets, and gives results comparable to Minitab 16 software. The software can be used to import variety of file extensions, asc, .txt., .xls, and many others. Options to ignore noisy data, plot all possible graphs with PCA factors 1 to 5, and save loading factors, confusion matrices and other parameters are also present. The software can provide results for a dataset of 300 spectra within 0.01 s. We believe that the software will be vital not only in clinical trials using vibrational spectroscopic data, but also to obtain rapid results when these tools get translated into clinics.

  15. The Perseus computational platform for comprehensive analysis of (prote)omics data.

    PubMed

    Tyanova, Stefka; Temu, Tikira; Sinitcyn, Pavel; Carlson, Arthur; Hein, Marco Y; Geiger, Tamar; Mann, Matthias; Cox, Jürgen

    2016-09-01

    A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

  16. Methods for presentation and display of multivariate data

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1981-01-01

    Methods for the presentation and display of multivariate data are discussed with emphasis placed on the multivariate analysis of variance problems and the Hotelling T(2) solution in the two-sample case. The methods utilize the concepts of stepwise discrimination analysis and the computation of partial correlation coefficients.

  17. A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2014-01-01

    Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…

  18. Lung cancer in symptomatic patients presenting in primary care: a systematic review of risk prediction tools

    PubMed Central

    Schmidt-Hansen, Mia; Berendse, Sabine; Hamilton, Willie; Baldwin, David R

    2017-01-01

    Background Lung cancer is the leading cause of cancer deaths. Around 70% of patients first presenting to specialist care have advanced disease, at which point current treatments have little effect on survival. The issue for primary care is how to recognise patients earlier and investigate appropriately. This requires an assessment of the risk of lung cancer. Aim The aim of this study was to systematically review the existing risk prediction tools for patients presenting in primary care with symptoms that may indicate lung cancer Design and setting Systematic review of primary care data. Method Medline, PreMedline, Embase, the Cochrane Library, Web of Science, and ISI Proceedings (1980 to March 2016) were searched. The final list of included studies was agreed between two of the authors, who also appraised and summarised them. Results Seven studies with between 1482 and 2 406 127 patients were included. The tools were all based on UK primary care data, but differed in complexity of development, number/type of variables examined/included, and outcome time frame. There were four multivariable tools with internal validation area under the curves between 0.88 and 0.92. The tools all had a number of limitations, and none have been externally validated, or had their clinical and cost impact examined. Conclusion There is insufficient evidence for the recommendation of any one of the available risk prediction tools. However, some multivariable tools showed promising discrimination. What is needed to guide clinical practice is both external validation of the existing tools and a comparative study, so that the best tools can be incorporated into clinical decision tools used in primary care. PMID:28483820

  19. Scattered colorimetry and multivariate data processing as an objective tool for liquid mapping (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Smith, P. R.; Cimato, A.; Attilio, C.; Huertas, R.; Melgosa Latorre, Manuel; Bertho, A. C.; O'Rourke, B.; McMillan, N. D.

    2005-05-01

    Scattered colorimetry, i.e., multi-angle and multi-wavelength absorption spectroscopy performed in the visible spectral range, was used to map three kinds of liquids: extra virgin olive oils, frying oils, and detergents in water. By multivariate processing of the spectral data, the liquids could be classified according to their intrinisic characteristics: geographic area of extra virgin olive oils, degradation of frying oils, and surfactant types and mixtures in water.

  20. Identification of pseudobulbar affect symptoms in the nursing home setting: Development and assessment of a screening tool.

    PubMed

    Allen, Carrie; Zarowitz, Barbara; O'Shea, Terrence; Peterson, Edward; Yonan, Charles; Waterman, Fanta

    Pseudobulbar Affect (PBA) is a neurologic condition characterized by involuntary outbursts of crying and/or laughing disproportionate to patient mood or social context. Although an estimated 9% of nursing home residents have symptoms suggestive of PBA, they are not routinely screened. Our goal was to develop an electronic screening tool based upon characteristics common to nursing home residents with PBA identified through medical record data. Nursing home residents with PBA treated with dextromethorphan hydrobromide/quinidine sulfate (n = 140) were compared to age-, gender-, and dementia-diagnosis-matched controls without PBA or treatment (n = 140). Comparative categories included diagnoses, medication use and symptom documentation. Using a multivariable regression and best decision rule analysis, we found PBA in nursing home residents was associated with chart documentation of uncontrollable crying, presence of a neurologic disorder (e.g., Parkinson's disease), or by the documented presence of at least 2 of the following: stroke, severe cognitive impairment, and schizophrenia. Based on these risk factors, an electronic screening tool was created. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Frequency of reporting and predictive factors for anxiety and depression in patients with advanced cancer.

    PubMed

    Salvo, N; Zeng, L; Zhang, L; Leung, M; Khan, L; Presutti, R; Nguyen, J; Holden, L; Culleton, S; Chow, E

    2012-03-01

    The prevalence of anxiety and depression in patients with advanced cancer has been reported to be on average 25% and to significantly affect patients' quality of life. Despite high prevalence rates, these disorders remain underdiagnosed and undertreated. The purpose of our study was to examine the self-report rates of anxiety and depression with the Edmonton Symptom Assessment System (ESAS) and to assess the predictive factors for these reports in cancer patients with metastatic disease. Consecutive patients who attended the Rapid Response Radiotherapy Program (RRRP) completed the ESAS as well as baseline demographic information. Ordinal logistic regression analysis was used to determine factors that significantly predicted anxiety and/or depression. Pearson χ(2) was used to test goodness-of-fit for categorical variables and established whether or not an observed frequency distribution differed from a predicted frequency distribution. A univariate analysis was conducted first and those variables with a P value<0.100 were included in a multivariate analysis. A score test was used to test the proportional odds assumption. In total, 1439 patients seen in the RRRP between January 1999 and October 2009 completed ESAS questionnaires. Fifty-five per cent of patients reported at least mild symptoms of depression and 65% reported at least mild anxiety. In the univariate analysis, patients who were female, who had a lower performance status score, or primary lung cancer were more likely to report depressed and anxious feelings. Primary prostate cancer patients were significantly less likely to report depression and anxiety. Patients referred for spinal cord compression were significantly less depressed. The multivariate models showed that younger patients were significantly more anxious than older patients and females reported more anxiety than males. Patients who reported higher feelings of nausea, tiredness, drowsiness, dyspnoea, and worse appetite and overall well-being on the ESAS tool were more likely to report feelings of depression. Patients who reported higher nausea, drowsiness, dyspnoea and worse overall well-being more often reported higher feelings of anxiety. The self-report rates of anxiety and depression were consistent with published prevalence rates. However, the explained variance based on factors included in the model remains low. Additional predictive factors should be examined in future studies in this population. The ESAS tool seems to be an efficient screening tool for anxiety and depression; however, future studies should examine its correlative properties with other known screening tools in the advanced cancer population. A prospective study should be conducted to assess the severity cut-off point in which the ESAS scores most frequently lead to a further diagnosis of an anxiety or depressive disorder in the advance cancer population. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. An analysis of the influence of production conditions on the development of the microporous structure of the activated carbon fibres using the LBET method

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław

    2017-12-01

    The paper presents the results of the research on the application of the new analytical models of multilayer adsorption on heterogeneous surfaces with the unique fast multivariant identification procedure, together called LBET method, as a tool for analysing the microporous structure of the activated carbon fibres obtained from polyacrylonitrile by chemical activation using potassium and sodium hydroxides. The novel LBET method was employed particularly to evaluate the impact of the used activator and the hydroxide to polyacrylonitrile ratio on the obtained microporous structure of the activated carbon fibres.

  3. Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes

    NASA Astrophysics Data System (ADS)

    Schultz, Christian P.; Liu, Kan-Zhi; Johnston, James B.; Mantsch, Henry H.

    1997-06-01

    Peripheral mononuclear cells obtained from blood of normal individuals and from patients with chronic lymphocytic leukemia (CLL) were investigated by infrared spectroscopy and multivariate statistical analysis. Not only are the spectra of CLL cells different from those of normal cells, but hierarchical clustering also separated the CLL cells into a number of subclusters, based on their different DNA content, a fact which may provide a useful diagnostic tool for staging (progression of the disease) and multiple clone detection. Moreover, there is evidence for a correlation between the increased amount of DNA in the CLL cells and the in-vivo doubling time of the lymphocytes in a given patient.

  4. Structure-activity relationships of pyrethroid insecticides. Part 2. The use of molecular dynamics for conformation searching and average parameter calculation

    NASA Astrophysics Data System (ADS)

    Hudson, Brian D.; George, Ashley R.; Ford, Martyn G.; Livingstone, David J.

    1992-04-01

    Molecular dynamics simulations have been performed on a number of conformationally flexible pyrethroid insecticides. The results indicate that molecular dynamics is a suitable tool for conformational searching of small molecules given suitable simulation parameters. The structures derived from the simulations are compared with the static conformation used in a previous study. Various physicochemical parameters have been calculated for a set of conformations selected from the simulations using multivariate analysis. The averaged values of the parameters over the selected set (and the factors derived from them) are compared with the single conformation values used in the previous study.

  5. Integration of community structure data reveals observable effects below sediment guideline thresholds in a large estuary.

    PubMed

    Tremblay, Louis A; Clark, Dana; Sinner, Jim; Ellis, Joanne I

    2017-09-20

    The sustainable management of estuarine and coastal ecosystems requires robust frameworks due to the presence of multiple physical and chemical stressors. In this study, we assessed whether ecological health decline, based on community structure composition changes along a pollution gradient, occurred at levels below guideline threshold values for copper, zinc and lead. Canonical analysis of principal coordinates (CAP) was used to characterise benthic communities along a metal contamination gradient. The analysis revealed changes in benthic community distribution at levels below the individual guideline values for the three metals. These results suggest that field-based measures of ecological health analysed with multivariate tools can provide additional information to single metal guideline threshold values to monitor large systems exposed to multiple stressors.

  6. Arabidopsis phenotyping through Geometric Morphometrics.

    PubMed

    Manacorda, Carlos A; Asurmendi, Sebastian

    2018-06-18

    Recently, much technical progress was achieved in the field of plant phenotyping. High-throughput platforms and the development of improved algorithms for rosette image segmentation make it now possible to extract shape and size parameters for genetic, physiological and environmental studies on a large scale. The development of low-cost phenotyping platforms and freeware resources make it possible to widely expand phenotypic analysis tools for Arabidopsis. However, objective descriptors of shape parameters that could be used independently of platform and segmentation software used are still lacking and shape descriptions still rely on ad hoc or even sometimes contradictory descriptors, which could make comparisons difficult and perhaps inaccurate. Modern geometric morphometrics is a family of methods in quantitative biology proposed to be the main source of data and analytical tools in the emerging field of phenomics studies. Based on the location of landmarks (corresponding points) over imaged specimens and by combining geometry, multivariate analysis and powerful statistical techniques, these tools offer the possibility to reproducibly and accurately account for shape variations amongst groups and measure them in shape distance units. Here, a particular scheme of landmarks placement on Arabidopsis rosette images is proposed to study shape variation in the case of viral infection processes. Shape differences between controls and infected plants are quantified throughout the infectious process and visualized. Quantitative comparisons between two unrelated ssRNA+ viruses are shown and reproducibility issues are assessed. Combined with the newest automated platforms and plant segmentation procedures, geometric morphometric tools could boost phenotypic features extraction and processing in an objective, reproducible manner.

  7. Multivariate Analysis and Machine Learning in Cerebral Palsy Research

    PubMed Central

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP. PMID:29312134

  8. Multivariate Analysis and Machine Learning in Cerebral Palsy Research.

    PubMed

    Zhang, Jing

    2017-01-01

    Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.

  9. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA is planned to be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. The requirements of the educational tool are defined with the interaction with the school organizers, and CMDA is customized to meet the requirements accordingly. The tool needs to be production quality for 30+ simultaneous users. The summer school will thus serve as a valuable testbed for the tool development, preparing CMDA to serve the Earth-science modeling and model-analysis community at the end of the project. This work was funded by the NASA Earth Science Program called Computational Modeling Algorithms and Cyberinfrastructure (CMAC).

  10. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes.

    PubMed

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  11. Salicylic acid deposition from wash-off products: comparison of in vivo and porcine deposition models.

    PubMed

    Davies, M A

    2015-10-01

    Salicylic acid (SA) is a widely used active in anti-acne face wash products. Only about 1-2% of the total dose is actually deposited on skin during washing, and more efficient deposition systems are sought. The objective of this work was to develop an improved method, including data analysis, to measure deposition of SA from wash-off formulae. Full fluorescence excitation-emission matrices (EEMs) were acquired for non-invasive measurement of deposition of SA from wash-off products. Multivariate data analysis methods - parallel factor analysis and N-way partial least-squares regression - were used to develop and compare deposition models on human volunteers and porcine skin. Although both models are useful, there are differences between them. First, the range of linear response to dosages of SA was 60 μg cm(-2) in vivo compared to 25 μg cm(-2) on porcine skin. Second, the actual shape of the SA band was different between substrates. The methods employed in this work highlight the utility of the use of EEMs, in conjunction with multivariate analysis tools such as parallel factor analysis and multiway partial least-squares calibration, in determining sources of spectral variability in skin and quantification of exogenous species deposited on skin. The human model exhibited the widest range of linearity, but porcine model is still useful up to deposition levels of 25 μg cm(-2) or used with nonlinear calibration models. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

    PubMed

    Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B

    2016-01-01

    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.

  13. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis

    PubMed Central

    Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.

    2016-01-01

    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification. PMID:27224653

  14. Emission sources estimation of size-segregated suburban aerosols measured in continental part of Balkan region using PMF5.0 multivariate receptor model

    NASA Astrophysics Data System (ADS)

    Petrovic, Srdjan; Đuričić-Milanković, Jelena; Anđelković, Ivan; Pantelić, Ana; Gambaro, Andrea; Đorđević, Dragana

    2017-04-01

    Using Low-Pressure Cascade Impactors by Dr Berner size segregated particulate matter in the size ranges: 0.27 ≤ Dp ≤ 0.53 μm, 0.53 ≤ Dp ≤ 1.06 μm, 1.06 ≤ Dp ≤ 2.09 μm, 2.09 ≤ Dp ≤ 4.11 μm, 4.11 ≤ Dp ≤ 8.11 μm and 8.11 ≤ Dp ≤ 16 μm were collected. Forty-eight-hour size segregated particulate matter samples from atmospheric aerosols in the sub-urban site of Belgrade were measured during two years (in 2012th to 2013in). ICP-MS was used to quantify next elements: Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Hg, Na, Ni, Mg, Mn, Mo, Pb, Se, Sb, Ti, Tl, V and Zn. In order to examine the number of sources and their fingerprints, EPA PMF 5.0 multivariate receptor tool was used. Error estimation methods (bootstrap, displacement, and bootstrap enhanced by displacement) in the analysis of the obtained solutions have enabled proper detection of the number and types of sources. This analysis of the results indicated the existence of four main sources that contribute to air pollution in the suburban area of Belgrade.

  15. Association of pretreatment neutrophil-lymphocyte ratio and outcome in emergency colorectal cancer care.

    PubMed

    Palin, R P; Devine, A T; Hicks, G; Burke, D

    2018-04-01

    Introduction The association between the neutrophil-lymphocyte ratio (NLR) and outcome in elective colorectal cancer surgery is well established; the relationship between NLR and the emergency colorectal cancer patient is, as yet, unexplored. This paper evaluates the predictive quality of the NLR for outcome in the emergency colorectal cancer patient. Materials and Methods A total of 187 consecutive patients who underwent emergency surgery for colorectal cancer were included in the study. NLR was calculated from the haematological tests done on admission. Receiver operating characteristic analyses were used to determine the most suitable cut-off for NLR. Outcomes were assessed by mortality at 30 and 90 days using stepwise Cox proportional hazards regression. Results An NLR cut-off of 5 was found to have the highest sensitivity and specificity. At 30 days, age and time from admission to surgery were associated with increased mortality; a high NLR was associated with an increased risk of mortality in univariate but not multivariate analysis. At 90 days, age, NLR, time from admission to surgery and nodal status were all significantly associated with increased mortality on multivariate analysis. Conclusions Pre-operative NLR is a cheap, easily performed and useful clinical tool to aid prediction of outcome in the emergency colorectal cancer patient.

  16. Noninvasive assessment of the risk of tobacco abuse in oral mucosa using fluorescence spectroscopy: a clinical approach

    NASA Astrophysics Data System (ADS)

    Nazeer, Shaiju S.; Asish, Rajashekharan; Venugopal, Chandrashekharan; Anita, Balan; Gupta, Arun Kumar; Jayasree, Ramapurath S.

    2014-05-01

    Tobacco abuse and alcoholism cause cancer, emphysema, and heart disease, which contribute to high death rates, globally. Society pays a significant cost for these habits whose first demonstration in many cases is in the oral cavity. Oral cavity disorders are highly curable if a screening procedure is available to diagnose them in the earliest stages. The aim of the study is to identify the severity of tobacco abuse, in oral cavity, as reflected by the emission from endogenous fluorophores and the chromophore hemoglobin. A group who had no tobacco habits and another with a history of tobacco abuse were included in this study. To compare the results with a pathological condition, a group of leukoplakia patients were also included. Emission from porphyrin and the spectral filtering modulation effect of hemoglobin were collected from different sites. Multivariate analysis strengthened the spectral features with a sensitivity of 60% to 100% and a specificity of 76% to 100% for the discrimination. Total hemoglobin and porphyrin levels of habitués and leukoplakia groups were comparable, indicating the alarming situation about the risk of tobacco abuse. Results prove that fluorescence spectroscopy along with multivariate analysis is an effective noninvasive tool for the early diagnosis of pathological changes due to tobacco abuse.

  17. Use of Raman microscopy and multivariate data analysis to observe the biomimetic growth of carbonated hydroxyapatite on bioactive glass.

    PubMed

    Seah, Regina K H; Garland, Marc; Loo, Joachim S C; Widjaja, Effendi

    2009-02-15

    In the present contribution, the biomimetic growth of carbonated hydroxyapatite (HA) on bioactive glass were investigated by Raman microscopy. Bioactive glass samples were immersed in simulated body fluid (SBF) buffered solution at pH 7.40 up to 17 days at 37 degrees C. Raman microscopy mapping was performed on the bioglass samples immersed in SBF solution for different periods of time. The collected data was then analyzed using the band-target entropy minimization technique to extract the observable pure component Raman spectral information. In this study, the pure component Raman spectra of the precursor amorphous calcium phosphate, transient octacalcium phosphate, and matured HA were all recovered. In addition, pure component Raman spectra of calcite, silica glass, and some organic impurities were also recovered. The resolved pure component spectra were fit to the normalized measured Raman data to provide the spatial distribution of these species on the sample surfaces. The current results show that Raman microscopy and multivariate data analysis provide a sensitive and accurate tool to characterize the surface morphology, as well as to give more specific information on the chemical species present and the phase transformation of phosphate species during the formation of HA on bioactive glass.

  18. Partial Least Squares for Discrimination in fMRI Data

    PubMed Central

    Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.

    2011-01-01

    Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352

  19. Quality assessment of pharmaceutical tablet samples using Fourier transform near infrared spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Kandpal, Lalit Mohan; Tewari, Jagdish; Gopinathan, Nishanth; Stolee, Jessica; Strong, Rick; Boulas, Pierre; Cho, Byoung-Kwan

    2017-09-01

    Determination of the content uniformity, assessed by the amount of an active pharmaceutical ingredient (API), and hardness of pharmaceutical materials is important for achieving a high-quality formulation and to ensure the intended therapeutic effects of the end-product. In this work, Fourier transform near infrared (FT-NIR) spectroscopy was used to determine the content uniformity and hardness of a pharmaceutical mini-tablet and standard tablet samples. Tablet samples were scanned using an FT-NIR instrument and tablet spectra were collected at wavelengths of 1000-2500 nm. Furthermore, multivariate analysis was applied to extract the relationship between the FT-NIR spectra and the measured parameters. The results of FT-NIR spectroscopy for API and hardness prediction were as precise as the reference high-performance liquid chromatography and mechanical hardness tests. For the prediction of mini-tablet API content, the highest coefficient of determination for the prediction (R2p) was found to be 0.99 with a standard error of prediction (SEP) of 0.72 mg. Moreover, the standard tablet hardness measurement had a R2p value of 0.91 with an SEP of 0.25 kg. These results suggest that FT-NIR spectroscopy is an alternative and accurate nondestructive measurement tool for the detection of the chemical and physical properties of pharmaceutical samples.

  20. FTIR Imaging Coupled with Multivariate Analysis for Study of Initial Diffusion of Different Solvents in Cellulose Acetate Butyrate Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindblad, M.S.; Keyes, B.; Gedvilas, L.

    Fourier transform infrared (FTIR) spectroscopic imaging was used to study the initial diffusion of different solvents in cellulose acetate butyrate (CAB) films containing different amounts of acetyl and butyryl substituents. Different solvents and solvent/non-solvent mixtures were also studied. The FTIR imaging system allowed acquisition of sequential images of the CAB films as solvent penetration proceeded without disturbing the system. The interface between the non-swollen polymer and the initial swelling front could be identified using multivariate data analysis tools. For a series of ketone solvents the initial diffusion coefficients and diffusion rates could be quantified and were found to be relatedmore » to the polar and hydrogen interaction parameters in the Hansen solubility parameters of the solvents. For the solvent/non-solvent system the initial diffusion rate decreased less than linearly with the weight-percent of non-solvent present in the solution, which probably was due to the swelling characteristic of the non-solvent. For a given solvent, increasing the butyryl content of the CAB increased the initial diffusion rate. Increasing the butyryl content from 17 wt.% butyryl to 37 wt.% butyryl produced a considerably larger increase in initial diffusion rate compared to an increase in butyryl content from 37 wt.% to 50 wt.% butyryl.« less

  1. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland.

    PubMed

    Zhang, Chaosheng

    2006-08-01

    Galway is a small but rapidly growing tourism city in western Ireland. To evaluate its environmental quality, a total of 166 surface soil samples (0-10 cm depth) were collected from parks and grasslands at the density of 1 sample per 0.25 km2 at the end of 2004. All samples were analysed using ICP-AES for the near-total concentrations of 26 chemical elements. Multivariate statistics and GIS techniques were applied to classify the elements and to identify elements influenced by human activities. Cluster analysis (CA) and principal component analysis (PCA) classified the elements into two groups: the first group predominantly derived from natural sources, the second being influenced by human activities. GIS mapping is a powerful tool in identifying the possible sources of pollutants. Relatively high concentrations of Cu, Pb and Zn were found in the city centre, old residential areas, and along major traffic routes, showing significant effects of traffic pollution. The element As is enriched in soils of the old built-up areas, which can be attributed to coal and peat combustion for home heating. Such significant spatial patterns of pollutants displayed by urban soils may imply potential health threat to residents of the contaminated areas of the city.

  2. Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)

    ERIC Educational Resources Information Center

    Steyn, H. S., Jr.; Ellis, S. M.

    2009-01-01

    When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…

  3. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  4. Untargeted Identification of Wood Type-Specific Markers in Particulate Matter from Wood Combustion.

    PubMed

    Weggler, Benedikt A; Ly-Verdu, Saray; Jennerwein, Maximilian; Sippula, Olli; Reda, Ahmed A; Orasche, Jürgen; Gröger, Thomas; Jokiniemi, Jorma; Zimmermann, Ralf

    2016-09-20

    Residential wood combustion emissions are one of the major global sources of particulate and gaseous organic pollutants. However, the detailed chemical compositions of these emissions are poorly characterized due to their highly complex molecular compositions, nonideal combustion conditions, and sample preparation steps. In this study, the particulate organic emissions from a masonry heater using three types of wood logs, namely, beech, birch, and spruce, were chemically characterized using thermal desorption in situ derivatization coupled to a GCxGC-ToF/MS system. Untargeted data analyses were performed using the comprehensive measurements. Univariate and multivariate chemometric tools, such as analysis of variance (ANOVA), principal component analysis (PCA), and ANOVA simultaneous component analysis (ASCA), were used to reduce the data to highly significant and wood type-specific features. This study reveals substances not previously considered in the literature as meaningful markers for differentiation among wood types.

  5. Analysis of spreadable cheese by Raman spectroscopy and chemometric tools.

    PubMed

    Oliveira, Kamila de Sá; Callegaro, Layce de Souza; Stephani, Rodrigo; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa

    2016-03-01

    In this work, FT-Raman spectroscopy was explored to evaluate spreadable cheese samples. A partial least squares discriminant analysis was employed to identify the spreadable cheese samples containing starch. To build the models, two types of samples were used: commercial samples and samples manufactured in local industries. The method of supervised classification PLS-DA was employed to classify the samples as adulterated or without starch. Multivariate regression was performed using the partial least squares method to quantify the starch in the spreadable cheese. The limit of detection obtained for the model was 0.34% (w/w) and the limit of quantification was 1.14% (w/w). The reliability of the models was evaluated by determining the confidence interval, which was calculated using the bootstrap re-sampling technique. The results show that the classification models can be used to complement classical analysis and as screening methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Multi-element fingerprinting as a tool in origin authentication of four east China marine species.

    PubMed

    Guo, Lipan; Gong, Like; Yu, Yanlei; Zhang, Hong

    2013-12-01

    The contents of 25 elements in 4 types of commercial marine species from the East China Sea were determined by inductively coupled plasma mass spectrometry and atomic absorption spectrometry. The elemental composition was used to differentiate marine species according to geographical origin by multivariate statistical analysis. The results showed that principal component analysis could distinguish samples from different areas and reveal the elements which played the most important role in origin diversity. The established models by partial least squares discriminant analysis (PLS-DA) and by probabilistic neural network (PNN) can both precisely predict the origin of the marine species. Further study indicated that PLS-DA and PNN were efficacious in regional discrimination. The models from these 2 statistical methods, with an accuracy of 97.92% and 100%, respectively, could both distinguish samples from different areas without the need for species differentiation. © 2013 Institute of Food Technologists®

  7. SandiaMRCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-01-05

    SandiaMCR was developed to identify pure components and their concentrations from spectral data. This software efficiently implements the multivariate calibration regression alternating least squares (MCR-ALS), principal component analysis (PCA), and singular value decomposition (SVD). Version 3.37 also includes the PARAFAC-ALS Tucker-1 (for trilinear analysis) algorithms. The alternating least squares methods can be used to determine the composition without or with incomplete prior information on the constituents and their concentrations. It allows the specification of numerous preprocessing, initialization and data selection and compression options for the efficient processing of large data sets. The software includes numerous options including the definition ofmore » equality and non-negativety constraints to realistically restrict the solution set, various normalization or weighting options based on the statistics of the data, several initialization choices and data compression. The software has been designed to provide a practicing spectroscopist the tools required to routinely analysis data in a reasonable time and without requiring expert intervention.« less

  8. Evaluation of the efficiency of continuous wavelet transform as processing and preprocessing algorithm for resolution of overlapped signals in univariate and multivariate regression analyses; an application to ternary and quaternary mixtures

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-07-01

    Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.

  9. Characterizing pigments with hyperspectral imaging variable false-color composites

    NASA Astrophysics Data System (ADS)

    Hayem-Ghez, Anita; Ravaud, Elisabeth; Boust, Clotilde; Bastian, Gilles; Menu, Michel; Brodie-Linder, Nancy

    2015-11-01

    Hyperspectral imaging has been used for pigment characterization on paintings for the last 10 years. It is a noninvasive technique, which mixes the power of spectrophotometry and that of imaging technologies. We have access to a visible and near-infrared hyperspectral camera, ranging from 400 to 1000 nm in 80-160 spectral bands. In order to treat the large amount of data that this imaging technique generates, one can use statistical tools such as principal component analysis (PCA). To conduct the characterization of pigments, researchers mostly use PCA, convex geometry algorithms and the comparison of resulting clusters to database spectra with a specific tolerance (like the Spectral Angle Mapper tool on the dedicated software ENVI). Our approach originates from false-color photography and aims at providing a simple tool to identify pigments thanks to imaging spectroscopy. It can be considered as a quick first analysis to see the principal pigments of a painting, before using a more complete multivariate statistical tool. We study pigment spectra, for each kind of hue (blue, green, red and yellow) to identify the wavelength maximizing spectral differences. The case of red pigments is most interesting because our methodology can discriminate the red pigments very well—even red lakes, which are always difficult to identify. As for the yellow and blue categories, it represents a good progress of IRFC photography for pigment discrimination. We apply our methodology to study the pigments on a painting by Eustache Le Sueur, a French painter of the seventeenth century. We compare the results to other noninvasive analysis like X-ray fluorescence and optical microscopy. Finally, we draw conclusions about the advantages and limits of the variable false-color image method using hyperspectral imaging.

  10. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution

    PubMed Central

    Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2014-01-01

    Summary Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students’ understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference. PMID:25419016

  11. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution.

    PubMed

    Dinov, Ivo D; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2013-01-01

    Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students' understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference.

  12. The association of 83 plasma proteins with CHD mortality, BMI, HDL-, and total-cholesterol in men: applying multivariate statistics to identify proteins with prognostic value and biological relevance.

    PubMed

    Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M

    2009-06-01

    In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.

  13. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.

    PubMed

    Xia, Jianguo; Wishart, David S

    2016-09-07

    MetaboAnalyst (http://www.metaboanalyst.ca) is a comprehensive Web application for metabolomic data analysis and interpretation. MetaboAnalyst handles most of the common metabolomic data types from most kinds of metabolomics platforms (MS and NMR) for most kinds of metabolomics experiments (targeted, untargeted, quantitative). In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst also supports a number of data analysis and data visualization tasks using a range of univariate, multivariate methods such as PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), heatmap clustering and machine learning methods. MetaboAnalyst also offers a variety of tools for metabolomic data interpretation including MSEA (metabolite set enrichment analysis), MetPA (metabolite pathway analysis), and biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. This unit provides an overview of the main functional modules and the general workflow of the latest version of MetaboAnalyst (MetaboAnalyst 3.0), followed by eight detailed protocols. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. Spectroscopic magnetic resonance imaging of the brain: voxel localisation and tissue segmentation in the follow up of brain tumour.

    PubMed

    Poloni, Guy; Bastianello, S; Vultaggio, Angela; Pozzi, S; Maccabelli, Gloria; Germani, Giancarlo; Chiarati, Patrizia; Pichiecchio, Anna

    2008-01-01

    The field of application of magnetic resonance spectroscopy (MRS) in biomedical research is expanding all the time and providing opportunities to investigate tissue metabolism and function. The data derived can be integrated with the information on tissue structure gained from conventional and non-conventional magnetic resonance imaging (MRI) techniques. Clinical MRS is also strongly expected to play an important role as a diagnostic tool. Essential for the future success of MRS as a clinical and research tool in biomedical sciences, both in vivo and in vitro, is the development of an accurate, biochemically relevant and physically consistent and reliable data analysis standard. Stable and well established analysis algorithms, in both the time and the frequency domain, are already available, as is free commercial software for implementing them. In this study, we propose an automatic algorithm that takes into account anatomical localisation, relative concentrations of white matter, grey matter, cerebrospinal fluid and signal abnormalities and inter-scan patient movement. The endpoint is the collection of a series of covariates that could be implemented in a multivariate analysis of covariance (MANCOVA) of the MRS data, as a tool for dealing with differences that may be ascribed to the anatomical variability of the subjects, to inaccuracies in the localisation of the voxel or slab, or to movement, rather than to the pathology under investigation. The aim was to develop an analysis procedure that can be consistently and reliably applied in the follow up of brain tumour. In this study, we demonstrate that the inclusion of such variables in the data analysis of quantitative MRS is fundamentally important (especially in view of the reduced accuracy typical of MRS measures compared to other MRI techniques), reducing the occurrence of false positives.

  15. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory.

    PubMed

    Zhu, Guangxu; Guo, Qingjun; Xiao, Huayun; Chen, Tongbin; Yang, Jun

    2017-06-01

    Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.

  16. Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods.

    PubMed

    Dong, Jian-Jun; Li, Qing-Liang; Yin, Hua; Zhong, Cheng; Hao, Jun-Guang; Yang, Pan-Fei; Tian, Yu-Hong; Jia, Shi-Ru

    2014-10-15

    Sensory evaluation is regarded as a necessary procedure to ensure a reproducible quality of beer. Meanwhile, high-throughput analytical methods provide a powerful tool to analyse various flavour compounds, such as higher alcohol and ester. In this study, the relationship between flavour compounds and sensory evaluation was established by non-linear models such as partial least squares (PLS), genetic algorithm back-propagation neural network (GA-BP), support vector machine (SVM). It was shown that SVM with a Radial Basis Function (RBF) had a better performance of prediction accuracy for both calibration set (94.3%) and validation set (96.2%) than other models. Relatively lower prediction abilities were observed for GA-BP (52.1%) and PLS (31.7%). In addition, the kernel function of SVM played an essential role of model training when the prediction accuracy of SVM with polynomial kernel function was 32.9%. As a powerful multivariate statistics method, SVM holds great potential to assess beer quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Multivariate cross-classification: applying machine learning techniques to characterize abstraction in neural representations

    PubMed Central

    Kaplan, Jonas T.; Man, Kingson; Greening, Steven G.

    2015-01-01

    Here we highlight an emerging trend in the use of machine learning classifiers to test for abstraction across patterns of neural activity. When a classifier algorithm is trained on data from one cognitive context, and tested on data from another, conclusions can be drawn about the role of a given brain region in representing information that abstracts across those cognitive contexts. We call this kind of analysis Multivariate Cross-Classification (MVCC), and review several domains where it has recently made an impact. MVCC has been important in establishing correspondences among neural patterns across cognitive domains, including motor-perception matching and cross-sensory matching. It has been used to test for similarity between neural patterns evoked by perception and those generated from memory. Other work has used MVCC to investigate the similarity of representations for semantic categories across different kinds of stimulus presentation, and in the presence of different cognitive demands. We use these examples to demonstrate the power of MVCC as a tool for investigating neural abstraction and discuss some important methodological issues related to its application. PMID:25859202

  18. Assessing the impacts of socio-economic and hydrological factors on urban water demand: A multivariate statistical approach

    NASA Astrophysics Data System (ADS)

    Panagopoulos, George P.

    2014-10-01

    The multivariate statistical techniques conducted on quarterly water consumption data in Mytilene reveal valuable tools that could help the local authorities in assigning strategies aimed at the sustainable development of urban water resources. The proposed methodology is an innovative approach, applied for the first time in the international literature, to handling urban water consumption data in order to analyze statistically the interrelationships among the determinants of urban water use. Factor analysis of demographic, socio-economic and hydrological variables shows that total water consumption in Mytilene is the combined result of increases in (a) income, (b) population, (c) connections and (d) climate parameters. On the other hand, the per connection water demand is influenced by variations in water prices but with different consequences in each consumption class. Increases in water prices are faced by large consumers; they then reduce their consumption rates and transfer to lower consumption blocks. These shifts are responsible for the increase in the average consumption values in the lower blocks despite the increase in the marginal prices.

  19. Multiple expression patterns of biopathological markers in primary invasive breast carcinoma: a useful tool for elucidating its biological behaviour.

    PubMed

    Ceccarelli, C; Santini, D; Chieco, P; Taffurelli, M; Marrano, D; Mancini, A M

    1995-03-01

    Commonly used clinical and morphologic criteria have been reported to be of limited value in predicting the outcome of malignant tumours of the breast. Integrated information from the quantitative analysis in tumour tissue of biological parameters such as oestrogen and progesterone receptors (ER and PGR), proliferative activity, and proto-oncogene p53, c-erB2, and bcl-2 expression, may be useful for defining the biology of growth of breast carcinoma and to plan effective therapeutic strategies. Immunohistochemistry with antibodies recognizing ER, PGR, Ki-67, and the p53, c-erbB2, and bcl-2 encoded proteins was performed on 291 primary breast carcinomas. Results were integrated with clinico-pathological indicators and examined with multivariate statistical procedures and modeling. P53, c-erbB2, and bcl-2 gene products were detected, respectively, in 30.6%, 31.6%, and 85.9% of the examined invasive breast carcinomas, revealing variable associations with cellular differentiation and proliferation as defined by ER/PGR status, Ki-67, tumour mass and histologic and nuclear grading. A multivariate graphical display on a subset of the most informative cases revealed that bcl-2 expression parallels ER/PGR status and is of importance in separating tumour clusters with different degrees of aggressiveness. The results of this study indicate that multivariate explorative analyses conducted on biological and clinico-pathological parameters might constitute an integrated approach to data analysis useful for distinguishing different biological behaviours and therapeutic groups in breast carcinoma. Our findings also suggest that bcl-2 expression may play a pivotal role in tumours lacking ER-mediated growth regulation.

  20. Quantification of proportions of different water sources in a mining operation.

    PubMed

    Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric

    2018-04-01

    The water drained in mining operations (galleries, shafts, open pits) usually comes from different sources. Evaluating the contribution of these sources is very often necessary for water management. To determine mixing ratios, a conventional mass balance is often used. However, the presence of more than two sources creates uncertainties in mass balance applications. Moreover, the composition of the end-members is not commonly known with certainty and/or can vary in space and time. In this paper, we propose a powerful tool for solving such problems and managing groundwater in mining sites based on multivariate statistical analysis. This approach was applied to the Cobre Las Cruces mining complex, the largest copper mine in Europe. There, the open pit water is a mixture of three end-members: runoff (RO), basal Miocene (Mb) and Paleozoic (PZ) groundwater. The volume of water drained from the Miocene base aquifer must be determined and compensated via artificial recharging to comply with current regulations. Through multivariate statistical analysis of samples from a regional field campaign, the compositions of PZ and Mb end-members were firstly estimated, and then used for mixing calculations at the open pit scale. The runoff end-member was directly determined from samples collected in interception trenches inside the open pit. The application of multivariate statistical methods allowed the estimation of mixing ratios for the hydrological years 2014-2015 and 2015-2016. Open pit water proportions have changed from 15% to 7%, 41% to 36%, and 44% to 57% for runoff, Mb and PZ end-members, respectively. An independent estimation of runoff based on the curve method yielded comparable results. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Use of chemometrics to compare NIR and HPLC for the simultaneous determination of drug levels in fixed-dose combination tablets employed in tuberculosis treatment.

    PubMed

    Teixeira, Kelly Sivocy Sampaio; da Cruz Fonseca, Said Gonçalves; de Moura, Luís Carlos Brigido; de Moura, Mario Luís Ribeiro; Borges, Márcia Herminia Pinheiro; Barbosa, Euzébio Guimaraes; De Lima E Moura, Túlio Flávio Accioly

    2018-02-05

    The World Health Organization recommends that TB treatment be administered using combination therapy. The methodologies for quantifying simultaneously associated drugs are highly complex, being costly, extremely time consuming and producing chemical residues harmful to the environment. The need to seek alternative techniques that minimize these drawbacks is widely discussed in the pharmaceutical industry. Therefore, the objective of this study was to develop and validate a multivariate calibration model in association with the near infrared spectroscopy technique (NIR) for the simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol. These models allow the quality control of these medicines to be optimized using simple, fast, low-cost techniques that produce no chemical waste. In the NIR - PLS method, spectra readings were acquired in the 10,000-4000cm -1 range using an infrared spectrophotometer (IRPrestige - 21 - Shimadzu) with a resolution of 4cm -1 , 20 sweeps, under controlled temperature and humidity. For construction of the model, the central composite experimental design was employed on the program Statistica 13 (StatSoft Inc.). All spectra were treated by computational tools for multivariate analysis using partial least squares regression (PLS) on the software program Pirouette 3.11 (Infometrix, Inc.). Variable selections were performed by the QSAR modeling program. The models developed by NIR in association with multivariate analysis provided good prediction of the APIs for the external samples and were therefore validated. For the tablets, however, the slightly different quantitative compositions of excipients compared to the mixtures prepared for building the models led to results that were not statistically similar, despite having prediction errors considered acceptable in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    PubMed

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  3. Multivariate Feature Selection of Image Descriptors Data for Breast Cancer with Computer-Assisted Diagnosis

    PubMed Central

    Galván-Tejada, Carlos E.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L.

    2017-01-01

    Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions. PMID:28216571

  4. Multivariate Feature Selection of Image Descriptors Data for Breast Cancer with Computer-Assisted Diagnosis.

    PubMed

    Galván-Tejada, Carlos E; Zanella-Calzada, Laura A; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L

    2017-02-14

    Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions.

  5. MatSeis and the GNEM R&E regional seismic anaylsis tools.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Eric Paul; Hart, Darren M.; Young, Christopher John

    2003-08-01

    To improve the nuclear event monitoring capability of the U.S., the NNSA Ground-based Nuclear Explosion Monitoring Research & Engineering (GNEM R&E) program has been developing a collection of products known as the Knowledge Base (KB). Though much of the focus for the KB has been on the development of calibration data, we have also developed numerous software tools for various purposes. The Matlab-based MatSeis package and the associated suite of regional seismic analysis tools were developed to aid in the testing and evaluation of some Knowledge Base products for which existing applications were either not available or ill-suited. This presentationmore » will provide brief overviews of MatSeis and each of the tools, emphasizing features added in the last year. MatSeis was begun in 1996 and is now a fairly mature product. It is a highly flexible seismic analysis package that provides interfaces to read data from either flatfiles or an Oracle database. All of the standard seismic analysis tasks are supported (e.g. filtering, 3 component rotation, phase picking, event location, magnitude calculation), as well as a variety of array processing algorithms (beaming, FK, coherency analysis, vespagrams). The simplicity of Matlab coding and the tremendous number of available functions make MatSeis/Matlab an ideal environment for developing new monitoring research tools (see the regional seismic analysis tools below). New MatSeis features include: addition of evid information to events in MatSeis, options to screen picks by author, input and output of origerr information, improved performance in reading flatfiles, improved speed in FK calculations, and significant improvements to Measure Tool (filtering, multiple phase display), Free Plot (filtering, phase display and alignment), Mag Tool (maximum likelihood options), and Infra Tool (improved calculation speed, display of an F statistic stream). Work on the regional seismic analysis tools (CodaMag, EventID, PhaseMatch, and Dendro) began in 1999 and the tools vary in their level of maturity. All rely on MatSeis to provide necessary data (waveforms, arrivals, origins, and travel time curves). CodaMag Tool implements magnitude calculation by scaling to fit the envelope shape of the coda for a selected phase type (Mayeda, 1993; Mayeda and Walter, 1996). New tool features include: calculation of a yield estimate based on the source spectrum, display of a filtered version of the seismogram based on the selected band, and the output of codamag data records for processed events. EventID Tool implements event discrimination using phase ratios of regional arrivals (Hartse et al., 1997; Walter et al., 1999). New features include: bandpass filtering of displayed waveforms, screening of reference events based on SNR, multivariate discriminants, use of libcgi to access correction surfaces, and the output of discrim{_}data records for processed events. PhaseMatch Tool implements match filtering to isolate surface waves (Herrin and Goforth, 1977). New features include: display of the signal's observed dispersion and an option to use a station-based dispersion surface. Dendro Tool implements agglomerative hierarchical clustering using dendrograms to identify similar events based on waveform correlation (Everitt, 1993). New features include: modifications to include arrival information within the tool, and the capability to automatically add/re-pick arrivals based on the picked arrivals for similar events.« less

  6. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis.

    PubMed

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-07-01

    A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis

    PubMed Central

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-01-01

    Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689

  8. Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students

    ERIC Educational Resources Information Center

    Valero-Mora, Pedro M.; Ledesma, Ruben D.

    2011-01-01

    This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…

  9. A tool for classifying individuals with chronic back pain: using multivariate pattern analysis with functional magnetic resonance imaging data.

    PubMed

    Callan, Daniel; Mills, Lloyd; Nott, Connie; England, Robert; England, Shaun

    2014-01-01

    Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups.

  10. A Tool for Classifying Individuals with Chronic Back Pain: Using Multivariate Pattern Analysis with Functional Magnetic Resonance Imaging Data

    PubMed Central

    Callan, Daniel; Mills, Lloyd; Nott, Connie; England, Robert; England, Shaun

    2014-01-01

    Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups. PMID:24905072

  11. Improving the sampling strategy of the Joint Danube Survey 3 (2013) by means of multivariate statistical techniques applied on selected physico-chemical and biological data.

    PubMed

    Hamchevici, Carmen; Udrea, Ion

    2013-11-01

    The concept of basin-wide Joint Danube Survey (JDS) was launched by the International Commission for the Protection of the Danube River (ICPDR) as a tool for investigative monitoring under the Water Framework Directive (WFD), with a frequency of 6 years. The first JDS was carried out in 2001 and its success in providing key information for characterisation of the Danube River Basin District as required by WFD lead to the organisation of the second JDS in 2007, which was the world's biggest river research expedition in that year. The present paper presents an approach for improving the survey strategy for the next planned survey JDS3 (2013) by means of several multivariate statistical techniques. In order to design the optimum structure in terms of parameters and sampling sites, principal component analysis (PCA), factor analysis (FA) and cluster analysis were applied on JDS2 data for 13 selected physico-chemical and one biological element measured in 78 sampling sites located on the main course of the Danube. Results from PCA/FA showed that most of the dataset variance (above 75%) was explained by five varifactors loaded with 8 out of 14 variables: physical (transparency and total suspended solids), relevant nutrients (N-nitrates and P-orthophosphates), feedback effects of primary production (pH, alkalinity and dissolved oxygen) and algal biomass. Taking into account the representation of the factor scores given by FA versus sampling sites and the major groups generated by the clustering procedure, the spatial network of the next survey could be carefully tailored, leading to a decreasing of sampling sites by more than 30%. The approach of target oriented sampling strategy based on the selected multivariate statistics can provide a strong reduction in dimensionality of the original data and corresponding costs as well, without any loss of information.

  12. Chemometrics Methods for Specificity, Authenticity and Traceability Analysis of Olive Oils: Principles, Classifications and Applications

    PubMed Central

    Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil

    2016-01-01

    Background. Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends’ preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. Methods. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. Results. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Conclusion. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors. PMID:28231172

  13. Model diagnostics in reduced-rank estimation

    PubMed Central

    Chen, Kun

    2016-01-01

    Reduced-rank methods are very popular in high-dimensional multivariate analysis for conducting simultaneous dimension reduction and model estimation. However, the commonly-used reduced-rank methods are not robust, as the underlying reduced-rank structure can be easily distorted by only a few data outliers. Anomalies are bound to exist in big data problems, and in some applications they themselves could be of the primary interest. While naive residual analysis is often inadequate for outlier detection due to potential masking and swamping, robust reduced-rank estimation approaches could be computationally demanding. Under Stein's unbiased risk estimation framework, we propose a set of tools, including leverage score and generalized information score, to perform model diagnostics and outlier detection in large-scale reduced-rank estimation. The leverage scores give an exact decomposition of the so-called model degrees of freedom to the observation level, which lead to exact decomposition of many commonly-used information criteria; the resulting quantities are thus named information scores of the observations. The proposed information score approach provides a principled way of combining the residuals and leverage scores for anomaly detection. Simulation studies confirm that the proposed diagnostic tools work well. A pattern recognition example with hand-writing digital images and a time series analysis example with monthly U.S. macroeconomic data further demonstrate the efficacy of the proposed approaches. PMID:28003860

  14. Review-of-systems questionnaire as a predictive tool for psychogenic nonepileptic seizures.

    PubMed

    Robles, Liliana; Chiang, Sharon; Haneef, Zulfi

    2015-04-01

    Patients with refractory epilepsy undergo video-electroencephalography for seizure characterization, among whom approximately 10-30% will be discharged with the diagnosis of psychogenic nonepileptic seizures (PNESs). Clinical PNES predictors have been described but in general are not sensitive or specific. We evaluated whether multiple complaints in a routine review-of-system (ROS) questionnaire could serve as a sensitive and specific marker of PNESs. We performed a retrospective analysis of a standardized ROS questionnaire completed by patients with definite PNESs and epileptic seizures (ESs) diagnosed in our adult epilepsy monitoring unit. A multivariate analysis of covariance (MANCOVA) was used to determine whether groups with PNES and ES differed with respect to the percentage of complaints in the ROS questionnaire. Tenfold cross-validation was used to evaluate the predictive error of a logistic regression classifier for PNES status based on the percentage of positive complaints in the ROS questionnaire. A total of 44 patients were included for analysis. Patients with PNESs had a significantly higher number of complaints in the ROS questionnaire compared to patients with epilepsy. A threshold of 17% positive complaints achieved a 78% specificity and 85% sensitivity for discriminating between PNESs and ESs. We conclude that the routine ROS questionnaire may be a sensitive and specific predictive tool for discriminating between PNESs and ESs. Published by Elsevier Inc.

  15. Model diagnostics in reduced-rank estimation.

    PubMed

    Chen, Kun

    2016-01-01

    Reduced-rank methods are very popular in high-dimensional multivariate analysis for conducting simultaneous dimension reduction and model estimation. However, the commonly-used reduced-rank methods are not robust, as the underlying reduced-rank structure can be easily distorted by only a few data outliers. Anomalies are bound to exist in big data problems, and in some applications they themselves could be of the primary interest. While naive residual analysis is often inadequate for outlier detection due to potential masking and swamping, robust reduced-rank estimation approaches could be computationally demanding. Under Stein's unbiased risk estimation framework, we propose a set of tools, including leverage score and generalized information score, to perform model diagnostics and outlier detection in large-scale reduced-rank estimation. The leverage scores give an exact decomposition of the so-called model degrees of freedom to the observation level, which lead to exact decomposition of many commonly-used information criteria; the resulting quantities are thus named information scores of the observations. The proposed information score approach provides a principled way of combining the residuals and leverage scores for anomaly detection. Simulation studies confirm that the proposed diagnostic tools work well. A pattern recognition example with hand-writing digital images and a time series analysis example with monthly U.S. macroeconomic data further demonstrate the efficacy of the proposed approaches.

  16. The Representation of Object-Directed Action and Function Knowledge in the Human Brain.

    PubMed

    Chen, Quanjing; Garcea, Frank E; Mahon, Bradford Z

    2016-04-01

    The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. A combination of HPLC and automated data analysis for monitoring the efficiency of high-pressure homogenization.

    PubMed

    Eggenreich, Britta; Rajamanickam, Vignesh; Wurm, David Johannes; Fricke, Jens; Herwig, Christoph; Spadiut, Oliver

    2017-08-01

    Cell disruption is a key unit operation to make valuable, intracellular target products accessible for further downstream unit operations. Independent of the applied cell disruption method, each cell disruption process must be evaluated with respect to disruption efficiency and potential product loss. Current state-of-the-art methods, like measuring the total amount of released protein and plating-out assays, are usually time-delayed and involve manual intervention making them error-prone. An automated method to monitor cell disruption efficiency at-line is not available to date. In the current study we implemented a methodology, which we had originally developed to monitor E. coli cell integrity during bioreactor cultivations, to automatically monitor and evaluate cell disruption of a recombinant E. coli strain by high-pressure homogenization. We compared our tool with a library of state-of-the-art methods, analyzed the effect of freezing the biomass before high-pressure homogenization and finally investigated this unit operation in more detail by a multivariate approach. A combination of HPLC and automated data analysis describes a valuable, novel tool to monitor and evaluate cell disruption processes. Our methodology, which can be used both in upstream (USP) and downstream processing (DSP), describes a valuable tool to evaluate cell disruption processes as it can be implemented at-line, gives results within minutes after sampling and does not need manual intervention.

  18. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  19. A case definition and photographic screening tool for the facial phenotype of fetal alcohol syndrome.

    PubMed

    Astley, S J; Clarren, S K

    1996-07-01

    The purpose of this study was to demonstrate that a quantitative, multivariate case definition of the fetal alcohol syndrome (FAS) facial phenotype could be derived from photographs of individuals with FAS and to demonstrate how this case definition and photographic approach could be used to develop efficient, accurate, and precise screening tools, diagnostic aids, and possibly surveillance tools. Frontal facial photographs of 42 subjects (from birth to 27 years of age) with FAS were matched to 84 subjects without FAS. The study population was randomly divided in half. Group 1 was used to identify the facial features that best differentiated individuals with and without FAS. Group 2 was used for cross validation. In group 1, stepwise discriminant analysis identified three facial features (reduced palpebral fissure length/inner canthal distance ratio, smooth philtrum, and thin upper lip) as the cluster of features that differentiated individuals with and without FAS in groups 1 and 2 with 100% accuracy. Sensitivity and specificity were unaffected by race, gender, and age. The phenotypic case definition derived from photographs accurately distinguished between individuals with and without FAS, demonstrating the potential of this approach for developing screening, diagnostic, and surveillance tools. Further evaluation of the validity and generalizability of this method will be needed.

  20. Cultural transmission of tool use by Indo-Pacific bottlenose dolphins (Tursiops sp.) provides access to a novel foraging niche

    PubMed Central

    Krützen, Michael; Kreicker, Sina; MacLeod, Colin D.; Learmonth, Jennifer; Kopps, Anna M.; Walsham, Pamela; Allen, Simon J.

    2014-01-01

    Culturally transmitted tool use has important ecological and evolutionary consequences and has been proposed as a significant driver of human evolution. Such evidence is still scarce in other animals. In cetaceans, tool use has been inferred using indirect evidence in one population of Indo-Pacific bottlenose dolphins (Tursiops sp.), where particular dolphins (‘spongers’) use marine sponges during foraging. To date, evidence of whether this foraging tactic actually provides access to novel food items is lacking. We used fatty acid (FA) signature analysis to identify dietary differences between spongers and non-spongers, analysing data from 11 spongers and 27 non-spongers from two different study sites. Both univariate and multivariate analyses revealed significant differences in FA profiles between spongers and non-spongers between and within study sites. Moreover, FA profiles differed significantly between spongers and non-spongers foraging within the same deep channel habitat, whereas the profiles of non-spongers from deep channel and shallow habitats at this site could not be distinguished. Our results indicate that sponge use by bottlenose dolphins is linked to significant differences in diet. It appears that cultural transmission of tool use in dolphins, as in humans, allows the exploitation of an otherwise unused niche. PMID:24759862

  1. Cultural transmission of tool use by Indo-Pacific bottlenose dolphins (Tursiops sp.) provides access to a novel foraging niche.

    PubMed

    Krützen, Michael; Kreicker, Sina; MacLeod, Colin D; Learmonth, Jennifer; Kopps, Anna M; Walsham, Pamela; Allen, Simon J

    2014-06-07

    Culturally transmitted tool use has important ecological and evolutionary consequences and has been proposed as a significant driver of human evolution. Such evidence is still scarce in other animals. In cetaceans, tool use has been inferred using indirect evidence in one population of Indo-Pacific bottlenose dolphins (Tursiops sp.), where particular dolphins ('spongers') use marine sponges during foraging. To date, evidence of whether this foraging tactic actually provides access to novel food items is lacking. We used fatty acid (FA) signature analysis to identify dietary differences between spongers and non-spongers, analysing data from 11 spongers and 27 non-spongers from two different study sites. Both univariate and multivariate analyses revealed significant differences in FA profiles between spongers and non-spongers between and within study sites. Moreover, FA profiles differed significantly between spongers and non-spongers foraging within the same deep channel habitat, whereas the profiles of non-spongers from deep channel and shallow habitats at this site could not be distinguished. Our results indicate that sponge use by bottlenose dolphins is linked to significant differences in diet. It appears that cultural transmission of tool use in dolphins, as in humans, allows the exploitation of an otherwise unused niche.

  2. The Potential of Multivariate Analysis in Assessing Students' Attitude to Curriculum Subjects

    ERIC Educational Resources Information Center

    Gaotlhobogwe, Michael; Laugharne, Janet; Durance, Isabelle

    2011-01-01

    Background: Understanding student attitudes to curriculum subjects is central to providing evidence-based options to policy makers in education. Purpose: We illustrate how quantitative approaches used in the social sciences and based on multivariate analysis (categorical Principal Components Analysis, Clustering Analysis and General Linear…

  3. Multivariate analyses of peripheral blood leukocyte transcripts distinguish Alzheimer's, Parkinson's, control, and those at risk for developing Alzheimer's.

    PubMed

    Delvaux, Elaine; Mastroeni, Diego; Nolz, Jennifer; Chow, Nienwen; Sabbagh, Marwan; Caselli, Richard J; Reiman, Eric M; Marshall, Frederick J; Coleman, Paul D

    2017-10-01

    The need for a reliable, simple, and inexpensive blood test for Alzheimer's disease (AD) suitable for use in a primary care setting is widely recognized. This has led to a large number of publications describing blood tests for AD, which have, for the most part, not been replicable. We have chosen to examine transcripts expressed by the cellular, leukocyte compartment of blood. We have used hypothesis-based cDNA arrays and quantitative PCR to quantify the expression of selected sets of genes followed by multivariate analyses in multiple independent samples. Rather than a single study with no replicates, we chose an experimental design in which there were multiple replicates using different platforms and different sample populations. We have divided 177 blood samples and 27 brain samples into multiple replicates to demonstrate the ability to distinguish early clinical AD (Clinical Dementia Rating scale 0.5), Parkinson's disease (PD), and cognitively unimpaired APOE4 homozygotes, as well as to determine persons at risk for future cognitive impairment with significant accuracy. We assess our methods in a training/test set and also show that the variables we use distinguish AD, PD, and control brain. Importantly, we describe the variability of the weights assigned to individual transcripts in multivariate analyses in repeated studies and suggest that the variability we describe may be the cause of inability to repeat many earlier studies. Our data constitute a proof of principle that multivariate analysis of the transcriptome related to cell stress and inflammation of peripheral blood leukocytes has significant potential as a minimally invasive and inexpensive diagnostic tool for diagnosis and early detection of risk for AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Two-sample tests and one-way MANOVA for multivariate biomarker data with nondetects.

    PubMed

    Thulin, M

    2016-09-10

    Testing whether the mean vector of a multivariate set of biomarkers differs between several populations is an increasingly common problem in medical research. Biomarker data is often left censored because some measurements fall below the laboratory's detection limit. We investigate how such censoring affects multivariate two-sample and one-way multivariate analysis of variance tests. Type I error rates, power and robustness to increasing censoring are studied, under both normality and non-normality. Parametric tests are found to perform better than non-parametric alternatives, indicating that the current recommendations for analysis of censored multivariate data may have to be revised. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A non-iterative extension of the multivariate random effects meta-analysis.

    PubMed

    Makambi, Kepher H; Seung, Hyunuk

    2015-01-01

    Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.

  6. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  7. A refined method for multivariate meta-analysis and meta-regression.

    PubMed

    Jackson, Daniel; Riley, Richard D

    2014-02-20

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.

  8. The FIB-4 score predicts postoperative short-term outcomes of hepatocellular carcinoma fulfilling the milan criteria.

    PubMed

    Dong, J; Xu, X-h; Ke, M-y; Xiang, J-x; Liu, W-y; Liu, X-m; Wang, B; Zhang, X-f; Lv, Y

    2016-05-01

    The fibrosis score 4 (FIB-4) score is a useful tool to determine the degree of hepatic fibrosis. Liver fibrosis and cirrhosis are well-known predictors of postoperative complications after hepatectomy. This study examined the impact of FIB-4 on postoperative short-term outcomes of patients with hepatocellular carcinoma (HCC). Three hundred and fifty patients undergoing hepatectomy for HCC between 2008 and 2013 were enrolled. The receiver operating characteristic (ROC) curve analysis was performed to determine the cutoff value of the FIB-4. Univariate and multivariate analysis was performed to identify the risk factors. The correlation of the preoperative FIB-4 value with clinicopathological parameters was examined. Postoperative complications were observed in 202 (57.7%) patients. The optimal cutoff value of the FIB-4 was set at 2.88 and 3.85 for postoperative complications and intraoperative blood loss respectively. It was also an independent prognostic factor for postoperative complications (hazard ratio [HR], 1.202; 95% CI, 1.076-1.344; P = 0.001) and intraoperative blood loss (HR, 1.196; 95% CI, 1.091-1.343; P < 0.001) by multivariate analysis. The FIB-4 was significantly correlated with age, liver function, coagulation function, blood loss, intraoperative blood transfusion (all P < 0.05). Preoperative FIB-4 is a useful index to predict postoperative outcomes in patients with HCC. The FIB-4 should be assessed routinely for hepatocellular carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Resolving Identification Issues of Saraca asoca from Its Adulterant and Commercial Samples Using Phytochemical Markers

    PubMed Central

    Hegde, Satisha; Hegde, Harsha Vasudev; Jalalpure, Sunil Satyappa; Peram, Malleswara Rao; Pai, Sandeep Ramachandra; Roy, Subarna

    2017-01-01

    Saraca asoca (Roxb.) De Wilde (Ashoka) is a highly valued endangered medicinal tree species from Western Ghats of India. Besides treating cardiac and circulatory problems, S. asoca provides immense relief in gynecological disorders. Higher price and demand, in contrast to the smaller population size of the plant, have motivated adulteration with other plants such as Polyalthia longifolia (Sonnerat) Thwaites. The fundamental concerns in quality control of S. asoca arise due to its part of medicinal value (Bark) and the chemical composition. Phytochemical fingerprinting with proper selection of analytical markers is a promising method in addressing quality control issues. In the present study, high-performance liquid chromatography of phenolic compounds (gallic acid, catechin, and epicatechin) coupled to multivariate analysis was used. Five samples each of S. asoca, P. longifolia from two localities alongside five commercial market samples showed evidence of adulteration. Subsequently, multivariate hierarchical cluster analysis and principal component analysis was established to discriminate the adulterants of S. asoca. The proposed method ascertains identification of S. asoca from its putative adulterant P. longifolia and commercial market samples. The data generated may also serve as baseline data to form a quality standard for pharmacopoeias. SUMMARY Simultaneous quantification of gallic acid, catechin, epicatechin from Saraca asoca by high-performance liquid chromatographyDetection of S. asoca from adulterant and commercial samplesUse of analytical method along with a statistical tool for addressing quality issues. Abbreviations used: HPLC: High Performance Liquid Chromatography; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; CAT: Catechin; EPI: Epicatechin; GA: Gallic acid; PCA: Principal Component Analysis. PMID:28808391

  10. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  11. Staging research of human lung cancer tissues by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1 H NMR) and multivariate data analysis.

    PubMed

    Chen, Wenxue; Lu, Shaohua; Wang, Guifang; Chen, Fener; Bai, Chunxue

    2017-10-01

    High-resolution magic-angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy technique was employed to analyze the metabonomic characterizations of lung cancer tissues in hope to identify potential diagnostic biomarkers for malignancy detection and staging research of lung tissues. HRMAS 1 H NMR spectroscopy technique can rapidly provide important information for accurate diagnosis and staging of cancer tissues owing to its noninvasive nature and limited requirement for the samples, and thus has been acknowledged as an excellent tool to investigate tissue metabolism and provide a more realistic insight into the metabonomics of tissues when combined with multivariate data analysis (MVDA) such as component analysis and orthogonal partial least squares-discriminant analysis in particular. HRMAS 1 H NMR spectra displayed the metabonomic differences of 32 lung cancer tissues at the different stages from 32 patients. The significant changes (P < 0.05) of some important metabolites such as lipids, aspartate and choline-containing compounds in cancer tissues at the different stages had been identified. Furthermore, the combination of HRMAS 1 H NMR spectroscopy and MVDA might potentially and precisely provided for a high sensitivity, specificity, prediction accuracy in the positive identification of the staging for the cancer tissues in contrast with the pathological data in clinic. This study highlighted the potential of metabonomics in clinical settings so that the techniques might be further exploited for the diagnosis and staging prediction of lung cancer in future. © 2016 John Wiley & Sons Australia, Ltd.

  12. Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis.

    PubMed

    Clark, David J; Fondrie, William E; Liao, Zhongping; Hanson, Phyllis I; Fulton, Amy; Mao, Li; Yang, Austin J

    2015-10-20

    Exosomes are microvesicles of endocytic origin constitutively released by multiple cell types into the extracellular environment. With evidence that exosomes can be detected in the blood of patients with various malignancies, the development of a platform that uses exosomes as a diagnostic tool has been proposed. However, it has been difficult to truly define the exosome proteome due to the challenge of discerning contaminant proteins that may be identified via mass spectrometry using various exosome enrichment strategies. To better define the exosome proteome in breast cancer, we incorporated a combination of Tandem-Mass-Tag (TMT) quantitative proteomics approach and Support Vector Machine (SVM) cluster analysis of three conditioned media derived fractions corresponding to a 10 000g cellular debris pellet, a 100 000g crude exosome pellet, and an Optiprep enriched exosome pellet. The quantitative analysis identified 2 179 proteins in all three fractions, with known exosomal cargo proteins displaying at least a 2-fold enrichment in the exosome fraction based on the TMT protein ratios. Employing SVM cluster analysis allowed for the classification 251 proteins as "true" exosomal cargo proteins. This study provides a robust and vigorous framework for the future development of using exosomes as a potential multiprotein marker phenotyping tool that could be useful in breast cancer diagnosis and monitoring disease progression.

  13. Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data.

    PubMed

    Husen, Peter; Tarasov, Kirill; Katafiasz, Maciej; Sokol, Elena; Vogt, Johannes; Baumgart, Jan; Nitsch, Robert; Ekroos, Kim; Ejsing, Christer S

    2013-01-01

    Global lipidomics analysis across large sample sizes produces high-content datasets that require dedicated software tools supporting lipid identification and quantification, efficient data management and lipidome visualization. Here we present a novel software-based platform for streamlined data processing, management and visualization of shotgun lipidomics data acquired using high-resolution Orbitrap mass spectrometry. The platform features the ALEX framework designed for automated identification and export of lipid species intensity directly from proprietary mass spectral data files, and an auxiliary workflow using database exploration tools for integration of sample information, computation of lipid abundance and lipidome visualization. A key feature of the platform is the organization of lipidomics data in "database table format" which provides the user with an unsurpassed flexibility for rapid lipidome navigation using selected features within the dataset. To demonstrate the efficacy of the platform, we present a comparative neurolipidomics study of cerebellum, hippocampus and somatosensory barrel cortex (S1BF) from wild-type and knockout mice devoid of the putative lipid phosphate phosphatase PRG-1 (plasticity related gene-1). The presented framework is generic, extendable to processing and integration of other lipidomic data structures, can be interfaced with post-processing protocols supporting statistical testing and multivariate analysis, and can serve as an avenue for disseminating lipidomics data within the scientific community. The ALEX software is available at www.msLipidomics.info.

  14. Interpreting Popov criteria in Lure´ systems with complex scaling stability analysis

    NASA Astrophysics Data System (ADS)

    Zhou, J.

    2018-06-01

    The paper presents a novel frequency-domain interpretation of Popov criteria for absolute stability in Lure´ systems by means of what we call complex scaling stability analysis. The complex scaling technique is developed for exponential/asymptotic stability in LTI feedback systems, which dispenses open-loop poles distribution, contour/locus orientation and prior frequency sweeping. Exploiting the technique for alternatively revealing positive realness of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the suggested frequency-domain stability conditions are conformable both in scalar and multivariable cases, and can be implemented either graphically with locus plotting or numerically without; in particular, the latter is suitable as a design tool with auxiliary parameter freedom. The interpretation also reveals further frequency-domain facts about Lure´ systems. Numerical examples are included to illustrate the main results.

  15. Factor analysis as a tool for spectral line component separation 21cm emission in the direction of L1780

    NASA Technical Reports Server (NTRS)

    Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.

    1992-01-01

    The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.

  16. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  17. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A

    Interactive data visualization leverages human visual perception and cognition to improve the accuracy and effectiveness of data analysis. When combined with automated data analytics, data visualization systems orchestrate the strengths of humans with the computational power of machines to solve problems neither approach can manage in isolation. In the intelligent transportation system domain, such systems are necessary to support decision making in large and complex data streams. In this chapter, we provide an introduction to several key topics related to the design of data visualization systems. In addition to an overview of key techniques and strategies, we will describe practicalmore » design principles. The chapter is concluded with a detailed case study involving the design of a multivariate visualization tool.« less

  19. Digital controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Using linear-optimal estimation and control techniques, digital-adaptive control laws have been designed for a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. Two distinct discrete-time control laws are designed to interface with velocity-command and attitude-command guidance logic, and each incorporates proportional-integral compensation for non-zero-set-point regulation, as well as reduced-order Kalman filters for sensor blending and noise rejection. Adaptation to flight condition is achieved with a novel gain-scheduling method based on correlation and regression analysis. The linear-optimal design approach is found to be a valuable tool in the development of practical multivariable control laws for vehicles which evidence significant coupling and insufficient natural stability.

  20. Multivariate analysis for scanning tunneling spectroscopy data

    NASA Astrophysics Data System (ADS)

    Yamanishi, Junsuke; Iwase, Shigeru; Ishida, Nobuyuki; Fujita, Daisuke

    2018-01-01

    We applied principal component analysis (PCA) to two-dimensional tunneling spectroscopy (2DTS) data obtained on a Si(111)-(7 × 7) surface to explore the effectiveness of multivariate analysis for interpreting 2DTS data. We demonstrated that several components that originated mainly from specific atoms at the Si(111)-(7 × 7) surface can be extracted by PCA. Furthermore, we showed that hidden components in the tunneling spectra can be decomposed (peak separation), which is difficult to achieve with normal 2DTS analysis without the support of theoretical calculations. Our analysis showed that multivariate analysis can be an additional powerful way to analyze 2DTS data and extract hidden information from a large amount of spectroscopic data.

  1. MRMPROBS: a data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics.

    PubMed

    Tsugawa, Hiroshi; Arita, Masanori; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-05-21

    We developed a new software program, MRMPROBS, for widely targeted metabolomics by using the large-scale multiple reaction monitoring (MRM) mode. The strategy became increasingly popular for the simultaneous analysis of up to several hundred metabolites at high sensitivity, selectivity, and quantitative capability. However, the traditional method of assessing measured metabolomics data without probabilistic criteria is not only time-consuming but is often subjective and makeshift work. Our program overcomes these problems by detecting and identifying metabolites automatically, by separating isomeric metabolites, and by removing background noise using a probabilistic score defined as the odds ratio from an optimized multivariate logistic regression model. Our software program also provides a user-friendly graphical interface to curate and organize data matrices and to apply principal component analyses and statistical tests. For a demonstration, we conducted a widely targeted metabolome analysis (152 metabolites) of propagating Saccharomyces cerevisiae measured at 15 time points by gas and liquid chromatography coupled to triple quadrupole mass spectrometry. MRMPROBS is a useful and practical tool for the assessment of large-scale MRM data available to any instrument or any experimental condition.

  2. Evaluation of a multi-fibre needle Raman probe for tissue analysis

    NASA Astrophysics Data System (ADS)

    Fullwood, Leanne M.; Iping Petterson, Ingeborg E.; Dudgeon, Alexander P.; Lloyd, Gavin R.; Kendall, Catherine; Hall, Charlie; Day, John C. C.; Stone, Nick

    2016-03-01

    Raman spectroscopy is a rapid technique for the identification of cancers. Its coupling with a hypodermic needle provides a minimally invasive instrument with the potential to aid real time assessment of suspicious lesions in vivo and guide surgery. A fibre optic Raman needle probe was utilised in this study to evaluate the classification ability of the instrument as a diagnostic tool together with multivariate analysis, through measurements of tissues from different animal species as well as various different porcine tissue types. Cross validation was performed and preliminary classification accuracies were calculated as 100% for the identification of tissue type and 97.5% for the identification of animal species. A lymph node sample was also measured using the needle probe to assess the use of the technique for human tissue and hence its efficiency as a clinical instrument. This needle probe has been demonstrated to have the capabilities to classify tissue samples based on their biochemical components. The Raman needle probe also has the potential to act as a diagnostic and surgical tool to delineate cancerous from non-cancerous cells in real time, thus assisting complete removal of a tumour.

  3. Development of a Risk Assessment Tool to Predict Fall-Related Severe Injuries Occurring in a Hospital

    PubMed Central

    Toyabe, Shin-ichi

    2014-01-01

    Inpatient falls are the most common adverse events that occur in a hospital, and about 3 to 10% of falls result in serious injuries such as bone fractures and intracranial haemorrhages. We previously reported that bone fractures and intracranial haemorrhages were two major fall-related injuries and that risk assessment score for osteoporotic bone fracture was significantly associated not only with bone fractures after falls but also with intracranial haemorrhage after falls. Based on the results, we tried to establish a risk assessment tool for predicting fall-related severe injuries in a hospital. Possible risk factors related to fall-related serious injuries were extracted from data on inpatients that were admitted to a tertiary-care university hospital by using multivariate Cox’ s regression analysis and multiple logistic regression analysis. We found that fall risk score and fracture risk score were the two significant factors, and we constructed models to predict fall-related severe injuries incorporating these factors. When the prediction model was applied to another independent dataset, the constructed model could detect patients with fall-related severe injuries efficiently. The new assessment system could identify patients prone to severe injuries after falls in a reproducible fashion. PMID:25168984

  4. Pedagogical monitoring as a tool to reduce dropout in distance learning in family health.

    PubMed

    de Castro E Lima Baesse, Deborah; Grisolia, Alexandra Monteiro; de Oliveira, Ana Emilia Figueiredo

    2016-08-22

    This paper presents the results of a study of the Monsys monitoring system, an educational support tool designed to prevent and control the dropout rate in a distance learning course in family health. Developed by UNA-SUS/UFMA, Monsys was created to enable data mining in the virtual learning environment known as Moodle. This is an exploratory study using documentary and bibliographic research and analysis of the Monsys database. Two classes (2010 and 2011) were selected as research subjects, one with Monsys intervention and the other without. The samples were matched (using a ration of 1:1) by gender, age, marital status, graduation year, previous graduation status, location and profession. Statistical analysis was performed using the chi-square test and a multivariate logistic regression model with a 5 % significance level. The findings show that the dropout rate in the class in which Monsys was not employed (2010) was 43.2 %. However, the dropout rate in the class of 2011, in which the tool was employed as a pedagogical team aid, was 30.6 %. After statistical adjustment, the Monsys monitoring system remained in correlation with the course completion variable (adjusted OR = 1.74, IC95% = 1.17-2.59; p = 0.005), suggesting that the use of the Monsys tool, isolated to the adjusted variables, can enhance the likelihood that students will complete the course. Using the chi-square test, a profile analysis of students revealed a higher completion rate among women (67.7 %) than men (52.2 %). Analysis of age demonstrated that students between 40 and 49 years dropped out the least (32.1 %) and, with regard to professional training, nurses have the lowest dropout rates (36.3 %). The use of Monsys significantly reduced the dropout, with results showing greater association between the variables denoting presence of the monitoring system and female gender.

  5. Multivariate Analysis of Schools and Educational Policy.

    ERIC Educational Resources Information Center

    Kiesling, Herbert J.

    This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…

  6. Drought: A comprehensive R package for drought monitoring, prediction and analysis

    NASA Astrophysics Data System (ADS)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Cheng, Hongguang

    2015-04-01

    Drought may impose serious challenges to human societies and ecosystems. Due to complicated causing effects and wide impacts, a universally accepted definition of drought does not exist. The drought indicator is commonly used to characterize drought properties such as duration or severity. Various drought indicators have been developed in the past few decades for the monitoring of a certain aspect of drought condition along with the development of multivariate drought indices for drought characterizations from multiple sources or hydro-climatic variables. Reliable drought prediction with suitable drought indicators is critical to the drought preparedness plan to reduce potential drought impacts. In addition, drought analysis to quantify the risk of drought properties would provide useful information for operation drought managements. The drought monitoring, prediction and risk analysis are important components in drought modeling and assessments. In this study, a comprehensive R package "drought" is developed to aid the drought monitoring, prediction and risk analysis (available from R-Forge and CRAN soon). The computation of a suite of univariate and multivariate drought indices that integrate drought information from various sources such as precipitation, temperature, soil moisture, and runoff is available in the drought monitoring component in the package. The drought prediction/forecasting component consists of statistical drought predictions to enhance the drought early warning for decision makings. Analysis of drought properties such as duration and severity is also provided in this package for drought risk assessments. Based on this package, a drought monitoring and prediction/forecasting system is under development as a decision supporting tool. The package will be provided freely to the public to aid the drought modeling and assessment for researchers and practitioners.

  7. Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations.

    PubMed

    Druckenmüller, Katharina; Günther, Klaus; Elbers, Gereon

    2018-07-15

    Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Using microRNA profiling in urine samples to develop a non-invasive test for bladder cancer.

    PubMed

    Mengual, Lourdes; Lozano, Juan José; Ingelmo-Torres, Mercedes; Gazquez, Cristina; Ribal, María José; Alcaraz, Antonio

    2013-12-01

    Current standard methods used to detect and monitor bladder urothelial cell carcinoma (UCC) are invasive or have low sensitivity. The incorporation into clinical practice of a non-invasive tool for UCC assessment would enormously improve patients' quality of life and outcome. This study aimed to examine the microRNA (miRNA) expression profiles in urines of UCC patients in order to develop a non-invasive accurate and reliable tool to diagnose and provide information on the aggressiveness of the tumor. We performed a global miRNA expression profiling analysis of the urinary cells from 40 UCC patients and controls using TaqMan Human MicroRNA Array followed by validation of 22 selected potentially diagnostic and prognostic miRNAs in a separate cohort of 277 samples using a miRCURY LNA qPCR system. miRNA-based signatures were developed by multivariate logistic regression analysis and internally cross-validated. In the initial cohort of patients, we identified 40 and 30 aberrantly expressed miRNA in UCC compared with control urines and in high compared with low grade tumors, respectively. Quantification of 22 key miRNAs in an independent cohort resulted in the identification of a six miRNA diagnostic signature with a sensitivity of 84.8% and specificity of 86.5% (AUC = 0.92) and a two miRNA prognostic model with a sensitivity of 84.95% and a specificity of 74.14% (AUC = 0.83). Internal cross-validation analysis confirmed the accuracy rates of both models, reinforcing the strength of our findings. Although the data needs to be externally validated, miRNA analysis in urine appears to be a valuable tool for the non-invasive assessment of UCC. Copyright © 2013 UICC.

  9. Use of the Ishikawa diagram in a case-control analysis to assess the causes of a diffuse lamellar keratitis outbreak.

    PubMed

    Lira, Luis Henrique; Hirai, Flávio E; Oliveira, Marivaldo; Portellinha, Waldir; Nakano, Eliane Mayumi

    2017-01-01

    To identify the causes of a diffuse lamellar keratitis (DLK) outbreak using a systematic search tool in a case-control analysis. An Ishikawa diagram was used to guide physicians to determine the potential risk factors involved in this outbreak. Coherence between the occurrences and each possible cause listed in the diagram was verified, and the total number of eyes at risk was used to calculate the proportion of affected eyes. Multivariate analysis was performed using logistic regression to determine the independent effect of the risk factors, after controlling for confounders and test interactions. All DLK cases were reported in 2007 between June 13 and December 21; during this period, 3,698 procedures were performed. Of the 1,682 flap-related procedures, 204 eyes of 141 individuals presented with DLK. No direct relationship was observed between the occurrence of DLK and the presence of any specific factors; however, flap-lifting enhancements, procedures performed during the morning shift, and non-use of therapeutic contact lenses after the surgery were significantly related to higher occurrence percentages of this condition. The Ishikawa diagram, like most quality tools, is a visualization and knowledge organization tool. This systematization allowed the investigators to thoroughly assess all the possible causes of DLK outbreak. A clear view of the entire surgical logistics permitted even more rigid management of the main factors involved in the process and, as a result, highlighted factors that deserved attention. The case-control analysis on every factor raised by the Ishikawa diagram indicated that the commonly suspected factors such as biofilm contamination of the water reservoir in autoclaves, the air-conditioning filter system, glove powder, microkeratome motor oil, and gentian violet markers were not related to the outbreak.

  10. Tropical Pacific moisture variability: Its detection, synoptic structure and consequences in the general circulation

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.

    1990-01-01

    Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.

  11. Metabolomic-Guided Isolation of Bioactive Natural Products from Curvularia sp., an Endophytic Fungus of Terminalia laxiflora.

    PubMed

    Tawfike, Ahmed F; Abbott, Grainne; Young, Louise; Edrada-Ebel, RuAngelie

    2018-02-01

    Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology. Metabolomic tools were successfully employed to compare the metabolite fingerprints of solid and liquid culture extracts of endophyte Curvularia sp. isolated from the leaves of Terminalia laxiflora . Natural product databases were used to dereplicate metabolites in order to determine known compounds and the presence of new natural products. Multivariate analysis highlighted the putative metabolites responsible for the bioactivity of the fungal extract and its fractions on NF- κ B and the myelogenous leukemia cell line K562. Metabolomic tools and dereplication studies using high-resolution electrospray ionization mass spectrometry directed the fractionation and isolation of the bioactive components from the fungal extracts. This resulted in the isolation of N -acetylphenylalanine (1: ) and two linear peptide congeners of 1: : dipeptide N -acetylphenylalanyl-L-phenylalanine (2: ) and tripeptide N -acetylphenylalanyl-L-phenylalanyl-L-leucine (3: ). Georg Thieme Verlag KG Stuttgart · New York.

  12. Non-Gated Laser Induced Breakdown Spectroscopy Provides a Powerful Segmentation Tool on Concomitant Treatment of Characteristic and Continuum Emission

    PubMed Central

    Dasari, Ramachandra Rao; Barman, Ishan; Gundawar, Manoj Kumar

    2014-01-01

    We demonstrate the application of non-gated laser induced breakdown spectroscopy (LIBS) for characterization and classification of organic materials with similar chemical composition. While use of such a system introduces substantive continuum background in the spectral dataset, we show that appropriate treatment of the continuum and characteristic emission results in accurate discrimination of pharmaceutical formulations of similar stoichiometry. Specifically, our results suggest that near-perfect classification can be obtained by employing suitable multivariate analysis on the acquired spectra, without prior removal of the continuum background. Indeed, we conjecture that pre-processing in the form of background removal may introduce spurious features in the signal. Our findings in this report significantly advance the prior results in time-integrated LIBS application and suggest the possibility of a portable, non-gated LIBS system as a process analytical tool, given its simple instrumentation needs, real-time capability and lack of sample preparation requirements. PMID:25084522

  13. MAVTgsa: An R Package for Gene Set (Enrichment) Analysis

    DOE PAGES

    Chien, Chih-Yi; Chang, Ching-Wei; Tsai, Chen-An; ...

    2014-01-01

    Gene semore » t analysis methods aim to determine whether an a priori defined set of genes shows statistically significant difference in expression on either categorical or continuous outcomes. Although many methods for gene set analysis have been proposed, a systematic analysis tool for identification of different types of gene set significance modules has not been developed previously. This work presents an R package, called MAVTgsa, which includes three different methods for integrated gene set enrichment analysis. (1) The one-sided OLS (ordinary least squares) test detects coordinated changes of genes in gene set in one direction, either up- or downregulation. (2) The two-sided MANOVA (multivariate analysis variance) detects changes both up- and downregulation for studying two or more experimental conditions. (3) A random forests-based procedure is to identify gene sets that can accurately predict samples from different experimental conditions or are associated with the continuous phenotypes. MAVTgsa computes the P values and FDR (false discovery rate) q -value for all gene sets in the study. Furthermore, MAVTgsa provides several visualization outputs to support and interpret the enrichment results. This package is available online.« less

  14. The Management Standards Indicator Tool and evaluation of burnout.

    PubMed

    Ravalier, J M; McVicar, A; Munn-Giddings, C

    2013-03-01

    Psychosocial hazards in the workplace can impact upon employee health. The UK Health and Safety Executive's (HSE) Management Standards Indicator Tool (MSIT) appears to have utility in relation to health impacts but we were unable to find studies relating it to burnout. To explore the utility of the MSIT in evaluating risk of burnout assessed by the Maslach Burnout Inventory-General Survey (MBI-GS). This was a cross-sectional survey of 128 borough council employees. MSIT data were analysed according to MSIT and MBI-GS threshold scores and by using multivariate linear regression with MBI-GS factors as dependent variables. MSIT factor scores were gradated according to categories of risk of burnout according to published MBI-GS thresholds, and identified priority workplace concerns as demands, relationships, role and change. These factors also featured as significant independent variables, with control, in outcomes of the regression analysis. Exhaustion was associated with demands and control (adjusted R (2) = 0.331); cynicism was associated with change, role and demands (adjusted R (2) =0.429); and professional efficacy was associated with managerial support, role, control and demands (adjusted R (2) = 0.413). MSIT analysis generally has congruence with MBI-GS assessment of burnout. The identification of control within regression models but not as a priority concern in the MSIT analysis could suggest an issue of the setting of the MSIT thresholds for this factor, but verification requires a much larger study. Incorporation of relationship, role and change into the MSIT, missing from other conventional tools, appeared to add to its validity.

  15. Developing the Stroke Exercise Preference Inventory (SEPI)

    PubMed Central

    Bonner, Nicholas S.; O’Halloran, Paul D.; Bernhardt, Julie; Cumming, Toby B.

    2016-01-01

    Background Physical inactivity is highly prevalent after stroke, increasing the risk of poor health outcomes including recurrent stroke. Tailoring of exercise programs to individual preferences can improve adherence, but no tools exist for this purpose in stroke. Methods We identified potential questionnaire items for establishing exercise preferences via: (i) our preliminary Exercise Preference Questionnaire in stroke, (ii) similar tools used in other conditions, and (iii) expert panel consultations. The resulting 35-item questionnaire (SEPI-35) was administered to stroke survivors, along with measures of disability, depression, anxiety, fatigue and self-reported physical activity. Exploratory factor analysis was used to identify a factor structure in exercise preferences, providing a framework for item reduction. Associations between exercise preferences and personal characteristics were analysed using multivariable regression. Results A group of 134 community-dwelling stroke survivors (mean age 64.0, SD 13.3) participated. Analysis of the SEPI-35 identified 7 exercise preference factors (Supervision-support, Confidence-challenge, Health-wellbeing, Exercise context, Home-alone, Similar others, Music-TV). Item reduction processes yielded a 13-item version (SEPI-13); in analysis of this version, the original factor structure was maintained. Lower scores on Confidence-challenge were significantly associated with disability (p = 0.002), depression (p = 0.001) and fatigue (p = 0.001). Self-reported barriers to exercise were particularly prevalent in those experiencing fatigue and anxiety. Conclusions The SEPI-13 is a brief instrument that allows assessment of exercise preferences and barriers in the stroke population. This new tool can be employed by health professionals to inform the development of individually tailored exercise interventions. PMID:27711242

  16. Analysis of factors driving stream water composition and synthesis of management tools--a case study on small/medium Greek catchments.

    PubMed

    Skoulikidis, N Th; Amaxidis, Y; Bertahas, I; Laschou, S; Gritzalis, K

    2006-06-01

    Twenty-nine small- and mid-sized permanent rivers (thirty-six sites) scattered throughout Greece and equally distributed within three geo-chemical-climatic zones, have been investigated in a seasonal base. Hydrochemical types have been determined and spatio-temporal variations have been interpreted in relation to environmental characteristics and anthropogenic pressures. Multivariate statistical techniques have been used to identify the factors and processes affecting hydrochemical variability and the driving forces that control aquatic composition. It has been shown that spatial variation of aquatic quality is mainly governed by geological and hydrogeological factors. Due to geological and climatic variability, the three zones have different hydrochemical characteristics. Temporal hydrological variations in combination with hydrogeological factors control seasonal hydrochemical trends. Respiration processes due to municipal wastewaters, dominate in summer, and enhance nutrient, chloride and sodium concentrations, while nitrate originates primarily from agriculture. Photosynthetic processes dominate in spring. Carbonate chemistry is controlled by hydrogeological factors and biological activity. A possible enrichment of surface waters with nutrients in "pristine" forested catchments is attributed to soil leaching and mineralisation processes. Two management tools have been developed: a nutrient classification system and a rapid prediction of aquatic composition tool.

  17. Relevance of graph literacy in the development of patient-centered communication tools.

    PubMed

    Nayak, Jasmir G; Hartzler, Andrea L; Macleod, Liam C; Izard, Jason P; Dalkin, Bruce M; Gore, John L

    2016-03-01

    To determine the literacy skill sets of patients in the context of graphical interpretation of interactive dashboards. We assessed literacy characteristics of prostate cancer patients and assessed comprehension of quality of life dashboards. Health literacy, numeracy and graph literacy were assessed with validated tools. We divided patients into low vs. high numeracy and graph literacy. We report descriptive statistics on literacy, dashboard comprehension, and relationships between groups. We used correlation and multiple linear regressions to examine factors associated with dashboard comprehension. Despite high health literacy in educated patients (78% college educated), there was variation in numeracy and graph literacy. Numeracy and graph literacy scores were correlated (r=0.37). In those with low literacy, graph literacy scores most strongly correlated with dashboard comprehension (r=0.59-0.90). On multivariate analysis, graph literacy was independently associated with dashboard comprehension, adjusting for age, education, and numeracy level. Even among higher educated patients; variation in the ability to comprehend graphs exists. Clinicians must be aware of these differential proficiencies when counseling patients. Tools for patient-centered communication that employ visual displays need to account for literacy capabilities to ensure that patients can effectively engage these resources. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Effectiveness of a primary care-based intervention to reduce sitting time in overweight and obese patients (SEDESTACTIV): a randomized controlled trial; rationale and study design

    PubMed Central

    2014-01-01

    Background There is growing evidence suggesting that prolonged sitting has negative effects on people’s weight, chronic diseases and mortality. Interventions to reduce sedentary time can be an effective strategy to increase daily energy expenditure. The purpose of this study is to evaluate the effectiveness of a six-month primary care intervention to reduce daily of sitting time in overweight and mild obese sedentary patients. Method/Design The study is a randomized controlled trial (RCT). Professionals from thirteen primary health care centers (PHC) will randomly invite to participate mild obese or overweight patients of both gender, aged between 25 and 65 years old, who spend 6 hours at least daily sitting. A total of 232 subjects will be randomly allocated to an intervention (IG) and control group (CG) (116 individuals each group). In addition, 50 subjects with fibromyalgia will be included. Primary outcome is: (1) sitting time using the activPAL device and the Marshall questionnaire. The following parameters will be also assessed: (2) sitting time in work place (Occupational Sitting and Physical Activity Questionnaire), (3) health-related quality of life (EQ-5D), (4) evolution of stage of change (Prochaska and DiClemente's Stages of Change Model), (5) physical inactivity (catalan version of Brief Physical Activity Assessment Tool), (6) number of steps walked (pedometer and activPAL), (7) control based on analysis (triglycerides, total cholesterol, HDL, LDL, glycemia and, glycated haemoglobin in diabetic patients) and (8) blood pressure and anthropometric variables. All parameters will be assessed pre and post intervention and there will be a follow up three, six and twelve months after the intervention. A descriptive analysis of all variables and a multivariate analysis to assess differences among groups will be undertaken. Multivariate analysis will be carried out to assess time changes of dependent variables. All the analysis will be done under the intention to treat principle. Discussion If the SEDESTACTIV intervention shows its effectiveness in reducing sitting time, health professionals would have a low-cost intervention tool for sedentary overweight and obese patients management. Trial registration A service of the U.S. National Institutes of Health. Developed by the National Library of Medicine. ClinicalTrials.gov NCT01729936 PMID:24597534

  19. Effectiveness of a primary care-based intervention to reduce sitting time in overweight and obese patients (SEDESTACTIV): a randomized controlled trial; rationale and study design.

    PubMed

    Martín-Borràs, Carme; Giné-Garriga, Maria; Martínez, Elena; Martín-Cantera, Carlos; Puigdoménech, Elisa; Solà, Mercè; Castillo, Eva; Beltrán, Angela Ma; Puig-Ribera, Anna; Trujillo, José Manuel; Pueyo, Olga; Pueyo, Javier; Rodríguez, Beatriz; Serra-Paya, Noemí

    2014-03-05

    There is growing evidence suggesting that prolonged sitting has negative effects on people's weight, chronic diseases and mortality. Interventions to reduce sedentary time can be an effective strategy to increase daily energy expenditure. The purpose of this study is to evaluate the effectiveness of a six-month primary care intervention to reduce daily of sitting time in overweight and mild obese sedentary patients. The study is a randomized controlled trial (RCT). Professionals from thirteen primary health care centers (PHC) will randomly invite to participate mild obese or overweight patients of both gender, aged between 25 and 65 years old, who spend 6 hours at least daily sitting. A total of 232 subjects will be randomly allocated to an intervention (IG) and control group (CG) (116 individuals each group). In addition, 50 subjects with fibromyalgia will be included.Primary outcome is: (1) sitting time using the activPAL device and the Marshall questionnaire. The following parameters will be also assessed: (2) sitting time in work place (Occupational Sitting and Physical Activity Questionnaire), (3) health-related quality of life (EQ-5D), (4) evolution of stage of change (Prochaska and DiClemente's Stages of Change Model), (5) physical inactivity (catalan version of Brief Physical Activity Assessment Tool), (6) number of steps walked (pedometer and activPAL), (7) control based on analysis (triglycerides, total cholesterol, HDL, LDL, glycemia and, glycated haemoglobin in diabetic patients) and (8) blood pressure and anthropometric variables. All parameters will be assessed pre and post intervention and there will be a follow up three, six and twelve months after the intervention. A descriptive analysis of all variables and a multivariate analysis to assess differences among groups will be undertaken. Multivariate analysis will be carried out to assess time changes of dependent variables. All the analysis will be done under the intention to treat principle. If the SEDESTACTIV intervention shows its effectiveness in reducing sitting time, health professionals would have a low-cost intervention tool for sedentary overweight and obese patients management. A service of the U.S. National Institutes of Health. Developed by the National Library of Medicine. ClinicalTrials.gov NCT01729936.

  20. Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.

    PubMed

    Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao

    2016-11-30

    Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study.

    PubMed

    Lee, Poh Foong; Kan, Donica Pei Xin; Croarkin, Paul; Phang, Cheng Kar; Doruk, Deniz

    2018-01-01

    There is an unmet need for practical and reliable biomarkers for mood disorders in young adults. Identifying the brain activity associated with the early signs of depressive disorders could have important diagnostic and therapeutic implications. In this study we sought to investigate the EEG characteristics in young adults with newly identified depressive symptoms. Based on the initial screening, a total of 100 participants (n = 50 euthymic, n = 50 depressive) underwent 32-channel EEG acquisition. Simple logistic regression and C-statistic were used to explore if EEG power could be used to discriminate between the groups. The strongest EEG predictors of mood using multivariate logistic regression models. Simple logistic regression analysis with subsequent C-statistics revealed that only high-alpha and beta power originating from the left central cortex (C3) have a reliable discriminative value (ROC curve >0.7 (70%)) for differentiating the depressive group from the euthymic group. Multivariate regression analysis showed that the single most significant predictor of group (depressive vs. euthymic) is the high-alpha power over C3 (p = 0.03). The present findings suggest that EEG is a useful tool in the identification of neurophysiological correlates of depressive symptoms in young adults with no previous psychiatric history. Our results could guide future studies investigating the early neurophysiological changes and surrogate outcomes in depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Maximum covariance analysis to identify intraseasonal oscillations over tropical Brazil

    NASA Astrophysics Data System (ADS)

    Barreto, Naurinete J. C.; Mesquita, Michel d. S.; Mendes, David; Spyrides, Maria H. C.; Pedra, George U.; Lucio, Paulo S.

    2017-09-01

    A reliable prognosis of extreme precipitation events in the tropics is arguably challenging to obtain due to the interaction of meteorological systems at various time scales. A pivotal component of the global climate variability is the so-called intraseasonal oscillations, phenomena that occur between 20 and 100 days. The Madden-Julian Oscillation (MJO), which is directly related to the modulation of convective precipitation in the equatorial belt, is considered the primary oscillation in the tropical region. The aim of this study is to diagnose the connection between the MJO signal and the regional intraseasonal rainfall variability over tropical Brazil. This is achieved through the development of an index called Multivariate Intraseasonal Index for Tropical Brazil (MITB). This index is based on Maximum Covariance Analysis (MCA) applied to the filtered daily anomalies of rainfall data over tropical Brazil against a group of covariates consisting of: outgoing longwave radiation and the zonal component u of the wind at 850 and 200 hPa. The first two MCA modes, which were used to create the { MITB}_1 and { MITB}_2 indices, represent 65 and 16 % of the explained variance, respectively. The combined multivariate index was able to satisfactorily represent the pattern of intraseasonal variability over tropical Brazil, showing that there are periods of activation and inhibition of precipitation connected with the pattern of MJO propagation. The MITB index could potentially be used as a diagnostic tool for intraseasonal forecasting.

  3. Detection and characterization of glaucoma-like canine retinal tissues using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Karl; Hamouche, Nicholas; Kecova, Helga; Lazic, Tatjana; Hernandez-Merino, Elena; Yu, Chenxu

    2013-06-01

    Early detection of pathological changes and progression in glaucoma and other neuroretinal diseases remains a great challenge and is critical to reduce permanent structural and functional retina and optic nerve damage. Raman spectroscopy is a sensitive technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, spectroscopic analysis was conducted on the retinal tissues of seven beagles with acute elevation of intraocular pressure (AEIOP), six beagles with compressive optic neuropathy (CON), and five healthy beagles. Spectroscopic markers were identified associated with the different neuropathic conditions. Furthermore, the Raman spectra were subjected to multivariate discriminate analysis to classify independent tissue samples into diseased/healthy categories. The multivariate discriminant model yielded an average optimal classification accuracy of 72.6% for AEIOP and 63.4% for CON with 20 principal components being used that accounted for 87% of the total variance in the data set. A strong correlation (R2>0.92) was observed between pattern electroretinography characteristics of AEIOP dogs and Raman separation distance that measures the separation of spectra of diseased tissues from normal tissues; however, the underlining mechanism of this correlation remains to be understood. Since AEIOP mimics the pathological symptoms of acute/early-stage glaucoma, it was demonstrated that Raman spectroscopic screening has the potential to become a powerful tool for the detection and characterization of early-stage disease.

  4. Identification of the compositional changes in Orthosiphon stamineus leaves triggered by different drying techniques using 1 H NMR metabolomics.

    PubMed

    Pariyani, Raghunath; Ismail, Intan Safinar; Ahmad Azam, Amalina; Abas, Faridah; Shaari, Khozirah

    2017-09-01

    Java tea is a well-known herbal infusion prepared from the leaves of Orthosiphon stamineus (OS). The biological properties of tea are in direct correlation with the primary and secondary metabolite composition, which in turn largely depends on the choice of drying method. Herein, the impact of three commonly used drying methods, i.e. shade, microwave and freeze drying, on the metabolite composition and antioxidant activity of OS leaves was investigated using proton nuclear magnetic resonance ( 1 H NMR) spectroscopy combined with multivariate classification and regression analysis tools. A total of 31 constituents comprising primary and secondary metabolites belonging to the chemical classes of fatty acids, amino acids, sugars, terpenoids and phenolic compounds were identified. Shade-dried leaves were identified to possess the highest concentrations of bioactive secondary metabolites such as chlorogenic acid, caffeic acid, luteolin, orthosiphol and apigenin, followed by microwave-dried samples. Freeze-dried leaves had higher concentrations of choline, amino acids leucine, alanine and glutamine and sugars such as fructose and α-glucose, but contained the lowest levels of secondary metabolites. Metabolite profiling coupled with multivariate analysis identified shade drying as the best method to prepare OS leaves as Java tea or to include in traditional medicine preparation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study.

    PubMed

    Catelani, Tiago A; Santos, João Rodrigo; Páscoa, Ricardo N M J; Pezza, Leonardo; Pezza, Helena R; Lopes, João A

    2018-03-01

    This work proposes the use of near infrared (NIR) spectroscopy in diffuse reflectance mode and multivariate statistical process control (MSPC) based on principal component analysis (PCA) for real-time monitoring of the coffee roasting process. The main objective was the development of a MSPC methodology able to early detect disturbances to the roasting process resourcing to real-time acquisition of NIR spectra. A total of fifteen roasting batches were defined according to an experimental design to develop the MSPC models. This methodology was tested on a set of five batches where disturbances of different nature were imposed to simulate real faulty situations. Some of these batches were used to optimize the model while the remaining was used to test the methodology. A modelling strategy based on a time sliding window provided the best results in terms of distinguishing batches with and without disturbances, resourcing to typical MSPC charts: Hotelling's T 2 and squared predicted error statistics. A PCA model encompassing a time window of four minutes with three principal components was able to efficiently detect all disturbances assayed. NIR spectroscopy combined with the MSPC approach proved to be an adequate auxiliary tool for coffee roasters to detect faults in a conventional roasting process in real-time. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra

    NASA Astrophysics Data System (ADS)

    Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong

    2017-08-01

    Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.

  7. Hair sterol signatures coupled to multivariate data analysis reveal an increased 7β-hydroxycholesterol production in cognitive impairment.

    PubMed

    Son, Hyun-Hwa; Lee, Do-Yup; Seo, Hong Seog; Jeong, Jihyeon; Moon, Ju-Yeon; Lee, Jung-Eun; Chung, Bong Chul; Kim, Eosu; Choi, Man Ho

    2016-01-01

    Altered cholesterol metabolism could be associated with cognitive impairment. The quantitative profiling of 19 hair sterols was developed using gas chromatography-mass spectrometry coupled to multivariate data analysis. The limit of quantification of all sterols ranged from 5 to 20 ng/g, while the calibration linearity was higher than 0.98. The precision (% CV) and accuracy (% bias) ranged from 3.2% to 9.8% and from 83.2% to 119.4%, respectively. Among the sterols examined, 8 were quantitatively detected from two strands of 3-cm-long scalp hair samples of female participants, including mild cognitive impairment (MCI, n=15), Alzheimer's disease (AD, n=31), and healthy controls (HC, n=36). The cognitive impairment (MCI or AD) was correlated with a higher metabolic rate than that of HCs based on 7β-hydroxycholesterol (P<0.005). Significant negative correlations (r=-0.822) were detected between Mini-Mental State Examination (MMSE) scores and hair sample metabolic ratios of 7β-hydroxycholesterol to cholesterol, which is an accepted, sensitive, and specific tool for discriminating HCs from individuals with MCI or AD. In conclusion, improved diagnostic values can be obtained using hair sterol signatures coupled with MMSE scores. This method may prove useful for predictive diagnosis in population screening of cognitive impairment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Multivariate flood risk assessment: reinsurance perspective

    NASA Astrophysics Data System (ADS)

    Ghizzoni, Tatiana; Ellenrieder, Tobias

    2013-04-01

    For insurance and re-insurance purposes the knowledge of the spatial characteristics of fluvial flooding is fundamental. The probability of simultaneous flooding at different locations during one event and the associated severity and losses have to be estimated in order to assess premiums and for accumulation control (Probable Maximum Losses calculation). Therefore, the identification of a statistical model able to describe the multivariate joint distribution of flood events in multiple location is necessary. In this context, copulas can be viewed as alternative tools for dealing with multivariate simulations as they allow to formalize dependence structures of random vectors. An application of copula function for flood scenario generation is presented for Australia (Queensland, New South Wales and Victoria) where 100.000 possible flood scenarios covering approximately 15.000 years were simulated.

  9. Quality-by-design III: application of near-infrared spectroscopy to monitor roller compaction in-process and product quality attributes of immediate release tablets.

    PubMed

    Kona, Ravikanth; Fahmy, Raafat M; Claycamp, Gregg; Polli, James E; Martinez, Marilyn; Hoag, Stephen W

    2015-02-01

    The objective of this study is to use near-infrared spectroscopy (NIRS) coupled with multivariate chemometric models to monitor granule and tablet quality attributes in the formulation development and manufacturing of ciprofloxacin hydrochloride (CIP) immediate release tablets. Critical roller compaction process parameters, compression force (CFt), and formulation variables identified from our earlier studies were evaluated in more detail. Multivariate principal component analysis (PCA) and partial least square (PLS) models were developed during the development stage and used as a control tool to predict the quality of granules and tablets. Validated models were used to monitor and control batches manufactured at different sites to assess their robustness to change. The results showed that roll pressure (RP) and CFt played a critical role in the quality of the granules and the finished product within the range tested. Replacing binder source did not statistically influence the quality attributes of the granules and tablets. However, lubricant type has significantly impacted the granule size. Blend uniformity, crushing force, disintegration time during the manufacturing was predicted using validated PLS regression models with acceptable standard error of prediction (SEP) values, whereas the models resulted in higher SEP for batches obtained from different manufacturing site. From this study, we were able to identify critical factors which could impact the quality attributes of the CIP IR tablets. In summary, we demonstrated the ability of near-infrared spectroscopy coupled with chemometrics as a powerful tool to monitor critical quality attributes (CQA) identified during formulation development.

  10. The sperm motility pattern in ecotoxicological tests. The CRYO-Ecotest as a case study.

    PubMed

    Fabbrocini, Adele; D'Adamo, Raffaele; Del Prete, Francesco; Maurizio, Daniela; Specchiulli, Antonietta; Oliveira, Luis F J; Silvestri, Fausto; Sansone, Giovanni

    2016-01-01

    Changes in environmental stressors inevitably lead to an increasing need for innovative and more flexible monitoring tools. The aim of this work has been the characterization of the motility pattern of the cryopreserved sea bream semen after exposure to a dumpsite leachate sample, for the identification of the best representative parameters to be used as endpoints in an ecotoxicological bioassay. Sperm motility has been evaluated either by visual and by computer-assisted analysis; parameters concerning motility on activation and those describing it in the times after activation (duration parameters) have been assessed, discerning them in terms of sensitivity, reliability and methodology of assessment by means of multivariate analyses. The EC50 values of the evaluated endpoints ranged between 2.3 and 4.5ml/L, except for the total motile percentage (aTM, 7.0ml/L), which proved to be the less sensitive among all the tested parameters. According to the multivariate analyses, a difference in sensitivity among "activation" endpoints in respect of "duration" ones can be inferred; on the contrary, endpoints seem to be equally informative either describing total motile sperm or the rapid sub-population, as well as the assessment methodology seems to be not discriminating. In conclusion, the CRYO-Ecotest is a multi-endpoint bioassay that can be considered a promising innovative ecotoxicological tool, characterized by a high plasticity, as its endpoints can be easy tailored each time according to the different needs of the environmental quality assessment programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. TripAdvisor^{N-D}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail.

    PubMed

    Nam, Julia EunJu; Mueller, Klaus

    2013-02-01

    Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.

  12. Evaluation of the efficiency of continuous wavelet transform as processing and preprocessing algorithm for resolution of overlapped signals in univariate and multivariate regression analyses; an application to ternary and quaternary mixtures.

    PubMed

    Hegazy, Maha A; Lotfy, Hayam M; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-07-05

    Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  14. A Study of Effects of MultiCollinearity in the Multivariable Analysis

    PubMed Central

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.

    2015-01-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257

  15. A Study of Effects of MultiCollinearity in the Multivariable Analysis.

    PubMed

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W

    2014-10-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.

  16. Linking multimetric and multivariate approaches to assess the ecological condition of streams.

    PubMed

    Collier, Kevin J

    2009-10-01

    Few attempts have been made to combine multimetric and multivariate analyses for bioassessment despite recognition that an integrated method could yield powerful tools for bioassessment. An approach is described that integrates eight macroinvertebrate community metrics into a Principal Components Analysis to develop a Multivariate Condition Score (MCS) from a calibration dataset of 511 samples. The MCS is compared to an Index of Biotic Integrity (IBI) derived using the same metrics based on the ratio to the reference site mean. Both approaches were highly correlated although the MCS appeared to offer greater potential for discriminating a wider range of impaired conditions. Both the MCS and IBI displayed low temporal variability within reference sites, and were able to distinguish between reference conditions and low levels of catchment modification and local habitat degradation, although neither discriminated among three levels of low impact. Pseudosamples developed to test the response of the metric aggregation approaches to organic enrichment, urban, mining, pastoral and logging stressor scenarios ranked pressures in the same order, but the MCS provided a lower score for the urban scenario and a higher score for the pastoral scenario. The MCS was calculated for an independent test dataset of urban and reference sites, and yielded similar results to the IBI. Although both methods performed comparably, the MCS approach may have some advantages because it removes the subjectivity of assigning thresholds for scoring biological condition, and it appears to discriminate a wider range of degraded conditions.

  17. Localization of genes involved in the metabolic syndrome using multivariate linkage analysis.

    PubMed

    Olswold, Curtis; de Andrade, Mariza

    2003-12-31

    There are no well accepted criteria for the diagnosis of the metabolic syndrome. However, the metabolic syndrome is identified clinically by the presence of three or more of these five variables: larger waist circumference, higher triglyceride levels, lower HDL-cholesterol concentrations, hypertension, and impaired fasting glucose. We use sets of two or three variables, which are available in the Framingham Heart Study data set, to localize genes responsible for this syndrome using multivariate quantitative linkage analysis. This analysis demonstrates the applicability of using multivariate linkage analysis and how its use increases the power to detect linkage when genes are involved in the same disease mechanism.

  18. Towards a contemporary, comprehensive scoring system for determining technical outcomes of hybrid percutaneous chronic total occlusion treatment: The RECHARGE score.

    PubMed

    Maeremans, Joren; Spratt, James C; Knaapen, Paul; Walsh, Simon; Agostoni, Pierfrancesco; Wilson, William; Avran, Alexandre; Faurie, Benjamin; Bressollette, Erwan; Kayaert, Peter; Bagnall, Alan J; Smith, Dave; McEntegart, Margaret B; Smith, William H T; Kelly, Paul; Irving, John; Smith, Elliot J; Strange, Julian W; Dens, Jo

    2018-02-01

    This study sought to create a contemporary scoring tool to predict technical outcomes of chronic total occlusion (CTO) percutaneous coronary intervention (PCI) from patients treated by hybrid operators with differing experience levels. Current scoring systems need regular updating to cope with the positive evolutions regarding materials, techniques, and outcomes, while at the same time being applicable for a broad range of operators. Clinical and angiographic characteristics from 880 CTO-PCIs included in the REgistry of CrossBoss and Hybrid procedures in FrAnce, the NetheRlands, BelGium and UnitEd Kingdom (RECHARGE) were analyzed by using a derivation and validation set (2:1 ratio). Variables significantly associated with technical failure in the multivariable analysis were incorporated in the score. Subsequently, the discriminatory capacity was assessed and the validation set was used to compare with the J-CTO score and PROGRESS scores. Technical success in the derivation and validation sets was 83% and 85%, respectively. Multivariate analysis identified six parameters associated with technical failure: blunt stump (beta coefficient (b) = 1.014); calcification (b = 0.908); tortuosity ≥45° (b = 0.964); lesion length 20 mm (b = 0.556); diseased distal landing zone (b = 0.794), and previous bypass graft on CTO vessel (b = 0.833). Score variables remained significant after bootstrapping. The RECHARGE score showed better discriminatory capacity in both sets (area-under-the-curve (AUC) = 0.783 and 0.711), compared to the J-CTO (AUC = 0.676) and PROGRESS (AUC = 0.608) scores. The RECHARGE score is a novel, easy-to-use tool for assessing the risk for technical failure in hybrid CTO-PCI and has the potential to perform well for a broad community of operators. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Multivariate frequency domain analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori

    2009-03-01

    Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.

  20. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885

  1. A refined method for multivariate meta-analysis and meta-regression

    PubMed Central

    Jackson, Daniel; Riley, Richard D

    2014-01-01

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351

  2. Vision Loss Following Episcleral Brachytherapy for Uveal Melanoma: Development of a Vision Prognostication Tool.

    PubMed

    Aziz, Hassan A; Singh, Nakul; Bena, James; Wilkinson, Allan; Singh, Arun D

    2016-06-01

    Vision loss following episcleral brachytherapy for uveal melanoma is difficult to predict for individual patients. To generate a risk calculator for vision loss following episcleral brachytherapy for uveal melanoma. A retrospective review of data was conducted at a multispecialty tertiary care center in Cleveland, Ohio. All patients with primary ciliary body or choroidal melanoma treated with iodine 125 or ruthenium 106 episcleral brachytherapy between January 1, 2004, and December 30, 2013, were included. Univariate and multivariable Cox proportional hazards were used to determine the influence of baseline patient factors on vision loss. Kaplan-Meier curves (log-rank analyses) were used to estimate freedom from vision loss. Bootstrap resampling was performed to bias correct this estimate. Vision loss (to visual acuity [VA] worse than 20/50 and worse than 20/200). A total of 311 patients were included in the study, with a mean (SD) age of 62 (14.7) years at start of treatment and a median follow-up of 36 months (interquartile range, 18-60 months). At presentation, VA was better than or equal to 20/50 in 199 patients (64%) and better than or equal to 20/200 in 289 patients (93%). By Kaplan-Meier analysis, VA less than 20/200 at 3 years was not associated with sex, diabetes, systemic hypertension, or hypercholesterolemia but was associated with history of ocular comorbidities, type of isotope (ruthenium 106 or iodine 125), and initial VA ( >20/50 or <20/50). By multivariable analysis, age (hazard ratio [HR], 0.97; 95% CI, 0.94-1.00; P = .06), largest basal diameter (HR, 1.25; 95% CI, 1.16-1.34; P = <.001), total radiation dose to the fovea (HR, 1.03; 95% CI, 1.01-1.04; P = .001) and optic disc (HR, 1.01; 95% CI, 1.00-1.01; P = .005), and initial VA worse than 20/50 (HR, 1.85; 95% CI, 1.20-2.85; P = .005) were predictive of vision loss to a VA of less than 20/200. The concordance index for the full data set was 0.77. Using these data, an online risk calculator was developed to predict vision loss following episcleral brachytherapy. The vision prognostication tool presented herein needs to be validated by independent data sets. This tool may improve counseling for patients being evaluated for episcleral brachytherapy. At-risk individuals identified by this tool could be considered for inclusion into trials exploring prevention or treatment of radiation retinopathy and alternative therapies of uveal melanoma.

  3. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the success of the workshop. Further information on ACAT 2011 can be found at http://acat2011.cern.ch Dr Liliana Teodorescu Brunel University ACATgroup The PDF also contains details of the workshop's committees and sponsors.

  4. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  5. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  6. Exploring high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for metabonomic analysis of apples.

    PubMed

    Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter

    2012-01-01

    Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

  7. VISUAL DATA MINING IN ATMOSPHERIC SCIENCE DATA

    EPA Science Inventory

    This paper discusses the use of simple visual tools to explore multivariate spatially-referenced data. It describes interactive approaches such as linked brushing, and dynamic methods such as the grand tour. applied to studying the Comprehensive Ocean-Atmosphere Data Set (COADS)....

  8. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    PubMed Central

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-01

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data. PMID:26761018

  9. Shuttle Data Center File-Processing Tool in Java

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Miller, Walter H.

    2006-01-01

    A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.

  10. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map.

    PubMed

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-08

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009-2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  11. Multidimensional stock network analysis: An Escoufier's RV coefficient approach

    NASA Astrophysics Data System (ADS)

    Lee, Gan Siew; Djauhari, Maman A.

    2013-09-01

    The current practice of stocks network analysis is based on the assumption that the time series of closed stock price could represent the behaviour of the each stock. This assumption leads to consider minimal spanning tree (MST) and sub-dominant ultrametric (SDU) as an indispensible tool to filter the economic information contained in the network. Recently, there is an attempt where researchers represent stock not only as a univariate time series of closed price but as a bivariate time series of closed price and volume. In this case, they developed the so-called multidimensional MST to filter the important economic information. However, in this paper, we show that their approach is only applicable for that bivariate time series only. This leads us to introduce a new methodology to construct MST where each stock is represented by a multivariate time series. An example of Malaysian stock exchange will be presented and discussed to illustrate the advantages of the method.

  12. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis.

    PubMed

    Stupák, Ivan; Pavloková, Sylvie; Vysloužil, Jakub; Dohnal, Jiří; Čulen, Martin

    2017-11-23

    Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  13. Mitochondrial reactive oxygen species and complex II levels are associated with the outcome of hepatocellular carcinoma

    PubMed Central

    WU, JIANHUA; ZHAO, FEI; ZHAO, YUFEI; GUO, ZHANJUN

    2015-01-01

    In the present study, two oxidative stress parameters, reactive oxygen species (ROS) and mitochondrial respiratory complex II, were evaluated in the mitochondria of hepatocellular carcinoma (HCC) cells to determine the association between these parameters and the carcinogenesis and clinical outcome of HCC. High levels of ROS and low levels of complex II were found to be associated with reduced post-operative survival in HCC patients using the log-rank test. Furthermore, multivariate analysis confirmed that the levels of ROS [relative risk (RR)=2.867; 95% confidence interval (CI), 1.062–7.737; P=0.038] and complex II (RR=5.422; 95% CI, 1.273–23.088; P=0.022) were independent predictors for the survival of patients with HCC. Therefore, the analysis of ROS and complex II levels may provide a useful research and therapeutic tool for the prediction of HCC prognosis and treatment. PMID:26622849

  14. Overview of computational control research at UT Austin

    NASA Technical Reports Server (NTRS)

    Bong, Wie

    1989-01-01

    An overview of current research activities at UT Austin is presented to discuss certain technical issues in the following areas: (1) Computer-Aided Nonlinear Control Design: In this project, the describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. INCA program has been enhanced to allow the numerical calculation of describing functions as well as the nonlinear limit cycle analysis capability in the frequency domain; (2) Robust Linear Quadratic Gaussian (LQG) Compensator Synthesis: Robust control design techniques and software tools are developed for flexible space structures with parameter uncertainty. In particular, an interactive, robust multivariable control design capability is being developed for INCA program; and (3) LQR-Based Autonomous Control System for the Space Station: In this project, real time implementation of LQR-based autonomous control system is investigated for the space station with time-varying inertias and with significant multibody dynamic interactions.

  15. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging.

    PubMed

    Zhang, Guojin; Senak, Laurence; Moore, David J

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  16. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  18. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis

    Treesearch

    Nicole Labbe; David Harper; Timothy Rials; Thomas Elder

    2006-01-01

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...

  19. Root Cause Analysis of Quality Defects Using HPLC-MS Fingerprint Knowledgebase for Batch-to-batch Quality Control of Herbal Drugs.

    PubMed

    Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin

    2015-01-01

    The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Diagnostic tools for mixing models of stream water chemistry

    USGS Publications Warehouse

    Hooper, Richard P.

    2003-01-01

    Mixing models provide a useful null hypothesis against which to evaluate processes controlling stream water chemical data. Because conservative mixing of end‐members with constant concentration is a linear process, a number of simple mathematical and multivariate statistical methods can be applied to this problem. Although mixing models have been most typically used in the context of mixing soil and groundwater end‐members, an extension of the mathematics of mixing models is presented that assesses the “fit” of a multivariate data set to a lower dimensional mixing subspace without the need for explicitly identified end‐members. Diagnostic tools are developed to determine the approximate rank of the data set and to assess lack of fit of the data. This permits identification of processes that violate the assumptions of the mixing model and can suggest the dominant processes controlling stream water chemical variation. These same diagnostic tools can be used to assess the fit of the chemistry of one site into the mixing subspace of a different site, thereby permitting an assessment of the consistency of controlling end‐members across sites. This technique is applied to a number of sites at the Panola Mountain Research Watershed located near Atlanta, Georgia.

  1. Calibration of Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense Substitutions

    PubMed Central

    Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.

    2015-01-01

    Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387

  2. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

  3. Identification of the geographical origins of sea cucumber (Apostichopus japonicus) in northern China by using stable isotope ratios and fatty acid profiles.

    PubMed

    Zhang, Xufeng; Liu, Yu; Li, Ying; Zhao, Xinda

    2017-03-01

    Geographic traceability is an important issue for food quality and safety control of seafood. In this study,δ 13 C and δ 15 N values, as well as fatty acid (FA) content of 133 samples of A. japonicus from seven sampling points in northern China Sea were determined to evaluate their applicability in the origin traceability of A. japonicus. Principal component analysis (PCA) and discriminant analysis (DA) were applied to different data sets in order to evaluate their performance in terms of classification or predictive ability. δ 13 C and δ 15 N values could effectively discriminate between different origins of A. japonicus. Significant differences in the FA compositions showed the effectiveness of FA composition as a tool for distinguishing between different origins of A. japonicus. The two technologies, combined with multivariate statistical analysis, can be promising methods to discriminate A. japonicus from different geographical areas. Copyright © 2016. Published by Elsevier Ltd.

  4. An explorative chemometric approach applied to hyperspectral images for the study of illuminated manuscripts

    NASA Astrophysics Data System (ADS)

    Catelli, Emilio; Randeberg, Lise Lyngsnes; Alsberg, Bjørn Kåre; Gebremariam, Kidane Fanta; Bracci, Silvano

    2017-04-01

    Hyperspectral imaging (HSI) is a fast non-invasive imaging technology recently applied in the field of art conservation. With the help of chemometrics, important information about the spectral properties and spatial distribution of pigments can be extracted from HSI data. With the intent of expanding the applications of chemometrics to the interpretation of hyperspectral images of historical documents, and, at the same time, to study the colorants and their spatial distribution on ancient illuminated manuscripts, an explorative chemometric approach is here presented. The method makes use of chemometric tools for spectral de-noising (minimum noise fraction (MNF)) and image analysis (multivariate image analysis (MIA) and iterative key set factor analysis (IKSFA)/spectral angle mapper (SAM)) which have given an efficient separation, classification and mapping of colorants from visible-near-infrared (VNIR) hyperspectral images of an ancient illuminated fragment. The identification of colorants was achieved by extracting and interpreting the VNIR spectra as well as by using a portable X-ray fluorescence (XRF) spectrometer.

  5. Police witness identification images: a geometric morphometric analysis.

    PubMed

    Hayes, Susan; Tullberg, Cameron

    2012-11-01

    Research into witness identification images typically occurs within the laboratory and involves subjective likeness and recognizability judgments. This study analyzed whether actual witness identification images systematically alter the facial shapes of the suspects described. The shape analysis tool, geometric morphometrics, was applied to 46 homologous facial landmarks displayed on 50 witness identification images and their corresponding arrest photographs, using principal component analysis and multivariate regressions. The results indicate that compared with arrest photographs, witness identification images systematically depict suspects with lowered and medially located eyebrows (p = <0.000001). This was found to occur independently of the Police Artist, and did not occur with composites produced under laboratory conditions. There are several possible explanations for this finding, including any, or all, of the following: The suspect was frowning at the time of the incident, the witness had negative feelings toward the suspect, this is an effect of unfamiliar face processing, the suspect displayed fear at the time of their arrest photograph. © 2012 American Academy of Forensic Sciences.

  6. Multilevel analysis of self-perception in oral health and associated factors in Southern Brazilian adults: a cross-sectional study.

    PubMed

    Gabardo, Marilisa Carneiro Leão; Moysés, Samuel Jorge; Moysés, Simone Tetu; Olandoski, Marcia; Olinto, Maria Teresa Anselmo; Pattussi, Marcos Pascoal

    2015-01-01

    The aim of this study was to evaluate the association between individual and contextual variables related to self-perception in oral health among residents in the municipality of São Leopoldo, Rio Grande do Sul State, Brazil. The cross-sectional design involved 1,100 adults in 38 census tracts. The self-perception was evaluated using the Oral Health Impact Profile (OHIP-14) tool. A logistic multilevel analysis was performed. The multivariate analysis revealed that those who are of the female gender, older, with lower scores of quality of life and less social support, with poor healthy eating habits, smokers and those living in low-income census tracts presented higher odds of reporting worse oral health self-perception (OHIP-1). We concluded that individual and contextual variables are associated with oral health self-perception. This is essential information for planning health services wishing to meet the health needs of the population.

  7. Traceability of 'Limone di Siracusa PGI' by a multidisciplinary analytical and chemometric approach.

    PubMed

    Amenta, M; Fabroni, S; Costa, C; Rapisarda, P

    2016-11-15

    Food traceability is increasingly relevant with respect to safety, quality and typicality issues. Lemon fruits grown in a typical lemon-growing area of southern Italy (Siracusa), have been awarded the PGI (Protected Geographical Indication) recognition as 'Limone di Siracusa'. Due to its peculiarity, consumers have an increasing interest about this product. The detection of potential fraud could be improved by using the tools linking the composition of this production to its typical features. This study used a wide range of analytical techniques, including conventional techniques and analytical approaches, such as spectral (NIR spectra), multi-elemental (Fe, Zn, Mn, Cu, Li, Sr) and isotopic ((13)C/(12)C, (18)O/(16)O) marker investigations, joined with multivariate statistical analysis, such as PLS-DA (Partial Least Squares Discriminant Analysis) and LDA (Linear Discriminant Analysis), to implement a traceability system to verify the authenticity of 'Limone di Siracusa' production. The results demonstrated a very good geographical discrimination rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Application of Multivariable Analysis and FTIR-ATR Spectroscopy to the Prediction of Properties in Campeche Honey

    PubMed Central

    Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.

    2016-01-01

    Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445

  9. Testing the performance of pure spectrum resolution from Raman hyperspectral images of differently manufactured pharmaceutical tablets.

    PubMed

    Vajna, Balázs; Farkas, Attila; Pataki, Hajnalka; Zsigmond, Zsolt; Igricz, Tamás; Marosi, György

    2012-01-27

    Chemical imaging is a rapidly emerging analytical method in pharmaceutical technology. Due to the numerous chemometric solutions available, characterization of pharmaceutical samples with unknown components present has also become possible. This study compares the performance of current state-of-the-art curve resolution methods (multivariate curve resolution-alternating least squares, positive matrix factorization, simplex identification via split augmented Lagrangian and self-modelling mixture analysis) in the estimation of pure component spectra from Raman maps of differently manufactured pharmaceutical tablets. The batches of different technologies differ in the homogeneity level of the active ingredient, thus, the curve resolution methods are tested under different conditions. An empirical approach is shown to determine the number of components present in a sample. The chemometric algorithms are compared regarding the number of detected components, the quality of the resolved spectra and the accuracy of scores (spectral concentrations) compared to those calculated with classical least squares, using the true pure component (reference) spectra. It is demonstrated that using appropriate multivariate methods, Raman chemical imaging can be a useful tool in the non-invasive characterization of unknown (e.g. illegal or counterfeit) pharmaceutical products. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Comparison of connectivity analyses for resting state EEG data

    NASA Astrophysics Data System (ADS)

    Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo

    2017-06-01

    Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.

  11. Lower Quarter Y-Balance Test Scores and Lower Extremity Injury in NCAA Division I Athletes.

    PubMed

    Lai, Wilson C; Wang, Dean; Chen, James B; Vail, Jeremy; Rugg, Caitlin M; Hame, Sharon L

    2017-08-01

    Functional movement tests that are predictive of injury risk in National Collegiate Athletic Association (NCAA) athletes are useful tools for sports medicine professionals. The Lower Quarter Y-Balance Test (YBT-LQ) measures single-leg balance and reach distances in 3 directions. To assess whether the YBT-LQ predicts the laterality and risk of sports-related lower extremity (LE) injury in NCAA athletes. Case-control study; Level of evidence, 3. The YBT-LQ was administered to 294 NCAA Division I athletes from 21 sports during preparticipation physical examinations at a single institution. Athletes were followed prospectively over the course of the corresponding season. Correlation analysis was performed between the laterality of reach asymmetry and composite scores (CS) versus the laterality of injury. Receiver operating characteristic (ROC) analysis was used to determine the optimal asymmetry cutoff score for YBT-LQ. A multivariate regression analysis adjusting for sex, sport type, body mass index, and history of prior LE surgery was performed to assess predictors of earlier and higher rates of injury. Neither the laterality of reach asymmetry nor the CS correlated with the laterality of injury. ROC analysis found optimal cutoff scores of 2, 9, and 3 cm for anterior, posteromedial, and posterolateral reach, respectively. All of these potential cutoff scores, along with a cutoff score of 4 cm used in the majority of prior studies, were associated with poor sensitivity and specificity. Furthermore, none of the asymmetric cutoff scores were associated with earlier or increased rate of injury in the multivariate analyses. YBT-LQ scores alone do not predict LE injury in this collegiate athlete population. Sports medicine professionals should be cautioned against using the YBT-LQ alone to screen for injury risk in collegiate athletes.

  12. Preoperative Detection of Sarcopenic Obesity Helps to Predict the Occurrence of Gastric Leak After Sleeve Gastrectomy.

    PubMed

    Gaillard, Martin; Tranchart, Hadrien; Maitre, Sophie; Perlemuter, Gabriel; Lainas, Panagiotis; Dagher, Ibrahim

    2018-03-02

    Sleeve gastrectomy (SG) has become the primary procedure for many bariatric teams and staple-line leak represents its most feared complication. Sarcopenic obesity combines the risks of obesity and depleted lean mass leading possibly to an inferior surgical outcome after abdominal surgery. The aim of this study was to evaluate the existence of a potential link between radiologically determined sarcopenic obesity and staple-line leak risk after SG. A retrospective analysis of a prospective database was performed in consecutive patients undergoing SG as primary procedure. Total psoas muscles (TPA) and total visible muscles (TMA) areas were measured on a preoperative computed tomography (CT). Sarcopenia was defined as lowest tertile of skeletal muscular mass indexes (muscular areas over square of height) in each gender (using TPA or TMA). Multivariate analysis was performed to determine preoperative risk factors for staple-line leak. During the study period, 205 patients were included in the analysis. Median BMI was 40.8 kg/m 2 (34.2-49.6), and 9 patients (4.4%) presented a gastric leak. The sex-specific cut-offs for skeletal muscular mass index according to TPA were 8.2 cm 2 /m 2 for men and 6.08 cm 2 /m 2 for women. After multivariate analysis, preoperative weight (OR = 1043) and sarcopenia (TPA) (OR = 5204) were independent predictive factors for gastric leak. The present series suggests that CT scan-determined sarcopenic obesity is associated with increased risk of gastric leak after SG. This preoperatively radiological examination would be a useful clinical tool to tailor patient management according to gastric leak risk.

  13. Is the Robson's classification system burdened by obstetric pathologies, maternal characteristics and assistential levels in comparing hospitals cesarean rates? A regional analysis of class 1 and 3.

    PubMed

    Gerli, Sandro; Favilli, Alessandro; Franchini, David; De Giorgi, Marcello; Casucci, Paola; Parazzini, Fabio

    2018-01-01

    To assess if maternal risk profile and Hospital assistential levels were able to influence the inter-Hospitals comparison in the class 1 and 3 of the "The Ten Group Classification System" (TGCS). A population-based analysis using data from Institutional data-base of an Italian Region was carried out. The 11 maternity wards were divided into two categories: second-level hospitals (SLH), and first-level hospitals (FLH). The recorded deliveries were classified according to the TGCS. To analyze if different maternal characteristics and the hospitals assistential level could influence the cesarean section (CS) risk, a multivariate analysis was done considering separately women in the TGCS class 1 and 3. From January 2011 to December 2013 were recorded 19,987 deliveries. Of those 7,693 were in the TGCS class 1 and 4,919 in the class 3. The CS rates were 20.8% and 14.7% in class 1 (p < 0.0001) and 6.9% and 5.3% (p < 0.0230) in class 3, respectively in the FLH and SLH. The multivariate logistic regression showed that the FLH, older maternal age and gestational diabetes were independent risk factors for CS in groups 1 and 3. Obesity and gestational hypertension were also independent risk factors for group 1. TGCS is a useful tool to analyze the incidence of CS in a single center but in comparing different Hospitals, maternal characteristics and different assistential levels should be considered as potential bias.

  14. Multivariate analysis of flow cytometric data using decision trees.

    PubMed

    Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver

    2012-01-01

    Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.

  15. Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying.

    PubMed

    Brouckaert, Davinia; De Meyer, Laurens; Vanbillemont, Brecht; Van Bockstal, Pieter-Jan; Lammens, Joris; Mortier, Séverine; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2018-04-03

    Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.

  16. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    PubMed

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016. © 2016 American Institute of Chemical Engineers.

  17. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    NASA Astrophysics Data System (ADS)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  18. High precision mass measurements for wine metabolomics

    PubMed Central

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis D.; Schmitt-Kopplin, Philippe

    2014-01-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS2. In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy. PMID:25431760

  19. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  20. High precision mass measurements for wine metabolomics

    NASA Astrophysics Data System (ADS)

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe

    2014-11-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.

  1. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  2. Drunk driving detection based on classification of multivariate time series.

    PubMed

    Li, Zhenlong; Jin, Xue; Zhao, Xiaohua

    2015-09-01

    This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  3. Percutaneous Radiofrequency Ablation of Colorectal Cancer Liver Metastases: Factors Affecting Outcomes—A 10-year Experience at a Single Center

    PubMed Central

    Shady, Waleed; Petre, Elena N.; Gonen, Mithat; Erinjeri, Joseph P.; Brown, Karen T.; Covey, Anne M.; Alago, William; Durack, Jeremy C.; Maybody, Majid; Brody, Lynn A.; Siegelbaum, Robert H.; D’Angelica, Michael I.; Jarnagin, William R.; Solomon, Stephen B.; Kemeny, Nancy E.

    2016-01-01

    Purpose To identify predictors of oncologic outcomes after percutaneous radiofrequency ablation (RFA) of colorectal cancer liver metastases (CLMs) and to describe and evaluate a modified clinical risk score (CRS) adapted for ablation as a patient stratification and prognostic tool. Materials and Methods This study consisted of a HIPAA-compliant institutional review board–approved retrospective review of data in 162 patients with 233 CLMs treated with percutaneous RFA between December 2002 and December 2012. Contrast material–enhanced CT was used to assess technique effectiveness 4–8 weeks after RFA. Patients were followed up with contrast-enhanced CT every 2–4 months. Overall survival (OS) and local tumor progression–free survival (LTPFS) were calculated from the time of RFA by using the Kaplan-Meier method. Log-rank tests and Cox regression models were used for univariate and multivariate analysis to identify predictors of outcomes. Results Technique effectiveness was 94% (218 of 233). Median LTPFS was 26 months. At univariate analysis, predictors of shorter LTPFS were tumor size greater than 3 cm (P < .001), ablation margin size of 5 mm or less (P < .001), high modified CRS (P = .009), male sex (P = .03), and no history of prior hepatectomy (P = .04) or hepatic arterial infusion chemotherapy (P = .01). At multivariate analysis, only tumor size greater than 3 cm (P = .01) and margin size of 5 mm or less (P < .001) were independent predictors of shorter LTPFS. Median and 5-year OS were 36 months and 31%. At univariate analysis, predictors of shorter OS were tumor size larger than 3 cm (P = .005), carcinoembryonic antigen level greater than 30 ng/mL (P = .003), high modified CRS (P = .02), and extrahepatic disease (EHD) (P < .001). At multivariate analysis, tumor size greater than 3 cm (P = .006) and more than one site of EHD (P < .001) were independent predictors of shorter OS. Conclusion Tumor size of less than 3 cm and ablation margins greater than 5 mm are essential for satisfactory local tumor control. Tumor size of more than 3 cm and the presence of more than one site of EHD are associated with shorter OS. © RSNA, 2015 PMID:26267832

  4. Edmonton obesity staging system among pediatric patients: a validation and obesogenic risk factor analysis.

    PubMed

    Grammatikopoulou, M G; Chourdakis, M; Gkiouras, K; Roumeli, P; Poulimeneas, D; Apostolidou, E; Chountalas, I; Tirodimos, I; Filippou, O; Papadakou-Lagogianni, S; Dardavessis, T

    2018-01-08

    The Edmonton Obesity Staging System for Pediatrics (EOSS-P) is a useful tool, delineating different obesity severity tiers associated with distinct treatment barriers. The aim of the study was to apply the EOSS-P on a Greek pediatric cohort and assess risk factors associated with each stage, compared to normal weight controls. A total of 361 children (2-14 years old), outpatients of an Athenian hospital, participated in this case-control study by forming two groups: the obese (n = 203) and the normoweight controls (n = 158). Anthropometry, blood pressure, blood and biochemical markers, comorbidities and obesogenic lifestyle parameters were recorded and the EOSS-P was applied. Validation of EOSS-P stages was conducted by juxtaposing them with IOTF-defined weight status. Obesogenic risk factors' analysis was conducted by constructing gender-and-age-adjusted (GA) and multivariate logistic models. The majority of obese children were stratified at stage 1 (46.0%), 17.0% were on stage 0, and 37.0% on stage 2. The validation analysis revealed that EOSS-P stages greater than 0 were associated with diastolic blood pressure and levels of glucose, cholesterol, LDL and ALT. Reduced obesity odds were observed among children playing outdoors and increased odds for every screen time hour, both in the GA and in the multivariate analyses (all P < 0.05). Although participation in sports > 2 times/week was associated with reduced obesity odds in the GA analysis (OR = 0.57, 95% CI = 0.33-0.98, P linear = 0.047), it lost its significance in the multivariate analysis (P linear = 0.145). Analogous results were recorded in the analyses of the abovementioned physical activity risk factors for the EOSS-P stages. Linear relationships were observed for fast-food consumption and IOTF-defined obesity and higher than 0 EOSS-P stages. Parental obesity status was associated with all EOSS-P stages and IOTF-defined obesity status. Few outpatients were healthy obese (stage 0), while the majority exhibited several comorbidities. Since each obesity tier entails different impacts to disease management, the study herein highlights modifiable factors facilitating descend to lower stages, and provides insight for designing tailored approaches tackling the high national pediatric obesity rates.

  5. Developing the Thai Siriraj Psoriatic Arthritis Screening Tool and validating the Thai Psoriasis Epidemiology Screening Tool and the Early Arthritis for Psoriatic Patients questionnaire.

    PubMed

    Chiowchanwisawakit, Praveena; Wattanamongkolsil, Luksame; Srinonprasert, Varalak; Petcharat, Chonachan; Siriwanarangsun, Palanan; Katchamart, Wanruchada

    2016-10-01

    To validate the Thai language version of the Psoriasis Epidemiology Screening Tool (PEST) and the Early Arthritis for Psoriatic Patients Questionnaire (EARP), as well as also to develop a new tool for screening psoriatic arthritis (PsA) among psoriasis (Ps) patients. This was a cross-sectional study. Ps patients visiting the psoriasis clinic at Siriraj Hospital were recruited. They completed the EARP and PEST. Full musculoskeletal history, examination, and radiography were evaluated. PsA was diagnosed by a rheumatologist's evaluation and fulfillment of the classification criteria for psoriatic arthritis. Receiver operator characteristic (ROC) curves, sensitivity, and specificity were used to evaluate the performances of the tools. The Siriraj Psoriatic Arthritis Screening Tool (SiPAT) contained questions most relevant to peripheral arthritis, axial inflammation, and enthesitis, selected from multivariate analysis. Of a total of 159 patients, the prevalence of PsA was 78.6 %. The ROC curve analyses of Thai EARP, PEST, and SiPAT were 0.90 (95 % CI 0.84, 0.96), 0.85 (0.78, 0.92), and 0.89 (0.83, 0.95), respectively. The sensitivities of SiPAT, Thai EARP, and PEST were 91.0, 83.0, and 72.0 %, respectively, while the specificities were 69.0, 79.3, and 89.7 %, respectively. All screening questionnaires showed good diagnostic performances. SiPAT could be considered as a screening tool with its desirable properties: higher sensitivity and taking less time. Thai PEST and EARP could possibly be sequentially administered for people with a positive test from SiPAT to reduce the number of false positives.

  6. Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.

    PubMed

    Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.

  7. Moving beyond Univariate Post-Hoc Testing in Exercise Science: A Primer on Descriptive Discriminate Analysis

    ERIC Educational Resources Information Center

    Barton, Mitch; Yeatts, Paul E.; Henson, Robin K.; Martin, Scott B.

    2016-01-01

    There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent…

  8. Pre-operative Thresholds for Achieving Meaningful Clinical Improvement after Arthroscopic Treatment of Femoroacetabular Impingement

    PubMed Central

    Nwachukwu, Benedict U.; Fields, Kara G.; Nawabi, Danyal H.; Kelly, Bryan T.; Ranawat, Anil S.

    2016-01-01

    Objectives: Knowledge of the thresholds and determinants for successful femoroacetabular impingement (FAI) treatment is evolving. The primary purpose of this study was to define pre-operative outcome score thresholds that can be used to predict patients most likely to achieve meaningful clinically important difference (MCID) after arthroscopic FAI treatment. Secondarily determinants of achieving MCID were evaluated. Methods: A prospective institutional hip arthroscopy registry was reviewed to identify patients with FAI treated with arthroscopic labral surgery, acetabular rim trimming, and femoral osteochondroplasty. The modified Harris Hip Score (mHHS), the Hip Outcome Score (HOS) and the international Hip Outcome Tool (iHOT-33) tools were administered at baseline and at one year post-operatively. MCID was calculated using a distribution-based method. A receiver operating characteristic (ROC) analysis was used to calculate cohort-based threshold values predictive of achieving MCID. Area under the curve (AUC) was used to define predictive ability (strength of association) with AUC >0.7 considered acceptably predictive. Univariate and multivariable analyses were used to analyze demographic, radiographic and intra-operative factors associated with achieving MCID. Results: There were 374 patients (mean + SD age, 32.9 + 10.5) and 56.4% were female. The MCID for mHHS, HOS activities of daily living (HOS-ADL), HOS Sports, and iHOT-33 was 8.2, 8.4,14.5, and 12.0 respectively. ROC analysis (threshold, % achieving MCID, strength of association) for these tools in our population was: mHHS (61.6, 78%, 0.68), HOS-ADL (83.8, 68%, 0.84), HOS-Sports (63.9, 64%, 0.74), and iHOT-33 (54.3, 82%, 0.65). Likelihood for achieving MCID declined above and increased below these thresholds. In univariate analysis female sex, femoral version, lower acetabular outerbridge score and increasing CT sagittal center edge angle (CEA) were predictive of achieving MCID. In multivariable analysis sagittal CEA was the only variable maintaining significance (p = 0.032). Conclusion: We used a large prospective hip arthroscopy database to identify pre-operative patient outcome score thresholds predictive of meaningful post-operative outcome improvement after arthroscopic FAI treatment. This is the largest reported hip arthroscopy cohort to define MCID and the first to do so for iHOT-33. The HOS-ADL may have the best predictive ability for achieving MCID after hip arthroscopy. Patients with relatively high pre-operative ADL, quality of life and functional status appear to have a high chance for achieveing MCID up to our defined thresholds. Hip dysplasia is an important outcome modifier. The findings of this study may be useful for managing preoperative expectation for patients undergoing arthroscopic FAI surgery.

  9. A combined paging alert and web-based instrument alters clinician behavior and shortens hospital length of stay in acute pancreatitis.

    PubMed

    Dimagno, Matthew J; Wamsteker, Erik-Jan; Rizk, Rafat S; Spaete, Joshua P; Gupta, Suraj; Sahay, Tanya; Costanzo, Jeffrey; Inadomi, John M; Napolitano, Lena M; Hyzy, Robert C; Desmond, Jeff S

    2014-03-01

    There are many published clinical guidelines for acute pancreatitis (AP). Implementation of these recommendations is variable. We hypothesized that a clinical decision support (CDS) tool would change clinician behavior and shorten hospital length of stay (LOS). Observational study, entitled, The AP Early Response (TAPER) Project. Tertiary center emergency department (ED) and hospital. Two consecutive samplings of patients having ICD-9 code (577.0) for AP were generated from the emergency department (ED) or hospital admissions. Diagnosis of AP was based on conventional Atlanta criteria. The Pre-TAPER-CDS-Tool group (5/30/06-6/22/07) had 110 patients presenting to the ED with AP per 976 ICD-9 (577.0) codes and the Post-TAPER-CDS-Tool group (5/30/06-6/22/07) had 113 per 907 ICD-9 codes (7/14/10-5/5/11). The TAPER-CDS-Tool, developed 12/2008-7/14/2010, is a combined early, automated paging-alert system, which text pages ED clinicians about a patient with AP and an intuitive web-based point-of-care instrument, consisting of seven early management recommendations. The pre- vs. post-TAPER-CDS-Tool groups had similar baseline characteristics. The post-TAPER-CDS-Tool group met two management goals more frequently than the pre-TAPER-CDS-Tool group: risk stratification (P<0.0001) and intravenous fluids >6L/1st 0-24 h (P=0.0003). Mean (s.d.) hospital LOS was significantly shorter in the post-TAPER-CDS-Tool group (4.6 (3.1) vs. 6.7 (7.0) days, P=0.0126). Multivariate analysis identified four independent variables for hospital LOS: the TAPER-CDS-Tool associated with shorter LOS (P=0.0049) and three variables associated with longer LOS: Japanese severity score (P=0.0361), persistent organ failure (P=0.0088), and local pancreatic complications (<0.0001). The TAPER-CDS-Tool is associated with changed clinician behavior and shortened hospital LOS, which has significant financial implications.

  10. Finding structure in data using multivariate tree boosting

    PubMed Central

    Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.

    2016-01-01

    Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183

  11. Multivariate meta-analysis using individual participant data

    PubMed Central

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2016-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484

  12. Development and psychometric testing of the clinical networks engagement tool

    PubMed Central

    Hecker, Kent G.; Rabatach, Leora; Noseworthy, Tom W.; White, Deborah E.

    2017-01-01

    Background Clinical networks are being used widely to facilitate large system transformation in healthcare, by engagement of stakeholders throughout the health system. However, there are no available instruments that measure engagement in these networks. Methods The study purpose was to develop and assess the measurement properties of a multiprofessional tool to measure engagement in clinical network initiatives. Based on components of the International Association of Public Participation Spectrum and expert panel review, we developed 40 items for testing. The draft instrument was distributed to 1,668 network stakeholders across different governance levels (leaders, members, support, frontline stakeholders) in 9 strategic clinical networks in Alberta (January to July 2014). With data from 424 completed surveys (25.4% response rate), descriptive statistics, exploratory and confirmatory factor analysis, Pearson correlations, linear regression, multivariate analysis, and Cronbach alpha were conducted to assess reliability and validity of the scores. Results Sixteen items were retained in the instrument. Exploratory factor analysis indicated a four-factor solution and accounted for 85.7% of the total variance in engagement with clinical network initiatives: global engagement, inform (provided with information), involve (worked together to address concerns), and empower (given final decision-making authority). All subscales demonstrated acceptable reliability (Cronbach alpha 0.87 to 0.99). Both the confirmatory factor analysis and regression analysis confirmed that inform, involve, and empower were all significant predictors of global engagement, with involve as the strongest predictor. Leaders had higher mean scores than frontline stakeholders, while members and support staff did not differ in mean scores. Conclusions This study provided foundational evidence for the use of this tool for assessing engagement in clinical networks. Further work is necessary to evaluate engagement in broader network functions and activities; to assess barriers and facilitators of engagement; and, to elucidate how the maturity of networks and other factors influence engagement. PMID:28350834

  13. Osteoporosis Self-Assessment Tool for Asians Can Predict Neurologic Prognosis in Patients with Isolated Moderate Traumatic Brain Injury

    PubMed Central

    Chan, Hon-Man; Huang, Shiuh-Lin; Lin, Chih-Lung; Kwan, Aij-Lie; Lou, Yun-Ting; Chen, Chao-Wen

    2015-01-01

    Objectives Osteoporosis Self-Assessment Tool for Asians (OSTA) has been proved to be a simple and effective tool for recognizing osteoporosis risk. Our previous study has demonstrated that the preoperative OSTA index was a good prognostic predictor for stage II and III colon cancer patients after surgery. We aim to evaluate the value of OSTA index in prognostication of isolated traumatic brain injury with moderate severity (GCS 9-13). Methods We retrospectively reviewed all patients visiting Kaohsiung Medical University Hospital emergency department due to isolated moderate traumatic brain injury from Jan. 2010 to Dec. 2012. Background data (including the OSTA index), clinical presentations, management and outcomes (ICU admission days, total admission days, complications, Glasgow outcome score (GOS) at discharge, mortality) of the patients were recorded for further analysis. Our major outcome was good neurologic recovery defined as GOS of 5. Pearson chi-square test and the Mann-Whitney U test were used to compare demographic features. Multiple logistic regression was used to identify independent risk factors. Results 107 isolated moderate TBI patients were studied. 40 patients (37.4%) showed good recovery and 10 (9.3%) died at discharge. The univariate analysis revealed that younger age, higher OSTA index, lower ISS, lower AIS-H, and avoidance to neurosurgery were associated with better neurologic outcome for all moderate TBI patients. Multivariate analysis revealed that lower ISS, higher OSTA, and the avoidance of neurosurgery were independent risk factors predicting good neurologic recovery. Conclusion Higher ISS, lower OSTA index and exposure to neurosurgery were the independent risk factors for poorer recovery from isolated moderate TBI. In addition to labeling the cohort harboring osteoporotic risk, OSTA index could predict neurologic prognosis in patients with isolated moderate traumatic brain injury. PMID:26186582

  14. Fluorescence Spectroscopy as a Tool for the Assessment of Liver Samples with Several Stages of Fibrosis.

    PubMed

    Fabila-Bustos, Diego A; Arroyo-Camarena, Úrsula D; López-Vancell, María D; Durán-Padilla, Marco A; Azuceno-García, Itzel; Stolik-Isakina, Suren; Valor-Reed, Alma; Ibarra-Coronado, Elizabeth; Hernández-Quintanar, Luis F; Escobedo, Galileo; de la Rosa-Vázquez, José M

    2018-03-01

    During the last years, fluorescence spectroscopy has been used as a potential tool for the evaluation and characterization of tissues with different disease conditions due to its low cost, high sensitivity, and minimally or noninvasive character. In this study, fluorescence spectroscopy was used to study 19 paraffin blocks containing human liver tissue from biopsies. All samples were previously analyzed by two senior pathologists in a single-blind trial. After their evaluation, four liver samples were classified as nonfibrosis (F0), four as initial fibrosis (F1-F2), four as advanced fibrosis (F3), and six as cirrhosis (F4). The fluorescence was induced at different wavelengths as follows: 330, 365, and 405 nm using a portable fiber-optic system. The fluorescence spectra were recorded in the range of 400-750 nm. A distinctive correlation between the shape of each spectrum and the level of fibrosis in the liver sample was detected. A multi-variate statistical analysis based on principal component analysis followed by linear discrimination analysis was applied to develop algorithms able to distinguish different stages of fibrosis based on the characteristics of fluorescence spectra. Pairwise comparisons were performed: F0 versus F1-F2, F1-F2 versus F3, F3 versus F4, and F1-F2 versus F4. The algorithms applied to each set of data yielded values of sensitivity and specificity that were higher than 90% and 95%, respectively, in all the analyzed cases. With this study, it is concluded that fluorescence spectroscopy can be used as a complementary tool for the assessment of liver fibrosis in liver tissue samples, which sets the stage for subsequent clinical trials.

  15. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  16. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions

    PubMed Central

    2013-01-01

    Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370

  17. Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure.

    PubMed

    D'Amico, E J; Neilands, T B; Zambarano, R

    2001-11-01

    Although power analysis is an important component in the planning and implementation of research designs, it is often ignored. Computer programs for performing power analysis are available, but most have limitations, particularly for complex multivariate designs. An SPSS procedure is presented that can be used for calculating power for univariate, multivariate, and repeated measures models with and without time-varying and time-constant covariates. Three examples provide a framework for calculating power via this method: an ANCOVA, a MANOVA, and a repeated measures ANOVA with two or more groups. The benefits and limitations of this procedure are discussed.

  18. Multivariate analysis for stormwater quality characteristics identification from different urban surface types in macau.

    PubMed

    Huang, J; Du, P; Ao, C; Ho, M; Lei, M; Zhao, D; Wang, Z

    2007-12-01

    Statistical analysis of stormwater runoff data enables general identification of runoff characteristics. Six catchments with different urban surface type including roofs, roadway, park, and residential/commercial in Macau were selected for sampling and study during the period from June 2005 to September 2006. Based on univariate statistical analysis of data sampled, major pollutants discharged from different urban surface type were identified. As for iron roof runoff, Zn is the most significant pollutant. The major pollutants from urban roadway runoff are TSS and COD. Stormwater runoff from commercial/residential and Park catchments show high level of COD, TN, and TP concentration. Principal component analysis was further done for identification of linkages between stormwater quality and urban surface types. Two potential pollution sources were identified for study catchments with different urban surface types. The first one is referred as nutrients losses, soil losses and organic pollutants discharges, the second is related to heavy metals losses. PCA was proved to be a viable tool to explain the type of pollution sources and its mechanism for different urban surface type catchments.

  19. ``Low-cost Electronic nose evaluated on Thai-herb of Northern-Thailand samples using multivariate analysis methods''

    NASA Astrophysics Data System (ADS)

    na ayudhaya, Paisarn Daungjak; Klinbumrung, Arrak; Jaroensutasinee, Krisanadej; Pratontep, Sirapat; Kerdcharoen, Teerakiat

    2009-05-01

    In case of species of natural and aromatic plant originated from the northern Thailand, sensory characteristics, especially odours, have unique identifiers of herbs. The instruments sensory analysis have performed by several of differential of sensing, so call `electronic nose', to be a significantly and rapidly for chemometrics. The signal responses of the low cost electronic nose were evaluated by principal component analysis (PCA). The aims of this paper evaluated various of Thai-herbs grown in Northern of Thailand as data preprocessing tools of the Low-cost electronic nose (enNU-PYO1). The essential oil groups of Thai herbs such as Garlic, Lemongrass, Shallot (potato onion), Onion, Zanthoxylum limonella (Dennst.) Alston (Thai name is Makaen), and Kaffir lime leaf were compared volatilized from selected fresh herbs. Principal component analysis of the original sensor responses did clearly distinguish either all samples. In all cases more than 97% for cross-validated group were classified correctly. The results demonstrated that it was possible to develop in a model to construct a low-cost electronic nose to provide measurement of odoriferous herbs.

  20. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

Top