Multivariate Density Estimation and Remote Sensing
NASA Technical Reports Server (NTRS)
Scott, D. W.
1983-01-01
Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.
Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou
2013-01-01
Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix. PMID:23858479
Deterministic annealing for density estimation by multivariate normal mixtures
NASA Astrophysics Data System (ADS)
Kloppenburg, Martin; Tavan, Paul
1997-03-01
An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.
Considerations in cross-validation type density smoothing with a look at some data
NASA Technical Reports Server (NTRS)
Schuster, E. F.
1982-01-01
Experience gained in applying nonparametric maximum likelihood techniques of density estimation to judge the comparative quality of various estimators is reported. Two invariate data sets of one hundered samples (one Cauchy, one natural normal) are considered as well as studies in the multivariate case.
Extracting galactic structure parameters from multivariated density estimation
NASA Technical Reports Server (NTRS)
Chen, B.; Creze, M.; Robin, A.; Bienayme, O.
1992-01-01
Multivariate statistical analysis, including includes cluster analysis (unsupervised classification), discriminant analysis (supervised classification) and principle component analysis (dimensionlity reduction method), and nonparameter density estimation have been successfully used to search for meaningful associations in the 5-dimensional space of observables between observed points and the sets of simulated points generated from a synthetic approach of galaxy modelling. These methodologies can be applied as the new tools to obtain information about hidden structure otherwise unrecognizable, and place important constraints on the space distribution of various stellar populations in the Milky Way. In this paper, we concentrate on illustrating how to use nonparameter density estimation to substitute for the true densities in both of the simulating sample and real sample in the five-dimensional space. In order to fit model predicted densities to reality, we derive a set of equations which include n lines (where n is the total number of observed points) and m (where m: the numbers of predefined groups) unknown parameters. A least-square estimation will allow us to determine the density law of different groups and components in the Galaxy. The output from our software, which can be used in many research fields, will also give out the systematic error between the model and the observation by a Bayes rule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupšys, P.
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
NASA Astrophysics Data System (ADS)
Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.
1995-06-01
A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.
Nonparametric analysis of Minnesota spruce and aspen tree data and LANDSAT data
NASA Technical Reports Server (NTRS)
Scott, D. W.; Jee, R.
1984-01-01
The application of nonparametric methods in data-intensive problems faced by NASA is described. The theoretical development of efficient multivariate density estimators and the novel use of color graphics workstations are reviewed. The use of nonparametric density estimates for data representation and for Bayesian classification are described and illustrated. Progress in building a data analysis system in a workstation environment is reviewed and preliminary runs presented.
Demidenko, Eugene
2017-09-01
The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.
Use of uninformative priors to initialize state estimation for dynamical systems
NASA Astrophysics Data System (ADS)
Worthy, Johnny L.; Holzinger, Marcus J.
2017-10-01
The admissible region must be expressed probabilistically in order to be used in Bayesian estimation schemes. When treated as a probability density function (PDF), a uniform admissible region can be shown to have non-uniform probability density after a transformation. An alternative approach can be used to express the admissible region probabilistically according to the Principle of Transformation Groups. This paper uses a fundamental multivariate probability transformation theorem to show that regardless of which state space an admissible region is expressed in, the probability density must remain the same under the Principle of Transformation Groups. The admissible region can be shown to be analogous to an uninformative prior with a probability density that remains constant under reparameterization. This paper introduces requirements on how these uninformative priors may be transformed and used for state estimation and the difference in results when initializing an estimation scheme via a traditional transformation versus the alternative approach.
Gaussian windows: A tool for exploring multivariate data
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1990-01-01
Presented here is a method for interactively exploring a large set of quantitative multivariate data, in order to estimate the shape of the underlying density function. It is assumed that the density function is more or less smooth, but no other specific assumptions are made concerning its structure. The local structure of the data in a given region may be examined by viewing the data through a Gaussian window, whose location and shape are chosen by the user. A Gaussian window is defined by giving each data point a weight based on a multivariate Gaussian function. The weighted sample mean and sample covariance matrix are then computed, using the weights attached to the data points. These quantities are used to compute an estimate of the shape of the density function in the window region. The local structure of the data is described by a method similar to the method of principal components. By taking many such local views of the data, we can form an idea of the structure of the data set. The method is applicable in any number of dimensions. The method can be used to find and describe simple structural features such as peaks, valleys, and saddle points in the density function, and also extended structures in higher dimensions. With some practice, we can apply our geometrical intuition to these structural features in any number of dimensions, so that we can think about and describe the structure of the data. Since the computations involved are relatively simple, the method can easily be implemented on a small computer.
Eskelson, Bianca N.I.; Hagar, Joan; Temesgen, Hailemariam
2012-01-01
Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags depends on size and decay stage, snag density estimation without any information about snag quality attributes is of little value for wildlife management decision makers. Little work has been done to develop models that allow multivariate estimation of snag density by snag quality class. Using climate, topography, Landsat TM data, stand age and forest type collected for 2356 forested Forest Inventory and Analysis plots in western Washington and western Oregon, we evaluated two multivariate techniques for their abilities to estimate density of snags by three decay classes. The density of live trees and snags in three decay classes (D1: recently dead, little decay; D2: decay, without top, some branches and bark missing; D3: extensive decay, missing bark and most branches) with diameter at breast height (DBH) ≥ 12.7 cm was estimated using a nonparametric random forest nearest neighbor imputation technique (RF) and a parametric two-stage model (QPORD), for which the number of trees per hectare was estimated with a Quasipoisson model in the first stage and the probability of belonging to a tree status class (live, D1, D2, D3) was estimated with an ordinal regression model in the second stage. The presence of large snags with DBH ≥ 50 cm was predicted using a logistic regression and RF imputation. Because of the more homogenous conditions on private forest lands, snag density by decay class was predicted with higher accuracies on private forest lands than on public lands, while presence of large snags was more accurately predicted on public lands, owing to the higher prevalence of large snags on public lands. RF outperformed the QPORD model in terms of percent accurate predictions, while QPORD provided smaller root mean square errors in predicting snag density by decay class. The logistic regression model achieved more accurate presence/absence classification of large snags than the RF imputation approach. Adjusting the decision threshold to account for unequal size for presence and absence classes is more straightforward for the logistic regression than for the RF imputation approach. Overall, model accuracies were poor in this study, which can be attributed to the poor predictive quality of the explanatory variables and the large range of forest types and geographic conditions observed in the data.
LFSPMC: Linear feature selection program using the probability of misclassification
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.; Marion, B. P.
1975-01-01
The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.
Ellipsoids for anomaly detection in remote sensing imagery
NASA Astrophysics Data System (ADS)
Grosklos, Guenchik; Theiler, James
2015-05-01
For many target and anomaly detection algorithms, a key step is the estimation of a centroid (relatively easy) and a covariance matrix (somewhat harder) that characterize the background clutter. For a background that can be modeled as a multivariate Gaussian, the centroid and covariance lead to an explicit probability density function that can be used in likelihood ratio tests for optimal detection statistics. But ellipsoidal contours can characterize a much larger class of multivariate density function, and the ellipsoids that characterize the outer periphery of the distribution are most appropriate for detection in the low false alarm rate regime. Traditionally the sample mean and sample covariance are used to estimate ellipsoid location and shape, but these quantities are confounded both by large lever-arm outliers and non-Gaussian distributions within the ellipsoid of interest. This paper compares a variety of centroid and covariance estimation schemes with the aim of characterizing the periphery of the background distribution. In particular, we will consider a robust variant of the Khachiyan algorithm for minimum-volume enclosing ellipsoid. The performance of these different approaches is evaluated on multispectral and hyperspectral remote sensing imagery using coverage plots of ellipsoid volume versus false alarm rate.
2013-01-01
Background Peripheral artery disease (PAD) represents atherosclerotic disease and is a risk factor for death in peritoneal dialysis (PD) patients, who tend to show an atherogenic lipid profile. In this study, we investigated the relationship between lipid profile and ankle-brachial index (ABI) as an index of atherosclerosis in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level. Methods Thirty-five PD patients, whose serum LDL cholesterol level was controlled at less than 120mg/dl, were enrolled in this cross-sectional study in Japan. The proportions of cholesterol level to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions and the mean size of lipoprotein particles were measured using an improved method, namely, high-performance gel permeation chromatography. Multivariate linear regression analysis was adjusted for diabetes mellitus and cardiovascular and/or cerebrovascular diseases. Results The mean (standard deviation) age was 61.6 (10.5) years; PD vintage, 38.5 (28.1) months; ABI, 1.07 (0.22). A low ABI (0.9 or lower) was observed in 7 patients (low-ABI group). The low-ABI group showed significantly higher cholesterol proportions in the chylomicron fraction and large very-low-density lipoproteins (VLDLs) (Fractions 3–5) than the high-ABI group (ABI>0.9). Adjusted multivariate linear regression analysis showed that ABI was negatively associated with serum VLDL cholesterol level (parameter estimate=-0.00566, p=0.0074); the cholesterol proportions in large VLDLs (Fraction 4, parameter estimate=-3.82, p=0.038; Fraction 5, parameter estimate=-3.62, p=0.0039) and medium VLDL (Fraction 6, parameter estimate=-3.25, p=0.014); and the size of VLDL particles (parameter estimate=-0.0352, p=0.032). Conclusions This study showed that the characteristics of VLDL particles were associated with ABI among PD patients. Lowering serum VLDL level may be an effective therapy against atherosclerosis in PD patients after the control of serum LDL cholesterol level. PMID:24093487
Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆
Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny
2014-01-01
There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702
NASA Astrophysics Data System (ADS)
Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar
2015-06-01
In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.
Fast clustering using adaptive density peak detection.
Wang, Xiao-Feng; Xu, Yifan
2017-12-01
Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
Multivariate Epi-splines and Evolving Function Identification Problems
2015-04-15
such extrinsic information as well as observed function and subgradient values often evolve in applications, we establish conditions under which the...previous study [30] dealt with compact intervals of IR. Splines are intimately tied to optimization problems through their variational theory pioneered...approxima- tion. Motivated by applications in curve fitting, regression, probability density estimation, variogram computation, financial curve construction
Sun, Yu; Reynolds, Hayley M; Wraith, Darren; Williams, Scott; Finnegan, Mary E; Mitchell, Catherine; Murphy, Declan; Haworth, Annette
2018-04-26
There are currently no methods to estimate cell density in the prostate. This study aimed to develop predictive models to estimate prostate cell density from multiparametric magnetic resonance imaging (mpMRI) data at a voxel level using machine learning techniques. In vivo mpMRI data were collected from 30 patients before radical prostatectomy. Sequences included T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced imaging. Ground truth cell density maps were computed from histology and co-registered with mpMRI. Feature extraction and selection were performed on mpMRI data. Final models were fitted using three regression algorithms including multivariate adaptive regression spline (MARS), polynomial regression (PR) and generalised additive model (GAM). Model parameters were optimised using leave-one-out cross-validation on the training data and model performance was evaluated on test data using root mean square error (RMSE) measurements. Predictive models to estimate voxel-wise prostate cell density were successfully trained and tested using the three algorithms. The best model (GAM) achieved a RMSE of 1.06 (± 0.06) × 10 3 cells/mm 2 and a relative deviation of 13.3 ± 0.8%. Prostate cell density can be quantitatively estimated non-invasively from mpMRI data using high-quality co-registered data at a voxel level. These cell density predictions could be used for tissue classification, treatment response evaluation and personalised radiotherapy.
Hot spots of multivariate extreme anomalies in Earth observations
NASA Astrophysics Data System (ADS)
Flach, M.; Sippel, S.; Bodesheim, P.; Brenning, A.; Denzler, J.; Gans, F.; Guanche, Y.; Reichstein, M.; Rodner, E.; Mahecha, M. D.
2016-12-01
Anomalies in Earth observations might indicate data quality issues, extremes or the change of underlying processes within a highly multivariate system. Thus, considering the multivariate constellation of variables for extreme detection yields crucial additional information over conventional univariate approaches. We highlight areas in which multivariate extreme anomalies are more likely to occur, i.e. hot spots of extremes in global atmospheric Earth observations that impact the Biosphere. In addition, we present the year of the most unusual multivariate extreme between 2001 and 2013 and show that these coincide with well known high impact extremes. Technically speaking, we account for multivariate extremes by using three sophisticated algorithms adapted from computer science applications. Namely an ensemble of the k-nearest neighbours mean distance, a kernel density estimation and an approach based on recurrences is used. However, the impact of atmosphere extremes on the Biosphere might largely depend on what is considered to be normal, i.e. the shape of the mean seasonal cycle and its inter-annual variability. We identify regions with similar mean seasonality by means of dimensionality reduction in order to estimate in each region both the `normal' variance and robust thresholds for detecting the extremes. In addition, we account for challenges like heteroscedasticity in Northern latitudes. Apart from hot spot areas, those anomalies in the atmosphere time series are of particular interest, which can only be detected by a multivariate approach but not by a simple univariate approach. Such an anomalous constellation of atmosphere variables is of interest if it impacts the Biosphere. The multivariate constellation of such an anomalous part of a time series is shown in one case study indicating that multivariate anomaly detection can provide novel insights into Earth observations.
Breeding population density and habitat use of Swainson's warblers in a Georgia floodplain forest
Wright, E.A.
2002-01-01
I examined density and habitat use of a Swainson's Warbler (Limnothlypis swainsonii) breeding population in Georgia. This songbird species is inadequately monitored, and may be declining due to anthropogenic alteration of floodplain forest breeding habitats. I used distance sampling methods to estimate density, finding 9.4 singing males/ha (CV = 0.298). Individuals were encountered too infrequently to produce a Iow-variance estimate, and distance sampling thus may be impracticable for monitoring this relatively rare species. I developed a set of multivariate habitat models using binary logistic regression techniques, based on measurement of 22 variables in 56 plots occupied by Swainson's Warblers and 110 unoccupied plots. Occupied areas were characterized by high stem density of cane (Arundinaria gigantea) and other shrub layer vegetation, and presence of abundant and accessible leaf litter. I recommend two habitat models, which correctly classified 87-89% of plots in cross-validation runs, for potential use in habitat assessment at other locations.
Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B
2009-08-01
To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.
Application of multivariate autoregressive spectrum estimation to ULF waves
NASA Technical Reports Server (NTRS)
Ioannidis, G. A.
1975-01-01
The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.
Bhattacharya, Abhishek; Dunson, David B.
2012-01-01
This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels. PMID:22984295
Models and analysis for multivariate failure time data
NASA Astrophysics Data System (ADS)
Shih, Joanna Huang
The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the performance of these two methods using actual and computer generated data.
Zhang, Yongsheng; Wei, Heng; Zheng, Kangning
2017-01-01
Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188
Early experiences building a software quality prediction model
NASA Technical Reports Server (NTRS)
Agresti, W. W.; Evanco, W. M.; Smith, M. C.
1990-01-01
Early experiences building a software quality prediction model are discussed. The overall research objective is to establish a capability to project a software system's quality from an analysis of its design. The technical approach is to build multivariate models for estimating reliability and maintainability. Data from 21 Ada subsystems were analyzed to test hypotheses about various design structures leading to failure-prone or unmaintainable systems. Current design variables highlight the interconnectivity and visibility of compilation units. Other model variables provide for the effects of reusability and software changes. Reported results are preliminary because additional project data is being obtained and new hypotheses are being developed and tested. Current multivariate regression models are encouraging, explaining 60 to 80 percent of the variation in error density of the subsystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanemoto, S.; Andoh, Y.; Sandoz, S.A.
1984-10-01
A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less
Comparison of connectivity analyses for resting state EEG data
NASA Astrophysics Data System (ADS)
Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo
2017-06-01
Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.
Gaussianization for fast and accurate inference from cosmological data
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2016-06-01
We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temple, P.J.; Mutters, R.J.; Adams, C.
1995-06-01
Biomass sampling plots were established at 29 locations within the dominant vegetation zones of the study area. Estimates of foliar biomass were made for each plot by three independent methods: regression analysis on the basis of tree diameter, calculation of the amount of light intercepted by the leaf canopy, and extrapolation from branch leaf area. Multivariate regression analysis was used to relate these foliar biomass estimates for oak plots and conifer plots to several independent predictor variables, including elevation, slope, aspect, temperature, precipitation, and soil chemical characteristics.
R. L. Czaplewski
2009-01-01
The minimum variance multivariate composite estimator is a relatively simple sequential estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability sample of expensive field data with multiple censuses and/or samples of relatively inexpensive multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite...
Keller, Brad M; Chen, Jinbo; Daye, Dania; Conant, Emily F; Kontos, Despina
2015-08-25
Breast density, commonly quantified as the percentage of mammographically dense tissue area, is a strong breast cancer risk factor. We investigated associations between breast cancer and fully automated measures of breast density made by a new publicly available software tool, the Laboratory for Individualized Breast Radiodensity Assessment (LIBRA). Digital mammograms from 106 invasive breast cancer cases and 318 age-matched controls were retrospectively analyzed. Density estimates acquired by LIBRA were compared with commercially available software and standard Breast Imaging-Reporting and Data System (BI-RADS) density estimates. Associations between the different density measures and breast cancer were evaluated by using logistic regression after adjustment for Gail risk factors and body mass index (BMI). Area under the curve (AUC) of the receiver operating characteristic (ROC) was used to assess discriminatory capacity, and odds ratios (ORs) for each density measure are provided. All automated density measures had a significant association with breast cancer (OR = 1.47-2.23, AUC = 0.59-0.71, P < 0.01) which was strengthened after adjustment for Gail risk factors and BMI (OR = 1.96-2.64, AUC = 0.82-0.85, P < 0.001). In multivariable analysis, absolute dense area (OR = 1.84, P < 0.001) and absolute dense volume (OR = 1.67, P = 0.003) were jointly associated with breast cancer (AUC = 0.77, P < 0.01), having a larger discriminatory capacity than models considering the Gail risk factors alone (AUC = 0.64, P < 0.001) or the Gail risk factors plus standard area percent density (AUC = 0.68, P = 0.01). After BMI was further adjusted for, absolute dense area retained significance (OR = 2.18, P < 0.001) and volume percent density approached significance (OR = 1.47, P = 0.06). This combined area-volume density model also had a significantly (P < 0.001) improved discriminatory capacity (AUC = 0.86) relative to a model considering the Gail risk factors plus BMI (AUC = 0.80). Our study suggests that new automated density measures may ultimately augment the current standard breast cancer risk factors. In addition, the ability to fully automate density estimation with digital mammography, particularly through the use of publically available breast density estimation software, could accelerate the translation of density reporting in routine breast cancer screening and surveillance protocols and facilitate broader research into the use of breast density as a risk factor for breast cancer.
Measuring firm size distribution with semi-nonparametric densities
NASA Astrophysics Data System (ADS)
Cortés, Lina M.; Mora-Valencia, Andrés; Perote, Javier
2017-11-01
In this article, we propose a new methodology based on a (log) semi-nonparametric (log-SNP) distribution that nests the lognormal and enables better fits in the upper tail of the distribution through the introduction of new parameters. We test the performance of the lognormal and log-SNP distributions capturing firm size, measured through a sample of US firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our study shows that the log-SNP provides a better fit of the firm size distribution. We also formally introduce the multivariate log-SNP distribution, which encompasses the multivariate lognormal, to analyze the estimation of the joint distribution of the value of the firm's assets and sales. The results suggest that sales are a better firm size measure, as indicated by other studies in the literature.
Lundberg, Frida E; Johansson, Anna L V; Rodriguez-Wallberg, Kenny; Brand, Judith S; Czene, Kamila; Hall, Per; Iliadou, Anastasia N
2016-04-13
Ovarian stimulation drugs, in particular hormonal agents used for controlled ovarian stimulation (COS) required to perform in vitro fertilization, increase estrogen and progesterone levels and have therefore been suspected to influence breast cancer risk. This study aims to investigate whether infertility and hormonal fertility treatment influences mammographic density, a strong hormone-responsive risk factor for breast cancer. Cross-sectional study including 43,313 women recruited to the Karolinska Mammography Project between 2010 and 2013. Among women who reported having had infertility, 1576 had gone through COS, 1429 had had hormonal stimulation without COS and 5958 had not received any hormonal fertility treatment. Percent and absolute mammographic densities were obtained using the volumetric method Volpara™. Associations with mammographic density were assessed using multivariable generalized linear models, estimating mean differences (MD) with 95 % confidence intervals (CI). After multivariable adjustment, women with a history of infertility had 1.53 cm(3) higher absolute dense volume compared to non-infertile women (95 % CI: 0.70 to 2.35). Among infertile women, only those who had gone through COS treatment had a higher absolute dense volume than those who had not received any hormone treatment (adjusted MD 3.22, 95 % CI: 1.10 to 5.33). No clear associations were observed between infertility, fertility treatment and percent volumetric density. Overall, women reporting infertility had more dense tissue in the breast. The higher absolute dense volume in women treated with COS may indicate a treatment effect, although part of the association might also be due to the underlying infertility. Continued monitoring of cancer risk in infertile women, especially those who undergo COS, is warranted.
Krause, Peter J.; Niccolai, Linda; Steeves, Tanner; O’Keefe, Corrine Folsom; Diuk-Wasser, Maria A.
2014-01-01
Peridomestic exposure to Borrelia burgdorferi-infected Ixodes scapularis nymphs is considered the dominant means of infection with black-legged tick-borne pathogens in the eastern United States. Population level studies have detected a positive association between the density of infected nymphs and Lyme disease incidence. At a finer spatial scale within endemic communities, studies have focused on individual level risk behaviors, without accounting for differences in peridomestic nymphal density. This study simultaneously assessed the influence of peridomestic tick exposure risk and human behavior risk factors for Lyme disease infection on Block Island, Rhode Island. Tick exposure risk on Block Island properties was estimated using remotely sensed landscape metrics that strongly correlated with tick density at the individual property level. Behavioral risk factors and Lyme disease serology were assessed using a longitudinal serosurvey study. Significant factors associated with Lyme disease positive serology included one or more self-reported previous Lyme disease episodes, wearing protective clothing during outdoor activities, the average number of hours spent daily in tick habitat, the subject’s age and the density of shrub edges on the subject’s property. The best fit multivariate model included previous Lyme diagnoses and age. The strength of this association with previous Lyme disease suggests that the same sector of the population tends to be repeatedly infected. The second best multivariate model included a combination of environmental and behavioral factors, namely hours spent in vegetation, subject’s age, shrub edge density (increase risk) and wearing protective clothing (decrease risk). Our findings highlight the importance of concurrent evaluation of both environmental and behavioral factors to design interventions to reduce the risk of tick-borne infections. PMID:24416278
Finch, Casey; Al-Damluji, Mohammed Salim; Krause, Peter J; Niccolai, Linda; Steeves, Tanner; O'Keefe, Corrine Folsom; Diuk-Wasser, Maria A
2014-01-01
Peridomestic exposure to Borrelia burgdorferi-infected Ixodes scapularis nymphs is considered the dominant means of infection with black-legged tick-borne pathogens in the eastern United States. Population level studies have detected a positive association between the density of infected nymphs and Lyme disease incidence. At a finer spatial scale within endemic communities, studies have focused on individual level risk behaviors, without accounting for differences in peridomestic nymphal density. This study simultaneously assessed the influence of peridomestic tick exposure risk and human behavior risk factors for Lyme disease infection on Block Island, Rhode Island. Tick exposure risk on Block Island properties was estimated using remotely sensed landscape metrics that strongly correlated with tick density at the individual property level. Behavioral risk factors and Lyme disease serology were assessed using a longitudinal serosurvey study. Significant factors associated with Lyme disease positive serology included one or more self-reported previous Lyme disease episodes, wearing protective clothing during outdoor activities, the average number of hours spent daily in tick habitat, the subject's age and the density of shrub edges on the subject's property. The best fit multivariate model included previous Lyme diagnoses and age. The strength of this association with previous Lyme disease suggests that the same sector of the population tends to be repeatedly infected. The second best multivariate model included a combination of environmental and behavioral factors, namely hours spent in vegetation, subject's age, shrub edge density (increase risk) and wearing protective clothing (decrease risk). Our findings highlight the importance of concurrent evaluation of both environmental and behavioral factors to design interventions to reduce the risk of tick-borne infections.
Multiple imputation for handling missing outcome data when estimating the relative risk.
Sullivan, Thomas R; Lee, Katherine J; Ryan, Philip; Salter, Amy B
2017-09-06
Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically estimated using log binomial models. It is unclear whether misspecification of the imputation model in this setting could lead to biased parameter estimates. Using simulated data, we evaluated the performance of multiple imputation for handling missing data prior to estimating adjusted relative risks from a correctly specified multivariable log binomial model. We considered an arbitrary pattern of missing data in both outcome and exposure variables, with missing data induced under missing at random mechanisms. Focusing on standard model-based methods of multiple imputation, missing data were imputed using multivariate normal imputation or fully conditional specification with a logistic imputation model for the outcome. Multivariate normal imputation performed poorly in the simulation study, consistently producing estimates of the relative risk that were biased towards the null. Despite outperforming multivariate normal imputation, fully conditional specification also produced somewhat biased estimates, with greater bias observed for higher outcome prevalences and larger relative risks. Deleting imputed outcomes from analysis datasets did not improve the performance of fully conditional specification. Both multivariate normal imputation and fully conditional specification produced biased estimates of the relative risk, presumably since both use a misspecified imputation model. Based on simulation results, we recommend researchers use fully conditional specification rather than multivariate normal imputation and retain imputed outcomes in the analysis when estimating relative risks. However fully conditional specification is not without its shortcomings, and so further research is needed to identify optimal approaches for relative risk estimation within the multiple imputation framework.
Earth resources data analysis program, phase 2
NASA Technical Reports Server (NTRS)
1974-01-01
The efforts and findings of the Earth Resources Data Analysis Program are summarized. Results of a detailed study of the needs of EOD with respect to an applications development system (ADS) for the analysis of remotely sensed data, including an evaluation of four existing systems with respect to these needs are described. Recommendations as to possible courses for EOD to follow to obtain a viable ADS are presented. Algorithmic development comprised of several subtasks is discussed. These subtasks include the following: (1) two algorithms for multivariate density estimation; (2) a data smoothing algorithm; (3) a method for optimally estimating prior probabilities of unclassified data; and (4) further applications of the modified Cholesky decomposition in various calculations. Little effort was expended on task 3, however, two reports were reviewed.
Prentice, Ross L; Zhao, Shanshan
2018-01-01
The Dabrowska (Ann Stat 16:1475-1489, 1988) product integral representation of the multivariate survivor function is extended, leading to a nonparametric survivor function estimator for an arbitrary number of failure time variates that has a simple recursive formula for its calculation. Empirical process methods are used to sketch proofs for this estimator's strong consistency and weak convergence properties. Summary measures of pairwise and higher-order dependencies are also defined and nonparametrically estimated. Simulation evaluation is given for the special case of three failure time variates.
Low Bone Density and Bisphosphonate Use and the Risk of Kidney Stones.
Prochaska, Megan; Taylor, Eric; Vaidya, Anand; Curhan, Gary
2017-08-07
Previous studies have demonstrated lower bone density in patients with kidney stones, but no longitudinal studies have evaluated kidney stone risk in individuals with low bone density. Small studies with short follow-up reported reduced 24-hour urine calcium excretion with bisphosphonate use. We examined history of low bone density and bisphosphonate use and the risk of incident kidney stone as well as the association with 24-hour calcium excretion. We conducted a prospective analysis of 96,092 women in the Nurses' Health Study II. We used Cox proportional hazards models to adjust for age, body mass index, thiazide use, fluid intake, supplemental calcium use, and dietary factors. We also conducted a cross-sectional analysis of 2294 participants using multivariable linear regression to compare 24-hour urinary calcium excretion between participants with and without a history of low bone density, and among 458 participants with low bone density, with and without bisphosphonate use. We identified 2564 incident stones during 1,179,860 person-years of follow-up. The multivariable adjusted relative risk for an incident kidney stone for participants with history of low bone density compared with participants without was 1.39 (95% confidence interval [95% CI], 1.20 to 1.62). Among participants with low bone density, the multivariable adjusted relative risk for an incident kidney stone for bisphosphonate users was 0.68 (95% CI, 0.48 to 0.98). In the cross-sectional analysis of 24-hour urine calcium excretion, the multivariable adjusted mean difference in 24-hour calcium was 10 mg/d (95% CI, 1 to 19) higher for participants with history of low bone density. However, among participants with history of low bone density, there was no association between bisphosphonate use and 24-hour calcium with multivariable adjusted mean difference in 24-hour calcium of -2 mg/d (95% CI, -25 to 20). Low bone density is an independent risk factor for incident kidney stone and is associated with higher 24-hour urine calcium excretion. Among participants with low bone density, bisphosphonate use was associated with lower risk of incident kidney stone but was not independently associated with 24-hour urine calcium excretion. Copyright © 2017 by the American Society of Nephrology.
Peikert, Tobias; Duan, Fenghai; Rajagopalan, Srinivasan; Karwoski, Ronald A; Clay, Ryan; Robb, Richard A; Qin, Ziling; Sicks, JoRean; Bartholmai, Brian J; Maldonado, Fabien
2018-01-01
Optimization of the clinical management of screen-detected lung nodules is needed to avoid unnecessary diagnostic interventions. Herein we demonstrate the potential value of a novel radiomics-based approach for the classification of screen-detected indeterminate nodules. Independent quantitative variables assessing various radiologic nodule features such as sphericity, flatness, elongation, spiculation, lobulation and curvature were developed from the NLST dataset using 726 indeterminate nodules (all ≥ 7 mm, benign, n = 318 and malignant, n = 408). Multivariate analysis was performed using least absolute shrinkage and selection operator (LASSO) method for variable selection and regularization in order to enhance the prediction accuracy and interpretability of the multivariate model. The bootstrapping method was then applied for the internal validation and the optimism-corrected AUC was reported for the final model. Eight of the originally considered 57 quantitative radiologic features were selected by LASSO multivariate modeling. These 8 features include variables capturing Location: vertical location (Offset carina centroid z), Size: volume estimate (Minimum enclosing brick), Shape: flatness, Density: texture analysis (Score Indicative of Lesion/Lung Aggression/Abnormality (SILA) texture), and surface characteristics: surface complexity (Maximum shape index and Average shape index), and estimates of surface curvature (Average positive mean curvature and Minimum mean curvature), all with P<0.01. The optimism-corrected AUC for these 8 features is 0.939. Our novel radiomic LDCT-based approach for indeterminate screen-detected nodule characterization appears extremely promising however independent external validation is needed.
The following SAS macros can be used to create a multivariate usual intake distribution for multiple dietary components that are consumed nearly every day or episodically. A SAS macro for performing balanced repeated replication (BRR) variance estimation is also included.
Classical and Bayesian Seismic Yield Estimation: The 1998 Indian and Pakistani Tests
NASA Astrophysics Data System (ADS)
Shumway, R. H.
2001-10-01
- The nuclear tests in May, 1998, in India and Pakistan have stimulated a renewed interest in yield estimation, based on limited data from uncalibrated test sites. We study here the problem of estimating yields using classical and Bayesian methods developed by Shumway (1992), utilizing calibration data from the Semipalatinsk test site and measured magnitudes for the 1998 Indian and Pakistani tests given by Murphy (1998). Calibration is done using multivariate classical or Bayesian linear regression, depending on the availability of measured magnitude-yield data and prior information. Confidence intervals for the classical approach are derived applying an extension of Fieller's method suggested by Brown (1982). In the case where prior information is available, the posterior predictive magnitude densities are inverted to give posterior intervals for yield. Intervals obtained using the joint distribution of magnitudes are comparable to the single-magnitude estimates produced by Murphy (1998) and reinforce the conclusion that the announced yields of the Indian and Pakistani tests were too high.
Classical and Bayesian Seismic Yield Estimation: The 1998 Indian and Pakistani Tests
NASA Astrophysics Data System (ADS)
Shumway, R. H.
The nuclear tests in May, 1998, in India and Pakistan have stimulated a renewed interest in yield estimation, based on limited data from uncalibrated test sites. We study here the problem of estimating yields using classical and Bayesian methods developed by Shumway (1992), utilizing calibration data from the Semipalatinsk test site and measured magnitudes for the 1998 Indian and Pakistani tests given by Murphy (1998). Calibration is done using multivariate classical or Bayesian linear regression, depending on the availability of measured magnitude-yield data and prior information. Confidence intervals for the classical approach are derived applying an extension of Fieller's method suggested by Brown (1982). In the case where prior information is available, the posterior predictive magnitude densities are inverted to give posterior intervals for yield. Intervals obtained using the joint distribution of magnitudes are comparable to the single-magnitude estimates produced by Murphy (1998) and reinforce the conclusion that the announced yields of the Indian and Pakistani tests were too high.
Multivariate Longitudinal Analysis with Bivariate Correlation Test
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692
Multivariate Longitudinal Analysis with Bivariate Correlation Test.
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.
Role of Blood Lipids in the Development of Ischemic Stroke and its Subtypes
Engström, Gunnar; Larsson, Susanna C.; Traylor, Matthew; Markus, Hugh S.; Melander, Olle; Orho-Melander, Marju
2018-01-01
Background and Purpose— Statin therapy is associated with a lower risk of ischemic stroke supporting a causal role of low-density lipoprotein (LDL) cholesterol. However, more evidence is needed to answer the question whether LDL cholesterol plays a causal role in ischemic stroke subtypes. In addition, it is unknown whether high-density lipoprotein cholesterol and triglycerides have a causal relationship to ischemic stroke and its subtypes. Our aim was to investigate the causal role of LDL cholesterol, high-density lipoprotein cholesterol, and triglycerides in ischemic stroke and its subtypes through Mendelian randomization (MR). Methods— Summary data on 185 genome-wide lipids-associated single nucleotide polymorphisms were obtained from the Global Lipids Genetics Consortium and the Stroke Genetics Network for their association with ischemic stroke (n=16 851 cases and 32 473 controls) and its subtypes, including large artery atherosclerosis (n=2410), small artery occlusion (n=3186), and cardioembolic (n=3427) stroke. Inverse-variance–weighted MR was used to obtain the causal estimates. Inverse-variance–weighted multivariable MR, MR-Egger, and sensitivity exclusion of pleiotropic single nucleotide polymorphisms after Steiger filtering and MR-Pleiotropy Residual Sum and Outlier test were used to adjust for pleiotropic bias. Results— A 1-SD genetically elevated LDL cholesterol was associated with an increased risk of ischemic stroke (odds ratio: 1.12; 95% confidence interval: 1.04–1.20) and large artery atherosclerosis stroke (odds ratio: 1.28; 95% confidence interval: 1.10–1.49) but not with small artery occlusion or cardioembolic stroke in multivariable MR. A 1-SD genetically elevated high-density lipoprotein cholesterol was associated with a decreased risk of small artery occlusion stroke (odds ratio: 0.79; 95% confidence interval: 0.67–0.90) in multivariable MR. MR-Egger indicated no pleiotropic bias, and results did not markedly change after sensitivity exclusion of pleiotropic single nucleotide polymorphisms. Genetically elevated triglycerides did not associate with ischemic stroke or its subtypes. Conclusions— LDL cholesterol lowering is likely to prevent large artery atherosclerosis but may not prevent small artery occlusion nor cardioembolic strokes. High-density lipoprotein cholesterol elevation may lead to benefits in small artery disease prevention. Finally, triglyceride lowering may not yield benefits in ischemic stroke and its subtypes. PMID:29535274
Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang
2010-07-01
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.
Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang
2013-01-01
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286
Lu, Tsui-Shan; Longnecker, Matthew P.; Zhou, Haibo
2016-01-01
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data and the general ODS design for a continuous response. While substantial work has been done for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome dependent sampling (Multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the Multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the Multivariate-ODS or the estimator from a simple random sample with the same sample size. The Multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of PCB exposure to hearing loss in children born to the Collaborative Perinatal Study. PMID:27966260
A Comparison of Three Multivariate Models for Estimating Test Battery Reliability.
ERIC Educational Resources Information Center
Wood, Terry M.; Safrit, Margaret J.
1987-01-01
A comparison of three multivariate models (canonical reliability model, maximum generalizability model, canonical correlation model) for estimating test battery reliability indicated that the maximum generalizability model showed the least degree of bias, smallest errors in estimation, and the greatest relative efficiency across all experimental…
Developing population models with data from marked individuals
Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,
2016-01-01
Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.
Bostanmaneshrad, Farshid; Partani, Sadegh; Noori, Roohollah; Nachtnebel, Hans-Peter; Berndtsson, Ronny; Adamowski, Jan Franklin
2018-10-15
To date, few studies have investigated the simultaneous effects of macro-scale parameters (MSPs) such as land use, population density, geology, and erosion layers on micro-scale water quality variables (MSWQVs). This research focused on an evaluation of the relationship between MSPs and MSWQVs in the Siminehrood River Basin, Iran. In addition, we investigated the importance of water particle travel time (hydrological distance) on this relationship. The MSWQVs included 13 physicochemical and biochemical parameters observed at 15 stations during three seasons. Primary screening was performed by utilizing three multivariate statistical analyses (Pearson's correlation, cluster and discriminant analyses) in seven series of observed data. These series included three separate seasonal data, three two-season data, and aggregated three-season data for investigation of relationships between MSPs and MSWQVs. Coupled data (pairs of MSWQVs and MSPs) repeated in at least two out of three statistical analyses were selected for final screening. The primary screening results demonstrated significant relationships between land use and phosphorus, total solids and turbidity, erosion levels and electrical conductivity, and erosion and total solids. Furthermore, water particle travel time effects were considered through three geographical pattern definitions of distance for each MSP by using two weighting methods. To find effective MSP factors on MSWQVs, a multivariate linear regression analysis was employed. Then, preliminary equations that estimated MSWQVs were developed. The preliminary equations were modified to adaptive equations to obtain the final models. The final models indicated that a new metric, referred to as hydrological distance, provided better MSWQV estimation and water quality prediction compared to the National Sanitation Foundation Water Quality Index. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Ali, H Raza; Dariush, Aliakbar; Provenzano, Elena; Bardwell, Helen; Abraham, Jean E; Iddawela, Mahesh; Vallier, Anne-Laure; Hiller, Louise; Dunn, Janet A; Bowden, Sarah J; Hickish, Tamas; McAdam, Karen; Houston, Stephen; Irwin, Mike J; Pharoah, Paul D P; Brenton, James D; Walton, Nicholas A; Earl, Helena M; Caldas, Carlos
2016-02-16
There is a need to improve prediction of response to chemotherapy in breast cancer in order to improve clinical management and this may be achieved by harnessing computational metrics of tissue pathology. We investigated the association between quantitative image metrics derived from computational analysis of digital pathology slides and response to chemotherapy in women with breast cancer who received neoadjuvant chemotherapy. We digitised tissue sections of both diagnostic and surgical samples of breast tumours from 768 patients enrolled in the Neo-tAnGo randomized controlled trial. We subjected digital images to systematic analysis optimised for detection of single cells. Machine-learning methods were used to classify cells as cancer, stromal or lymphocyte and we computed estimates of absolute numbers, relative fractions and cell densities using these data. Pathological complete response (pCR), a histological indicator of chemotherapy response, was the primary endpoint. Fifteen image metrics were tested for their association with pCR using univariate and multivariate logistic regression. Median lymphocyte density proved most strongly associated with pCR on univariate analysis (OR 4.46, 95 % CI 2.34-8.50, p < 0.0001; observations = 614) and on multivariate analysis (OR 2.42, 95 % CI 1.08-5.40, p = 0.03; observations = 406) after adjustment for clinical factors. Further exploratory analyses revealed that in approximately one quarter of cases there was an increase in lymphocyte density in the tumour removed at surgery compared to diagnostic biopsies. A reduction in lymphocyte density at surgery was strongly associated with pCR (OR 0.28, 95 % CI 0.17-0.47, p < 0.0001; observations = 553). A data-driven analysis of computational pathology reveals lymphocyte density as an independent predictor of pCR. Paradoxically an increase in lymphocyte density, following exposure to chemotherapy, is associated with a lack of pCR. Computational pathology can provide objective, quantitative and reproducible tissue metrics and represents a viable means of outcome prediction in breast cancer. ClinicalTrials.gov NCT00070278 ; 03/10/2003.
Lu, Tsui-Shan; Longnecker, Matthew P; Zhou, Haibo
2017-03-15
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data, and the general ODS design for a continuous response. While substantial work has been carried out for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome-dependent sampling (multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the multivariate-ODS or the estimator from a simple random sample with the same sample size. The multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of polychlorinated biphenyl exposure to hearing loss in children born to the Collaborative Perinatal Study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Brand, Judith S; Humphreys, Keith; Thompson, Deborah J; Li, Jingmei; Eriksson, Mikael; Hall, Per; Czene, Kamila
2014-12-01
Mammographic density is a strong heritable trait, but data on its genetic component are limited to area-based and qualitative measures. We studied the heritability of volumetric mammographic density ascertained by a fully-automated method and the association with breast cancer susceptibility loci. Heritability of volumetric mammographic density was estimated with a variance component model in a sib-pair sample (N pairs = 955) of a Swedish screening based cohort. Associations with 82 established breast cancer loci were assessed in an independent sample of the same cohort (N = 4025 unrelated women) using linear models, adjusting for age, body mass index, and menopausal status. All tests were two-sided, except for heritability analyses where one-sided tests were used. After multivariable adjustment, heritability estimates (standard error) for percent dense volume, absolute dense volume, and absolute nondense volume were 0.63 (0.06) and 0.43 (0.06) and 0.61 (0.06), respectively (all P < .001). Percent and absolute dense volume were associated with rs10995190 (ZNF365; P = 9.0 × 10(-6) and 8.9 × 10(-7), respectively) and rs9485372 (TAB2; P = 1.8 × 10(-5) and 1.8 × 10(-3), respectively). We also observed associations of rs9383938 (ESR1) and rs2046210 (ESR1) with the absolute dense volume (P = 2.6 × 10(-4) and 4.6 × 10(-4), respectively), and rs6001930 (MLK1) and rs17356907 (NTN4) with the absolute nondense volume (P = 6.7 × 10(-6) and 8.4 × 10(-5), respectively). Our results support the high heritability of mammographic density, though estimates are weaker for absolute than percent dense volume. We also demonstrate that the shared genetic component with breast cancer is not restricted to dense tissues only. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lehman, Amy; Thomas, Fridtjof; Johnson, Karen C.; Jackson, Rebecca; Wactawski-Wende, Jean; Ko, Marcia; Chen, Zhao; Curb, J David; Howard, Barbara V.
2015-01-01
Objective Menopause is a risk factor for fracture, thus menopause age may affect bone mass and fracture rates. We compared Bone Mineral Density (BMD) and fracture rates among healthy postmenopausal women with varying ages of self-reported non-surgical menopause. Methods Hazard ratios for fracture and differences in BMD among 21,711 postmenopausal women from the Women’s Health Initiative Observational cohort without prior hysterectomy, oophorectomy, or hormone therapy, who reported age of menopause of <40, 40–49, or ≥50 years, were compared. Results Prior to multivariable adjustments, we found no differences in absolute fracture risk among menopausal age groups. After multivariable adjustments for known risk factors for fracture, women undergoing menopause <40 had a higher fracture risk at any site compared to women undergoing menopause ≥50 years (HR=1.21, 95% CI: 1.02, 1.44; p=0.03). In a subset with BMD measurements (n=1,351), whole body BMD was lower in women who reported menopause <40 compared to 40–49 years (estimated difference= −0.034 g/cm2; 95% CI: −0.07, −0.004; p=0.03) and compared to ≥50 years (estimated difference= −0.05 g/cm2; 95% CI; −0.08, −0.02; p<0.01). Left hip BMD was lower in women with menopause <40 compared to ≥50 years (estimated difference= −0.05 g/cm2; 95% CI: −0.08, −0.01; p=0.01), and total spine BMD was lower in women with menopause <40 compared to ≥50 and 40–49 years (estimated differences= −0.11 g/cm2; 95% CI; −0.16, −0.06; p<0.01 and −0.09 g/cm2; 95% CI; −0.15, −0.04; p<0.01, respectively). Conclusions In the absence of hormone therapy, earlier menopause age may be a risk factor contributing to decreased BMD and increased fracture risk in healthy postmenopausal women. Our data suggest that menopause age should be taken into consideration, along with other osteoporotic risk factors, when estimating fracture risk in postmenopausal women. PMID:25803670
Estimation of typhoon rainfall in GaoPing River: A Multivariate Maximum Entropy Method
NASA Astrophysics Data System (ADS)
Pei-Jui, Wu; Hwa-Lung, Yu
2016-04-01
The heavy rainfall from typhoons is the main factor of the natural disaster in Taiwan, which causes the significant loss of human lives and properties. Statistically average 3.5 typhoons invade Taiwan every year, and the serious typhoon, Morakot in 2009, impacted Taiwan in recorded history. Because the duration, path and intensity of typhoon, also affect the temporal and spatial rainfall type in specific region , finding the characteristics of the typhoon rainfall type is advantageous when we try to estimate the quantity of rainfall. This study developed a rainfall prediction model and can be divided three parts. First, using the EEOF(extended empirical orthogonal function) to classify the typhoon events, and decompose the standard rainfall type of all stations of each typhoon event into the EOF and PC(principal component). So we can classify the typhoon events which vary similarly in temporally and spatially as the similar typhoon types. Next, according to the classification above, we construct the PDF(probability density function) in different space and time by means of using the multivariate maximum entropy from the first to forth moment statistically. Therefore, we can get the probability of each stations of each time. Final we use the BME(Bayesian Maximum Entropy method) to construct the typhoon rainfall prediction model , and to estimate the rainfall for the case of GaoPing river which located in south of Taiwan.This study could be useful for typhoon rainfall predictions in future and suitable to government for the typhoon disaster prevention .
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study
Neupane, Binod; Beyene, Joseph
2015-01-01
In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance. PMID:26196398
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.
Neupane, Binod; Beyene, Joseph
2015-01-01
In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance.
Modeling of turbulent supersonic H2-air combustion with a multivariate beta PDF
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Hassan, H. A.
1993-01-01
Recent calculations of turbulent supersonic reacting shear flows using an assumed multivariate beta PDF (probability density function) resulted in reduced production rates and a delay in the onset of combustion. This result is not consistent with available measurements. The present research explores two possible reasons for this behavior: use of PDF's that do not yield Favre averaged quantities, and the gradient diffusion assumption. A new multivariate beta PDF involving species densities is introduced which makes it possible to compute Favre averaged mass fractions. However, using this PDF did not improve comparisons with experiment. A countergradient diffusion model is then introduced. Preliminary calculations suggest this to be the cause of the discrepancy.
Metabolic syndrome and mammographic density in Mexican women
Rice, Megan; Biessy, Carine; Lajous, Martin; Bertrand, Kimberly A.; Tamimi, Rulla M.; Torres-Mejía, Gabriela; López-Ridaura, Ruy; Romieu, Isabelle
2014-01-01
Background Metabolic syndrome has been associated with an increased risk of breast cancer; however little is known about the association between metabolic syndrome and percent mammographic density, a strong predictor of breast cancer. Methods We analyzed cross-sectional data from 789 premenopausal and 322 postmenopausal women in the Mexican Teacher's Cohort (ESMaestras). Metabolic syndrome was defined according to the harmonized definition. We measured percent density on mammograms using a computer-assisted thresholding method. Multivariable linear regression was used to estimate the association between density and metabolic syndrome, as well as its components by state (Jalisco, Veracruz) and menopausal status (premenopausal, postmenopausal). Results Among premenopausal women in Jalisco, women with metabolic syndrome had higher percent density compared to those without after adjusting for potential confounders including BMI (difference = 4.76, 95%CI: 1.72, 7.81). Among the metabolic syndrome components, only low high-density lipoprotein levels (<50mg/dl) were associated with significantly higher percent density among premenopausal women in Jalisco (difference=4.62, 95%CI: 1.73, 7.52). Metabolic syndrome was not associated with percent density among premenopausal women in Veracruz (difference=-2.91, 95% CI: -7.19, 1.38), nor among postmenopausal women in either state. Conclusion Metabolic syndrome was associated with higher percent density among premenopausal women in Jalisco, Mexico, but was not associated with percent density among premenopausal women in Veracruz, Mexico or among postmenopausal women in either Jalisco or Veracruz. These findings provide some support for a possible role of metabolic syndrome in mammographic density among premenopausal women; however results were inconsistent across states and require further confirmation in larger studies. PMID:23682074
NASA Astrophysics Data System (ADS)
Khanlari, G. R.; Heidari, M.; Noori, M.; Momeni, A.
2016-07-01
To assess relationship between engineering characteristics and petrographic features, conglomerates samples related to Qom formation from Famenin region in northeast of Hamedan province were studied. Samples were tested in laboratory to determine the uniaxial compressive strength, point load strength index, modulus of elasticity, porosity, dry and saturation densities. For determining petrographic features, textural and mineralogical parameters, thin sections of the samples were prepared and studied. The results show that the effect of textural characteristics on the engineering properties of conglomerates supposed to be more important than mineralogical composition. It also was concluded that the packing proximity, packing density, grain shape and mean grain size, cement and matrix frequency are as textural features that have a significant effect on the physical and mechanical properties of the studied conglomerates. In this study, predictive statistical relationships were developed to estimate the physical and mechanical properties of the rocks based on the results of petrographic features. Furthermore, multivariate linear regression was used in four different steps comprising various combinations of petrographical characteristics for each engineering parameters. Finally, the best equations with specific arrangement were suggested to estimate engineering properties of the Qom formation conglomerates.
Hollands, Simon; Campbell, M Karen; Gilliland, Jason; Sarma, Sisira
2013-10-01
To investigate the association between fast-food restaurant density and adult body mass index (BMI) in Canada. Individual-level BMI and confounding variables were obtained from the 2007-2008 Canadian Community Health Survey master file. Locations of the fast-food and full-service chain restaurants and other non-chain restaurants were obtained from the 2008 Infogroup Canada business database. Food outlet density (fast-food, full-service and other) per 10,000 population was calculated for each Forward Sortation Area (FSA). Global (Moran's I) and local indicators of spatial autocorrelation of BMI were assessed. Ordinary least squares (OLS) and spatial auto-regressive error (SARE) methods were used to assess the association between local food environment and adult BMI in Canada. Global and local spatial autocorrelation of BMI were found in our univariate analysis. We found that OLS and SARE estimates were very similar in our multivariate models. An additional fast-food restaurant per 10,000 people at the FSA-level is associated with a 0.022kg/m(2) increase in BMI. On the other hand, other restaurant density is negatively related to BMI. Fast-food restaurant density is positively associated with BMI in Canada. Results suggest that restricting availability of fast-food in local neighborhoods may play a role in obesity prevention. © 2013.
NASA Astrophysics Data System (ADS)
Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.
2014-12-01
Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.
NASA Astrophysics Data System (ADS)
Wang, C.; Rubin, Y.
2014-12-01
Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.
Klukkert, Marten; Wu, Jian X; Rantanen, Jukka; Carstensen, Jens M; Rades, Thomas; Leopold, Claudia S
2016-07-30
Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using an eccentric as well as a rotary tablet press at compression pressures from 20MPa up to 410MPa. It was found, that UV imaging can provide both, relevant information on chemical and physical tablet attributes. The tablet API content and radial tensile strength could be estimated by UV imaging combined with partial least squares analysis. Furthermore, an image analysis routine was developed and successfully applied to the UV images that provided qualitative information on physical tablet surface properties such as intactness and surface density profiles, as well as quantitative information on variations in the surface density. In conclusion, this study demonstrates that UV imaging combined with image analysis is an effective and non-destructive method to determine chemical and physical quality attributes of tablets and is a promising approach for (near) real-time monitoring of the tablet compaction process and formulation optimization purposes. Copyright © 2015 Elsevier B.V. All rights reserved.
Goldenberg, Shira M; Deering, Kathleen; Amram, Ofer; Guillemi, Silvia; Nguyen, Paul; Montaner, Julio; Shannon, Kate
2017-09-01
Despite the high HIV burden faced by sex workers, data on access and retention in antiretroviral therapy (ART) are limited. Using an innovative spatial epidemiological approach, we explored how the social geography of sex work criminalization and violence impacts HIV treatment interruptions among sex workers living with HIV in Vancouver over a 3.5-year period. Drawing upon data from a community-based cohort (AESHA, 2010-2013) and linked external administrative data on ART dispensation, GIS mapping and multivariable logistic regression with generalized estimating equations to prospectively examine the effects of spatial criminalization and violence near women's places of residence on 2-day ART interruptions. Analyses were restricted to 66 ART-exposed women who contributed 208 observations and 83 ART interruption events. In adjusted multivariable models, heightened density of displacement due to policing independently correlated with HIV treatment interruptions (AOR: 1.02, 95%CI: 1.00-1.04); density of legal restrictions (AOR: 1.30, 95%CI: 0.97-1.76) and a combined measure of criminalization/violence (AOR: 1.00, 95%CI: 1.00-1.01) were marginally correlated. The social geography of sex work criminalization may undermine access to essential medicines, including HIV treatment. Interventions to promote 'enabling environments' (e.g. peer-led models, safer living/working spaces) should be explored, alongside policy reforms to ensure uninterrupted treatment access.
Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.
Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S
2011-05-01
Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.
Sullivan, Shannon D; Lehman, Amy; Thomas, Fridtjof; Johnson, Karen C; Jackson, Rebecca; Wactawski-Wende, Jean; Ko, Marcia; Chen, Zhao; Curb, J David; Howard, Barbara V
2015-10-01
Menopause is a risk factor for fracture; thus, menopause age may affect bone mass and fracture rates. We compared bone mineral density (BMD) and fracture rates among healthy postmenopausal women with varying ages at self-reported nonsurgical menopause. We compared hazard ratios for fractures and differences in BMD among 21,711 postmenopausal women from the Women's Health Initiative Observational Study cohort who had no prior hysterectomy, oophorectomy, or hormone therapy and had varying self-reported ages at menopause (<40, 40-49, or ≥50 y). Before multivariable adjustments, we found no differences in absolute fracture risk among menopause age groups. After multivariable adjustments for known risk factors for fracture, women who underwent menopause before age 40 years had a higher fracture risk at any site compared with women who underwent menopause at age 50 years or older (hazard ratio, 1.21; 95% CI, 1.02 to 1.44; P = 0.03). In a subset with BMD measurements (n = 1,351), whole-body BMD was lower in women who reported menopause before age 40 years than in women who reported menopause at ages 40 to 49 years (estimated difference, -0.034 g/cm; 95% CI, -0.07 to -0.004; P = 0.03) and women who reported menopause at age 50 years or older (estimated difference, -0.05 g/cm; 95% CI, -0.08 to -0.02; P < 0.01). Left hip BMD was lower in women who underwent menopause before age 40 years than in women who underwent menopause at age 50 years or older (estimated difference, -0.05 g/cm; 95% CI, -0.08 to -0.01; P = 0.01), and total spine BMD was lower in women who underwent menopause before age 40 years than in women who underwent menopause at age 50 years or older (estimated difference, -0.11 g/cm; 95% CI, -0.16 to -0.06; P < 0.01) and women who underwent menopause at ages 40 to 49 years (estimated difference, -0.09 g/cm; 95% CI, -0.15 to -0.04; P < 0.01). In the absence of hormone therapy, younger age at menopause may be a risk factor contributing to decreased BMD and increased fracture risk in healthy postmenopausal women. Our data suggest that menopause age should be taken into consideration, along with other osteoporotic risk factors, when estimating fracture risk in postmenopausal women.
ERIC Educational Resources Information Center
Vallejo, Guillermo; Fidalgo, Angel; Fernandez, Paula
2001-01-01
Estimated empirical Type I error rate and power rate for three procedures for analyzing multivariate repeated measures designs: (1) the doubly multivariate model; (2) the Welch-James multivariate solution (H. Keselman, M. Carriere, a nd L. Lix, 1993); and (3) the multivariate version of the modified Brown-Forsythe procedure (M. Brown and A.…
Dose-dependent effect of mammographic breast density on the risk of contralateral breast cancer.
Chowdhury, Marzana; Euhus, David; O'Donnell, Maureen; Onega, Tracy; Choudhary, Pankaj K; Biswas, Swati
2018-07-01
Increased mammographic breast density is a significant risk factor for breast cancer. It is not clear if it is also a risk factor for the development of contralateral breast cancer. The data were obtained from Breast Cancer Surveillance Consortium and included women diagnosed with invasive breast cancer or ductal carcinoma in situ between ages 18 and 88 and years 1995 and 2009. Each case of contralateral breast cancer was matched with three controls based on year of first breast cancer diagnosis, race, and length of follow-up. A total of 847 cases and 2541 controls were included. The risk factors included in the study were mammographic breast density, age of first breast cancer diagnosis, family history of breast cancer, anti-estrogen treatment, hormone replacement therapy, menopausal status, and estrogen receptor status, all from the time of first breast cancer diagnosis. Both univariate analysis and multivariate conditional logistic regression analysis were performed. In the final multivariate model, breast density, family history of breast cancer, and anti-estrogen treatment remained significant with p values less than 0.01. Increasing breast density had a dose-dependent effect on the risk of contralateral breast cancer. Relative to 'almost entirely fat' category of breast density, the adjusted odds ratios (and p values) in the multivariate analysis for 'scattered density,' 'heterogeneously dense,' and 'extremely dense' categories were 1.65 (0.036), 2.10 (0.002), and 2.32 (0.001), respectively. Breast density is an independent and significant risk factor for development of contralateral breast cancer. This risk factor should contribute to clinical decision making.
Mariet, Anne-Sophie; Retel, Olivier; Avocat, Hélène; Serre, Anne; Schapman, Lucie; Schmitt, Marielle; Charron, Martine; Monnet, Elisabeth
2013-09-01
While several studies conducted on Lyme borreliosis (LB) risk in the United States showed an association with environmental characteristics, most of European studies considered solely the effect of climate characteristics. The aims of this study were to estimate incidence of erythema migrans (EM) in five regions of France and to analyze associations with several environmental characteristics of the place of residence. LB surveillance networks of general practitioners (GPs) were set up for a period of 2 years in five regions of France. Participating GPs reported all patients with EM during the study period. Data were pooled according to a standardized EM case definition. For each area with a participating GP, age-standardized incidence rates and ratios were estimated. Associations with altitude, indicators of landscape composition, and indicators of landscape configuration were tested with multivariate Poisson regression. Standardized estimated incidence rates of EM per 10(5) person-years were 8.8 [95% confidence interval (CI)=7.9-9.7] in Aquitaine, 40.0 (95% CI 36.4-43.6) in Limousin, 76.0 (95% CI 72.9-79.1) in the three participating départements of Rhône-Alpes, 46.1 (95% CI 43.0-49.2) in Franche-Comté, and 87.7 (95% CI 84.6-90.8) in Alsace. In multivariate analysis, age-adjusted incidence rates increased with the altitude (p<0.0001) and decreased with forest patch density (p<0.0001). The marked variations in EM risk among the five regions were partly related to differences in landscape and environmental characteristics. The latter may point out potential risk areas and provide information for targeting preventive actions.
NASA Astrophysics Data System (ADS)
Shah, Shishir
This paper presents a segmentation method for detecting cells in immunohistochemically stained cytological images. A two-phase approach to segmentation is used where an unsupervised clustering approach coupled with cluster merging based on a fitness function is used as the first phase to obtain a first approximation of the cell locations. A joint segmentation-classification approach incorporating ellipse as a shape model is used as the second phase to detect the final cell contour. The segmentation model estimates a multivariate density function of low-level image features from training samples and uses it as a measure of how likely each image pixel is to be a cell. This estimate is constrained by the zero level set, which is obtained as a solution to an implicit representation of an ellipse. Results of segmentation are presented and compared to ground truth measurements.
Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne
2016-04-01
Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation.
Bayar, Belhassen; Bouaynaya, Nidhal; Shterenberg, Roman
2017-03-01
We consider a high-dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. The system is underdetermined as there are more parameters than samples. We show that the maximum likelihood approach with covariance estimation is senseless because the likelihood diverges. We subsequently propose a normalization of the likelihood function that guarantees convergence. We call this method small-sample multivariate regression with covariance (SMURC) estimation. We derive an optimization problem and its convex approximation to compute SMURC. Simulation results show that the proposed algorithm outperforms the regularized likelihood estimator with known covariance matrix and the sparse conditional Gaussian graphical model. We also apply SMURC to the inference of the wing-muscle gene network of the Drosophila melanogaster (fruit fly).
Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco
2013-11-15
Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less
Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan
2012-01-01
Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.
MULTIVARIATE RECEPTOR MODELS AND MODEL UNCERTAINTY. (R825173)
Estimation of the number of major pollution sources, the source composition profiles, and the source contributions are the main interests in multivariate receptor modeling. Due to lack of identifiability of the receptor model, however, the estimation cannot be...
Bansal, Ravi; Hao, Xuejun; Liu, Jun; Peterson, Bradley S.
2014-01-01
Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. >10) relative to the number of participants who provide the MRI data (<100). Sparse data in a high dimensional space increases the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging measures or their multivariate Gaussian distributions. Thus, our findings demonstrate that estimated multivariate Copula distributions can generate dense sets of brain imaging measures that can in turn be used to train classifiers, and those classifiers are significantly more accurate and more reproducible than are those generated using real-world imaging measures alone. PMID:25093634
Pyrogenic carbon distribution in mineral topsoils of the northeastern United States
Jauss, Verena; Sullivan, Patrick J.; Sanderman, Jonathan; Smith, David; Lehmann, Johannes
2017-01-01
Due to its slow turnover rates in soil, pyrogenic carbon (PyC) is considered an important C pool and relevant to climate change processes. Therefore, the amounts of soil PyC were compared to environmental covariates over an area of 327,757 km2 in the northeastern United States in order to understand the controls on PyC distribution over large areas. Topsoil (defined as the soil A horizon, after removal of any organic horizons) samples were collected at 165 field sites in a generalised random tessellation stratified design that corresponded to approximately 1 site per 1600 km2 and PyC was estimated from diffuse reflectance mid-infrared spectroscopy measurements using a partial least-squares regression analysis in conjunction with a large database of PyC measurements based on a solid-state 13C nuclear magnetic resonance spectroscopy technique. Three spatial models were applied to the data in order to relate critical environmental covariates to the changes in spatial density of PyC over the landscape. Regional mean density estimates of PyC were 11.0 g kg− 1 (0.84 Gg km− 2) for Ordinary Kriging, 25.8 g kg− 1(12.2 Gg km− 2) for Multivariate Linear Regression, and 26.1 g kg− 1 (12.4 Gg km− 2) for Bayesian Regression Kriging. Akaike Information Criterion (AIC) indicated that the Multivariate Linear Regression model performed best (AIC = 842.6; n = 165) compared to Ordinary Kriging (AIC = 982.4) and Bayesian Regression Kriging (AIC = 979.2). Soil PyC concentrations correlated well with total soil sulphur (P < 0.001; n = 165), plant tissue lignin (P = 0.003), and drainage class (P = 0.008). This suggests the opportunity of including related environmental parameters in the spatial assessment of PyC in soils. Better estimates of the contribution of PyC to the global carbon cycle will thus also require more accurate assessments of these covariates.
Density correlators in a self-similar cascade
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz˙; Ewski, J.
1999-09-01
Multivariate density moments (correlators) of arbitrary order are obtained for the multiplicative self-similar cascade. This result is based on the calculation by Greiner, Eggers and Lipa where the correlators of the logarithms of the particle densities have been obtained. The density correlators, more suitable for comparison with multiparticle data, appear to have a simple factorizable form.
Jackson, Dan; White, Ian R; Riley, Richard D
2013-01-01
Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213
NASA Astrophysics Data System (ADS)
Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.
2018-05-01
Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Buried landmine detection using multivariate normal clustering
NASA Astrophysics Data System (ADS)
Duston, Brian M.
2001-10-01
A Bayesian classification algorithm is presented for discriminating buried land mines from buried and surface clutter in Ground Penetrating Radar (GPR) signals. This algorithm is based on multivariate normal (MVN) clustering, where feature vectors are used to identify populations (clusters) of mines and clutter objects. The features are extracted from two-dimensional images created from ground penetrating radar scans. MVN clustering is used to determine the number of clusters in the data and to create probability density models for target and clutter populations, producing the MVN clustering classifier (MVNCC). The Bayesian Information Criteria (BIC) is used to evaluate each model to determine the number of clusters in the data. An extension of the MVNCC allows the model to adapt to local clutter distributions by treating each of the MVN cluster components as a Poisson process and adaptively estimating the intensity parameters. The algorithm is developed using data collected by the Mine Hunter/Killer Close-In Detector (MH/K CID) at prepared mine lanes. The Mine Hunter/Killer is a prototype mine detecting and neutralizing vehicle developed for the U.S. Army to clear roads of anti-tank mines.
Estimating the decomposition of predictive information in multivariate systems
NASA Astrophysics Data System (ADS)
Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele
2015-03-01
In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.
Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A
2015-10-01
Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.
Heggeseth, Brianna C; Jewell, Nicholas P
2013-07-20
Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach for the representation of heterogeneous multivariate outcomes. When the outcome is a vector of repeated measurements taken on the same subject, there is often inherent dependence between observations. However, a common covariance assumption is conditional independence-that is, given the mixture component label, the outcomes for subjects are independent. In this paper, we study, through asymptotic bias calculations and simulation, the impact of covariance misspecification in multivariate Gaussian mixtures. Although maximum likelihood estimators of regression and mixing probability parameters are not consistent under misspecification, they have little asymptotic bias when mixture components are well separated or if the assumed correlation is close to the truth even when the covariance is misspecified. We also present a robust standard error estimator and show that it outperforms conventional estimators in simulations and can indicate that the model is misspecified. Body mass index data from a national longitudinal study are used to demonstrate the effects of misspecification on potential inferences made in practice. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rayner, Millicent; Harkness, Elaine F.; Foden, Philip; Wilson, Mary; Gadde, Soujanya; Beetles, Ursula; Lim, Yit Y.; Jain, Anil; Bundred, Sally; Barr, Nicky; Evans, D. Gareth; Howell, Anthony; Maxwell, Anthony; Astley, Susan M.
2018-03-01
Mammographic breast density is one of the strongest risk factors for breast cancer, and is used in risk prediction and for deciding appropriate imaging strategies. In the Predicting Risk Of Cancer At Screening (PROCAS) study, percent density estimated by two readers on Visual Analogue Scales (VAS) has shown a strong relationship with breast cancer risk when assessed against automated methods. However, this method suffers from reader variability. This study aimed to assess the performance of PROCAS readers using VAS, and to identify those most predictive of breast cancer. We selected the seven readers who had estimated density on over 6,500 women including at least 100 cancer cases, analysing their performance using multivariable logistic regression and Receiver Operator Characteristic (ROC) analysis. All seven readers showed statistically significant odds ratios (OR) for cancer risk according to VAS score after adjusting for classical risk factors. The OR was greatest for reader 18 at 1.026 (95% Cl 1.018-1.034). Adjusted Area Under the ROC Curves (AUCs) were statistically significant for all readers, but greatest for reader 14 at 0.639. Further analysis of the VAS scores for these two readers showed reader 14 had higher sensitivity (78.0% versus 42.2%), whereas reader 18 had higher specificity (78.0% versus 46.0%). Our results demonstrate individual differences when assigning VAS scores; one better identified those with increased risk, whereas another better identified low risk individuals. However, despite their different strengths, both readers showed similar predictive abilities overall. Standardised training for VAS may improve reader variability and consistency of VAS scoring.
Kim, Won Hwa; Cho, Nariya; Kim, Young-Seon; Yi, Ann
2018-04-06
To evaluate the changes in mammographic density after tamoxifen discontinuation in premenopausal women with oestrogen receptor-positive breast cancers and the underlying factors METHODS: A total of 213 consecutive premenopausal women with breast cancer who received tamoxifen treatment after curative surgery and underwent three mammograms (baseline, after tamoxifen treatment, after tamoxifen discontinuation) were included. Changes in mammographic density after tamoxifen discontinuation were assessed qualitatively (decrease, no change, or increase) by two readers and measured quantitatively by semi-automated software. The association between % density change and clinicopathological factors was evaluated using univariate and multivariate regression analyses. After tamoxifen discontinuation, a mammographic density increase was observed in 31.9% (68/213, reader 1) to 22.1% (47/213, reader 2) by qualitative assessment, with a mean density increase of 1.8% by quantitative assessment compared to density before tamoxifen discontinuation. In multivariate analysis, younger age (≤ 39 years) and greater % density decline after tamoxifen treatment (≥ 17.0%) were independent factors associated with density change after tamoxifen discontinuation (p < .001 and p = .003, respectively). Tamoxifen discontinuation was associated with mammographic density change with a mean density increase of 1.8%, which was associated with younger age and greater density change after tamoxifen treatment. • Increased mammographic density after tamoxifen discontinuation can occur in premenopausal women. • Mean density increase after tamoxifen discontinuation was 1.8%. • Density increase is associated with age and density decrease after tamoxifen.
Guo, Ying; Manatunga, Amita K
2009-03-01
Assessing agreement is often of interest in clinical studies to evaluate the similarity of measurements produced by different raters or methods on the same subjects. We present a modified weighted kappa coefficient to measure agreement between bivariate discrete survival times. The proposed kappa coefficient accommodates censoring by redistributing the mass of censored observations within the grid where the unobserved events may potentially happen. A generalized modified weighted kappa is proposed for multivariate discrete survival times. We estimate the modified kappa coefficients nonparametrically through a multivariate survival function estimator. The asymptotic properties of the kappa estimators are established and the performance of the estimators are examined through simulation studies of bivariate and trivariate survival times. We illustrate the application of the modified kappa coefficient in the presence of censored observations with data from a prostate cancer study.
Multi-object segmentation using coupled nonparametric shape and relative pose priors
NASA Astrophysics Data System (ADS)
Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep
2009-02-01
We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.
Intharathirat, Rotchana; Abdul Salam, P; Kumar, S; Untong, Akarapong
2015-05-01
In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435-44,994 tonnes per day in 2013 to 55,177-56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo
2018-01-01
This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555
Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.
1980-01-01
Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.
Density of Indoor Tanning Facilities in 116 Large U.S. Cities
Hoerster, Katherine D.; Garrow, Rebecca L.; Mayer, Joni A.; Clapp, Elizabeth J.; Weeks, John R.; Woodruff, Susan I.; Sallis, James F.; Slymen, Donald J.; Patel, Minal R.; Sybert, Stephanie A.
2009-01-01
Background U.S. adolescents and young adults are using indoor tanning at high rates, even though it has been linked to both melanoma and squamous cell cancer. Because the availability of commercial indoor tanning facilities may influence use, data are needed on the number and density of such facilities. Methods In March 2006, commercial indoor tanning facilities in 116 large U.S. cities were identified, and the number and density (per 100,000 population) were computed for each city. Bivariate and multivariate analyses conducted in 2008 tested the association between tanning-facility density and selected geographic, climatologic, demographic, and legislative variables. Results Mean facility number and density across cities were 41.8 (SD=30.8) and 11.8 (SD=6.0), respectively. In multivariate analysis, cities with higher percentages of whites and lower ultraviolet (UV)index scores had significantly higher facility densities than those with lower percentages of whites and higher UV index scores. Conclusions These data indicate that commercial indoor tanning is widely available in the urban U.S., and this availability may help explain the high usage of indoor tanning. PMID:19215849
Density of indoor tanning facilities in 116 large U.S. cities.
Hoerster, Katherine D; Garrow, Rebecca L; Mayer, Joni A; Clapp, Elizabeth J; Weeks, John R; Woodruff, Susan I; Sallis, James F; Slymen, Donald J; Patel, Minal R; Sybert, Stephanie A
2009-03-01
U.S. adolescents and young adults are using indoor tanning at high rates, even though it has been linked to both melanoma and squamous cell cancer. Because the availability of commercial indoor tanning facilities may influence use, data are needed on the number and density of such facilities. In March 2006, commercial indoor tanning facilities in 116 large U.S. cities were identified, and the number and density (per 100,000 population) were computed for each city. Bivariate and multivariate analyses conducted in 2008 tested the association between tanning-facility density and selected geographic, climatologic, demographic, and legislative variables. Mean facility number and density across cities were 41.8 (SD=30.8) and 11.8 (SD=6.0), respectively. In multivariate analysis, cities with higher percentages of whites and lower ultraviolet (UV)index scores had significantly higher facility densities than those with lower percentages of whites and higher UV index scores. These data indicate that commercial indoor tanning is widely available in the urban U.S., and this availability may help explain the high usage of indoor tanning.
Maternal dietary intake during pregnancy and offspring body composition: The Healthy Start Study.
Crume, Tessa L; Brinton, John T; Shapiro, Allison; Kaar, Jill; Glueck, Deborah H; Siega-Riz, Anna Maria; Dabelea, Dana
2016-11-01
Consistent evidence of an influence of maternal dietary intake during pregnancy on infant body size and composition in human populations is lacking, despite robust evidence in animal models. We sought to evaluate the influence of maternal macronutrient intake and balance during pregnancy on neonatal body size and composition, including fat mass and fat-free mass. The analysis was conducted among 1040 mother-offspring pairs enrolled in the prospective prebirth observational cohort: the Healthy Start Study. Diet during pregnancy was collected using repeated 24-hour dietary recalls (up to 8). Direct measures of body composition were obtained using air displacement plethysmography. The National Cancer Institute measurement error model was used to estimate usual dietary intake during pregnancy. Multivariable partition (nonisocaloric) and nutrient density (isocaloric) linear regression models were used to test the associations between maternal dietary intake and neonatal body composition. The median macronutrient composition during pregnancy was 32.2% from fat, 15.0% from protein, and 47.8% from carbohydrates. In the partition multivariate regression model, individual macronutrient intake values were not associated with birthweight or fat-free mass, but were associated with fat mass. Respectively, 418 kJ increases in total fat, saturated fat, unsaturated fat, and total carbohydrates were associated with 4.2-g (P = .03), 11.1-g (P = .003), 5.9-g (P = .04), and 2.9-g (P = .02) increases in neonatal fat mass, independent of prepregnancy body mass index. In the nutrient density multivariate regression model, macronutrient balance was not associated with fat mass, fat-free mass, or birthweight after adjustment for prepregnancy body mass index. Neonatal adiposity, but not birthweight, is independently associated with increased maternal intake of total fat, saturated fat, unsaturated fat, and total carbohydrates, but not protein, suggesting that most forms of increased caloric intake contribute to fetal fat accretion. Copyright © 2016 Elsevier Inc. All rights reserved.
A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series
ERIC Educational Resources Information Center
Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.
2011-01-01
Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…
DuPre, Natalie C; Hart, Jaime E; Bertrand, Kimberly A; Kraft, Peter; Laden, Francine; Tamimi, Rulla M
2017-11-23
High mammographic density is a strong, well-established breast cancer risk factor. Three studies conducted in various smaller geographic settings reported inconsistent findings between air pollution and mammographic density. We assessed whether particulate matter (PM) exposures (PM 2.5 , PM 2.5-10 , and PM 10 ) and distance to roadways were associated with mammographic density among women residing across the United States. The Nurses' Health Studies are prospective cohorts for whom a subset has screening mammograms from the 1990s (interquartile range 1990-1999). PM was estimated using spatio-temporal models linked to residential addresses. Among 3258 women (average age at mammogram 52.7 years), we performed multivariable linear regression to assess associations between square-root-transformed mammographic density and PM within 1 and 3 years before the mammogram. For linear regression estimates of PM in relation to untransformed mammographic density outcomes, bootstrapped robust standard errors are used to calculate 95% confidence intervals (CIs). Analyses were stratified by menopausal status and region of residence. Recent PM and distance to roadways were not associated with mammographic density in premenopausal women (PM 2.5 within 3 years before mammogram β = 0.05, 95% CI -0.16, 0.27; PM 2.5-10 β = 0, 95%, CI -0.15, 0.16; PM 10 β = 0.02, 95% CI -0.10, 0.13) and postmenopausal women (PM 2.5 within 3 years before mammogram β = -0.05, 95% CI -0.27, 0.17; PM 2.5-10 β = -0.01, 95% CI -0.16, 0.14; PM 10 β = -0.02, 95% CI -0.13, 0.09). Largely null associations were observed within regions. Suggestive associations were observed among postmenopausal women in the Northeast (n = 745), where a 10-μg/m 3 increase in PM 2.5 within 3 years before the mammogram was associated with 3.4 percentage points higher percent mammographic density (95% CI -0.5, 7.3). These findings do not support that recent PM or roadway exposures influence mammographic density. Although PM was largely not associated with mammographic density, we cannot rule out the role of PM during earlier exposure time windows and possible associations among northeastern postmenopausal women.
Critical elements on fitting the Bayesian multivariate Poisson Lognormal model
NASA Astrophysics Data System (ADS)
Zamzuri, Zamira Hasanah binti
2015-10-01
Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.
ERIC Educational Resources Information Center
Grochowalski, Joseph H.
2015-01-01
Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…
Monograph on the use of the multivariate Gram Charlier series Type A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatayodom, T.; Heydt, G.
1978-01-01
The Gram-Charlier series in an infinite series expansion for a probability density function (pdf) in which terms of the series are Hermite polynomials. There are several Gram-Charlier series - the best known is Type A. The Gram-Charlier series, Type A (GCA) exists for both univariate and multivariate random variables. This monograph introduces the multivariate GCA and illustrates its use through several examples. A brief bibliography and discussion of Hermite polynomials is also included. 9 figures, 2 tables.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
Real-time realizations of the Bayesian Infrasonic Source Localization Method
NASA Astrophysics Data System (ADS)
Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.
2015-12-01
The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Empirical Bayes approach to the estimation of "unsafety": the multivariate regression method.
Hauer, E
1992-10-01
There are two kinds of clues to the unsafety of an entity: its traits (such as traffic, geometry, age, or gender) and its historical accident record. The Empirical Bayes approach to unsafety estimation makes use of both kinds of clues. It requires information about the mean and the variance of the unsafety in a "reference population" of similar entities. The method now in use for this purpose suffers from several shortcomings. First, a very large reference population is required. Second, the choice of reference population is to some extent arbitrary. Third, entities in the reference population usually cannot match the traits of the entity the unsafety of which is estimated. To alleviate these shortcomings the multivariate regression method for estimating the mean and variance of unsafety in reference populations is offered. Its logical foundations are described and its soundness is demonstrated. The use of the multivariate method makes the Empirical Bayes approach to unsafety estimation applicable to a wider range of circumstances and yields better estimates of unsafety. The application of the method to the tasks of identifying deviant entities and of estimating the effect of interventions on unsafety are discussed and illustrated by numerical examples.
Achana, Felix A; Cooper, Nicola J; Bujkiewicz, Sylwia; Hubbard, Stephanie J; Kendrick, Denise; Jones, David R; Sutton, Alex J
2014-07-21
Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.
Quantifying the impact of between-study heterogeneity in multivariate meta-analyses
Jackson, Dan; White, Ian R; Riley, Richard D
2012-01-01
Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950
Forecasting of municipal solid waste quantity in a developing country using multivariate grey models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intharathirat, Rotchana, E-mail: rotchana.in@gmail.com; Abdul Salam, P., E-mail: salam@ait.ac.th; Kumar, S., E-mail: kumar@ait.ac.th
Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developingmore » countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period.« less
Riley, Richard D; Elia, Eleni G; Malin, Gemma; Hemming, Karla; Price, Malcolm P
2015-07-30
A prognostic factor is any measure that is associated with the risk of future health outcomes in those with existing disease. Often, the prognostic ability of a factor is evaluated in multiple studies. However, meta-analysis is difficult because primary studies often use different methods of measurement and/or different cut-points to dichotomise continuous factors into 'high' and 'low' groups; selective reporting is also common. We illustrate how multivariate random effects meta-analysis models can accommodate multiple prognostic effect estimates from the same study, relating to multiple cut-points and/or methods of measurement. The models account for within-study and between-study correlations, which utilises more information and reduces the impact of unreported cut-points and/or measurement methods in some studies. The applicability of the approach is improved with individual participant data and by assuming a functional relationship between prognostic effect and cut-point to reduce the number of unknown parameters. The models provide important inferential results for each cut-point and method of measurement, including the summary prognostic effect, the between-study variance and a 95% prediction interval for the prognostic effect in new populations. Two applications are presented. The first reveals that, in a multivariate meta-analysis using published results, the Apgar score is prognostic of neonatal mortality but effect sizes are smaller at most cut-points than previously thought. In the second, a multivariate meta-analysis of two methods of measurement provides weak evidence that microvessel density is prognostic of mortality in lung cancer, even when individual participant data are available so that a continuous prognostic trend is examined (rather than cut-points). © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Willis, Michael; Asseburg, Christian; Nilsson, Andreas; Johnsson, Kristina; Kartman, Bernt
2017-03-01
Type 2 diabetes mellitus (T2DM) is chronic and progressive and the cost-effectiveness of new treatment interventions must be established over long time horizons. Given the limited durability of drugs, assumptions regarding downstream rescue medication can drive results. Especially for insulin, for which treatment effects and adverse events are known to depend on patient characteristics, this can be problematic for health economic evaluation involving modeling. To estimate parsimonious multivariate equations of treatment effects and hypoglycemic event risks for use in parameterizing insulin rescue therapy in model-based cost-effectiveness analysis. Clinical evidence for insulin use in T2DM was identified in PubMed and from published reviews and meta-analyses. Study and patient characteristics and treatment effects and adverse event rates were extracted and the data used to estimate parsimonious treatment effect and hypoglycemic event risk equations using multivariate regression analysis. Data from 91 studies featuring 171 usable study arms were identified, mostly for premix and basal insulin types. Multivariate prediction equations for glycated hemoglobin A 1c lowering and weight change were estimated separately for insulin-naive and insulin-experienced patients. Goodness of fit (R 2 ) for both outcomes were generally good, ranging from 0.44 to 0.84. Multivariate prediction equations for symptomatic, nocturnal, and severe hypoglycemic events were also estimated, though considerable heterogeneity in definitions limits their usefulness. Parsimonious and robust multivariate prediction equations were estimated for glycated hemoglobin A 1c and weight change, separately for insulin-naive and insulin-experienced patients. Using these in economic simulation modeling in T2DM can improve realism and flexibility in modeling insulin rescue medication. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates
Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.
2008-01-01
Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.
Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel
2016-01-01
This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection. PMID:26789008
Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel
2016-01-01
This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection.
Use of collateral information to improve LANDSAT classification accuracies
NASA Technical Reports Server (NTRS)
Strahler, A. H. (Principal Investigator)
1981-01-01
Methods to improve LANDSAT classification accuracies were investigated including: (1) the use of prior probabilities in maximum likelihood classification as a methodology to integrate discrete collateral data with continuously measured image density variables; (2) the use of the logit classifier as an alternative to multivariate normal classification that permits mixing both continuous and categorical variables in a single model and fits empirical distributions of observations more closely than the multivariate normal density function; and (3) the use of collateral data in a geographic information system as exercised to model a desired output information layer as a function of input layers of raster format collateral and image data base layers.
Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)
ERIC Educational Resources Information Center
Steyn, H. S., Jr.; Ellis, S. M.
2009-01-01
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
ERIC Educational Resources Information Center
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin
2013-01-01
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin
2013-10-15
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.
Estimation of failure criteria in multivariate sensory shelf life testing using survival analysis.
Giménez, Ana; Gagliardi, Andrés; Ares, Gastón
2017-09-01
For most food products, shelf life is determined by changes in their sensory characteristics. A predetermined increase or decrease in the intensity of a sensory characteristic has frequently been used to signal that a product has reached the end of its shelf life. Considering all attributes change simultaneously, the concept of multivariate shelf life allows a single measurement of deterioration that takes into account all these sensory changes at a certain storage time. The aim of the present work was to apply survival analysis to estimate failure criteria in multivariate sensory shelf life testing using two case studies, hamburger buns and orange juice, by modelling the relationship between consumers' rejection of the product and the deterioration index estimated using PCA. In both studies, a panel of 13 trained assessors evaluated the samples using descriptive analysis whereas a panel of 100 consumers answered a "yes" or "no" question regarding intention to buy or consume the product. PC1 explained the great majority of the variance, indicating all sensory characteristics evolved similarly with storage time. Thus, PC1 could be regarded as index of sensory deterioration and a single failure criterion could be estimated through survival analysis for 25 and 50% consumers' rejection. The proposed approach based on multivariate shelf life testing may increase the accuracy of shelf life estimations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sands, Dorota; Mielus, Monika; Umławska, Wioleta; Lipowicz, Anna; Oralewska, Beata; Walkowiak, Jarosław
2015-09-01
The aim of the study was to evaluate factors related to bone formation and resorption in Polish children and adolescents with cystic fibrosis and to examine the effect of nutritional status, biochemical parameters and clinical status on bone mineral density. The study group consisted of 100 children and adolescents with cystic fibrosis with a mean age 13.4 years old. Anthropometric measurements, included body height, body mass and body mass index (BMI); bone mineral densitometry and biochemical testing were performed. Bone mineral density was measured using a dual-energy X-ray absorption densitometer. Biochemical tests included serum calcium, phosphorus, parathyroid hormone and vitamin D concentrations, as well as 24-h urine calcium and phosphorus excretion. Pulmonary function was evaluated using FEV1%, and clinical status was estimated using the Shwachman-Kulczycki score. Standardized body height, body mass and BMI were significantly lower than in the reference population. Mean serum vitamin D concentration was decreased. Pulmonary disease was generally mild, with a mean FEV1% of 81%. Multivariate linear regression revealed that the only factors that had a significant effect on bone marrow density were BMI and FEV1%. There were no significant correlations between bone mineral density and the results of any of the biochemical tests performed. Nutritional status and bone mineral density were significantly decreased in children and adolescents with cystic fibrosis. In spite of abnormalities in biochemical testing, the factors that were found to have the strongest effect on bone mineral density were standardized BMI and clinical status. Copyright © 2015. Published by Elsevier Urban & Partner Sp. z o.o.
Bone mineral density across a range of physical activity volumes: NHANES 2007-2010.
Whitfield, Geoffrey P; Kohrt, Wendy M; Pettee Gabriel, Kelley K; Rahbar, Mohammad H; Kohl, Harold W
2015-02-01
The association between aerobic physical activity volume and bone mineral density (BMD) is not completely understood. The purpose of this study was to clarify the association between BMD and aerobic activity across a broad range of activity volumes, particularly volumes between those recommended in the 2008 Physical Activity Guidelines for Americans and those of trained endurance athletes. Data from the 2007-2010 National Health and Nutrition Examination Survey were used to quantify the association between reported physical activity and BMD at the lumbar spine and proximal femur across the entire range of activity volumes reported by US adults. Participants were categorized into multiples of the minimum guideline-recommended volume based on reported moderate- and vigorous-intensity leisure activity. Lumbar and proximal femur BMD were assessed with dual-energy x-ray absorptiometry. Among women, multivariable-adjusted linear regression analyses revealed no significant differences in lumbar BMD across activity categories, whereas proximal femur BMD was significantly higher among those who exceeded the guidelines by 2-4 times than those who reported no activity. Among men, multivariable-adjusted BMD at both sites neared its highest values among those who exceeded the guidelines by at least 4 times and was not progressively higher with additional activity. Logistic regression estimating the odds of low BMD generally echoed the linear regression results. The association between physical activity volume and BMD is complex. Among women, exceeding guidelines by 2-4 times may be important for maximizing BMD at the proximal femur, whereas among men, exceeding guidelines by ≥4 times may be beneficial for lumbar and proximal femur BMD.
A simplified parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
Study of the cell activity in three-dimensional cell culture by using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Arunngam, Pakajiraporn; Mahardika, Anggara; Hiroko, Matsuyoshi; Andriana, Bibin Bintang; Tabata, Yasuhiko; Sato, Hidetoshi
2018-02-01
The purpose of this study is to develop a estimation technique of local cell activity in cultured 3D cell aggregate with gelatin hydrogel microspheres by using Raman spectroscopy. It is an invaluable technique allowing real-time, nondestructive, and invasive measurement. Cells in body generally exist in 3D structure, which physiological cell-cell interaction enhances cell survival and biological functions. Although a 3D cell aggregate is a good model of the cells in living tissues, it was difficult to estimate their physiological conditions because there is no effective technique to make observation of intact cells in the 3D structure. In this study, cell aggregates were formed by MC3T-E1 (pre-osteoblast) cells and gelatin hydrogel microspheres. In appropriate condition MC3T-E1 cells can differentiate into osteoblast. We assume that the activity of the cell would be different according to the location in the aggregate because the cells near the surface of the aggregate have more access to oxygen and nutrient. Raman imaging technique was applied to measure 3D image of the aggregate. The concentration of the hydroxyapatite (HA) is generated by osteoblast was estimated with a strong band at 950-970 cm-1 which assigned to PO43- in HA. It reflects an activity of the specific site in the cell aggregate. The cell density in this specific site was analyzed by multivariate analysis of the 3D Raman image. Hence, the ratio between intensity and cell density in the site represents the cell activity.
Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F
2015-01-01
An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.
2012-06-15
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less
Multivariate Time Series Decomposition into Oscillation Components.
Matsuda, Takeru; Komaki, Fumiyasu
2017-08-01
Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi
2016-01-01
Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.
Hagar, Yolanda C; Harvey, Danielle J; Beckett, Laurel A
2016-08-30
We develop a multivariate cure survival model to estimate lifetime patterns of colorectal cancer screening. Screening data cover long periods of time, with sparse observations for each person. Some events may occur before the study begins or after the study ends, so the data are both left-censored and right-censored, and some individuals are never screened (the 'cured' population). We propose a multivariate parametric cure model that can be used with left-censored and right-censored data. Our model allows for the estimation of the time to screening as well as the average number of times individuals will be screened. We calculate likelihood functions based on the observations for each subject using a distribution that accounts for within-subject correlation and estimate parameters using Markov chain Monte Carlo methods. We apply our methods to the estimation of lifetime colorectal cancer screening behavior in the SEER-Medicare data set. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Pompa-García, Marín; Venegas-González, Alejandro
2016-01-01
Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries. PMID:27272519
Pompa-García, Marín; Venegas-González, Alejandro
2016-01-01
Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.
Pouessel, Damien; Bastuji-Garin, Sylvie; Houédé, Nadine; Vordos, Dimitri; Loriot, Yohann; Chevreau, Christine; Sevin, Emmanuel; Beuzeboc, Philippe; Taille, Alexandre de la; Le Thuaut, Aurélie; Allory, Yves; Culine, Stéphane
2017-02-01
In the past decade, adjuvant chemotherapy (AC) after radical cystectomy (RC) was preferred worldwide for patients with muscle-invasive urothelial bladder cancer. In this study we aimed to determine the outcome of patients who received AC and evaluated prognostic factors associated with survival. We retrospectively analyzed 226 consecutive patients treated in 6 academic hospitals between 2000 and 2009. Multivariate Cox proportional hazards regression adjusted for center to estimate adjusted hazard ratios (HRs) with 95% confidence intervals were used. The median age was 62.4 (range, 35-82) years. Patients had pT3/pT4 and/or pN+ in 180 (79.6%) and 168 patients (74.3%), respectively. Median lymph node (LN) density was 25% (range, 3.1-100). Median time between RC and AC was 61.5 (range, 18-162) days. Gemcitabine with cisplatin, gemcitabine with carboplatin, and MVAC (methotrexate, vinblastine, doxorubicin, and cisplatin) regimens were delivered in 161 (71.2%), 49 (21.7%), and 12 patients (5.3%) of patients, respectively. The median number of cycles was 4 (range, 1-6). Thirteen patients (5.7%) with LN metastases also received adjuvant pelvic radiotherapy (ART). After a median follow-up of 4.2 years, 5-year overall survival (OS) was 40.7%. In multivariate analysis, pT ≥3 stage (HR, 1.73; P = .05), LN density >50% (HR, 1.94; P = .03), and number of AC cycles <4 (HR, 4.26; P = .001) were adverse prognostic factors for OS. ART (HR, 0.30; P = .05) tended to provide survival benefit. Classical prognostic features associated with survival are not modified by the use of AC. Patients who derived benefit from AC had a low LN density and received at least 4 cycles of treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Travison, T G; Chiu, G R; McKinlay, J B; Araujo, A B
2011-10-01
The relative importance of various contributors to racial/ethnic variation in BMC/BMD is not established. Using population-based data, we determined that body composition differences (specifically skeletal muscle and fat mass) are among the strongest contributors to these variations. Racial/ethnic variation in fracture risk is well documented, but the mechanisms by which such heterogeneity arises are poorly understood. We analyzed data from black, Hispanic, and white men enrolled in the Boston Area Community Health/Bone (BACH/Bone) Survey to determine the contributions of risk factors to racial/ethnic differences in bone mineral content (BMC) and density (BMD). In a population-based study, BMC, BMD, and body composition were ascertained by DXA. Socioeconomic status, health history, and dietary intake were obtained via interview. Hormones and markers of bone turnover were obtained from non-fasting blood samples. Multivariate analyses measured percentage reductions in estimated racial/ethnic differences in BMC/BMD, accompanying the successive removal of covariates from linear regression models. Black men demonstrated greater BMC than their Hispanic and white counterparts. At the femoral neck, adjustment for covariables was sufficient to reduce these differences by 46% and 35%, respectively. While absolute differences in BMC were smaller at the distal radius than femoral neck, the proportionate reductions in racial/ethnic differences after covariable adjustment were comparable or greater. Multivariate models provided evidence that lean and fat mass, serum 25(OH)D, osteocalcin, estradiol, and aspects of socioeconomic status influence the magnitude of racial/ethnic differences in BMC, with lean and fat mass providing the strongest effects. Results for BMD were similar, but typically of lesser magnitude and statistical significance. These cross-sectional analyses demonstrate that much of the racial/ethnic heterogeneity in measures of bone mass and density can be accounted for through variation in body composition, diet, and socio-demographic factors.
A tridiagonal parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.
Williams, L. Keoki; Buu, Anne
2017-01-01
We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206
Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif
2014-11-01
Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less
2012-01-01
Background Women with elevated mammographic density have an increased risk of developing breast cancer. However, among women diagnosed with breast cancer, it is unclear whether higher density portends reduced survival, independent of other factors. Methods We evaluated relationships between mammographic density and risk of death from breast cancer and all causes within the US Breast Cancer Surveillance Consortium. We studied 9232 women diagnosed with primary invasive breast carcinoma during 1996–2005, with a mean follow-up of 6.6 years. Mammographic density was assessed using the Breast Imaging Reporting and Data System (BI-RADS) density classification. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated by Cox proportional hazards regression; women with scattered fibroglandular densities (BI-RADS 2) were the referent group. All statistical tests were two-sided. Results A total of 1795 women died, of whom 889 died of breast cancer. In multivariable analyses (adjusted for site, age at and year of diagnosis, American Joint Committee on Cancer stage, body mass index, mode of detection, treatment, and income), high density (BI-RADS 4) was not related to risk of death from breast cancer (HR = 0.92, 95% CI = 0.71 to 1.19) or death from all causes (HR = 0.83, 95% CI = 0.68 to 1.02). Analyses stratified by stage and other prognostic factors yielded similar results, except for an increased risk of breast cancer death among women with low density (BI-RADS 1) who were either obese (HR = 2.02, 95% CI = 1.37 to 2.97) or had tumors of at least 2.0cm (HR = 1.55, 95% CI = 1.14 to 2.09). Conclusions High mammographic breast density was not associated with risk of death from breast cancer or death from any cause after accounting for other patient and tumor characteristics. Thus, risk factors for the development of breast cancer may not necessarily be the same as factors influencing the risk of death after breast cancer has developed. PMID:22911616
Estimating Soil Cation Exchange Capacity from Soil Physical and Chemical Properties
NASA Astrophysics Data System (ADS)
Bateni, S. M.; Emamgholizadeh, S.; Shahsavani, D.
2014-12-01
The soil Cation Exchange Capacity (CEC) is an important soil characteristic that has many applications in soil science and environmental studies. For example, CEC influences soil fertility by controlling the exchange of ions in the soil. Measurement of CEC is costly and difficult. Consequently, several studies attempted to obtain CEC from readily measurable soil physical and chemical properties such as soil pH, organic matter, soil texture, bulk density, and particle size distribution. These studies have often used multiple regression or artificial neural network models. Regression-based models cannot capture the intricate relationship between CEC and soil physical and chemical attributes and provide inaccurate CEC estimates. Although neural network models perform better than regression methods, they act like a black-box and cannot generate an explicit expression for retrieval of CEC from soil properties. In a departure with regression and neural network models, this study uses Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) to estimate CEC from easily measurable soil variables such as clay, pH, and OM. CEC estimates from GEP and MARS are compared with measurements at two field sites in Iran. Results show that GEP and MARS can estimate CEC accurately. Also, the MARS model performs slightly better than GEP. Finally, a sensitivity test indicates that organic matter and pH have respectively the least and the most significant impact on CEC.
Saha, N; Aditya, G; Saha, G K
2014-03-01
Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi ) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P < 0.05) in all of the insect predators tested for mosquito larvae over the alternative prey as a density-dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple-prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P < 0.05) niche overlap. The results suggest that, in a laboratory setting, these insect predators can effectively reduce mosquito density in the presence of multiple alternative prey. © 2013 The Royal Entomological Society.
Geographic Disparities in Access to Agencies Providing Income-Related Social Services.
Bauer, Scott R; Monuteaux, Michael C; Fleegler, Eric W
2015-10-01
Geographic location is an important factor in understanding disparities in access to health-care and social services. The objective of this cross-sectional study is to evaluate disparities in the geographic distribution of income-related social service agencies relative to populations in need within Boston. Agency locations were obtained from a comprehensive database of social services in Boston. Geographic information systems mapped the spatial relationship of the agencies to the population using point density estimation and was compared to census population data. A multivariate logistic regression was conducted to evaluate factors associated with categories of income-related agency density. Median agency density within census block groups ranged from 0 to 8 agencies per square mile per 100 population below the federal poverty level (FPL). Thirty percent (n = 31,810) of persons living below the FPL have no access to income-related social services within 0.5 miles, and 77 % of persons living below FPL (n = 83,022) have access to 2 or fewer agencies. 27.0 % of Blacks, 30.1 % of Hispanics, and 41.0 % of non-Hispanic Whites with incomes below FPL have zero access. In conclusion, some neighborhoods in Boston with a high concentration of low-income populations have limited access to income-related social service agencies.
On the degrees of freedom of reduced-rank estimators in multivariate regression
Mukherjee, A.; Chen, K.; Wang, N.; Zhu, J.
2015-01-01
Summary We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example. PMID:26702155
Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung
2010-08-01
Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.
Copula-based analysis of rhythm
NASA Astrophysics Data System (ADS)
García, J. E.; González-López, V. A.; Viola, M. L. Lanfredi
2016-06-01
In this paper we establish stochastic profiles of the rhythm for three languages: English, Japanese and Spanish. We model the increase or decrease of the acoustical energy, collected into three bands coming from the acoustic signal. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination of the partitions corresponding to the three marginal processes, one for each band of energy, and the partition coming from to the multivariate Markov chain. Then, all the partitions are linked using a copula, in order to estimate the transition probabilities.
2014-01-01
Background Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. Methods The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Results Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Conclusions Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately. PMID:25047164
Estimation of density of mongooses with capture-recapture and distance sampling
Corn, J.L.; Conroy, M.J.
1998-01-01
We captured mongooses (Herpestes javanicus) in live traps arranged in trapping webs in Antigua, West Indies, and used capture-recapture and distance sampling to estimate density. Distance estimation and program DISTANCE were used to provide estimates of density from the trapping-web data. Mean density based on trapping webs was 9.5 mongooses/ha (range, 5.9-10.2/ha); estimates had coefficients of variation ranging from 29.82-31.58% (X?? = 30.46%). Mark-recapture models were used to estimate abundance, which was converted to density using estimates of effective trap area. Tests of model assumptions provided by CAPTURE indicated pronounced heterogeneity in capture probabilities and some indication of behavioral response and variation over time. Mean estimated density was 1.80 mongooses/ha (range, 1.37-2.15/ha) with estimated coefficients of variation of 4.68-11.92% (X?? = 7.46%). Estimates of density based on mark-recapture data depended heavily on assumptions about animal home ranges; variances of densities also may be underestimated, leading to unrealistically narrow confidence intervals. Estimates based on trap webs require fewer assumptions, and estimated variances may be a more realistic representation of sampling variation. Because trap webs are established easily and provide adequate data for estimation in a few sample occasions, the method should be efficient and reliable for estimating densities of mongooses.
NASA Astrophysics Data System (ADS)
Cannon, Alex J.
2018-01-01
Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin, particularly for annual maxima of the FWI distribution and spatiotemporal autocorrelation of precipitation fields.
Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila
2015-11-01
Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
A refined method for multivariate meta-analysis and meta-regression.
Jackson, Daniel; Riley, Richard D
2014-02-20
Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.
Non-Gaussian and Multivariate Noise Models for Signal Detection.
1982-09-01
follow, some of the basic results of asymptotic "theory are presented. both to make the notation clear. and to give some i ~ background for the...densities are considered within a detection framework. The discussions include specific examples and also some general methods of density generation ...densities generated by a memoryless, nonlinear transformation of a correlated, Gaussian source is discussed in some detail. A member of this class has the
NASA Astrophysics Data System (ADS)
Jeyaram, A.; Kesari, S.; Bajpai, A.; Bhunia, G. S.; Krishna Murthy, Y. V. N.
2012-07-01
Visceral Leishmaniasis (VL) commonly known as Kala-azar is one of the most neglected tropical disease affecting approximately 200 million poorest populations 'at risk in 109 districts of three endemic countries namely Bangladesh, India and Nepal at different levels. This tropical disease is caused by the protozoan parasite Leishmania donovani and transmitted by female Phlebotomus argentipes sand flies. The analysis of disease dynamics indicate the periodicity at seasonal and inter-annual temporal scale which forms the basis for development of advanced early warning system. Study area of highly endemic Vaishali district, Bihar, India has been taken for model development. A Systematic study of geo-environmental parameters derived from satellite data in conjunction with ground intelligence enabled modelling of infectious disease and risk villages. High resolution Indian satellites data of IRS LISS IV (multi-spectral) and Cartosat-1 (Pan) have been used for studying environmentally risk parameters viz. peri-domestic vegetation, dwelling condition, wetland ecosystem, cropping pattern, Normalised Difference Vegetation Index (NDVI), detailed land use etc towards risk assessment. Univariate analysis of the relationship between vector density and various land cover categories and climatic variables suggested that all the variables are significantly correlated. Using the significantly correlated variables with vector density, a seasonal multivariate regression model has been carried out incorporating geo-environmental parameters, climate variables and seasonal time series disease parameters. Linear and non-linear models have been applied for periodicity and interannual temporal scale to predict Man-hour-density (MHD) and 'out-of-fit' data set used for validating the model with reasonable accuracy. To improve the MHD predictive approach, fuzzy model has also been incorporated in GIS environment combining spatial geo-environmental and climatic variables using fuzzy membership logic. Based on the perceived importance of the geoenvironmental parameters assigned by epidemiology expert, combined fuzzy membership has been calculated. The combined fuzzy membership indicate the predictive measure of vector density in each village. A γ factor has been introduced to have increasing effect in the higher side and decreasing effect in the lower side which facilitated for prioritisation of the villages. This approach is not only to predict vector density but also to prioritise the villages for effective control measures. A software package for modelling the risk villages integrating multivariate regression and fuzzy membership analysis models have been developed to estimate MHD (vector density) as part of the early warning system.
Yodavudh, Sirisanpang; Tangjitgamol, Siriwan; Puangsa-art, Supalarp
2008-05-01
Angiogenesis has been found to be a reliable prognostic indicator for several types of malignancies. In colorectal cancer, however there has been controversy as to whether there is a correlation between this feature and the tumors' behavior. Determine the correlation between microvessel density (MVD) and mast cell density (MCD) in order to evaluate these factors in terms of their prognostic relevance for primary colorectal carcinoma in Thai patients. One hundred and thirty colorectal carcinoma patients diagnosed between January 2002 and December 2004 were identified. Eleven patients were excluded from the present study due to recurrence of colorectal carcinoma in eight cases whereas pathologic blocks were not found in three cases. One hundred and nineteen patients met all inclusion criteria and were included in the present study. Representative paraffin sections obtained by the tissue micro-array technique (9 x 5 arrays per slide) from areas of highest vascular density (hot spots) were prepared. Sections were immuno-stained by monoclonal anti CD 31 for microvessel and antibody mast cell tryptase for mast cell detections, respectively. Three readings at different periods of time under a microscopic examination of high power magnification were examined by a pathologist who was blinded to clinical data. The highest microvessel and mast cell counts were recorded as MVD and MCD. Patients were then divided into groups of high and low MVD and high and low MCD by median values (20.5 and 14.5, respectively). Overall survival of the patients in each group was estimated by the Kaplan-Meier Method while a multivariate Cox regression backward stepwise analysis was employed to find out independent prognostic factors. Significant positive correlation was found to exist between MVD and MCD in the hot spots (R = 0.697, p < 0.0001). Regarding their prognostic role, patients with tumors of low MVD (hypovascular) and low MCD (low mast cell counts) had significantly longer survival rates than those with hypervascular and high mast cell counts (p < 0.0001). The Multivariate Cox hazard showed that MVD and distance metastasis of cancer were independent poor prognostic factors to survival (p = 0.036 and p = 0.024, respectively). The patients with high MVD (hypervascular) tumors and with presence of distant metastasis had 1.9 and 2.5 times higher death rates than the corresponding hypovascular and non-metastatic groups, respectively during the period from January 2002 to September 2007. Assessment of microvessel density in the invasive front of primary colorectal carcinoma could serve as useful prognosis tool of primary colorectal carcinoma in Thai patients.
Multivariate Quantitative Chemical Analysis
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Capezza, Mary
1995-01-01
Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.
Association between Dietary Inflammatory Index (DII) and risk of prediabetes: a case-control study.
Vahid, Farhad; Shivappa, Nitin; Karamati, Mohsen; Naeini, Alireza Jafari; Hebert, James R; Davoodi, Sayed Hossein
2017-04-01
The possible relationship between diet-related inflammation and the risk of prediabetes requires further investigation, especially in non-Western populations. We examined the ability of the dietary inflammatory index (DII) to predict the risk of prediabetes in a case-control study conducted at specialized centers in Esfahan, Iran. A total of 214 incident cases of prediabetes were selected with the nonrandom sampling procedure, and the 200 controls randomly selected from the same clinics were frequency-matched on age (±5 years) and sex. DII scores were computed based on dietary intake assessed using a validated and reproducible 168-item food-frequency questionnaire. Linear and logistic regression models were used to estimate multivariable beta estimates and odds ratios (ORs). Subjects in tertile 3 versus tertile 1 (T3VS1) of DII had significantly higher fasting plasma glucose (DII T3VS1 : b = 4.49; 95% CI 1.89, 7.09), oral glucose tolerance (DII T3VS1 : b = 8.76; 95% CI 1.78, 15.73), HbA1c (DII T3VS1 : b = 0.30; 95% CI 0.17, 0.42), low-density lipoprotein (DII T3VS1 : b = 16.37; 95% CI 11.04, 21.69), triglyceride (DII T3VS1 : b = 21.01; 95% CI 8.61, 33.42) and body fat (DII T3VS1 : b = 2.41; 95% CI 0.56, 4.26) and lower high-density lipoprotein (DII T3VS1 : b = -3.39; 95% CI -5.94, -0.84) and lean body mass (DII T3VS1 : b = -3.11; 95% CI -4.83, -1.39). After multivariate adjustment, subjects in the most pro-inflammatory DII group had 19 times higher odds of developing prediabetes compared with subjects in tertile 1 (DII T3VS1 : OR = 18.88; 95% CI 7.02, 50.82). Similar results were observed when DII was used as a continuous variable, (DII continuous : OR = 3.62; 95% CI 2.50, 5.22). Subjects who consumed a more pro-inflammatory diet were at increased risk of prediabetes compared with those who consumed a more anti-inflammatory diet.
Snow multivariable data assimilation for hydrological predictions in Alpine sites
NASA Astrophysics Data System (ADS)
Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè
2017-04-01
Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of a DA scheme enables to assimilate simultaneously ground-based observations of different snow-related variables (snow depth, snow density, surface temperature and albedo). SMASH performances are evaluated by using observed data supplied by meteorological stations located in three experimental Alpine sites: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). A comparison analysis between the resulting performaces of Particle Filter and Ensemble Kalman Filter schemes is shown.
Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F
2017-04-01
Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Henderson, Louise M; Hubbard, Rebecca A; Zhu, Weiwei; Weiss, Julie; Wernli, Karen J; Goodrich, Martha E; Kerlikowske, Karla; DeMartini, Wendy; Ozanne, Elissa M; Onega, Tracy
2018-01-15
Use of preoperative breast magnetic resonance imaging (MRI) among women with a new breast cancer has increased over the past decade. MRI use is more frequent in younger women and those with lobular carcinoma, but associations with breast density and family history of breast cancer are unknown. Data for 3075 women ages >65 years with stage 0-III breast cancer who underwent breast conserving surgery or mastectomy from 2005 to 2010 in the Breast Cancer Surveillance Consortium were linked to administrative claims data to assess associations of preoperative MRI use with mammographic breast density and first-degree family history of breast cancer. Multivariable logistic regression estimated adjusted odds ratios (OR) and 95% confidence intervals (95% CI) for the association of MRI use with breast density and family history, adjusting for woman and tumor characteristics. Overall, preoperative MRI use was 16.4%. The proportion of women receiving breast MRI was similar by breast density (17.6% dense, 16.9% nondense) and family history (17.1% with family history, 16.5% without family history). After adjusting for potential confounders, we found no difference in preoperative MRI use by breast density (OR = 0.95 for dense vs. nondense, 95% CI: 0.73-1.22) or family history (OR = 0.99 for family history vs. none, 95% CI: 0.73-1.32). Among women aged >65 years with breast cancer, having dense breasts or a first-degree relative with breast cancer was not associated with greater preoperative MRI use. This utilization is in keeping with lack of evidence that MRI has higher yield of malignancy in these subgroups.
Noriega, Nicida; Cróquer, Aldo; Pauls, Sheila M
2002-03-01
To compare the general features of Thalassia testudinum seagrass at Mochima Bay with sea urchin (Lxtechinus variegatus) abundance and distribution, three T. testudinum seagrass beds were selected, from the mouth (strong wave exposure) to the inner bay (calm waters). Each site was surveyed by using 5 line transects (20 m long) parallel to the coast and 1 m2 quadrats. In situ measurements of T. testudinum cover, shoot and leaf density were taken. Estimation of dry biomass for each seagrass fraction (leaves, rhizomes and roots) and leaf length were obtained from 25 vegetation samples extracted per site using cores (15 cm diameter). A multivariate analysis of variance (Manova) and a less significative difference test (LSD) were performed to examine differences between sites and within sites at different depths. A stepwise multiple regression analysis was done, dependent variable was sea urchin density; independent variables: vegetation values at each site. The only seagrass species found in the three sites was T. testudinum, and cover was 56-100%, leaf density 100-1000 leaf/m2, lengths 6-18.8 cm and shoot density 20-475 shoots/m2. The highest sea urchin densities were found at Isla Redonda and Ensenada Toporo (1-3.6 ind/m2), the lowest at Playa Colorada (0.6-0.8 ind/m2). Significant differences in seagrass features between sites were obtained (Manova p < 0.001), but not between depths (Manova p < 0.320). The regression coefficient between sea urchin density and seagrass parameters was statistically significant (r2 = 0.154, p < 0.007), however, total biomass was the only variable with a significant effect on sea urchin distribution (beta = 0.308, p < 0.032). The other variables did not explain satisfactorily L. variegatus abundance and distribution.
Multivariate meta-analysis: a robust approach based on the theory of U-statistic.
Ma, Yan; Mazumdar, Madhu
2011-10-30
Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.
Density Estimation for New Solid and Liquid Explosives
1977-02-17
The group additivity approach was shown to be applicable to density estimation. The densities of approximately 180 explosives and related compounds... of very diverse compositions were estimated, and almost all the estimates were quite reasonable. Of the 168 compounds for which direct comparisons...could be made (see Table 6), 36.9% of the estimated densities were within 1% of the measured densities, 33.3% were within 1-2%, 11.9% were within 2-3
Copula-based prediction of economic movements
NASA Astrophysics Data System (ADS)
García, J. E.; González-López, V. A.; Hirsh, I. D.
2016-06-01
In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.
NASA Astrophysics Data System (ADS)
Thelen, Brian J.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.
2017-04-01
In Bayesian decision theory, there has been a great amount of research into theoretical frameworks and information- theoretic quantities that can be used to provide lower and upper bounds for the Bayes error. These include well-known bounds such as Chernoff, Battacharrya, and J-divergence. Part of the challenge of utilizing these various metrics in practice is (i) whether they are "loose" or "tight" bounds, (ii) how they might be estimated via either parametric or non-parametric methods, and (iii) how accurate the estimates are for limited amounts of data. In general what is desired is a methodology for generating relatively tight lower and upper bounds, and then an approach to estimate these bounds efficiently from data. In this paper, we explore the so-called triangle divergence which has been around for a while, but was recently made more prominent in some recent research on non-parametric estimation of information metrics. Part of this work is motivated by applications for quantifying fundamental information content in SAR/LIDAR data, and to help in this, we have developed a flexible multivariate modeling framework based on multivariate Gaussian copula models which can be combined with the triangle divergence framework to quantify this information, and provide approximate bounds on Bayes error. In this paper we present an overview of the bounds, including those based on triangle divergence and verify that under a number of multivariate models, the upper and lower bounds derived from triangle divergence are significantly tighter than the other common bounds, and often times, dramatically so. We also propose some simple but effective means for computing the triangle divergence using Monte Carlo methods, and then discuss estimation of the triangle divergence from empirical data based on Gaussian Copula models.
Dahlin, Anna M; Henriksson, Maria L; Van Guelpen, Bethany; Stenling, Roger; Oberg, Ake; Rutegård, Jörgen; Palmqvist, Richard
2011-05-01
The aim of this study was to relate the density of tumor infiltrating T cells to cancer-specific survival in colorectal cancer, taking into consideration the CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) screening status. The T-cell marker CD3 was stained by immunohistochemistry in 484 archival tumor tissue samples. T-cell density was semiquantitatively estimated and scored 1-4 in the tumor front and center (T cells in stroma), and intraepithelially (T cells infiltrating tumor cell nests). Total CD3 score was calculated as the sum of the three CD3 scores (range 3-12). MSI screening status was assessed by immunohistochemistry. CIMP status was determined by quantitative real-time PCR (MethyLight) using an eight-gene panel. We found that patients whose tumors were highly infiltrated by T cells (total CD3 score ≥7) had longer survival compared with patients with poorly infiltrated tumors (total CD3 score ≤4). This finding was statistically significant in multivariate analyses (multivariate hazard ratio, 0.57; 95% confidence interval, 0.31-1.00). Importantly, the finding was consistent in rectal cancer patients treated with preoperative radiotherapy. Although microsatellite unstable tumor patients are generally considered to have better prognosis, we found no difference in survival between microsatellite unstable and microsatellite stable (MSS) colorectal cancer patients with similar total CD3 scores. Patients with MSS tumors highly infiltrated by T cells had better prognosis compared with intermediately or poorly infiltrated microsatellite unstable tumors (log rank P=0.013). Regarding CIMP status, CIMP-low was associated with particularly poor prognosis in patients with poorly infiltrated tumors (multivariate hazard ratio for CIMP-low versus CIMP-negative, 3.07; 95% confidence interval, 1.53-6.15). However, some subset analyses suffered from low power and are in need of confirmation by independent studies. In conclusion, patients whose tumors are highly infiltrated by T cells have a beneficial prognosis, regardless of MSI, whereas the role of CIMP status in this context is less clear.
Al-Rasadi, Khalid; Al-Zakwani, Ibrahim; Zubaid, Mohammad; Ali, Amr; Bahnacy, Yasser; Sulaiman, Kadhim; Al Mahmeed, Wael; Al Suwaidi, Jassim; Mikhailidis, Dimitri P
2011-01-01
Objective: To estimate the prevalence, predictors, and impact of low high-density lipoprotein cholesterol (HDL-C) on in-hospital outcomes among acute coronary syndrome (ACS) patients in the Middle East. Methods: Data were collected prospectively from 6,266 consecutive patients admitted with a diagnosis of ACS and enrolled in the Gulf Registry of Acute Coronary Events (Gulf RACE). A low HDL-C was defined as a level <40 mg/Dl (1.0 mmol/L) for males and <50 mg/dL (1.3 mmol/L) for females. Analyses were performed using univariate and multivariate statistical techniques. Results: The overall mean age of the cohort was 56±12 years and majority were males (77%). The overall prevalence of low HDL-C was 62%. During in-hospital stay and at discharge, the majority were on statin therapy (83%) while 10% were on other cholesterol lowering agents. After adjustment of demographic and clinical characteristics, the predictors for low HDL-C were higher body mass index (BMI), prior myocardial infarction (MI), diabetes mellitus, smoking and impaired renal function. Multivariable adjustment revealed that low HDL-C was associated with higher in-hospital mortality (odds ratio (OR), 1.54; 95% CI: 1.06-2.24; p=0.022) and cardiogenic shock (OR, 1.61; 95% CI: 1.20-2.14; p=0.001). Conclusions: ACS patients in the Middle East have a high prevalence of low HDL-C. Higher BMI, prior MI, diabetes mellitus, smoking, and impaired renal function were predictors of low HDL-C. Significantly higher in-hospital mortality and cardiogenic shock were associated with low HDL-C in men but not in women. PMID:21966331
Martinez-Aguilar, Esther; Orbe, Josune; Fernández-Montero, Alejandro; Fernández-Alonso, Sebastián; Rodríguez, Jose A; Fernández-Alonso, Leopoldo; Páramo, Jose A; Roncal, Carmen
2017-11-01
The prognosis of patients with peripheral arterial disease (PAD) is characterized by an exceptionally high risk for myocardial infarction, ischemic stroke, and death; however, studies in search of new prognostic biomarkers in PAD are scarce. Even though low levels of high-density lipoprotein cholesterol (HDL-C) have been associated with higher risk of cardiovascular (CV) complications and death in different atherosclerotic diseases, recent epidemiologic studies have challenged its prognostic utility. The aim of this study was to test the predictive value of HDL-C as a risk factor for ischemic events or death in symptomatic PAD patients. Clinical and demographic parameters of 254 symptomatic PAD patients were recorded. Amputation, ischemic coronary disease, cerebrovascular disease, and all-cause mortality were recorded during a mean follow-up of 2.7 years. Multivariate analyses showed that disease severity (critical limb ischemia) was significantly reduced in patients with normal HDL-C levels compared with the group with low HDL-C levels (multivariate analysis odds ratio, 0.09; 95% confidence interval [CI], 0.03-0.24). A decreased risk for mortality (hazard ratio, 0.46; 95% CI, 0.21-0.99) and major adverse CV events (hazard ratio, 0.38; 95% CI, 0.16-0.86) was also found in patients with normal vs reduced levels of HDL-C in both Cox proportional hazards models and Kaplan-Meier estimates, after adjustment for confounding factors. Reduced HDL-C levels were significantly associated with higher risk for development of CV complications as well as with mortality in PAD patients. These findings highlight the usefulness of this simple test for early identification of PAD patients at high risk for development of major CV events. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Kalinina Ayuso, Viera; Scheerlinck, Laura M; de Boer, Joke H
2013-03-01
To assess the effect of Ahmed glaucoma valve implants on corneal endothelial cell density (ECD) in children with uveitic glaucoma. Cross-sectional study. setting: Institutional. patientpopulation: Eighty eyes from 42 patients diagnosed with uveitis before the age of 16. Twenty-eight eyes had an Ahmed glaucoma valve implant because of secondary glaucoma. Fifty-two eyes without an implant served as controls. intervention orobservationprocedure(s): Corneal ECD was examined cross-sectionally using a noncontact specular microscope. Univariate and multivariate generalized estimating equations analyses with correction for paired eyes were performed. mainoutcomemeasure(s): Correlation of ECD with the presence of an Ahmed glaucoma valve implant and with the time following implantation. ECD was significantly lower in the Ahmed glaucoma valve group than in controls (2359 and 3088 cells/mm(2), respectively; P < .001) following an average of 3.5 years after Ahmed glaucoma valve implantation. Presence of an Ahmed glaucoma valve implant, previous intraocular surgery, age, duration of uveitis, and history of corneal touch by the implant tube were all significantly associated with decreased ECD. Following a multivariate analysis, presence of an Ahmed glaucoma valve implant (B = -340; adjusted P < .011) and older age (B = -58; adjusted P = .005) remained independently associated with decreased ECD. Within the implant group, the age-adjusted time interval following Ahmed glaucoma valve implantation was highly correlated with decreased ECD (B = -558, P < .001). Ahmed glaucoma valve implants in children with uveitic glaucoma are independently associated with decreased ECD, and this effect is associated with the time interval following Ahmed glaucoma valve implantation. Copyright © 2013 Elsevier Inc. All rights reserved.
Lipid Abnormalities in Type 2 Diabetes Mellitus Patients with Overt Nephropathy
Viswanathan, Vijay
2017-01-01
Background Diabetic nephropathy is a major complication of diabetes and an established risk factor for cardiovascular events. Lipid abnormalities occur in patients with diabetic nephropathy, which further increase their risk for cardiovascular events. We compared the degree of dyslipidemia among type 2 diabetes mellitus (T2DM) subjects with and without nephropathy and analyzed the factors associated with nephropathy among them. Methods In this retrospective study, T2DM patients with overt nephropathy were enrolled in the study group (n=89) and without nephropathy were enrolled in the control group (n=92). Both groups were matched for age and duration of diabetes. Data on total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), urea and creatinine were collected from the case sheets. TG/HDL-C ratio, a surrogate marker for small, dense, LDL particles (sdLDL) and estimated glomerular filtration rate (eGFR) were calculated using equations. Multivariate analysis was done to determine the factors associated with eGFR. Results Dyslipidemia was present among 56.52% of control subjects and 75.28% of nephropathy subjects (P=0.012). The percentage of subjects with atherogenic dyslipidemia (high TG+low HDL-C+sdLDL) was 14.13 among controls and 14.61 among nephropathy subjects. Though serum creatinine was not significantly different, mean eGFR value was significantly lower among nephropathy patients (P=0.002). Upon multivariate analysis, it was found that TC (P=0.007) and HDL-C (P=0.06) were associated with eGFR among our study subjects. Conclusion Our results show that dyslipidemia was highly prevalent among subjects with nephropathy. Regular screening for dyslipidemia may be beneficial in controlling the risk for adverse events among diabetic nephropathy patients. PMID:28447439
Suture, synthetic, or biologic in contaminated ventral hernia repair.
Bondre, Ioana L; Holihan, Julie L; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K
2016-02-01
Data are lacking to support the choice between suture, synthetic mesh, or biologic matrix in contaminated ventral hernia repair (VHR). We hypothesize that in contaminated VHR, suture repair is associated with the lowest rate of surgical site infection (SSI). A multicenter database of all open VHR performed at from 2010-2011 was reviewed. All patients with follow-up of 1 mo and longer were included. The primary outcome was SSI as defined by the Centers for Disease Control and Prevention. The secondary outcome was hernia recurrence (assessed clinically or radiographically). Multivariate analysis (stepwise regression for SSI and Cox proportional hazard model for recurrence) was performed. A total of 761 VHR were reviewed for a median (range) follow-up of 15 (1-50) mo: there were 291(38%) suture, 303 (40%) low-density and/or mid-density synthetic mesh, and 167(22%) biologic matrix repair. On univariate analysis, there were differences in the three groups including ethnicity, ASA, body mass index, institution, diabetes, primary versus incisional hernia, wound class, hernia size, prior VHR, fascial release, skin flaps, and acute repair. The unadjusted outcomes for SSI (15.1%; 17.8%; 21.0%; P = 0.280) and recurrence (17.8%; 13.5%; 21.5%; P = 0.074) were not statistically different between groups. On multivariate analysis, biologic matrix was associated with a nonsignificant reduction in both SSI and recurrences, whereas synthetic mesh associated with fewer recurrences compared to suture (hazard ratio = 0.60; P = 0.015) and nonsignificant increase in SSI. Interval estimates favored biologic matrix repair in contaminated VHR; however, these results were not statistically significant. In the absence of higher level evidence, surgeons should carefully balance risk, cost, and benefits in managing contaminated ventral hernia repair. Copyright © 2016 Elsevier Inc. All rights reserved.
Kinai, Ei; Gatanaga, Hiroyuki; Mizushima, Daisuke; Nishijima, Takeshi; Aoki, Takahiro; Genka, Ikumi; Teruya, Katsuji; Tsukada, Kunihisa; Kikuchi, Yoshimi; Oka, Shinichi
2017-05-01
Clinical and experiments evidence indicate that protease inhibitors (PI) can cause bone mineral density (BMD) loss. However, the mechanism of such loss remains obscure. This single-center, cross-sectional study included 184 HIV-infected patients treated with PI who underwent dual-energy X-ray absorptiometry scan. Serum phosphorus, percentage of tubular reabsorption of phosphate (%TRP), thyroid and parathyroid function (iPTH), vitamin D, osteocalcin (OC), urinary deoxypyridinoline (DPD), and urinary cross-linked N-telopeptide of type I collagen (u-NTx) were measured. The rate of hypothyroidism in PI-users [32/117 (27%)] was double that in non-PI users [8/67 (12%), p = 0.016] and was significantly associated with PI use in multivariate analysis [odds ratio (OR) 11.37, 95% confidence interval (CI) 1.358-95.17, p = 0.025]. Spine BMD was significantly lower in hypothyroid patients than euthyroid, for both total population (-1.37 vs. -1.00, p = 0.041) and PI users (-1.56 vs. -1.13, p = 0.029). Multivariate regression analysis identified inverse correlation between hypothyroidism and spine BMD [estimate -0.437, 95% CI -0.858 to -0.024, p = 0.042]. OC, DPD and u-NTx were significantly higher in PI users than in non-PI users (p = 0.01, 0.05, and 0.01, respectively). PI use is associated with hypothyroidism as well as bone turnover acceleration, which worsens PI-associated BMD loss. In PI-treated patients, thyroid function tests are warranted to prevent further progression of PI-associated BMD loss. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Triglyceride to HDL-C ratio and increased arterial stiffness in apparently healthy individuals.
Wen, Jiang-Hua; Zhong, Yu-Yu; Wen, Zhi-Gang; Kuang, Chao-Qun; Liao, Jie-Rong; Chen, Li-Hua; Wang, Pei-Shen; Wu, Yue-Xia; Ouyang, Chu-Jun; Chen, Zhi-Jin
2015-01-01
High triglycerides and low high density lipoprotein cholesterol are important cardiovascular risk factors. Triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) has been reported to be useful in predicting cardiovascular disease. Brachial-ankle pulse wave velocity (baPWV) is a valid and reproducible measurement by which to assess arterial stiffness and a surrogate marker of atherosclerosis. However, there is limited evidence about the relationship between them. Therefore, we tested the hypotheses that TG/HDL-C is associated with baPWV in healthy individuals. Fasting lipid profiles, baPWV and clinical data were measured in 1498 apparently healthy, medication-free subjects (926 men, 572 women) who participated in a routine health screening from 2011 to 2013. Participants were stratified into quartiles of TG/HDL-C ratio. BaPWV > 1400 cm/s was defined as abnormal baPWV, Multivariable logistic regression was used to identify associations of TG/HDL-C quartiles and baPWV, after adjusting for the presence of conventional cardiovascular risk factors. In both genders, we observed positive relationships between TG/HDL-C quartiles and BMI, systolic BP, diastolic BP, fasting glucose, total cholesterol, LDL-C, triglycerides, uric acid, and percentages of high baPWV. Multivariable logistic regression revealed that baPWV abnormality OR value of the highest TG/HDL-C quartiles was 1.91 (95% CI: 1.11-3.30, P < 0.05) and 2.91 (95% CI: 1.02-8.30, P < 0.05) in male and female after adjusting for age, systolic BP, diastolic BP, BMI, fasting plasma glucose, LDL-C, uric acid and estimated glomerular filtration rate when compared with the lowest TG/HDL-C quartiles. Increased TG/HDL-C was independently associated with baPWV abnormality in apparently healthy individuals.
Triglyceride to HDL-C ratio and increased arterial stiffness in apparently healthy individuals
Wen, Jiang-Hua; Zhong, Yu-Yu; Wen, Zhi-Gang; Kuang, Chao-Qun; Liao, Jie-Rong; Chen, Li-Hua; Wang, Pei-Shen; Wu, Yue-Xia; Ouyang, Chu-Jun; Chen, Zhi-Jin
2015-01-01
Objectives: High triglycerides and low high density lipoprotein cholesterol are important cardiovascular risk factors. Triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) has been reported to be useful in predicting cardiovascular disease. Brachial-ankle pulse wave velocity (baPWV) is a valid and reproducible measurement by which to assess arterial stiffness and a surrogate marker of atherosclerosis. However, there is limited evidence about the relationship between them. Therefore, we tested the hypotheses that TG/HDL-C is associated with baPWV in healthy individuals. Methods: Fasting lipid profiles, baPWV and clinical data were measured in 1498 apparently healthy, medication-free subjects (926 men, 572 women) who participated in a routine health screening from 2011 to 2013. Participants were stratified into quartiles of TG/HDL-C ratio. BaPWV > 1400 cm/s was defined as abnormal baPWV, Multivariable logistic regression was used to identify associations of TG/HDL-C quartiles and baPWV, after adjusting for the presence of conventional cardiovascular risk factors. Results: In both genders, we observed positive relationships between TG/HDL-C quartiles and BMI, systolic BP, diastolic BP, fasting glucose, total cholesterol, LDL-C, triglycerides, uric acid, and percentages of high baPWV. Multivariable logistic regression revealed that baPWV abnormality OR value of the highest TG/HDL-C quartiles was 1.91 (95% CI: 1.11-3.30, P < 0.05) and 2.91 (95% CI: 1.02-8.30, P < 0.05) in male and female after adjusting for age, systolic BP, diastolic BP, BMI, fasting plasma glucose, LDL-C, uric acid and estimated glomerular filtration rate when compared with the lowest TG/HDL-C quartiles. Conclusion: Increased TG/HDL-C was independently associated with baPWV abnormality in apparently healthy individuals. PMID:26064351
Bone Mineral Density across a Range of Physical Activity Volumes: NHANES 2007–2010
Whitfield, Geoffrey P.; Kohrt, Wendy M.; Pettee Gabriel, Kelley K.; Rahbar, Mohammad H.; Kohl, Harold W.
2014-01-01
Introduction The association between aerobic physical activity volume and bone mineral density (BMD) is not completely understood. The purpose of this study was to clarify the association between BMD and aerobic activity across a broad range of activity volumes, in particular volumes between those recommended in the 2008 Physical Activity Guidelines for Americans and those of trained endurance athletes. Methods Data from the 2007–2010 National Health and Nutrition Examination Survey were used to quantify the association between reported physical activity and BMD at the lumbar spine and proximal femur across the entire range of activity volumes reported by US adults. Participants were categorized into multiples of the minimum guideline-recommended volume based on reported moderate and vigorous intensity leisure activity. Lumbar and proximal femur BMD was assessed with dual-energy x-ray absorptiometry. Results Among women, multivariable-adjusted linear regression analyses revealed no significant differences in lumbar BMD across activity categories, while proximal femur BMD was significantly higher among those who exceeded guidelines by 2–4 times than those who reported no activity. Among men, multivariable-adjusted BMD at both sites neared its highest values among those who exceeded guidelines by at least 4 times and was not progressively higher with additional activity. Logistic regression estimating the odds of low BMD generally echoed the linear regression results. Conclusion The association between physical activity volume and BMD is complex. Among women, exceeding guidelines by 2–4 times may be important for maximizing BMD at the proximal femur, while among men, exceeding guidelines by 4+ times may be beneficial for lumbar and proximal femur BMD. PMID:24870584
Sampling effort affects multivariate comparisons of stream assemblages
Cao, Y.; Larsen, D.P.; Hughes, R.M.; Angermeier, P.L.; Patton, T.M.
2002-01-01
Multivariate analyses are used widely for determining patterns of assemblage structure, inferring species-environment relationships and assessing human impacts on ecosystems. The estimation of ecological patterns often depends on sampling effort, so the degree to which sampling effort affects the outcome of multivariate analyses is a concern. We examined the effect of sampling effort on site and group separation, which was measured using a mean similarity method. Two similarity measures, the Jaccard Coefficient and Bray-Curtis Index were investigated with 1 benthic macroinvertebrate and 2 fish data sets. Site separation was significantly improved with increased sampling effort because the similarity between replicate samples of a site increased more rapidly than between sites. Similarly, the faster increase in similarity between sites of the same group than between sites of different groups caused clearer separation between groups. The strength of site and group separation completely stabilized only when the mean similarity between replicates reached 1. These results are applicable to commonly used multivariate techniques such as cluster analysis and ordination because these multivariate techniques start with a similarity matrix. Completely stable outcomes of multivariate analyses are not feasible. Instead, we suggest 2 criteria for estimating the stability of multivariate analyses of assemblage data: 1) mean within-site similarity across all sites compared, indicating sample representativeness, and 2) the SD of within-site similarity across sites, measuring sample comparability.
An improved method for bivariate meta-analysis when within-study correlations are unknown.
Hong, Chuan; D Riley, Richard; Chen, Yong
2018-03-01
Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta-analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta-analysis require the knowledge of within-study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random-effects meta-analysis. As within-study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta-analyses with a relatively large number of studies (eg, m≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta-analyses. Copyright © 2017 John Wiley & Sons, Ltd.
Marginally specified priors for non-parametric Bayesian estimation
Kessler, David C.; Hoff, Peter D.; Dunson, David B.
2014-01-01
Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813
NASA Astrophysics Data System (ADS)
Powell, James Eckhardt
Emissions inventories are an important tool, often built by governments, and used to manage emissions. To build an inventory of urban CO2 emissions and other fossil fuel combustion products in the urban atmosphere, an inventory of on-road traffic is required. In particular, a high resolution inventory is necessary to capture the local characteristics of transport emissions. These emissions vary widely due to the local nature of the fleet, fuel, and roads. Here we show a new model of ADT for the Portland, OR metropolitan region. The backbone is traffic counter recordings made by the Portland Bureau of Transportation at 7,767 sites over 21 years (1986-2006), augmented with PORTAL (The Portland Regional Transportation Archive Listing) freeway traffic count data. We constructed a regression model to fill in traffic network gaps using GIS data such as road class and population density. An EPA-supplied emissions factor was used to estimate transportation CO2 emissions, which is compared to several other estimates for the city's CO2 footprint.
Sex steroid metabolism polymorphisms and mammographic density in pre- and early perimenopausal women
Crandall, Carolyn J; Sehl, Mary E; Crawford, Sybil L; Gold, Ellen B; Habel, Laurel A; Butler, Lesley M; Sowers, MaryFran R; Greendale, Gail A; Sinsheimer, Janet S
2009-01-01
Introduction We examined the association between mammographic density and single-nucleotide polymorphisms (SNPs) in genes encoding CYP1A1, CYP1B1, aromatase, 17β-HSD, ESR1, and ESR2 in pre- and early perimenopausal white, African-American, Chinese, and Japanese women. Methods The Study of Women's Health Across the Nation is a longitudinal community-based cohort study. We analyzed data from 451 pre- and early perimenopausal participants of the ancillary SWAN Mammographic Density study for whom we had complete information regarding mammographic density, genotypes, and covariates. With multivariate linear regression, we examined the relation between percentage mammographic breast density (outcome) and each SNP (primary predictor), adjusting for age, race/ethnicity, parity, cigarette smoking, and body mass index (BMI). Results After multivariate adjustment, the CYP1B1 rs162555 CC genotype was associated with a 9.4% higher mammographic density than the TC/TT genotype (P = 0.04). The CYP19A1 rs936306 TT genotype was associated with 6.2% lower mammographic density than the TC/CC genotype (P = 0.02). The positive association between CYP1A1 rs2606345 and mammographic density was significantly stronger among participants with BMI greater than 30 kg/m2 than among those with BMI less than 25 kg/m2 (Pinteraction = 0.05). Among white participants, the ESR1 rs2234693 CC genotype was associated with a 7.0% higher mammographic density than the CT/TT genotype (P = 0.01). Conclusions SNPs in certain genes encoding sex steroid metabolism enzymes and ESRs were associated with mammographic density. Because the encoded enzymes and ESR1 are expressed in breast tissue, these SNPs may influence breast cancer risk by altering mammographic density. PMID:19630952
Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E
2017-11-10
A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.
Rehder, Sönke; Wu, Jian X; Laackmann, Julian; Moritz, Hans-Ulrich; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S
2013-01-23
The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectroscopy measurements. The recrystallisation kinetic parameters (overall recrystallisation rate constant β and the time needed to reach 50% of the equilibrated level t(50)), were determined using a multivariate curve resolution approach. The acoustic levitation device coupled with non-invasive spectroscopy enabled monitoring of the recrystallisation process of the difficult-to-handle (adhesive) amorphous sample. The application of multivariate curve resolution enabled isolation of the underlying pure spectra, which corresponded well with the reference spectra of amorphous and crystalline ibuprofen. The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS. This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development. Copyright © 2012 Elsevier B.V. All rights reserved.
Breast density estimation from high spectral and spatial resolution MRI
Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.
2016-01-01
Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590
The Media and Suicide: Evidence Based on Population Data over 9 Years in Taiwan
ERIC Educational Resources Information Center
Tsai, Jui-Feng
2010-01-01
The relationship between the regional distribution densities of different media and the suicide death rate was explored by analyzing the annual total, male, and female suicide rates and media densities from 23 cities/counties in Taiwan during 1998-2006 by univariate and multivariate regression adjusted for five socioeconomic factors. The regional…
Ant-inspired density estimation via random walks.
Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A
2017-10-03
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.
Cooley, Richard L.
1993-01-01
A new method is developed to efficiently compute exact Scheffé-type confidence intervals for output (or other function of parameters) g(β) derived from a groundwater flow model. The method is general in that parameter uncertainty can be specified by any statistical distribution having a log probability density function (log pdf) that can be expanded in a Taylor series. However, for this study parameter uncertainty is specified by a statistical multivariate beta distribution that incorporates hydrogeologic information in the form of the investigator's best estimates of parameters and a grouping of random variables representing possible parameter values so that each group is defined by maximum and minimum bounds and an ordering according to increasing value. The new method forms the confidence intervals from maximum and minimum limits of g(β) on a contour of a linear combination of (1) the quadratic form for the parameters used by Cooley and Vecchia (1987) and (2) the log pdf for the multivariate beta distribution. Three example problems are used to compare characteristics of the confidence intervals for hydraulic head obtained using different weights for the linear combination. Different weights generally produced similar confidence intervals, whereas the method of Cooley and Vecchia (1987) often produced much larger confidence intervals.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.
Han, Qiyang; Wellner, Jon A
2016-01-01
In this paper, we study the approximation and estimation of s -concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s -concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [ Ann. Statist. 38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q : if Q n → Q in the Wasserstein metric, then the projected densities converge in weighted L 1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s -concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s -concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s -concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s -concave.
APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES
Han, Qiyang; Wellner, Jon A.
2017-01-01
In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist. 38 (2010) 2998–3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave. PMID:28966410
NASA Astrophysics Data System (ADS)
Sadegh, Mojtaba; Ragno, Elisa; AghaKouchak, Amir
2017-06-01
We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.; ...
2017-08-25
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
NASA Astrophysics Data System (ADS)
Widodo, Edy; Kariyam
2017-03-01
To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.
Borrowing of strength and study weights in multivariate and network meta-analysis.
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2017-12-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).
Borrowing of strength and study weights in multivariate and network meta-analysis
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2016-01-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254
A refined method for multivariate meta-analysis and meta-regression
Jackson, Daniel; Riley, Richard D
2014-01-01
Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351
Multivariate meta-analysis using individual participant data
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2016-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484
Heba, Elhamy R.; Desai, Ajinkya; Zand, Kevin A.; Hamilton, Gavin; Wolfson, Tanya; Schlein, Alexandra N.; Gamst, Anthony; Loomba, Rohit; Sirlin, Claude B.; Middleton, Michael S.
2016-01-01
Purpose To determine the accuracy and the effect of possible subject-based confounders of magnitude-based magnetic resonance imaging (MRI) for estimating hepatic proton density fat fraction (PDFF) for different numbers of echoes in adults with known or suspected nonalcoholic fatty liver disease, using MR spectroscopy (MRS) as a reference. Materials and Methods In this retrospective analysis of 506 adults, hepatic PDFF was estimated by unenhanced 3.0T MRI, using right-lobe MRS as reference. Regions of interest placed on source images and on six-echo parametric PDFF maps were colocalized to MRS voxel location. Accuracy using different numbers of echoes was assessed by regression and Bland–Altman analysis; slope, intercept, average bias, and R2 were calculated. The effect of age, sex, and body mass index (BMI) on hepatic PDFF accuracy was investigated using multivariate linear regression analyses. Results MRI closely agreed with MRS for all tested methods. For three- to six-echo methods, slope, regression intercept, average bias, and R2 were 1.01–0.99, 0.11–0.62%, 0.24–0.56%, and 0.981–0.982, respectively. Slope was closest to unity for the five-echo method. The two-echo method was least accurate, underestimating PDFF by an average of 2.93%, compared to an average of 0.23–0.69% for the other methods. Statistically significant but clinically nonmeaningful effects on PDFF error were found for subject BMI (P range: 0.0016 to 0.0783), male sex (P range: 0.015 to 0.037), and no statistically significant effect was found for subject age (P range: 0.18–0.24). Conclusion Hepatic magnitude-based MRI PDFF estimates using three, four, five, and six echoes, and six-echo parametric maps are accurate compared to reference MRS values, and that accuracy is not meaningfully confounded by age, sex, or BMI. PMID:26201284
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...Utilizing Sparse Array Data to Develop and Implement a New Method for Estimating Blue and Fin Whale Density Len Thomas & Danielle Harris Centre...to develop and implement a new method for estimating blue and fin whale density that is effective over large spatial scales and is designed to cope
Inference of reactive transport model parameters using a Bayesian multivariate approach
NASA Astrophysics Data System (ADS)
Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick
2014-08-01
Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.
Enhancing e-waste estimates: improving data quality by multivariate Input-Output Analysis.
Wang, Feng; Huisman, Jaco; Stevels, Ab; Baldé, Cornelis Peter
2013-11-01
Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input-Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sato, Masashi; Yamashita, Okito; Sato, Masa-Aki; Miyawaki, Yoichi
2018-01-01
To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of "information spreading" may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined.
Sato, Masashi; Yamashita, Okito; Sato, Masa-aki
2018-01-01
To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of “information spreading” may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined. PMID:29912968
Demonstration of line transect methodologies to estimate urban gray squirrel density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hein, E.W.
1997-11-01
Because studies estimating density of gray squirrels (Sciurus carolinensis) have been labor intensive and costly, I demonstrate the use of line transect surveys to estimate gray squirrel density and determine the costs of conducting surveys to achieve precise estimates. Density estimates are based on four transacts that were surveyed five times from 30 June to 9 July 1994. Using the program DISTANCE, I estimated there were 4.7 (95% Cl = 1.86-11.92) gray squirrels/ha on the Clemson University campus. Eleven additional surveys would have decreased the percent coefficient of variation from 30% to 20% and would have cost approximately $114. Estimatingmore » urban gray squirrel density using line transect surveys is cost effective and can provide unbiased estimates of density, provided that none of the assumptions of distance sampling theory are violated.« less
Joint resonant CMB power spectrum and bispectrum estimation
NASA Astrophysics Data System (ADS)
Meerburg, P. Daniel; Münchmeyer, Moritz; Wandelt, Benjamin
2016-02-01
We develop the tools necessary to assess the statistical significance of resonant features in the CMB correlation functions, combining power spectrum and bispectrum measurements. This significance is typically addressed by running a large number of simulations to derive the probability density function (PDF) of the feature-amplitude in the Gaussian case. Although these simulations are tractable for the power spectrum, for the bispectrum they require significant computational resources. We show that, by assuming that the PDF is given by a multivariate Gaussian where the covariance is determined by the Fisher matrix of the sine and cosine terms, we can efficiently produce spectra that are statistically close to those derived from full simulations. By drawing a large number of spectra from this PDF, both for the power spectrum and the bispectrum, we can quickly determine the statistical significance of candidate signatures in the CMB, considering both single frequency and multifrequency estimators. We show that for resonance models, cosmology and foreground parameters have little influence on the estimated amplitude, which allows us to simplify the analysis considerably. A more precise likelihood treatment can then be applied to candidate signatures only. We also discuss a modal expansion approach for the power spectrum, aimed at quickly scanning through large families of oscillating models.
Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide
2016-02-05
Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. Copyright © 2015 Elsevier B.V. All rights reserved.
Canchola, Alison J; Shariff-Marco, Salma; Yang, Juan; Albright, Cheryl; Hertz, Andrew; Park, Song-Yi; Shvetsov, Yurii B; Monroe, Kristine R; Le Marchand, Loïc; Gomez, Scarlett Lin; Wilkens, Lynne R; Cheng, Iona
2017-10-01
Information on the role of the neighborhood environment and colorectal cancer risk is limited. We investigated the association between a comprehensive suite of possible obesogenic neighborhood attributes (socioeconomic status, population density, restaurant and retail food environments, numbers of recreational facilities and businesses, commute patterns, traffic density, and street connectivity) and colorectal cancer risk in the Multiethnic Cohort Study. Among 81,197 eligible participants living in California (35,397 males and 45,800 females), 1973 incident cases (981 males and 992 females) of invasive colorectal cancer were identified between 1993 and 2010. Separately for males and females, multivariable Cox regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for colorectal cancer risk overall and by racial/ethnic group (African American, Japanese American, Latino, white). In males, higher traffic density was associated with an increased risk of colorectal cancer (HR=1.29, 95% CI: 1.03-1.61, p=0.03, for quintile 5 vs. quintile 1; p-trend=0.06). While this association may be due to chance, this pattern was seen (albeit non-statistically significant) in all racial/ethnic groups except whites. There were no other significant associations between other neighborhood obesogenic attributes and colorectal cancer risk. Findings from our large racial/ethnically diverse cohort suggest neighborhood obesogenic characteristics are not strongly associated with the risk of colorectal cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi
2015-01-01
Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2002-01-01
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
Dajani, Hilmi R; Hosokawa, Kazuya; Ando, Shin-Ichi
2016-11-01
Lung-to-finger circulation time of oxygenated blood during nocturnal periodic breathing in heart failure patients measured using polysomnography correlates negatively with cardiac function but possesses limited accuracy for cardiac output (CO) estimation. CO was recalculated from lung-to-finger circulation time using a multivariable linear model with information on age and average overnight heart rate in 25 patients who underwent evaluation of heart failure. The multivariable model decreased the percentage error to 22.3% relative to invasive CO measured during cardiac catheterization. This improved automated noninvasive CO estimation using multiple variables meets a recently proposed performance criterion for clinical acceptability of noninvasive CO estimation, and compares very favorably with other available methods. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of LiDAR point density and landscape context on estimates of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, Kunwar K.; Chen, Gang; McCarter, James B.; Meentemeyer, Ross K.
2015-03-01
Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density.
Ant-inspired density estimation via random walks
Musco, Cameron; Su, Hsin-Hao
2017-01-01
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146
Multivariate Meta-Analysis Using Individual Participant Data
ERIC Educational Resources Information Center
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2015-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is…
A model-based approach to wildland fire reconstruction using sediment charcoal records
Itter, Malcolm S.; Finley, Andrew O.; Hooten, Mevin B.; Higuera, Philip E.; Marlon, Jennifer R.; Kelly, Ryan; McLachlan, Jason S.
2017-01-01
Lake sediment charcoal records are used in paleoecological analyses to reconstruct fire history, including the identification of past wildland fires. One challenge of applying sediment charcoal records to infer fire history is the separation of charcoal associated with local fire occurrence and charcoal originating from regional fire activity. Despite a variety of methods to identify local fires from sediment charcoal records, an integrated statistical framework for fire reconstruction is lacking. We develop a Bayesian point process model to estimate the probability of fire associated with charcoal counts from individual-lake sediments and estimate mean fire return intervals. A multivariate extension of the model combines records from multiple lakes to reduce uncertainty in local fire identification and estimate a regional mean fire return interval. The univariate and multivariate models are applied to 13 lakes in the Yukon Flats region of Alaska. Both models resulted in similar mean fire return intervals (100–350 years) with reduced uncertainty under the multivariate model due to improved estimation of regional charcoal deposition. The point process model offers an integrated statistical framework for paleofire reconstruction and extends existing methods to infer regional fire history from multiple lake records with uncertainty following directly from posterior distributions.
Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Bárdossy, A.
2017-12-01
A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.
Nonparametric estimation of plant density by the distance method
Patil, S.A.; Burnham, K.P.; Kovner, J.L.
1979-01-01
A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.
NASA Astrophysics Data System (ADS)
Chan, C. H.; Brown, G.; Rikvold, P. A.
2017-05-01
A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.
Seroprevalence of Helicobacter pylori in Hispanics living in Puerto Rico: A population-based study.
González-Pons, María; Soto-Salgado, Marievelisse; Sevilla, Javier; Márquez-Lespier, Juan M; Morgan, Douglas; Pérez, Cynthia M; Cruz-Correa, Marcia
2018-02-01
Helicobacter pylori is an important etiologic factor for peptic ulcers and gastric cancer, one of the top ten leading causes of cancer death in Puerto Rico. However, the prevalence of H. pylori infections in this population was previously unknown. The aim of this study was to examine the seroprevalence of H. pylori and its associated risk factors in Puerto Rico. A cross-sectional study was designed using an existing population-based biorepository. Seropositivity was determined using the Premier ™ H. pylori immunoassay. Helicobacter pylori seroprevalence was estimated with 95% confidence using marginal standardization following logistic regression. To assess the risk factors associated with H. pylori seropositivity, a multivariable log-binomial model was fitted to estimate the prevalence ratio (PR) and its 95% confidence interval (95% CI). A total of 528 population-based serum samples were analyzed. The mean age of the study population was 41 ± 12 years, of whom 55.3% were females. The overall seroprevalence of H. pylori was 33.0% (95% CI = 28.3%-38.1%). Increasing age and having <12 years of education were significantly (P < .05) associated with H. pylori seropositivity in the multivariable model; however, residing in counties with low population density reached marginal significance (P = .085). We report that H. pylori infection is common among Hispanics living in Puerto Rico. The H. pylori seroprevalence observed in Puerto Rico is similar to the seroprevalence reported in the overall population of the United States. The association between H. pylori seroprevalence and the risk factors analyzed offers insight into the epidemiology of gastric cancer in Puerto Rico and warrants further investigation. © 2017 The Authors. Helicobacter Published by John Wiley & Sons Ltd.
Meat consumption, heterocyclic amines and colorectal cancer risk: the Multiethnic Cohort Study.
Ollberding, Nicholas J; Wilkens, Lynne R; Henderson, Brian E; Kolonel, Laurence N; Le Marchand, Loïc
2012-10-01
Greater consumption of red and processed meat has been associated with an increased risk of colorectal cancer in several recent meta-analyses. Heterocyclic amines (HCAs) have been hypothesized to underlie this association. In this prospective analysis conducted within the Multiethnic Cohort Study, we examined whether greater consumption of total, red or processed meat was associated with the risk of colorectal cancer among 165,717 participants who completed a detailed food frequency questionnaire at baseline. In addition, we examined whether greater estimated intake of HCAs was associated with the risk of colorectal cancer among 131,763 participants who completed a follow-up questionnaire that included a meat-cooking module. A total of 3,404 and 1,757 invasive colorectal cancers were identified from baseline to the end of follow-up and from the date of administration of the meat-cooking module to the end of follow-up, respectively. Proportional hazard models were used to estimate basic and multivariable-adjusted relative risks (RRs) and 95% confidence intervals for colorectal cancer associated with dietary exposures. In multivariable models, no association with the risk of colorectal cancer was detected for density-adjusted total meat (RR(Q5 vs. Q1) = 0.93 [0.83-1.05]), red meat (RR = 1.02 [0.91-1.16]) or processed meat intake (RR = 1.06 [0.94-1.19]) or for total (RR = 0.90 [0.76-1.05]) or specific HCA intake whether comparing quintiles of dietary exposure or using continuous variables. Although our results do not support a role for meat or for HCAs from meat in the etiology of colorectal cancer, we cannot rule out the possibility of a modest effect. Copyright © 2012 UICC.
Meat Consumption, Heterocyclic Amines, and Colorectal Cancer Risk: The Multiethnic Cohort Study
Ollberding, Nicholas J.; Wilkens, Lynne R.; Henderson, Brian E.; Kolonel, Laurence N.; Le Marchand, Loïc
2012-01-01
Greater consumption of red and processed meat has been associated with an increased risk of colorectal cancer in several recent meta-analyses. Heterocyclic amines (HCAs) have been hypothesized to underlie this association. In this prospective analysis conducted within the Multiethnic Cohort Study, we examined whether greater consumption of total, red, or processed meat was associated with the risk of colorectal cancer among 165,717 participants who completed a detailed food frequency questionnaire at baseline. In addition, we examined whether greater estimated intake of HCAs was associated with the risk of colorectal cancer among 131,763 participants who completed a follow-up questionnaire that included a meat-cooking module. A total of 3,404 and 1,757 invasive colorectal cancers were identified from baseline to the end of follow-up, and from the date of administration of the meat-cooking module to the end of follow-up, respectively. Proportional hazards models were used to estimate basic and multivariable-adjusted relative risks (RRs) and 95% confidence intervals (CIs) for colorectal cancer associated with dietary exposures. In multivariable models, no association with the risk of colorectal cancer was detected for density-adjusted total meat (RRQ5 vs Q1=0.93 [0.83–1.05]), red meat (RR =1.02 [0.91–1.16]), or processed meat intake (RR =1.06 [0.94–1.19]), or for total (RR =0.90 [0.76–1.05]) or specific HCA intake whether comparing quintiles of dietary exposure or using continuous variables. Although our results do not support a role for meat or for HCAs from meat in the etiology of colorectal cancer, we cannot rule out the possibility of a modest effect. PMID:22438055
Leptospirosis in American Samoa – Estimating and Mapping Risk Using Environmental Data
Lau, Colleen L.; Clements, Archie C. A.; Skelly, Chris; Dobson, Annette J.; Smythe, Lee D.; Weinstein, Philip
2012-01-01
Background The recent emergence of leptospirosis has been linked to many environmental drivers of disease transmission. Accurate epidemiological data are lacking because of under-diagnosis, poor laboratory capacity, and inadequate surveillance. Predictive risk maps have been produced for many diseases to identify high-risk areas for infection and guide allocation of public health resources, and are particularly useful where disease surveillance is poor. To date, no predictive risk maps have been produced for leptospirosis. The objectives of this study were to estimate leptospirosis seroprevalence at geographic locations based on environmental factors, produce a predictive disease risk map for American Samoa, and assess the accuracy of the maps in predicting infection risk. Methodology and Principal Findings Data on seroprevalence and risk factors were obtained from a recent study of leptospirosis in American Samoa. Data on environmental variables were obtained from local sources, and included rainfall, altitude, vegetation, soil type, and location of backyard piggeries. Multivariable logistic regression was performed to investigate associations between seropositivity and risk factors. Using the multivariable models, seroprevalence at geographic locations was predicted based on environmental variables. Goodness of fit of models was measured using area under the curve of the receiver operating characteristic, and the percentage of cases correctly classified as seropositive. Environmental predictors of seroprevalence included living below median altitude of a village, in agricultural areas, on clay soil, and higher density of piggeries above the house. Models had acceptable goodness of fit, and correctly classified ∼84% of cases. Conclusions and Significance Environmental variables could be used to identify high-risk areas for leptospirosis. Environmental monitoring could potentially be a valuable strategy for leptospirosis control, and allow us to move from disease surveillance to environmental health hazard surveillance as a more cost-effective tool for directing public health interventions. PMID:22666516
Prevalence of Diabetes and Associated Factors in the Uyghur and Han Population in Xinjiang, China.
Gong, Haiying; Pa, Lize; Wang, Ke; Mu, Hebuli; Dong, Fen; Ya, Shengjiang; Xu, Guodong; Tao, Ning; Pan, Li; Wang, Bin; Shan, Guangliang
2015-10-14
To estimate the prevalence of diabetes and identify risk factors in the Uyghur and Han population in Xinjiang, China. A cross-sectional study in urban and rural areas in Xinjiang, including 2863 members of the Uyghur population and 3060 of the Han population aged 20 to 80 years, was conducted from June 2013 to August 2013. Data on fasting plasma glucose (FPG) and personal history of diabetes were used to estimate the prevalence of diabetes. Data on demographic characteristics, lifestyle risk factors, and lipid profiles were collected to identify risks factors using the multivariate logistic regression model. In urban areas, the age- and gender-standardized prevalence of diabetes was 8.21%, and the age- and gender-standardized prevalence of diabetes was higher in the Uyghur population (10.47%) than in the Han population (7.36%). In rural areas, the age- and gender-standardized prevalence of diabetes was 6.08%, and it did not differ significantly between the Uyghur population (5.71%) and the Han population (6.59%). The results of the multivariate logistic regression analysis showed that older age, obesity, high triglycerides (TG), and hypertension were all associated with an increased risk of diabetes in the Uyghur and Han population. Urban residence and low high-density lipoprotein cholesterol (HDL-C) were associated with an increased risk of diabetes in the Uyghur population. Being an ex-drinker was associated with an increased risk of diabetes and heavy physical activity was associated with a decreased risk of diabetes in the Han population. Our study indicates that diabetes is more prevalent in the Uyghur population compared with the Han population in urban areas. Strategies aimed at the prevention of diabetes require ethnic targeting.
Precision Orbit Derived Atmospheric Density: Development and Performance
NASA Astrophysics Data System (ADS)
McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.
2012-09-01
Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer derived density estimates. However, major variations in density are observed in the POE derived densities. These POE derived densities in combination with other data sources can be assimilated into physics based general circulation models of the thermosphere and ionosphere with the possibility of providing improved density forecasts for satellite drag analysis. POE derived density estimates were initially developed using CHAMP and GRACE data so comparisons could be made with accelerometer derived density estimates. This paper presents the results of the most extensive calibration of POE derived densities compared to accelerometer derived densities and provides the reasoning for selecting certain parameters in the estimation process. The factors taken into account for these selections are the cross correlation and RMS performance compared to the accelerometer derived densities and the output of the ballistic coefficient estimation that occurs simultaneously with the density estimation. This paper also presents the complete data set of CHAMP and GRACE results and shows that the POE derived densities match the accelerometer densities better than empirical models or DCA. This paves the way to expand the POE derived densities to include other satellites with quality GPS and/or satellite laser ranging observations.
A Bayesian approach to multivariate measurement system assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Michael Scott
This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.
A Bayesian approach to multivariate measurement system assessment
Hamada, Michael Scott
2016-07-01
This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.
Univariate Analysis of Multivariate Outcomes in Educational Psychology.
ERIC Educational Resources Information Center
Hubble, L. M.
1984-01-01
The author examined the prevalence of multiple operational definitions of outcome constructs and an estimate of the incidence of Type I error rates when univariate procedures were applied to multiple variables in educational psychology. Multiple operational definitions of constructs were advocated and wider use of multivariate analysis was…
Bayesian Estimation of Multivariate Latent Regression Models: Gauss versus Laplace
ERIC Educational Resources Information Center
Culpepper, Steven Andrew; Park, Trevor
2017-01-01
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De
2016-05-01
The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.
Hogerwerf, Lenny; Holstege, Manon M C; Benincà, Elisa; Dijkstra, Frederika; van der Hoek, Wim
2017-07-26
Human psittacosis is a highly under diagnosed zoonotic disease, commonly linked to psittacine birds. Psittacosis in birds, also known as avian chlamydiosis, is endemic in poultry, but the risk for people living close to poultry farms is unknown. Therefore, our study aimed to explore the temporal and spatial patterns of human psittacosis infections and identify possible associations with poultry farming in the Netherlands. We analysed data on 700 human cases of psittacosis notified between 01-01-2000 and 01-09-2015. First, we studied the temporal behaviour of psittacosis notifications by applying wavelet analysis. Then, to identify possible spatial patterns, we applied spatial cluster analysis. Finally, we investigated the possible spatial association between psittacosis notifications and data on the Dutch poultry sector at municipality level using a multivariable model. We found a large spatial cluster that covered a highly poultry-dense area but additional clusters were found in areas that had a low poultry density. There were marked geographical differences in the awareness of psittacosis and the amount and the type of laboratory diagnostics used for psittacosis, making it difficult to draw conclusions about the correlation between the large cluster and poultry density. The multivariable model showed that the presence of chicken processing plants and slaughter duck farms in a municipality was associated with a higher rate of human psittacosis notifications. The significance of the associations was influenced by the inclusion or exclusion of farm density in the model. Our temporal and spatial analyses showed weak associations between poultry-related variables and psittacosis notifications. Because of the low number of psittacosis notifications available for analysis, the power of our analysis was relative low. Because of the exploratory nature of this research, the associations found cannot be interpreted as evidence for airborne transmission of psittacosis from poultry to the general population. Further research is needed to determine the prevalence of C. psittaci in Dutch poultry. Also, efforts to promote PCR-based testing for C. psittaci and genotyping for source tracing are important to reduce the diagnostic deficit, and to provide better estimates of the human psittacosis burden, and the possible role of poultry.
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
Park, Eun Sug; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford
2015-06-01
A major difficulty with assessing source-specific health effects is that source-specific exposures cannot be measured directly; rather, they need to be estimated by a source-apportionment method such as multivariate receptor modeling. The uncertainty in source apportionment (uncertainty in source-specific exposure estimates and model uncertainty due to the unknown number of sources and identifiability conditions) has been largely ignored in previous studies. Also, spatial dependence of multipollutant data collected from multiple monitoring sites has not yet been incorporated into multivariate receptor modeling. The objectives of this project are (1) to develop a multipollutant approach that incorporates both sources of uncertainty in source-apportionment into the assessment of source-specific health effects and (2) to develop enhanced multivariate receptor models that can account for spatial correlations in the multipollutant data collected from multiple sites. We employed a Bayesian hierarchical modeling framework consisting of multivariate receptor models, health-effects models, and a hierarchical model on latent source contributions. For the health model, we focused on the time-series design in this project. Each combination of number of sources and identifiability conditions (additional constraints on model parameters) defines a different model. We built a set of plausible models with extensive exploratory data analyses and with information from previous studies, and then computed posterior model probability to estimate model uncertainty. Parameter estimation and model uncertainty estimation were implemented simultaneously by Markov chain Monte Carlo (MCMC*) methods. We validated the methods using simulated data. We illustrated the methods using PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) speciation data and mortality data from Phoenix, Arizona, and Houston, Texas. The Phoenix data included counts of cardiovascular deaths and daily PM2.5 speciation data from 1995-1997. The Houston data included respiratory mortality data and 24-hour PM2.5 speciation data sampled every six days from a region near the Houston Ship Channel in years 2002-2005. We also developed a Bayesian spatial multivariate receptor modeling approach that, while simultaneously dealing with the unknown number of sources and identifiability conditions, incorporated spatial correlations in the multipollutant data collected from multiple sites into the estimation of source profiles and contributions based on the discrete process convolution model for multivariate spatial processes. This new modeling approach was applied to 24-hour ambient air concentrations of 17 volatile organic compounds (VOCs) measured at nine monitoring sites in Harris County, Texas, during years 2000 to 2005. Simulation results indicated that our methods were accurate in identifying the true model and estimated parameters were close to the true values. The results from our methods agreed in general with previous studies on the source apportionment of the Phoenix data in terms of estimated source profiles and contributions. However, we had a greater number of statistically insignificant findings, which was likely a natural consequence of incorporating uncertainty in the estimated source contributions into the health-effects parameter estimation. For the Houston data, a model with five sources (that seemed to be Sulfate-Rich Secondary Aerosol, Motor Vehicles, Industrial Combustion, Soil/Crustal Matter, and Sea Salt) showed the highest posterior model probability among the candidate models considered when fitted simultaneously to the PM2.5 and mortality data. There was a statistically significant positive association between respiratory mortality and same-day PM2.5 concentrations attributed to one of the sources (probably industrial combustion). The Bayesian spatial multivariate receptor modeling approach applied to the VOC data led to a highest posterior model probability for a model with five sources (that seemed to be refinery, petrochemical production, gasoline evaporation, natural gas, and vehicular exhaust) among several candidate models, with the number of sources varying between three and seven and with different identifiability conditions. Our multipollutant approach assessing source-specific health effects is more advantageous than a single-pollutant approach in that it can estimate total health effects from multiple pollutants and can also identify emission sources that are responsible for adverse health effects. Our Bayesian approach can incorporate not only uncertainty in the estimated source contributions, but also model uncertainty that has not been addressed in previous studies on assessing source-specific health effects. The new Bayesian spatial multivariate receptor modeling approach enables predictions of source contributions at unmonitored sites, minimizing exposure misclassification and providing improved exposure estimates along with their uncertainty estimates, as well as accounting for uncertainty in the number of sources and identifiability conditions.
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
Shuttle Data Center File-Processing Tool in Java
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Miller, Walter H.
2006-01-01
A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...sensors, or both. The goal of this research is to develop and implement a new method for estimating blue and fin whale density that is effective over...develop and implement a density estimation methodology for quantifying blue and fin whale abundance from passive acoustic data recorded on sparse
Estimating Small-Body Gravity Field from Shape Model and Navigation Data
NASA Technical Reports Server (NTRS)
Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam
2008-01-01
This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.
Impact of density information on Rayleigh surface wave inversion results
NASA Astrophysics Data System (ADS)
Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai
2016-12-01
We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.
Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador
Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew
2017-01-01
The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.
A new approach to estimating trends in chlamydia incidence.
Ali, Hammad; Cameron, Ewan; Drovandi, Christopher C; McCaw, James M; Guy, Rebecca J; Middleton, Melanie; El-Hayek, Carol; Hocking, Jane S; Kaldor, John M; Donovan, Basil; Wilson, David P
2015-11-01
Directly measuring disease incidence in a population is difficult and not feasible to do routinely. We describe the development and application of a new method for estimating at a population level the number of incident genital chlamydia infections, and the corresponding incidence rates, by age and sex using routine surveillance data. A Bayesian statistical approach was developed to calibrate the parameters of a decision-pathway tree against national data on numbers of notifications and tests conducted (2001-2013). Independent beta probability density functions were adopted for priors on the time-independent parameters; the shapes of these beta parameters were chosen to match prior estimates sourced from peer-reviewed literature or expert opinion. To best facilitate the calibration, multivariate Gaussian priors on (the logistic transforms of) the time-dependent parameters were adopted, using the Matérn covariance function to favour small changes over consecutive years and across adjacent age cohorts. The model outcomes were validated by comparing them with other independent empirical epidemiological measures, that is, prevalence and incidence as reported by other studies. Model-based estimates suggest that the total number of people acquiring chlamydia per year in Australia has increased by ∼120% over 12 years. Nationally, an estimated 356 000 people acquired chlamydia in 2013, which is 4.3 times the number of reported diagnoses. This corresponded to a chlamydia annual incidence estimate of 1.54% in 2013, increased from 0.81% in 2001 (∼90% increase). We developed a statistical method which uses routine surveillance (notifications and testing) data to produce estimates of the extent and trends in chlamydia incidence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Mathew, Boby; Holand, Anna Marie; Koistinen, Petri; Léon, Jens; Sillanpää, Mikko J
2016-02-01
A novel reparametrization-based INLA approach as a fast alternative to MCMC for the Bayesian estimation of genetic parameters in multivariate animal model is presented. Multi-trait genetic parameter estimation is a relevant topic in animal and plant breeding programs because multi-trait analysis can take into account the genetic correlation between different traits and that significantly improves the accuracy of the genetic parameter estimates. Generally, multi-trait analysis is computationally demanding and requires initial estimates of genetic and residual correlations among the traits, while those are difficult to obtain. In this study, we illustrate how to reparametrize covariance matrices of a multivariate animal model/animal models using modified Cholesky decompositions. This reparametrization-based approach is used in the Integrated Nested Laplace Approximation (INLA) methodology to estimate genetic parameters of multivariate animal model. Immediate benefits are: (1) to avoid difficulties of finding good starting values for analysis which can be a problem, for example in Restricted Maximum Likelihood (REML); (2) Bayesian estimation of (co)variance components using INLA is faster to execute than using Markov Chain Monte Carlo (MCMC) especially when realized relationship matrices are dense. The slight drawback is that priors for covariance matrices are assigned for elements of the Cholesky factor but not directly to the covariance matrix elements as in MCMC. Additionally, we illustrate the concordance of the INLA results with the traditional methods like MCMC and REML approaches. We also present results obtained from simulated data sets with replicates and field data in rice.
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.
2004-01-01
One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when multivariate correction is used, as evident from the analyses of the rms differences of these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating the water masses with properties close to the observed, while the UOI failed to maintain the temperature and salinity structure.
NASA Astrophysics Data System (ADS)
Giorli, Giacomo; Drazen, Jeffrey C.; Neuheimer, Anna B.; Copeland, Adrienne; Au, Whitlow W. L.
2018-01-01
Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.
Estimating and Testing the Sources of Evoked Potentials in the Brain.
ERIC Educational Resources Information Center
Huizenga, Hilde M.; Molenaar, Peter C. M.
1994-01-01
The source of an event-related brain potential (ERP) is estimated from multivariate measures of ERP on the head under several mathematical and physical constraints on the parameters of the source model. Statistical aspects of estimation are discussed, and new tests are proposed. (SLD)
Boosted Multivariate Trees for Longitudinal Data
Pande, Amol; Li, Liang; Rajeswaran, Jeevanantham; Ehrlinger, John; Kogalur, Udaya B.; Blackstone, Eugene H.; Ishwaran, Hemant
2017-01-01
Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data. PMID:29249866
SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *
Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.
2014-01-01
The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844
Improving the realism of hydrologic model through multivariate parameter estimation
NASA Astrophysics Data System (ADS)
Rakovec, Oldrich; Kumar, Rohini; Attinger, Sabine; Samaniego, Luis
2017-04-01
Increased availability and quality of near real-time observations should improve understanding of predictive skills of hydrological models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE satellite-based total water storage (TWS) anomaly is used to complement the discharge data with an aim to improve the fidelity of mesoscale hydrologic model (mHM) through multivariate parameter estimation. The study is conducted in 83 European basins covering a wide range of hydro-climatic regimes. The model parameterization complemented with the TWS anomalies leads to statistically significant improvements in (1) discharge simulations during low-flow period, and (2) evapotranspiration estimates which are evaluated against independent (FLUXNET) data. Overall, there is no significant deterioration in model performance for the discharge simulations when complemented by information from the TWS anomalies. However, considerable changes in the partitioning of precipitation into runoff components are noticed by in-/exclusion of TWS during the parameter estimation. A cross-validation test carried out to assess the transferability and robustness of the calibrated parameters to other locations further confirms the benefit of complementary TWS data. In particular, the evapotranspiration estimates show more robust performance when TWS data are incorporated during the parameter estimation, in comparison with the benchmark model constrained against discharge only. This study highlights the value for incorporating multiple data sources during parameter estimation to improve the overall realism of hydrologic model and its applications over large domains. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res., 52, http://dx.doi.org/10.1002/2016WR019430
Criqui, Michael H; Knox, Jessica B; Denenberg, Julie O; Forbang, Nketi I; McClelland, Robyn L; Novotny, Thomas E; Sandfort, Veit; Waalen, Jill; Blaha, Michael J; Allison, Matthew A
2017-08-01
This study sought to determine the possibility of interactions between coronary artery calcium (CAC) volume or CAC density with each other, and with age, sex, ethnicity, the new atherosclerotic cardiovascular disease (ASCVD) risk score, diabetes status, and renal function by estimated glomerular filtration rate, and, using differing CAC scores, to determine the improvement over the ASCVD risk score in risk prediction and reclassification. In MESA (Multi-Ethnic Study of Atherosclerosis), CAC volume was positively and CAC density inversely associated with cardiovascular disease (CVD) events. A total of 3,398 MESA participants free of clinical CVD but with prevalent CAC at baseline were followed for incident CVD events. During a median 11.0 years of follow-up, there were 390 CVD events, 264 of which were coronary heart disease (CHD). With each SD increase of ln CAC volume (1.62), risk of CHD increased 73% (p < 0.001) and risk of CVD increased 61% (p < 0.001). Conversely, each SD increase of CAC density (0.69) was associated with 28% lower risk of CHD (p < 0.001) and 25% lower risk of CVD (p < 0.001). CAC density was inversely associated with risk at all levels of CAC volume (i.e., no interaction was present). In multivariable Cox models, significant interactions were present for CAC volume with age and ASCVD risk score for both CHD and CVD, and CAC density with ASCVD risk score for CVD. Hazard ratios were generally stronger in the lower risk groups. Receiver-operating characteristic area under the curve and Net Reclassification Index analyses showed better prediction by CAC volume than by Agatston, and the addition of CAC density to CAC volume further significantly improved prediction. The inverse association between CAC density and incident CHD and CVD events is robust across strata of other CVD risk factors. Added to the ASCVD risk score, CAC volume and density provided the strongest prediction for CHD and CVD events, and the highest correct reclassification. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Bayesian Estimation of Random Coefficient Dynamic Factor Models
ERIC Educational Resources Information Center
Song, Hairong; Ferrer, Emilio
2012-01-01
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.
A Simpli ed, General Approach to Simulating from Multivariate Copula Functions
Barry Goodwin
2012-01-01
Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses \\probability{...
ERIC Educational Resources Information Center
Lix, Lisa M.; Algina, James; Keselman, H. J.
2003-01-01
The approximate degrees of freedom Welch-James (WJ) and Brown-Forsythe (BF) procedures for testing within-subjects effects in multivariate groups by trials repeated measures designs were investigated under departures from covariance homogeneity and normality. Empirical Type I error and power rates were obtained for least-squares estimators and…
Controlled Multivariate Evaluation of Open Education: Application of a Critical Model.
ERIC Educational Resources Information Center
Sewell, Alan F.; And Others
This paper continues previous reports of a controlled multivariate evaluation of a junior high school open-education program. A new method of estimating program objectives and implementation is presented, together with the nature and degree of obtained student outcomes. Open-program students were found to approve more highly of their learning…
Model transformations for state-space self-tuning control of multivariable stochastic systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.
1988-01-01
The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.
Multivariate meta-analysis using individual participant data.
Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R
2015-06-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
Falcaro, Milena; Pickles, Andrew
2007-02-10
We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Zu, Jiyun; Yuan, Ke-Hai
2012-01-01
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…
Temporal variation in bird counts within a Hawaiian rainforest
Simon, John C.; Pratt, T.K.; Berlin, Kim E.; Kowalsky, James R.; Fancy, S.G.; Hatfield, J.S.
2002-01-01
We studied monthly and annual variation in density estimates of nine forest bird species along an elevational gradient in an east Maui rainforest. We conducted monthly variable circular-plot counts for 36 consecutive months along transects running downhill from timberline. Density estimates were compared by month, year, and station for all resident bird species with sizeable populations, including four native nectarivores, two native insectivores, a non-native insectivore, and two non-native generalists. We compared densities among three elevational strata and between breeding and nonbreeding seasons. All species showed significant differences in density estimates among months and years. Three native nectarivores had higher density estimates within their breeding season (December-May) and showed decreases during periods of low nectar production following the breeding season. All insectivore and generalist species except one had higher density estimates within their March-August breeding season. Density estimates also varied with elevation for all species, and for four species a seasonal shift in population was indicated. Our data show that the best time to conduct counts for native forest birds on Maui is January-February, when birds are breeding or preparing to breed, counts are typically high, variability in density estimates is low, and the likelihood for fair weather is best. Temporal variations in density estimates documented in our study site emphasize the need for consistent, well-researched survey regimens and for caution when drawing conclusions from, or basing management decisions on, survey data.
Curtis L. VanderSchaaf; Harold E. Burkhart
2010-01-01
Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes as average tree size changes is necessary to accurately describe these relationships. This paper examines three methods to estimate the slope of...
Spatial pattern corrections and sample sizes for forest density estimates of historical tree surveys
Brice B. Hanberry; Shawn Fraver; Hong S. He; Jian Yang; Dan C. Dey; Brian J. Palik
2011-01-01
The U.S. General Land Office land surveys document trees present during European settlement. However, use of these surveys for calculating historical forest density and other derived metrics is limited by uncertainty about the performance of plotless density estimators under a range of conditions. Therefore, we tested two plotless density estimators, developed by...
Evaluation of line transect sampling based on remotely sensed data from underwater video
Bergstedt, R.A.; Anderson, D.R.
1990-01-01
We used underwater video in conjunction with the line transect method and a Fourier series estimator to make 13 independent estimates of the density of known populations of bricks lying on the bottom in shallows of Lake Huron. The pooled estimate of density (95.5 bricks per hectare) was close to the true density (89.8 per hectare), and there was no evidence of bias. Confidence intervals for the individual estimates included the true density 85% of the time instead of the nominal 95%. Our results suggest that reliable estimates of the density of objects on a lake bed can be obtained by the use of remote sensing and line transect sampling theory.
Toward accurate and precise estimates of lion density.
Elliot, Nicholas B; Gopalaswamy, Arjun M
2017-08-01
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Zakariyah, N.; Pathy, N. B.; Taib, N. A. M.; Rahmat, K.; Judy, C. W.; Fadzil, F.; Lau, S.; Ng, K. H.
2016-03-01
It has been shown that breast density and obesity are related to breast cancer risk. The aim of this study is to investigate the relationships of breast volume, breast dense volume and volumetric breast density (VBD) with body mass index (BMI) and body fat mass (BFM) for the three ethnic groups (Chinese, Malay and Indian) in Malaysia. We collected raw digital mammograms from 2450 women acquired on three digital mammography systems. The mammograms were analysed using Volpara software to obtain breast volume, breast dense volume and VBD. Body weight, BMI and BFM of the women were measured using a body composition analyser. Multivariable logistic regression was used to determine the independent predictors of increased overall breast volume, breast dense volume and VBD. Indians have highest breast volume and breast dense volume followed by Malays and Chinese. While Chinese are highest in VBD, followed by Malay and Indian. Multivariable analysis showed that increasing BMI and BFM were independent predictors of increased overall breast volume and dense volume. Moreover, BMI and BFM were independently and inversely related to VBD.
Geostatistics and petroleum geology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, M.E.
1988-01-01
This book examines purpose and use of geostatistics in exploration and development of oil and gas with an emphasis on appropriate and pertinent case studies. It present an overview of geostatistics. Topics covered include: The semivariogram; Linear estimation; Multivariate geostatistics; Nonlinear estimation; From indicator variables to nonparametric estimation; and More detail, less certainty; conditional simulation.
Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S
2015-09-01
Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.
A Bayesian approach for parameter estimation and prediction using a computationally intensive model
Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...
2015-02-05
Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less
NASA Astrophysics Data System (ADS)
Olu, K.; Caprais, J. C.; Galéron, J.; Causse, R.; von Cosel, R.; Budzinski, H.; Ménach, K. Le; Roux, C. Le; Levaché, D.; Khripounoff, A.; Sibuet, M.
2009-12-01
Detailed surveying with an ROV found that a dense and diverse cold-seep community colonises a giant pockmark located at 3200 m depth, 8 km north from the deep Congo channel. Several types of assemblages, either dominated by Mytilidae and Vesicomyidae bivalves or Siboglinidae polychaetes, are distributed on the 800-m diameter active area. The site is characterised by a most active central zone in a depression with abundant carbonate concretions and high methane fluxes where high-density clusters of mussels and siboglinids dominate. In contrast, the peripheral zones display large fields of dead and live vesicomyids on soft sediment, with a lower mean density and lower methane concentration in seawater. The associated megafauna includes Alvinocarididae shrimps, echinoids, holothurians of the family Synaptidae, several species of gastropods, two species of galatheids, and Zoarcidae and Ophidiidae fishes. Multivariate analyses of video transect data show that the distribution of these major megafauna species at the pockmark scale is influenced by the habitat heterogeneity due to fluid or gas emission, occurrence of hydrates, substratum variability and by the presence of large symbiont-bearing species. Several assemblages dominated either by mytilids, vesicomyids, or siboglinids have been sampled for megafauna densities and biomass estimations and stable isotope measurements ( δ13C and δ15N) of dominant species and food sources. The highest estimates of megafauna densities have been obtained in mytilid beds. According to their stable isotopes values, non-symbiont-bearing species mainly rely on chemosynthesis-originated carbon, either as primary consumers of chemoautotrophic microorganisms, or at higher trophic level recycling organic matter, or relying on bivalve and tubeworm production. Most of them likely feed on different sources like shrimps, but differences according to habitat have been evidenced. Carbon and nitrogen isotope ratios of galatheids and benthic or benthopelagic fishes captured by trawls at increasing distances from the pockmark provide evidence of the high variability in the proportion of chemosynthesis-originated carbon in their diet, from 15% to 38%, according to the species captured as far as 4 km to the site.
Dealing with dietary measurement error in nutritional cohort studies.
Freedman, Laurence S; Schatzkin, Arthur; Midthune, Douglas; Kipnis, Victor
2011-07-20
Dietary measurement error creates serious challenges to reliably discovering new diet-disease associations in nutritional cohort studies. Such error causes substantial underestimation of relative risks and reduction of statistical power for detecting associations. On the basis of data from the Observing Protein and Energy Nutrition Study, we recommend the following approaches to deal with these problems. Regarding data analysis of cohort studies using food-frequency questionnaires, we recommend 1) using energy adjustment for relative risk estimation; 2) reporting estimates adjusted for measurement error along with the usual relative risk estimates, whenever possible (this requires data from a relevant, preferably internal, validation study in which participants report intakes using both the main instrument and a more detailed reference instrument such as a 24-hour recall or multiple-day food record); 3) performing statistical adjustment of relative risks, based on such validation data, if they exist, using univariate (only for energy-adjusted intakes such as densities or residuals) or multivariate regression calibration. We note that whereas unadjusted relative risk estimates are biased toward the null value, statistical significance tests of unadjusted relative risk estimates are approximately valid. Regarding study design, we recommend increasing the sample size to remedy loss of power; however, it is important to understand that this will often be an incomplete solution because the attenuated signal may be too small to distinguish from unmeasured confounding in the model relating disease to reported intake. Future work should be devoted to alleviating the problem of signal attenuation, possibly through the use of improved self-report instruments or by combining dietary biomarkers with self-report instruments.
Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape
2011-09-01
Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.
NASA Astrophysics Data System (ADS)
Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape
2011-09-01
Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.
Wicke, Jason; Dumas, Genevieve A
2010-02-01
The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).
Estimation of railroad capacity using parametric methods.
DOT National Transportation Integrated Search
2013-12-01
This paper reviews different methodologies used for railroad capacity estimation and presents a user-friendly method to measure capacity. The objective of this paper is to use multivariate regression analysis to develop a continuous relation of the d...
Relationship between alcohol intake, body fat, and physical activity – a population-based study
Liangpunsakul, Suthat; Crabb, David W.; Qi, Rong
2010-01-01
Objectives Aside from fat, ethanol is the macronutrient with the highest energy density. Whether the energy derived from ethanol affects the body composition and fat mass is debatable. We investigated the relationship between alcohol intake, body composition, and physical activity in the US population using the third National Health and Nutrition Examination Survey (NHANES III). Methods Ten thousand five hundred and fifty subjects met eligible criteria and constituted our study cohort. Estimated percent body fat and resting metabolic rate were calculated based on the sum of the skinfolds. Multivariate regression analyses were performed accounting for the study sampling weight. Results In both genders, moderate and hazardous alcohol drinkers were younger (p<0.05), had significantly lower BMI (P<0.01) and body weight (p<0.01) than controls, non drinkers. Those with hazardous alcohol consumption had significantly less physical activity compared to those with no alcohol use and moderate drinkers in both genders. Female had significantly higher percent body fat than males. In the multivariate linear regression analyses, the levels of alcohol consumption were found to be an independent predictor associated with lower percent body fat only in male subjects. Conclusions Our results showed that alcoholics are habitually less active and that alcohol drinking is an independent predictor of lower percent body fat especially in male alcoholics. PMID:20696406
A mixed-effects regression model for longitudinal multivariate ordinal data.
Liu, Li C; Hedeker, Donald
2006-03-01
A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model.
NASA Technical Reports Server (NTRS)
Garber, Donald P.
1993-01-01
A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.
Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan
2014-09-01
Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.
Chen, Rongda; Wang, Ze
2013-01-01
Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558
Multivariate spline methods in surface fitting
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator); Schumaker, L. L.
1984-01-01
The use of spline functions in the development of classification algorithms is examined. In particular, a method is formulated for producing spline approximations to bivariate density functions where the density function is decribed by a histogram of measurements. The resulting approximations are then incorporated into a Bayesiaan classification procedure for which the Bayes decision regions and the probability of misclassification is readily computed. Some preliminary numerical results are presented to illustrate the method.
Reconstruction of the ionospheric electron density by geostatistical inversion
NASA Astrophysics Data System (ADS)
Minkwitz, David; van den Boogaart, Karl Gerald; Hoque, Mainul; Gerzen, Tatjana
2015-04-01
The ionosphere is the upper part of the atmosphere where sufficient free electrons exist to affect the propagation of radio waves. Typically, the ionosphere extends from about 50 - 1000 km and its morphology is mainly driven by solar radiation, particle precipitation and charge exchange. Due to the strong ionospheric impact on many applications dealing with trans-ionospheric signals such as Global Navigation Satellite Systems (GNSS) positioning, navigation and remote sensing, the demand for a highly accurate reconstruction of the electron density is ever increasing. Within the Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) the utilization of the upcoming radar mission TanDEM-L and its related products are prepared. The TanDEM-L mission will operate in L-band with a wavelength of approximately 24 cm and aims at an improved understanding of environmental processes and ecosystem change, e.g. earthquakes, volcanos, glaciers, soil moisture and carbon cycle. Since its lower frequency compared to the X-band (3 cm) and C-band (5 cm) radar missions, the influence of the ionosphere will increase and might lead to a significant degradation of the radar image quality if no correction is applied. Consequently, our interest is the reconstruction of the ionospheric electron density in order to mitigate the ionospheric delay. Following the ionosphere's behaviour we establish a non-stationary and anisotropic spatial covariance model of the electron density separated into a vertical and horizontal component. In order to estimate the model's parameters we chose a maximum likelihood approach. This approach incorporates GNSS total electron content measurements, representing integral measurements of the electron density between satellite to receiver ray paths, and the NeQuick model as a non-stationary trend. Based on a multivariate normal distribution the spatial covariance model parameters are optimized and afterwards the 3D electron density can be calculated by kriging for arbitrary points or grids of interest.
Jerrett, Michael; McConnell, Rob; Wolch, Jennifer; Chang, Roger; Lam, Claudia; Dunton, Genevieve; Gilliland, Frank; Lurmann, Fred; Islam, Talat; Berhane, Kiros
2014-06-09
Biologically plausible mechanisms link traffic-related air pollution to metabolic disorders and potentially to obesity. Here we sought to determine whether traffic density and traffic-related air pollution were positively associated with growth in body mass index (BMI = kg/m2) in children aged 5-11 years. Participants were drawn from a prospective cohort of children who lived in 13 communities across Southern California (N = 4550). Children were enrolled while attending kindergarten and first grade and followed for 4 years, with height and weight measured annually. Dispersion models were used to estimate exposure to traffic-related air pollution. Multilevel models were used to estimate and test traffic density and traffic pollution related to BMI growth. Data were collected between 2002-2010 and analyzed in 2011-12. Traffic pollution was positively associated with growth in BMI and was robust to adjustment for many confounders. The effect size in the adjusted model indicated about a 13.6% increase in annual BMI growth when comparing the lowest to the highest tenth percentile of air pollution exposure, which resulted in an increase of nearly 0.4 BMI units on attained BMI at age 10. Traffic density also had a positive association with BMI growth, but this effect was less robust in multivariate models. Traffic pollution was positively associated with growth in BMI in children aged 5-11 years. Traffic pollution may be controlled via emission restrictions; changes in land use that promote jobs-housing balance and use of public transit and hence reduce vehicle miles traveled; promotion of zero emissions vehicles; transit and car-sharing programs; or by limiting high pollution traffic, such as diesel trucks, from residential areas or places where children play outdoors, such as schools and parks. These measures may have beneficial effects in terms of reduced obesity formation in children.
Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis
2014-01-01
Background Biologically plausible mechanisms link traffic-related air pollution to metabolic disorders and potentially to obesity. Here we sought to determine whether traffic density and traffic-related air pollution were positively associated with growth in body mass index (BMI = kg/m2) in children aged 5–11 years. Methods Participants were drawn from a prospective cohort of children who lived in 13 communities across Southern California (N = 4550). Children were enrolled while attending kindergarten and first grade and followed for 4 years, with height and weight measured annually. Dispersion models were used to estimate exposure to traffic-related air pollution. Multilevel models were used to estimate and test traffic density and traffic pollution related to BMI growth. Data were collected between 2002–2010 and analyzed in 2011–12. Results Traffic pollution was positively associated with growth in BMI and was robust to adjustment for many confounders. The effect size in the adjusted model indicated about a 13.6% increase in annual BMI growth when comparing the lowest to the highest tenth percentile of air pollution exposure, which resulted in an increase of nearly 0.4 BMI units on attained BMI at age 10. Traffic density also had a positive association with BMI growth, but this effect was less robust in multivariate models. Conclusions Traffic pollution was positively associated with growth in BMI in children aged 5–11 years. Traffic pollution may be controlled via emission restrictions; changes in land use that promote jobs-housing balance and use of public transit and hence reduce vehicle miles traveled; promotion of zero emissions vehicles; transit and car-sharing programs; or by limiting high pollution traffic, such as diesel trucks, from residential areas or places where children play outdoors, such as schools and parks. These measures may have beneficial effects in terms of reduced obesity formation in children. PMID:24913018
Mino, H
2007-01-01
To estimate the parameters, the impulse response (IR) functions of some linear time-invariant systems generating intensity processes, in Shot-Noise-Driven Doubly Stochastic Poisson Process (SND-DSPP) in which multivariate presynaptic spike trains and postsynaptic spike trains can be assumed to be modeled by the SND-DSPPs. An explicit formula for estimating the IR functions from observations of multivariate input processes of the linear systems and the corresponding counting process (output process) is derived utilizing the expectation maximization (EM) algorithm. The validity of the estimation formula was verified through Monte Carlo simulations in which two presynaptic spike trains and one postsynaptic spike train were assumed to be observable. The IR functions estimated on the basis of the proposed identification method were close to the true IR functions. The proposed method will play an important role in identifying the input-output relationship of pre- and postsynaptic neural spike trains in practical situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk
2009-01-12
An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less
Evaluation of trapping-web designs
Lukacs, P.M.; Anderson, D.R.; Burnham, K.P.
2005-01-01
The trapping web is a method for estimating the density and abundance of animal populations. A Monte Carlo simulation study is performed to explore performance of the trapping web for estimating animal density under a variety of web designs and animal behaviours. The trapping performs well when animals have home ranges, even if the home ranges are large relative to trap spacing. Webs should contain at least 90 traps. Trapping should continue for 5-7 occasions. Movement rates have little impact on density estimates when animals are confined to home ranges. Estimation is poor when animals do not have home ranges and movement rates are rapid. The trapping web is useful for estimating the density of animals that are hard to detect and occur at potentially low densities. ?? CSIRO 2005.
An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.
Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len
2016-01-01
Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method an attractive option in many situations where populations can be surveyed acoustically by humans.
The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples
ERIC Educational Resources Information Center
Avetisyan, Marianna; Fox, Jean-Paul
2012-01-01
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave
2014-01-01
We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...
2011-01-01
where r << P. The use of PCA for finding outliers in multivariate data is surveyed by Gnanadesikan and Kettenring16 and Rao.17 As alluded to earlier...1984. 16. Gnanadesikan R and Kettenring JR. Robust estimates, residu als, and outlier detection with multiresponse data. Biometrics 1972; 28: 81–124
Kalman filter for statistical monitoring of forest cover across sub-continental regions
Raymond L. Czaplewski
1991-01-01
The Kalman filter is a multivariate generalization of the composite estimator which recursively combines a current direct estimate with a past estimate that is updated for expected change over time with a prediction model. The Kalman filter can estimate proportions of different cover types for sub-continental regions each year. A random sample of high-resolution...
Application of two tests of multivariate discordancy to fisheries data sets
Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.
2008-01-01
The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.
Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators.
Astolfi, L; Cincotti, F; Mattia, D; De Vico Fallani, F; Tocci, A; Colosimo, A; Salinari, S; Marciani, M G; Hesse, W; Witte, H; Ursino, M; Zavaglia, M; Babiloni, F
2008-03-01
The directed transfer function (DTF) and the partial directed coherence (PDC) are frequency-domain estimators that are able to describe interactions between cortical areas in terms of the concept of Granger causality. However, the classical estimation of these methods is based on the multivariate autoregressive modelling (MVAR) of time series, which requires the stationarity of the signals. In this way, transient pathways of information transfer remains hidden. The objective of this study is to test a time-varying multivariate method for the estimation of rapidly changing connectivity relationships between cortical areas of the human brain, based on DTF/PDC and on the use of adaptive MVAR modelling (AMVAR) and to apply it to a set of real high resolution EEG data. This approach will allow the observation of rapidly changing influences between the cortical areas during the execution of a task. The simulation results indicated that time-varying DTF and PDC are able to estimate correctly the imposed connectivity patterns under reasonable operative conditions of signal-to-noise ratio (SNR) ad number of trials. An SNR of five and a number of trials of at least 20 provide a good accuracy in the estimation. After testing the method by the simulation study, we provide an application to the cortical estimations obtained from high resolution EEG data recorded from a group of healthy subject during a combined foot-lips movement and present the time-varying connectivity patterns resulting from the application of both DTF and PDC. Two different cortical networks were detected with the proposed methods, one constant across the task and the other evolving during the preparation of the joint movement.
Density estimates of monarch butterflies overwintering in central Mexico
Diffendorfer, Jay E.; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X.; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations. PMID:28462031
Density estimates of monarch butterflies overwintering in central Mexico
Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2003-01-01
A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...
Does waist circumference uncorrelated with BMI add valuable information?
Ngueta, Gerard; Laouan-Sidi, Elhadji A; Lucas, Michel
2014-09-01
Estimation of relative contribution of Body Mass Index (BMI) and waist circumference (WC) on health outcomes requires a regression model that includes both obesity metrics. But, multicollinearity could yield biased estimates. To address the multicollinearity issue between BMI and WC, we used the residual model approach. The standard WC (Y-axis) was regressed on the BMI (X-axis) to obtain residual WC. Data from two adult population surveys (Nunavik Inuit and James Bay Cree) were analysed to evaluate relative effect of BMI and WC on four cardiometabolic risk factors: insulin, triglycerides, systolic blood pressure and high-density lipoprotein levels. In multivariate models, standard WC and BMI were significantly associated with cardiometabolic outcomes. Residual WC was not linked with any outcomes. The BMI effect was weakened by including standard WC in the model, but its effect remained unchanged if residual WC was considered. The strong correlation between standard WC and BMI does not allow assessment of their relative contributions to health in the same model without a risk of making erroneous estimations. By contrast with BMI, fat distribution (residual WC) does not add valuable information to a model that already contains overall adiposity (BMI) in Inuit and Cree. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Statistical analysis of multivariate atmospheric variables. [cloud cover
NASA Technical Reports Server (NTRS)
Tubbs, J. D.
1979-01-01
Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.
Ku, Bon Ki; Evans, Douglas E.
2015-01-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard’s estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles. PMID:26526560
Ku, Bon Ki; Evans, Douglas E
2012-04-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard's estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles.
Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators
Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.
2003-01-01
Statistical models for estimating absolute densities of field populations of animals have been widely used over the last century in both scientific studies and wildlife management programs. To date, two general classes of density estimation models have been developed: models that use data sets from capture–recapture or removal sampling techniques (often derived from trapping grids) from which separate estimates of population size (NÌ‚) and effective sampling area (AÌ‚) are used to calculate density (DÌ‚ = NÌ‚/AÌ‚); and models applicable to sampling regimes using distance-sampling theory (typically transect lines or trapping webs) to estimate detection functions and densities directly from the distance data. However, few studies have evaluated these respective models for accuracy, precision, and bias on known field populations, and no studies have been conducted that compare the two approaches under controlled field conditions. In this study, we evaluated both classes of density estimators on known densities of enclosed rodent populations. Test data sets (n = 11) were developed using nine rodent species from capture–recapture live-trapping on both trapping grids and trapping webs in four replicate 4.2-ha enclosures on the Sevilleta National Wildlife Refuge in central New Mexico, USA. Additional “saturation” trapping efforts resulted in an enumeration of the rodent populations in each enclosure, allowing the computation of true densities. Density estimates (DÌ‚) were calculated using program CAPTURE for the grid data sets and program DISTANCE for the web data sets, and these results were compared to the known true densities (D) to evaluate each model's relative mean square error, accuracy, precision, and bias. In addition, we evaluated a variety of approaches to each data set's analysis by having a group of independent expert analysts calculate their best density estimates without a priori knowledge of the true densities; this “blind” test allowed us to evaluate the influence of expertise and experience in calculating density estimates in comparison to simply using default values in programs CAPTURE and DISTANCE. While the rodent sample sizes were considerably smaller than the recommended minimum for good model results, we found that several models performed well empirically, including the web-based uniform and half-normal models in program DISTANCE, and the grid-based models Mb and Mbh in program CAPTURE (with AÌ‚ adjusted by species-specific full mean maximum distance moved (MMDM) values). These models produced accurate DÌ‚ values (with 95% confidence intervals that included the true D values) and exhibited acceptable bias but poor precision. However, in linear regression analyses comparing each model's DÌ‚ values to the true D values over the range of observed test densities, only the web-based uniform model exhibited a regression slope near 1.0; all other models showed substantial slope deviations, indicating biased estimates at higher or lower density values. In addition, the grid-based DÌ‚ analyses using full MMDM values for WÌ‚ area adjustments required a number of theoretical assumptions of uncertain validity, and we therefore viewed their empirical successes with caution. Finally, density estimates from the independent analysts were highly variable, but estimates from web-based approaches had smaller mean square errors and better achieved confidence-interval coverage of D than did grid-based approaches. Our results support the contention that web-based approaches for density estimation of small-mammal populations are both theoretically and empirically superior to grid-based approaches, even when sample size is far less than often recommended. In view of the increasing need for standardized environmental measures for comparisons among ecosystems and through time, analytical models based on distance sampling appear to offer accurate density estimation approaches for research studies involving small-mammal abundances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less
Rice, Megan S; Tworoger, Shelley S; Bertrand, Kimberly A; Hankinson, Susan E; Rosner, Bernard A; Feeney, Yvonne B; Clevenger, Charles V; Tamimi, Rulla M
2015-01-01
Higher circulating prolactin levels have been associated with higher percent mammographic density among postmenopausal women in some, but not all studies. However, few studies have examined associations with dense area and non-dense breast area breast or considered associations with prolactin Nb2 lymphoma cell bioassay levels. We conducted a cross-sectional study among 1,124 premenopausal and 890 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or 1996-1999 (NHSII) and mammograms were obtained from around the time of blood draw. Multivariable linear models were used to assess the associations between prolactin levels (measured by immunoassay or bioassay) with percent density, dense area, and non-dense area. Among 1,124 premenopausal women, percent density, dense area, and non-dense area were not associated with prolactin immunoassay levels in multivariable models (p trends = 0.10, 0.18, and 0.69, respectively). Among 890 postmenopausal women, those with prolactin immunoassay levels in the highest versus lowest quartile had modestly, though significantly, higher percent density (difference = 3.01 percentage points, 95 % CI 0.22, 5.80) as well as lower non-dense area (p trend = 0.02). Among women with both immunoassay and bioassay levels, there were no consistent differences in the associations with percent density between bioassay and immunoassay levels. Postmenopausal women with prolactin immunoassay levels in the highest quartile had significantly higher percent density as well as lower non-dense area compared to those in the lowest quartile. Future studies should examine the underlying biologic mechanisms, particularly for non-dense area.
Ouma, Paul O; Agutu, Nathan O; Snow, Robert W; Noor, Abdisalan M
2017-09-18
Precise quantification of health service utilisation is important for the estimation of disease burden and allocation of health resources. Current approaches to mapping health facility utilisation rely on spatial accessibility alone as the predictor. However, other spatially varying social, demographic and economic factors may affect the use of health services. The exclusion of these factors can lead to the inaccurate estimation of health facility utilisation. Here, we compare the accuracy of a univariate spatial model, developed only from estimated travel time, to a multivariate model that also includes relevant social, demographic and economic factors. A theoretical surface of travel time to the nearest public health facility was developed. These were assigned to each child reported to have had fever in the Kenya demographic and health survey of 2014 (KDHS 2014). The relationship of child treatment seeking for fever with travel time, household and individual factors from the KDHS2014 were determined using multilevel mixed modelling. Bayesian information criterion (BIC) and likelihood ratio test (LRT) tests were carried out to measure how selected factors improve parsimony and goodness of fit of the time model. Using the mixed model, a univariate spatial model of health facility utilisation was fitted using travel time as the predictor. The mixed model was also used to compute a multivariate spatial model of utilisation, using travel time and modelled surfaces of selected household and individual factors as predictors. The univariate and multivariate spatial models were then compared using the receiver operating area under the curve (AUC) and a percent correct prediction (PCP) test. The best fitting multivariate model had travel time, household wealth index and number of children in household as the predictors. These factors reduced BIC of the time model from 4008 to 2959, a change which was confirmed by the LRT test. Although there was a high correlation of the two modelled probability surfaces (Adj R 2 = 88%), the multivariate model had better AUC compared to the univariate model; 0.83 versus 0.73 and PCP 0.61 versus 0.45 values. Our study shows that a model that uses travel time, as well as household and individual-level socio-demographic factors, results in a more accurate estimation of use of health facilities for the treatment of childhood fever, compared to one that relies on only travel time.
A General Approach for Estimating Scale Score Reliability for Panel Survey Data
ERIC Educational Resources Information Center
Biemer, Paul P.; Christ, Sharon L.; Wiesen, Christopher A.
2009-01-01
Scale score measures are ubiquitous in the psychological literature and can be used as both dependent and independent variables in data analysis. Poor reliability of scale score measures leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. Reliability estimation is usually an integral step to assess…
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
Assessment of benthic changes during 20 years of monitoring the Mexican Salina Cruz Bay.
González-Macías, C; Schifter, I; Lluch-Cota, D B; Méndez-Rodríguez, L; Hernández-Vázquez, S
2009-02-01
In this work a non-parametric multivariate analysis was used to assess the impact of metals and organic compounds in the macro infaunal component of the mollusks benthic community using surface sediment data from several monitoring programs collected over 20 years in Salina Cruz Bay, Mexico. The data for benthic mollusks community characteristics (richness, abundance and diversity) were linked to multivariate environmental patterns, using the Alternating Conditional Expectations method to correlate the biological measurements of the mollusk community with the physicochemical properties of water and sediments. Mollusks community variation is related to environmental characteristics as well as lead content. Surface deposit feeders are increasing their relative density, while subsurface deposit feeders are decreasing with respect to time, these last are expected to be more related with sediment and more affected then by its quality. However gastropods with predatory carnivore as well as chemosymbiotic deposit feeder bivalves have maintained their relative densities along time.
Zhang, Fang; Wagner, Anita K; Soumerai, Stephen B; Ross-Degnan, Dennis
2009-02-01
Interrupted time series (ITS) is a strong quasi-experimental research design, which is increasingly applied to estimate the effects of health services and policy interventions. We describe and illustrate two methods for estimating confidence intervals (CIs) around absolute and relative changes in outcomes calculated from segmented regression parameter estimates. We used multivariate delta and bootstrapping methods (BMs) to construct CIs around relative changes in level and trend, and around absolute changes in outcome based on segmented linear regression analyses of time series data corrected for autocorrelated errors. Using previously published time series data, we estimated CIs around the effect of prescription alerts for interacting medications with warfarin on the rate of prescriptions per 10,000 warfarin users per month. Both the multivariate delta method (MDM) and the BM produced similar results. BM is preferred for calculating CIs of relative changes in outcomes of time series studies, because it does not require large sample sizes when parameter estimates are obtained correctly from the model. Caution is needed when sample size is small.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Investigation of estimators of probability density functions
NASA Technical Reports Server (NTRS)
Speed, F. M.
1972-01-01
Four research projects are summarized which include: (1) the generation of random numbers on the IBM 360/44, (2) statistical tests used to check out random number generators, (3) Specht density estimators, and (4) use of estimators of probability density functions in analyzing large amounts of data.
Halliday, David M; Senik, Mohd Harizal; Stevenson, Carl W; Mason, Rob
2016-08-01
The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity. We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats. The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data. The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data. Copyright © 2016 Elsevier B.V. All rights reserved.
Probabilistic Modeling of the Renal Stone Formation Module
NASA Technical Reports Server (NTRS)
Best, Lauren M.; Myers, Jerry G.; Goodenow, Debra A.; McRae, Michael P.; Jackson, Travis C.
2013-01-01
The Integrated Medical Model (IMM) is a probabilistic tool, used in mission planning decision making and medical systems risk assessments. The IMM project maintains a database of over 80 medical conditions that could occur during a spaceflight, documenting an incidence rate and end case scenarios for each. In some cases, where observational data are insufficient to adequately define the inflight medical risk, the IMM utilizes external probabilistic modules to model and estimate the event likelihoods. One such medical event of interest is an unpassed renal stone. Due to a high salt diet and high concentrations of calcium in the blood (due to bone depletion caused by unloading in the microgravity environment) astronauts are at a considerable elevated risk for developing renal calculi (nephrolithiasis) while in space. Lack of observed incidences of nephrolithiasis has led HRP to initiate the development of the Renal Stone Formation Module (RSFM) to create a probabilistic simulator capable of estimating the likelihood of symptomatic renal stone presentation in astronauts on exploration missions. The model consists of two major parts. The first is the probabilistic component, which utilizes probability distributions to assess the range of urine electrolyte parameters and a multivariate regression to transform estimated crystal density and size distributions to the likelihood of the presentation of nephrolithiasis symptoms. The second is a deterministic physical and chemical model of renal stone growth in the kidney developed by Kassemi et al. The probabilistic component of the renal stone model couples the input probability distributions describing the urine chemistry, astronaut physiology, and system parameters with the physical and chemical outputs and inputs to the deterministic stone growth model. These two parts of the model are necessary to capture the uncertainty in the likelihood estimate. The model will be driven by Monte Carlo simulations, continuously randomly sampling the probability distributions of the electrolyte concentrations and system parameters that are inputs into the deterministic model. The total urine chemistry concentrations are used to determine the urine chemistry activity using the Joint Expert Speciation System (JESS), a biochemistry model. Information used from JESS is then fed into the deterministic growth model. Outputs from JESS and the deterministic model are passed back to the probabilistic model where a multivariate regression is used to assess the likelihood of a stone forming and the likelihood of a stone requiring clinical intervention. The parameters used to determine to quantify these risks include: relative supersaturation (RS) of calcium oxalate, citrate/calcium ratio, crystal number density, total urine volume, pH, magnesium excretion, maximum stone width, and ureteral location. Methods and Validation: The RSFM is designed to perform a Monte Carlo simulation to generate probability distributions of clinically significant renal stones, as well as provide an associated uncertainty in the estimate. Initially, early versions will be used to test integration of the components and assess component validation and verification (V&V), with later versions used to address questions regarding design reference mission scenarios. Once integrated with the deterministic component, the credibility assessment of the integrated model will follow NASA STD 7009 requirements.
Hevesi, Joseph A.; Flint, Alan L.; Istok, Jonathan D.
1992-01-01
Values of average annual precipitation (AAP) may be important for hydrologic characterization of a potential high-level nuclear-waste repository site at Yucca Mountain, Nevada. Reliable measurements of AAP are sparse in the vicinity of Yucca Mountain, and estimates of AAP were needed for an isohyetal mapping over a 2600-square-mile watershed containing Yucca Mountain. Estimates were obtained with a multivariate geostatistical model developed using AAP and elevation data from a network of 42 precipitation stations in southern Nevada and southeastern California. An additional 1531 elevations were obtained to improve estimation accuracy. Isohyets representing estimates obtained using univariate geostatistics (kriging) defined a smooth and continuous surface. Isohyets representing estimates obtained using multivariate geostatistics (cokriging) defined an irregular surface that more accurately represented expected local orographic influences on AAP. Cokriging results included a maximum estimate within the study area of 335 mm at an elevation of 7400 ft, an average estimate of 157 mm for the study area, and an average estimate of 172 mm at eight locations in the vicinity of the potential repository site. Kriging estimates tended to be lower in comparison because the increased AAP expected for remote mountainous topography was not adequately represented by the available sample. Regression results between cokriging estimates and elevation were similar to regression results between measured AAP and elevation. The position of the cokriging 250-mm isohyet relative to the boundaries of pinyon pine and juniper woodlands provided indirect evidence of improved estimation accuracy because the cokriging result agreed well with investigations by others concerning the relationship between elevation, vegetation, and climate in the Great Basin. Calculated estimation variances were also mapped and compared to evaluate improvements in estimation accuracy. Cokriging estimation variances were reduced by an average of 54% relative to kriging variances within the study area. Cokriging reduced estimation variances at the potential repository site by 55% relative to kriging. The usefulness of an existing network of stations for measuring AAP within the study area was evaluated using cokriging variances, and twenty additional stations were located for the purpose of improving the accuracy of future isohyetal mappings. Using the expanded network of stations, the maximum cokriging estimation variance within the study area was reduced by 78% relative to the existing network, and the average estimation variance was reduced by 52%.
Characterization of a maximum-likelihood nonparametric density estimator of kernel type
NASA Technical Reports Server (NTRS)
Geman, S.; Mcclure, D. E.
1982-01-01
Kernel type density estimators calculated by the method of sieves. Proofs are presented for the characterization theorem: Let x(1), x(2),...x(n) be a random sample from a population with density f(0). Let sigma 0 and consider estimators f of f(0) defined by (1).
Estimating correlation between multivariate longitudinal data in the presence of heterogeneity.
Gao, Feng; Philip Miller, J; Xiong, Chengjie; Luo, Jingqin; Beiser, Julia A; Chen, Ling; Gordon, Mae O
2017-08-17
Estimating correlation coefficients among outcomes is one of the most important analytical tasks in epidemiological and clinical research. Availability of multivariate longitudinal data presents a unique opportunity to assess joint evolution of outcomes over time. Bivariate linear mixed model (BLMM) provides a versatile tool with regard to assessing correlation. However, BLMMs often assume that all individuals are drawn from a single homogenous population where the individual trajectories are distributed smoothly around population average. Using longitudinal mean deviation (MD) and visual acuity (VA) from the Ocular Hypertension Treatment Study (OHTS), we demonstrated strategies to better understand the correlation between multivariate longitudinal data in the presence of potential heterogeneity. Conditional correlation (i.e., marginal correlation given random effects) was calculated to describe how the association between longitudinal outcomes evolved over time within specific subpopulation. The impact of heterogeneity on correlation was also assessed by simulated data. There was a significant positive correlation in both random intercepts (ρ = 0.278, 95% CI: 0.121-0.420) and random slopes (ρ = 0.579, 95% CI: 0.349-0.810) between longitudinal MD and VA, and the strength of correlation constantly increased over time. However, conditional correlation and simulation studies revealed that the correlation was induced primarily by participants with rapid deteriorating MD who only accounted for a small fraction of total samples. Conditional correlation given random effects provides a robust estimate to describe the correlation between multivariate longitudinal data in the presence of unobserved heterogeneity (NCT00000125).
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2014-09-30
172. McDonald, MA, Hildebrand, JA, and Mesnick, S (2009). Worldwide decline in tonal frequencies of blue whale songs . Endangered Species Research 9...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...estimating blue and fin whale density that is effective over large spatial scales and is designed to cope with spatial variation in animal density utilizing
Clinical significance of serum complement factor 3 in patients with type 2 diabetes mellitus.
Nishimura, Takeshi; Itoh, Yoshihisa; Yamashita, Shigeo; Koide, Keiko; Harada, Noriaki; Yano, Yasuo; Ikeda, Nobuko; Azuma, Koichiro; Atsumi, Yoshihito
2017-05-01
Although serum complement factor 3 (C3) is an acute phase reactant mainly synthesized in the liver, several recent studies have shown high C3 gene expression in adipose tissue (AT). However, the relationship between C3 and AT levels has not been fully clarified in type 2 diabetes mellitus (T2DM) patients. A total of 164 T2DM patients (109men and 55 women) participated in this cross-sectional study. A computed tomography scan was performed to measure visceral, subcutaneous, and total AT. The correlation between these factors and C3 levels was examined using Pearson's correlation analysis. A multivariate regression model was used to assess an independent determinant associated with C3 levels after adjusting the explanatory variables (i.e., all ATs [visceral, subcutaneous, and total], and clinical features [sex, age, body mass index, waist circumference, glycated hemoglobin, duration of diabetes, systolic blood pressure, diastolic blood pressure, aspartate aminotransferase levels, alanine aminotransferase levels, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, log(triglyceride levels), estimated glomerular filtration rate, and log(high-sensitivity C-reactive protein levels)]). Serum C3 levels were correlated with visceral, subcutaneous, and total AT among both men (r=0.505, p<0.001; r=0.545, p<0.001; r=0.617, p<0.001, respectively) and women (r=0.396, p=0.003; r=0.517, p<0.001; r=0.548, p<0.001, respectively). In the multivariate regression model, the association between total AT and C3 levels remained significantly positive (β=0.490, p<0.001). Serum C3 levels are associated with visceral, subcutaneous, and total AT in T2DM patients. Furthermore, C3 levels seem to be a marker for overall adiposity rather than regional adiposity. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans.
Matsushita, M; Yoneshiro, T; Aita, S; Kameya, T; Sugie, H; Saito, M
2014-06-01
Brown adipose tissue (BAT) is involved in the regulation of whole-body energy expenditure and adiposity. Some clinical studies have reported an association between BAT and blood glucose in humans. To examine the impact of BAT on glucose metabolism, independent of that of body fatness, age and sex in healthy adult humans. Two hundred and sixty healthy volunteers (184 males and 76 females, 20-72 years old) underwent fluorodeoxyglucose-positron emission tomography and computed tomography after 2 h of cold exposure to assess maximal BAT activity. Blood parameters including glucose, HbA1c and low-density lipoprotein (LDL)/high-density lipoprotein-cholesterol were measured by conventional methods, and body fatness was estimated from body mass index (BMI), body fat mass and abdominal fat area. The impact of BAT on body fatness and blood parameters was determined by logistic regression with the use of univariate and multivariate models. Cold-activated BAT was detected in 125 (48%) out of 260 subjects. When compared with subjects without detectable BAT, those with detectable BAT were younger and showed lower adiposity-related parameters such as the BMI, body fat mass and abdominal fat area. Although blood parameters were within the normal range in the two subject groups, HbA1c, total cholesterol and LDL-cholesterol were significantly lower in the BAT-positive group. Blood glucose also tended to be lower in the BAT-positive group. Logistic regression demonstrated that BAT, in addition to age and sex, was independently associated with BMI, body fat mass, and abdominal visceral and subcutaneous fat areas. For blood parameters, multivariate analysis after adjustment for age, sex and body fatness revealed that BAT was a significantly independent determinant of glucose and HbA1c. BAT, independent of age, sex and body fatness, has a significant impact on glucose metabolism in adult healthy humans.
Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki
2010-09-01
A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.
Charles Essien; Brian K. Via; Qingzheng Cheng; Thomas Gallagher; Timothy McDonald; Xiping Wang; Lori G. Eckhardt
2017-01-01
The polymeric angle and concentration within the S2 layer of the softwood fiber cell wall are very critical for molecular and microscopic properties that influence strength, stiffness and acoustic velocity of wood at the macroscopic level. The main objective of this study was to elucidate the effect of cellulose, hemicellulose, lignin, microfibril angle and density on...
A Hybrid Index for Characterizing Drought Based on a Nonparametric Kernel Estimator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shengzhi; Huang, Qiang; Leng, Guoyong
This study develops a nonparametric multivariate drought index, namely, the Nonparametric Multivariate Standardized Drought Index (NMSDI), by considering the variations of both precipitation and streamflow. Building upon previous efforts in constructing Nonparametric Multivariate Drought Index, we use the nonparametric kernel estimator to derive the joint distribution of precipitation and streamflow, thus providing additional insights in drought index development. The proposed NMSDI are applied in the Wei River Basin (WRB), based on which the drought evolution characteristics are investigated. Results indicate: (1) generally, NMSDI captures the drought onset similar to Standardized Precipitation Index (SPI) and drought termination and persistence similar tomore » Standardized Streamflow Index (SSFI). The drought events identified by NMSDI match well with historical drought records in the WRB. The performances are also consistent with that by an existing Multivariate Standardized Drought Index (MSDI) at various timescales, confirming the validity of the newly constructed NMSDI in drought detections (2) An increasing risk of drought has been detected for the past decades, and will be persistent to a certain extent in future in most areas of the WRB; (3) the identified change points of annual NMSDI are mainly concentrated in the early 1970s and middle 1990s, coincident with extensive water use and soil reservation practices. This study highlights the nonparametric multivariable drought index, which can be used for drought detections and predictions efficiently and comprehensively.« less
Sakai, Rie; Fink, Günther; Wang, Wei; Kawachi, Ichiro
2015-01-01
Background In industrialized countries, assessment of the causal effect of physician supply on population health has yielded mixed results. Since the scope of child vaccination is an indicator of preventive health service utilization, this study investigates the correlation between vaccination coverage and pediatrician supply as a reflection of overall pediatric health during a time of increasing pediatrician numbers in Japan. Methods Cross-sectional data were collected from publicly available sources for 2010. Dependent variables were vaccination coverage for measles and diphtheria, pertussis, and tetanus (DPT) by region. The primary predictor of interest was number of pediatricians per 10 000-child population (pediatrician density) at the municipality level. Multivariate logistic regression models were used to estimate associations of interest, conditional on a large range of demographic and infrastructure-related factors as covariates, including non-pediatric physician density, total population, per capita income, occupation, unemployment rate, prevalence of single motherhood, number of hospital beds per capita, length of roads, crime rate, accident rate, and metropolitan area code as urban/rural status. The percentage of the population who completed college-level education or higher in 2010 was included in the model as a proxy for education level. Results Pediatrician density was positively and significantly associated with vaccination coverage for both vaccine series. On average, each unit of pediatrician density increased odds by 1.012 for measles (95% confidence interval, 1.010–1.015) and 1.019 for DPT (95% confidence interval, 1.016–1.022). Conclusions Policies increasing pediatrician supply contribute to improved preventive healthcare services utilization, such as immunizations, and presumably improved child health status in Japan. PMID:25817986
Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong
2016-05-30
Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.
Association of Renal Function and Menopausal Status with Bone Mineral Density in Middle-aged Women
Sheng, Yueh-Hsuan; Chen, Jen-Hau; Chiou, Jeng-Min; Tsai, Keh-Sung; Lee, Yue-Yuan; Tsao, Chwen-Keng; Chen, Yen-Ching
2015-01-01
The association between mild renal dysfunction and bone mineral density (BMD) has not been fully explored. It is also unclear how menopausal status and the use of Chinese herb affect this association. This is a cross-sectional study that included a total of 1,419 women aged 40 to 55 years old who were recruited from the MJ Health Management Institution in Taiwan between 2009 and 2010. Spinal BMD was assessed by dual-energy X-ray absorptiometry. Renal function was assessed using estimated glomerular filtration rate (eGFR) and creatinine clearance rate (CCr). The multivariable logistic regression and general linear models were employed to assess the association between renal function and BMD. Stratification analyses were performed by menopausal status and use of Chinese herbs. Low CCr levels were significantly associated with low BMD [adjusted odds ratio (AOR) = 1.48, 95% confidence interval (CI) = 1.15–1.90]. This association was observed in premenopausal women (AOR = 1.43, 95% CI = 1.07–1.92) and in women not taking Chinese herbs (AOR = 1.48, 95% CI = 1.14–1.94). CCr is a better predictor for low BMD in middle-aged women. Menopausal status and the use of Chinese herbs also affected this association. PMID:26459876
Association of Renal Function and Menopausal Status with Bone Mineral Density in Middle-aged Women.
Sheng, Yueh-Hsuan; Chen, Jen-Hau; Chiou, Jeng-Min; Tsai, Keh-Sung; Lee, Yue-Yuan; Tsao, Chwen-Keng; Chen, Yen-Ching
2015-10-13
The association between mild renal dysfunction and bone mineral density (BMD) has not been fully explored. It is also unclear how menopausal status and the use of Chinese herb affect this association. This is a cross-sectional study that included a total of 1,419 women aged 40 to 55 years old who were recruited from the MJ Health Management Institution in Taiwan between 2009 and 2010. Spinal BMD was assessed by dual-energy X-ray absorptiometry. Renal function was assessed using estimated glomerular filtration rate (eGFR) and creatinine clearance rate (CCr). The multivariable logistic regression and general linear models were employed to assess the association between renal function and BMD. Stratification analyses were performed by menopausal status and use of Chinese herbs. Low CCr levels were significantly associated with low BMD [adjusted odds ratio (AOR) = 1.48, 95% confidence interval (CI) = 1.15-1.90]. This association was observed in premenopausal women (AOR = 1.43, 95% CI = 1.07-1.92) and in women not taking Chinese herbs (AOR = 1.48, 95% CI = 1.14-1.94). CCr is a better predictor for low BMD in middle-aged women. Menopausal status and the use of Chinese herbs also affected this association.
Utsunomiya, Hiroto; Yamamoto, Hideya; Kunita, Eiji; Kitagawa, Toshiro; Ohashi, Norihiko; Oka, Toshiharu; Yamazato, Ryo; Horiguchi, Jun; Kihara, Yasuki
2010-11-01
We examined the association of aortic valve calcification (AVC) and mitral annular calcification (MAC) to coronary atherosclerosis using 64-multidetector computed tomography (MDCT). Valvular calcification is considered a manifestation of atherosclerosis. The impact of multiple heart valve calcium deposits on the distribution and characteristics of coronary plaque is unknown. We evaluated 322 patients referred for 64-MDCT, and assessed valvular calcification and the extent of calcified (CAP), mixed (MCAP), and noncalcified coronary atherosclerotic plaque (NCAP) in accordance with the 17-coronary segments model. We assessed the vulnerable characteristics of coronary plaque with positive remodeling, low-density plaque (CT density ≤38 Hounsfield units), and the presence of adjacent spotty calcification. In 49 patients with both AVC and MAC, the segment numbers of CAP and MCAP were larger than in those with a lack of valvular calcification and an isolated AVC (p<0.001 for both). Multivariate analyses revealed that a combined presence of AVC and MAC was independently associated with the presence (odds ratio [OR] 9.36, 95% confidence interval [95%CI] 1.55-56.53, p=0.015) and extent (β-estimate 1.86, p<0.001) of overall coronary plaque. When stratified by plaque composition, it was associated with the extent of CAP (β-estimate 1.77, p<0.001) and MCAP (β-estimate 1.04, p<0.001), but not with NCAP. Moreover, it was also related to the presence of coronary plaque with all three vulnerable characteristics (OR 4.87, 95%CI 1.85-12.83, p=0.001). The combined presence of AVC and MAC is highly associated with the presence, extent, and vulnerable characteristics of coronary plaque identified by 64-MDCT. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
A note on a simplified and general approach to simulating from multivariate copula functions
Barry K. Goodwin
2013-01-01
Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses âProbability-...
Multivariate time series analysis of neuroscience data: some challenges and opportunities.
Pourahmadi, Mohsen; Noorbaloochi, Siamak
2016-04-01
Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L
2015-12-30
Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Shanmuga Doss, Sreeja; Bhatt, Nirav Pravinbhai; Jayaraman, Guhan
2017-08-15
There is an unreasonably high variation in the literature reports on molecular weight of hyaluronic acid (HA) estimated using conventional size exclusion chromatography (SEC). This variation is most likely due to errors in estimation. Working with commercially available HA molecular weight standards, this work examines the extent of error in molecular weight estimation due to two factors: use of non-HA based calibration and concentration of sample injected into the SEC column. We develop a multivariate regression correlation to correct for concentration effect. Our analysis showed that, SEC calibration based on non-HA standards like polyethylene oxide and pullulan led to approximately 2 and 10 times overestimation, respectively, when compared to HA-based calibration. Further, we found that injected sample concentration has an effect on molecular weight estimation. Even at 1g/l injected sample concentration, HA molecular weight standards of 0.7 and 1.64MDa showed appreciable underestimation of 11-24%. The multivariate correlation developed was found to reduce error in estimations at 1g/l to <4%. The correlation was also successfully applied to accurately estimate the molecular weight of HA produced by a recombinant Lactococcus lactis fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Lin; Ray, Shonket; Keller, Brad M; Pertuz, Said; McDonald, Elizabeth S; Conant, Emily F; Kontos, Despina
2016-09-01
Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88-0.95; weighted κ = 0.83-0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76-0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation may be feasible. (©) RSNA, 2016 Online supplemental material is available for this article.
Chen, Lin; Ray, Shonket; Keller, Brad M.; Pertuz, Said; McDonald, Elizabeth S.; Conant, Emily F.
2016-01-01
Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88–0.95; weighted κ = 0.83–0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76–0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation may be feasible. © RSNA, 2016 Online supplemental material is available for this article. PMID:27002418
David W. Vahey; C. Tim Scott; J.Y. Zhu; Kenneth E. Skog
2012-01-01
Methods for estimating present and future carbon storage in trees and forests rely on measurements or estimates of tree volume or volume growth multiplied by specific gravity. Wood density can vary by tree ring and height in a tree. If data on density by tree ring could be obtained and linked to tree size and stand characteristics, it would be possible to more...
Reliability and precision of pellet-group counts for estimating landscape-level deer density
David S. deCalesta
2013-01-01
This study provides hitherto unavailable methodology for reliably and precisely estimating deer density within forested landscapes, enabling quantitative rather than qualitative deer management. Reliability and precision of the deer pellet-group technique were evaluated in 1 small and 2 large forested landscapes. Density estimates, adjusted to reflect deer harvest and...
Trunk density profile estimates from dual X-ray absorptiometry.
Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A
2008-01-01
Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.
Vehicle Sprung Mass Estimation for Rough Terrain
2011-03-01
distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended
Effects of LiDAR point density and landscape context on the retrieval of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, K. K.; Chen, G.; McCarter, J. B.; Meentemeyer, R. K.
2014-12-01
Light Detection and Ranging (LiDAR), as an alternative to conventional optical remote sensing, is being increasingly used to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and better data accuracies, which however pose challenges to the procurement and processing of LiDAR data for large-area assessments. Reducing point density cuts data acquisition costs and overcome computational challenges for broad-scale forest management. However, how does that impact the accuracy of biomass estimation in an urban environment containing a great level of anthropogenic disturbances? The main goal of this study is to evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing regions of Charlotte, North Carolina, USA. We used multiple linear regression to establish the statistical relationship between field-measured biomass and predictor variables (PVs) derived from LiDAR point clouds with varying densities. We compared the estimation accuracies between the general Urban Forest models (no discrimination of forest type) and the Forest Type models (evergreen, deciduous, and mixed), which was followed by quantifying the degree to which landscape context influenced biomass estimation. The explained biomass variance of Urban Forest models, adjusted R2, was fairly consistent across the reduced point densities with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models using two representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, signifying the distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest biomass assessment without compromising the accuracy of estimation, which may further be improved using development density.
Burgués, Javier; Marco, Santiago
2018-08-17
Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.
Soil Bulk Density by Soil Type, Land Use and Data Source: Putting the Error in SOC Estimates
NASA Astrophysics Data System (ADS)
Wills, S. A.; Rossi, A.; Loecke, T.; Ramcharan, A. M.; Roecker, S.; Mishra, U.; Waltman, S.; Nave, L. E.; Williams, C. O.; Beaudette, D.; Libohova, Z.; Vasilas, L.
2017-12-01
An important part of SOC stock and pool assessment is the assessment, estimation, and application of bulk density estimates. The concept of bulk density is relatively simple (the mass of soil in a given volume), the specifics Bulk density can be difficult to measure in soils due to logistical and methodological constraints. While many estimates of SOC pools use legacy data in their estimates, few concerted efforts have been made to assess the process used to convert laboratory carbon concentration measurements and bulk density collection into volumetrically based SOC estimates. The methodologies used are particularly sensitive in wetlands and organic soils with high amounts of carbon and very low bulk densities. We will present an analysis across four database measurements: NCSS - the National Cooperative Soil Survey Characterization dataset, RaCA - the Rapid Carbon Assessment sample dataset, NWCA - the National Wetland Condition Assessment, and ISCN - the International soil Carbon Network. The relationship between bulk density and soil organic carbon will be evaluated by dataset and land use/land cover information. Prediction methods (both regression and machine learning) will be compared and contrasted across datasets and available input information. The assessment and application of bulk density, including modeling, aggregation and error propagation will be evaluated. Finally, recommendations will be made about both the use of new data in soil survey products (such as SSURGO) and the use of that information as legacy data in SOC pool estimates.
Computerized image analysis: estimation of breast density on mammograms
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Petrick, Nicholas; Sahiner, Berkman; Helvie, Mark A.; Roubidoux, Marilyn A.; Hadjiiski, Lubomir M.; Goodsitt, Mitchell M.
2000-06-01
An automated image analysis tool is being developed for estimation of mammographic breast density, which may be useful for risk estimation or for monitoring breast density change in a prevention or intervention program. A mammogram is digitized using a laser scanner and the resolution is reduced to a pixel size of 0.8 mm X 0.8 mm. Breast density analysis is performed in three stages. First, the breast region is segmented from the surrounding background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic range compression technique is applied to the breast image to reduce the range of the gray level distribution in the low frequency background and to enhance the differences in the characteristic features of the gray level histogram for breasts of different densities. Third, rule-based classification is used to classify the breast images into several classes according to the characteristic features of their gray level histogram. For each image, a gray level threshold is automatically determined to segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage of the breast area is then estimated. In this preliminary study, we analyzed the interobserver variation of breast density estimation by two experienced radiologists using BI-RADS lexicon. The radiologists' visually estimated percent breast densities were compared with the computer's calculation. The results demonstrate the feasibility of estimating mammographic breast density using computer vision techniques and its potential to improve the accuracy and reproducibility in comparison with the subjective visual assessment by radiologists.
Middleton, Michael S; Haufe, William; Hooker, Jonathan; Borga, Magnus; Dahlqvist Leinhard, Olof; Romu, Thobias; Tunón, Patrik; Hamilton, Gavin; Wolfson, Tanya; Gamst, Anthony; Loomba, Rohit; Sirlin, Claude B
2017-05-01
Purpose To determine the repeatability and accuracy of a commercially available magnetic resonance (MR) imaging-based, semiautomated method to quantify abdominal adipose tissue and thigh muscle volume and hepatic proton density fat fraction (PDFF). Materials and Methods This prospective study was institutional review board- approved and HIPAA compliant. All subjects provided written informed consent. Inclusion criteria were age of 18 years or older and willingness to participate. The exclusion criterion was contraindication to MR imaging. Three-dimensional T1-weighted dual-echo body-coil images were acquired three times. Source images were reconstructed to generate water and calibrated fat images. Abdominal adipose tissue and thigh muscle were segmented, and their volumes were estimated by using a semiautomated method and, as a reference standard, a manual method. Hepatic PDFF was estimated by using a confounder-corrected chemical shift-encoded MR imaging method with hybrid complex-magnitude reconstruction and, as a reference standard, MR spectroscopy. Tissue volume and hepatic PDFF intra- and interexamination repeatability were assessed by using intraclass correlation and coefficient of variation analysis. Tissue volume and hepatic PDFF accuracy were assessed by means of linear regression with the respective reference standards. Results Adipose and thigh muscle tissue volumes of 20 subjects (18 women; age range, 25-76 years; body mass index range, 19.3-43.9 kg/m 2 ) were estimated by using the semiautomated method. Intra- and interexamination intraclass correlation coefficients were 0.996-0.998 and coefficients of variation were 1.5%-3.6%. For hepatic MR imaging PDFF, intra- and interexamination intraclass correlation coefficients were greater than or equal to 0.994 and coefficients of variation were less than or equal to 7.3%. In the regression analyses of manual versus semiautomated volume and spectroscopy versus MR imaging, PDFF slopes and intercepts were close to the identity line, and correlations of determination at multivariate analysis (R 2 ) ranged from 0.744 to 0.994. Conclusion This MR imaging-based, semiautomated method provides high repeatability and accuracy for estimating abdominal adipose tissue and thigh muscle volumes and hepatic PDFF. © RSNA, 2017.
Topics in global convergence of density estimates
NASA Technical Reports Server (NTRS)
Devroye, L.
1982-01-01
The problem of estimating a density f on R sup d from a sample Xz(1),...,X(n) of independent identically distributed random vectors is critically examined, and some recent results in the field are reviewed. The following statements are qualified: (1) For any sequence of density estimates f(n), any arbitrary slow rate of convergence to 0 is possible for E(integral/f(n)-fl); (2) In theoretical comparisons of density estimates, integral/f(n)-f/ should be used and not integral/f(n)-f/sup p, p 1; and (3) For most reasonable nonparametric density estimates, either there is convergence of integral/f(n)-f/ (and then the convergence is in the strongest possible sense for all f), or there is no convergence (even in the weakest possible sense for a single f). There is no intermediate situation.
MicroRNA let-7, T cells, and patient survival in colorectal cancer
Dou, Ruoxu; Nishihara, Reiko; Cao, Yin; Hamada, Tsuyoshi; Mima, Kosuke; Masuda, Atsuhiro; Masugi, Yohei; Shi, Yan; Gu, Mancang; Li, Wanwan; da Silva, Annacarolina; Nosho, Katsuhiko; Zhang, Xuehong; Meyerhardt, Jeffrey A.; Giovannucci, Edward L.; Chan, Andrew T.; Fuchs, Charles S.; Qian, Zhi Rong; Ogino, Shuji
2016-01-01
Experimental evidence suggests that the let-7 family of noncoding RNAs suppresses adaptive immune responses, contributing to immune evasion by the tumor. We hypothesized that the amount of let-7a and let-7b expression in colorectal carcinoma might be associated with limited T-lymphocyte infiltrates in the tumor microenvironment and worse clinical outcome. Utilizing the molecular pathological epidemiology resources of 795 rectal and colon cancers in two U.S.-nationwide prospective cohort studies, we measured tumor-associated let-7a and let-7b expression levels by quantitative reverse-transcription PCR, and CD3+, CD8+, CD45RO (PTPRC)+, and FOXP3+ cell densities by tumor tissue microarray immunohistochemistry and computer-assisted image analysis. Logistic regression analysis and Cox proportional hazards regression were used to assess associations of let-7a (and let-7b) expression (quartile predictor variables) with T-cell densities (binary outcome variables) and mortality, respectively, controlling for tumor molecular features, including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation, and KRAS, BRAF, and PIK3CA mutations. Compared with cases in the lowest quartile of let-7a expression, those in the highest quartile were associated with lower densities of CD3+ [multivariate odds ratio (OR), 0.40; 95% confidence interval (CI), 0.23 to 0.67; Ptrend = 0.003] and CD45RO+ cells (multivariate OR, 0.31; 95% CI, 0.17 to 0.58; Ptrend = 0.0004), and higher colorectal cancer-specific mortality (multivariate hazard ratio, 1.82; 95% CI, 1.42 to 3.13; Ptrend = 0.001). In contrast, let-7b expression was not significantly associated with T-cell density or colorectal cancer prognosis. Our data support the role of let-7a in suppressing antitumor immunity in colorectal cancer, and suggest let-7a as a potential target of immunotherapy. PMID:27737877
Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David
The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.
Jun, Jae Kwan; Kim, Mi Jin; Choi, Kui Son; Suh, Mina; Jung, Kyu-Won
2012-01-01
Mammographic breast density is a known risk factor for breast cancer. To conduct a survey to estimate the distribution of mammographic breast density in Korean women, appropriate sampling strategies for representative and efficient sampling design were evaluated through simulation. Using the target population from the National Cancer Screening Programme (NCSP) for breast cancer in 2009, we verified the distribution estimate by repeating the simulation 1,000 times using stratified random sampling to investigate the distribution of breast density of 1,340,362 women. According to the simulation results, using a sampling design stratifying the nation into three groups (metropolitan, urban, and rural), with a total sample size of 4,000, we estimated the distribution of breast density in Korean women at a level of 0.01% tolerance. Based on the results of our study, a nationwide survey for estimating the distribution of mammographic breast density among Korean women can be conducted efficiently.
Estimation of Wheat Plant Density at Early Stages Using High Resolution Imagery
Liu, Shouyang; Baret, Fred; Andrieu, Bruno; Burger, Philippe; Hemmerlé, Matthieu
2017-01-01
Crop density is a key agronomical trait used to manage wheat crops and estimate yield. Visual counting of plants in the field is currently the most common method used. However, it is tedious and time consuming. The main objective of this work is to develop a machine vision based method to automate the density survey of wheat at early stages. RGB images taken with a high resolution RGB camera are classified to identify the green pixels corresponding to the plants. Crop rows are extracted and the connected components (objects) are identified. A neural network is then trained to estimate the number of plants in the objects using the object features. The method was evaluated over three experiments showing contrasted conditions with sowing densities ranging from 100 to 600 seeds⋅m-2. Results demonstrate that the density is accurately estimated with an average relative error of 12%. The pipeline developed here provides an efficient and accurate estimate of wheat plant density at early stages. PMID:28559901
Simple Form of MMSE Estimator for Super-Gaussian Prior Densities
NASA Astrophysics Data System (ADS)
Kittisuwan, Pichid
2015-04-01
The denoising method that become popular in recent years for additive white Gaussian noise (AWGN) are Bayesian estimation techniques e.g., maximum a posteriori (MAP) and minimum mean square error (MMSE). In super-Gaussian prior densities, it is well known that the MMSE estimator in such a case has a complicated form. In this work, we derive the MMSE estimation with Taylor series. We show that the proposed estimator also leads to a simple formula. An extension of this estimator to Pearson type VII prior density is also offered. The experimental result shows that the proposed estimator to the original MMSE nonlinearity is reasonably good.
Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang
2014-09-01
Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P < 0.001), higher CSFP (P < 0.001), and wider retinal veins (P = 0.001) or, as a corollary, with a higher vein-to-artery diameter ratio in multivariable analysis. Wider retinal vein diameters are associated with higher estimated CSFP and vice versa. In arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A new subgrid-scale representation of hydrometeor fields using a multivariate PDF
Griffin, Brian M.; Larson, Vincent E.
2016-06-03
The subgrid-scale representation of hydrometeor fields is important for calculating microphysical process rates. In order to represent subgrid-scale variability, the Cloud Layers Unified By Binormals (CLUBB) parameterization uses a multivariate probability density function (PDF). In addition to vertical velocity, temperature, and moisture fields, the PDF includes hydrometeor fields. Previously, hydrometeor fields were assumed to follow a multivariate single lognormal distribution. Now, in order to better represent the distribution of hydrometeors, two new multivariate PDFs are formulated and introduced.The new PDFs represent hydrometeors using either a delta-lognormal or a delta-double-lognormal shape. The two new PDF distributions, plus the previous single lognormalmore » shape, are compared to histograms of data taken from large-eddy simulations (LESs) of a precipitating cumulus case, a drizzling stratocumulus case, and a deep convective case. In conclusion, the warm microphysical process rates produced by the different hydrometeor PDFs are compared to the same process rates produced by the LES.« less
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
1998-01-01
Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…
Davis, Amy J; Leland, Bruce; Bodenchuk, Michael; VerCauteren, Kurt C; Pepin, Kim M
2017-06-01
Population density is a key driver of disease dynamics in wildlife populations. Accurate disease risk assessment and determination of management impacts on wildlife populations requires an ability to estimate population density alongside management actions. A common management technique for controlling wildlife populations to monitor and mitigate disease transmission risk is trapping (e.g., box traps, corral traps, drop nets). Although abundance can be estimated from trapping actions using a variety of analytical approaches, inference is limited by the spatial extent to which a trap attracts animals on the landscape. If the "area of influence" were known, abundance estimates could be converted to densities. In addition to being an important predictor of contact rate and thus disease spread, density is more informative because it is comparable across sites of different sizes. The goal of our study is to demonstrate the importance of determining the area sampled by traps (area of influence) so that density can be estimated from management-based trapping designs which do not employ a trapping grid. To provide one example of how area of influence could be calculated alongside management, we conducted a small pilot study on wild pigs (Sus scrofa) using two removal methods 1) trapping followed by 2) aerial gunning, at three sites in northeast Texas in 2015. We estimated abundance from trapping data with a removal model. We calculated empirical densities as aerial counts divided by the area searched by air (based on aerial flight tracks). We inferred the area of influence of traps by assuming consistent densities across the larger spatial scale and then solving for area impacted by the traps. Based on our pilot study we estimated the area of influence for corral traps in late summer in Texas to be ∼8.6km 2 . Future work showing the effects of behavioral and environmental factors on area of influence will help mangers obtain estimates of density from management data, and determine conditions where trap-attraction is strongest. The ability to estimate density alongside population control activities will improve risk assessment and response operations against disease outbreaks. Published by Elsevier B.V.
Time Series Model Identification by Estimating Information.
1982-11-01
principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R
Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo
2009-01-01
We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...
Transient multivariable sensor evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Heifetz, Alexander
A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.
Determining the Relationship Between Moral Waivers and Marine Corps Unsuitability Attrition
2008-03-01
observed characteristics. However, econometric research indicates that the magnitude of interaction effects estimated via probit or logit models may...1997 to 2005. Multivariate probit models were used to analyze the effects of moral waivers on unsatisfactory service separations. 15. NUMBER OF...files from fiscal years 1997 to 2005. Multivariate probit models were used to analyze the effects of moral waivers on unsatisfactory service
Hartman, Terryl J; Gapstur, Susan M; Gaudet, Mia M; Shah, Roma; Flanders, W Dana; Wang, Ying; McCullough, Marjorie L
2016-10-01
Dietary energy density (ED) is a measure of diet quality that estimates the amount of energy per unit of food (kilocalories per gram) consumed. Low-ED diets are generally high in fiber and fruits and vegetables and low in fat. Dietary ED has been positively associated with body mass index (BMI) and other risk factors for postmenopausal breast cancer. We evaluated the associations of total dietary ED and energy-dense (high-ED) foods with postmenopausal breast cancer incidence. Analyses included 56,795 postmenopausal women from the Cancer Prevention Study II Nutrition Cohort with no previous history of breast or other cancers and who provided information on diet, lifestyle, and medical history in 1999. Multivariable-adjusted breast cancer incidence rate ratios (RRs and 95% CIs) were estimated for quintiles of total dietary ED and for the consumption of high-ED foods in Cox proportional hazards regression models. During a median follow-up of 11.7 y, 2509 invasive breast cancer cases were identified, including 1857 estrogen receptor-positive and 277 estrogen receptor-negative tumors. Median dietary ED was 1.5 kcal/g (IQR: 1.3-1.7 kcal/g). After adjusting for age, race, education, reproductive characteristics, and family history, high compared with low dietary ED was associated with a statistically significantly higher risk of breast cancer (RR for fifth quintile compared with first quintile: 1.20; 95% CI: 1.05, 1.36; P-trend = 0.03). The association between the amount of high-ED foods consumed and breast cancer risk was not statistically significant. We observed no differences by estrogen receptor status or effect modification by BMI, age, or physical activity. These results suggest a modest positive association between total dietary ED and risk of postmenopausal breast cancer. © 2016 American Society for Nutrition.
Preisser, J. S.; Hammett-Stabler, C. A.; Renner, J. B.; Rubin, J.
2011-01-01
Summary The association between follicle-stimulating hormone (FSH) and bone density was tested in 111 postmenopausal women aged 50–64 years. In the multivariable analysis, weight and race were important determinants of bone mineral density. FSH, bioavailable estradiol, and other hormonal variables did not show statistically significant associations with bone density at any site. Introduction FSH has been associated with bone density loss in animal models and longitudinal studies of women. Most of these analyses have not considered the effect of weight or race. Methods We tested the association between FSH and bone density in younger postmenopausal women, adjusting for patient-related factors. In 111 postmenopausal women aged 50–64 years, areal bone mineral density (BMD) was measured at the lumbar spine, femoral neck, total hip, and distal radius using dual-energy X-ray absorptiometry, and volumetric BMD was measured at the distal radius using peripheral quantitative computed tomography (pQCT). Height, weight, osteoporosis risk factors, and serum hormonal factors were assessed. Results FSH inversely correlated with weight, bioavailable estradiol, areal BMD at the lumbar spine and hip, and volumetric BMD at the ultradistal radius. In the multivariable analysis, no hormonal variable showed a statistically significant association with areal BMD at any site. Weight was independently associated with BMD at all central sites (p<0.001), but not with BMD or pQCT measures at the distal radius. Race was independently associated with areal BMD at all sites (p≤0.008) and with cortical area at the 33% distal radius (p=0.004). Conclusions Correlations between FSH and bioavailable estradiol and BMD did not persist after adjustment for weight and race in younger postmenopausal women. Weight and race were more important determinants of bone density and should be included in analyses of hormonal influences on bone. PMID:21125395
A spatially explicit capture-recapture estimator for single-catch traps.
Distiller, Greg; Borchers, David L
2015-11-01
Single-catch traps are frequently used in live-trapping studies of small mammals. Thus far, a likelihood for single-catch traps has proven elusive and usually the likelihood for multicatch traps is used for spatially explicit capture-recapture (SECR) analyses of such data. Previous work found the multicatch likelihood to provide a robust estimator of average density. We build on a recently developed continuous-time model for SECR to derive a likelihood for single-catch traps. We use this to develop an estimator based on observed capture times and compare its performance by simulation to that of the multicatch estimator for various scenarios with nonconstant density surfaces. While the multicatch estimator is found to be a surprisingly robust estimator of average density, its performance deteriorates with high trap saturation and increasing density gradients. Moreover, it is found to be a poor estimator of the height of the detection function. By contrast, the single-catch estimators of density, distribution, and detection function parameters are found to be unbiased or nearly unbiased in all scenarios considered. This gain comes at the cost of higher variance. If there is no interest in interpreting the detection function parameters themselves, and if density is expected to be fairly constant over the survey region, then the multicatch estimator performs well with single-catch traps. However if accurate estimation of the detection function is of interest, or if density is expected to vary substantially in space, then there is merit in using the single-catch estimator when trap saturation is above about 60%. The estimator's performance is improved if care is taken to place traps so as to span the range of variables that affect animal distribution. As a single-catch likelihood with unknown capture times remains intractable for now, researchers using single-catch traps should aim to incorporate timing devices with their traps.
Corron, Louise; Marchal, François; Condemi, Silvana; Chaumoître, Kathia; Adalian, Pascal
2017-01-01
Juvenile age estimation methods used in forensic anthropology generally lack methodological consistency and/or statistical validity. Considering this, a standard approach using nonparametric Multivariate Adaptive Regression Splines (MARS) models were tested to predict age from iliac biometric variables of male and female juveniles from Marseilles, France, aged 0-12 years. Models using unidimensional (length and width) and bidimensional iliac data (module and surface) were constructed on a training sample of 176 individuals and validated on an independent test sample of 68 individuals. Results show that MARS prediction models using iliac width, module and area give overall better and statistically valid age estimates. These models integrate punctual nonlinearities of the relationship between age and osteometric variables. By constructing valid prediction intervals whose size increases with age, MARS models take into account the normal increase of individual variability. MARS models can qualify as a practical and standardized approach for juvenile age estimation. © 2016 American Academy of Forensic Sciences.
A new test of multivariate nonlinear causality
Bai, Zhidong; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong
2018-01-01
The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power. PMID:29304085
Carroll, Rachel; Lawson, Andrew B; Kirby, Russell S; Faes, Christel; Aregay, Mehreteab; Watjou, Kevin
2017-01-01
Many types of cancer have an underlying spatiotemporal distribution. Spatiotemporal mixture modeling can offer a flexible approach to risk estimation via the inclusion of latent variables. In this article, we examine the application and benefits of using four different spatiotemporal mixture modeling methods in the modeling of cancer of the lung and bronchus as well as "other" respiratory cancer incidences in the state of South Carolina. Of the methods tested, no single method outperforms the other methods; which method is best depends on the cancer under consideration. The lung and bronchus cancer incidence outcome is best described by the univariate modeling formulation, whereas the "other" respiratory cancer incidence outcome is best described by the multivariate modeling formulation. Spatiotemporal multivariate mixture methods can aid in the modeling of cancers with small and sparse incidences when including information from a related, more common type of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
A new test of multivariate nonlinear causality.
Bai, Zhidong; Hui, Yongchang; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong
2018-01-01
The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power.
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Green, R. N.
1980-01-01
A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.
Geography of Adolescent Obesity in the U.S., 2007-2011.
Kramer, Michael R; Raskind, Ilana G; Van Dyke, Miriam E; Matthews, Stephen A; Cook-Smith, Jessica N
2016-12-01
Obesity remains a significant threat to the current and long-term health of U.S. adolescents. The authors developed county-level estimates of adolescent obesity for the contiguous U.S., and then explored the association between 23 conceptually derived area-based correlates of adolescent obesity and ecologic obesity prevalence. Multilevel small area regression methods applied to the 2007 and 2011-2012 National Survey of Children's Health produced county-level obesity prevalence estimates for children aged 10-17 years. Exploratory multivariable Bayesian regression estimated the cross-sectional association between nutrition, activity, and macrosocial characteristics of counties and states, and county-level obesity prevalence. All analyses were conducted in 2015. Adolescent obesity varies geographically with clusters of high prevalence in the Deep South and Southern Appalachian regions. Geographic disparities and clustering in observed data are largely explained by hypothesized area-based variables. In adjusted models, activity environment, but not nutrition environment variables were associated with county-level obesity prevalence. County violent crime was associated with higher obesity, whereas recreational facility density was associated with lower obesity. Measures of the macrosocial and relational domain, including community SES, community health, and social marginalization, were the strongest correlates of county-level obesity. County-level estimates of adolescent obesity demonstrate notable geographic disparities, which are largely explained by conceptually derived area-based contextual measures. This ecologic exploratory study highlights the importance of taking a multidimensional approach to understanding the social and community context in which adolescents make obesity-relevant behavioral choices. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Density Estimation with Mercer Kernels
NASA Technical Reports Server (NTRS)
Macready, William G.
2003-01-01
We present a new method for density estimation based on Mercer kernels. The density estimate can be understood as the density induced on a data manifold by a mixture of Gaussians fit in a feature space. As is usual, the feature space and data manifold are defined with any suitable positive-definite kernel function. We modify the standard EM algorithm for mixtures of Gaussians to infer the parameters of the density. One benefit of the approach is it's conceptual simplicity, and uniform applicability over many different types of data. Preliminary results are presented for a number of simple problems.
Cetacean population density estimation from single fixed sensors using passive acoustics.
Küsel, Elizabeth T; Mellinger, David K; Thomas, Len; Marques, Tiago A; Moretti, David; Ward, Jessica
2011-06-01
Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a function of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville's beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Bahamas. Results are consistent with those from previous analyses, which use additional tag data. © 2011 Acoustical Society of America
Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A
2013-07-01
Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.
An Improved Method of Heterogeneity Compensation for the Convolution / Superposition Algorithm
NASA Astrophysics Data System (ADS)
Jacques, Robert; McNutt, Todd
2014-03-01
Purpose: To improve the accuracy of convolution/superposition (C/S) in heterogeneous material by developing a new algorithm: heterogeneity compensated superposition (HCS). Methods: C/S has proven to be a good estimator of the dose deposited in a homogeneous volume. However, near heterogeneities electron disequilibrium occurs, leading to the faster fall-off and re-buildup of dose. We propose to filter the actual patient density in a position and direction sensitive manner, allowing the dose deposited near interfaces to be increased or decreased relative to C/S. We implemented the effective density function as a multivariate first-order recursive filter and incorporated it into GPU-accelerated, multi-energetic C/S implementation. We compared HCS against C/S using the ICCR 2000 Monte-Carlo accuracy benchmark, 23 similar accuracy benchmarks and 5 patient cases. Results: Multi-energetic HCS increased the dosimetric accuracy for the vast majority of voxels; in many cases near Monte-Carlo results were achieved. We defined the per-voxel error, %|mm, as the minimum of the distance to agreement in mm and the dosimetric percentage error relative to the maximum MC dose. HCS improved the average mean error by 0.79 %|mm for the patient volumes; reducing the average mean error from 1.93 %|mm to 1.14 %|mm. Very low densities (i.e. < 0.1 g / cm3) remained problematic, but may be solvable with a better filter function. Conclusions: HCS improved upon C/S's density scaled heterogeneity correction with a position and direction sensitive density filter. This method significantly improved the accuracy of the GPU based algorithm reaching the accuracy levels of Monte Carlo based methods with performance in a few tenths of seconds per beam. Acknowledgement: Funding for this research was provided by the NSF Cooperative Agreement EEC9731748, Elekta / IMPAC Medical Systems, Inc. and the Johns Hopkins University. James Satterthwaite provided the Monte Carlo benchmark simulations.
Umesh P. Agarwal; Richard R. Reiner; Sally A. Ralph
2013-01-01
Of the recently developed univariate and multivariate near-IR FT-Raman methods for estimating cellulose crystallinity, the former method was applied to a variety of lignocelluloses: softwoods, hardwoods, wood pulps, and agricultural residues/fibers. The effect of autofluorescence on the crystallinity estimation was minimized by solvent extraction or chemical treatment...
ERIC Educational Resources Information Center
Thissen, David; Wainer, Howard
Simulation studies of the performance of (potentially) robust statistical estimation produce large quantities of numbers in the form of performance indices of the various estimators under various conditions. This report presents a multivariate graphical display used to aid in the digestion of the plentiful results in a current study of Item…
F. Mauro; Vicente Monleon; H. Temesgen
2015-01-01
Small area estimation (SAE) techniques have been successfully applied in forest inventories to provide reliable estimates for domains where the sample size is small (i.e. small areas). Previous studies have explored the use of either Area Level or Unit Level Empirical Best Linear Unbiased Predictors (EBLUPs) in a univariate framework, modeling each variable of interest...
NASA Astrophysics Data System (ADS)
Freeman, P. E.; Izbicki, R.; Lee, A. B.
2017-07-01
Photometric redshift estimation is an indispensable tool of precision cosmology. One problem that plagues the use of this tool in the era of large-scale sky surveys is that the bright galaxies that are selected for spectroscopic observation do not have properties that match those of (far more numerous) dimmer galaxies; thus, ill-designed empirical methods that produce accurate and precise redshift estimates for the former generally will not produce good estimates for the latter. In this paper, we provide a principled framework for generating conditional density estimates (I.e. photometric redshift PDFs) that takes into account selection bias and the covariate shift that this bias induces. We base our approach on the assumption that the probability that astronomers label a galaxy (I.e. determine its spectroscopic redshift) depends only on its measured (photometric and perhaps other) properties x and not on its true redshift. With this assumption, we can explicitly write down risk functions that allow us to both tune and compare methods for estimating importance weights (I.e. the ratio of densities of unlabelled and labelled galaxies for different values of x) and conditional densities. We also provide a method for combining multiple conditional density estimates for the same galaxy into a single estimate with better properties. We apply our risk functions to an analysis of ≈106 galaxies, mostly observed by Sloan Digital Sky Survey, and demonstrate through multiple diagnostic tests that our method achieves good conditional density estimates for the unlabelled galaxies.
The factors controlling species density in herbaceous plant communities: An assessment
Grace, J.B.
1999-01-01
This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of disturbance, total community biomass, colonization, the species pool and spatial heterogeneity. The structure of the model leads to two main expectations: (1) while community biomass is important, multivariate approaches will be required to understand patterns of variation in species density, and (2) species density will be more highly correlated with light penetration to the soil surface, than with above-ground biomass, and even less well correlated with plant growth rates (productivity) or habitat fertility. At present, data are insufficient to evaluate the relative importance of the processes controlling species density. Much more work is needed if we are to adequately predict the effects of environmental changes on plant communities and species diversity.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.
Woodpecker densities in the big woods of Arkansas
Luscier, J.D.; Krementz, David G.
2010-01-01
Sightings of the now-feared-extinct ivory-billed woodpecker Campephilus principalis in 2004 in the Big Woods of Arkansas initiated a series of studies on how to best manage habitat for this endangered species as well as all woodpeckers in the area. Previous work suggested that densities of other woodpeckers, particularly pileated Dryocopus pileatus and red-bellied Melanerpes carolinus woodpeckers, might be useful in characterizing habitat use by the ivory-billed woodpecker. We estimated densities of six woodpecker species in the Big Woods during the breeding seasons of 2006 and 2007 and also during the winter season of 2007. Our estimated densities were as high as or higher than previously published woodpecker density estimates for the Southeastern United States. Density estimates ranged from 9.1 to 161.3 individuals/km2 across six woodpecker species. Our data suggest that the Big Woods of Arkansas is attractive to all woodpeckers using the region, including ivory-billed woodpeckers.
Adjusting forest density estimates for surveyor bias in historical tree surveys
Brice B. Hanberry; Jian Yang; John M. Kabrick; Hong S. He
2012-01-01
The U.S. General Land Office surveys, conducted between the late 1700s to early 1900s, provide records of trees prior to widespread European and American colonial settlement. However, potential and documented surveyor bias raises questions about the reliability of historical tree density estimates and other metrics based on density estimated from these records. In this...
Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.
2013-01-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A
2013-02-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Rosen, Sophia; Davidov, Ori
2012-07-20
Multivariate outcomes are often measured longitudinally. For example, in hearing loss studies, hearing thresholds for each subject are measured repeatedly over time at several frequencies. Thus, each patient is associated with a multivariate longitudinal outcome. The multivariate mixed-effects model is a useful tool for the analysis of such data. There are situations in which the parameters of the model are subject to some restrictions or constraints. For example, it is known that hearing thresholds, at every frequency, increase with age. Moreover, this age-related threshold elevation is monotone in frequency, that is, the higher the frequency, the higher, on average, is the rate of threshold elevation. This means that there is a natural ordering among the different frequencies in the rate of hearing loss. In practice, this amounts to imposing a set of constraints on the different frequencies' regression coefficients modeling the mean effect of time and age at entry to the study on hearing thresholds. The aforementioned constraints should be accounted for in the analysis. The result is a multivariate longitudinal model with restricted parameters. We propose estimation and testing procedures for such models. We show that ignoring the constraints may lead to misleading inferences regarding the direction and the magnitude of various effects. Moreover, simulations show that incorporating the constraints substantially improves the mean squared error of the estimates and the power of the tests. We used this methodology to analyze a real hearing loss study. Copyright © 2012 John Wiley & Sons, Ltd.
Kocovsky, Patrick M.; Rudstam, Lars G.; Yule, Daniel L.; Warner, David M.; Schaner, Ted; Pientka, Bernie; Deller, John W.; Waterfield, Holly A.; Witzel, Larry D.; Sullivan, Patrick J.
2013-01-01
Standardized methods of data collection and analysis ensure quality and facilitate comparisons among systems. We evaluated the importance of three recommendations from the Standard Operating Procedure for hydroacoustics in the Laurentian Great Lakes (GLSOP) on density estimates of target species: noise subtraction; setting volume backscattering strength (Sv) thresholds from user-defined minimum target strength (TS) of interest (TS-based Sv threshold); and calculations of an index for multiple targets (Nv index) to identify and remove biased TS values. Eliminating noise had the predictable effect of decreasing density estimates in most lakes. Using the TS-based Sv threshold decreased fish densities in the middle and lower layers in the deepest lakes with abundant invertebrates (e.g., Mysis diluviana). Correcting for biased in situ TS increased measured density up to 86% in the shallower lakes, which had the highest fish densities. The current recommendations by the GLSOP significantly influence acoustic density estimates, but the degree of importance is lake dependent. Applying GLSOP recommendations, whether in the Laurentian Great Lakes or elsewhere, will improve our ability to compare results among lakes. We recommend further development of standards, including minimum TS and analytical cell size, for reducing the effect of biased in situ TS on density estimates.
Plasma distributions in meteor head echoes and implications for radar cross section interpretation
NASA Astrophysics Data System (ADS)
Marshall, Robert A.; Brown, Peter; Close, Sigrid
2017-09-01
The derivation of meteoroid masses from radar measurements requires conversion of the measured radar cross section (RCS) to meteoroid mass. Typically, this conversion passes first through an estimate of the meteor plasma density derived from the RCS. However, the conversion from RCS to meteor plasma density requires assumptions on the radial electron density distribution. We use simultaneous triple-frequency measurements of the RCS for 63 large meteor head echoes to derive estimates of the meteor plasma size and density using five different possible radial electron density distributions. By fitting these distributions to the observed meteor RCS values and estimating the goodness-of-fit, we determine that the best fit to the data is a 1 /r2 plasma distribution, i.e. the electron density decays as 1 /r2 from the center of the meteor plasma. Next, we use the derived plasma distributions to estimate the electron line density q for each meteor using each of the five distributions. We show that depending on the choice of distribution, the line density can vary by a factor of three or more. We thus argue that a best estimate for the radial plasma distribution in a meteor head echo is necessary in order to have any confidence in derived meteoroid masses.
Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Schröter, Kai; Merz, Bruno
2016-05-01
Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.
Risk Factors for Varicella Susceptibility Among Refugees to Toronto, Canada.
Cadieux, Geneviève; Redditt, Vanessa; Graziano, Daniela; Rashid, Meb
2017-02-01
Several outbreaks of varicella have occurred among refugees. We aimed to estimate the prevalence of varicella susceptibility among refugees, and identify risk factors for varicella susceptibility. All refugees rostered at Crossroads Clinic in Toronto, Canada in 2011-2014 were included in our study. Varicella serology was assessed at the initial visit. Refugees' age, sex, education, time since arrival, and climate and population density of birth country were abstracted from the chart. Multivariate logistic regression was used to identify risk factors for varicella susceptibility. 1063 refugees were rostered at Crossroads Clinic during the study; 7.9 % (95 % CI 6.1, 9.7) were susceptible to varicella. Tropical climate (OR 3.20, 95 % CI 1.53, 6.69) and younger age (OR per year of age 0.92, 95 % CI 0.88-0.96) were associated with increased varicella susceptibility. These risk factors for varicella susceptibility should be taken into account to maximize the cost-effectiveness of varicella prevention strategies among refugees.
Individual- and Structural-Level Risk Factors for Suicide Attempts Among Transgender Adults.
Perez-Brumer, Amaya; Hatzenbuehler, Mark L; Oldenburg, Catherine E; Bockting, Walter
2015-01-01
This study assessed individual (ie, internalized transphobia) and structural forms of stigma as risk factors for suicide attempts among transgender adults. Internalized transphobia was assessed through a 26-item scale including four dimensions: pride, passing, alienation, and shame. State-level structural stigma was operationalized as a composite index, including density of same-sex couples; proportion of Gay-Straight Alliances per public high school; 5 policies related to sexual orientation discrimination; and aggregated public opinion toward homosexuality. Multivariable logistic generalized estimating equation models assessed associations of interest among an online sample of transgender adults (N = 1,229) representing 48 states and the District of Columbia. Lower levels of structural stigma were associated with fewer lifetime suicide attempts (AOR 0.96, 95% CI 0.92-0.997), and a higher score on the internalized transphobia scale was associated with greater lifetime suicide attempts (AOR 1.18, 95% CI 1.04-1.33). Addressing stigma at multiple levels is necessary to reduce the vulnerability of suicide attempts among transgender adults.
Estimating the Classification Efficiency of a Test Battery.
ERIC Educational Resources Information Center
De Corte, Wilfried
2000-01-01
Shows how a theorem proven by H. Brogden (1951, 1959) can be used to estimate the allocation average (a predictor based classification of a test battery) assuming that the predictor intercorrelations and validities are known and that the predictor variables have a joint multivariate normal distribution. (SLD)
Estimating the densities of benzene-derived explosives using atomic volumes.
Ghule, Vikas D; Nirwan, Ayushi; Devi, Alka
2018-02-09
The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula C a H b N c O d is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0-3% for 54 compounds, 3-5% for 12 compounds, and 5-8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0-3% for 25 compounds, 3-5% for 13 compounds, and 5-7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm 3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three -NH 2 or -OH groups. Overall, the present approach for estimating the densities of benzene-derived explosives with different functional groups was found to be reliable. Graphical abstract Application and reliability of average atom volume in the crystal density prediction of energetic compounds containing benzene ring.
Hair product use, age at menarche and mammographic breast density in multiethnic urban women.
McDonald, Jasmine A; Tehranifar, Parisa; Flom, Julie D; Terry, Mary Beth; James-Todd, Tamarra
2018-01-04
Select hair products contain endocrine disrupting chemicals (EDCs) that may affect breast cancer risk. We hypothesize that, if EDCs are related to breast cancer risk, then they may also affect two important breast cancer risk factors: age at menarche and mammographic breast density. In two urban female cohorts (N = 248): 1) the New York site of the National Collaborative Perinatal Project and 2) the New York City Multiethnic Breast Cancer Project, we measured childhood and adult use of hair oils, lotions, leave-in conditioners, root stimulators, perms/relaxers, and hair dyes using the same validated questionnaire. We used multivariable relative risk regression models to examine the association between childhood hair product use and early age at menarche (defined as <11 years of age) and multivariable linear regression models to examine the association between childhood and adult hair product use and adult mammographic breast density. Early menarche was associated with ever use of childhood hair products (RR 2.3, 95% CI 1.1, 4.8) and hair oil use (RR 2.5, 95% CI 1.2, 5.2); however, additional adjustment for race/ethnicity, attenuated associations (hair products RR 1.8, 95% CI 0.8, 4.1; hair oil use RR 2.3, 95% CI 1.0, 5.5). Breast density was not associated with adult or childhood hair product or hair oil use. If confirmed in larger prospective studies, these data suggest that exposure to EDCs through hair products in early life may affect breast cancer risk by altering timing of menarche, and may operate through a mechanism distinct from breast density.
The Multivariate Largest Lyapunov Exponent as an Age-Related Metric of Quiet Standing Balance
Liu, Kun; Wang, Hongrui; Xiao, Jinzhuang
2015-01-01
The largest Lyapunov exponent has been researched as a metric of the balance ability during human quiet standing. However, the sensitivity and accuracy of this measurement method are not good enough for clinical use. The present research proposes a metric of the human body's standing balance ability based on the multivariate largest Lyapunov exponent which can quantify the human standing balance. The dynamic multivariate time series of ankle, knee, and hip were measured by multiple electrical goniometers. Thirty-six normal people of different ages participated in the test. With acquired data, the multivariate largest Lyapunov exponent was calculated. Finally, the results of the proposed approach were analysed and compared with the traditional method, for which the largest Lyapunov exponent and power spectral density from the centre of pressure were also calculated. The following conclusions can be obtained. The multivariate largest Lyapunov exponent has a higher degree of differentiation in differentiating balance in eyes-closed conditions. The MLLE value reflects the overall coordination between multisegment movements. Individuals of different ages can be distinguished by their MLLE values. The standing stability of human is reduced with the increment of age. PMID:26064182
Estimation of dislocations density and distribution of dislocations during ECAP-Conform process
NASA Astrophysics Data System (ADS)
Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza
2018-01-01
Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.
Lai, Lana Y H; Petrone, Andrew B; Pankow, James S; Arnett, Donna K; North, Kari E; Ellison, R Curtis; Hunt, Steven C; Rosenzweig, James L; Djoussé, Luc
2015-09-01
Metabolic syndrome (MetS), characterized by abdominal obesity, atherogenic dyslipidaemia, elevated blood pressure and insulin resistance, is a major public health concern in the United States. The effects of apolipoprotein E (Apo E) polymorphism on MetS are not well established. We conducted a cross-sectional study consisting of 1551 participants from the National Heart, Lung and Blood Institute Family Heart Study to assess the relation of Apo E polymorphism with the prevalence of MetS. MetS was defined according to the American Heart Association-National Heart, Lung and Blood Institute-International Diabetes Federation-World Health Organization harmonized criteria. We used generalized estimating equations to estimate adjusted odds ratios (ORs) for prevalent MetS and the Bonferroni correction to account for multiple testing in the secondary analysis. Our study population had a mean age (standard deviation) of 56.5 (11.0) years, and 49.7% had MetS. There was no association between the Apo E genotypes and the MetS. The multivariable adjusted ORs (95% confidence interval) were 1.00 (reference), 1.26 (0.31-5.21), 0.89 (0.62-1.29), 1.13 (0.61-2.10), 1.13 (0.88-1.47) and 1.87 (0.91-3.85) for the Ɛ3/Ɛ3, Ɛ2/Ɛ2, Ɛ2/Ɛ3, Ɛ2/Ɛ4, Ɛ3/Ɛ4 and Ɛ4/Ɛ4 genotypes, respectively. In a secondary analysis, Ɛ2/Ɛ3 genotype was associated with 41% lower prevalence odds of low high-density lipoprotein [multivariable adjusted ORs (95% confidence interval) = 0.59 (0.36-0.95)] compared with Ɛ3/Ɛ3 genotype. Our findings do not support an association between Apo E polymorphism and MetS in a multicentre population-based study of predominantly White US men and women. Copyright © 2015 John Wiley & Sons, Ltd.
An adaptive technique for estimating the atmospheric density profile during the AE mission
NASA Technical Reports Server (NTRS)
Argentiero, P.
1973-01-01
A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.
Evaluation of Statistical Methodologies Used in U. S. Army Ordnance and Explosive Work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrouchov, G
2000-02-14
Oak Ridge National Laboratory was tasked by the U.S. Army Engineering and Support Center (Huntsville, AL) to evaluate the mathematical basis of existing software tools used to assist the Army with the characterization of sites potentially contaminated with unexploded ordnance (UXO). These software tools are collectively known as SiteStats/GridStats. The first purpose of the software is to guide sampling of underground anomalies to estimate a site's UXO density. The second purpose is to delineate areas of homogeneous UXO density that can be used in the formulation of response actions. It was found that SiteStats/GridStats does adequately guide the sampling somore » that the UXO density estimator for a sector is unbiased. However, the software's techniques for delineation of homogeneous areas perform less well than visual inspection, which is frequently used to override the software in the overall sectorization methodology. The main problems with the software lie in the criteria used to detect nonhomogeneity and those used to recommend the number of homogeneous subareas. SiteStats/GridStats is not a decision-making tool in the classical sense. Although it does provide information to decision makers, it does not require a decision based on that information. SiteStats/GridStats provides information that is supplemented by visual inspections, land-use plans, and risk estimates prior to making any decisions. Although the sector UXO density estimator is unbiased regardless of UXO density variation within a sector, its variability increases with increased sector density variation. For this reason, the current practice of visual inspection of individual sampled grid densities (as provided by Site-Stats/GridStats) is necessary to ensure approximate homogeneity, particularly at sites with medium to high UXO density. Together with Site-Stats/GridStats override capabilities, this provides a sufficient mechanism for homogeneous sectorization and thus yields representative UXO density estimates. Objections raised by various parties to the use of a numerical ''discriminator'' in SiteStats/GridStats were likely because of the fact that the concerned statistical technique is customarily applied for a different purpose and because of poor documentation. The ''discriminator'', in Site-Stats/GridStats is a ''tuning parameter'' for the sampling process, and it affects the precision of the grid density estimates through changes in required sample size. It is recommended that sector characterization in terms of a map showing contour lines of constant UXO density with an expressed uncertainty or confidence level is a better basis for remediation decisions than a sector UXO density point estimate. A number of spatial density estimation techniques could be adapted to the UXO density estimation problem.« less
Moisan, Frédéric; Spinosi, Johan; Dupupet, Jean-Luc; Delabre, Laurène; Mazurie, Jean-Louis; Goldberg, Marcel; Imbernon, Ellen; Tzourio, Christophe; Elbaz, Alexis
2011-01-01
Retrospective assessment of pesticide exposure is complex; however, patterns of pesticide use strongly depend on farming type, which is easier to assess than pesticide exposure. Our aim was to estimate Parkinson’s disease (PD) prevalence in five French districts in 2007 among affiliates of Mutualité Sociale Agricole (MSA) and to investigate the relation between PD prevalence and farming type. We identified PD cases from administrative files as persons who used levodopa and/or benefited from free health care for PD. Densities of 16 farming types were defined at the canton of residence level (1988 French agricultural census). We used logistic regression to study the relation between PD prevalence and density of farming types and a semi-Bayes approach to deal with correlated exposures. We identified 1,659 PD cases, yielding an age- and sex-standardized PD prevalence of 3.01/1,000. Prevalence increased with age and was higher in men than women. We found a higher PD prevalence among affiliates living in cantons characterized by a higher density of farms specialized in fruits and permanent crops (multivariable semi-Bayes model: OR4+5 vs 1+2+3 quintiles = 1.21, 95% CI = 1.08–1.36; test for trend, P = 0.035). In France, farms specialized in fruits and permanent crops rank first in terms of insecticide use per hectare. Our findings are consistent with studies reporting an association between PD and insecticide use and show that workers in farms specialized in fruits or permanent crops may be an occupational group at higher PD risk. PMID:21412834
Churchill, Nathan W; Caverzasi, Eduardo; Graham, Simon J; Hutchison, Michael G; Schweizer, Tom A
2017-08-01
Sport concussion is associated with disturbances in brain function in the absence of gross anatomical lesions, and may have long-term health consequences. Diffusion-weighted magnetic resonance imaging (MRI) methods provide a powerful tool for investigating alterations in white matter microstructure reflecting the long-term effects of concussion. In a previous study, diffusion tensor imaging (DTI) showed that athletes with a history of concussion had elevated fractional anisotropy (FA) and reduced mean diffusivity (MD) parameters. To better understand these effects, this study compared DTI results to neurite orientation dispersion and density imaging (NODDI), which was used to estimate the intracellular volume fraction (V IC ) and orientation dispersion index (ODI). Sixty-eight (68) varsity athletes were recruited, including 37 without a history of concussion and 31 with concussion >6 months prior to imaging. Univariate analyses showed elevated FA and decreased MD for concussed athletes, along with increased V IC and reduced ODI, indicating greater neurite density and coherence of neurite orientation within white matter. Multivariate analyses also showed that for athletes with a history of concussion, white matter regions with increased FA had increased V IC and decreased ODI, with greater effects among athletes who were imaged a longer time since their last concussion. These findings enhance our understanding of the relationship between the biophysics of water diffusion and concussion neurobiology for young, healthy adults. Hum Brain Mapp 38:4201-4211, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Yan, Weiwei; Zhu, Zhenyu; Pan, Fei; Huang, Ang; Dai, Guang-Hai
2018-01-01
To explore new biomarkers for indicating the recurrence and prognosis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients after tumor resection, we investigated the expression and prognostic value of c-kit(CD117) in HBV-related HCC. Immunohistochemistry was used to estimate the expression of c-kit(CD117) and CD34 in the liver cancer tissues. The correlations between the expression of these biomarkers and the clinicopathologic characteristics were analyzed. The positive rate of c-kit(CD117) expression in 206 HCC cases was 48.1%, and c-kit expression was significantly related with CD34-positive microvessel density. CD34-microvessel density numbers were much higher in c-kit(+) HCC tissues than in c-kit(-) HCC tissues (44.13±17.01 vs 26.87±13.16, P =0.003). The expression of c-kit was significantly higher in patients with Edmondson grade III-IV ( P <0.001) and TNM stage III ( P <0.001). Moreover, Kaplan-Meier survival analysis showed that c-kit ( P <0.001) expression was correlated with reduced disease-free survival (DFS). Multivariate analysis identified c-kit as an independent poor prognostic factor of DFS in HCC patients ( P <0.001). Increased c-kit expression could be considered as an independent unfavorable prognostic factor for predicting DFS in HBV-related HCC patients after surgery. These results could be used to identify patients at a higher risk of early tumor recurrence and poor prognosis.
Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai
2018-06-01
Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.
Huang, Guowen; Lee, Duncan; Scott, E Marian
2018-03-30
The long-term health effects of air pollution are often estimated using a spatio-temporal ecological areal unit study, but this design leads to the following statistical challenges: (1) how to estimate spatially representative pollution concentrations for each areal unit; (2) how to allow for the uncertainty in these estimated concentrations when estimating their health effects; and (3) how to simultaneously estimate the joint effects of multiple correlated pollutants. This article proposes a novel 2-stage Bayesian hierarchical model for addressing these 3 challenges, with inference based on Markov chain Monte Carlo simulation. The first stage is a multivariate spatio-temporal fusion model for predicting areal level average concentrations of multiple pollutants from both monitored and modelled pollution data. The second stage is a spatio-temporal model for estimating the health impact of multiple correlated pollutants simultaneously, which accounts for the uncertainty in the estimated pollution concentrations. The novel methodology is motivated by a new study of the impact of both particulate matter and nitrogen dioxide concentrations on respiratory hospital admissions in Scotland between 2007 and 2011, and the results suggest that both pollutants exhibit substantial and independent health effects. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Preliminary Multivariable Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored
Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.
1980-01-01
A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.
Walling, Craig A; Morrissey, Michael B; Foerster, Katharina; Clutton-Brock, Tim H; Pemberton, Josephine M; Kruuk, Loeske E B
2014-12-01
Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance-covariance matrix ( G: ) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G: on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. Copyright © 2014 Walling et al.
Walling, Craig A.; Morrissey, Michael B.; Foerster, Katharina; Clutton-Brock, Tim H.; Pemberton, Josephine M.; Kruuk, Loeske E. B.
2014-01-01
Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance–covariance matrix (G) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. PMID:25278555
Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.
2016-01-01
Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095
Estimation and classification by sigmoids based on mutual information
NASA Technical Reports Server (NTRS)
Baram, Yoram
1994-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.
NASA Astrophysics Data System (ADS)
Kergadallan, Xavier; Bernardara, Pietro; Benoit, Michel; Andreewsky, Marc; Weiss, Jérôme
2013-04-01
Estimating the probability of occurrence of extreme sea levels is a central issue for the protection of the coast. Return periods of sea level with wave set-up contribution are estimated here in one site : Cherbourg in France in the English Channel. The methodology follows two steps : the first one is computation of joint probability of simultaneous wave height and still sea level, the second one is interpretation of that joint probabilities to assess a sea level for a given return period. Two different approaches were evaluated to compute joint probability of simultaneous wave height and still sea level : the first one is multivariate extreme values distributions of logistic type in which all components of the variables become large simultaneously, the second one is conditional approach for multivariate extreme values in which only one component of the variables have to be large. Two different methods were applied to estimate sea level with wave set-up contribution for a given return period : Monte-Carlo simulation in which estimation is more accurate but needs higher calculation time and classical ocean engineering design contours of type inverse-FORM in which the method is simpler and allows more complex estimation of wave setup part (wave propagation to the coast for example). We compare results from the two different approaches with the two different methods. To be able to use both Monte-Carlo simulation and design contours methods, wave setup is estimated with an simple empirical formula. We show advantages of the conditional approach compared to the multivariate extreme values approach when extreme sea-level occurs when either surge or wave height is large. We discuss the validity of the ocean engineering design contours method which is an alternative when computation of sea levels is too complex to use Monte-Carlo simulation method.
Dual Approach To Superquantile Estimation And Applications To Density Fitting
2016-06-01
incorporate additional constraints to improve the fidelity of density estimates in tail regions. We limit our investigation to data with heavy tails, where...samples of various heavy -tailed distributions. 14. SUBJECT TERMS probability density estimation, epi-splines, optimization, risk quantification...limit our investigation to data with heavy tails, where risk quantification is typically the most difficult. Demonstrations are provided in the form of
Comparison of methods for estimating density of forest songbirds from point counts
Jennifer L. Reidy; Frank R. Thompson; J. Wesley. Bailey
2011-01-01
New analytical methods have been promoted for estimating the probability of detection and density of birds from count data but few studies have compared these methods using real data. We compared estimates of detection probability and density from distance and time-removal models and survey protocols based on 5- or 10-min counts and outer radii of 50 or 100 m. We...
Density estimation using the trapping web design: A geometric analysis
Link, W.A.; Barker, R.J.
1994-01-01
Population densities for small mammal and arthropod populations can be estimated using capture frequencies for a web of traps. A conceptually simple geometric analysis that avoid the need to estimate a point on a density function is proposed. This analysis incorporates data from the outermost rings of traps, explaining large capture frequencies in these rings rather than truncating them from the analysis.
Jaffa, Miran A; Gebregziabher, Mulugeta; Jaffa, Ayad A
2015-06-14
Renal transplant patients are mandated to have continuous assessment of their kidney function over time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients and presenting a comparison of their performance through a pseudo-simulation study. The objective of this comparison is to identify the model with best performance and to determine whether accuracy compensates for complexity in the different multivariate joint models. We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplantation patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient's gender, age and race on these markers was determined holistically using different mGLMMs. The performance of the various mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI provided most accurate estimates and did not exhibit any computational or convergence problem. Higher accuracy was demonstrated when the level of complexity increased from shared random coefficient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate estimates.
A nonparametric clustering technique which estimates the number of clusters
NASA Technical Reports Server (NTRS)
Ramey, D. B.
1983-01-01
In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.
Specifying and Refining a Complex Measurement Model.
ERIC Educational Resources Information Center
Levy, Roy; Mislevy, Robert J.
This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…
Electromagnetic wave scattering from rough terrain
NASA Astrophysics Data System (ADS)
Papa, R. J.; Lennon, J. F.; Taylor, R. L.
1980-09-01
This report presents two aspects of a program designed to calculate electromagnetic scattering from rough terrain: (1) the use of statistical estimation techniques to determine topographic parameters and (2) the results of a single-roughness-scale scattering calculation based on those parameters, including comparison with experimental data. In the statistical part of the present calculation, digitized topographic maps are used to generate data bases for the required scattering cells. The application of estimation theory to the data leads to the specification of statistical parameters for each cell. The estimated parameters are then used in a hypothesis test to decide on a probability density function (PDF) that represents the height distribution in the cell. Initially, the formulation uses a single observation of the multivariate data. A subsequent approach involves multiple observations of the heights on a bivariate basis, and further refinements are being considered. The electromagnetic scattering analysis, the second topic, calculates the amount of specular and diffuse multipath power reaching a monopulse receiver from a pulsed beacon positioned over a rough Earth. The program allows for spatial inhomogeneities and multiple specular reflection points. The analysis of shadowing by the rough surface has been extended to the case where the surface heights are distributed exponentially. The calculated loss of boresight pointing accuracy attributable to diffuse multipath is then compared with the experimental results. The extent of the specular region, the use of localized height variations, and the effect of the azimuthal variation in power pattern are all assessed.
Estimating historical snag density in dry forests east of the Cascade Range
Richy J. Harrod; William L. Gaines; William E. Hartl; Ann. Camp
1998-01-01
Estimating snag densities in pre-European settlement landscapes (i.e., historical conditions) provides land managers with baseline information for comparing current snag densities. We propose a method for determining historical snag densities in the dry forests east of the Cascade Range. Basal area increase was calculated from tree ring measurements of old ponderosa...
Estimation of tiger densities in India using photographic captures and recaptures
Karanth, U.; Nichols, J.D.
1998-01-01
Previously applied methods for estimating tiger (Panthera tigris) abundance using total counts based on tracks have proved unreliable. In this paper we use a field method proposed by Karanth (1995), combining camera-trap photography to identify individual tigers based on stripe patterns, with capture-recapture estimators. We developed a sampling design for camera-trapping and used the approach to estimate tiger population size and density in four representative tiger habitats in different parts of India. The field method worked well and provided data suitable for analysis using closed capture-recapture models. The results suggest the potential for applying this methodology for estimating abundances, survival rates and other population parameters in tigers and other low density, secretive animal species with distinctive coat patterns or other external markings. Estimated probabilities of photo-capturing tigers present in the study sites ranged from 0.75 - 1.00. The estimated mean tiger densities ranged from 4.1 (SE hat= 1.31) to 11.7 (SE hat= 1.93) tigers/100 km2. The results support the previous suggestions of Karanth and Sunquist (1995) that densities of tigers and other large felids may be primarily determined by prey community structure at a given site.
Irigoyen, Alejo J; Rojo, Irene; Calò, Antonio; Trobbiani, Gastón; Sánchez-Carnero, Noela; García-Charton, José A
2018-01-01
Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer's experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1-31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC.
2018-01-01
Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer’s experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1–31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC. PMID:29324887
Unification of field theory and maximum entropy methods for learning probability densities
NASA Astrophysics Data System (ADS)
Kinney, Justin B.
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
Unification of field theory and maximum entropy methods for learning probability densities.
Kinney, Justin B
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard
2018-01-01
Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions. PMID:29579129
Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)
Churchill, Morgan; Clementz, Mark T; Kohno, Naoki
2014-01-01
Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814
Multivariate meta-analysis: potential and promise.
Jackson, Dan; Riley, Richard; White, Ian R
2011-09-10
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.
Multivariate meta-analysis: Potential and promise
Jackson, Dan; Riley, Richard; White, Ian R
2011-01-01
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052
Conditional Density Estimation with HMM Based Support Vector Machines
NASA Astrophysics Data System (ADS)
Hu, Fasheng; Liu, Zhenqiu; Jia, Chunxin; Chen, Dechang
Conditional density estimation is very important in financial engineer, risk management, and other engineering computing problem. However, most regression models have a latent assumption that the probability density is a Gaussian distribution, which is not necessarily true in many real life applications. In this paper, we give a framework to estimate or predict the conditional density mixture dynamically. Through combining the Input-Output HMM with SVM regression together and building a SVM model in each state of the HMM, we can estimate a conditional density mixture instead of a single gaussian. With each SVM in each node, this model can be applied for not only regression but classifications as well. We applied this model to denoise the ECG data. The proposed method has the potential to apply to other time series such as stock market return predictions.
DS — Software for analyzing data collected using double sampling
Bart, Jonathan; Hartley, Dana
2011-01-01
DS analyzes count data to estimate density or relative density and population size when appropriate. The software is available at http://iwcbm.dev4.fsr.com/IWCBM/default.asp?PageID=126. The software was designed to analyze data collected using double sampling, but it also can be used to analyze index data. DS is not currently configured to apply distance methods or methods based on capture-recapture theory. Double sampling for the purpose of this report means surveying a sample of locations with a rapid method of unknown accuracy and surveying a subset of these locations using a more intensive method assumed to yield unbiased estimates. "Detection ratios" are calculated as the ratio of results from rapid surveys on intensive plots to the number actually present as determined from the intensive surveys. The detection ratios are used to adjust results from the rapid surveys. The formula for density is (results from rapid survey)/(estimated detection ratio from intensive surveys). Population sizes are estimated as (density)(area). Double sampling is well-established in the survey sampling literature—see Cochran (1977) for the basic theory, Smith (1995) for applications of double sampling in waterfowl surveys, Bart and Earnst (2002, 2005) for discussions of its use in wildlife studies, and Bart and others (in press) for a detailed account of how the method was used to survey shorebirds across the arctic region of North America. Indices are surveys that do not involve complete counts of well-defined plots or recording information to estimate detection rates (Thompson and others, 1998). In most cases, such data should not be used to estimate density or population size but, under some circumstances, may be used to compare two densities or estimate how density changes through time or across space (Williams and others, 2005). The Breeding Bird Survey (Sauer and others, 2008) provides a good example of an index survey. Surveyors record all birds detected but do not record any information, such as distance or whether each bird is recorded in subperiods, that could be used to estimate detection rates. Nonetheless, the data are widely used to estimate temporal trends and spatial patterns in abundance (Sauer and others, 2008). DS produces estimates of density (or relative density for indices) by species and stratum. Strata are usually defined using region and habitat but other variables may be used, and the entire study area may be classified as a single stratum. Population size in each stratum and for the entire study area also is estimated for each species. For indices, the estimated totals generally are only useful if (a) plots are surveyed so that densities can be calculated and extrapolated to the entire study area and (b) if the detection rates are close to 1.0. All estimates are accompanied by standard errors (SE) and coefficients of variation (CV, that is, SE/estimate).
Nakamura, Yoshihiro; Hasegawa, Osamu
2017-01-01
With the ongoing development and expansion of communication networks and sensors, massive amounts of data are continuously generated in real time from real environments. Beforehand, prediction of a distribution underlying such data is difficult; furthermore, the data include substantial amounts of noise. These factors make it difficult to estimate probability densities. To handle these issues and massive amounts of data, we propose a nonparametric density estimator that rapidly learns data online and has high robustness. Our approach is an extension of both kernel density estimation (KDE) and a self-organizing incremental neural network (SOINN); therefore, we call our approach KDESOINN. An SOINN provides a clustering method that learns about the given data as networks of prototype of data; more specifically, an SOINN can learn the distribution underlying the given data. Using this information, KDESOINN estimates the probability density function. The results of our experiments show that KDESOINN outperforms or achieves performance comparable to the current state-of-the-art approaches in terms of robustness, learning time, and accuracy.
Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.
Zhou, Hua; Blangero, John; Dyer, Thomas D; Chan, Kei-Hang K; Lange, Kenneth; Sobel, Eric M
2017-04-01
Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even datasets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper, we reexamine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (six CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1,388 individuals in 124 pedigrees) takes less than 2 min and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 min and 1.5 GB of memory. The algorithm is implemented as the Ped-GWAS Analysis (Option 29) in the Mendel statistical genetics package, which is freely available for Macintosh, Linux, and Windows platforms from http://genetics.ucla.edu/software/mendel. © 2016 WILEY PERIODICALS, INC.
Camera traps and activity signs to estimate wild boar density and derive abundance indices.
Massei, Giovanna; Coats, Julia; Lambert, Mark Simon; Pietravalle, Stephane; Gill, Robin; Cowan, Dave
2018-04-01
Populations of wild boar and feral pigs are increasing worldwide, in parallel with their significant environmental and economic impact. Reliable methods of monitoring trends and estimating abundance are needed to measure the effects of interventions on population size. The main aims of this study, carried out in five English woodlands were: (i) to compare wild boar abundance indices obtained from camera trap surveys and from activity signs; and (ii) to assess the precision of density estimates in relation to different densities of camera traps. For each woodland, we calculated a passive activity index (PAI) based on camera trap surveys, rooting activity and wild boar trails on transects, and estimated absolute densities based on camera trap surveys. PAIs obtained using different methods showed similar patterns. We found significant between-year differences in abundance of wild boar using PAIs based on camera trap surveys and on trails on transects, but not on signs of rooting on transects. The density of wild boar from camera trap surveys varied between 0.7 and 7 animals/km 2 . Increasing the density of camera traps above nine per km 2 did not increase the precision of the estimate of wild boar density. PAIs based on number of wild boar trails and on camera trap data appear to be more sensitive to changes in population size than PAIs based on signs of rooting. For wild boar densities similar to those recorded in this study, nine camera traps per km 2 are sufficient to estimate the mean density of wild boar. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy
Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less
2015-09-30
together the research community working on marine mammal acoustics to discuss detection, classification, localization and density estimation methods...and Density Estimation of Marine Mammals Using Passive Acoustics - 2015 John A. Hildebrand Scripps Institution of Oceanography UCSD La Jolla...dclde LONG-TERM GOALS The goal of this project was to bring together the community of researchers working on methods for detection
Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S
2015-01-16
Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.
Landslide susceptibility map: from research to application
NASA Astrophysics Data System (ADS)
Fiorucci, Federica; Reichenbach, Paola; Ardizzone, Francesca; Rossi, Mauro; Felicioni, Giulia; Antonini, Guendalina
2014-05-01
Susceptibility map is an important and essential tool in environmental planning, to evaluate landslide hazard and risk and for a correct and responsible management of the territory. Landslide susceptibility is the likelihood of a landslide occurring in an area on the basis of local terrain conditions. Can be expressed as the probability that any given region will be affected by landslides, i.e. an estimate of "where" landslides are likely to occur. In this work we present two examples of landslide susceptibility map prepared for the Umbria Region and for the Perugia Municipality. These two maps were realized following official request from the Regional and Municipal government to the Research Institute for the Hydrogeological Protection (CNR-IRPI). The susceptibility map prepared for the Umbria Region represents the development of previous agreements focused to prepare: i) a landslide inventory map that was included in the Urban Territorial Planning (PUT) and ii) a series of maps for the Regional Plan for Multi-risk Prevention. The activities carried out for the Umbria Region were focused to define and apply methods and techniques for landslide susceptibility zonation. Susceptibility maps were prepared exploiting a multivariate statistical model (linear discriminant analysis) for the five Civil Protection Alert Zones defined in the regional territory. The five resulting maps were tested and validated using the spatial distribution of recent landslide events that occurred in the region. The susceptibility map for the Perugia Municipality was prepared to be integrated as one of the cartographic product in the Municipal development plan (PRG - Piano Regolatore Generale) as required by the existing legislation. At strategic level, one of the main objectives of the PRG, is to establish a framework of knowledge and legal aspects for the management of geo-hydrological risk. At national level most of the susceptibility maps prepared for the PRG, were and still are obtained qualitatively classifying the territory according to slope classes. For the Perugia Municipality the susceptibility map was obtained combining results of statistical multivariate models and landslide density map. In particular, in the first phase a susceptibility zonation was prepared using different single and combined probability statistical multivariate techniques. The zonation was then combined and compared with the landslide density map in order to reclassify the false negative (portion of the territory classified by the model as stable affected by slope failures). The semi-quantitative resulting map was classified in five susceptibility classes. For each class a set of technical regulation was established to manage the territory.
Fusion of Hard and Soft Information in Nonparametric Density Estimation
2015-06-10
and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
A tool for the estimation of the distribution of landslide area in R
NASA Astrophysics Data System (ADS)
Rossi, M.; Cardinali, M.; Fiorucci, F.; Marchesini, I.; Mondini, A. C.; Santangelo, M.; Ghosh, S.; Riguer, D. E. L.; Lahousse, T.; Chang, K. T.; Guzzetti, F.
2012-04-01
We have developed a tool in R (the free software environment for statistical computing, http://www.r-project.org/) to estimate the probability density and the frequency density of landslide area. The tool implements parametric and non-parametric approaches to the estimation of the probability density and the frequency density of landslide area, including: (i) Histogram Density Estimation (HDE), (ii) Kernel Density Estimation (KDE), and (iii) Maximum Likelihood Estimation (MLE). The tool is available as a standard Open Geospatial Consortium (OGC) Web Processing Service (WPS), and is accessible through the web using different GIS software clients. We tested the tool to compare Double Pareto and Inverse Gamma models for the probability density of landslide area in different geological, morphological and climatological settings, and to compare landslides shown in inventory maps prepared using different mapping techniques, including (i) field mapping, (ii) visual interpretation of monoscopic and stereoscopic aerial photographs, (iii) visual interpretation of monoscopic and stereoscopic VHR satellite images and (iv) semi-automatic detection and mapping from VHR satellite images. Results show that both models are applicable in different geomorphological settings. In most cases the two models provided very similar results. Non-parametric estimation methods (i.e., HDE and KDE) provided reasonable results for all the tested landslide datasets. For some of the datasets, MLE failed to provide a result, for convergence problems. The two tested models (Double Pareto and Inverse Gamma) resulted in very similar results for large and very large datasets (> 150 samples). Differences in the modeling results were observed for small datasets affected by systematic biases. A distinct rollover was observed in all analyzed landslide datasets, except for a few datasets obtained from landslide inventories prepared through field mapping or by semi-automatic mapping from VHR satellite imagery. The tool can also be used to evaluate the probability density and the frequency density of landslide volume.
Evidence of Temporal Variation of Titan Atmospheric Density in 2005-2013
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Lim, Ryan S.
2013-01-01
One major science objective of the Cassini mission is an investigation of Titan's atmosphere constituent abundances. Titan's atmospheric density is of interest not only to planetary scientists but also to mission design and mission control engineers. Knowledge of the dependency of Titan's atmospheric density with altitude is important because any unexpectedly high atmospheric density has the potential to tumble the spacecraft during a flyby. During low-altitude Titan flyby, thrusters are fired to counter the torque imparted on the spacecraft due to the Titan atmosphere. The denser the Titan's atmosphere is, the higher are the duty cycles of the thruster firings. Therefore thruster firing telemetry data could be used to estimate the atmospheric torque imparted on the spacecraft. Since the atmospheric torque imparted on the spacecraft is related to the Titan's atmospheric density, atmospheric densities are estimated accordingly. In 2005-2013, forty-three low-altitude Titan flybys were executed. The closest approach altitudes of these Titan flybys ranged from 878 to 1,074.8 km. Our density results are also compared with those reported by other investigation teams: Voyager-1 (in November 1980) and the Huygens Atmospheric Structure Instrument, HASI (in January 2005). From our results, we observe a temporal variation of the Titan atmospheric density in 2005-2013. The observed temporal variation is significant and it isn't due to the estimation uncertainty (5.8%, 1 sigma) of the density estimation methodology. Factors that contributed to this temporal variation have been conjectured but are largely unknown. The observed temporal variation will require synergetic analysis with measurements made by other Cassini science instruments and future years of laboratory and modeling efforts to solve. The estimated atmospheric density results are given in this paper help scientists to better understand and model the density structure of the Titan atmosphere.
Multidimensional density shaping by sigmoids.
Roth, Z; Baram, Y
1996-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.
Analysis of Forest Foliage Using a Multivariate Mixture Model
NASA Technical Reports Server (NTRS)
Hlavka, C. A.; Peterson, David L.; Johnson, L. F.; Ganapol, B.
1997-01-01
Data with wet chemical measurements and near infrared spectra of ground leaf samples were analyzed to test a multivariate regression technique for estimating component spectra which is based on a linear mixture model for absorbance. The resulting unmixed spectra for carbohydrates, lignin, and protein resemble the spectra of extracted plant starches, cellulose, lignin, and protein. The unmixed protein spectrum has prominent absorption spectra at wavelengths which have been associated with nitrogen bonds.
POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models
Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.
2014-01-01
The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516
Improved estimation of PM2.5 using Lagrangian satellite-measured aerosol optical depth
NASA Astrophysics Data System (ADS)
Olivas Saunders, Rolando
Suspended particulate matter (aerosols) with aerodynamic diameters less than 2.5 mum (PM2.5) has negative effects on human health, plays an important role in climate change and also causes the corrosion of structures by acid deposition. Accurate estimates of PM2.5 concentrations are thus relevant in air quality, epidemiology, cloud microphysics and climate forcing studies. Aerosol optical depth (AOD) retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument has been used as an empirical predictor to estimate ground-level concentrations of PM2.5 . These estimates usually have large uncertainties and errors. The main objective of this work is to assess the value of using upwind (Lagrangian) MODIS-AOD as predictors in empirical models of PM2.5. The upwind locations of the Lagrangian AOD were estimated using modeled backward air trajectories. Since the specification of an arrival elevation is somewhat arbitrary, trajectories were calculated to arrive at four different elevations at ten measurement sites within the continental United States. A systematic examination revealed trajectory model calculations to be sensitive to starting elevation. With a 500 m difference in starting elevation, the 48-hr mean horizontal separation of trajectory endpoints was 326 km. When the difference in starting elevation was doubled and tripled to 1000 m and 1500m, the mean horizontal separation of trajectory endpoints approximately doubled and tripled to 627 km and 886 km, respectively. A seasonal dependence of this sensitivity was also found: the smallest mean horizontal separation of trajectory endpoints was exhibited during the summer and the largest separations during the winter. A daily average AOD product was generated and coupled to the trajectory model in order to determine AOD values upwind of the measurement sites during the period 2003-2007. Empirical models that included in situ AOD and upwind AOD as predictors of PM2.5 were generated by multivariate linear regressions using the least squares method. The multivariate models showed improved performance over the single variable regression (PM2.5 and in situ AOD) models. The statistical significance of the improvement of the multivariate models over the single variable regression models was tested using the extra sum of squares principle. In many cases, even when the R-squared was high for the multivariate models, the improvement over the single models was not statistically significant. The R-squared of these multivariate models varied with respect to seasons, with the best performance occurring during the summer months. A set of seasonal categorical variables was included in the regressions to exploit this variability. The multivariate regression models that included these categorical seasonal variables performed better than the models that didn't account for seasonal variability. Furthermore, 71% of these regressions exhibited improvement over the single variable models that was statistically significant at a 95% confidence level.
Jack, John; Havener, Tammy M; McLeod, Howard L; Motsinger-Reif, Alison A; Foster, Matthew
2015-01-01
Aim: We investigate the role of ethnicity and admixture in drug response across a broad group of chemotherapeutic drugs. Also, we generate hypotheses on the genetic variants driving differential drug response through multivariate genome-wide association studies. Methods: Immortalized lymphoblastoid cell lines from 589 individuals (Hispanic or non-Hispanic/Caucasian) were used to investigate dose-response for 28 chemotherapeutic compounds. Univariate and multivariate statistical models were used to elucidate associations between genetic variants and differential drug response as well as the role of ethnicity in drug potency and efficacy. Results & Conclusion: For many drugs, the variability in drug response appears to correlate with self-reported race and estimates of genetic ancestry. Additionally, multivariate genome-wide association analyses offered interesting hypotheses governing these differential responses. PMID:26314407
Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation
Meyer, Karin
2016-01-01
Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty—derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated—rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined. PMID:27317681
Gyarmathy, V Anna; Neaigus, Alan; Li, Nan; Ujhelyi, Eszter; Caplinskiene, Irma; Caplinskas, Saulius; Latkin, Carl A
2011-01-01
The aim of this study was to assess the prevalence and correlates of disclosure to network members of being hepatitis C virus (HCV)- or human immunodeficiency virus (HIV)-infected among injecting dyads of infected injection drug users (IDUs) in Budapest, Hungary and Vilnius, Lithuania,. Multivariate generalized estimating equations (GEE) were used to assess associations. Very strong infection disclosure norms exist in Hungary, and HCV disclosure was associated with using drugs and having sex within the dyad. Non-ethnic Russian IDUs in Lithuania were more likely to disclose HCV infection to non-Roma, emotionally close and HCV-infected network members, and to those with whom they shared cookers, filters, drug solutions or rinse water or got used syringes from, and if they had fewer non-IDU or IDU network members. Ethnic Russian Lithuanian IDUs were more likely to disclose HCV if they had higher disclosure attitude and knowledge scores, 'trusted' network members, and had lower non-injecting network density and higher injecting network density. HIV-infected Lithuanian IDUs were more likely to disclose to 'trusted' network members. Disclosure norms matched disclosure behaviour in Hungary, while disclosure in Lithuania to 'trusted' network members suggests possible stigmatization. Ongoing free and confidential HCV/HIV testing services for IDUs are needed to emphasize and strengthen disclosure norms, and to decrease stigma.
Modeled distribution and abundance of a pelagic seabird reveal trends in relation to fisheries
Renner, Martin; Parrish, Julia K.; Piatt, John F.; Kuletz, Kathy J.; Edwards, Ann E.; Hunt, George L.
2013-01-01
The northern fulmar Fulmarus glacialis is one of the most visible and widespread seabirds in the eastern Bering Sea and Aleutian Islands. However, relatively little is known about its abundance, trends, or the factors that shape its distribution. We used a long-term pelagic dataset to model changes in fulmar at-sea distribution and abundance since the mid-1970s. We used an ensemble model, based on a weighted average of generalized additive model (GAM), multivariate adaptive regression splines (MARS), and random forest models to estimate the pelagic distribution and density of fulmars in the waters of the Aleutian Archipelago and Bering Sea. The most important predictor variables were colony effect, sea surface temperature, distribution of fisheries, location, and primary productivity. We calculated a time series from the ratio of observed to predicted values and found that fulmar at-sea abundance declined from the 1970s to the 2000s at a rate of 0.83% (± 0.39% SE) per annum. Interpolating fulmar densities on a spatial grid through time, we found that the center of fulmar distribution in the Bering Sea has shifted north, coinciding with a northward shift in fish catches and a warming ocean. Our study shows that fisheries are an important, but not the only factor, shaping fulmar distribution and abundance trends in the eastern Bering Sea and Aleutian Islands.
Herzog, Mark; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Hartman, Christopher
2016-01-01
In egg contaminant studies, it is necessary to calculate egg contaminant concentrations on a fresh wet weight basis and this requires accurate estimates of egg density and egg volume. We show that the inclusion or exclusion of the eggshell can influence egg contaminant concentrations, and we provide estimates of egg density (both with and without the eggshell) and egg-shape coefficients (used to estimate egg volume from egg morphometrics) for American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster’s tern (Sterna forsteri). Egg densities (g/cm3) estimated for whole eggs (1.056 ± 0.003) were higher than egg densities estimated for egg contents (1.024 ± 0.001), and were 1.059 ± 0.001 and 1.025 ± 0.001 for avocets, 1.056 ± 0.001 and 1.023 ± 0.001 for stilts, and 1.053 ± 0.002 and 1.025 ± 0.002 for terns. The egg-shape coefficients for egg volume (K v ) and egg mass (K w ) also differed depending on whether the eggshell was included (K v = 0.491 ± 0.001; K w = 0.518 ± 0.001) or excluded (K v = 0.493 ± 0.001; K w = 0.505 ± 0.001), and varied among species. Although egg contaminant concentrations are rarely meant to include the eggshell, we show that the typical inclusion of the eggshell in egg density and egg volume estimates results in egg contaminant concentrations being underestimated by 6–13 %. Our results demonstrate that the inclusion of the eggshell significantly influences estimates of egg density, egg volume, and fresh egg mass, which leads to egg contaminant concentrations that are biased low. We suggest that egg contaminant concentrations be calculated on a fresh wet weight basis using only internal egg-content densities, volumes, and masses appropriate for the species. For the three waterbirds in our study, these corrected coefficients are 1.024 ± 0.001 for egg density, 0.493 ± 0.001 for K v , and 0.505 ± 0.001 for K w .
Be the Volume: A Classroom Activity to Visualize Volume Estimation
ERIC Educational Resources Information Center
Mikhaylov, Jessica
2011-01-01
A hands-on activity can help multivariable calculus students visualize surfaces and understand volume estimation. This activity can be extended to include the concepts of Fubini's Theorem and the visualization of the curves resulting from cross-sections of the surface. This activity uses students as pillars and a sheet or tablecloth for the…
On measuring bird habitat: influence of observer variability and sample size
William M. Block; Kimberly A. With; Michael L. Morrison
1987-01-01
We studied the effects of observer variability when estimating vegetation characteristics at 75 0.04-ha bird plots. Observer estimates were significantly different for 31 of 49 variables. Multivariate analyses showed significant interobserver differences for five of the seven classes of variables studied. Variable classes included the height, number, and diameter of...
ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.
ERIC Educational Resources Information Center
Vale, C. David; Gialluca, Kathleen A.
ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…
Estimation and Control for Linear Systems with Additive Cauchy Noise
2013-12-17
man & Hall, New York, 1994. [11] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control, SIAM, 2008. [12] Nassim N. Taleb ...Gaussian control algorithms. 18 4 References [1] N. N. Taleb . The Black Swan: The Impact of the Highly Improbable...the multivariable system. The estimator was then evaluated numerically for a third-order example. REFERENCES [1] N. N. Taleb , The Black Swan: The
van der Ham, Joris L
2016-05-19
Forensic entomologists can use carrion communities' ecological succession data to estimate the postmortem interval (PMI). Permutation tests of hierarchical cluster analyses of these data provide a conceptual method to estimate part of the PMI, the post-colonization interval (post-CI). This multivariate approach produces a baseline of statistically distinct clusters that reflect changes in the carrion community composition during the decomposition process. Carrion community samples of unknown post-CIs are compared with these baseline clusters to estimate the post-CI. In this short communication, I use data from previously published studies to demonstrate the conceptual feasibility of this multivariate approach. Analyses of these data produce series of significantly distinct clusters, which represent carrion communities during 1- to 20-day periods of the decomposition process. For 33 carrion community samples, collected over an 11-day period, this approach correctly estimated the post-CI within an average range of 3.1 days. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Measures of dependence for multivariate Lévy distributions
NASA Astrophysics Data System (ADS)
Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.
2001-02-01
Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.
Multivariate η-μ fading distribution with arbitrary correlation model
NASA Astrophysics Data System (ADS)
Ghareeb, Ibrahim; Atiani, Amani
2018-03-01
An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.
NASA Astrophysics Data System (ADS)
Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus
2018-05-01
Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015.
Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi
2015-03-15
Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate statistical modeling techniques, demonstrated advantages for estimating the TP concentration in a large lake and had a strong potential for universal application for the TP concentration estimation in large lake waters worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.
León-Latre, Montserrat; Moreno-Franco, Belén; Andrés-Esteban, Eva M; Ledesma, Marta; Laclaustra, Martín; Alcalde, Víctor; Peñalvo, José L; Ordovás, José M; Casasnovas, José A
2014-06-01
To analyze the association between sitting time and biomarkers of insulin resistance and inflammation in a sample of healthy male workers. Cross-sectional study carried out in a sample of 929 volunteers belonging to the Aragon Workers' Health Study cohort. Sociodemographic, anthropometric, pharmacological and laboratory data were collected: lipids-total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoproteins A-1 and B-100, lipoprotein (a)-, insulin resistance-glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, insulin, and triglyceride/high-density lipoprotein cholesterol ratio-, and inflammatory profile-C-reactive protein and leukocytes. Information on sitting time and physical activity was assessed using a questionnaire. Sedentary behavior was analyzed in terms of prevalences and medians, according to tertiles, using a multivariate model (crude and adjusted linear regression) with biomarkers of inflammation and insulin resistance. The most sedentary individuals had higher body mass index, greater waist circumference, and higher systolic blood pressure, with a significant upward trend in each tertile. Likewise, they had a worse lipid profile with a higher C-reactive protein level, homeostasis model assessment of insulin resistance index, triglyceride/high-density lipoprotein cholesterol ratio, and insulin concentration. In the multivariate analysis, we observed a significant association between the latter parameters and sitting time in hours (log C-reactive protein [β = 0.07], log homeostasis model assessment of insulin resistance index [β = 0.05], triglyceride/high-density lipoprotein cholesterol ratio [β = 0.23], and insulin [β = 0.44]), which remained after adjustment for metabolic equivalents-h/week. Workers who spend more time sitting show a worse inflammatory and insulin resistance profile independently of the physical activity performed. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples
DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from ...
Multivariate missing data in hydrology - Review and applications
NASA Astrophysics Data System (ADS)
Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.
2017-12-01
Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.
Nonparametric entropy estimation using kernel densities.
Lake, Douglas E
2009-01-01
The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation.
Preeclampsia and Long-term Renal Function in Women Who Underwent Kidney Transplantation.
Vannevel, Valerie; Claes, Kathleen; Baud, David; Vial, Yvan; Golshayan, Delaviz; Yoon, Eugene W; Hodges, Ryan; Le Nepveu, Anne; Kerr, Peter G; Kennedy, Claire; Higgins, Mary; Resch, Elisabeth; Klaritsch, Philipp; Van Mieghem, Tim
2018-01-01
Preeclampsia often complicates pregnancies after maternal kidney transplantation. We aimed to assess whether preeclampsia is associated with kidney function decline either during the pregnancy or in the long term. We performed an international multicenter retrospective cohort study. Renal function at conception, pregnancy outcomes, and short- and long-term graft outcomes were collected for women who were pregnant after renal transplantation and had transplant and obstetric care at the participating centers. In women who had multiple pregnancies during the study period, only the last pregnancy was included. Univariate and multivariable analyses were performed. We retrieved pregnancy outcomes and long-term renal outcomes for 52 women. Chronic hypertension was present at baseline in 27%. Mean estimated glomerular filtration rate (GFR) at start of pregnancy was 52.4±17.5 mL/min/1.73 m. Mean estimated GFR at delivery was 47.6±21.6 mL/min/1.73 m, which was significantly lower than at conception (P=.03). Twenty women (38%) developed preeclampsia. In multivariable analysis, women who developed preeclampsia had a 10.7-mL/min/1.73 m higher drop in estimated GFR between conception and delivery than women who did not develop preeclampsia (P=.02). Long-term estimated GFR follow-up was obtained at a median of 5.8 years (range 1.3-27.5 years). Mean estimated GFR at last follow-up was 38±23 mL/kg/1.73 m. Seventeen women (33%) experienced graft loss over the follow-up period. Incidence of graft loss was similar in women with and without preeclampsia in their last pregnancy (30% and 34%, respectively; P=.99). In multivariable analysis, the decrease in estimated GFR between conception and last follow-up was similar in women who experienced preeclampsia during pregnancy and those who did not (difference -2.69 mL/min/1.73 m, P=.65). Preeclampsia commonly complicates pregnancies after renal transplantation but is not associated with long-term renal dysfunction or graft loss.
Hearn, Andrew J; Ross, Joanna; Bernard, Henry; Bakar, Soffian Abu; Hunter, Luke T B; Macdonald, David W
2016-01-01
The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36) and 7.10 (SD: 1.90) individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38) individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches.
Hearn, Andrew J.; Ross, Joanna; Bernard, Henry; Bakar, Soffian Abu; Hunter, Luke T. B.; Macdonald, David W.
2016-01-01
The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36) and 7.10 (SD: 1.90) individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38) individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches. PMID:27007219
A mixed model for the relationship between climate and human cranial form.
Katz, David C; Grote, Mark N; Weaver, Timothy D
2016-08-01
We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G
2017-03-01
We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Green, R. N.
1980-01-01
Geometric shape factors were computed and applied to satellite simulated irradiance measurements to estimate Earth emitted flux densities for global and zonal scales and for areas smaller than the detector field of view (FOV). Wide field of view flat plate detectors were emphasized, but spherical detectors were also studied. The radiation field was modeled after data from the Nimbus 2 and 3 satellites. At a satellite altitude of 600 km, zonal estimates were in error 1.0 to 1.2 percent and global estimates were in error less than 0.2 percent. Estimates with unrestricted field of view (UFOV) detectors were about the same for Lambertian and limb darkening radiation models. The opposite was found for restricted field of view detectors. The UFOV detectors are found to be poor estimators of flux density from the total FOV and are shown to be much better as estimators of flux density from a circle centered at the FOV with an area significantly smaller than that for the total FOV.
A regression-based approach to estimating retrofit savings using the Building Performance Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Travis; Sohn, Michael D.
Retrofitting building systems is known to provide cost-effective energy savings. This article addresses how the Building Performance Database is used to help identify potential savings. Currently, prioritizing retrofits and computing their expected energy savings and cost/benefits can be a complicated, costly, and an uncertain effort. Prioritizing retrofits for a portfolio of buildings can be even more difficult if the owner must determine different investment strategies for each of the buildings. Meanwhile, we are seeing greater availability of data on building energy use, characteristics, and equipment. These data provide opportunities for the development of algorithms that link building characteristics and retrofitsmore » empirically. In this paper we explore the potential of using such data for predicting the expected energy savings from equipment retrofits for a large number of buildings. We show that building data with statistical algorithms can provide savings estimates when detailed energy audits and physics-based simulations are not cost- or time-feasible. We develop a multivariate linear regression model with numerical predictors (e.g., operating hours, occupant density) and categorical indicator variables (e.g., climate zone, heating system type) to predict energy use intensity. The model quantifies the contribution of building characteristics and systems to energy use, and we use it to infer the expected savings when modifying particular equipment. We verify the model using residual analysis and cross-validation. We demonstrate the retrofit analysis by providing a probabilistic estimate of energy savings for several hypothetical building retrofits. We discuss the ways understanding the risk associated with retrofit investments can inform decision making. The contributions of this work are the development of a statistical model for estimating energy savings, its application to a large empirical building dataset, and a discussion of its use in informing building retrofit decisions.« less
Schroeder, Bernard K.; Lindsay, David J.; Faust, Deborah A.
2015-01-01
Species at risk with secretive breeding behaviours, low densities, and wide geographic range pose a significant challenge to conservation actions because population trends are difficult to detect. Such is the case with the Marbled Murrelet (Brachyramphus marmoratus), a seabird listed as ‘Threatened’ by the Species at Risk Act in Canada largely due to the loss of its old growth forest nesting habitat. We report the first estimates of population trend of Marbled Murrelets in Canada derived from a monitoring program that uses marine radar to detect birds as they enter forest watersheds during 923 dawn surveys at 58 radar monitoring stations within the six Marbled Murrelet Conservation Regions on coastal British Columbia, Canada, 1996–2013. Temporal trends in radar counts were analyzed with a hierarchical Bayesian multivariate modeling approach that controlled for variation in tilt of the radar unit and day of year, included year-specific deviations from the overall trend (‘year effects’), and allowed for trends to be estimated at three spatial scales. A negative overall trend of -1.6%/yr (95% credibility interval: -3.2%, 0.01%) indicated moderate evidence for a coast-wide decline, although trends varied strongly among the six conservation regions. Negative annual trends were detected in East Vancouver Island (-9%/yr) and South Mainland Coast (-3%/yr) Conservation Regions. Over a quarter of the year effects were significantly different from zero, and the estimated standard deviation in common-shared year effects between sites within each region was about 50% per year. This large common-shared interannual variation in counts may have been caused by regional movements of birds related to changes in marine conditions that affect the availability of prey. PMID:26258803
Estimating 40 years of nitrogen deposition in global biomes using the SCIAMACHY NO2 column
Lu, Xuehe; Zhang, Xiuying; Liu, Jinxun; Jin, Jiaxin
2016-01-01
Owing to human activity, global nitrogen (N) cycles have been altered. In the past 100 years, global N deposition has increased. Currently, the monitoring and estimating of N deposition and the evaluation of its effects on global carbon budgets are the focus of many researchers. NO2 columns retrieved by space-borne sensors provide us with a new way of exploring global N cycles and these have the ability to estimate N deposition. However, the time range limitation of NO2 columns makes the estimation of long timescale N deposition difficult. In this study we used ground-based NOx emission data to expand the density of NO2columns, and 40 years of N deposition (1970–2009) was inverted using the multivariate linear model with expanded NO2 columns. The dynamic of N deposition was examined in both global and biome scales. The results show that the average N deposition was 0.34 g N m–2 year–1 in the 2000s, which was an increase of 38.4% compared with the 1970s’. The total N deposition in different biomes is unbalanced. N deposition is only 38.0% of the global total in forest biomes; this is made up of 25.9%, 11.3, and 0.7% in tropical, temperate, and boreal forests, respectively. As N-limited biomes, there was little increase of N deposition in boreal forests. However, N deposition has increased by a total of 59.6% in tropical forests and croplands, which are N-rich biomes. Such characteristics may influence the effects on global carbon budgets.
Tigers and their prey: Predicting carnivore densities from prey abundance
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Link, W.A.; Hines, J.E.
2004-01-01
The goal of ecology is to understand interactions that determine the distribution and abundance of organisms. In principle, ecologists should be able to identify a small number of limiting resources for a species of interest, estimate densities of these resources at different locations across the landscape, and then use these estimates to predict the density of the focal species at these locations. In practice, however, development of functional relationships between abundances of species and their resources has proven extremely difficult, and examples of such predictive ability are very rare. Ecological studies of prey requirements of tigers Panthera tigris led us to develop a simple mechanistic model for predicting tiger density as a function of prey density. We tested our model using data from a landscape-scale long-term (1995-2003) field study that estimated tiger and prey densities in 11 ecologically diverse sites across India. We used field techniques and analytical methods that specifically addressed sampling and detectability, two issues that frequently present problems in macroecological studies of animal populations. Estimated densities of ungulate prey ranged between 5.3 and 63.8 animals per km2. Estimated tiger densities (3.2-16.8 tigers per 100 km2) were reasonably consistent with model predictions. The results provide evidence of a functional relationship between abundances of large carnivores and their prey under a wide range of ecological conditions. In addition to generating important insights into carnivore ecology and conservation, the study provides a potentially useful model for the rigorous conduct of macroecological science.
NASA Astrophysics Data System (ADS)
De Ridder, Maaike; De Haulleville, Thalès; Kearsley, Elizabeth; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans
2014-05-01
It is commonly acknowledged that allometric equations for aboveground biomass and carbon stock estimates are improved significantly if density is included as a variable. However, not much attention is given to this variable in terms of exact, measured values and density profiles from pith to bark. Most published case-studies obtain density values from literature sources or databases, this way using large ranges of density values and possible causing significant errors in carbon stock estimates. The use of one single fixed value for density is also not recommended if carbon stock increments are estimated. Therefore, our objective is to measure and analyze a large number of tree species occurring in two Biosphere Reserves (Luki and Yangambi). Nevertheless, the diversity of tree species in these tropical forests is too high to perform this kind of detailed analysis on all tree species (> 200/ha). Therefore, we focus on the most frequently encountered tree species with high abundance (trees/ha) and dominance (basal area/ha) for this study. Increment cores were scanned with a helical X-ray protocol to obtain density profiles from pith to bark. This way, we aim at dividing the tree species with a distinct type of density profile into separate groups. If, e.g., slopes in density values from pith to bark remain stable over larger samples of one tree species, this slope could also be used to correct for errors in carbon (increment) estimates, caused by density values from simplified density measurements or density values from literature. In summary, this is most likely the first study in the Congo Basin that focuses on density patterns in order to check their influence on carbon stocks and differences in carbon stocking based on species composition (density profiles ~ temperament of tree species).
Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G
2012-11-13
We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.
Fieuws, Steffen; Willems, Guy; Larsen-Tangmose, Sara; Lynnerup, Niels; Boldsen, Jesper; Thevissen, Patrick
2016-03-01
When an estimate of age is needed, typically multiple indicators are present as found in skeletal or dental information. There exists a vast literature on approaches to estimate age from such multivariate data. Application of Bayes' rule has been proposed to overcome drawbacks of classical regression models but becomes less trivial as soon as the number of indicators increases. Each of the age indicators can lead to a different point estimate ("the most plausible value for age") and a prediction interval ("the range of possible values"). The major challenge in the combination of multiple indicators is not the calculation of a combined point estimate for age but the construction of an appropriate prediction interval. Ignoring the correlation between the age indicators results in intervals being too small. Boldsen et al. (2002) presented an ad-hoc procedure to construct an approximate confidence interval without the need to model the multivariate correlation structure between the indicators. The aim of the present paper is to bring under attention this pragmatic approach and to evaluate its performance in a practical setting. This is all the more needed since recent publications ignore the need for interval estimation. To illustrate and evaluate the method, Köhler et al. (1995) third molar scores are used to estimate the age in a dataset of 3200 male subjects in the juvenile age range.
Snow multivariable data assimilation for hydrological predictions in mountain areas
NASA Astrophysics Data System (ADS)
Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria
2016-04-01
The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground-based and remotely sensed data of different snow-related variables (snow albedo and surface temperature, Snow Water Equivalent from passive microwave sensors and Snow Cover Area). SMASH performance was evaluated in the period June 2012 - December 2013 at the meteorological station of Torgnon (Tellinod, 2 160 msl), located in Aosta Valley, a mountain region in northwestern Italy. The EnKF algorithm was firstly tested by assimilating several ground-based measurements: snow depth, land surface temperature, snow density and albedo. The assimilation of snow observed data revealed an overall considerable enhancement of model predictions with respect to the open loop experiments. A first attempt to integrate also remote sensed information was performed by assimilating the Land Surface Temperature (LST) from METEOSAT Second Generation (MSG), leading to good results. The analysis allowed identifying the snow depth and the snowpack surface temperature as the most impacting variables in the assimilation process. In order to pinpoint an optimal number of ensemble instances, SMASH performances were also quantitatively evaluated by varying the instances amount. Furthermore, the impact of the data assimilation frequency was analyzed by varying the assimilation time step (3h, 6h, 12h, 24h).
Cain, Meghan K; Zhang, Zhiyong; Yuan, Ke-Hai
2017-10-01
Nonnormality of univariate data has been extensively examined previously (Blanca et al., Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84, 2013; Miceeri, Psychological Bulletin, 105(1), 156, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74 % of univariate distributions and 68 % multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17 % in a t-test and 30 % in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. To facilitate future report of skewness and kurtosis, we provide a tutorial on how to compute univariate and multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.
Optimum nonparametric estimation of population density based on ordered distances
Patil, S.A.; Kovner, J.L.; Burnham, Kenneth P.
1982-01-01
The asymptotic mean and error mean square are determined for the nonparametric estimator of plant density by distance sampling proposed by Patil, Burnham and Kovner (1979, Biometrics 35, 597-604. On the basis of these formulae, a bias-reduced version of this estimator is given, and its specific form is determined which gives minimum mean square error under varying assumptions about the true probability density function of the sampled data. Extension is given to line-transect sampling.
2015-09-30
interpolation was used to estimate fin whale density in between the hydrophone locations , and the result plotted as a density image. This was repeated every 5...singing fin whale density throughout the year for the study location off Portugal. Color indicates whale density, with calibration scale at right; yellow...spots are hydrophone locations ; timeline at top indicates the time of year; circle at lower right is 1000 km 2 , the area used in the unit of whale
Kurosawa, R N F; do Amaral Junior, A T; Silva, F H L; Dos Santos, A; Vivas, M; Kamphorst, S H; Pena, G F
2017-02-08
The multivariate analyses are useful tools to estimate the genetic variability between accessions. In the breeding programs, the Ward-Modified Location Model (MLM) multivariate method has been a powerful strategy to quantify variability using quantitative and qualitative variables simultaneously. The present study was proposed in view of the dearth of information about popcorn breeding programs under a multivariate approach using the Ward-MLM methodology. The objective of this study was thus to estimate the genetic diversity among 37 genotypes of popcorn aiming to identify divergent groups associated with morpho-agronomic traits and traits related to resistance to Fusarium spp. To this end, 7 qualitative and 17 quantitative variables were analyzed. The experiment was conducted in 2014, at Universidade Estadual do Norte Fluminense, located in Campos dos Goytacazes, RJ, Brazil. The Ward-MLM strategy allowed the identification of four groups as follows: Group I with 10 genotypes, Group II with 11 genotypes, Group III with 9 genotypes, and Group IV with 7 genotypes. Group IV was distant in relation to the other groups, while groups I, II, and III were near. The crosses between genotypes from the other groups with those of group IV allow an exploitation of heterosis. The Ward-MLM strategy provided an appropriate grouping of genotypes; ear weight, ear diameter, and grain yield were the traits that most contributed to the analysis of genetic diversity.
Weld defect identification in friction stir welding using power spectral density
NASA Astrophysics Data System (ADS)
Das, Bipul; Pal, Sukhomay; Bag, Swarup
2018-04-01
Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.
Enhanced ID Pit Sizing Using Multivariate Regression Algorithm
NASA Astrophysics Data System (ADS)
Krzywosz, Kenji
2007-03-01
EPRI is funding a program to enhance and improve the reliability of inside diameter (ID) pit sizing for balance-of plant heat exchangers, such as condensers and component cooling water heat exchangers. More traditional approaches to ID pit sizing involve the use of frequency-specific amplitude or phase angles. The enhanced multivariate regression algorithm for ID pit depth sizing incorporates three simultaneous input parameters of frequency, amplitude, and phase angle. A set of calibration data sets consisting of machined pits of various rounded and elongated shapes and depths was acquired in the frequency range of 100 kHz to 1 MHz for stainless steel tubing having nominal wall thickness of 0.028 inch. To add noise to the acquired data set, each test sample was rotated and test data acquired at 3, 6, 9, and 12 o'clock positions. The ID pit depths were estimated using a second order and fourth order regression functions by relying on normalized amplitude and phase angle information from multiple frequencies. Due to unique damage morphology associated with the microbiologically-influenced ID pits, it was necessary to modify the elongated calibration standard-based algorithms by relying on the algorithm developed solely from the destructive sectioning results. This paper presents the use of transformed multivariate regression algorithm to estimate ID pit depths and compare the results with the traditional univariate phase angle analysis. Both estimates were then compared with the destructive sectioning results.
Stürmer, Til; Joshi, Manisha; Glynn, Robert J.; Avorn, Jerry; Rothman, Kenneth J.; Schneeweiss, Sebastian
2006-01-01
Objective Propensity score analyses attempt to control for confounding in non-experimental studies by adjusting for the likelihood that a given patient is exposed. Such analyses have been proposed to address confounding by indication, but there is little empirical evidence that they achieve better control than conventional multivariate outcome modeling. Study design and methods Using PubMed and Science Citation Index, we assessed the use of propensity scores over time and critically evaluated studies published through 2003. Results Use of propensity scores increased from a total of 8 papers before 1998 to 71 in 2003. Most of the 177 published studies abstracted assessed medications (N=60) or surgical interventions (N=51), mainly in cardiology and cardiac surgery (N=90). Whether PS methods or conventional outcome models were used to control for confounding had little effect on results in those studies in which such comparison was possible. Only 9 out of 69 studies (13%) had an effect estimate that differed by more than 20% from that obtained with a conventional outcome model in all PS analyses presented. Conclusions Publication of results based on propensity score methods has increased dramatically, but there is little evidence that these methods yield substantially different estimates compared with conventional multivariable methods. PMID:16632131
Irano, Natalia; Bignardi, Annaiza Braga; El Faro, Lenira; Santana, Mário Luiz; Cardoso, Vera Lúcia; Albuquerque, Lucia Galvão
2014-03-01
The objective of this study was to estimate genetic parameters for milk yield, stayability, and the occurrence of clinical mastitis in Holstein cows, as well as studying the genetic relationship between them, in order to provide subsidies for the genetic evaluation of these traits. Records from 5,090 Holstein cows with calving varying from 1991 to 2010, were used in the analysis. Two standard multivariate analyses were carried out, one containing the trait of accumulated 305-day milk yields in the first lactation (MY1), stayability (STAY) until the third lactation, and clinical mastitis (CM), as well as the other traits, considering accumulated 305-day milk yields (Y305), STAY, and CM, including the first three lactations as repeated measures for Y305 and CM. The covariance components were obtained by a Bayesian approach. The heritability estimates obtained by multivariate analysis with MY1 were 0.19, 0.28, and 0.13 for MY1, STAY, and CM, respectively, whereas using the multivariate analysis with the Y305, the estimates were 0.19, 0.31, and 0.14, respectively. The genetic correlations between MY1 and STAY, MY1 and CM, and STAY and CM, respectively, were 0.38, 0.12, and -0.49. The genetic correlations between Y305 and STAY, Y305 and CM, and STAY and CM, respectively, were 0.66, -0.25, and -0.52.
A Balanced Approach to Adaptive Probability Density Estimation.
Kovacs, Julio A; Helmick, Cailee; Wriggers, Willy
2017-01-01
Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.
Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.
2013-01-01
Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.
L. R. Iverson; S. Brown; A. Prasad; H. Mitasova; A. J. R. Gillespie; A. E. Lugo
1994-01-01
A geographic information system (GIS) was used to estimate total biomass and biomass density of the tropical forest in south and southeast Asia because available data from forest inventories were insufficient to extrapolate biomass-density estimates across the region.
Lee, K V; Moon, R D; Burkness, E C; Hutchison, W D; Spivak, M
2010-08-01
The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is arguably the most detrimental pest of the European-derived honey bee, Apis mellifera L. Unfortunately, beekeepers lack a standardized sampling plan to make informed treatment decisions. Based on data from 31 commercial apiaries, we developed sampling plans for use by beekeepers and researchers to estimate the density of mites in individual colonies or whole apiaries. Beekeepers can estimate a colony's mite density with chosen level of precision by dislodging mites from approximately to 300 adult bees taken from one brood box frame in the colony, and they can extrapolate to mite density on a colony's adults and pupae combined by doubling the number of mites on adults. For sampling whole apiaries, beekeepers can repeat the process in each of n = 8 colonies, regardless of apiary size. Researchers desiring greater precision can estimate mite density in an individual colony by examining three, 300-bee sample units. Extrapolation to density on adults and pupae may require independent estimates of numbers of adults, of pupae, and of their respective mite densities. Researchers can estimate apiary-level mite density by taking one 300-bee sample unit per colony, but should do so from a variable number of colonies, depending on apiary size. These practical sampling plans will allow beekeepers and researchers to quantify mite infestation levels and enhance understanding and management of V. destructor.
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
Jennelle, C.S.; Runge, M.C.; MacKenzie, D.I.
2002-01-01
The search for easy-to-use indices that substitute for direct estimation of animal density is a common theme in wildlife and conservation science, but one fraught with well-known perils (Nichols & Conroy, 1996; Yoccoz, Nichols & Boulinier, 2001; Pollock et al., 2002). To establish the utility of an index as a substitute for an estimate of density, one must: (1) demonstrate a functional relationship between the index and density that is invariant over the desired scope of inference; (2) calibrate the functional relationship by obtaining independent measures of the index and the animal density; (3) evaluate the precision of the calibration (Diefenbach et al., 1994). Carbone et al. (2001) argue that the number of camera-days per photograph is a useful index of density for large, cryptic, forest-dwelling animals, and proceed to calibrate this index for tigers (Panthera tigris). We agree that a properly calibrated index may be useful for rapid assessments in conservation planning. However, Carbone et al. (2001), who desire to use their index as a substitute for density, do not adequately address the three elements noted above. Thus, we are concerned that others may view their methods as justification for not attempting directly to estimate animal densities, without due regard for the shortcomings of their approach.
A Study of Effects of MultiCollinearity in the Multivariable Analysis
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.
2015-01-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257
A Study of Effects of MultiCollinearity in the Multivariable Analysis.
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W
2014-10-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.
Estimating Rates of Motor Vehicle Crashes Using Medical Encounter Data: A Feasibility Study
2015-11-05
used to develop more detailed predictive risk models as well as strategies for preventing specific types of MVCs. Systematic Review of Evidence... used to estimate rates of accident-related injuries more generally,9 but not with specific reference to MVCs. For the present report, rates of...precise rate estimates based on person-years rather than active duty strength, (e) multivariable effects of specific risk /protective factors after
Estimating food portions. Influence of unit number, meal type and energy density.
Almiron-Roig, Eva; Solis-Trapala, Ivonne; Dodd, Jessica; Jebb, Susan A
2013-12-01
Estimating how much is appropriate to consume can be difficult, especially for foods presented in multiple units, those with ambiguous energy content and for snacks. This study tested the hypothesis that the number of units (single vs. multi-unit), meal type and food energy density disrupts accurate estimates of portion size. Thirty-two healthy weight men and women attended the laboratory on 3 separate occasions to assess the number of portions contained in 33 foods or beverages of varying energy density (1.7-26.8 kJ/g). Items included 12 multi-unit and 21 single unit foods; 13 were labelled "meal", 4 "drink" and 16 "snack". Departures in portion estimates from reference amounts were analysed with negative binomial regression. Overall participants tended to underestimate the number of portions displayed. Males showed greater errors in estimation than females (p=0.01). Single unit foods and those labelled as 'meal' or 'beverage' were estimated with greater error than multi-unit and 'snack' foods (p=0.02 and p<0.001 respectively). The number of portions of high energy density foods was overestimated while the number of portions of beverages and medium energy density foods were underestimated by 30-46%. In conclusion, participants tended to underestimate the reference portion size for a range of food and beverages, especially single unit foods and foods of low energy density and, unexpectedly, overestimated the reference portion of high energy density items. There is a need for better consumer education of appropriate portion sizes to aid adherence to a healthy diet. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
A common visual metric for approximate number and density
Dakin, Steven C.; Tibber, Marc S.; Greenwood, John A.; Kingdom, Frederick A. A.; Morgan, Michael J.
2011-01-01
There is considerable interest in how humans estimate the number of objects in a scene in the context of an extensive literature on how we estimate the density (i.e., spacing) of objects. Here, we show that our sense of number and our sense of density are intertwined. Presented with two patches, observers found it more difficult to spot differences in either density or numerosity when those patches were mismatched in overall size, and their errors were consistent with larger patches appearing both denser and more numerous. We propose that density is estimated using the relative response of mechanisms tuned to low and high spatial frequencies (SFs), because energy at high SFs is largely determined by the number of objects, whereas low SF energy depends more on the area occupied by elements. This measure is biased by overall stimulus size in the same way as human observers, and by estimating number using the same measure scaled by relative stimulus size, we can explain all of our results. This model is a simple, biologically plausible common metric for perceptual number and density. PMID:22106276
USDA-ARS?s Scientific Manuscript database
Technical Summary Objectives: Determine the effect of body mass index (BMI) on the accuracy of body density (Db) estimated with skinfold thickness (SFT) measurements compared to air displacement plethysmography (ADP) in adults. Subjects/Methods: We estimated Db with SFT and ADP in 131 healthy men an...
Thermospheric neutral density estimates from heater-induced ion up-flow at EISCAT
NASA Astrophysics Data System (ADS)
Kosch, Michael; Ogawa, Yasunobu; Yamazaki, Yosuke; Vickers, Hannah; Blagoveshchenskaya, Nataly
We exploit a recently-developed technique to estimate the upper thermospheric neutral density using measurements of ionospheric plasma parameters made by the EISCAT UHF radar during ionospheric modification experiments. Heating the electrons changes the balance between upward plasma pressure gradient and downward gravity, resulting in ion up-flow up to ~200 m/s. This field-aligned flow is retarded by collisions, which is directly related to the neutral density. Whilst the ion up-flow is consistent with the plasma pressure gradient, the estimated thermospheric neutral density depends on the assumed composition, which varies with altitude. Results in the topside ionosphere are presented.
Brown, Sandra [University of Illinois, Urbana, Illinois (USA); Iverson, Louis R. [University of Illinois, Urbana, Illinois (USA); Prasad, Anantha [University of Illinois, Urbana, Illinois (USA); Beaty, Tammy W. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Olsen, Lisa M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Cushman, Robert M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA); Brenkert, Antoinette L. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA)
2001-03-01
A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam.
Novel health monitoring method using an RGB camera.
Hassan, M A; Malik, A S; Fofi, D; Saad, N; Meriaudeau, F
2017-11-01
In this paper we present a novel health monitoring method by estimating the heart rate and respiratory rate using an RGB camera. The heart rate and the respiratory rate are estimated from the photoplethysmography (PPG) and the respiratory motion. The method mainly operates by using the green spectrum of the RGB camera to generate a multivariate PPG signal to perform multivariate de-noising on the video signal to extract the resultant PPG signal. A periodicity based voting scheme (PVS) was used to measure the heart rate and respiratory rate from the estimated PPG signal. We evaluated our proposed method with a state of the art heart rate measuring method for two scenarios using the MAHNOB-HCI database and a self collected naturalistic environment database. The methods were furthermore evaluated for various scenarios at naturalistic environments such as a motion variance session and a skin tone variance session. Our proposed method operated robustly during the experiments and outperformed the state of the art heart rate measuring methods by compensating the effects of the naturalistic environment.
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model.
Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak
2015-01-01
This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.
Hernandez, Wilmar
2005-01-01
In the present paper, in order to estimate the response of both a wheel speed sensor and an accelerometer placed in a car under performance tests, robust and optimal multivariable estimation techniques are used. In this case, the disturbances and noises corrupting the relevant information coming from the sensors' outputs are so dangerous that their negative influence on the electrical systems impoverish the general performance of the car. In short, the solution to this problem is a safety related problem that deserves our full attention. Therefore, in order to diminish the negative effects of the disturbances and noises on the car's electrical and electromechanical systems, an optimum observer is used. The experimental results show a satisfactory improvement in the signal-to-noise ratio of the relevant signals and demonstrate the importance of the fusion of several intelligent sensor design techniques when designing the intelligent sensors that today's cars need.
Corron, Louise; Marchal, François; Condemi, Silvana; Telmon, Norbert; Chaumoitre, Kathia; Adalian, Pascal
2018-05-31
Subadult age estimation should rely on sampling and statistical protocols capturing development variability for more accurate age estimates. In this perspective, measurements were taken on the fifth lumbar vertebrae and/or clavicles of 534 French males and females aged 0-19 years and the ilia of 244 males and females aged 0-12 years. These variables were fitted in nonparametric multivariate adaptive regression splines (MARS) models with 95% prediction intervals (PIs) of age. The models were tested on two independent samples from Marseille and the Luis Lopes reference collection from Lisbon. Models using ilium width and module, maximum clavicle length, and lateral vertebral body heights were more than 92% accurate. Precision was lower for postpubertal individuals. Integrating punctual nonlinearities of the relationship between age and the variables and dynamic prediction intervals incorporated the normal increase in interindividual growth variability (heteroscedasticity of variance) with age for more biologically accurate predictions. © 2018 American Academy of Forensic Sciences.
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model
Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak
2015-01-01
This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels. PMID:26351652
Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain
2017-01-01
The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...
ERIC Educational Resources Information Center
Nevitt, Johnathan; Hancock, Gregory R.
Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into…
Sample Size Calculation for Estimating or Testing a Nonzero Squared Multiple Correlation Coefficient
ERIC Educational Resources Information Center
Krishnamoorthy, K.; Xia, Yanping
2008-01-01
The problems of hypothesis testing and interval estimation of the squared multiple correlation coefficient of a multivariate normal distribution are considered. It is shown that available one-sided tests are uniformly most powerful, and the one-sided confidence intervals are uniformly most accurate. An exact method of calculating sample size to…