USDA-ARS?s Scientific Manuscript database
Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...
ERIC Educational Resources Information Center
Eley, Thalia C.; Rijsdijk, Fruhling V.; Perrin, Sean; O'Connor, Thomas G.; Bolton, Derek
2008-01-01
Background: Comorbidity amongst anxiety disorders is very common in children as in adults and leads to considerable distress and impairment, yet is poorly understood. Multivariate genetic analyses can shed light on the origins of this comorbidity by revealing whether genetic or environmental risks for one disorder also influence another. We…
Motivations for genetic testing for lung cancer risk among young smokers.
O'Neill, Suzanne C; Lipkus, Isaac M; Sanderson, Saskia C; Shepperd, James; Docherty, Sharron; McBride, Colleen M
2013-11-01
To examine why young people might want to undergo genetic susceptibility testing for lung cancer despite knowing that tested gene variants are associated with small increases in disease risk. The authors used a mixed-method approach to evaluate motives for and against genetic testing and the association between these motivations and testing intentions in 128 college students who smoke. Exploratory factor analysis yielded four reliable factors: Test Scepticism, Test Optimism, Knowledge Enhancement and Smoking Optimism. Test Optimism and Knowledge Enhancement correlated positively with intentions to test in bivariate and multivariate analyses (ps<0.001). Test Scepticism correlated negatively with testing intentions in multivariate analyses (p<0.05). Open-ended questions assessing testing motivations generally replicated themes of the quantitative survey. In addition to learning about health risks, young people may be motivated to seek genetic testing for reasons, such as gaining knowledge about new genetic technologies more broadly.
A multivariate twin study of early literacy in Japanese Kana
Fujisawa, Keiko K.; Wadsworth, Sally J.; Kakihana, Shinichiro; Olson, Richard K.; DeFries, John C.; Byrne, Brian; Ando, Juko
2013-01-01
This first Japanese twin study of early literacy development investigated the extent to which genetic and environmental factors influence individual differences in prereading skills in 238 pairs of twins at 42 months of age. Twin pairs were individually tested on measures of phonological awareness, kana letter name/sound knowledge, receptive vocabulary, visual perception, nonword repetition, and digit span. Results obtained from univariate behavioral-genetic analyses yielded little evidence for genetic influences, but substantial shared-environmental influences, for all measures. Phenotypic confirmatory factor analysis suggested three correlated factors: phonological awareness, letter name/sound knowledge, and general prereading skills. Multivariate behavioral genetic analyses confirmed relatively small genetic and substantial shared environmental influences on the factors. The correlations among the three factors were mostly attributable to shared environment. Thus, shared environmental influences play an important role in the early reading development of Japanese children. PMID:23997545
Jack, John; Havener, Tammy M; McLeod, Howard L; Motsinger-Reif, Alison A; Foster, Matthew
2015-01-01
Aim: We investigate the role of ethnicity and admixture in drug response across a broad group of chemotherapeutic drugs. Also, we generate hypotheses on the genetic variants driving differential drug response through multivariate genome-wide association studies. Methods: Immortalized lymphoblastoid cell lines from 589 individuals (Hispanic or non-Hispanic/Caucasian) were used to investigate dose-response for 28 chemotherapeutic compounds. Univariate and multivariate statistical models were used to elucidate associations between genetic variants and differential drug response as well as the role of ethnicity in drug potency and efficacy. Results & Conclusion: For many drugs, the variability in drug response appears to correlate with self-reported race and estimates of genetic ancestry. Additionally, multivariate genome-wide association analyses offered interesting hypotheses governing these differential responses. PMID:26314407
Walling, Craig A; Morrissey, Michael B; Foerster, Katharina; Clutton-Brock, Tim H; Pemberton, Josephine M; Kruuk, Loeske E B
2014-12-01
Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance-covariance matrix ( G: ) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G: on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. Copyright © 2014 Walling et al.
Walling, Craig A.; Morrissey, Michael B.; Foerster, Katharina; Clutton-Brock, Tim H.; Pemberton, Josephine M.; Kruuk, Loeske E. B.
2014-01-01
Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance–covariance matrix (G) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. PMID:25278555
Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C
2015-01-01
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.
Young, Bonnie N; Rendón, Adrian; Rosas-Taraco, Adrian; Baker, Jack; Healy, Meghan; Gross, Jessica M; Long, Jeffrey; Burgos, Marcos; Hunley, Keith L
2014-01-01
Diverse socioeconomic and clinical factors influence susceptibility to tuberculosis (TB) disease in Mexico. The role of genetic factors, particularly those that differ between the parental groups that admixed in Mexico, is unclear. The objectives of this study are to identify the socioeconomic and clinical predictors of the transition from latent TB infection (LTBI) to pulmonary TB disease in an urban population in northeastern Mexico, and to examine whether genetic ancestry plays an independent role in this transition. We recruited 97 pulmonary TB disease patients and 97 LTBI individuals from a public hospital in Monterrey, Nuevo León. Socioeconomic and clinical variables were collected from interviews and medical records, and genetic ancestry was estimated for a subset of 142 study participants from 291,917 single nucleotide polymorphisms (SNPs). We examined crude associations between the variables and TB disease status. Significant predictors from crude association tests were analyzed using multivariable logistic regression. We also compared genetic ancestry between LTBI individuals and TB disease patients at 1,314 SNPs in 273 genes from the TB biosystem in the NCBI BioSystems database. In crude association tests, 12 socioeconomic and clinical variables were associated with TB disease. Multivariable logistic regression analyses indicated that marital status, diabetes, and smoking were independently associated with TB status. Genetic ancestry was not associated with TB disease in either crude or multivariable analyses. Separate analyses showed that LTBI individuals recruited from hospital staff had significantly higher European genetic ancestry than LTBI individuals recruited from the clinics and waiting rooms. Genetic ancestry differed between individuals with LTBI and TB disease at SNPs located in two genes in the TB biosystem. These results indicate that Monterrey may be structured with respect to genetic ancestry, and that genetic differences in TB susceptibility in parental populations may contribute to variation in disease susceptibility in the region.
Young, Bonnie N.; Rendón, Adrian; Rosas-Taraco, Adrian; Baker, Jack; Healy, Meghan; Gross, Jessica M.; Long, Jeffrey; Burgos, Marcos; Hunley, Keith L.
2014-01-01
Diverse socioeconomic and clinical factors influence susceptibility to tuberculosis (TB) disease in Mexico. The role of genetic factors, particularly those that differ between the parental groups that admixed in Mexico, is unclear. The objectives of this study are to identify the socioeconomic and clinical predictors of the transition from latent TB infection (LTBI) to pulmonary TB disease in an urban population in northeastern Mexico, and to examine whether genetic ancestry plays an independent role in this transition. We recruited 97 pulmonary TB disease patients and 97 LTBI individuals from a public hospital in Monterrey, Nuevo León. Socioeconomic and clinical variables were collected from interviews and medical records, and genetic ancestry was estimated for a subset of 142 study participants from 291,917 single nucleotide polymorphisms (SNPs). We examined crude associations between the variables and TB disease status. Significant predictors from crude association tests were analyzed using multivariable logistic regression. We also compared genetic ancestry between LTBI individuals and TB disease patients at 1,314 SNPs in 273 genes from the TB biosystem in the NCBI BioSystems database. In crude association tests, 12 socioeconomic and clinical variables were associated with TB disease. Multivariable logistic regression analyses indicated that marital status, diabetes, and smoking were independently associated with TB status. Genetic ancestry was not associated with TB disease in either crude or multivariable analyses. Separate analyses showed that LTBI individuals recruited from hospital staff had significantly higher European genetic ancestry than LTBI individuals recruited from the clinics and waiting rooms. Genetic ancestry differed between individuals with LTBI and TB disease at SNPs located in two genes in the TB biosystem. These results indicate that Monterrey may be structured with respect to genetic ancestry, and that genetic differences in TB susceptibility in parental populations may contribute to variation in disease susceptibility in the region. PMID:24728409
Llewellyn, Clare H; van Jaarsveld, Cornelia H M; Plomin, Robert; Fisher, Abigail; Wardle, Jane
2012-03-01
The behavioral susceptibility model proposes that inherited differences in traits such as appetite confer differential risk of weight gain and contribute to the heritability of weight. Evidence that the FTO gene may influence weight partly through its effects on appetite supports this model, but testing the behavioral pathways for multiple genes with very small effects is not feasible. Twin analyses make it possible to get a broad-based estimate of the extent of shared genetic influence between appetite and weight. The objective was to use multivariate twin analyses to test the hypothesis that associations between appetite and weight are underpinned by shared genetic effects. Data were from Gemini, a population-based birth cohort of twins (n = 4804) born in 2007. Infant weights at 3 mo were taken from the records of health professionals. Appetite was assessed at 3 mo for the milk-feeding period by using the Baby Eating Behaviour Questionnaire (BEBQ), a parent-reported measure of appetite [enjoyment of food, food responsiveness, slowness in eating (SE), satiety responsiveness (SR), and appetite size (AS)]. Multivariate quantitative genetic modeling was used to test for shared genetic influences. Significant correlations were found between all BEBQ traits and weight. Significant shared genetic influence was identified for weight with SE, SR, and AS; genetic correlations were between 0.22 and 0.37. Shared genetic effects explained 41-45% of these phenotypic associations. Differences in weight in infancy may be due partly to genetically determined differences in appetitive traits that confer differential susceptibility to obesogenic environments.
Waldman, Irwin D; Poore, Holly E; van Hulle, Carol; Rathouz, Paul J; Lahey, Benjamin B
2016-11-01
Several recent studies of the hierarchical phenotypic structure of psychopathology have identified a General psychopathology factor in addition to the more expected specific Externalizing and Internalizing dimensions in both youth and adult samples and some have found relevant unique external correlates of this General factor. We used data from 1,568 twin pairs (599 MZ & 969 DZ) age 9 to 17 to test hypotheses for the underlying structure of youth psychopathology and the external validity of the higher-order factors. Psychopathology symptoms were assessed via structured interviews of caretakers and youth. We conducted phenotypic analyses of competing structural models using Confirmatory Factor Analysis and used Structural Equation Modeling and multivariate behavior genetic analyses to understand the etiology of the higher-order factors and their external validity. We found that both a General factor and specific Externalizing and Internalizing dimensions are necessary for characterizing youth psychopathology at both the phenotypic and etiologic levels, and that the 3 higher-order factors differed substantially in the magnitudes of their underlying genetic and environmental influences. Phenotypically, the specific Externalizing and Internalizing dimensions were slightly negatively correlated when a General factor was included, which reflected a significant inverse correlation between the nonshared environmental (but not genetic) influences on Internalizing and Externalizing. We estimated heritability of the general factor of psychopathology for the first time. Its moderate heritability suggests that it is not merely an artifact of measurement error but a valid construct. The General, Externalizing, and Internalizing factors differed in their relations with 3 external validity criteria: mother's smoking during pregnancy, parent's harsh discipline, and the youth's association with delinquent peers. Multivariate behavior genetic analyses supported the external validity of the 3 higher-order factors by suggesting that the General, Externalizing, and Internalizing factors were correlated with peer delinquency and parent's harsh discipline for different etiologic reasons. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi
2011-01-01
Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates--childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation.
Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins.
Pang, Z; Zhang, D; Li, S; Duan, H; Hjelmborg, J; Kruse, T A; Kyvik, K O; Christensen, K; Tan, Q
2010-12-01
The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese twin data. The aim was to explore the common genetic architecture in the development of these phenotypes in the Chinese population. Three multivariate models including the full saturated Cholesky decomposition model, the common factor independent pathway model and the common factor common pathway model were fitted to 695 pairs of Chinese twins representing six phenotypes including BMI, total cholesterol, total triacylglycerol, fasting glucose, HDL and LDL. Performances of the nested models were compared with that of the full Cholesky model. Cross-phenotype correlation coefficients gave clear indication of common genetic or environmental backgrounds in the phenotypes. Decomposition of phenotypic correlation by the Cholesky model revealed that the observed phenotypic correlation among lipid phenotypes had genetic and unique environmental backgrounds. Both pathway models suggest a common genetic architecture for lipid phenotypes, which is distinct from that of the non-lipid phenotypes. The declining performance with model restriction indicates biological heterogeneity in development among some of these phenotypes. Our multivariate analyses revealed common genetic and environmental backgrounds for the studied lipid phenotypes in Chinese twins. Model performance showed that physiologically distinct endophenotypes may follow different genetic regulations.
ERIC Educational Resources Information Center
Mimeau, Catherine; Dionne, Ginette; Feng, Bei; Brendgen, Mara; Vitaro, Frank; Tremblay, Richard E.; Boivin, Michel
2018-01-01
This twin study examined the genetic and environmental etiology of vocabulary, syntax, and their association in first graders. French-speaking same-sex twins (n = 555) completed two vocabulary tests, and two scores of syntax were calculated from their spontaneous speech at 7 years of age. Multivariate latent factor genetic analyses showed that…
Multivariate selection and intersexual genetic constraints in a wild bird population.
Poissant, J; Morrissey, M B; Gosler, A G; Slate, J; Sheldon, B C
2016-10-01
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra- and intersex additive genetic (co)variances and sex-specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex-specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex-specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross-sex genetic correlation = -0.003, 95% CI = -0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex-specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Genetic Structure of Bluefin Tuna in the Mediterranean Sea Correlates with Environmental Variables
Riccioni, Giulia; Stagioni, Marco; Landi, Monica; Ferrara, Giorgia; Barbujani, Guido; Tinti, Fausto
2013-01-01
Background Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea. Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity. Methodology We used six samples collected from Western and Central Mediterranean integrated with a new sample collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian clustering methods and a multivariate approach based on factor analysis. Conclusions FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients. These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning behaviour in the Mediterranean Sea can be affected by environmental variation. PMID:24260341
Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F
2012-01-01
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.
Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F.
2012-01-01
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations. PMID:22905171
TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.
2013-01-01
To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524
Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi
2011-01-01
Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939
Multivariate Genetic Analysis of Learning and Early Reading Development
ERIC Educational Resources Information Center
Byrne, Brian; Wadsworth, Sally; Boehme, Kristi; Talk, Andrew C.; Coventry, William L.; Olson, Richard K.; Samuelsson, Stefan; Corley, Robin
2013-01-01
The genetic factor structure of a range of learning measures was explored in twin children, recruited in preschool and followed to Grade 2 ("N"?=?2,084). Measures of orthographic learning and word reading were included in the analyses to determine how these patterned with the learning processes. An exploratory factor analysis of the…
Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.
Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W
2013-01-01
Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study
Neupane, Binod; Beyene, Joseph
2015-01-01
In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance. PMID:26196398
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.
Neupane, Binod; Beyene, Joseph
2015-01-01
In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance.
Aebi, Marcel; van Donkelaar, Marjolein M J; Poelmans, Geert; Buitelaar, Jan K; Sonuga-Barke, Edmund J S; Stringaris, Argyris; Consortium, Image; Faraone, Stephen V; Franke, Barbara; Steinhausen, Hans-Christoph; van Hulzen, Kimm J E
2016-07-01
Oppositional defiant disorder (ODD) is a frequent psychiatric disorder seen in children and adolescents with attention-deficit-hyperactivity disorder (ADHD). ODD is also a common antecedent to both affective disorders and aggressive behaviors. Although the heritability of ODD has been estimated to be around 0.60, there has been little research into the molecular genetics of ODD. The present study examined the association of irritable and defiant/vindictive dimensions and categorical subtypes of ODD (based on latent class analyses) with previously described specific polymorphisms (DRD4 exon3 VNTR, 5-HTTLPR, and seven OXTR SNPs) as well as with dopamine, serotonin, and oxytocin genes and pathways in a clinical sample of children and adolescents with ADHD. In addition, we performed a multivariate genome-wide association study (GWAS) of the aforementioned ODD dimensions and subtypes. Apart from adjusting the analyses for age and sex, we controlled for "parental ability to cope with disruptive behavior." None of the hypothesis-driven analyses revealed a significant association with ODD dimensions and subtypes. Inadequate parenting behavior was significantly associated with all ODD dimensions and subtypes, most strongly with defiant/vindictive behaviors. In addition, the GWAS did not result in genome-wide significant findings but bioinformatics and literature analyses revealed that the proteins encoded by 28 of the 53 top-ranked genes functionally interact in a molecular landscape centered around Beta-catenin signaling and involved in the regulation of neurite outgrowth. Our findings provide new insights into the molecular basis of ODD and inform future genetic studies of oppositional behavior. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait
Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.
2003-01-01
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094
Multivariate analyses of crater parameters and the classification of craters
NASA Technical Reports Server (NTRS)
Siegal, B. S.; Griffiths, J. C.
1974-01-01
Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.
Rovadoscki, Gregori A; Petrini, Juliana; Ramirez-Diaz, Johanna; Pertile, Simone F N; Pertille, Fábio; Salvian, Mayara; Iung, Laiza H S; Rodriguez, Mary Ana P; Zampar, Aline; Gaya, Leila G; Carvalho, Rachel S B; Coelho, Antonio A D; Savino, Vicente J M; Coutinho, Luiz L; Mourão, Gerson B
2016-09-01
Repeated measures from the same individual have been analyzed by using repeatability and finite dimension models under univariate or multivariate analyses. However, in the last decade, the use of random regression models for genetic studies with longitudinal data have become more common. Thus, the aim of this research was to estimate genetic parameters for body weight of four experimental chicken lines by using univariate random regression models. Body weight data from hatching to 84 days of age (n = 34,730) from four experimental free-range chicken lines (7P, Caipirão da ESALQ, Caipirinha da ESALQ and Carijó Barbado) were used. The analysis model included the fixed effects of contemporary group (gender and rearing system), fixed regression coefficients for age at measurement, and random regression coefficients for permanent environmental effects and additive genetic effects. Heterogeneous variances for residual effects were considered, and one residual variance was assigned for each of six subclasses of age at measurement. Random regression curves were modeled by using Legendre polynomials of the second and third orders, with the best model chosen based on the Akaike Information Criterion, Bayesian Information Criterion, and restricted maximum likelihood. Multivariate analyses under the same animal mixed model were also performed for the validation of the random regression models. The Legendre polynomials of second order were better for describing the growth curves of the lines studied. Moderate to high heritabilities (h(2) = 0.15 to 0.98) were estimated for body weight between one and 84 days of age, suggesting that selection for body weight at all ages can be used as a selection criteria. Genetic correlations among body weight records obtained through multivariate analyses ranged from 0.18 to 0.96, 0.12 to 0.89, 0.06 to 0.96, and 0.28 to 0.96 in 7P, Caipirão da ESALQ, Caipirinha da ESALQ, and Carijó Barbado chicken lines, respectively. Results indicate that genetic gain for body weight can be achieved by selection. Also, selection for body weight at 42 days of age can be maintained as a selection criterion. © 2016 Poultry Science Association Inc.
Irano, Natalia; Bignardi, Annaiza Braga; El Faro, Lenira; Santana, Mário Luiz; Cardoso, Vera Lúcia; Albuquerque, Lucia Galvão
2014-03-01
The objective of this study was to estimate genetic parameters for milk yield, stayability, and the occurrence of clinical mastitis in Holstein cows, as well as studying the genetic relationship between them, in order to provide subsidies for the genetic evaluation of these traits. Records from 5,090 Holstein cows with calving varying from 1991 to 2010, were used in the analysis. Two standard multivariate analyses were carried out, one containing the trait of accumulated 305-day milk yields in the first lactation (MY1), stayability (STAY) until the third lactation, and clinical mastitis (CM), as well as the other traits, considering accumulated 305-day milk yields (Y305), STAY, and CM, including the first three lactations as repeated measures for Y305 and CM. The covariance components were obtained by a Bayesian approach. The heritability estimates obtained by multivariate analysis with MY1 were 0.19, 0.28, and 0.13 for MY1, STAY, and CM, respectively, whereas using the multivariate analysis with the Y305, the estimates were 0.19, 0.31, and 0.14, respectively. The genetic correlations between MY1 and STAY, MY1 and CM, and STAY and CM, respectively, were 0.38, 0.12, and -0.49. The genetic correlations between Y305 and STAY, Y305 and CM, and STAY and CM, respectively, were 0.66, -0.25, and -0.52.
Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.
Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao
2016-11-30
Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Gupta, Deepak K; Claggett, Brian; Wells, Quinn; Cheng, Susan; Li, Man; Maruthur, Nisa; Selvin, Elizabeth; Coresh, Josef; Konety, Suma; Butler, Kenneth R; Mosley, Thomas; Boerwinkle, Eric; Hoogeveen, Ron; Ballantyne, Christie M; Solomon, Scott D
2015-01-01
Background Natriuretic peptides promote natriuresis, diuresis, and vasodilation. Experimental deficiency of natriuretic peptides leads to hypertension (HTN) and cardiac hypertrophy, conditions more common among African Americans. Hospital-based studies suggest that African Americans may have reduced circulating natriuretic peptides, as compared to Caucasians, but definitive data from community-based cohorts are lacking. Methods and Results We examined plasma N-terminal pro B-type natriuretic peptide (NTproBNP) levels according to race in 9137 Atherosclerosis Risk in Communities (ARIC) Study participants (22% African American) without prevalent cardiovascular disease at visit 4 (1996–1998). Multivariable linear and logistic regression analyses were performed adjusting for clinical covariates. Among African Americans, percent European ancestry was determined from genetic ancestry informative markers and then examined in relation to NTproBNP levels in multivariable linear regression analysis. NTproBNP levels were significantly lower in African Americans (median, 43 pg/mL; interquartile range [IQR], 18, 88) than Caucasians (median, 68 pg/mL; IQR, 36, 124; P<0.0001). In multivariable models, adjusted log NTproBNP levels were 40% lower (95% confidence interval [CI], −43, −36) in African Americans, compared to Caucasians, which was consistent across subgroups of age, gender, HTN, diabetes, insulin resistance, and obesity. African-American race was also significantly associated with having nondetectable NTproBNP (adjusted OR, 5.74; 95% CI, 4.22, 7.80). In multivariable analyses in African Americans, a 10% increase in genetic European ancestry was associated with a 7% (95% CI, 1, 13) increase in adjusted log NTproBNP. Conclusions African Americans have lower levels of plasma NTproBNP than Caucasians, which may be partially owing to genetic variation. Low natriuretic peptide levels in African Americans may contribute to the greater risk for HTN and its sequalae in this population. PMID:25999400
van Donkelaar, Marjolein M. J.; Poelmans, Geert; Buitelaar, Jan K.; Sonuga‐Barke, Edmund J. S.; Stringaris, Argyris; consortium, IMAGE; Faraone, Stephen V.; Franke, Barbara; Steinhausen, Hans‐Christoph; van Hulzen, Kimm J. E.
2015-01-01
Oppositional defiant disorder (ODD) is a frequent psychiatric disorder seen in children and adolescents with attention‐deficit‐hyperactivity disorder (ADHD). ODD is also a common antecedent to both affective disorders and aggressive behaviors. Although the heritability of ODD has been estimated to be around 0.60, there has been little research into the molecular genetics of ODD. The present study examined the association of irritable and defiant/vindictive dimensions and categorical subtypes of ODD (based on latent class analyses) with previously described specific polymorphisms (DRD4 exon3 VNTR, 5‐HTTLPR, and seven OXTR SNPs) as well as with dopamine, serotonin, and oxytocin genes and pathways in a clinical sample of children and adolescents with ADHD. In addition, we performed a multivariate genome‐wide association study (GWAS) of the aforementioned ODD dimensions and subtypes. Apart from adjusting the analyses for age and sex, we controlled for “parental ability to cope with disruptive behavior.” None of the hypothesis‐driven analyses revealed a significant association with ODD dimensions and subtypes. Inadequate parenting behavior was significantly associated with all ODD dimensions and subtypes, most strongly with defiant/vindictive behaviors. In addition, the GWAS did not result in genome‐wide significant findings but bioinformatics and literature analyses revealed that the proteins encoded by 28 of the 53 top‐ranked genes functionally interact in a molecular landscape centered around Beta‐catenin signaling and involved in the regulation of neurite outgrowth. Our findings provide new insights into the molecular basis of ODD and inform future genetic studies of oppositional behavior. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. PMID:26184070
Prefrontal gray matter volume mediates genetic risks for obesity.
Opel, N; Redlich, R; Kaehler, C; Grotegerd, D; Dohm, K; Heindel, W; Kugel, H; Thalamuthu, A; Koutsouleris, N; Arolt, V; Teuber, A; Wersching, H; Baune, B T; Berger, K; Dannlowski, U
2017-05-01
Genetic and neuroimaging research has identified neurobiological correlates of obesity. However, evidence for an integrated model of genetic risk and brain structural alterations in the pathophysiology of obesity is still absent. Here we investigated the relationship between polygenic risk for obesity, gray matter structure and body mass index (BMI) by the use of univariate and multivariate analyses in two large, independent cohorts (n=330 and n=347). Higher BMI and higher polygenic risk for obesity were significantly associated with medial prefrontal gray matter decrease, and prefrontal gray matter was further shown to significantly mediate the effect of polygenic risk for obesity on BMI in both samples. Building on this, the successful individualized prediction of BMI by means of multivariate pattern classification algorithms trained on whole-brain imaging data and external validations in the second cohort points to potential clinical applications of this imaging trait marker.
2009-01-01
The genetic diversity and structure of horses raised in France were investigated using 11 microsatellite markers and 1679 animals belonging to 34 breeds. Between-breed differences explained about ten per cent of the total genetic diversity (Fst = 0.099). Values of expected heterozygosity ranged from 0.43 to 0.79 depending on the breed. According to genetic relationships, multivariate and structure analyses, breeds could be classified into four genetic differentiated groups: warm-blooded, draught, Nordic and pony breeds. Using complementary maximisation of diversity and aggregate diversity approaches, we conclude that particular efforts should be made to conserve five local breeds, namely the Boulonnais, Landais, Merens, Poitevin and Pottok breeds. PMID:19284689
A Unified Framework for Association Analysis with Multiple Related Phenotypes
Stephens, Matthew
2013-01-01
We consider the problem of assessing associations between multiple related outcome variables, and a single explanatory variable of interest. This problem arises in many settings, including genetic association studies, where the explanatory variable is genotype at a genetic variant. We outline a framework for conducting this type of analysis, based on Bayesian model comparison and model averaging for multivariate regressions. This framework unifies several common approaches to this problem, and includes both standard univariate and standard multivariate association tests as special cases. The framework also unifies the problems of testing for associations and explaining associations – that is, identifying which outcome variables are associated with genotype. This provides an alternative to the usual, but conceptually unsatisfying, approach of resorting to univariate tests when explaining and interpreting significant multivariate findings. The method is computationally tractable genome-wide for modest numbers of phenotypes (e.g. 5–10), and can be applied to summary data, without access to raw genotype and phenotype data. We illustrate the methods on both simulated examples, and to a genome-wide association study of blood lipid traits where we identify 18 potential novel genetic associations that were not identified by univariate analyses of the same data. PMID:23861737
Kurosawa, R N F; do Amaral Junior, A T; Silva, F H L; Dos Santos, A; Vivas, M; Kamphorst, S H; Pena, G F
2017-02-08
The multivariate analyses are useful tools to estimate the genetic variability between accessions. In the breeding programs, the Ward-Modified Location Model (MLM) multivariate method has been a powerful strategy to quantify variability using quantitative and qualitative variables simultaneously. The present study was proposed in view of the dearth of information about popcorn breeding programs under a multivariate approach using the Ward-MLM methodology. The objective of this study was thus to estimate the genetic diversity among 37 genotypes of popcorn aiming to identify divergent groups associated with morpho-agronomic traits and traits related to resistance to Fusarium spp. To this end, 7 qualitative and 17 quantitative variables were analyzed. The experiment was conducted in 2014, at Universidade Estadual do Norte Fluminense, located in Campos dos Goytacazes, RJ, Brazil. The Ward-MLM strategy allowed the identification of four groups as follows: Group I with 10 genotypes, Group II with 11 genotypes, Group III with 9 genotypes, and Group IV with 7 genotypes. Group IV was distant in relation to the other groups, while groups I, II, and III were near. The crosses between genotypes from the other groups with those of group IV allow an exploitation of heterosis. The Ward-MLM strategy provided an appropriate grouping of genotypes; ear weight, ear diameter, and grain yield were the traits that most contributed to the analysis of genetic diversity.
Hart, Sara A.; Petrill, Stephen A.; Thompson, Lee A.; Plomin, Robert
2009-01-01
The goal of this first major report from the Western Reserve Reading Project Math component is to explore the etiology of the relationship among tester-administered measures of mathematics ability, reading ability, and general cognitive ability. Data are available on 314 pairs of monozygotic and same-sex dizygotic twins analyzed across 5 waves of assessment. Univariate analyses provide a range of estimates of genetic (h2 = .00 –.63) and shared (c2 = .15–.52) environmental influences across math calculation, fluency, and problem solving measures. Multivariate analyses indicate genetic overlap between math problem solving with general cognitive ability and reading decoding, whereas math fluency shares significant genetic overlap with reading fluency and general cognitive ability. Further, math fluency has unique genetic influences. In general, math ability has shared environmental overlap with general cognitive ability and decoding. These results indicate that aspects of math that include problem solving have different genetic and environmental influences than math calculation. Moreover, math fluency, a timed measure of calculation, is the only measured math ability with unique genetic influences. PMID:20157630
Social Science Methods for Twins Data: Integrating Causality, Endowments and Heritability
Kohler, Hans-Peter; Behrman, Jere R.; Schnittker, Jason
2011-01-01
Twins have been extensively used in economics, sociology and behavioral genetics to investigate the role of genetic endowments on a broad range of social, demographic and economic outcomes. However, the focus in these literatures has been distinct: the economic literature has been primarily concerned with the need to control for unobserved endowments—including as an important subset, genetic endowments—in analyses that attempt to establish the impact of one variable, often schooling, on a variety of economic, demographic and health outcomes. Behavioral genetic analyses have mostly been concerned with decomposing the variation in the outcomes of interest into genetic, shared environmental and non-shared environmental components, with recent multivariate analyses investigating the contributions of genes and the environment to the correlation and causation between variables. Despite the fact that twins studies and the recognition of the role of endowments are central to both of these literatures, they have mostly evolved independently. In this paper we develop formally the relationship between the economic and behavioral genetic approaches to the analyses of twins, and we develop an integrative approach that combines the identification of causal effects, which dominates the economic literature, with the decomposition of variances and covariances into genetic and environmental factors that is the primary goal of behavioral genetic approaches. We apply this integrative ACE-β approach to an illustrative investigation of the impact of schooling on several demographic outcomes such as fertility and nuptiality and health. PMID:21845929
Multivariate analysis in a genetic divergence study of Psidium guajava.
Nogueira, A M; Ferreira, M F S; Guilhen, J H S; Ferreira, A
2014-12-18
The family Myrtaceae is widespread in the Atlantic Forest and is well-represented in the Espírito Santo State in Brazil. In the genus Psidium of this family, guava (Psidium guajava L.) is the most economically important species. Guava is widely cultivated in tropical and subtropical countries; however, the widespread cultivation of only a small number of guava tree cultivars may cause the genetic vulnerability of this crop, making the search for promising genotypes in natural populations important for breeding programs and conservation. In this study, the genetic diversity of 66 guava trees sampled in the southern region of Espírito Santo and in Caparaó, MG, Brazil were evaluated. A total of 28 morphological descriptors (11 quantitative and 17 multicategorical) and 18 microsatellite markers were used. Principal component, discriminant and cluster analyses, descriptive analyses, and genetic diversity analyses using simple sequence repeats were performed. Discrimination of accessions using molecular markers resulted in clustering of genotypes of the same origin, which was not observed using morphological data. Genetic diversity was detected between and within the localities evaluated, regardless of the methodology used. Genetic differentiation among the populations using morphological and molecular data indicated the importance of the study area for species conservation, genetic erosion estimation, and exploitation in breeding programs.
Who is afraid of math? Two sources of genetic variance for mathematical anxiety.
Wang, Zhe; Hart, Sara Ann; Kovas, Yulia; Lukowski, Sarah; Soden, Brooke; Thompson, Lee A; Plomin, Robert; McLoughlin, Grainne; Bartlett, Christopher W; Lyons, Ian M; Petrill, Stephen A
2014-09-01
Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem solving and achievement. This study investigated the genetic and environmental factors contributing to the observed differences in the anxiety people feel when confronted with mathematical tasks. In addition, the genetic and environmental mechanisms that link mathematical anxiety with math cognition and general anxiety were also explored. Univariate and multivariate quantitative genetic models were conducted in a sample of 514 12-year-old twin siblings. Genetic factors accounted for roughly 40% of the variation in mathematical anxiety, with the remaining being accounted for by child-specific environmental factors. Multivariate genetic analyses suggested that mathematical anxiety was influenced by the genetic and nonfamilial environmental risk factors associated with general anxiety and additional independent genetic influences associated with math-based problem solving. The development of mathematical anxiety may involve not only exposure to negative experiences with mathematics, but also likely involves genetic risks related to both anxiety and math cognition. These results suggest that integrating cognitive and affective domains may be particularly important for mathematics and may extend to other areas of academic achievement. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
Who’s Afraid of Math? Two Sources of Genetic Variance for Mathematical Anxiety
Wang, Zhe; Hart, Sara Ann; Kovas, Yulia; Lukowski, Sarah; Soden, Brooke; Thompson, Lee A.; Plomin, Robert; McLoughlin, Grainne; Bartlett, Christopher W.; Lyons, Ian M.; Petrill, Stephen A.
2015-01-01
Background Emerging work suggests that academic achievement may be influenced by the management of affect as well as through efficient information processing of task demands. In particular, mathematical anxiety has attracted recent attention because of its damaging psychological effects and potential associations with mathematical problem-solving and achievement. The present study investigated the genetic and environmental factors contributing to the observed differences in the anxiety people feel when confronted with mathematical tasks. In addition, the genetic and environmental mechanisms that link mathematical anxiety with math cognition and general anxiety were also explored. Methods Univariate and multivariate quantitative genetic models were conducted in a sample of 514 12-year-old twin siblings. Results Genetic factors accounted for roughly 40% of the variation in mathematical anxiety, with the remaining being accounted for by child-specific environmental factors. Multivariate genetic analyses suggested that mathematical anxiety was influenced by the genetic and non-familial environmental risk factors associated with general anxiety and additional independent genetic influences associated with math-based problem solving. Conclusions The development of mathematical anxiety may involve not only exposure to negative experiences with mathematics, but also likely involves genetic risks related to both anxiety and math cognition. These results suggest that integrating cognitive and affective domains may be particularly important for mathematics, and may extend to other areas of academic achievement. PMID:24611799
Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel
2016-01-01
This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection. PMID:26789008
Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel
2016-01-01
This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection.
Accuracies of univariate and multivariate genomic prediction models in African cassava.
Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2017-12-04
Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies. In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model. We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.
Medland, Sarah E; Loesch, Danuta Z; Mdzewski, Bogdan; Zhu, Gu; Montgomery, Grant W; Martin, Nicholas G
2007-01-01
The finger ridge count (a measure of pattern size) is one of the most heritable complex traits studied in humans and has been considered a model human polygenic trait in quantitative genetic analysis. Here, we report the results of the first genome-wide linkage scan for finger ridge count in a sample of 2,114 offspring from 922 nuclear families. Both univariate linkage to the absolute ridge count (a sum of all the ridge counts on all ten fingers), and multivariate linkage analyses of the counts on individual fingers, were conducted. The multivariate analyses yielded significant linkage to 5q14.1 (Logarithm of odds [LOD] = 3.34, pointwise-empirical p-value = 0.00025) that was predominantly driven by linkage to the ring, index, and middle fingers. The strongest univariate linkage was to 1q42.2 (LOD = 2.04, point-wise p-value = 0.002, genome-wide p-value = 0.29). In summary, the combination of univariate and multivariate results was more informative than simple univariate analyses alone. Patterns of quantitative trait loci factor loadings consistent with developmental fields were observed, and the simple pleiotropic model underlying the absolute ridge count was not sufficient to characterize the interrelationships between the ridge counts of individual fingers. PMID:17907812
Gupta, Deepak K; Claggett, Brian; Wells, Quinn; Cheng, Susan; Li, Man; Maruthur, Nisa; Selvin, Elizabeth; Coresh, Josef; Konety, Suma; Butler, Kenneth R; Mosley, Thomas; Boerwinkle, Eric; Hoogeveen, Ron; Ballantyne, Christie M; Solomon, Scott D
2015-05-21
Natriuretic peptides promote natriuresis, diuresis, and vasodilation. Experimental deficiency of natriuretic peptides leads to hypertension (HTN) and cardiac hypertrophy, conditions more common among African Americans. Hospital-based studies suggest that African Americans may have reduced circulating natriuretic peptides, as compared to Caucasians, but definitive data from community-based cohorts are lacking. We examined plasma N-terminal pro B-type natriuretic peptide (NTproBNP) levels according to race in 9137 Atherosclerosis Risk in Communities (ARIC) Study participants (22% African American) without prevalent cardiovascular disease at visit 4 (1996-1998). Multivariable linear and logistic regression analyses were performed adjusting for clinical covariates. Among African Americans, percent European ancestry was determined from genetic ancestry informative markers and then examined in relation to NTproBNP levels in multivariable linear regression analysis. NTproBNP levels were significantly lower in African Americans (median, 43 pg/mL; interquartile range [IQR], 18, 88) than Caucasians (median, 68 pg/mL; IQR, 36, 124; P<0.0001). In multivariable models, adjusted log NTproBNP levels were 40% lower (95% confidence interval [CI], -43, -36) in African Americans, compared to Caucasians, which was consistent across subgroups of age, gender, HTN, diabetes, insulin resistance, and obesity. African-American race was also significantly associated with having nondetectable NTproBNP (adjusted OR, 5.74; 95% CI, 4.22, 7.80). In multivariable analyses in African Americans, a 10% increase in genetic European ancestry was associated with a 7% (95% CI, 1, 13) increase in adjusted log NTproBNP. African Americans have lower levels of plasma NTproBNP than Caucasians, which may be partially owing to genetic variation. Low natriuretic peptide levels in African Americans may contribute to the greater risk for HTN and its sequalae in this population. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Grant, J D; Lynskey, M T; Madden, P A F; Nelson, E C; Few, L R; Bucholz, K K; Statham, D J; Martin, N G; Heath, A C; Agrawal, A
2015-12-01
Genetic influences contribute significantly to co-morbidity between conduct disorder and substance use disorders. Estimating the extent of overlap can assist in the development of phenotypes for genomic analyses. Multivariate quantitative genetic analyses were conducted using data from 9577 individuals, including 3982 complete twin pairs and 1613 individuals whose co-twin was not interviewed (aged 24-37 years) from two Australian twin samples. Analyses examined the genetic correlation between alcohol dependence, nicotine dependence and cannabis abuse/dependence and the extent to which the correlations were attributable to genetic influences shared with conduct disorder. Additive genetic (a(2) = 0.48-0.65) and non-shared environmental factors explained variance in substance use disorders. Familial effects on conduct disorder were due to additive genetic (a(2) = 0.39) and shared environmental (c(2) = 0.15) factors. All substance use disorders were influenced by shared genetic factors (rg = 0.38-0.56), with all genetic overlap between substances attributable to genetic influences shared with conduct disorder. Genes influencing individual substance use disorders were also significant, explaining 40-73% of the genetic variance per substance. Among substance users in this sample, the well-documented clinical co-morbidity between conduct disorder and substance use disorders is primarily attributable to shared genetic liability. Interventions targeted at generally reducing deviant behaviors may address the risk posed by this shared genetic liability. However, there is also evidence for genetic and environmental influences specific to each substance. The identification of these substance-specific risk factors (as well as potential protective factors) is critical to the future development of targeted treatment protocols.
Susceptible genes of restless legs syndrome in migraine.
Fuh, Jong-Ling; Chung, Ming-Yi; Yao, Shu-Chih; Chen, Ping-Kun; Liao, Yi-Chu; Hsu, Chia-Lin; Wang, Po-Jen; Wang, Yen-Feng; Chen, Shih-Pin; Fann, Cathy S-J; Kao, Lung-Sen; Wang, Shuu-Jiun
2016-10-01
Objective Several genetic variants have been found to increase the risk of restless legs syndrome (RLS). The aim of the present study was to determine if these genetic variants were also associated with the comorbidity of RLS and migraine in patients. Methods Thirteen single-nucleotide polymorphisms (SNPs) at six RLS risk loci ( MEIS1, BTBD9, MAP2K5, PTPRD, TOX3, and an intergenic region on chromosome 2p14) were genotyped in 211 migraine patients with RLS and 781 migraine patients without RLS. Association analyses were performed for the overall cohort, as well as for the subgroups of patients who experienced migraines with and without aura and episodic migraines (EMs) vs. chronic migraines (CMs). In order to verify which genetic markers were potentially related to the incidence of RLS in migraine patients, multivariate regression analyses were also performed. Results Among the six tested loci, only MEIS1 was significantly associated with RLS. The most significant SNP of MEIS1, rs2300478, increased the risk of RLS by 1.42-fold in the overall cohort ( p = 0.0047). In the subgroup analyses, MEIS1 augmented the risk of RLS only in the patients who experienced EMs (odds ratio (OR) = 1.99, p = 0.0004) and not those experiencing CMs. Multivariate regression analyses further showed that rs2300478 in MEIS1 (OR = 1.39, p = 0.018), a CM diagnosis (OR = 1.52, p = 0.022), and depression (OR = 1.86, p = 0.005) were independent predictors of RLS in migraine. Conclusions MEIS1 variants were associated with an increased risk of RLS in migraine patients. It is possible that an imbalance in iron homeostasis and the dopaminergic system may represent a link between RLS incidence and migraines.
Griswold, Cortland K
2015-12-21
Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peeters, M W; Thomis, M A; Claessens, A L; Loos, R J F; Maes, H H M; Lysens, R; Vanden Eynde, B; Vlietinck, R; Beunen, G
2003-01-01
Several studies with different designs have attempted to estimate the heritability of somatotype components. However they often ignore the covariation between the three components as well as possible sex and age effects. Shared environmental factors are not always controlled for. This study explores the pattern of genetic and environmental determination of the variation in Heath-Carter somatotype components from early adolescence into young adulthood. Data from the Leuven Longitudinal Twin Study, a longitudinal sample of Belgian same-aged twins followed from 10 to 18 years (n = 105 pairs, equally divided over five zygosity groups), is entered into a multivariate path analysis. Thus the covariation between the somatotype components is taken into account, gender heterogeneity can be tested, common environmental influences can be distinguished from genetic effects and age effects are controlled for. Heritability estimates from 10 to 18 years range from 0.21 to 0.88, 0.46 to 0.76 and 0.16 to 0.73 for endomorphy, mesomorphy and ectomorphy in boys. In girls, heritability estimates range from 0.76 to 0.89, 0.36 to 0.57 and 0.57 to 0.76 for the respective somatotype components. Sex differences are significant from 14 years onwards. More than half of the variance in all somatotype components for both sexes at all time points is explained by factors the three components have in common. The finding of substantial genetic influence on the variability of somatotype components is further supported. The need to consider somatotype as a whole is stressed as well as the need for sex- and perhaps age-specific analyses. Further multivariate analyses are needed to confirm the present findings.
Peakall, Rod; Smouse, Peter E
2012-10-01
GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G'(ST), G''(ST), Jost's D(est) and F'(ST) through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised. GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx. rod.peakall@anu.edu.au.
The genetic links between the big five personality traits and general interest domains.
Kandler, Christian; Bleidorn, Wiebke; Riemann, Rainer; Angleitner, Alois; Spinath, Frank M
2011-12-01
This is the first genetically informative study in which multiple informants were used to quantify the genetic and environmental sources of individual differences in general interests as well as the phenotypic and genetic links between general interests and Big Five personality traits. Self-reports and two peer ratings from 844 individuals, including 225 monozygotic and 113 dizygotic complete twin pairs, were collected. Multiple-rater scores (composites) revealed that the averaged levels of genetic and environmental effects on seven broad interest domains were similar to those on personality traits. Multivariate analyses showed that about 35% of the genetic and 9% of the environmental variance in interests were explained by personality domains, in particular by Openness. The findings suggest that interests cannot easily be considered as a byproduct of the interactions between personality genotypes and the environmental influences but rather as an internal regulation of behavior with an own genetic basis.
Genetic specificity of face recognition.
Shakeshaft, Nicholas G; Plomin, Robert
2015-10-13
Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities.
Genetic specificity of face recognition
Shakeshaft, Nicholas G.; Plomin, Robert
2015-01-01
Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities. PMID:26417086
Suicidal ideation, depression, and conduct disorder in a sample of adolescent and young adult twins
Linker, Julie; Gillespie, Nathan A; Maes, Hermine; Eaves, Lindon; Silberg, Judy L.
2012-01-01
Background The co-occurrence of suicidal ideation, depression, and conduct disturbance is likely explained in part by correlated genetic and environmental risk factors. Little is known about the specific nature of these associations. Method Structured interviews on 2814 twins from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) and young adult follow-up (YAFU) yielded data on symptoms of depression, conduct disorder and adolescent and young adult suicidal ideation. Results Univariate analyses revealed that the familial aggregation for each trait was explained by a combination of additive genetic and shared environmental effects. Suicidal ideation in adolescence was explained in part by genetic influences, but predominantly accounted for by environmental factors. A mixture of genetic and shared environmental influences explained ideation occurring in young adulthood. Multivariate analyses revealed that there are genetic and shared environmental effects common to suicidal ideation, depression, and conduct disorder. The association between adolescent suicidal ideation and CD was attributable to the same genetic and environmental risk factors for depression. Conclusions These findings underscore that prevention and intervention strategies should reflect the different underlying mechanisms involving depression and conduct disorder to assist in identifying adolescents at suicidal risk. PMID:22646517
Suicidal ideation, depression, and conduct disorder in a sample of adolescent and young adult twins.
Linker, Julie; Gillespie, Nathan A; Maes, Hermine; Eaves, Lindon; Silberg, Judy L
2012-08-01
The co-occurrence of suicidal ideation, depression, and conduct disturbance is likely explained in part by correlated genetic and environmental risk factors. Little is known about the specific nature of these associations. Structured interviews on 2,814 twins from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) and Young Adult Follow-Up (YAFU) yielded data on symptoms of depression, conduct disorder, and adolescent and young adult suicidal ideation. Univariate analyses revealed that the familial aggregation for each trait was explained by a combination of additive genetic and shared environmental effects. Suicidal ideation in adolescence was explained in part by genetic influences, but predominantly accounted for by environmental factors. A mixture of genetic and shared environmental influences explained ideation occurring in young adulthood. Multivariate analyses revealed that there are genetic and shared environmental effects common to suicidal ideation, depression, and conduct disorder. The association between adolescent suicidal ideation and CD was attributable to the same genetic and environmental risk factors for depression. These findings underscore that prevention and intervention strategies should reflect the different underlying mechanisms involving depression and conduct disorder to assist in identifying adolescents at suicidal risk. © 2012 The American Association of Suicidology.
Genetic characterization of Colombian Bahman cattle using microsatellites markers.
Gómez, Y M; Fernandez, M; Rivera, D; Gómez, G; Bernal, J E
2013-07-01
Genetic structure and diversity of 3789 animals of the Brahman breed from 23 Colombian regions were assessed. Considering the Brahman Zebu cattle as a single population, the multilocus test based on the HW equilibrium, shows significant differences (P < 0.001). Genetic characterization made on the cattle population allowed to examine the genetic variability, calculating a H(o) = 0.6621. Brahman population in Colombia was a small subdivision within populations (F(it) = 0.045), a geographic subdivision almost non-existent or low differentiation (F(st) = 0.003) and the F(is) calculated (0.042) indicates no detriment to the variability in the population, despite the narrow mating takes place or there is a force that causes the variability is sustained without inbreeding actually affect the cattle population. The outcomes of multivariate analyses, Bayesian inferences and interindividual genetic distances suggested that there is no genetic sub-structure in the population, because of the high rate of animal migration among regions.
Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models
Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong
2015-01-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong
2015-05-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.
Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej
2017-12-22
Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and structure in stone marten. Analysis of local barriers that reduced dispersal and large scale analyses of genetic structure and demographic history highlight the importance of isolation by distance and forest cover for the past colonization of central Europe by stone marten. This confirmed the hypothesis that human-landscape changes (deforestation) accelerated stone marten expansion, to which climate warming probably has also been contributing over the last few decades.
Blankers, T; Lübke, A K; Hennig, R M
2015-09-01
Studying the genetic architecture of sexual traits provides insight into the rate and direction at which traits can respond to selection. Traits associated with few loci and limited genetic and phenotypic constraints tend to evolve at high rates typically observed for secondary sexual characters. Here, we examined the genetic architecture of song traits and female song preferences in the field crickets Gryllus rubens and Gryllus texensis. Song and preference data were collected from both species and interspecific F1 and F2 hybrids. We first analysed phenotypic variation to examine interspecific differentiation and trait distributions in parental and hybrid generations. Then, the relative contribution of additive and additive-dominance variation was estimated. Finally, phenotypic variance-covariance (P) matrices were estimated to evaluate the multivariate phenotype available for selection. Song traits and preferences had unimodal trait distributions, and hybrid offspring were intermediate with respect to the parents. We uncovered additive and dominance variation in song traits and preferences. For two song traits, we found evidence for X-linked inheritance. On the one hand, the observed genetic architecture does not suggest rapid divergence, although sex linkage may have allowed for somewhat higher evolutionary rates. On the other hand, P matrices revealed that multivariate variation in song traits aligned with major dimensions in song preferences, suggesting a strong selection response. We also found strong covariance between the main traits that are sexually selected and traits that are not directly selected by females, providing an explanation for the striking multivariate divergence in male calling songs despite limited divergence in female preferences. © 2015 European Society For Evolutionary Biology.
Peakall, Rod; Smouse, Peter E.
2012-01-01
Summary: GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G′ST, G′′ST, Jost’s Dest and F′ST through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised. Availability and implementation: GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx. Contact: rod.peakall@anu.edu.au PMID:22820204
Charmantier, Anne; Perrins, Christopher; McCleery, Robin H.; Sheldon, Ben C.
2006-01-01
Why do individuals stop reproducing after a certain age, and how is this age determined? The antagonistic pleiotropy theory for the evolution of senescence predicts that increased early-life performance should be accompanied by earlier (or faster) senescence. Hence, an individual that has started to breed early should also lose its reproductive capacities early. We investigate here the relationship between age at first reproduction (AFR) and age at last reproduction (ALR) in a free-ranging mute swan (Cygnus olor) population monitored for 36 years. Using multivariate analyses on the longitudinal data, we show that both traits are strongly selected in opposite directions. Analysis of the phenotypic covariance between these characters shows that individuals vary in their inherent quality, such that some individuals have earlier AFR and later ALR than expected. Quantitative genetic pedigree analyses show that both traits possess additive genetic variance but also that AFR and ALR are positively genetically correlated. Hence, although both traits display heritable variation and are under opposing directional selection, their evolution is constrained by a strong evolutionary tradeoff. These results are consistent with the theory that increased early-life performance comes with faster senescence because of genetic tradeoffs. PMID:16618935
Finkel, Deborah; Pedersen, Nancy L
2014-01-01
Intraindividual variability (IIV) in reaction time has been related to cognitive decline, but questions remain about the nature of this relationship. Mean and range in movement and decision time for simple reaction time were available from 241 individuals aged 51-86 years at the fifth testing wave of the Swedish Adoption/Twin Study of Aging. Cognitive performance on four factors was also available: verbal, spatial, memory, and speed. Analyses indicated that range in reaction time could be used as an indicator of IIV. Heritability estimates were 35% for mean reaction and 20% for range in reaction. Multivariate analysis indicated that the genetic variance on the memory, speed, and spatial factors is shared with genetic variance for mean or range in reaction time. IIV shares significant genetic variance with fluid ability in late adulthood, over and above and genetic variance shared with mean reaction time.
Why are hyperactivity and academic achievement related?
Saudino, Kimberly J; Plomin, Robert
2007-01-01
Although a negative association between hyperactivity and academic achievement is well documented, little is known about the genetic and/or environmental mechanisms responsible for the association. The present study explored links between parent and teacher ratings of hyperactive behavior problems and teacher-assessed achievement in a sample of 1,876 twin pairs (mean age 7.04 years). The results did not differ across rater, nor were there significant differences between males or females or for twins in the same or different classrooms. Hyperactivity was significantly correlated with achievement. Multivariate model-fitting analyses revealed significant genetic and nonshared environmental covariance between the two phenotypes. In addition, bivariate heritabilities were substantial, indicating that the phenotypic correlations between hyperactivity and achievement were largely mediated by genetic influences.
Shim, Heejung; Chasman, Daniel I.; Smith, Joshua D.; Mora, Samia; Ridker, Paul M.; Nickerson, Deborah A.; Krauss, Ronald M.; Stephens, Matthew
2015-01-01
We conducted a genome-wide association analysis of 7 subfractions of low density lipoproteins (LDLs) and 3 subfractions of intermediate density lipoproteins (IDLs) measured by gradient gel electrophoresis, and their response to statin treatment, in 1868 individuals of European ancestry from the Pharmacogenomics and Risk of Cardiovascular Disease study. Our analyses identified four previously-implicated loci (SORT1, APOE, LPA, and CETP) as containing variants that are very strongly associated with lipoprotein subfractions (log10Bayes Factor > 15). Subsequent conditional analyses suggest that three of these (APOE, LPA and CETP) likely harbor multiple independently associated SNPs. Further, while different variants typically showed different characteristic patterns of association with combinations of subfractions, the two SNPs in CETP show strikingly similar patterns - both in our original data and in a replication cohort - consistent with a common underlying molecular mechanism. Notably, the CETP variants are very strongly associated with LDL subfractions, despite showing no association with total LDLs in our study, illustrating the potential value of the more detailed phenotypic measurements. In contrast with these strong subfraction associations, genetic association analysis of subfraction response to statins showed much weaker signals (none exceeding log10Bayes Factor of 6). However, two SNPs (in APOE and LPA) previously-reported to be associated with LDL statin response do show some modest evidence for association in our data, and the subfraction response proles at the LPA SNP are consistent with the LPA association, with response likely being due primarily to resistance of Lp(a) particles to statin therapy. An additional important feature of our analysis is that, unlike most previous analyses of multiple related phenotypes, we analyzed the subfractions jointly, rather than one at a time. Comparisons of our multivariate analyses with standard univariate analyses demonstrate that multivariate analyses can substantially increase power to detect associations. Software implementing our multivariate analysis methods is available at http://stephenslab.uchicago.edu/software.html. PMID:25898129
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
A Multivariate Twin Study of Hippocampal Volume, Self-Esteem and Well-Being in Middle Aged Men
Kubarych, Thomas S.; Prom-Wormley, Elizabeth C.; Franz, Carol E.; Panizzon, Matthew S.; Dale, Anders M.; Fischl, Bruce; Eyler, Lisa T.; Fennema-Notestine, Christine; Grant, Michael D.; Hauger, Richard L.; Hellhammer, Dirk H.; Jak, Amy J.; Jernigan, Terry L.; Lupien, Sonia J.; Lyons, Michael J.; Mendoza, Sally P.; Neale, Michael C.; Seidman, Larry J.; Tsuang, Ming T.; Kremen, William S.
2012-01-01
Self-esteem and well-being are important for successful aging, and some evidence suggests that self-esteem and well-being are associated with hippocampal volume, cognition, and stress responsivity. Whereas most of this evidence is based on studies of older adults, we investigated self-esteem, well-being and hippocampal volume in 474 male middle-age twins. Self-esteem was significantly positively correlated with hippocampal volume (.09, p=.03 for left hippocampus, .10, p=.04 for right). Correlations for well-being were not significant (ps ≫.05). There were strong phenotypic correlations between self-esteem and well-being (.72, p<.001) and between left and right hippocampal volume (.72, p<.001). In multivariate genetic analyses, a 2-factor AE model with well-being and self-esteem on one factor and left and right hippocampal volumes on the other factor fit the data better than Cholesky, independent pathway or common pathway models. The correlation between the two genetic factors was .12 (p=.03); the correlation between the environmental factors was .09 (p>05). Our results indicate that largely different genetic and environmental factors underlie self-esteem and well-being on the one hand and hippocampal volume on the other. PMID:22471516
Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation
Meyer, Karin
2016-01-01
Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty—derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated—rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined. PMID:27317681
Genetic and Environmental Influences on Systemic Markers of Inflammation in Middle-Aged Male Twins
Su, Shaoyong; Snieder, Harold; Miller, Andrew H.; Ritchie, James; Bremner, J. Douglas; Goldberg, Jack; Dai, Jun; Jones, Linda; Murrah, Nancy V.; Zhao, Jinying; Vaccarino, Viola
2008-01-01
Objectives The aims of this study were to determine the relative influence of genetic and environmental contributions to inflammatory biomarkers, and to what extent correlations among these markers are due to genetic or environmental factors. Methods We performed univariate and multivariate genetic analyses of four inflammatory markers: interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R), C-reactive protein (CRP), and fibrinogen, in 166 (88 monozygotic and 78 dizygotic) middle-aged male twin pairs. Results The mean age (±SD) of the twins was 54 (±2.93) years. Heritability was substantial for CRP (0.61, 95% CI: 0.47–0.72) and moderate to fair for IL-6 (0.31, 0.13–0.46), sIL-6R (0.49, 0.30–0.76) and fibrinogen (0.52, 0.34–0.65). IL-6, CRP and fibrinogen showed significant correlations, but not with sIL-6R. Multivariate genetic analysis found that these correlations could be best explained by a common pathway model, where the common factor explained 27%, 73% and 25% of the variance of IL-6, CRP and fibrinogen, respectively. About 46% (95% CI: 21–64%) of the correlations among the three inflammatory markers could be explained by the genetic factors. After adjusting for covariates known to influence inflammation levels, heritability estimates were slightly decreased but the overall results remained similar. Conclusions A significant part of the variation in inflammatory marker levels is due to genetic influences. Furthermore, almost 50% of the shared variance among these biomarkers is due to a common genetic factor which likely plays a key role in the regulation of inflammation. PMID:18243214
Pertoldi, Cino; Sonne, Christian; Wiig, Øystein; Baagøe, Hans J; Loeschcke, Volker; Bechshøft, Thea Østergaard
2012-06-01
A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management decisions. © 2012 The Authors.
Understanding the science-learning environment: A genetically sensitive approach.
Haworth, Claire M A; Davis, Oliver S P; Hanscombe, Ken B; Kovas, Yulia; Dale, Philip S; Plomin, Robert
2013-02-01
Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000 pairs of 14-year-old twins from the UK Twins Early Development Study reported on their experiences of the science-learning environment and were assessed for their performance in science using a web-based test of scientific enquiry. Multivariate twin analyses were used to investigate the genetic and environmental links between environment and outcome. The most surprising result was that the science-learning environment was almost as heritable (43%) as performance on the science test (50%), and showed negligible shared environmental influence (3%). Genetic links explained most (56%) of the association between learning environment and science outcome, indicating gene-environment correlation.
FGWAS: Functional genome wide association analysis.
Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-10-01
Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Heritability of somatotype components: a multivariate analysis.
Peeters, M W; Thomis, M A; Loos, R J F; Derom, C A; Fagard, R; Claessens, A L; Vlietinck, R F; Beunen, G P
2007-08-01
To study the genetic and environmental determination of variation in Heath-Carter somatotype (ST) components (endomorphy, mesomorphy and ectomorphy). Multivariate path analysis on twin data. Eight hundred and three members of 424 adult Flemish twin pairs (18-34 years of age). The results indicate the significance of sex differences and the significance of the covariation between the three ST components. After age-regression, variation of the population in ST components and their covariation is explained by additive genetic sources of variance (A), shared (familial) environment (C) and unique environment (E). In men, additive genetic sources of variance explain 28.0% (CI 8.7-50.8%), 86.3% (71.6-90.2%) and 66.5% (37.4-85.1%) for endomorphy, mesomorphy and ectomorphy, respectively. For women, corresponding values are 32.3% (8.9-55.6%), 82.0% (67.7-87.7%) and 70.1% (48.9-81.8%). For all components in men and women, more than 70% of the total variation was explained by sources of variance shared between the three components, emphasising the importance of analysing the ST in a multivariate way. The findings suggest that the high heritabilities for mesomorphy and ectomorphy reported in earlier twin studies in adolescence are maintained in adulthood. For endomorphy, which represents a relative measure of subcutaneous adipose tissue, however, the results suggest heritability may be considerably lower than most values reported in earlier studies on adolescent twins. The heritability is also lower than values reported for, for example, body mass index (BMI), which next to the weight of organs and adipose tissue also includes muscle and bone tissue. Considering the differences in heritability between musculoskeletal robustness (mesomorphy) and subcutaneous adipose tissue (endomorphy) it may be questioned whether studying the genetics of BMI will eventually lead to a better understanding of the genetics of fatness, obesity and overweight.
Jang, K L; Vernon, P A; Livesley, W J
2000-06-01
This study seeks to estimate the extent to which a common genetic and environmental basis is shared between (i) traits delineating specific aspects of antisocial personality and alcohol misuse, and (ii) childhood family environments, traits delineating broad domains of personality pathology and alcohol misuse. Postal survey data were collected from monozygotic and dizygotic twin pairs. Twin pairs were recruited from Vancouver, British Columbia and London, Ontario, Canada using newspaper advertisements, media stories and twin clubs. Data obtained from 324 monozygotic and 335 dizygotic twin pairs were used to estimate the extent to which traits delineating specific antisocial personality traits and alcohol misuse shared a common genetic and environmental aetiology. Data from 81 monozygotic and 74 dizygotic twin pairs were used to estimate the degree to which traits delineating personality pathology, childhood family environment and alcohol misuse shared a common aetiology. Current alcohol misuse and personality pathology were measured using scales contained in the self-report Dimensional Assessment of Personality Pathology. Perceptions of childhood family environment were measured using the self-report Family Environment Scale. Multivariate genetic analyses showed that a subset of traits delineating components of antisocial personality (i.e. grandiosity, attention-seeking, failure to adopt social norms, interpersonal violence and juvenile antisocial behaviours) are influenced by genetic factors in common to alcohol misuse. Genetically based perceptions of childhood family environment had little relationship with alcohol misuse. Heritable personality factors that influence the perception of childhood family environment play only a small role in the liability to alcohol misuse. Instead, liability to alcohol misuse is related to genetic factors common a specific subset of antisocial personality traits describing conduct problems, narcissistic and stimulus-seeking behaviour.
On measures of association among genetic variables
Gianola, Daniel; Manfredi, Eduardo; Simianer, Henner
2012-01-01
Summary Systems involving many variables are important in population and quantitative genetics, for example, in multi-trait prediction of breeding values and in exploration of multi-locus associations. We studied departures of the joint distribution of sets of genetic variables from independence. New measures of association based on notions of statistical distance between distributions are presented. These are more general than correlations, which are pairwise measures, and lack a clear interpretation beyond the bivariate normal distribution. Our measures are based on logarithmic (Kullback-Leibler) and on relative ‘distances’ between distributions. Indexes of association are developed and illustrated for quantitative genetics settings in which the joint distribution of the variables is either multivariate normal or multivariate-t, and we show how the indexes can be used to study linkage disequilibrium in a two-locus system with multiple alleles and present applications to systems of correlated beta distributions. Two multivariate beta and multivariate beta-binomial processes are examined, and new distributions are introduced: the GMS-Sarmanov multivariate beta and its beta-binomial counterpart. PMID:22742500
Tordjman, S; Cohen, D; Anderson, G M; Botbol, M; Canitano, R; Coulon, N; Roubertoux, P L
2018-06-01
Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism. Copyright © 2018. Published by Elsevier Ltd.
Non-proportional odds multivariate logistic regression of ordinal family data.
Zaloumis, Sophie G; Scurrah, Katrina J; Harrap, Stephen B; Ellis, Justine A; Gurrin, Lyle C
2015-03-01
Methods to examine whether genetic and/or environmental sources can account for the residual variation in ordinal family data usually assume proportional odds. However, standard software to fit the non-proportional odds model to ordinal family data is limited because the correlation structure of family data is more complex than for other types of clustered data. To perform these analyses we propose the non-proportional odds multivariate logistic regression model and take a simulation-based approach to model fitting using Markov chain Monte Carlo methods, such as partially collapsed Gibbs sampling and the Metropolis algorithm. We applied the proposed methodology to male pattern baldness data from the Victorian Family Heart Study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vergara, María; Basto, Mafalda P.; Madeira, María José; Gómez-Moliner, Benjamín J.; Santos-Reis, Margarida; Fernandes, Carlos; Ruiz-González, Aritz
2015-01-01
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species. PMID:26222680
Vergara, María; Basto, Mafalda P; Madeira, María José; Gómez-Moliner, Benjamín J; Santos-Reis, Margarida; Fernandes, Carlos; Ruiz-González, Aritz
2015-01-01
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species.
Lee, T; Thalamuthu, A; Henry, J D; Trollor, J N; Ames, D; Wright, M J; Sachdev, P S
2018-05-01
We used a sub-sample from the Older Australian Twins Study to estimate the heritability of performance on three tests of language ability: Boston Naming Test (BNT), Letter/Phonemic Fluency (FAS) and Category/Semantic Fluency (CFT) Tests. After adjusting for age, sex, education, mood, and global cognition (GC), heritability estimates obtained for the three tests were 0.35, 0.59, and 0.20, respectively. Multivariate analyses showed that the genetic correlation were high for BNT and CFT (0.61), but low for BNT and FAS (0.17), and for FAS and CFT (0.28). Genetic modelling with Cholesky decomposition indicated that the covariation between the three measures could be explained by a common genetic factor. Environmental correlations between the language ability measures were low, and there were considerable specific environmental influences for each measure. Future longitudinal studies with language performance and neuroimaging data can further our understanding of genetic and environmental factors involved in the process of cognitive aging.
Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Petrill, Stephen A.; Plomin, Robert
2013-01-01
Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years. PMID:24319294
Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Petrill, Stephen A; Plomin, Robert
2012-08-01
Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years.
Hamilton, Jada G; Waters, Erika A
2018-02-01
People who believe that cancer has both genetic and behavioral risk factors have more accurate mental models of cancer causation and may be more likely to engage in cancer screening behaviors than people who do not hold such multifactorial causal beliefs. This research explored possible health cognitions and emotions that might produce such differences. Using nationally representative cross-sectional data from the US Health Information National Trends Survey (N = 2719), we examined whether endorsing a multifactorial model of cancer causation was associated with perceptions of risk and other cancer-related cognitions and affect. Data were analyzed using linear regression with jackknife variance estimation and procedures to account for the complex survey design and weightings. Bivariate and multivariable analyses indicated that people who endorsed multifactorial beliefs about cancer had higher absolute risk perceptions, lower pessimism about cancer prevention, and higher worry about harm from environmental toxins that could be ingested or that emanate from consumer products (Ps < .05). Bivariate analyses indicated that multifactorial beliefs were also associated with higher feelings of risk, but multivariable analyses suggested that this effect was accounted for by the negative affect associated with reporting a family history of cancer. Multifactorial beliefs were not associated with believing that everything causes cancer or that there are too many cancer recommendations to follow (Ps > .05). Holding multifactorial causal beliefs about cancer are associated with a constellation of risk perceptions, health cognitions, and affect that may motivate cancer prevention and detection behavior. Copyright © 2017 John Wiley & Sons, Ltd.
Lubelchek, Ronald J.; Hoehnen, Sarah C.; Hotton, Anna L.; Kincaid, Stacey L.; Barker, David E.; French, Audrey L.
2014-01-01
Introduction HIV transmission cluster analyses can inform HIV prevention efforts. We describe the first such assessment for transmission clustering among HIV patients in Chicago. Methods We performed transmission cluster analyses using HIV pol sequences from newly diagnosed patients presenting to Chicago’s largest HIV clinic between 2008 and 2011. We compared sequences via progressive pairwise alignment, using neighbor joining to construct an un-rooted phylogenetic tree. We defined clusters as >2 sequences among which each sequence had at least one partner within a genetic distance of ≤ 1.5%. We used multivariable regression to examine factors associated with clustering and used geospatial analysis to assess geographic proximity of phylogenetically clustered patients. Results We compared sequences from 920 patients; median age 35 years; 75% male; 67% Black, 23% Hispanic; 8% had a Rapid Plasma Reagin (RPR) titer ≥ 1:16 concurrent with their HIV diagnosis. We had HIV transmission risk data for 54%; 43% identified as men who have sex with men (MSM). Phylogenetic analysis demonstrated 123 patients (13%) grouped into 26 clusters, the largest having 20 members. In multivariable regression, age < 25, Black race, MSM status, male gender, higher HIV viral load, and RPR ≥ 1:16 associated with clustering. We did not observe geographic grouping of genetically clustered patients. Discussion Our results demonstrate high rates of HIV transmission clustering, without local geographic foci, among young Black MSM in Chicago. Applied prospectively, phylogenetic analyses could guide prevention efforts and help break the cycle of transmission. PMID:25321182
Puopolo, Maria; Ladogana, Anna; Vetrugno, Vito; Pocchiari, Maurizio
2011-07-01
The occurrence of transfusion transmissions of variant Creutzfeldt-Jakob disease (CJD) cases has reawakened attention to the possible similar risk posed by other forms of CJD. CJD with a definite or probable diagnosis (sporadic CJD, n = 741; genetic CJD, n = 175) and no-CJD patients with definite alternative diagnosis (n = 482) with available blood transfusion history were included in the study. The risk of exposure to blood transfusion occurring more than 10 years before disease onset and for some possible confounding factors was evaluated by calculating crude odds ratios (ORs). Variables with significant ORs in univariate analyses were included in multivariate logistic regression analyses. In the univariate model, blood transfusion occurring more than 10 years before clinical onset is 4.1-fold more frequent in sporadic CJD than in other neurologic disorders. This significance is lost when the 10-year lag time was not considered. Multivariate analyses show that the risk of developing sporadic CJD after transfusion increases (OR, 5.05) after adjusting for possible confounding factors. Analysis conducted on patients with genetic CJD did not reveal any significant risk factor associated with transfusion. This is the first case-control study showing a significant risk of transfusion occurring more than 10 years before clinical onset in sporadic CJD patients. It remains questionable whether the significance of these data is biologically plausible or the consequence of biases in the design of the study, but they counterbalance previous epidemiologic negative reports that might have overestimated the assessment of blood safety in sporadic CJD. © 2010 American Association of Blood Banks.
Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P; Gill, Michael; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V; Buitelaar, Jan K; Arias-Vásquez, Alejandro
2013-11-01
Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to identify biological risk factors involved in this disorder. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Comparative multivariate analysis of biometric traits of West African Dwarf and Red Sokoto goats.
Yakubu, Abdulmojeed; Salako, Adebowale E; Imumorin, Ikhide G
2011-03-01
The population structure of 302 randomly selected West African Dwarf (WAD) and Red Sokoto (RS) goats was examined using multivariate morphometric analyses. This was to make the case for conservation, rational management and genetic improvement of these two most important Nigerian goat breeds. Fifteen morphometric measurements were made on each individual animal. RS goats were superior (P<0.05) to the WAD for the body size and skeletal proportions investigated. The phenotypic variability between the two breeds was revealed by their mutual responses in the principal components. While four principal components were extracted for WAD goats, three components were obtained for their RS counterparts with variation in the loading traits of each component for each breed. The Mahalanobis distance of 72.28 indicated a high degree of spatial racial separation in morphology between the genotypes. The Ward's option of the cluster analysis consolidated the morphometric distinctness of the two breeds. Application of selective breeding to genetic improvement would benefit from the detected phenotypic differentiation. Other implications for management and conservation of the goats are highlighted.
Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies
Teplitsky, Celine; Tarka, Maja; Møller, Anders P.; Nakagawa, Shinichi; Balbontín, Javier; Burke, Terry A.; Doutrelant, Claire; Gregoire, Arnaud; Hansson, Bengt; Hasselquist, Dennis; Gustafsson, Lars; de Lope, Florentino; Marzal, Alfonso; Mills, James A.; Wheelwright, Nathaniel T.; Yarrall, John W.; Charmantier, Anne
2014-01-01
Background In a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available. Methodology/Principal Findings We investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found. Conclusions These results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary dynamics and hence population persistence in the face of rapid environmental change. PMID:24608111
Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene.
Wan, Emily S; Castaldi, Peter J; Cho, Michael H; Hokanson, John E; Regan, Elizabeth A; Make, Barry J; Beaty, Terri H; Han, MeiLan K; Curtis, Jeffrey L; Curran-Everett, Douglas; Lynch, David A; DeMeo, Dawn L; Crapo, James D; Silverman, Edwin K
2014-08-06
Preserved Ratio Impaired Spirometry (PRISm), defined as a reduced FEV1 in the setting of a preserved FEV1/FVC ratio, is highly prevalent and is associated with increased respiratory symptoms, systemic inflammation, and mortality. Studies investigating quantitative chest tomographic features, genetic associations, and subtypes in PRISm subjects have not been reported. Data from current and former smokers enrolled in COPDGene (n = 10,192), an observational, cross-sectional study which recruited subjects aged 45-80 with ≥10 pack years of smoking, were analyzed. To identify epidemiological and radiographic predictors of PRISm, we performed univariate and multivariate analyses comparing PRISm subjects both to control subjects with normal spirometry and to subjects with COPD. To investigate common genetic predictors of PRISm, we performed a genome-wide association study (GWAS). To explore potential subgroups within PRISm, we performed unsupervised k-means clustering. The prevalence of PRISm in COPDGene is 12.3%. Increased dyspnea, reduced 6-minute walk distance, increased percent emphysema and decreased total lung capacity, as well as increased segmental bronchial wall area percentage were significant predictors (p-value <0.05) of PRISm status when compared to control subjects in multivariate models. Although no common genetic variants were identified on GWAS testing, a significant association with Klinefelter's syndrome (47XXY) was observed (p-value < 0.001). Subgroups identified through k-means clustering include a putative "COPD-subtype", "Restrictive-subtype", and a highly symptomatic "Metabolic-subtype". PRISm subjects are clinically and genetically heterogeneous. Future investigations into the pathophysiological mechanisms behind and potential treatment options for subgroups within PRISm are warranted. Clinicaltrials.gov Identifier: NCT000608764.
The structure of genetic and environmental risk factors for phobias in women.
Czajkowski, N; Kendler, K S; Tambs, K; Røysamb, E; Reichborn-Kjennerud, T
2011-09-01
To explore the genetic and environmental factors underlying the co-occurrence of lifetime diagnoses of DSM-IV phobia. Female twins (n=1430) from the population-based Norwegian Institute of Public Health Twin Panel were assessed at personal interview for DSM-IV lifetime specific phobia, social phobia and agoraphobia. Comorbidity between the phobias were assessed by odds ratios (ORs) and polychoric correlations and multivariate twin models were fitted in Mx. Phenotypic correlations of lifetime phobia diagnoses ranged from 0.55 (agoraphobia and social phobia, OR 10.95) to 0.06 (animal phobia and social phobia, OR 1.21). In the best fitting twin model, which did not include shared environmental factors, heritability estimates for the phobias ranged from 0.43 to 0.63. Comorbidity between the phobias was accounted for by two common liability factors. The first loaded principally on animal phobia and did not influence the complex phobias (agoraphobia and social phobia). The second liability factor strongly influenced the complex phobias, but also loaded weak to moderate on all the other phobias. Blood phobia was mainly influenced by a specific genetic factor, which accounted for 51% of the total and 81% of the genetic variance. Phobias are highly co-morbid and heritable. Our results suggest that the co-morbidity between phobias is best explained by two distinct liability factors rather than a single factor, as has been assumed in most previous multivariate twin analyses. One of these factors was specific to the simple phobias, while the other was more general. Blood phobia was mainly influenced by disorder specific genetic factors.
The structure of genetic and environmental risk factors for phobias in women
Czajkowski, N.; Kendler, K. S.; Tambs, K.; Røysamb, E.; Reichborn-Kjennerud, T.
2011-01-01
Background To explore the genetic and environmental factors underlying the co-occurrence of lifetime diagnoses of DSM-IV phobia. Method Female twins (n = 1430) from the population-based Norwegian Institute of Public Health Twin Panel were assessed at personal interview for DSM-IV lifetime specific phobia, social phobia and agoraphobia. Comorbidity between the phobias were assessed by odds ratios (ORs) and polychoric correlations and multivariate twin models were fitted in Mx. Results Phenotypic correlations of lifetime phobia diagnoses ranged from 0.55 (agoraphobia and social phobia, OR 10.95) to 0.06 (animal phobia and social phobia, OR 1.21). In the best fitting twin model, which did not include shared environmental factors, heritability estimates for the phobias ranged from 0.43 to 0.63. Comorbidity between the phobias was accounted for by two common liability factors. The first loaded principally on animal phobia and did not influence the complex phobias (agoraphobia and social phobia). The second liability factor strongly influenced the complex phobias, but also loaded weak to moderate on all the other phobias. Blood phobia was mainly influenced by a specific genetic factor, which accounted for 51% of the total and 81% of the genetic variance. Conclusions Phobias are highly co-morbid and heritable. Our results suggest that the co-morbidity between phobias is best explained by two distinct liability factors rather than a single factor, as has been assumed in most previous multivariate twin analyses. One of these factors was specific to the simple phobias, while the other was more general. Blood phobia was mainly influenced by disorder specific genetic factors. PMID:21211096
Gene flow connects coastal populations of a habitat specialist, the Clapper Rail Rallus crepitans
Coster, Stephanie S.; Welsh, Amy B.; Costanzo, Gary R.; Harding, Sergio R.; Anderson, James T.; Katzner, Todd
2018-01-01
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographic range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of North America, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks, and a weak pattern of genetic differentiation that increased with geographic distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the North American Atlantic coast, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioral factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.
De Vita, A; Bernardo, L; Gargano, D; Palermo, A M; Peruzzi, L; Musacchio, A
2009-11-01
Many factors have contributed to the richness of narrow endemics in the Mediterranean, including long-lasting human impact on pristine landscapes. The abandonment of traditional land-use practices is causing forest recovery throughout the Mediterranean mountains, by increasing reduction and fragmentation of open habitats. We investigated the population genetic structure and habitat dynamics of Plantago brutia Ten., a narrow endemic in mountain pastures of S Italy. Some plants were cultivated in the botanical garden to explore the species' breeding system. Genetic diversity was evaluated based on inter-simple sequence repeat (ISSR) polymorphisms in 150 individuals from most of known stands. Recent dynamics in the species habitat were checked over a 14-year period. Flower phenology, stigma receptivity and experimental pollinations revealed protogyny and self-incompatibility. With the exception of very small and isolated populations, high genetic diversity was found at the species and population level. amova revealed weak differentiation among populations, and the Mantel test suggested absence of isolation-by-distance. Multivariate analysis of population and genetic data distinguished the populations based on genetic richness, size and isolation. Landscape analyses confirmed recent reduction and isolation of potentially suitable habitats. Low selfing, recent isolation and probable seed exchange may have preserved P. brutia populations from higher loss of genetic diversity. Nonetheless, data related to very small populations suggest that this species may suffer further fragmentation and isolation. To preserve most of the species' genetic richness, future management efforts should consider the large and isolated populations recognised in our analyses.
Genetic characterization of local Criollo pig breeds from the Americas using microsatellite markers.
Revidatti, M A; Delgado Bermejo, J V; Gama, L T; Landi Periati, V; Ginja, C; Alvarez, L A; Vega-Pla, J L; Martínez, A M
2014-11-01
Little is known about local Criollo pig genetic resources and relationships among the various populations. In this paper, genetic diversity and relationships among 17 Criollo pig populations from 11 American countries were assessed with 24 microsatellite markers. Heterozygosities, F-statistics, and genetic distances were estimated, and multivariate, genetic structure and admixture analyses were performed. The overall means for genetic variability parameters based on the 24 microsatellite markers were the following: mean number of alleles per locus of 6.25 ± 2.3; effective number of alleles per locus of 3.33 ± 1.56; allelic richness per locus of 4.61 ± 1.37; expected and observed heterozygosity of 0.62 ± 0.04 and 0.57 ± 0.02, respectively; within-population inbreeding coefficient of 0.089; and proportion of genetic variability accounted for by differences among breeds of 0.11 ± 0.01. Genetic differences were not significantly associated with the geographical location to which breeds were assigned or their country of origin. Still, the NeighborNet dendrogram depicted the clustering by geographic origin of several South American breeds (Criollo Boliviano, Criollo of northeastern Argentina wet, and Criollo of northeastern Argentina dry), but some unexpected results were also observed, such as the grouping of breeds from countries as distant as El Salvador, Mexico, Ecuador, and Cuba. The results of genetic structure and admixture analyses indicated that the most likely number of ancestral populations was 11, and most breeds clustered separately when this was the number of predefined populations, with the exception of some closely related breeds that shared the same cluster and others that were admixed. These results indicate that Criollo pigs represent important reservoirs of pig genetic diversity useful for local development as well as for the pig industry.
Santalla, M; De Ron, A M; De La Fuente, M
2010-05-01
Southwestern Europe has been considered as a secondary centre of genetic diversity for the common bean. The dispersal of domesticated materials from their centres of origin provides an experimental system that reveals how human selection during cultivation and adaptation to novel environments affects the genetic composition. In this paper, our goal was to elucidate how distinct events could modify the structure and level of genetic diversity in the common bean. The genome-wide genetic composition was analysed at 42 microsatellite loci in individuals of 22 landraces of domesticated common bean from the Mesoamerican gene pool. The accessions were also characterised for phaseolin seed protein and for nine allozyme polymorphisms and phenotypic traits. One of this study's important findings was the complementary information obtained from all the polymorphisms examined. Most of the markers found to be potentially under the influence of selection were located in the proximity of previously mapped genes and quantitative trait loci (QTLs) related to important agronomic traits, which indicates that population genomics approaches are very efficient in detecting QTLs. As it was revealed by outlier simple sequence repeats, loci analysis with STRUCTURE software and multivariate analysis of phenotypic data, the landraces were grouped into three clusters according to seed size and shape, vegetative growth habit and genetic resistance. A total of 151 alleles were detected with an average of 4 alleles per locus and an average polymorphism information content of 0.31. Using a model-based approach, on the basis of neutral markers implemented in the software STRUCTURE, three clusters were inferred, which were in good agreement with multivariate analysis. Geographic and genetic distances were congruent with the exception of a few putative hybrids identified in this study, suggesting a predominant effect of isolation by distance. Genomic scans using both markers linked to genes affected by selection (outlier) and neutral markers showed advantages relative to other approaches, since they help to create a more complete picture of how adaptation to environmental conditions has sculpted the common bean genomes in southern Europe. The use of outlier loci also gives a clue about what selective forces gave rise to the actual phenotypes of the analysed landraces.
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
Ghosh, Sudipta; Dosaev, Tasbulat; Prakash, Jai; Livshits, Gregory
2017-04-01
The major aim of this study was to conduct comparative quantitative-genetic analysis of the body composition (BCP) and somatotype (STP) variation, as well as their correlations with blood pressure (BP) in two ethnically, culturally and geographically different populations: Santhal, indigenous ethnic group from India and Chuvash, indigenous population from Russia. Correspondently two pedigree-based samples were collected from 1,262 Santhal and1,558 Chuvash individuals, respectively. At the first stage of the study, descriptive statistics and a series of univariate regression analyses were calculated. Finally, multiple and multivariate regression (MMR) analyses, with BP measurements as dependent variables and age, sex, BCP and STP as independent variables were carried out in each sample separately. The significant and independent covariates of BP were identified and used for re-examination in pedigree-based variance decomposition analysis. Despite clear and significant differences between the populations in BCP/STP, both Santhal and Chuvash were found to be predominantly mesomorphic irrespective of their sex. According to MMR analyses variation of BP significantly depended on age and mesomorphic component in both samples, and in addition on sex, ectomorphy and fat mass index in Santhal and on fat free mass index in Chuvash samples, respectively. Additive genetic component contributes to a substantial proportion of blood pressure and body composition variance. Variance component analysis in addition to above mentioned results suggests that additive genetic factors influence BP and BCP/STP associations significantly. © 2017 Wiley Periodicals, Inc.
MILLER, WARREN B.; BARD, DAVID E.; PASTA, DAVID J.; RODGERS, JOSEPH LEE
2010-01-01
In spite of long-held beliefs that traits related to reproductive success tend to become fixed by evolution with little or no genetic variation, there is now considerable evidence that the natural variation of fertility within populations is genetically influenced and that a portion of that influence is related to the motivational precursors to fertility. We conduct a two-stage analysis to examine these inferences in a time-ordered multivariate context. First, using data from the National Longitudinal Survey of Youth, 1979, and LISREL analysis, we develop a structural equation model in which five hypothesized motivational precursors to fertility, measured in 1979–1982, predict both a child-timing and a child-number outcome, measured in 2002. Second, having chosen two time-ordered sequences of six variables from the SEM to represent our phenotypic models, we use Mx to conduct both univariate and multivariate behavioral genetic analyses with the selected variables. Our results indicate that one or more genes acting within a gene network have additive effects that operate through child-number desires to affect both the timing of the next child born and the final number of children born, that one or more genes acting through a separate network may have additive effects operating through gender role attitudes to produce downstream effects on the two fertility outcomes, and that no genetic variance is associated with either child-timing intentions or educational intentions. PMID:20608103
Distel, Marijn A; Trull, Timothy J; Willemsen, Gonneke; Vink, Jacqueline M; Derom, Catherine A; Lynskey, Michael; Martin, Nicholas G; Boomsma, Dorret I
2009-12-15
Recently, the nature of personality disorders and their relationship with normal personality traits has received extensive attention. The five-factor model (FFM) of personality, consisting of the personality traits neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness, is one of the proposed models to conceptualize personality disorders as maladaptive variants of continuously distributed personality traits. The present study examined the phenotypic and genetic association between borderline personality and FFM personality traits. Data were available for 4403 monozygotic twins, 4425 dizygotic twins, and 1661 siblings from 6140 Dutch, Belgian, and Australian families. Broad-sense heritability estimates for neuroticism, agreeableness, conscientiousness, extraversion, openness to experience, and borderline personality were 43%, 36%, 43%, 47%, 54%, and 45%, respectively. Phenotypic correlations between borderline personality and the FFM personality traits ranged from .06 for openness to experience to .68 for neuroticism. Multiple regression analyses showed that a combination of high neuroticism and low agreeableness best predicted borderline personality. Multivariate genetic analyses showed the genetic factors that influence individual differences in neuroticism, agreeableness, conscientiousness, and extraversion account for all genetic liability to borderline personality. Unique environmental effects on borderline personality, however, were not completely shared with those for the FFM traits (33% is unique to borderline personality). Borderline personality shares all genetic variation with neuroticism, agreeableness, conscientiousness, and extraversion. The unique environmental influences specific to borderline personality may cause individuals with a specific pattern of personality traits to cross a threshold and develop borderline personality.
Hu, Boran; Yue, Yaqing; Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W
2015-01-01
Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach.
The Carpathian range represents a weak genetic barrier in South-East Europe
2014-01-01
Background In the present study we have assessed whether the Carpathian Mountains represent a genetic barrier in East Europe. Therefore, we have analyzed the mtDNA of 128 native individuals of Romania: 62 of them from the North of Romania, and 66 from South Romania. Results We have analyzed their mtDNA variability in the context of other European and Near Eastern populations through multivariate analyses. The results show that regarding the mtDNA haplogroup and haplotype distributions the Romanian groups living outside the Carpathian range (South Romania) displayed some degree of genetic differentiation compared to those living within the Carpahian range (North Romania). Conclusion The main differentiation between the mtDNA variability of the groups from North and South Romania can be attributed to the demographic movements from East to West (prehistoric or historic) that differently affected in these regions, suggesting that the Carpathian mountain range represents a weak genetic barrier in South-East Europe. PMID:24885208
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Franić, Sanja; Dolan, Conor V; Borsboom, Denny; van Beijsterveldt, Catherina E M; Boomsma, Dorret I
2014-05-01
In the present article, multivariate genetic item analyses were employed to address questions regarding the ontology and the genetic and environmental etiology of the Anxious/Depressed, Withdrawn, and Somatic Complaints syndrome dimensions of the Internalizing grouping of the Child Behavior Checklist/6-18 (CBCL/6-18). Using common and independent pathway genetic factor modeling, it was examined whether these syndrome dimensions can be ascribed a realist ontology. Subsequently, the structures of the genetic and environmental influences giving rise to the observed symptom covariation were examined. Maternal ratings of a population-based sample of 17,511 Dutch twins of mean age 7.4 (SD = 0.4) on the items of the Internalizing grouping of the Dutch CBCL/6-18 were analyzed. Applications of common and independent pathway modeling demonstrated that the Internalizing syndrome dimensions may be better understood as a composite of unconstrained genetic and environmental influences than as causally relevant entities generating the observed symptom covariation. Furthermore, the results indicate a common genetic basis for anxiety, depression, and withdrawn behavior, with the distinction between these syndromes being driven by the individual-specific environment. Implications for the substantive interpretation of these syndrome dimensions are discussed.
True grit and genetics: predicting academic achievement from personality
Rimfeld, Kaili; Kovas, Yulia; Dale, Philip S.; Plomin, Robert
2015-01-01
Grit -- perseverance and passion for long-term goals -- has been shown to be a significant predictor of academic success, even after controlling for other personality factors. Here, for the first time, we use a UK-representative sample and a genetically sensitive design to unpack the etiology of grit and its prediction of academic achievement in comparison to well-established personality traits. For 4,642 16-year-olds (2,321 twin pairs), we used the Grit-S scale (Perseverance of Effort and Consistency of Interest), along with the Big-5 personality traits, to predict scores on the General Certificate of Secondary Education (GCSE) exams, which are administered UK-wide at the end of compulsory education. Twin analyses of Grit Perseverance yielded a heritability estimate of 37% (20% for Consistency of Interest) and no evidence for shared environmental influence. Personality, primarily Conscientiousness, predicts about 6% of the variance in GCSE scores, but Grit adds little to this prediction. Moreover, multivariate twin analyses showed that roughly two-thirds of the GCSE prediction is mediated genetically. Grit Perseverance of Effort and Big-5 Conscientiousness are to a large extent the same trait both phenotypically (r=0.53) and genetically (genetic correlation = 0. 86). We conclude that the etiology of Grit is highly similar to other personality traits, not only in showing substantial genetic influence but also in showing no influence of shared environmental factors. Personality significantly predicts academic achievement, but Grit adds little phenotypically or genetically to the prediction of academic achievement beyond traditional personality factors, especially Conscientiousness. PMID:26867111
Genetic modelling of test day records in dairy sheep using orthogonal Legendre polynomials.
Kominakis, A; Volanis, M; Rogdakis, E
2001-03-01
Test day milk yields of three lactations in Sfakia sheep were analyzed fitting a random regression (RR) model, regressing on orthogonal polynomials of the stage of the lactation period, i.e. days in milk. Univariate (UV) and multivariate (MV) analyses were also performed for four stages of the lactation period, represented by average days in milk, i.e. 15, 45, 70 and 105 days, to compare estimates obtained from RR models with estimates from UV and MV analyses. The total number of test day records were 790, 1314 and 1041 obtained from 214, 342 and 303 ewes in the first, second and third lactation, respectively. Error variances and covariances between regression coefficients were estimated by restricted maximum likelihood. Models were compared using likelihood ratio tests (LRTs). Log likelihoods were not significantly reduced when the rank of the orthogonal Legendre polynomials (LPs) of lactation stage was reduced from 4 to 2 and homogenous variances for lactation stages within lactations were considered. Mean weighted heritability estimates with RR models were 0.19, 0.09 and 0.08 for first, second and third lactation, respectively. The respective estimates obtained from UV analyses were 0.14, 0.12 and 0.08, respectively. Mean permanent environmental variance, as a proportion of the total, was high at all stages and lactations ranging from 0.54 to 0.71. Within lactations, genetic and permanent environmental correlations between lactation stages were in the range from 0.36 to 0.99 and 0.76 to 0.99, respectively. Genetic parameters for additive genetic and permanent environmental effects obtained from RR models were different from those obtained from UV and MV analyses.
Shared genetic determinants of axial length and height in children: the Guangzhou twin eye study.
Zhang, Jian; Hur, Yoon-Mi; Huang, Wenyong; Ding, Xiaohu; Feng, Ke; He, Mingguang
2011-01-01
To describe the association between axial length (AL) and height and to estimate the extent to which shared genetic or environmental factors influence this covariance. Study participants were recruited from the Guangzhou Twin Registry. Axial length was measured using partial coherence laser interferometry. Height was measured with the participants standing without shoes. We computed twin pairwise correlations and cross-twin cross-trait correlations between AL and height for monozygotic and dizygotic twins and performed model-fitting analyses using a multivariate Cholesky model. The right eye was arbitrarily selected to represent AL of participants. Five hundred sixty-five twin pairs (359 monozygotic and 206 dizygotic) aged 7 to 15 years were available for analysis. Phenotypic correlation between AL and height was 0.46 but decreased to 0.19 after adjusting for age, sex, and age × sex interaction. Bivariate Cholesky model-fitting analyses revealed that 89% of phenotypic correlation was due to shared genetic factors and 11% was due to shared random environmental factors, which includes measurement error. Covariance of AL and height is largely attributable to shared genes. Given that AL is a key determinant of myopia, further work is needed to confirm gene sharing between myopia and stature.
Beyond the big five: the Dark Triad and the supernumerary personality inventory.
Veselka, Livia; Schermer, Julie Aitken; Vernon, Philip A
2011-04-01
The Dark Triad of personality, comprising Machiavellianism, narcissism, and psychopathy, was investigated in relation to the Supernumerary Personality Inventory (SPI) traits, because both sets of variables are predominantly distinct from the Big Five model of personality. Correlational and principal factor analyses were conducted to assess the relations between the Dark Triad and SPI traits. Multivariate behavioral genetic model-fitting analyses were also conducted to determine the correlated genetic and/or environmental underpinnings of the observed phenotypic correlations. Participants were 358 monozygotic and 98 same-sex dizygotic adult twin pairs from North America. As predicted, results revealed significant correlations between the Dark Triad and most SPI traits, and these correlations were primarily attributable to common genetic and non-shared environmental factors, except in the case of Machiavellianism, where shared environmental effects emerged. Three correlated factors were extracted during joint factor analysis of the Dark Triad and SPI traits, as well as a heritable general factor of personality - results that clarified the structure of the Dark Triad construct. It is concluded that the Dark Triad represents an exploitative and antisocial construct that extends beyond the Big Five model and shares a theoretical space with the SPI traits.
Nguyen, Anh B; Oh, April; Moser, Richard P; Patrick, Heather
2015-01-01
The aims of the present study were to (i) examine the prevalence of perceived behavioural and genetic causal beliefs for four chronic conditions (i.e. obesity, heart disease, diabetes and cancer); (ii) to examine the association between these causal beliefs and attempts at behaviour change (i.e. physical activity, weight management, fruit intake, vegetable intake and soda intake). The data come from the Health Information National Trends Survey, a nationally representative population-based survey of adults (N = 3407). Results indicated that participants held both behavioural and genetic causal beliefs for all four chronic conditions. Multivariate analyses indicated that behavioural causal beliefs were significantly associated with attempts to increase physical activity and vegetable intake and to decrease weight. Genetic causal beliefs for cancer were significantly associated with reported attempts to maintain weight. Behaviour and genetic causal beliefs were not associated with changes in either fruit or soda intake. In conclusion, while behavioural causal beliefs are associated with behavioural change, measurement must capture disease-specific behavioural causal beliefs as they are associated with different health behaviours.
Dominance Genetic Variance for Traits Under Directional Selection in Drosophila serrata
Sztepanacz, Jacqueline L.; Blows, Mark W.
2015-01-01
In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. PMID:25783700
Dominance genetic variance for traits under directional selection in Drosophila serrata.
Sztepanacz, Jacqueline L; Blows, Mark W
2015-05-01
In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait-fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. Copyright © 2015 by the Genetics Society of America.
Luo, Y; Widmer, A; Karrenberg, S
2015-01-01
Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana. PMID:25293874
Nature vs nurture: are leaders born or made? A behavior genetic investigation of leadership style.
Johnson, A M; Vernon, P A; McCarthy, J M; Molson, M; Harris, J A; Jang, K L
1998-12-01
With the recent resurgence in popularity of trait theories of leadership, it is timely to consider the genetic determination of the multiple factors comprising the leadership construct. Individual differences in personality traits have been found to be moderately to highly heritable, and so it follows that if there are reliable personality trait differences between leaders and non-leaders, then there may be a heritable component to these individual differences. Despite this connection between leadership and personality traits, however, there are no studies of the genetic basis of leadership using modern behavior genetic methodology. The present study proposes to address the lack of research in this area by examining the heritability of leadership style, as measured by self-report psychometric inventories. The Multifactor Leadership Questionnaire (MLQ), the Leadership Ability Evaluation, and the Adjective Checklist were completed by 247 adult twin pairs (183 monozygotic and 64 same-sex dizygotic). Results indicated that most of the leadership dimensions examined in this study are heritable, as are two higher level factors (resembling transactional and transformational leadership) derived from an obliquely rotated principal components factors analysis of the MLQ. Univariate analyses suggested that 48% of the variance in transactional leadership may be explained by additive heritability, and 59% of the variance in transformational leadership may be explained by non-additive (dominance) heritability. Multivariate analyses indicated that most of the variables studied shared substantial genetic covariance, suggesting a large overlap in the underlying genes responsible for the leadership dimensions.
Kovas, Y.; Haworth, C.M.A.; Harlaar, N.; Petrill, S.A.; Dale, P.S.; Plomin, R.
2009-01-01
Background To what extent do genetic and environmental influences on reading disability overlap with those on mathematics disability? Multivariate genetic research on the normal range of variation in unselected samples has led to a Generalist Genes Hypothesis which posits that the same genes largely affect individual differences in these abilities in the normal range. However, little is known about the etiology of co-morbidity for the disability extremes of reading and mathematics. Method From 2596 pairs of 10-year-old monozygotic and dizygotic twins assessed on a web-based battery of reading and mathematics tests, we selected the lowest 15% on reading and on mathematics. We conducted bivariate DeFries–Fulker (DF) extremes analyses to assess overlap and specificity of genetic and environmental influences on reading and mathematics disability defined by a 15% cut-off. Results Both reading and mathematics disability are moderately heritable (47% and 43%, respectively) and show only modest shared environmental influence (16% and 20%). There is substantial phenotypic co-morbidity between reading and mathematics disability. Bivariate DF extremes analyses yielded a genetic correlation of .67 between reading disability and mathematics disability, suggesting that they are affected largely by the same genetic factors. The shared environmental correlation is .96 and the non-shared environmental correlation is .08. Conclusions In line with the Generalist Genes Hypothesis, the same set of generalist genes largely affects mathematical and reading disabilities. The dissociation between the disabilities occurs largely due to independent non-shared environmental influences. PMID:17714376
Kandler, Christian; Riemann, Rainer; Angleitner, Alois; Spinath, Frank M; Borkenau, Peter; Penke, Lars
2016-08-01
This multitrait multimethod twin study examined the structure and sources of individual differences in creativity. According to different theoretical and metrological perspectives, as well as suggestions based on previous research, we expected 2 aspects of individual differences, which can be described as perceived creativity and creative test performance. We hypothesized that perceived creativity, reflecting typical creative thinking and behavior, should be linked to specific personality traits, whereas test creativity, reflecting maximum task-related creative performance, should show specific associations with cognitive abilities. Moreover, we tested whether genetic variance in intelligence and personality traits account for the genetic component of creativity. Multiple-rater and multimethod data (self- and peer reports, observer ratings, and test scores) from 2 German twin studies-the Bielefeld Longitudinal Study of Adult Twins and the German Observational Study of Adult Twins-were analyzed. Confirmatory factor analyses yielded the expected 2 correlated aspects of creativity. Perceived creativity showed links to openness to experience and extraversion, whereas tested figural creativity was associated with intelligence and also with openness. Multivariate behavioral genetic analyses indicated that the heritability of tested figural creativity could be accounted for by the genetic component of intelligence and openness, whereas a substantial genetic component in perceived creativity could not be explained. A primary source of individual differences in creativity was due to environmental influences, even after controlling for random error and method variance. The findings are discussed in terms of the multifaceted nature and construct validity of creativity as an individual characteristic. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
USDA-ARS?s Scientific Manuscript database
Hulled wheats are largely untapped genetic resources with >10,000 years of genetic memory and diversity that can be used for wheat quality improvement, development of healthy products, and adaptation to climate change. Multivariate diversity was assessed in the diploid Triticum monococcum L. var mon...
Bignardi, A B; El Faro, L; Rosa, G J M; Cardoso, V L; Machado, P F; Albuquerque, L G
2012-04-01
A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mendez, Martin; Jefferson, Thomas A; Kolokotronis, Sergios-Orestis; Krützen, Michael; Parra, Guido J; Collins, Tim; Minton, Giana; Baldwin, Robert; Berggren, Per; Särnblad, Anna; Amir, Omar A; Peddemors, Vic M; Karczmarski, Leszek; Guissamulo, Almeida; Smith, Brian; Sutaria, Dipani; Amato, George; Rosenbaum, Howard C
2013-12-01
The conservation of humpback dolphins, distributed in coastal waters of the Indo-West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach-cast, remote-biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population-level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as-yet-unnamed species off northern Australia). © 2013 John Wiley & Sons Ltd.
dos Santos, Daiane Santos; Duppre, Nadia Cristina; Nery, José Augusto da Costa; Sarno, Euzenir Nunes; Hacker, Mariana Andréa
2013-01-01
A broad variety of factors have been associated with leprosy among contacts, including socioeconomic, epidemiological, and genetic characteristics. Data from 7,174 contacts of leprosy patients from a leprosy outpatient clinic in Rio de Janeiro, Brazil, 1987–2010, were analyzed to investigate the effects of kinship, individual, and contextual factors on leprosy. Multivariate analyses were performed using a robust estimation method. In the prevalence analysis, close kinship (sibling OR = 2.75, offspring OR = 2.00, and other relatives OR = 1.70), socioeconomic factors, and the duration of exposure to the bacillus were associated to leprosy. In the incidence analysis, significant risks were found for all categories of kinship (parents RR = 10.93, spouse, boyfriend/girlfriend, and bride/groom RR = 7.53, sibling RR = 7.03, offspring RR = 5.34, and other relatives RR = 3.71). Once the treatment of the index case was initiated, other factors lost their significance, and the index case bacteriological index and BCG (Bacillus Calmette-Guérin vaccine) protection had a greater impact. Our findings suggested that both genetic susceptibility and physical exposure play an important role in the epidemiology of leprosy, but it was not possible establishing the role of genetic factor. Analyses of other factors related to the genotype of individuals, such as genetic polymorphisms, are needed. PMID:23690793
Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.
1999-01-01
High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.
Multivariate Analysis of Genotype-Phenotype Association.
Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela
2016-04-01
With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.
Ozdemir, Durmus; Dinc, Erdal
2004-07-01
Simultaneous determination of binary mixtures pyridoxine hydrochloride and thiamine hydrochloride in a vitamin combination using UV-visible spectrophotometry and classical least squares (CLS) and three newly developed genetic algorithm (GA) based multivariate calibration methods was demonstrated. The three genetic multivariate calibration methods are Genetic Classical Least Squares (GCLS), Genetic Inverse Least Squares (GILS) and Genetic Regression (GR). The sample data set contains the UV-visible spectra of 30 synthetic mixtures (8 to 40 microg/ml) of these vitamins and 10 tablets containing 250 mg from each vitamin. The spectra cover the range from 200 to 330 nm in 0.1 nm intervals. Several calibration models were built with the four methods for the two components. Overall, the standard error of calibration (SEC) and the standard error of prediction (SEP) for the synthetic data were in the range of <0.01 and 0.43 microg/ml for all the four methods. The SEP values for the tablets were in the range of 2.91 and 11.51 mg/tablets. A comparison of genetic algorithm selected wavelengths for each component using GR method was also included.
Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study.
Thomsen, Mette; Varbo, Anette; Tybjærg-Hansen, Anne; Nordestgaard, Børge G
2014-05-01
Increased nonfasting plasma triglycerides marking increased amounts of cholesterol in remnant lipoproteins are important risk factors for cardiovascular disease, but whether lifelong reduced concentrations of triglycerides on a genetic basis ultimately lead to reduced all-cause mortality is unknown. We tested this hypothesis. Using individuals from the Copenhagen City Heart Study in a mendelian randomization design, we first tested whether low concentrations of nonfasting triglycerides were associated with reduced all-cause mortality in observational analyses (n = 13 957); second, whether genetic variants in the triglyceride-degrading enzyme lipoprotein lipase, resulting in reduced nonfasting triglycerides and remnant cholesterol, were associated with reduced all-cause mortality (n = 10 208). During a median 24 and 17 years of 100% complete follow-up, 9991 and 4005 individuals died in observational and genetic analyses, respectively. In observational analyses compared to individuals with nonfasting plasma triglycerides of 266-442 mg/dL (3.00-4.99 mmol/L), multivariably adjusted hazard ratios for all-cause mortality were 0.89 (95% CI 0.78-1.02) for 177-265 mg/dL (2.00-2.99 mmol/L), 0.74 (0.65-0.84) for 89-176 mg/dL (1.00-1.99 mmol/L), and 0.59 (0.51-0.68) for individuals with nonfasting triglycerides <89 mg/dL (<1.00 mmol/L). The odds ratio for a genetically derived 89-mg/dL (1-mmol/L) lower concentration in nonfasting triglycerides was 0.50 (0.30-0.82), with a corresponding observational hazard ratio of 0.87 (0.85-0.89). Also, the odds ratio for a genetically derived 50% lower concentration in nonfasting triglycerides was 0.43 (0.23-0.80), with a corresponding observational hazard ratio of 0.73 (0.70-0.77). Genetically reduced concentrations of nonfasting plasma triglycerides are associated with reduced all-cause mortality, likely through reduced amounts of cholesterol in remnant lipoproteins.
Buseh, A; Kelber, S; Millon-Underwood, S; Stevens, P; Townsend, L
2014-01-01
Reasons for low participation of ethnic minorities in genetic studies are multifactorial and often poorly understood. Based on published literature, participation in genetic testing is low among Black African immigrants/refugees although they are purported to bear disproportionate disease burden. Thus, research involving Black African immigrant/refugee populations that examine their perspectives on participating in genetic studies is needed. This report examines and describes the knowledge of medical genetics, group-based medical mistrust, and future expectations of genetic research and the influence of these measures on the perceived disadvantages of genetic testing among Black African immigrants/refugees. Using a cross-sectional survey design, a nonprobability sample (n = 212) of Black African immigrants/refugees was administered a questionnaire. Participants ranged in age from 18 to 61 years (mean = 38.91, SD = 9.78). The questionnaire consisted of 5 instruments: (a) sociodemographic characteristics, (b) Knowledge of Medical Genetics scale, (c) Group-Based Medical Mistrust Scale, (d) Future Expectations/Anticipated Consequences of Genetics Research scale, and (e) Perceived Disadvantages of Genetic Testing scale. Participants were concerned that genetic research may result in scientists 'playing God,' interfering with the natural order of life. In multivariate analyses, the perceived disadvantages of genetic testing increased as medical mistrust and anticipated negative impacts of genetic testing increased. Increase in genetic knowledge contributed to a decrease in perceived disadvantages. Our findings suggest that recruitment of Black African immigrants/refugees in genetic studies should address potential low knowledge of genetics, concerns about medical mistrust, the expectations/anticipated consequences of genetic research, and the perceived disadvantages of genetic testing.
Environmental effects on the structure of the G-matrix.
Wood, Corlett W; Brodie, Edmund D
2015-11-01
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance-covariance (G) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between-environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between-population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G. Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Yamada, Hideyasu; Masuko, Hironori; Inui, Toshihide; Kanazawa, Jun; Yatagai, Yohei; Sakamoto, Tohru; Iijima, Hiroaki; Konno, Satoshi; Shimizu, Kaoruko; Makita, Hironi; Nishimura, Masaharu; Kokubu, Fumio; Saito, Takefumi; Endo, Takeo; Ninomiya, Hiroki; Kaneko, Norihiro; Hizawa, Nobuyuki
2016-01-01
Long-acting β 2 -agonists (LABA) and leukotriene receptor antagonists (LTRA) are two principal agents that can be added to inhaled corticosteroids (ICS) for patients with asthma that is not adequately controlled by ICS alone. In our previous study, the Gly16Arg genotype of the β 2 -adrenergic receptor (ADRB2) gene did not influence the differential bronchodilator effect of salmeterol versus montelukast as an add-on therapy to ICS within 16 weeks of follow-up (the J-Blossom study). We examined if genes encoding CYSLTR1, CYSLTR2, PTGER2 or PTGER4 could explain differential responses to salmeterol versus montelukast using the participants of the J-Blossom study. This study included 76 patients with mild-to-moderate asthma. The difference in peak expiratory flow (PEF) (ΔPEF, l/min) after 16 weeks of treatment with salmeterol (ΔPEFsal) versus montelukast (ΔPEFmon) was associated with the genotypes at each of 4 genes. In addition, multivariate analyses were used to identify a gene-gene interaction between ADRB2 gene and each of these 4 genes. Although none of 4 genes were associated with ΔPEFsal-ΔPEFmon in the univariate analyses, multivariate analysis showed that PTGER4 gene, interacting with ADRB2 Gly16Arg, was associated with ΔPEFsal-ΔPEFmon (p=0.0032). Our findings suggested that the interactions between two genetic loci at ADRB2 and PTGER4 is important in determining the differential response to salmeterol versus montelukast in patients with chronic adult asthma.
Ouchene-Khelifi, Nadjet-Amina; Ouchene, Nassim; Maftah, Abderrahman; Da Silva, Anne Blondeau; Lafri, Mohamed
2015-10-01
In Algeria, goat research has been largely neglected, in spite of the economic importance of this domestic species for rural livelihoods. Goat farming is traditional and cross-breeding practices are current. The phenotypic variability of the four main native breeds (Arabia, Makatia, M'zabite and Kabyle), and of two exotic breeds (Alpine and Saanen), was investigated for the first time, using multivariate discriminant analysis. A total of 892 females were sampled in a large area, including the cradle of the native breeds, and phenotyped with 23 quantitative measures and 10 qualitative traits. Our results suggested that cross-breeding practices have ever led to critical consequences, particularly for Makatia and M'zabite. The information reported in this study has to be carefully considered in order to establish governmental plan able to prevent the genetic dilution of the Algerian goat livestock.
The big five personality traits: psychological entities or statistical constructs?
Franić, Sanja; Borsboom, Denny; Dolan, Conor V; Boomsma, Dorret I
2014-11-01
The present study employed multivariate genetic item-level analyses to examine the ontology and the genetic and environmental etiology of the Big Five personality dimensions, as measured by the NEO Five Factor Inventory (NEO-FFI) [Costa and McCrae, Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO-FFI) professional manual, 1992; Hoekstra et al., NEO personality questionnaires NEO-PI-R, NEO-FFI: manual, 1996]. Common and independent pathway model comparison was used to test whether the five personality dimensions fully mediate the genetic and environmental effects on the items, as would be expected under the realist interpretation of the Big Five. In addition, the dimensionalities of the latent genetic and environmental structures were examined. Item scores of a population-based sample of 7,900 adult twins (including 2,805 complete twin pairs; 1,528 MZ and 1,277 DZ) on the Dutch version of the NEO-FFI were analyzed. Although both the genetic and the environmental covariance components display a 5-factor structure, applications of common and independent pathway modeling showed that they do not comply with the collinearity constraints entailed in the common pathway model. Implications for the substantive interpretation of the Big Five are discussed.
Hüls, Anke; Ickstadt, Katja; Schikowski, Tamara; Krämer, Ursula
2017-06-12
For the analysis of gene-environment (GxE) interactions commonly single nucleotide polymorphisms (SNPs) are used to characterize genetic susceptibility, an approach that mostly lacks power and has poor reproducibility. One promising approach to overcome this problem might be the use of weighted genetic risk scores (GRS), which are defined as weighted sums of risk alleles of gene variants. The gold-standard is to use external weights from published meta-analyses. In this study, we used internal weights from the marginal genetic effects of the SNPs estimated by a multivariate elastic net regression and thereby provided a method that can be used if there are no external weights available. We conducted a simulation study for the detection of GxE interactions and compared power and type I error of single SNPs analyses with Bonferroni correction and corresponding analysis with unweighted and our weighted GRS approach in scenarios with six risk SNPs and an increasing number of highly correlated (up to 210) and noise SNPs (up to 840). Applying weighted GRS increased the power enormously in comparison to the common single SNPs approach (e.g. 94.2% vs. 35.4%, respectively, to detect a weak interaction with an OR ≈ 1.04 for six uncorrelated risk SNPs and n = 700 with a well-controlled type I error). Furthermore, weighted GRS outperformed the unweighted GRS, in particular in the presence of SNPs without any effect on the phenotype (e.g. 90.1% vs. 43.9%, respectively, when 20 noise SNPs were added to the six risk SNPs). This outperforming of the weighted GRS was confirmed in a real data application on lung inflammation in the SALIA cohort (n = 402). However, in scenarios with a high number of noise SNPs (>200 vs. 6 risk SNPs), larger sample sizes are needed to avoid an increased type I error, whereas a high number of correlated SNPs can be handled even in small samples (e.g. n = 400). In conclusion, weighted GRS with weights from the marginal genetic effects of the SNPs estimated by a multivariate elastic net regression were shown to be a powerful tool to detect gene-environment interactions in scenarios of high Linkage disequilibrium and noise.
Rosenström, Tom; Ystrom, Eivind; Torvik, Fartein Ask; Czajkowski, Nikolai Olavi; Gillespie, Nathan A.; Aggen, Steven H.; Krueger, Robert F.; Kendler, Kenneth S; Reichborn-Kjennerud, Ted
2017-01-01
Results from previous studies on DSM-IV and DSM-5 Antisocial Personality Disorder (ASPD) have suggested that the construct is etiologically multidimensional. To our knowledge, however, the structure of genetic and environmental influences in ASPD has not been examined using an appropriate range of biometric models and diagnostic interviews. The 7 ASPD criteria (section A) were assessed in a population-based sample of 2794 Norwegian twins by a structured interview for DSM-IV personality disorders. Exploratory analyses were conducted at the phenotypic level. Multivariate biometric models, including both independent and common pathways, were compared. A single phenotypic factor was found, and the best-fitting biometric model was a single-factor common pathway model, with common-factor heritability of 51% (95% CI = 40–67%). In other words, both genetic and environmental correlations between the ASPD criteria could be accounted for by a single common latent variable. The findings support the validity of ASPD as a unidimensional diagnostic construct. PMID:28108863
Rosenström, Tom; Ystrom, Eivind; Torvik, Fartein Ask; Czajkowski, Nikolai Olavi; Gillespie, Nathan A; Aggen, Steven H; Krueger, Robert F; Kendler, Kenneth S; Reichborn-Kjennerud, Ted
2017-05-01
Results from previous studies on DSM-IV and DSM-5 Antisocial Personality Disorder (ASPD) have suggested that the construct is etiologically multidimensional. To our knowledge, however, the structure of genetic and environmental influences in ASPD has not been examined using an appropriate range of biometric models and diagnostic interviews. The 7 ASPD criteria (section A) were assessed in a population-based sample of 2794 Norwegian twins by a structured interview for DSM-IV personality disorders. Exploratory analyses were conducted at the phenotypic level. Multivariate biometric models, including both independent and common pathways, were compared. A single phenotypic factor was found, and the best-fitting biometric model was a single-factor common pathway model, with common-factor heritability of 51% (95% CI 40-67%). In other words, both genetic and environmental correlations between the ASPD criteria could be accounted for by a single common latent variable. The findings support the validity of ASPD as a unidimensional diagnostic construct.
Rimfeld, K; Dale, P S; Plomin, R
2015-09-22
Learning a second language is crucially important in an increasingly global society, yet surprisingly little is known about why individuals differ so substantially in second language (SL) achievement. We used the twin design to assess the nature, nurture and mediators of individual differences in SL achievement. For 6263 twin pairs, we analyzed scores from age 16 UK-wide standardized tests, the General Certificate of Secondary Education (GCSE). We estimated genetic and environmental influences on the variance of SL for specific languages, the links between SL and English and the extent to which the links between SL and English are explained by intelligence. All SL measures showed substantial heritability, although heritability was nonsignificantly lower for German (36%) than the other languages (53-62%). Multivariate genetic analyses indicated that a third of genetic influence in SL is shared with intelligence, a third with English independent of intelligence and a further third is unique to SL.
Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.
2015-01-01
Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID:26658757
The structure of genetic and environmental risk factors for fears and phobias
Loken, E. K.; Hettema, J.M.; Aggen, S.H.; Kendler, K. S.
2014-01-01
Background Although prior genetic studies of interview-assessed fears and phobias have shown that genetic factors predispose individuals to fears and phobias, they have been restricted to the DSM-III to DSM-IV aggregated subtypes of phobias rather than to individual fearful and phobic stimuli. Method We examined the lifetime history of fears and/or phobias in response to 21 individual phobic stimuli in 4067 personally interviewed twins from same-sex pairs from the Virginia Adult Twin Study of Psychiatric and Substance Abuse Disorders (VATSPSUD). We performed multivariate statistical analyses using Mx and Mplus. Results The best-fitting model for the 21 phobic stimuli included four genetic factors (agora-social-acrophobia, animal phobia, blood-injection-illness phobia and claustrophobia) and three environmental factors (agora-social-hospital phobia, animal phobia, and situational phobia). Conclusions This study provides the first view of the architecture of genetic and environmental risk factors for phobic disorders and their subtypes. The genetic factors of the phobias support the DSM-IV and DSM-5 constructs of animal and blood-injection-injury phobias but do not support the separation of agoraphobia from social phobia. The results also do not show a coherent genetic factor for the DSM-IV and DSM-5 situational phobia. Finally, the patterns of co-morbidity across individual fears and phobias produced by genetic and environmental influences differ appreciably. PMID:24384457
Baumgartner, Kendra; Travadon, Renaud; Bruhn, Johann; Bergemann, Sarah E
2010-07-01
ABSTRACT Armillaria mellea infects hundreds of plant species in natural and managed ecosystems throughout the Northern hemisphere. Previously reported nuclear genetic divergence between eastern and western U.S. isolates is consistent with the disjunct range of A. mellea in North America, which is restricted mainly to both coasts of the United States. We investigated patterns of population structure and genetic diversity of the eastern (northern and southern Appalachians, Ozarks, and western Great Lakes) and western (Berkeley, Los Angeles, St. Helena, and San Jose, CA) regions of the United States. In total, 156 diploid isolates were genotyped using 12 microsatellite loci. Absence of genetic differentiation within either eastern subpopulations (theta(ST) = -0.002, P = 0.5 ) or western subpopulations (theta(ST) = 0.004, P = 0.3 ) suggests that spore dispersal within each region is sufficient to prevent geographic differentiation. In contrast to the western United States, our finding of more than one genetic cluster of isolates within the eastern United States (K = 3), revealed by Bayesian assignment of multilocus genotypes in STRUCTURE and confirmed by genetic multivariate analyses, suggests that eastern subpopulations are derived from multiple founder sources. The existence of amplifiable and nonamplifiable loci and contrasting patterns of genetic diversity between the two regions demonstrate that there are two geographically isolated, divergent genetic pools of A. mellea in the United States.
He, J; Gao, H; Xu, P; Yang, R
2015-12-01
Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.
The structure of genetic and environmental risk factors for fears and phobias.
Loken, E K; Hettema, J M; Aggen, S H; Kendler, K S
2014-08-01
Although prior genetic studies of interview-assessed fears and phobias have shown that genetic factors predispose individuals to fears and phobias, they have been restricted to the DSM-III to DSM-IV aggregated subtypes of phobias rather than to individual fearful and phobic stimuli. We examined the lifetime history of fears and/or phobias in response to 21 individual phobic stimuli in 4067 personally interviewed twins from same-sex pairs from the Virginia Adult Twin Study of Psychiatric and Substance Abuse Disorders (VATSPSUD). We performed multivariate statistical analyses using Mx and Mplus. The best-fitting model for the 21 phobic stimuli included four genetic factors (agora-social-acrophobia, animal phobia, blood-injection-illness phobia and claustrophobia) and three environmental factors (agora-social-hospital phobia, animal phobia, and situational phobia). This study provides the first view of the architecture of genetic and environmental risk factors for phobic disorders and their subtypes. The genetic factors of the phobias support the DSM-IV and DSM-5 constructs of animal and blood-injection-injury phobias but do not support the separation of agoraphobia from social phobia. The results also do not show a coherent genetic factor for the DSM-IV and DSM-5 situational phobia. Finally, the patterns of co-morbidity across individual fears and phobias produced by genetic and environmental influences differ appreciably.
Molecular genetic and morphological analyses of the African wild dog (Lycaon pictus).
Girman, D J; Kat, P W; Mills, M G; Ginsberg, J R; Borner, M; Wilson, V; Fanshawe, J H; Fitzgibbon, C; Lau, L M; Wayne, R K
1993-01-01
African wild dog populations have declined precipitously during the last 100 years in eastern Africa. The possible causes of this decline include a reduction in prey abundance and habitat; disease; and loss of genetic variability accompanied by inbreeding depression. We examined the levels of genetic variability and distinctiveness among populations of African wild dogs using mitochondrial DNA (mtDNA) restriction site and sequence analyses and multivariate analysis of cranial and dental measurements. Our results indicate that the genetic variability of eastern African wild dog populations is comparable to that of southern Africa and similar to levels of variability found in other large canids. Southern and eastern populations of wild dogs show about 1% divergence in mtDNA sequence and form two monophyletic assemblages containing three mtDNA genotypes each. No genotypes are shared between the two regions. With one exception, all wild dogs examined from zoos had southern African genotypes. Morphological analysis supports the distinction of eastern and southern African wild dog populations, and we suggest they should be considered separate subspecies. An eastern African wild dog breeding program should be initiated to ensure preservation of the eastern African form and to slow the loss of genetic variability that, while not yet apparent, will inevitably occur if wild populations continue to decline. Finally, we examined the phylogenetic relationships of wild dogs to other wolf-like canids through analysis of 736 base pairs (bp) of cytochrome b sequence and showed wild dogs to belong to a phylogenetically distinct lineage of the wolf-like canids.
Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L
2016-01-01
Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.
Peplonska, B; Adamczyk, J G; Siewierski, M; Safranow, K; Maruszak, A; Sozanski, H; Gajewski, A K; Zekanowski, C
2017-08-01
The aim of the study was to assess whether selected genetic variants are associated with elite athlete performance in a group of 413 elite athletes and 451 sedentary controls. Polymorphisms in ACE, ACTN3, AGT, NRF-2, PGC1A, PPARG, and TFAM implicated in physical performance traits were analyzed. Additionally, polymorphisms in CHRNB3 and FAAH coding for proteins modulating activity of brain's emotion centers were included. The results of univariate analyses indicated that the elite athletic performance is associated with four polymorphisms: ACE (rs4341, P = 0.0095), NRF-2 (rs12594956, P = 0.011), TFAM (rs2306604, P = 0.049), and FAAH (rs324420, P = 0.0041). The multivariate analysis adjusted for age and gender confirmed this association. The higher number of ACE D alleles (P = 0.0021) and the presence of NRF-2 rs12594956 A allele (P = 0.0067) are positive predictors, whereas TFAM rs2306604 GG genotype (P = 0.031) and FAAH rs324420 AA genotype (P = 0.0084) negatively affect the elite athletic performance. The CHRNB3 variant (rs4950, G allele) is significantly more frequent in the endurance athletes compared with the power ones (P = 0.025). Multivariate analysis demonstrated that the presence of rs4950 G allele contributes to endurance performance (P = 0.0047). Our results suggest that genetic inheritance of psychological traits should be taken into consideration while trying to decipher a genetic profile of top athletic performance. © 2016 The Authors. Scandinavian Journal of Medicine & Science in Sports published by John Wiley & Sons Ltd.
A threshold model of content knowledge transfer for socioscientific argumentation
NASA Astrophysics Data System (ADS)
Sadler, Troy D.; Fowler, Samantha R.
2006-11-01
This study explores how individuals make use of scientific content knowledge for socioscientific argumentation. More specifically, this mixed-methods study investigates how learners apply genetics content knowledge as they justify claims relative to genetic engineering. Interviews are conducted with 45 participants, representing three distinct groups: high school students with variable genetics knowledge, college nonscience majors with little genetics knowledge, and college science majors with advanced genetics knowledge. During the interviews, participants advance positions concerning three scenarios dealing with gene therapy and cloning. Arguments are assessed in terms of the number of justifications offered as well as justification quality, based on a five-point rubric. Multivariate analysis of variance results indicate that college science majors outperformed the other groups in terms of justification quality and frequency. Argumentation does not differ among nonscience majors or high school students. Follow-up qualitative analyses of interview responses suggest that all three groups tend to focus on similar, sociomoral themes as they negotiate socially complex, genetic engineering issues, but that the science majors frequently reference specific science content knowledge in the justification of their claims. Results support the Threshold Model of Content Knowledge Transfer, which proposes two knowledge thresholds around which argumentation quality can reasonably be expected to increase. Research and educational implications of these findings are discussed.
Environmental Variables Explain Genetic Structure in a Beetle-Associated Nematode
McGaughran, Angela; Morgan, Katy; Sommer, Ralf J.
2014-01-01
The distribution of a species is a complex expression of its ecological and evolutionary history and integrating population genetic, environmental, and ecological data can provide new insights into the effects of the environment on the population structure of species. Previous work demonstrated strong patterns of genetic differentiation in natural populations of the hermaphroditic nematode Pristionchus pacificus in its La Réunion Island habitat, but gave no clear understanding of the role of the environment in structuring this variation. Here, we present what is to our knowledge the first study to statistically evaluate the role of the environment in shaping the structure and distribution of nematode populations. We test the hypothesis that genetic structure in P. pacificus is influenced by environmental variables, by combining population genetic analyses of microsatellite data from 18 populations and 370 strains, with multivariate statistics on environmental data, and species distribution modelling. We assess and quantify the relative importance of environmental factors (geographic distance, altitude, temperature, precipitation, and beetle host) on genetic variation among populations. Despite the fact that geographic populations of P. pacificus comprise vast genetic diversity sourced from multiple ancestral lineages, we find strong evidence for local associations between environment and genetic variation. Further, we show that significantly more genetic variation in P. pacificus populations is explained by environmental variation than by geographic distances. This supports a strong role for environmental heterogeneity vs. genetic drift in the divergence of populations, which we suggest may be influenced by adaptive forces. PMID:24498073
Briley, Daniel A.; Tucker-Drob, Elliot M.
2017-01-01
The Five Factor Model (FFM) of personality is well-established at the phenotypic level, but much less is known about the coherence of the genetic and environmental influences within each personality domain. Univariate behavioral genetic analyses have consistently found the influence of additive genes and nonshared environment on multiple personality facets, but the extent to which genetic and environmental influences on specific facets reflect more general influences on higher order factors is less clear. We applied a multivariate quantitative-genetic approach to scores on the CPI-Big Five facets for 490 monozygotic and 317 dizygotic twins who took part in the National Merit Twin Study. Our results revealed a complex genetic structure for facets composing all five factors, with both domain-general and facet-specific genetic and environmental influences. Models that required common genetic and environmental influences on each facet to occur by way of effects on a higher order trait did not fit as well as models allowing for common genetic and environmental effects to act directly on the facets for three of the Big Five domains. These results add to the growing body of literature indicating that important variation in personality occurs at the facet level which may be overshadowed by aggregating to the trait level. Research at the facet level, rather than the factor level, is likely to have pragmatic advantages in future research on the genetics of personality. PMID:22695681
Chiu, Chi-yang; Jung, Jeesun; Wang, Yifan; Weeks, Daniel E.; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Amos, Christopher I.; Mills, James L.; Boehnke, Michael; Xiong, Momiao; Fan, Ruzong
2016-01-01
In this paper, extensive simulations are performed to compare two statistical methods to analyze multiple correlated quantitative phenotypes: (1) approximate F-distributed tests of multivariate functional linear models (MFLM) and additive models of multivariate analysis of variance (MANOVA), and (2) Gene Association with Multiple Traits (GAMuT) for association testing of high-dimensional genotype data. It is shown that approximate F-distributed tests of MFLM and MANOVA have higher power and are more appropriate for major gene association analysis (i.e., scenarios in which some genetic variants have relatively large effects on the phenotypes); GAMuT has higher power and is more appropriate for analyzing polygenic effects (i.e., effects from a large number of genetic variants each of which contributes a small amount to the phenotypes). MFLM and MANOVA are very flexible and can be used to perform association analysis for: (i) rare variants, (ii) common variants, and (iii) a combination of rare and common variants. Although GAMuT was designed to analyze rare variants, it can be applied to analyze a combination of rare and common variants and it performs well when (1) the number of genetic variants is large and (2) each variant contributes a small amount to the phenotypes (i.e., polygenes). MFLM and MANOVA are fixed effect models which perform well for major gene association analysis. GAMuT can be viewed as an extension of sequence kernel association tests (SKAT). Both GAMuT and SKAT are more appropriate for analyzing polygenic effects and they perform well not only in the rare variant case, but also in the case of a combination of rare and common variants. Data analyses of European cohorts and the Trinity Students Study are presented to compare the performance of the two methods. PMID:27917525
Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K
2017-01-01
The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.
Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C
2016-06-01
The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. © 2016 John Wiley & Sons Ltd.
Heuberger, Adam L.; Lewis, Matthew R.; Chen, Ming-Hsuan; Brick, Mark A.; Leach, Jan E.; Ryan, Elizabeth P.
2010-01-01
Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5′ and 3′ untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 µg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 µg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health. PMID:20886119
Learning Abilities and Disabilities: Generalist Genes, Specialist Environments.
Kovas, Yulia; Plomin, Robert
2007-10-01
Twin studies comparing identical and fraternal twins consistently show substantial genetic influence on individual differences in learning abilities such as reading and mathematics, as well as in other cognitive abilities such as spatial ability and memory. Multivariate genetic research has shown that the same set of genes is largely responsible for genetic influence on these diverse cognitive areas. We call these "generalist genes." What differentiates these abilities is largely the environment, especially nonshared environments that make children growing up in the same family different from one another. These multivariate genetic findings of generalist genes and specialist environments have far-reaching implications for diagnosis and treatment of learning disabilities and for understanding the brain mechanisms that mediate these effects.
Durán, Sergio; Apte, Mandar; Alarcón, Graciela S; Marion, Miranda C; Edberg, Jeffrey C; Kimberly, Robert P; Zhang, Jie; Langefeld, Carl D; Vilá, Luis M; Reveille, John D
2008-09-15
To examine the clinical and genetic correlates of hemolytic anemia and its impact on damage accrual and mortality in systemic lupus erythematosus (SLE) patients. SLE patients (American College of Rheumatology [ACR] criteria) of Hispanic (Texan or Puerto Rican), African American, and Caucasian ethnicity from the LUMINA (LUpus in MInorities, NAture versus nurture) cohort were studied. Hemolytic anemia was defined as anemia with reticulocytosis (ACR criterion). The association between degrees of hemolytic anemia and socioeconomic/demographic, clinical, pharmacologic, immunologic, psychological, and behavioral variables was examined by univariable and multivariable (proportional odds model) analyses. Genetic variables (FCGR and Fas/Fas ligand polymorphisms) were examined by 2 degrees of freedom test of association and Cochran-Armitage trend tests. The impact of hemolytic anemia on damage accrual and mortality was examined by multivariable linear and Cox regression analyses, respectively. Of 628 patients studied, 90% were women, 19% were Texan Hispanic, 16% were Puerto Rican Hispanic, 37% were African American, and 28% were Caucasian. Sixty-five (10%) patients developed hemolytic anemia at some time during the disease course, 83% at or before diagnosis. Variables independently associated with degrees of hemolytic anemia were African American ethnicity, thrombocytopenia, and the use of azathioprine. Hemolytic anemia was associated with damage accrual after adjusting for variables known to affect this outcome; however, hemolytic anemia was not associated with mortality. The association of hemolytic anemia with thrombocytopenia suggests a common mechanism in their pathophysiology. Hemolytic anemia is an early disease manifestation and is associated with African American ethnicity and the use of azathioprine; it appears to exert an impact on damage but not on mortality.
Tang, X-Y; Zhang, J; Peng, J; Tan, S-L; Zhang, W; Song, G-B; Liu, L-M; Li, C-L; Ren, H; Zeng, L; Liu, Z-Q; Chen, X-P; Zhou, X-M; Zhou, H-H; Hu, J-X; Li, Z
2017-08-01
Warfarin is a widely used anticoagulant with a narrow therapeutic index. Polymorphisms in the VKORC1, CYP2C9 and CYP4F2 genes have been verified to correlate with warfarin stable dosage (WSD). Whether any other genes or variants affect the dosage is unknown. The aim of our study was to investigate the relationship between GGCX, miR-133 variants and the WSD in Han Chinese patients with mechanical heart valve replacement (MHVR). A total of 231 patients were enrolled in the study. Blood samples were collected for genotyping. The average WSD among subjects with different GGCX or miR-133 genotypes was compared. Regression analyses were performed to test for any association of genetic polymorphisms with WSD. The warfarin dosage in patients with the GGCX rs699664 TT and rs12714145 TT genotypes was 3.77±0.93 (95% CI: 3.35-4.19) mg/d and 3.70±1.00 (95% CI: 3.32-4.09) mg/d, respectively. The GGCX rs699664 and rs12714145 genotypes were significantly associated with WSD (P<.05). But they were ruled out in the multivariate regression analysis. There were no significant differences in the average warfarin stable dosage between subjects with MIR133B rs142410335 wild-type and variant genotypes (P>.05). The genotypes of GGCX rs699644 and rs12714145 were significantly associated with WSD (P<.05), but their contributions were not significant after accounting for other factors. MIR133B rs142410335 makes no significant contributions to warfarin stable dosage in Han Chinese patients with MHVR neither in univariate regression nor in multivariate regression analyses. © 2017 John Wiley & Sons Ltd.
DURÁN, SERGIO; APTE, MANDAR; ALARCÓN, GRACIELA S.; MARION, MIRANDA C.; EDBERG, JEFFREY C.; KIMBERLY, ROBERT P.; ZHANG, JIE; LANGEFELD, CARL D.; VILÁ, LUIS M.; REVEILLE, JOHN D.
2009-01-01
Objective To examine the clinical and genetic correlates of hemolytic anemia and its impact on damage accrual and mortality in systemic lupus erythematosus (SLE) patients. Methods SLE patients (American College of Rheumatology [ACR] criteria) of Hispanic (Texan or Puerto Rican), African American, and Caucasian ethnicity from the LUMINA (LUpus in MInorities, NAture versus nurture) cohort were studied. Hemolytic anemia was defined as anemia with reticulocytosis (ACR criterion). The association between degrees of hemolytic anemia and socioeconomic/demographic, clinical, pharmacologic, immunologic, psychological, and behavioral variables was examined by univariable and multivariable (proportional odds model) analyses. Genetic variables (FCGR and Fas/Fas ligand polymorphisms) were examined by 2 degrees of freedom test of association and Cochran-Armitage trend tests. The impact of hemolytic anemia on damage accrual and mortality was examined by multivariable linear and Cox regression analyses, respectively. Results Of 628 patients studied, 90% were women, 19% were Texan Hispanic, 16% were Puerto Rican Hispanic, 37% were African American, and 28% were Caucasian. Sixty-five (10%) patients developed hemolytic anemia at some time during the disease course, 83% at or before diagnosis. Variables independently associated with degrees of hemolytic anemia were African American ethnicity, thrombocytopenia, and the use of azathioprine. Hemolytic anemia was associated with damage accrual after adjusting for variables known to affect this outcome; however, hemolytic anemia was not associated with mortality. Conclusion The association of hemolytic anemia with thrombocytopenia suggests a common mechanism in their pathophysiology. Hemolytic anemia is an early disease manifestation and is associated with African American ethnicity and the use of azathioprine; it appears to exert an impact on damage but not on mortality. PMID:18759263
Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes
2013-01-01
Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704
Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni
2013-01-01
Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.
Falcaro, Milena; Pickles, Andrew
2007-02-10
We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.
Genetic influences on free and cued recall in long-term memory tasks.
Volk, Heather E; McDermott, Kathleen B; Roediger, Henry L; Todd, Richard D
2006-10-01
Long-term memory (LTM) problems are associated with many psychiatric and neurological illnesses and are commonly measured using free and cued recall tasks. Although LTM has been linked with biologic mechanisms, the etiology of distinct LTM tasks is unknown. We studied LTM in 95 healthy female twin pairs identified through birth records in the state of Missouri. Performance on tasks of free recall of unrelated words, free and cued recall of categorized words, and the vocabulary section of the Wechsler Adult Intelligence Scale (WAIS-R) were examined using structural equation modeling. Additive genetic and unique environmental factors influenced LTM and intelligence. Free recall of unrelated and categorized words, and cued recall of categorized words, were moderately heritable (55%, 38%, and 37%). WAIS-R vocabulary score was highly heritable (77%). Controlling for verbal intelligence in multivariate analyses of recall, two components of genetic influence on LTM were found; one for all three recall scores and one for free and cued categorized word recall. Recall of unrelated and categorized words is influenced by different genetic and environmental factors indicating heterogeneity in LTM. Verbal intelligence is etiologically different from LTM indicating that these two abilities utilize different brain functions.
Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; O’Byrne, Megan; Jacobson, Robert M.; Pankratz, V. Shane; Poland, Gregory A.
2012-01-01
Measles infection and vaccine response are complex biological processes that involve both viral and host genetic factors. We have previously investigated the influence of genetic polymorphisms on vaccine immune response, including measles vaccines, and have shown that polymorphisms in HLA, cytokine, cytokine receptor, and innate immune response genes are associated with variation in vaccine response but do not account for all of the inter-individual variance seen in vaccinated populations. In the current study we report the findings of a multigenic analysis of measles vaccine immunity, indicating a role for the measles virus receptor CD46, innate pattern-recognition receptors (DDX58, TLR2, 4, 5,7 and 8) and intracellular signaling intermediates (MAP3K7, NFKBIA), and key antiviral molecules (VISA, OAS2, MX1, PKR) as well as cytokines (IFNA1, IL4, IL6, IL8, IL12B) and cytokine receptor genes (IL2RB, IL6R, IL8RA) in the genetic control of both humoral and cellular immune responses. This multivariate approach provided additional insights into the genetic control of measles vaccine responses over and above the information gained by our previous univariate SNP association analyses. PMID:22265947
Bao, Ying; Curhan, Gary; Merriman, Tony; Plenge, Robert; Kraft, Peter; Choi, Hyon K.
2015-01-01
Background Diuretic-induced gout might occur only among those with a genetic predisposition to hyperuricemia, as suggested by a recent study with 108 self-reported gout cases. Methods We examined the role of urate genes on the risk of diuretic-induced incident gout in 6850 women from the Nurses’ Health Study (NHS) and in 4,223 men from the Health Professionals Follow-up Study (HPFS). Two published genetic risk scores (GRS) were calculated using urate-associated SNPs for eight genes (GRS8) and for 29 genes (GRS29). Results Our analyses included 727 and 354 confirmed incident gout cases in the HPFS and NHS, respectively. The multivariate RR for diuretic use was 2.20 and 1.69 among those with a GRS8 < and ≥ the median (p for interaction=0.27). The corresponding RRs using GRS29 were 2.19 and 1.88 (p for interaction=0.40). The lack of interaction persisted in the NHS (all p values >0.20) and in our analyses limited to those with hypertension in both cohorts. SLC22A11 (OAT4) showed a significant interaction only among women but in the opposite direction to the recent study. Conclusion In these large prospective studies, individuals with a genetic predisposition for hyperuricemia are not at a higher risk of developing diuretic-induced gout than those without. PMID:25667207
Poveda, Alaitz; Koivula, Robert W; Ahmad, Shafqat; Barroso, Inês; Hallmans, Göran; Johansson, Ingegerd; Renström, Frida; Franks, Paul W
2016-03-01
We compared the ability of genetic (established type 2 diabetes, fasting glucose, 2 h glucose and obesity variants) and modifiable lifestyle (diet, physical activity, smoking, alcohol and education) risk factors to predict incident type 2 diabetes and obesity in a population-based prospective cohort of 3,444 Swedish adults studied sequentially at baseline and 10 years later. Multivariable logistic regression analyses were used to assess the predictive ability of genetic and lifestyle risk factors on incident obesity and type 2 diabetes by calculating the AUC. The predictive accuracy of lifestyle risk factors was similar to that yielded by genetic information for incident type 2 diabetes (AUC 75% and 74%, respectively) and obesity (AUC 68% and 73%, respectively) in models adjusted for age, age(2) and sex. The addition of genetic information to the lifestyle model significantly improved the prediction of type 2 diabetes (AUC 80%; p = 0.0003) and obesity (AUC 79%; p < 0.0001) and resulted in a net reclassification improvement of 58% for type 2 diabetes and 64% for obesity. These findings illustrate that lifestyle and genetic information separately provide a similarly high degree of long-range predictive accuracy for obesity and type 2 diabetes.
Bezdjian, Serena; Tuvblad, Catherine; Wang, Pan; Raine, Adrian; Baker, Laura A
2014-11-01
In the present study, we investigated genetic and environmental effects on motor impulsivity from childhood to late adolescence using a longitudinal sample of twins from ages 9 to 18 years. Motor impulsivity was assessed using errors of commission (no-go errors) in a visual go/no-go task at 4 time points: ages 9-10, 11-13, 14-15, and 16-18 years. Significant genetic and nonshared environmental effects on motor impulsivity were found at each of the 4 waves of assessment with genetic factors explaining 22%-41% of the variance within each of the 4 waves. Phenotypically, children's average performance improved across age (i.e., fewer no-go errors during later assessments). Multivariate biometric analyses revealed that common genetic factors influenced 12%-40% of the variance in motor impulsivity across development, whereas nonshared environmental factors common to all time points contributed to 2%-52% of the variance. Nonshared environmental influences specific to each time point also significantly influenced motor impulsivity. Overall, results demonstrated that although genetic factors were critical to motor impulsivity across development, both common and specific nonshared environmental factors played a strong role in the development of motor impulsivity across age. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Ruiz-Montoya, L; Zúñiga, G; Cisneros, R; Salinas-Moreno, Y; Peña-Martínez, R; Machkour-M'Rabet, S
2015-12-01
The study of phenotypic and genetic variation of obligate parthenogenetic organisms contributes to an understanding of evolution in the absence of genetic variation produced by sexual reproduction. Eriosoma lanigerum Hausmann undergoes obligate parthenogenesis in Mexico City, Mexico, due to the unavailability of the host plants required for sexual reproduction. We analysed the phenotypic and genetic variation of E. lanigerum in relation to the dry and wet season and plant phenology. Aphids were collected on two occasions per season on a secondary host plant, Pyracantha koidzumii, at five different sites in the southern area of Mexico City, Mexico. Thirteen morphological characteristics were measured from 147 to 276 individuals per site and per season. A multivariate analysis of variance was performed to test the effect of the season, site and their interaction on morphological traits. Morphological variation was summarised using a principal component analysis. Genetic variation was described using six enzymatic loci, four of which were polymorphic. Our study showed that the site and season has a significant effect on morphological trait variation. The largest aphids were recorded during cold temperatures with low relative humidity and when the plant was at the end of the fruiting period. The mean genetic diversity was low (mean H e = .161), and populations were genetically structured by season and site. Morphological and genetic variations appear to be associated with environmental factors that directly affect aphid development and/or indirectly by host plant phenology.
Gugger, Paul F; Ikegami, Makihiko; Sork, Victoria L
2013-07-01
Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate-based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata Née). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large-scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28-1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11-18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion-contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions. © 2013 John Wiley & Sons Ltd.
Learning Abilities and Disabilities: Generalist Genes, Specialist Environments
Kovas, Yulia; Plomin, Robert
2007-01-01
Twin studies comparing identical and fraternal twins consistently show substantial genetic influence on individual differences in learning abilities such as reading and mathematics, as well as in other cognitive abilities such as spatial ability and memory. Multivariate genetic research has shown that the same set of genes is largely responsible for genetic influence on these diverse cognitive areas. We call these “generalist genes.” What differentiates these abilities is largely the environment, especially nonshared environments that make children growing up in the same family different from one another. These multivariate genetic findings of generalist genes and specialist environments have far-reaching implications for diagnosis and treatment of learning disabilities and for understanding the brain mechanisms that mediate these effects. PMID:20351764
Individual and family characteristics associated with BRCA1/2 genetic testing in high-risk families.
Katapodi, Maria C; Northouse, Laurel L; Milliron, Kara J; Liu, Guipeng; Merajver, Sofia D
2013-06-01
Little is known about family members' interrelated decisions to seek genetic testing for breast cancer susceptibility. The specific aims of this cross-sectional, descriptive, cohort study were (i) to examine whether individual and family characteristics have a direct effect on women's decisions to use genetic testing for hereditary susceptibility to breast cancer and (ii) to explore whether family characteristics moderate the relationships between individual characteristics and the decision to use genetic testing. Participants were women (>18 years old) who (i) received genetic testing for hereditary breast cancer and who agreed to invite one of their female relatives into the study and (ii) female relatives who had NOT obtained genetic testing and were identified by pedigree analysis as having >10% chances of hereditary susceptibility to breast cancer. The final sample consisted of 168 English-speaking, family dyads who completed self-administered, mailed surveys with validated instruments. Multivariate conditional logistic regression analyses showed that the proposed model explained 62% of the variance in genetic testing. The factors most significantly associated with genetic testing were having a personal history of cancer; perceiving genetic testing to have more benefits than barriers; having greater family hardiness; and perceiving fewer negative consequences associated with a breast cancer diagnosis. No significant interaction effects were observed. Findings suggest that both individual and family characteristics are associated with the decision to obtain genetic testing for hereditary breast cancer; hence, there is a need for interventions that foster a supportive family environment for patients and their high-risk relatives. Copyright © 2012 John Wiley & Sons, Ltd.
Genetic parameter and breeding value estimation of donkeys' problem-focused coping styles.
Navas González, Francisco Javier; Jordana Vidal, Jordi; León Jurado, José Manuel; Arando Arbulu, Ander; McLean, Amy Katherine; Delgado Bermejo, Juan Vicente
2018-05-12
Donkeys are recognized therapy or leisure-riding animals. Anecdotal evidence has suggested that more reactive donkeys or those more easily engaging flight mechanisms tend to be easier to train compared to those displaying the natural donkey behaviour of fight. This context brings together the need to quantify such traits and to genetically select donkeys displaying a neutral reaction during training, because of its implication with handler/rider safety and trainability. We analysed the scores for coping style traits from 300 Andalusian donkeys from 2013 to 2015. Three scales were applied to describe donkeys' response to 12 stimuli. Genetic parameters were estimated using multivariate models with year, sex, husbandry system and stimulus as fixed effects and age as a linear and quadratic covariable. Heritabilities were moderate, 0.18 ± 0.020 to 0.21 ± 0.021. Phenotypic correlations between intensity and mood/emotion or response type were negative and moderate (-0.21 and -0.25, respectively). Genetic correlations between the same variables were negative and moderately high (-0.46 and -0.53, respectively). Phenotypic and genetic correlations between mood/emotion and response type were positive and high (0.92 and 0.95, respectively). Breeding values enable selection methods that could lead to endangered breed preservation and genetically selecting donkeys for the uses that they may be most suitable. Copyright © 2018 Elsevier B.V. All rights reserved.
Ayalew, Wondossen; Aliy, Mohammed; Negussie, Enyew
2017-11-01
This study estimated the genetic parameters for productive and reproductive traits. The data included production and reproduction records of animals that have calved between 1979 and 2013. The genetic parameters were estimated using multivariate mixed models (DMU) package, fitting univariate and multivariate mixed models with average information restricted maximum likelihood algorithm. The estimates of heritability for milk production traits from the first three lactation records were 0.03±0.03 for lactation length (LL), 0.17±0.04 for lactation milk yield (LMY), and 0.15±0.04 for 305 days milk yield (305-d MY). For reproductive traits the heritability estimates were, 0.09±0.03 for days open (DO), 0.11±0.04 for calving interval (CI), and 0.47±0.06 for age at first calving (AFC). The repeatability estimates for production traits were 0.12±0.02, for LL, 0.39±0.02 for LMY, and 0.25±0.02 for 305-d MY. For reproductive traits the estimates of repeatability were 0.19±0.02 for DO, and to 0.23±0.02 for CI. The phenotypic correlations between production and reproduction traits ranged from 0.08±0.04 for LL and AFC to 0.42±0.02 for LL and DO. The genetic correlation among production traits were generally high (>0.7) and between reproductive traits the estimates ranged from 0.06±0.13 for AFC and DO to 0.99±0.01 between CI and DO. Genetic correlations of productive traits with reproductive traits were ranged from -0.02 to 0.99. The high heritability estimates observed for AFC indicated that reasonable genetic improvement for this trait might be possible through selection. The h2 and r estimates for reproductive traits were slightly different from single versus multi-trait analyses of reproductive traits with production traits. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended.
Bombonato, C; Ribero, S; Pozzobon, F C; Puig-Butille, J A; Badenas, C; Carrera, C; Malvehy, J; Moscarella, E; Lallas, A; Piana, S; Puig, S; Argenziano, G; Longo, C
2017-04-01
Melanomas harbouring common genetic mutations might share certain morphological features detectable with dermoscopy and reflectance confocal microscopy. BRAF mutational status is crucial for the management of metastatic melanoma. To correlate the dermoscopic characteristics of primary cutaneous melanomas with BRAF mutational status. Furthermore, a subset of tumours has also been analysed for the presence of possible confocal features that might be linked with BRAF status. Retrospectively acquired dermoscopic and confocal images of patients with melanoma in tertiary referral academic centres: Skin Cancer Unit in Reggio Emilia and at the Melanoma Unit in Barcelona. Kruskal-Wallis test, logistic regressions, univariate and multivariate analyses have been performed to find dermoscopic and confocal features significantly correlated with BRAF mutational status. Dermoscopically, the presence of irregular peripheral streaks and ulceration were positive predictors of BRAF-mutated melanomas with a statistically significance value, while dotted vessels were more represented in wild-type melanomas. None of the evaluated reflectance confocal microscopy features were correlated with genetic profiling. Ulceration and irregular peripheral streaks represent dermoscopic feature indicative for BRAF-mutated melanoma, while dotted vessels are suggestive for wild-type melanoma. © 2016 European Academy of Dermatology and Venereology.
Wood, Marnie J; Powell, Lawrie W; Dixon, Jeannette L; Subramaniam, V Nathan; Ramm, Grant A
2013-01-01
AIM: To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis. METHODS: A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was studied, with all subjects having liver biopsy data and DNA available for testing. This study assessed the association of eight single nucleotide polymorphisms (SNPs) in a total of six genes including toll-like receptor 4 (TLR4), transforming growth factor-beta (TGF-β), oxoguanine DNA glycosylase, monocyte chemoattractant protein 1, chemokine C-C motif receptor 2 and interleukin-10 with liver disease severity. Genotyping was performed using high resolution melt analysis and sequencing. The results were analysed in relation to the stage of hepatic fibrosis in multivariate analysis incorporating other cofactors including alcohol consumption and hepatic iron concentration. RESULTS: There were significant associations between the cofactors of male gender (P = 0.0001), increasing age (P = 0.006), alcohol consumption (P = 0.0001), steatosis (P = 0.03), hepatic iron concentration (P < 0.0001) and the presence of hepatic fibrosis. Of the candidate gene polymorphisms studied, none showed a significant association with hepatic fibrosis in univariate or multivariate analysis incorporating cofactors. We also specifically studied patients with hepatic iron loading above threshold levels for cirrhosis and compared the genetic polymorphisms between those with no fibrosis vs cirrhosis however there was no significant effect from any of the candidate genes studied. Importantly, in this large, well characterised cohort of patients there was no association between SNPs for TGF-β or TLR4 and the presence of fibrosis, cirrhosis or increasing fibrosis stage in multivariate analysis. CONCLUSION: In our large, well characterised group of haemochromatosis subjects we did not demonstrate any relationship between candidate gene polymorphisms and hepatic fibrosis or cirrhosis. PMID:24409064
Wood, Marnie J; Powell, Lawrie W; Dixon, Jeannette L; Subramaniam, V Nathan; Ramm, Grant A
2013-12-28
To investigate the role of genetic polymorphisms in the progression of hepatic fibrosis in hereditary haemochromatosis. A cohort of 245 well-characterised C282Y homozygous patients with haemochromatosis was studied, with all subjects having liver biopsy data and DNA available for testing. This study assessed the association of eight single nucleotide polymorphisms (SNPs) in a total of six genes including toll-like receptor 4 (TLR4), transforming growth factor-beta (TGF-β), oxoguanine DNA glycosylase, monocyte chemoattractant protein 1, chemokine C-C motif receptor 2 and interleukin-10 with liver disease severity. Genotyping was performed using high resolution melt analysis and sequencing. The results were analysed in relation to the stage of hepatic fibrosis in multivariate analysis incorporating other cofactors including alcohol consumption and hepatic iron concentration. There were significant associations between the cofactors of male gender (P = 0.0001), increasing age (P = 0.006), alcohol consumption (P = 0.0001), steatosis (P = 0.03), hepatic iron concentration (P < 0.0001) and the presence of hepatic fibrosis. Of the candidate gene polymorphisms studied, none showed a significant association with hepatic fibrosis in univariate or multivariate analysis incorporating cofactors. We also specifically studied patients with hepatic iron loading above threshold levels for cirrhosis and compared the genetic polymorphisms between those with no fibrosis vs cirrhosis however there was no significant effect from any of the candidate genes studied. Importantly, in this large, well characterised cohort of patients there was no association between SNPs for TGF-β or TLR4 and the presence of fibrosis, cirrhosis or increasing fibrosis stage in multivariate analysis. In our large, well characterised group of haemochromatosis subjects we did not demonstrate any relationship between candidate gene polymorphisms and hepatic fibrosis or cirrhosis.
Hermanns, M Iris; Grossmann, Vera; Spronk, Henri M H; Schulz, Andreas; Jünger, Claus; Laubert-Reh, Dagmar; Mazur, Johanna; Gori, Tommaso; Zeller, Tanja; Pfeiffer, Norbert; Beutel, Manfred; Blankenberg, Stefan; Münzel, Thomas; Lackner, Karl J; Ten Cate-Hoek, Arina J; Ten Cate, Hugo; Wild, Philipp S
2015-01-01
Elevated levels of c are associated with risk for both venous and arterial thromboembolism. However, no population-based study on the sex-specific distribution and reference ranges of plasma c and its cardiovascular determinants is available. c was analyzed in a randomly selected sample of 2533 males and 2440 females from the Gutenberg Health Study in Germany. Multivariable regression analyses for c were performed under adjustment for genetic determinants, cardiovascular risk factors and cardiovascular disease. Females (126.6% (95% CI: 125.2/128)) showed higher c levels than males (121.2% (119.8/122.7)). c levels increased with age in both sexes (ß per decade: 5.67% (4.22/7.13) male, 6.15% (4.72/7.57) female; p<0.001). Sex-specific reference limits and categories indicating the grade of deviation from the reference were calculated, and nomograms for c were created. c was approximately 25% higher in individuals with non-O blood type. Adjusted for sex and age, ABO-blood group accounted for 18.3% of c variation. In multivariable analysis, c was notably positively associated with diabetes mellitus, obesity, hypertension and dyslipidemia and negatively with current smoking. In a fully adjusted multivariable model, the strongest associations observed were of elevated c with diabetes and peripheral artery disease in both sexes and with obesity in males. Effects of SNPs in the vWF, STAB2 and SCARA5 gene were stronger in females than in males. The use of nomograms for valuation of c might be useful to identify high-risk cohorts for thromboembolism. Additionally, the prospective evaluation of c as a risk predictor becomes feasible. Copyright © 2015. Published by Elsevier Ireland Ltd.
An integrated phenomic approach to multivariate allelic association
Medland, Sarah Elizabeth; Neale, Michael Churton
2010-01-01
The increased feasibility of genome-wide association has resulted in association becoming the primary method used to localize genetic variants that cause phenotypic variation. Much attention has been focused on the vast multiple testing problems arising from analyzing large numbers of single nucleotide polymorphisms. However, the inflation of experiment-wise type I error rates through testing numerous phenotypes has received less attention. Multivariate analyses can be used to detect both pleiotropic effects that influence a latent common factor, and monotropic effects that operate at a variable-specific levels, whilst controlling for non-independence between phenotypes. In this study, we present a maximum likelihood approach, which combines both latent and variable-specific tests and which may be used with either individual or family data. Simulation results indicate that in the presence of factor-level association, the combined multivariate (CMV) analysis approach performs well with a minimal loss of power as compared with a univariate analysis of a factor or sum score (SS). As the deviation between the pattern of allelic effects and the factor loadings increases, the power of univariate analyses of both factor and SSs decreases dramatically, whereas the power of the CMV approach is maintained. We show the utility of the approach by examining the association between dopamine receptor D2 TaqIA and the initiation of marijuana, tranquilizers and stimulants in data from the Add Health Study. Perl scripts that takes ped and dat files as input and produces Mx scripts and data for running the CMV approach can be downloaded from www.vipbg.vcu.edu/~sarahme/WriteMx. PMID:19707246
Rare Variant Association Test with Multiple Phenotypes
Lee, Selyeong; Won, Sungho; Kim, Young Jin; Kim, Yongkang; Kim, Bong-Jo; Park, Taesung
2016-01-01
Although genome-wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of “missing heritability,” likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiply correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multi-variant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used Sequence Kernel Association Test (SKAT) for a single phenotype. We applied MAAUSS to Whole Exome Sequencing (WES) data from a Korean population of 1,058 subjects, to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases, had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability. PMID:28039885
Chattopadhyay, Balaji; Garg, Kritika M; Kumar, A K Vinoth; Doss, D Paramanantha Swami; Rheindt, Frank E; Kandula, Sripathi; Ramakrishnan, Uma
2016-02-18
The Oriental fruit bat genus Cynopterus, with several geographically overlapping species, presents an interesting case study to evaluate the evolutionary significance of coexistence versus isolation. We examined the morphological and genetic variability of congeneric fruit bats Cynopterus sphinx and C. brachyotis using 405 samples from two natural contact zones and 17 allopatric locations in the Indian subcontinent; and investigated the population differentiation patterns, evolutionary history, and the possibility of cryptic diversity in this species pair. Analysis of microsatellites, cytochrome b gene sequences, and restriction digestion based genome-wide data revealed that C. sphinx and C. brachyotis do not hybridize in contact zones. However, cytochrome b gene sequences and genome-wide SNP data helped uncover a cryptic, hitherto unrecognized cynopterine lineage in northeastern India coexisting with C. sphinx. Further analyses of shared variation of SNPs using Patterson's D statistics suggest introgression between this lineage and C. sphinx. Multivariate analyses of morphology using genetically classified grouping confirmed substantial morphological overlap between C. sphinx and C. brachyotis, specifically in the high elevation contact zones in southern India. Our results uncover novel diversity and detect a pattern of genetic introgression in a cryptic radiation of bats, demonstrating the complicated nature of lineage diversification in this poorly understood taxonomic group. Our results highlight the importance of genome-wide data to study evolutionary processes of morphologically similar species pairs. Our approach represents a significant step forward in evolutionary research on young radiations of non-model species that may retain the ability of interspecific gene flow.
Bashalkhanov, Stanislav; Eckert, Andrew J; Rajora, Om P
2013-12-01
One of the most important drivers of local adaptation for forest trees is climate. Coupled to these patterns, however, are human-induced disturbances through habitat modification and pollution. The confounded effects of climate and disturbance have rarely been investigated with regard to selective pressure on forest trees. Here, we have developed and used a population genetic approach to search for signals of selection within a set of 36 candidate genes chosen for their putative effects on adaptation to climate and human-induced air pollution within five populations of red spruce (Picea rubens Sarg.), distributed across its natural range and air pollution gradient in eastern North America. Specifically, we used FST outlier and environmental correlation analyses to highlight a set of seven single nucleotide polymorphisms (SNPs) that were overly correlated with climate and levels of sulphate pollution after correcting for the confounding effects of population history. Use of three age cohorts within each population allowed the effects of climate and pollution to be separated temporally, as climate-related SNPs (n = 7) showed the strongest signals in the oldest cohort, while pollution-related SNPs (n = 3) showed the strongest signals in the youngest cohorts. These results highlight the usefulness of population genetic scans for the identification of putatively nonneutral evolution within genomes of nonmodel forest tree species, but also highlight the need for the development and application of robust methodologies to deal with the inherent multivariate nature of the genetic and ecological data used in these types of analyses. © 2013 John Wiley & Sons Ltd.
Metabolic Profiling of Adiponectin Levels in Adults: Mendelian Randomization Analysis.
Borges, Maria Carolina; Barros, Aluísio J D; Ferreira, Diana L Santos; Casas, Juan Pablo; Horta, Bernardo Lessa; Kivimaki, Mika; Kumari, Meena; Menon, Usha; Gaunt, Tom R; Ben-Shlomo, Yoav; Freitas, Deise F; Oliveira, Isabel O; Gentry-Maharaj, Aleksandra; Fourkala, Evangelia; Lawlor, Debbie A; Hingorani, Aroon D
2017-12-01
Adiponectin, a circulating adipocyte-derived protein, has insulin-sensitizing, anti-inflammatory, antiatherogenic, and cardiomyocyte-protective properties in animal models. However, the systemic effects of adiponectin in humans are unknown. Our aims were to define the metabolic profile associated with higher blood adiponectin concentration and investigate whether variation in adiponectin concentration affects the systemic metabolic profile. We applied multivariable regression in ≤5909 adults and Mendelian randomization (using cis -acting genetic variants in the vicinity of the adiponectin gene as instrumental variables) for analyzing the causal effect of adiponectin in the metabolic profile of ≤37 545 adults. Participants were largely European from 6 longitudinal studies and 1 genome-wide association consortium. In the multivariable regression analyses, higher circulating adiponectin was associated with higher high-density lipoprotein lipids and lower very-low-density lipoprotein lipids, glucose levels, branched-chain amino acids, and inflammatory markers. However, these findings were not supported by Mendelian randomization analyses for most metabolites. Findings were consistent between sexes and after excluding high-risk groups (defined by age and occurrence of previous cardiovascular event) and 1 study with admixed population. Our findings indicate that blood adiponectin concentration is more likely to be an epiphenomenon in the context of metabolic disease than a key determinant. © 2017 The Authors.
Learning abilities and disabilities: generalist genes in early adolescence.
Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert
2009-01-01
The new view of cognitive neuropsychology that considers not just case studies of rare severe disorders but also common disorders, as well as normal variation and quantitative traits, is more amenable to recent advances in molecular genetics, such as genome-wide association studies, and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding emerging from multivariate quantitative genetic studies across diverse learning abilities is that most genetic influences are shared: they are "generalist", rather than "specialist". We exploited widespread access to inexpensive and fast Internet connections in the United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for the first time, language. Genetic correlations remain high among all of the measured abilities, with language as highly correlated genetically with g as reading and mathematics. Despite developmental upheaval, generalist genes remain important into early adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes of small effect that influence learning abilities and disabilities.
Derkarabetian, Shahan; Hedin, Marshal
2014-01-01
Alpha taxonomy, and specifically the delimitation of species, is becoming increasingly objective and integrative. The use of coalescent-based methods applied to genetic data is providing new tools for the discovery and delimitation of species. Here, we use an integrative approach via a combination of discovery-based multivariate morphological analyses to detect potential new species. These potential species are then used as a priori species in hypothesis-driven validation analyses with genetic data. This research focuses on the harvestmen genus Sclerobunus found throughout the mountainous regions of western North America. Based on our analyses, we conduct a revision of Sclerobunus resulting in synonymy of Cyptobunus with Sclerobunus including transfer of S. cavicolens comb. nov. and elevation of both subspecies of S. ungulatus: S. ungulatus comb. nov. and S. madhousensis comb. nov., stat. nov. The three subspecies of S. robustus are elevated, S. robustus, S. glorietus stat. nov., and S. idahoensis stat. nov. Additionally, five new species of Sclerobunus are described from New Mexico and Colorado, including S. jemez sp. nov., S. klomax sp. nov., S. skywalkeri sp. nov., S. speoventus sp. nov., and S. steinmanni sp. nov. Several of the newly described species are single-cave endemics, and our findings suggest that further exploration of western North American cave habitats will likely yield additional new species. PMID:25144370
Gugger, Paul F; Liang, Christina T; Sork, Victoria L; Hodgskiss, Paul; Wright, Jessica W
2018-02-01
Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa . Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.
Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao
2016-04-01
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.
Jacobs, Aryana S.; Schwartz, Marc D.; Valdimarsdottir, Heiddis; Nusbaum, Rachel H.; Hooker, Gillian W.; DeMarco, Tiffani A.; Heinzmann, Jessica E.; McKinnon, Wendy; McCormick, Shelley R.; Davis, Claire; Forman, Andrea D.; Lebensohn, Alexandra Perez; Dalton, Emily; Tully, Diana Moglia; Graves, Kristi D.; Similuk, Morgan; Kelly, Scott; Peshkin, Beth N.
2016-01-01
Telephone genetic counseling (TC) for high-risk women interested in BRCA1/2 testing has been shown to yield positive outcomes comparable to usual care (UC; in-person) genetic counseling. However, little is known about how genetic counselors perceive the delivery of these alternate forms of genetic counseling. As part of a randomized trial of TC versus UC, genetic counselors completed a 5-item genetic counselor process questionnaire (GCQ) assessing key elements of pre-test sessions (information delivery, emotional support, addressing questions and concerns, tailoring of session, and facilitation of decision- making) with the 479 female participants (TC, N=236; UC, N=243). The GCQ scores did not differ for TC vs. UC sessions (t (477) = 0.11, p = 0.910). However, multivariate analysis showed that participant race/ethnicity significantly predicted genetic counselor perceptions (β = 0.172, p<0.001) in that the GCQ scores were lower for minorities in TC and UC. Exploratory analyses suggested that GCQ scores may be associated with patient preference for UC versus TC (t (79) = 2.21, p=0.030). Additionally, we found that genetic counselor ratings of session effectiveness were generally concordant with patient perceptions of the session. These data indicate that genetic counselors perceive that key components of TC can be delivered as effectively as UC, and that these elements may contribute to specific aspects of patient satisfaction. However, undefined process differences may be present which account for lower counselor perceptions about the effectiveness of their sessions with minority women (i.e., those other than non-Hispanic Whites). We discuss other potential clinical and research implications of our findings. PMID:26969308
Wilson, Carmen L; Liu, Wei; Yang, Jun J; Kang, Guolian; Ojha, Rohit P; Neale, Geoffrey A; Srivastava, Deo Kumar; Gurney, James G; Hudson, Melissa M; Robison, Leslie L; Ness, Kirsten K
2015-07-01
The objective of this study was to identify treatment and genetic factors associated with obesity among childhood cancer survivors. Participants included 1996 survivors who previously received treatment for cancer at St. Jude Children's Research Hospital and who survived ≥10 years from diagnosis (median age at diagnosis, 7.2 years; median age at follow-up, 32.4 years). Obesity was defined as a body mass index ≥30 kg/m(2) . The factors associated with adult obesity were identified by subgroup-specific (cranial radiation [CRT] exposure status) multivariable logistic regression. Single nucleotide polymorphisms (SNPs) associated with obesity were identified by subgroup-specific, exploratory, genome-wide association analyses using a 2-stage resampling approach with a type I error rate of 5 × 10(-6) . Forty-seven percent of survivors who received CRT and 29.4% of those who did not receive CRT were obese at evaluation. In multivariable analyses, abdominal/pelvic radiation exposure was associated with decreased prevalence of obesity among survivors regardless of CRT status (P < .0001). The odds of obesity were increased among survivors who received CRT who had also received glucocorticoids (P = .014) or who were younger at diagnosis (P = .013). Among the survivors who had received CRT, 166 SNPs were associated with obesity. The strongest association was observed with reference SNP rs35669975 (P = 3.3 × 10(-8) ) on segment 33.3 of the long arm of chromosome 13 (13q33.3), approximately 30 kb downstream of FAM155A (family with sequence similarity 155, member A). SNPs within the glycine receptor α3 (GLRA3) gene and near the sex-determining region Y box 11 (SOX11) and cadherin 18 type 2 (CDH18) genes also were identified. These genes have been implicated in neural growth, repair, and connectivity. Obesity in childhood cancer survivors remains associated with previous exposure to CRT and glucocorticoids. Genetic variants related to neural connectivity may modify the risk of obesity among survivors who receive CRT. Validation of these findings in independent cohorts is required. © 2015 American Cancer Society.
Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.
Sztepanacz, Jacqueline L; Blows, Mark W
2017-07-01
The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.
Lajus, Dmitry; Sukhikh, Natalia; Alekseev, Victor
2015-01-01
Interest in cryptic species has increased significantly with current progress in genetic methods. The large number of cryptic species suggests that the resolution of traditional morphological techniques may be insufficient for taxonomical research. However, some species now considered to be cryptic may, in fact, be designated pseudocryptic after close morphological examination. Thus the “cryptic or pseudocryptic” dilemma speaks to the resolution of morphological analysis and its utility for identifying species. We address this dilemma first by systematically reviewing data published from 1980 to 2013 on cryptic species of Copepoda and then by performing an in-depth morphological study of the former Eurytemora affinis complex of cryptic species. Analyzing the published data showed that, in 5 of 24 revisions eligible for systematic review, cryptic species assignment was based solely on the genetic variation of forms without detailed morphological analysis to confirm the assignment. Therefore, some newly described cryptic species might be designated pseudocryptic under more detailed morphological analysis as happened with Eurytemora affinis complex. Recent genetic analyses of the complex found high levels of heterogeneity without morphological differences; it is argued to be cryptic. However, next detailed morphological analyses allowed to describe a number of valid species. Our study, using deep statistical analyses usually not applied for new species describing, of this species complex confirmed considerable differences between former cryptic species. In particular, fluctuating asymmetry (FA), the random variation of left and right structures, was significantly different between forms and provided independent information about their status. Our work showed that multivariate statistical approaches, such as principal component analysis, can be powerful techniques for the morphological discrimination of cryptic taxons. Despite increasing cryptic species designations, morphological techniques have great potential in determining copepod taxonomy. PMID:26120427
Galván-Tejada, Carlos E.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L.
2017-01-01
Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions. PMID:28216571
Galván-Tejada, Carlos E; Zanella-Calzada, Laura A; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L
2017-02-14
Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions.
Observational and Genetic Associations of Resting Heart Rate With Aortic Valve Calcium.
Whelton, Seamus P; Mauer, Andreas C; Pencina, Karol M; Massaro, Joseph M; D'Agostino, Ralph B; Fox, Caroline S; Hoffmann, Udo; Michos, Erin D; Peloso, Gina M; Dufresne, Line; Engert, James C; Kathiresan, Sekar; Budoff, Matthew; Post, Wendy S; Thanassoulis, George; O'Donnell, Christopher J
2018-05-15
It is unknown if lifelong exposure to increased hemodynamic stress from an elevated resting heart rate (HR) may contribute to aortic valve calcium (AVC). We performed multivariate regression analyses using data from 1,266 Framingham Heart Study (FHS) Offspring cohort participants and 6,764 Multi-Ethnic Study of Atherosclerosis (MESA) participants. We constructed a genetic risk score (GRS) for HR using summary-level data in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) AVC Consortium to investigate if there was evidence in favor of a causal relation. AVC was present in 39% of FHS Offspring cohort participants and in 13% of MESA cohort participants. In multivariate adjusted models, participants in the highest resting HR quartiles had significantly greater prevalence of AVC, with a prevalence ratio of 1.19 (95% confidence interval [CI] 0.99 to 1.44) for the FHS Offspring cohort and 1.32 (95% CI 1.12 to 1.63) for the MESA cohort, compared with those in the lowest quartile. There was a similar increase in the prevalence of AVC per standard deviation increase in resting HR in both FHS Offspring (prevalence ratio 1.08, 95% CI 1.01 to 1.15) and MESA (1.10, 95% CI 1.03 to 1.17). In contrast with these observational findings, a HR associated GRS was not significantly associated with AVC. Although our observational analysis indicates that a higher resting HR is associated with AVC, our genetic results do not support a causal relation. Unmeasured environmental and/or lifestyle factors associated with both increased resting HR and AVC that are not fully explained by covariates in our observational models may account for the association between resting HR and AVC. Copyright © 2018. Published by Elsevier Inc.
Fildes, Alison; van Jaarsveld, Cornelia H M; Cooke, Lucy; Wardle, Jane; Llewellyn, Clare H
2016-04-01
Food fussiness (FF) is common in early childhood and is often associated with the rejection of nutrient-dense foods such as vegetables and fruit. FF and liking for vegetables and fruit are likely all heritable phenotypes; the genetic influence underlying FF may explain the observed genetic influence on liking for vegetables and fruit. Twin analyses make it possible to get a broad-based estimate of the extent of the shared genetic influence that underlies these traits. We quantified the extent of the shared genetic influence that underlies FF and liking for vegetables and fruit in early childhood with the use of a twin design. Data were from the Gemini cohort, which is a population-based sample of twins born in England and Wales in 2007. Parents of 3-y-old twins (n= 1330 pairs) completed questionnaire measures of their children's food preferences (liking for vegetables and fruit) and the FF scale from the Children's Eating Behavior Questionnaire. Multivariate quantitative genetic modeling was used to estimate common genetic influences that underlie FF and liking for vegetables and fruit. Genetic correlations were significant and moderate to large in size between FF and liking for both vegetables (-0.65) and fruit (-0.43), which indicated that a substantial proportion of the genes that influence FF also influence liking. Common genes that underlie FF and liking for vegetables and fruit largely explained the observed phenotypic correlations between them (68-70%). FF and liking for fruit and vegetables in young children share a large proportion of common genetic factors. The genetic influence on FF may determine why fussy children typically reject fruit and vegetables.
Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel
2015-01-01
The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.
STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL
2015-01-01
Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749
Mathew, Boby; Holand, Anna Marie; Koistinen, Petri; Léon, Jens; Sillanpää, Mikko J
2016-02-01
A novel reparametrization-based INLA approach as a fast alternative to MCMC for the Bayesian estimation of genetic parameters in multivariate animal model is presented. Multi-trait genetic parameter estimation is a relevant topic in animal and plant breeding programs because multi-trait analysis can take into account the genetic correlation between different traits and that significantly improves the accuracy of the genetic parameter estimates. Generally, multi-trait analysis is computationally demanding and requires initial estimates of genetic and residual correlations among the traits, while those are difficult to obtain. In this study, we illustrate how to reparametrize covariance matrices of a multivariate animal model/animal models using modified Cholesky decompositions. This reparametrization-based approach is used in the Integrated Nested Laplace Approximation (INLA) methodology to estimate genetic parameters of multivariate animal model. Immediate benefits are: (1) to avoid difficulties of finding good starting values for analysis which can be a problem, for example in Restricted Maximum Likelihood (REML); (2) Bayesian estimation of (co)variance components using INLA is faster to execute than using Markov Chain Monte Carlo (MCMC) especially when realized relationship matrices are dense. The slight drawback is that priors for covariance matrices are assigned for elements of the Cholesky factor but not directly to the covariance matrix elements as in MCMC. Additionally, we illustrate the concordance of the INLA results with the traditional methods like MCMC and REML approaches. We also present results obtained from simulated data sets with replicates and field data in rice.
Methods for meta-analysis of multiple traits using GWAS summary statistics.
Ray, Debashree; Boehnke, Michael
2018-03-01
Genome-wide association studies (GWAS) for complex diseases have focused primarily on single-trait analyses for disease status and disease-related quantitative traits. For example, GWAS on risk factors for coronary artery disease analyze genetic associations of plasma lipids such as total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides (TGs) separately. However, traits are often correlated and a joint analysis may yield increased statistical power for association over multiple univariate analyses. Recently several multivariate methods have been proposed that require individual-level data. Here, we develop metaUSAT (where USAT is unified score-based association test), a novel unified association test of a single genetic variant with multiple traits that uses only summary statistics from existing GWAS. Although the existing methods either perform well when most correlated traits are affected by the genetic variant in the same direction or are powerful when only a few of the correlated traits are associated, metaUSAT is designed to be robust to the association structure of correlated traits. metaUSAT does not require individual-level data and can test genetic associations of categorical and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple studies, appropriately accounting for overlapping samples, if any. metaUSAT provides an approximate asymptotic P-value for association and is computationally efficient for implementation at a genome-wide level. Simulation experiments show that metaUSAT maintains proper type-I error at low error levels. It has similar and sometimes greater power to detect association across a wide array of scenarios compared to existing methods, which are usually powerful for some specific association scenarios only. When applied to plasma lipids summary data from the METSIM and the T2D-GENES studies, metaUSAT detected genome-wide significant loci beyond the ones identified by univariate analyses. Evidence from larger studies suggest that the variants additionally detected by our test are, indeed, associated with lipid levels in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a common disease or traits. © 2017 WILEY PERIODICALS, INC.
Oliveira, M M; Sousa, L B; Reis, M C; Silva Junior, E G; Cardoso, D B O; Hamawaki, O T; Nogueira, A P O
2017-05-31
The genetic diversity study has paramount importance in breeding programs; hence, it allows selection and choice of the parental genetic divergence, which have the agronomic traits desired by the breeder. This study aimed to characterize the genetic divergence between 24 soybean genotypes through their agronomic traits, using multivariate clustering methods to select the potential genitors for the promising hybrid combinations. Six agronomic traits evaluated were number of days to flowering and maturity, plant height at flowering and maturity, insertion height of the first pod, and yield. The genetic divergence evaluated by multivariate analysis that esteemed first the Mahalanobis' generalized distance (D 2 ), then the clustering using Tocher's optimization methods, and then the unweighted pair group method with arithmetic average (UPGMA). Tocher's optimization method and the UPGMA agreed with the groups' constitution between each other, the formation of eight distinct groups according Tocher's method and seven distinct groups using UPGMA. The trait number of days for flowering (45.66%) was the most efficient to explain dissimilarity between genotypes, and must be one of the main traits considered by the breeder in the moment of genitors choice in soybean-breeding programs. The genetic variability allowed the identification of dissimilar genotypes and with superior performances. The hybridizations UFU 18 x UFUS CARAJÁS, UFU 15 x UFU 13, and UFU 13 x UFUS CARAJÁS are promising to obtain superior segregating populations, which enable the development of more productive genotypes.
Adolescents' Relationships to Siblings and Mothers: A Multivariate Genetic Analysis.
ERIC Educational Resources Information Center
Bussell, Danielle A.; And Others
1999-01-01
Examined relative contributions of genetic and environmental influences to the covariation between sibling relationships and mother/adolescent relationships in 719 same-sex sibling pairs of varying degrees of genetic relatedness. Found that the overlapping effects of shared environment on the two relationship subsystems explained most of the…
Polymorphisms of the interleukin-6 gene promoter and abdominal aortic aneurysm.
Smallwood, L; Allcock, R; van Bockxmeer, F; Warrington, N; Palmer, L J; Iacopetta, B; Norman, P E
2008-01-01
Elevated levels of circulating interleukin-6 (IL-6) have been reported in patients with abdominal aortic aneurysms (AAAs). Although this implicates inflammation as a cause of AAAs, there is also evidence that the aneurysmal aorta may secrete IL-6 into the circulation as a result of aortic proteolysis. Genetic association studies are one means of trying to clarify the role of specific mediators in the causal pathway. The aim of the present study was to examine the association between variants of the IL-6 gene and AAAs. An association study involving 677 men with screen-detected AAAs and 656 age-matched controls was performed. Three variants in the IL-6 promoter region were analysed: IL-6-174G>C (rs1800795), IL-6-572G>C (rs1800796) and IL-6-597G>A (rs1800797). Univariate regression of SNP genotype on AAA as a binary outcome was initially performed under a range of genetic models (additive, dominant and recessive). This was followed by multivariate analyses, testing the same models but including risk factors known to be associated with AAAs. All analyses and haplotype estimation were performed under a generalized linear model framework. IL-6-572G>C polymorphism (frequency 1.5% in cases) was identified as an independent risk factor for AAA with an odds ratio (OR) of 6.00 (95%CI: 1.22, 29.41) when applied to the recessive model. No association was seen in the additive or dominant models. In a multivariate analysis using the most common haplotype (h.111, frequency 48.7%) as a reference, h.211 (frequency 4.4%) was an independent risk factor for AAA (OR 1.56, 95%CI: 1.02, 2.39). The IL-6 572G>C polymorphism (and h.211 haplotype) is associated with AAA, however it is too rare to be an important cause of most AAAs. This does not support the concept that the elevated level of IL-6 reported in patients with AAAs is a primary cause of the aneurysmal process.
Migliore, Jérémy; Baumel, Alex; Juin, Marianick; Fady, Bruno; Roig, Anne; Duong, Nathalie; Médail, Frédéric
2013-01-01
The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub Myrtus nivellei, endemic in the Saharan mountains since at least the end of the last Green Sahara period, around 5.5 ka B.P. Multilocus genotypes (nuclear microsatellites and AFLP) were obtained from 215 individuals collected from 23 wadis (temporary rivers) in the three main mountain ranges in southern Algeria (the Hoggar, Tassili n'Ajjer and Tassili n'Immidir ranges). Identical genotypes were found in several plants growing far apart within the same wadis, a pattern taken as evidence of clonality. Multivariate analyses and Bayesian clustering revealed that genetic diversity was mainly structured among the mountain ranges, while low isolation by distance was observed within each mountain range. The range contraction induced by the last episode of aridification has likely increased the genetic isolation of the populations of M. nivellei, without greatly affecting the genetic diversity of the species as a whole. The pattern of genetic diversity observed here suggests that high connectivity may have prevailed during humid periods, which is consistent with recent paleoenvironmental reconstructions.
Markos, Steven; Failla, Michelle D.; Ritter, Anne C; Dixon, C. Edward; Conley, Yvette P.; Ricker, Joseph H; Arenth, Patricia M.; Juengst, Shannon B.; Wagner, Amy K.
2015-01-01
Introduction Traumatic brain injury (TBI) frequently results in impaired cognition, a function that can be modulated by monoaminergic signaling. Genetic variation among monoaminergic genes may affect post-TBI cognitive performance. The vesicular monoamine transporter 2 (VMAT2) gene may be a novel source of genetic variation important for cognitive outcomes post-TBI given VMAT2’s role in monoaminergic neurotransmission. Objective Evaluate associations between VMAT2 variability and cognitive outcomes post-TBI. Methods We evaluated 136 white adults with severe TBI for variation in VMAT2 using a tagging single nucleotide polymorphism (tSNP) approach (rs363223, rs363226, rs363251, and rs363341). We show genetic variation interacts with assessed cognitive impairment [cognitive composite T-scores (Comp-Cog)] to influence functional cognition [Functional Independence Measure Cognitive subscale (FIM-Cog)] 6 and 12 months post-injury. Results Multivariate analyses at 6-months post-injury showed rs363226 genotype was associated with Comp-Cog (p=0.040) and interacted with Comp-Cog to influence functional cognition (p<0.001). G-homozygotes had the largest cognitive impairment, and their cognitive impairment had the greatest adverse effect on functional cognition. Discussion We provide the first evidence that genetic variation within VMAT2 is associated with cognitive outcomes following TBI. Further work is needed to validate this finding and elucidate mechanisms by which genetic variation affects monoaminergic signaling, mediating differences in cognitive outcomes. PMID:26828714
Ennen, J.R.; Kreiser, B.R.; Qualls, C.P.; Lovich, J.E.
2010-01-01
The turtle genus Graptemys consists of 15 recognized taxa, distinguished largely on the basis of pigmentation pattern (i.e., soft tissue and shell), head size, and shell morphology. However, phylogenetic studies have shown limited sequence divergence within the genus and between Graptemys oculifera and Graptemys flavimaculata relative to most other members of the Emydidae. Graptemys oculifera of the Pearl River drainage and G. flavimaculata of the Pascagoula River drainage have been recognized as species since 1890 and 1954, respectively. However, the description of G. flavimaculata was based on a limited number of morphological characters. Several of these characters overlap between G. flavimaculata and G. oculifera, and no attempt was made to test for significant morphological differentiation. In this study, we reevaluated the morphological and genetic distinctiveness of G. flavimaculata and G. oculifera with (1) multivariate statistical analyses of 44 morphological characters and (2) 1,560 bp of sequence data from two mitochondrial genes (control region and ND4). The morphological and molecular analyses produced incongruent results. The principal components analysis ordinations separated the two species along a pigmentation gradient with G. flavimaculata having more yellow pigmentation than G. oculifera. Likewise, clustering analyses separated the specimens into two distinct groups with little overlap between the species. Our mitochondrial data supported previous findings of limited genetic differentiation between the two species. However, the results of our morphological analyses, in conjunction with recently published nuclear gene sequence data, support the continued recognition of the two species. Copyright 2010 Society for the Study of Amphibians and Reptiles.
Heritability of educational achievement in 12-year-olds and the overlap with cognitive ability.
Bartels, Meike; Rietveld, Marjolein J H; Van Baal, G Caroline M; Boomsma, Dorret I
2002-12-01
In order to determine high school entrance level in the Netherlands, nowadays, much value is attached to the results of a national test of educational achievement (CITO), administered around age 12. Surprisingly, up until now, no attention has been paid to the etiology of individual differences in the results of this national test of educational achievement. No attempt has been made to address the question about the nature of a possible association between the results of the CITO and cognitive abilities, as measured by psychometric IQ. The aim of this study is to explore to what extent psychometric IQ and scholastic achievement, as assessed by the CITO high school entrance test, are correlated. In addition, it was investigated whether this expected correlation was due to a common genetic background, shared or nonshared environmental influences common to CITO and intelligence or a combination of these influences. To this end multivariate behavior genetic analyses with CITO and IQ at ages 5, 7, 10 and 12 years have been conducted. The correlations were.41,.50,.60, and.63 between CITO and IQ assessed at age 5, 7, 10, and 12 respectively. The results of the analyses pointed to genetic effects as the main source of variance in CITO and an important source of covariance between CITO and IQ. Additive genetic effects accounted for 60% of the individual differences found in CITO scores in a large sample of Dutch 12-year-olds. This high heritability indicated that the CITO might be a valuable instrument to assess individual differences in cognitive abilities in children but might not be the right instrument to put the effect of education to the test.
Sampling effort affects multivariate comparisons of stream assemblages
Cao, Y.; Larsen, D.P.; Hughes, R.M.; Angermeier, P.L.; Patton, T.M.
2002-01-01
Multivariate analyses are used widely for determining patterns of assemblage structure, inferring species-environment relationships and assessing human impacts on ecosystems. The estimation of ecological patterns often depends on sampling effort, so the degree to which sampling effort affects the outcome of multivariate analyses is a concern. We examined the effect of sampling effort on site and group separation, which was measured using a mean similarity method. Two similarity measures, the Jaccard Coefficient and Bray-Curtis Index were investigated with 1 benthic macroinvertebrate and 2 fish data sets. Site separation was significantly improved with increased sampling effort because the similarity between replicate samples of a site increased more rapidly than between sites. Similarly, the faster increase in similarity between sites of the same group than between sites of different groups caused clearer separation between groups. The strength of site and group separation completely stabilized only when the mean similarity between replicates reached 1. These results are applicable to commonly used multivariate techniques such as cluster analysis and ordination because these multivariate techniques start with a similarity matrix. Completely stable outcomes of multivariate analyses are not feasible. Instead, we suggest 2 criteria for estimating the stability of multivariate analyses of assemblage data: 1) mean within-site similarity across all sites compared, indicating sample representativeness, and 2) the SD of within-site similarity across sites, measuring sample comparability.
Silva, L N; Gasparino, E; Torres Júnior, R A A; Euclides Filho, K; Silva, L O C; Alencar, M M; Souza Júnior, M D; Battistelli, J V F; Silva, S C C
2015-05-22
Beef cattle production requires reproductive efficiency. However, measures of reproductive traits are not usually collected; consequently, correlated traits that could be used as indicators would be useful. We examined associations between measures of reproductive and productive efficiency that could be used as selection indicators. Data from 194 dams of the genetic groups Angus x Nelore, Caracu x Nelore, and Valdostana x Nelore collected over 4 years were used. The reproductive traits analyzed were days to heat (DH), calving interval (CI), days to calving (DC), and pregnancy rate (PR). The productive traits were dam weight (DW), body condition score (BCS), calf weight (CW), and weaning rate (WR). The effects on the model were: year, genetic group, reproductive status (RS), age, reproductive rest, and breed of bull (CW and WR). Multivariate analyses were performed, using the Bayesian approach via Gibbs sampling. We conclude that the reproductive measures are ineffective as selection indicators, whereas using dam weight may be a good alternative.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2017-01-01
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.
Henrard, S; Speybroeck, N; Hermans, C
2015-11-01
Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.
Cox, R M; Costello, R A; Camber, B E; McGlothlin, J W
2017-07-01
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the 'laws of inheritance'. Although a number of studies have supported this view by demonstrating substantial between-sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative-genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half-sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance-covariance structure (G) that is broadly similar in males (G m ) and females (G f ). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between-sex genetic correlations (r mf ), sexually dimorphic features, such as area and brightness, exhibit reduced r mf values that do not differ from zero. Using a modified random skewers analysis, we show that the between-sex genetic variance-covariance matrix (B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Dong, Jian-Jun; Li, Qing-Liang; Yin, Hua; Zhong, Cheng; Hao, Jun-Guang; Yang, Pan-Fei; Tian, Yu-Hong; Jia, Shi-Ru
2014-10-15
Sensory evaluation is regarded as a necessary procedure to ensure a reproducible quality of beer. Meanwhile, high-throughput analytical methods provide a powerful tool to analyse various flavour compounds, such as higher alcohol and ester. In this study, the relationship between flavour compounds and sensory evaluation was established by non-linear models such as partial least squares (PLS), genetic algorithm back-propagation neural network (GA-BP), support vector machine (SVM). It was shown that SVM with a Radial Basis Function (RBF) had a better performance of prediction accuracy for both calibration set (94.3%) and validation set (96.2%) than other models. Relatively lower prediction abilities were observed for GA-BP (52.1%) and PLS (31.7%). In addition, the kernel function of SVM played an essential role of model training when the prediction accuracy of SVM with polynomial kernel function was 32.9%. As a powerful multivariate statistics method, SVM holds great potential to assess beer quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Descriptor selection for banana accessions based on univariate and multivariate analysis.
Brandão, L P; Souza, C P F; Pereira, V M; Silva, S O; Santos-Serejo, J A; Ledo, C A S; Amorim, E P
2013-05-14
Our objective was to establish a minimum number of morphological descriptors for the characterization of banana germplasm and evaluate the efficiency of removal of redundant characters, based on univariate and multivariate statistical analyses. Phenotypic characterization was made of 77 accessions from Bahia, Brazil, using 92 descriptors. The selection of the descriptors was carried out by principal components analysis (quantitative) and by entropy (multi-category). Efficiency of elimination was analyzed by a comparative study between the clusters formed, taking into consideration all 92 descriptors and smaller groups. The selected descriptors were analyzed with the Ward-MLM procedure and a combined matrix formed by the Gower algorithm. We were able to reduce the number of descriptors used for characterizing the banana germplasm (42%). The correlation between the matrices considering the 92 descriptors and the selected ones was 0.82, showing that the reduction in the number of descriptors did not influence estimation of genetic variability between the banana accessions. We conclude that removing these descriptors caused no loss of information, considering the groups formed from pre-established criteria, including subgroup/subspecies.
Race, Ancestry, and Development of Food-Allergen Sensitization in Early Childhood
Tsai, Hui-Ju; Hong, Xiumei; Liu, Xin; Wang, Guoying; Pearson, Colleen; Ortiz, Katherin; Fu, Melanie; Pongracic, Jacqueline A.; Bauchner, Howard; Wang, Xiaobin
2011-01-01
OBJECTIVE: We examined whether the risk of food-allergen sensitization varied according to self-identified race or genetic ancestry. METHODS: We studied 1104 children (mean age: 2.7 years) from an urban multiethnic birth cohort. Food sensitization was defined as specific immunoglobulin E (sIgE) levels of ≥0.35 kilo–units of allergen (kUA)/L for any of 8 common food allergens. Multivariate logistic regression analyses were used to evaluate the associations of self-identified race and genetic ancestry with food sensitization. Analyses also examined associations with numbers of food sensitizations (0, 1 or 2, and ≥3 foods) and with logarithmically transformed allergen sIgE levels. RESULTS: In this predominantly minority cohort (60.9% black and 22.5% Hispanic), 35.5% of subjects exhibited food sensitizations. In multivariate models, both self-reported black race (odds ratio [OR]: 2.34 [95% confidence interval [CI]: 1.24–4.44]) and African ancestry (in 10% increments; OR: 1.07 [95% CI: 1.02–1.14]) were associated with food sensitization. Self-reported black race (OR: 3.76 [95% CI: 1.09–12.97]) and African ancestry (OR: 1.19 [95% CI: 1.07–1.32]) were associated with a high number (≥3) of food sensitizations. African ancestry was associated with increased odds of peanut sIgE levels of ≥5 kUA/L (OR: 1.25 [95% CI: 1.01–1.52]). Similar ancestry associations were seen for egg sIgE levels of ≥2 kUA/L (OR: 1.13 [95% CI: 1.01–1.27]) and milk sIgE levels of ≥5 kUA/L (OR: 1.24 [95% CI: 0.94–1.63]), although findings were not significant for milk. CONCLUSIONS: Black children were more likely to be sensitized to food allergens and were sensitized to more foods. African ancestry was associated with peanut sensitization. PMID:21890831
Mather, Lisa; Blom, Victoria; Bergström, Gunnar; Svedberg, Pia
2016-12-01
Depression and anxiety are highly comorbid due to shared genetic risk factors, but less is known about whether burnout shares these risk factors. We aimed to examine whether the covariation between major depressive disorder (MDD), generalized anxiety disorder (GAD), and burnout is explained by common genetic and/or environmental factors. This cross-sectional study included 25,378 Swedish twins responding to a survey in 2005-2006. Structural equation models were used to analyze whether the trait variances and covariances were due to additive genetics, non-additive genetics, shared environment, and unique environment. Univariate analyses tested sex limitation models and multivariate analysis tested Cholesky, independent pathway, and common pathway models. The phenotypic correlations were 0.71 (0.69-0.74) between MDD and GAD, 0.58 (0.56-0.60) between MDD and burnout, and 0.53 (0.50-0.56) between GAD and burnout. Heritabilities were 45% for MDD, 49% for GAD, and 38% for burnout; no statistically significant sex differences were found. A common pathway model was chosen as the final model. The common factor was influenced by genetics (58%) and unique environment (42%), and explained 77% of the variation in MDD, 69% in GAD, and 44% in burnout. GAD and burnout had additive genetic factors unique to the phenotypes (11% each), while MDD did not. Unique environment explained 23% of the variability in MDD, 20% in GAD, and 45% in burnout. In conclusion, the covariation was explained by an underlying common factor, largely influenced by genetics. Burnout was to a large degree influenced by unique environmental factors not shared with MDD and GAD.
Balestri, Martina; Calati, Raffaella; Serretti, Alessandro; Hartmann, Annette M; Konte, Bettina; Friedl, Marion; Giegling, Ina; Rujescu, Dan
2017-03-01
Serotonergic neurotransmission dysfunctions have been well documented in patients with suicidal behaviour. We investigated monoamine oxidase A (MAOA: rs2064070, rs6323, rs909525) and B (MAOB: rs1799836, rs2311013, rs2205655) genetic modulation of personality traits (Temperament and Character Inventory, TCI) as endophenotype for suicidal behaviour. 108 suicide attempters and 286 healthy controls of German origin were screened. Among females, allelic analyses revealed associations between MAOA rs6323 A allele and higher Harm Avoidance in suicide attempters and MAOB rs2205655 A allele and higher Cooperativeness scores in healthy controls. Among males, MAOA rs909525 A allele was associated with higher Reward Dependence in suicide attempters. Multivariate analyses controlling for age and educational level mainly confirmed results. Case-control analyses in this subsample do not differ from our previously reported one. Despite of the small sample size, a possible involvement of these genes in the modulation of personality traits closely related to suicidal behaviour cannot be excluded. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Solórzano, Sofía; Oyama, Ken
2010-03-01
The resplendent Quetzal (Pharomachrus mocinno) is an endemic Mesoamerican bird species of conservation concern. Within this species, the subspecies P. m. costaricensis and P. m. mocinno, have been recognized by apparent morphometric differences; however, presently there is no sufficient data for confirmation. We analyzed eight morphometric attributes of the body from 41 quetzals: body length, tarsus and cord wing, as well as the length, wide and depth of the bill, body weight; and in the case of the males, the length of the long upper-tail cover feathers. We used multivariate analyses to discriminate morphometric differences between subspecies and contrasted each morphometric attribute between and within subspecies with paired non-parametric Wilcoxon test. In order to review the intraspecific taxonomic status of this bird, we added phylogenetic analysis, and genetic divergence and differentiation based on nucleotide variations in four sequences of mtDNA. The nucleotide variation was estimated in control region, subunit NDH6, and tRNAGlu and tRNAPhe in 26 quetzals from eight localities distributed in five countries. We estimated the genetic divergence and differentiation between subspecies according to a mutation-drift equilibrium model. We obtained the best mutation nucleotide model following the procedure implemented in model test program. We constructed the phylogenetic relationships between subspecies by maximum parsimony and maximum likelihood using PAUP, as well as with Bayesian statistics. The multivariate analyses showed two different morphometric groups, and individuals clustered according to the subspecies that they belong. The paired comparisons between subspecies showed strong differences in most of the attributes analyzed. Along the four mtDNA sequences, we identified 32 nucleotide positions that have a particular nucleotide according to the quetzals subspecies. The genetic divergence and the differentiation was strong and markedly showed two groups within P. mocinno that corresponded to the quetzals subspecies. The model selected for our data was TVM+G. The three phylogenetic methods here used recovered two clear monophyletic clades corresponding to each subspecies, and evidenced a significant and true partition of P. mocinno species into two different genetic, morphometric and ecologic groups. Additionally, according to our calculations, the gene flow between subspecies is interrupted at least from three million years ago. Thus we propose that P. mocinno be divided in two independent species: P. mocinno (Northern species, from Mexico to Nicaragua) and in P. costaricensis (Southern species, Costa Rica and Panama). This new taxonomic classification of the quetzal subspecies allows us to get well conservation achievements because the evaluation about the kind and magnitude of the threats could be more precise.
Dong, Zhong-Yi; Zhai, Hao-Ran; Hou, Qing-Yi; Su, Jian; Liu, Si-Yang; Yan, Hong-Hong; Li, Yang-Si; Chen, Zhi-Yong; Zhong, Wen-Zhao; Wu, Yi-Long
2017-01-01
A subset of patients with non-small cell lung cancer (NSCLC) fosters mixed responses (MRs) to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) or chemotherapy. However, little is known about the clinical and molecular features or the prognostic significance and potential mechanisms. The records of 246 consecutive patients with NSCLC receiving single-line chemotherapy or TKI treatment and who were assessed by baseline and interim positron emission tomography/computed tomography scans were collected retrospectively. The clinicopathological correlations of the MR were analyzed, and a multivariate analysis was performed to explore the prognostic significance of MR. The overall incidence of MR to systemic therapy was 21.5% (53/246) and predominated in patients with stage IIIB-IV, EGFR mutations and those who received TKI therapy (p < .05). Subgroup analyses based on MR classification (efficacious versus inefficacious) showed significant differences in subsequent treatment between the two groups (p < .001) and preferable progression-free survival (PFS) and overall survival (OS) in the efficacious MR group. Multivariate analyses demonstrated that the presence of MR was an independent unfavorable prognostic factor for PFS (hazard ratio [HR], 1.474; 95% confidence interval [CI], 1.018-2.134; p = .040) and OS (HR, 1.849; 95% CI, 1.190-2.871; p = .006) in patients with NSCLC. Induced by former systemic therapy, there were more T790M (18%), concomitant EGFR mutations (15%), and changes to EGFR wild type (19%) in the MR group among patients with EGFR mutations, which indicated higher incidence of genetic heterogeneity. MR was not a rare event in patients with NSCLC and tended to occur in those with advanced lung adenocarcinoma treated with a TKI. MR may result from genetic heterogeneity and is an unfavorable prognostic factor for survival. Further studies are imperative to explore subsequent treatment strategies. The Oncologist 2017;22:61-69Implications for Practice: Tumor heterogeneity tends to produce mixed responses (MR) to systemic therapy, including TKI and chemotherapy; however, the clinical significance and potential mechanisms are not fully understood, and the subsequent treatment after MR is also a clinical concern. The present study systemically assessed patients by PET/CT and differentiated MR and therapies. The study identified a relatively high incidence of MR in patients with advanced NSCLC, particularly those treated with targeted therapies. An MR may be an unfavorable prognostic factor and originate from genetic heterogeneity. Further studies are imperative to explore subsequent treatment strategies. © AlphaMed Press 2017.
Dong, Zhong‐Yi; Zhai, Hao‐Ran; Hou, Qing‐Yi; Su, Jian; Liu, Si‐Yang; Yan, Hong‐Hong; Li, Yang‐Si; Chen, Zhi‐Yong; Zhong, Wen‐Zhao
2017-01-01
Abstract Background. A subset of patients with non‐small cell lung cancer (NSCLC) fosters mixed responses (MRs) to epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitors (TKIs) or chemotherapy. However, little is known about the clinical and molecular features or the prognostic significance and potential mechanisms. Methods. The records of 246 consecutive patients with NSCLC receiving single‐line chemotherapy or TKI treatment and who were assessed by baseline and interim positron emission tomography/computed tomography scans were collected retrospectively. The clinicopathological correlations of the MR were analyzed, and a multivariate analysis was performed to explore the prognostic significance of MR. Results. The overall incidence of MR to systemic therapy was 21.5% (53/246) and predominated in patients with stage IIIB–IV, EGFR mutations and those who received TKI therapy (p < .05). Subgroup analyses based on MR classification (efficacious versus inefficacious) showed significant differences in subsequent treatment between the two groups (p < .001) and preferable progression‐free survival (PFS) and overall survival (OS) in the efficacious MR group. Multivariate analyses demonstrated that the presence of MR was an independent unfavorable prognostic factor for PFS (hazard ratio [HR], 1.474; 95% confidence interval [CI], 1.018–2.134; p = .040) and OS (HR, 1.849; 95% CI, 1.190–2.871; p = .006) in patients with NSCLC. Induced by former systemic therapy, there were more T790M (18%), concomitant EGFR mutations (15%), and changes to EGFR wild type (19%) in the MR group among patients with EGFR mutations, which indicated higher incidence of genetic heterogeneity. Conclusion. MR was not a rare event in patients with NSCLC and tended to occur in those with advanced lung adenocarcinoma treated with a TKI. MR may result from genetic heterogeneity and is an unfavorable prognostic factor for survival. Further studies are imperative to explore subsequent treatment strategies. Implications for Practice. Tumor heterogeneity tends to produce mixed responses (MR) to systemic therapy, including TKI and chemotherapy; however, the clinical significance and potential mechanisms are not fully understood, and the subsequent treatment after MR is also a clinical concern. The present study systemically assessed patients by PET/CT and differentiated MR and therapies. The study identified a relatively high incidence of MR in patients with advanced NSCLC, particularly those treated with targeted therapies. An MR may be an unfavorable prognostic factor and originate from genetic heterogeneity. Further studies are imperative to explore subsequent treatment strategies. PMID:28126915
Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan
2015-01-01
The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393
ERIC Educational Resources Information Center
McAdams, Tom; Rowe, Richard; Rijsdijk, Fruhling; Maughan, Barbara; Eley, Thalia C.
2012-01-01
Multivariate genetic studies have revealed genetic correlations between antisocial behavior (ASB) and substance use (SU). However, ASB is heterogeneous, and it remains unclear whether all forms are similarly related to SU. The present study examines links between cannabis use, alcohol consumption, and aggressive and delinquent forms of ASB using a…
"Generalist Genes" and Mathematics in 7-Year-Old Twins
ERIC Educational Resources Information Center
Kovas, Y.; Harlaar, N.; Petrill, S. A.; Plomin, R.
2005-01-01
Mathematics performance at 7 years as assessed by teachers using UK national curriculum criteria has been found to be highly heritable. For almost 3000 pairs of 7-year-old same-sex twins, we used multivariate genetic analysis to investigate the extent to which these genetic effects on mathematics performance overlap with genetic effects on reading…
Genetics, the Big Five, and the Tendency to Be Self-Employed
ERIC Educational Resources Information Center
Shane, Scott; Nicolaou, Nicos; Cherkas, Lynn; Spector, Tim D.
2010-01-01
We applied multivariate genetics techniques to a sample of 3,412 monozygotic and dizygotic twins from the United Kingdom and 1,300 monozygotic and dizygotic twins from the United States to examine whether genetic factors account for part of the covariance between the Big Five personality characteristics and the tendency to be an entrepreneur. We…
Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed
2017-01-05
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenotypic and genetic structure of traits delineating personality disorder.
Livesley, W J; Jang, K L; Vernon, P A
1998-10-01
The evidence suggests that personality traits are hierarchically organized with more specific or lower-order traits combining to form more generalized higher-order traits. Agreement exists across studies regarding the lower-order traits that delineate personality disorder but not the higher-order traits. This study seeks to identify the higher-order structure of personality disorder by examining the phenotypic and genetic structures underlying lower-order traits. Eighteen lower-order traits were assessed using the Dimensional Assessment of Personality Disorder-Basic Questionnaire in samples of 656 personality disordered patients, 939 general population subjects, and a volunteer sample of 686 twin pairs. Principal components analysis yielded 4 components, labeled Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity, that were similar across the 3 samples. Multivariate genetic analyses also yielded 4 genetic and environmental factors that were remarkably similar to the phenotypic factors. Analysis of the residual heritability of the lower-order traits when the effects of the higher-order factors were removed revealed a substantial residual heritable component for 12 of the 18 traits. The results support the following conclusions. First, the stable structure of traits across clinical and nonclinical samples is consistent with dimensional representations of personality disorders. Second, the higher-order traits of personality disorder strongly resemble dimensions of normal personality. This implies that a dimensional classification should be compatible with normative personality. Third, the residual heritability of the lower-order traits suggests that the personality phenotypes are based on a large number of specific genetic components.
2013-01-01
Background When studying the genetic structure of human populations, the role of cultural factors may be difficult to ascertain due to a lack of formal models. Linguistic diversity is a typical example of such a situation. Patrilocality, on the other hand, can be integrated into a biological framework, allowing the formulation of explicit working hypotheses. The present study is based on the assumption that patrilocal traditions make the hypervariable region I of the mtDNA a valuable tool for the exploration of migratory dynamics, offering the opportunity to explore the relationships between genetic and linguistic diversity. We studied 85 Niger-Congo-speaking patrilocal populations that cover regions from Senegal to Central African Republic. A total of 4175 individuals were included in the study. Results By combining a multivariate analysis aimed at investigating the population genetic structure, with a Bayesian approach used to test models and extent of migration, we were able to detect a stepping-stone migration model as the best descriptor of gene flow across the region, with the main discontinuities corresponding to forested areas. Conclusions Our analyses highlight an aspect of the influence of habitat variation on human genetic diversity that has yet to be understood. Rather than depending simply on geographic linear distances, patterns of female genetic variation vary substantially between savannah and rainforest environments. Our findings may be explained by the effects of recent gene flow constrained by environmental factors, which superimposes on a background shaped by pre-agricultural peopling. PMID:23360301
Bao, Ying; Curhan, Gary; Merriman, Tony; Plenge, Robert; Kraft, Peter; Choi, Hyon K
2015-07-01
Diuretic-induced gout might occur only among those with a genetic predisposition to hyperuricaemia, as suggested by a recent study with 108 self-reported gout cases. We examined the role of urate genes on the risk of diuretic-induced incident gout in 6850 women from the Nurses' Health Study (NHS) and in 4223 men from the Health Professionals Follow-up Study (HPFS). Two published genetic risk scores (GRSs) were calculated using urate-associated single-nucleotide polymorphisms for 8 (GRS8) and 29 genes (GRS29). Our analyses included 727 and 354 confirmed incident gout cases in HPFS and NHS, respectively. The multivariate relative risk (RR) for diuretic use was 2.20 and 1.69 among those with GRS8 < and ≥ the median (p for interaction=0.27). The corresponding RRs using GRS29 were 2.19 and 1.88 (p for interaction=0.40). The lack of interaction persisted in NHS (all p values >0.20) and in our analyses limited to those with hypertension in both cohorts. SLC22A11 (OAT4) showed a significant interaction only among women but in the opposite direction to the recent study. In these large prospective studies, individuals with a genetic predisposition for hyperuricaemia are not at a higher risk of developing diuretic-induced gout than those without. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Selapa, N W; Nephawe, K A; Maiwashe, A; Norris, D
2012-02-08
The aim of this study was to estimate genetic parameters for body weights of individually fed beef bulls measured at centralized testing stations in South Africa using random regression models. Weekly body weights of Bonsmara bulls (N = 2919) tested between 1999 and 2003 were available for the analyses. The model included a fixed regression of the body weights on fourth-order orthogonal Legendre polynomials of the actual days on test (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, and 84) for starting age and contemporary group effects. Random regressions on fourth-order orthogonal Legendre polynomials of the actual days on test were included for additive genetic effects and additional uncorrelated random effects of the weaning-herd-year and the permanent environment of the animal. Residual effects were assumed to be independently distributed with heterogeneous variance for each test day. Variance ratios for additive genetic, permanent environment and weaning-herd-year for weekly body weights at different test days ranged from 0.26 to 0.29, 0.37 to 0.44 and 0.26 to 0.34, respectively. The weaning-herd-year was found to have a significant effect on the variation of body weights of bulls despite a 28-day adjustment period. Genetic correlations amongst body weights at different test days were high, ranging from 0.89 to 1.00. Heritability estimates were comparable to literature using multivariate models. Therefore, random regression model could be applied in the genetic evaluation of body weight of individually fed beef bulls in South Africa.
Genetic architecture of learning and delayed recall: a twin study of episodic memory.
Panizzon, Matthew S; Lyons, Michael J; Jacobson, Kristen C; Franz, Carol E; Grant, Michael D; Eisen, Seth A; Xian, Hong; Kremen, William S
2011-07-01
Although episodic memory is often conceptualized as consisting of multiple component processes, there is a lack of understanding as to whether these processes are influenced by the same or different genetic determinants. The aim of the present study was to utilize multivariate twin analyses to elucidate the degree to which learning and delayed recall, two critical measures of episodic memory performance, have common or different genetic and environmental influences. Participants from the Vietnam Era Twin Study of Aging (314 monozygotic twin pairs, 259 dizygotic twin pairs, and 47 unpaired twins) were assessed using the second edition of the California Verbal Learning Test. Mean age at the time of the evaluation was 55.4 years (SD = 2.5). Model fitting revealed the presence of a higher-order latent factor influencing learning, short- and long-delay free recall, with a heritability of .36. The best-fitting model also indicated specific genetic influences on learning, which accounted for 10% of the overall variance. Given that learning involves the acquisition and retrieval of information, whereas delayed recall involves only retrieval, we conclude that these specific effects are likely to reflect genes that are specific to acquisition processes. These results demonstrate that even in nonclinical populations, it is possible to differentiate component processes in episodic memory. These different genetic influences may have implications for gene association studies, as well as other genetic studies of cognitive aging and disorders of episodic memory such as Alzheimer's disease or mild cognitive impairment. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Mokhtari, Mohammadreza; Narayanan, Balaji; Hamm, Jordan P; Soh, Pauline; Calhoun, Vince D; Ruaño, Gualberto; Kocherla, Mohan; Windemuth, Andreas; Clementz, Brett A; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Pearlson, Godfrey D
2016-05-01
The complex molecular etiology of psychosis in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is not well defined, presumably due to their multifactorial genetic architecture. Neurobiological correlates of psychosis can be identified through genetic associations of intermediate phenotypes such as event-related potential (ERP) from auditory paired stimulus processing (APSP). Various ERP components of APSP are heritable and aberrant in SZ, PBP and their relatives, but their multivariate genetic factors are less explored. We investigated the multivariate polygenic association of ERP from 64-sensor auditory paired stimulus data in 149 SZ, 209 PBP probands, and 99 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Multivariate association of 64-channel APSP waveforms with a subset of 16 999 single nucleotide polymorphisms (SNPs) (reduced from 1 million SNP array) was examined using parallel independent component analysis (Para-ICA). Biological pathways associated with the genes were assessed using enrichment-based analysis tools. Para-ICA identified 2 ERP components, of which one was significantly correlated with a genetic network comprising multiple linearly coupled gene variants that explained ~4% of the ERP phenotype variance. Enrichment analysis revealed epidermal growth factor, endocannabinoid signaling, glutamatergic synapse and maltohexaose transport associated with P2 component of the N1-P2 ERP waveform. This ERP component also showed deficits in SZ and PBP. Aberrant P2 component in psychosis was associated with gene networks regulating several fundamental biologic functions, either general or specific to nervous system development. The pathways and processes underlying the gene clusters play a crucial role in brain function, plausibly implicated in psychosis. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Largo-Gosens, Asier; Hernández-Altamirano, Mabel; García-Calvo, Laura; Alonso-Simón, Ana; Álvarez, Jesús; Acebes, José L.
2014-01-01
Fourier transform mid-infrared (FT-MIR) spectroscopy has been extensively used as a potent, fast and non-destructive procedure for analyzing cell wall architectures, with the capacity to provide abundant information about their polymers, functional groups, and in muro entanglement. In conjunction with multivariate analyses, this method has proved to be a valuable tool for tracking alterations in cell walls. The present review examines recent progress in the use of FT-MIR spectroscopy to monitor cell wall changes occurring in muro as a result of various factors, such as growth and development processes, genetic modifications, exposition or habituation to cellulose biosynthesis inhibitors and responses to other abiotic or biotic stresses, as well as its biotechnological applications. PMID:25071791
Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne
2016-05-01
Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.
Siren, J; Ovaskainen, O; Merilä, J
2017-10-01
The genetic variance-covariance matrix (G) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G-matrices is limited for two reasons. First, phenotypes are high-dimensional, whereas traditional statistical methods are tuned to estimate and analyse low-dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high-dimensional G-matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half-sib breeding design of three-spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low-temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability-as well as the similarity among G-matrices-may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G-matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G, they also illustrate that by enabling the estimation of large G-matrices, the BSFG method can improve predicted evolutionary responses to selection. © 2017 John Wiley & Sons Ltd.
Multivariate Models for Normal and Binary Responses in Intervention Studies
ERIC Educational Resources Information Center
Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen
2016-01-01
Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…
Berger, Andreas W; Raedler, Katja; Langner, Cord; Ludwig, Leopold; Dikopoulos, Nektarios; Becker, Karl F; Slotta-Huspenina, Julia; Quante, Michael; Schwerdel, Daniel; Perkhofer, Lukas; Kleger, Alexander; Zizer, Eugen; Oswald, Franz; Seufferlein, Thomas; Meining, Alexander
2017-01-01
Background and objective Current surveillance strategies for colorectal cancer following polypectomy are determined by endoscopic and histopathological factors. Such a distinction has been challenged. The present study was designed to identify molecular parameters in colonic polyps potentially defining new sub-groups at risk. Methods One hundred patients were enrolled in this multicentre study. Polyps biopsies underwent formalin-free processing (PAXgene, PreAnalytiX) and targeted next generation sequencing (38 genes (QIAGEN), NextSeq 500 platform (Illumina)). Genetic and histopathological analyses were done blinded to other data. Results In 100 patients, 224 polyps were removed. Significant associations of genetic alterations with endoscopic or histological polyp characteristics were observed for BRAF, KRAS, TCF7L2, FBXW7 and CTNNB1 mutations. Multivariate analysis revealed that polyps ≥ 10 mm have a significant higher relative risk for harbouring oncogene mutations (relative risk 3.467 (1.742–6.933)). Adenomas and right-sided polyps are independent risk factors for CTNNB1 mutations (relative risk 18.559 (2.371–145.245) and 12.987 (1.637–100.00)). Conclusions Assessment of the mutational landscape of polyps can be integrated in the workflow of current colonoscopy practice. There are distinct genetic patterns related to polyp size and location. These results suffice to optimise individual risk calculation and may help to better define surveillance intervals. PMID:29511559
Bracco, Mariana; Cascales, Jimena; Hernández, Julián Cámara; Poggio, Lidia; Gottlieb, Alexandra M; Lia, Verónica V
2016-08-26
Maize landraces from South America have traditionally been assigned to two main categories: Andean and Tropical Lowland germplasm. However, the genetic structure and affiliations of the lowland gene pools have been difficult to assess due to limited sampling and the lack of comparative analysis. Here, we examined SSR and Adh2 sequence variation in a diverse sample of maize landraces from lowland middle South America, and performed a comprehensive integrative analysis of population structure and diversity including already published data of archaeological and extant specimens from the Americas. Geographic distribution models were used to explore the relationship between environmental factors and the observed genetic structure. Bayesian and multivariate analyses of population structure showed the existence of two previously overlooked lowland gene pools associated with Guaraní indigenous communities of middle South America. The singularity of this germplasm was also evidenced by the frequency distribution of microsatellite repeat motifs of the Adh2 locus and the distinct spatial pattern inferred from geographic distribution models. Our results challenge the prevailing view that lowland middle South America is just a contact zone between Andean and Tropical Lowland germplasm and highlight the occurrence of a unique, locally adapted gene pool. This information is relevant for the conservation and utilization of maize genetic resources, as well as for a better understanding of environment-genotype associations.
Palmer, Rohan H C; McGeary, John E; Heath, Andrew C; Keller, Matthew C; Brick, Leslie A; Knopik, Valerie S
2015-12-01
Genetic studies of alcohol dependence (AD) have identified several candidate loci and genes, but most observed effects are small and difficult to reproduce. A plausible explanation for inconsistent findings may be a violation of the assumption that genetic factors contributing to each of the seven DSM-IV criteria point to a single underlying dimension of risk. Given that recent twin studies suggest that the genetic architecture of AD is complex and probably involves multiple discrete genetic factors, the current study employed common single nucleotide polymorphisms in two multivariate genetic models to examine the assumption that the genetic risk underlying DSM-IV AD is unitary. AD symptoms and genome-wide single nucleotide polymorphism (SNP) data from 2596 individuals of European descent from the Study of Addiction: Genetics and Environment were analyzed using genomic-relatedness-matrix restricted maximum likelihood. DSM-IV AD symptom covariance was described using two multivariate genetic factor models. Common SNPs explained 30% (standard error=0.136, P=0.012) of the variance in AD diagnosis. Additive genetic effects varied across AD symptoms. The common pathway model approach suggested that symptoms could be described by a single latent variable that had a SNP heritability of 31% (0.130, P=0.008). Similarly, the exploratory genetic factor model approach suggested that the genetic variance/covariance across symptoms could be represented by a single genetic factor that accounted for at least 60% of the genetic variance in any one symptom. Additive genetic effects on DSM-IV alcohol dependence criteria overlap. The assumption of common genetic effects across alcohol dependence symptoms appears to be a valid assumption. © 2015 Society for the Study of Addiction.
He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Han, Dandan; Xu, Pao; Yang, Runqing
2017-11-02
Because of their high economic importance, growth traits in fish are under continuous improvement. For growth traits that are recorded at multiple time-points in life, the use of univariate and multivariate animal models is limited because of the variable and irregular timing of these measures. Thus, the univariate random regression model (RRM) was introduced for the genetic analysis of dynamic growth traits in fish breeding. We used a multivariate random regression model (MRRM) to analyze genetic changes in growth traits recorded at multiple time-point of genetically-improved farmed tilapia. Legendre polynomials of different orders were applied to characterize the influences of fixed and random effects on growth trajectories. The final MRRM was determined by optimizing the univariate RRM for the analyzed traits separately via penalizing adaptively the likelihood statistical criterion, which is superior to both the Akaike information criterion and the Bayesian information criterion. In the selected MRRM, the additive genetic effects were modeled by Legendre polynomials of three orders for body weight (BWE) and body length (BL) and of two orders for body depth (BD). By using the covariance functions of the MRRM, estimated heritabilities were between 0.086 and 0.628 for BWE, 0.155 and 0.556 for BL, and 0.056 and 0.607 for BD. Only heritabilities for BD measured from 60 to 140 days of age were consistently higher than those estimated by the univariate RRM. All genetic correlations between growth time-points exceeded 0.5 for either single or pairwise time-points. Moreover, correlations between early and late growth time-points were lower. Thus, for phenotypes that are measured repeatedly in aquaculture, an MRRM can enhance the efficiency of the comprehensive selection for BWE and the main morphological traits.
Parasites as valuable stock markers for fisheries in Australasia, East Asia and the Pacific Islands.
Lester, R J G; Moore, B R
2015-01-01
Over 30 studies in Australasia, East Asia and the Pacific Islands region have collected and analysed parasite data to determine the ranges of individual fish, many leading to conclusions about stock delineation. Parasites used as biological tags have included both those known to have long residence times in the fish and those thought to be relatively transient. In many cases the parasitological conclusions have been supported by other methods especially analysis of the chemical constituents of otoliths, and to a lesser extent, genetic data. In analysing parasite data, authors have applied multiple different statistical methodologies, including summary statistics, and univariate and multivariate approaches. Recently, a growing number of researchers have found non-parametric methods, such as analysis of similarities and cluster analysis, to be valuable. Future studies into the residence times, life cycles and geographical distributions of parasites together with more robust analytical methods will yield much important information to clarify stock structures in the area.
Nordestgaard, Ask Tybjærg; Nordestgaard, Børge Grønne
2016-12-01
Coffee has been associated with modestly lower risk of cardiovascular disease and all-cause mortality in meta-analyses; however, it is unclear whether these are causal associations. We tested first whether coffee intake is associated with cardiovascular disease and all-cause mortality observationally; second, whether genetic variations previously associated with caffeine intake are associated with coffee intake; and third, whether the genetic variations are associated with cardiovascular disease and all-cause mortality. First, we used multivariable adjusted Cox proportional hazard regression models evaluated with restricted cubic splines to examine observational associations in 95 366 White Danes. Second, we estimated mean coffee intake according to five genetic variations near the AHR (rs4410790; rs6968865) and CYP1A1/2 genes (rs2470893; rs2472297; rs2472299). Third, we used sex- and age adjusted Cox proportional hazard regression models to examine genetic associations with cardiovascular disease and all-cause mortality in 112 509 Danes. Finally, we used sex and age-adjusted logistic regression models to examine genetic associations with ischaemic heart disease including the Cardiogram and C4D consortia in a total of up to 223 414 individuals. We applied similar analyses to ApoE genotypes associated with plasma cholesterol levels, as a positive control. In observational analyses, we observed U-shaped associations between coffee intake and cardiovascular disease and all-cause mortality; lowest risks were observed in individuals with medium coffee intake. Caffeine intake allele score (rs4410790 + rs2470893) was associated with a 42% higher coffee intake. Hazard ratios per caffeine intake allele were 1.02 (95% confidence interval: 1.00-1.03) for ischaemic heart disease, 1.02 (0.99-1.02) for ischaemic stroke, 1.02 (1.00-1.03) for ischaemic vascular disease, 1.02 (0.99-1.06) for cardiovascular mortality and 1.01 (0.99-1.03) for all-cause mortality. Including international consortia, odds ratios per caffeine intake allele for ischaemic heart disease were 1.00 (0.98-1.02) for rs4410790, 1.01 (0.99-1.03) for rs6968865, 1.02 (1.00-1.04) for rs2470893, 1.02 (1.00-1.04) for rs2472297 and 1.03 (0.99-1.06) for rs2472299. Conversely, 5% lower cholesterol level caused by ApoE genotype had a corresponding odds ratio for ischaemic heart disease of 0.93 (0.89-0.97). Observationally, coffee intake was associated with U-shaped lower risk of cardiovascular disease and all-cause mortality; however, genetically caffeine intake was not associated with risk of cardiovascular disease or all-cause mortality. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.
van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem
2015-10-01
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.
Park, Sung Hee; Lee, Ji Young; Kim, Sangsoo
2011-01-01
Current Genome-Wide Association Studies (GWAS) are performed in a single trait framework without considering genetic correlations between important disease traits. Hence, the GWAS have limitations in discovering genetic risk factors affecting pleiotropic effects. This work reports a novel data mining approach to discover patterns of multiple phenotypic associations over 52 anthropometric and biochemical traits in KARE and a new analytical scheme for GWAS of multivariate phenotypes defined by the discovered patterns. This methodology applied to the GWAS for multivariate phenotype highLDLhighTG derived from the predicted patterns of the phenotypic associations. The patterns of the phenotypic associations were informative to draw relations between plasma lipid levels with bone mineral density and a cluster of common traits (Obesity, hypertension, insulin resistance) related to Metabolic Syndrome (MS). A total of 15 SNPs in six genes (PAK7, C20orf103, NRIP1, BCL2, TRPM3, and NAV1) were identified for significant associations with highLDLhighTG. Noteworthy findings were that the significant associations included a mis-sense mutation (PAK7:R335P), a frame shift mutation (C20orf103) and SNPs in splicing sites (TRPM3). The six genes corresponded to rat and mouse quantitative trait loci (QTLs) that had shown associations with the common traits such as the well characterized MS and even tumor susceptibility. Our findings suggest that the six genes may play important roles in the pleiotropic effects on lipid metabolism and the MS, which increase the risk of Type 2 Diabetes and cardiovascular disease. The use of the multivariate phenotypes can be advantageous in identifying genetic risk factors, accounting for the pleiotropic effects when the multivariate phenotypes have a common etiological pathway.
Constrained evolution of the sex comb in Drosophila simulans.
Maraqa, M S; Griffin, R; Sharma, M D; Wilson, A J; Hunt, J; Hosken, D J; House, C M
2017-02-01
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post-copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post-copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre- and post-copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima. © 2016 The Authors. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Baker, Marc A; Butterworth, Charles A
2013-05-01
Taxonomic circumscription of subspecific taxa within Coryphantha robustispina was evaluated with morphological data and microsatellites. This study was the first to compare adequately sampled morphological and DNA analyses at the population level in the Cactaceae. This comparison was important to test reliability of both methods and to gain a better understanding of phytogeography, evolution, and systematics of the species, knowledge that could prove useful for other taxa as well. Populations of C. robustispina subsp. robustispina are listed as endangered by the U. S. Fish and Wildlife Service. Our primary goal was to explore correlations among geographical distribution, morphology, and genetics of selected populations throughout the range of the species and the outgroup, C. poselgeriana. • Stem characters were measured for 638 individuals among 16 populations. Flower characters were measured for 180 individuals among 12 populations. Ten microsatellite DNA loci were isolated and characterized for 204 individuals among 13 populations. Data were analyzed using various multivariate analyses. • Our results indicated that, within Coryphantha robustispina, there were three morphologically, genetically, and geographically coherent groups represented by the names C. robustispina subsp. robustispina, C. robustispina subsp. uncinata, and C. robustispina subsp. scheeri. For most analyses, distinctions among the three groups were primarily not as great as those between any one of them and the outgroup. • Results suggested that the three subspecific taxa within Coryphantha robustispina are good subspecies but should not be elevated to species rank. The closely aligned results between morphology and microsatellite data support the design and utility of both methods.
Is Genetic Background Important in Lung Cancer Survival?
Lindström, Linda S.; Hall, Per; Hartman, Mikael; Wiklund, Fredrik; Czene, Kamila
2009-01-01
Background In lung cancer, a patient's survival is poor with a wide variation in survival within the stage of disease. The aim of this study was to investigate the familial concordance in lung cancer survival by means of analyses of pairs with different degrees of familial relationships. Methods Our population-based Swedish family database included three million families and over 58 100 lung cancer patients. We modelled the proband (parent, sibling, spouse) survival utilizing a multivariate proportional hazard (Cox) model adjusting for possible confounders of survival. Subsequently, the survival in proband's relative (child, sibling, spouse) was analysed with a Cox model. Findings By use of Cox modelling with 5 years follow-up, we noted a decreased hazard ratio for death in children with good parental survival (Hazard Ratio [HR] = 0.71, 95% CI = 0.51 to 0.99), compared to those with poor parental survival. Also for siblings, a very strong protective effect was seen (HR = 0.14, 95% CI = 0.030 to 0.65). Finally, in spouses no correlation in survival was found. Interpretation Our findings suggest that genetic factors are important in lung cancer survival. In a clinical setting, information on prognosis in a relative may be vital in foreseeing the survival in an individual newly diagnosed with lung cancer. Future molecular studies enhancing the understanding of the underlying mechanisms and pathways are needed. PMID:19478952
Rico, L; Ogaya, R; Barbeta, A; Peñuelas, J
2014-03-01
Rapid genetic changes in plants have been reported in response to current climate change. We assessed the capacity of trees in a natural forest to produce rapid acclimation responses based on epigenetic modifications. We analysed natural populations of Quercus ilex, the dominant tree species of Mediterranean forests, using the methylation-sensitive amplified polymorphism (MSAP) technique to assess patterns and levels of methylation in individuals from unstressed forest plots and from plots experimentally exposed to drought for 12 years at levels projected for the coming decades. The percentage of hypermethylated loci increased, and the percentage of fully methylated loci clearly decreased in plants exposed to drought. Multivariate analyses exploring the status of methylation at MSAP loci also showed clear differentiation depending on stress. The PCA scores for the MSAP profiles clearly separated the genetic from the epigenetic structure, and also significantly separated the samples within each group in response to drought. Changes in DNA methylation highlight the large capacity of plants to rapidly acclimate to changing environmental conditions, including trees with long life spans, and our results demonstrate those changes. These changes, although unable to prevent the decreased growth and higher mortality associated with this experimental drought, occurred together with a dampening in such decreases as the long-term treatment progressed. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Klapper, Regina; Kochmann, Judith; O’Hara, Robert B.; Karl, Horst; Kuhn, Thomas
2016-01-01
The use of parasites as biological tags for discrimination of fish stocks has become a commonly used approach in fisheries management. Metazoan parasite community analysis and anisakid nematode population genetics based on a mitochondrial cytochrome marker were applied in order to assess the usefulness of the two parasitological methods for stock discrimination of beaked redfish Sebastes mentella of three fishing grounds in the North East Atlantic. Multivariate, model-based approaches demonstrated that the metazoan parasite fauna of beaked redfish from East Greenland differed from Tampen, northern North Sea, and Bear Island, Barents Sea. A joint model (latent variable model) was used to estimate the effects of covariates on parasite species and identified four parasite species as main source of differences among fishing grounds; namely Chondracanthus nodosus, Anisakis simplex s.s., Hysterothylacium aduncum, and Bothriocephalus scorpii. Due to its high abundance and differences between fishing grounds, Anisakis simplex s.s. was considered as a major biological tag for host stock differentiation. Whilst the sole examination of Anisakis simplex s.s. on a population genetic level is only of limited use, anisakid nematodes (in particular, A. simplex s.s.) can serve as biological tags on a parasite community level. This study confirmed the use of multivariate analyses as a tool to evaluate parasite infra-communities and to identify parasite species that might serve as biological tags. The present study suggests that S. mentella in the northern North Sea and Barents Sea is not sub-structured. PMID:27104735
Genetic predictors of recovery in low back and lumbar radicular pain.
Bjorland, Siri; Røe, Cecilie; Moen, Aurora; Schistad, Elina; Mahmood, Aqsa; Gjerstad, Johannes
2017-08-01
Previous data suggest that persistent back pain may be associated with genetic variability. In this study, we assessed the correlation between 8 genetic polymorphisms (VDR, COL11, MMP1, MMP9, IL-1α, IL-1RN, OPRM1, COMT) and pain recovery in patients with low back pain (LBP) and lumbar radicular pain (LRP). In total, 296 patients with LBP or LRP were followed for 5 years. The patients underwent standardized clinical examination and completed pain and function questionnaires. Univariate linear regression associations with P values <0.1 were included in the multivariable analysis, adjusting for pain intensity at baseline, age, sex, smoking, body mass index, and LBP or LRP. Pain intensity at 5-year follow-up was associated with VDR rs731236 (B = -0.5, 95% confidence interval [CI] -0.9 to -0.1, P = 0.017), MMP9 rs17576 (B = 0.5, 95% CI 0.1-0.9, P = 0.022), and OPRM1 rs1799971 (B = -0.8, 95% CI -1.4 to -0.2, P = 0.006) in the univariate analyses. MMP9 rs17576 and OPRM1 rs1799971 remained significant (B = 0.4, 95% CI 0.05-0.8, P = 0.026 and B = -0.8, 95% CI -1.3 to -0.2, P = 0.007) in the multivariable model. Thus, the data demonstrated that the rare allele of MMP9 rs17576 was associated with poor pain recovery, whereas the rare allele of OPRM1 rs1799971 was associated with better pain recovery at 5-year follow-up in the LBP and LRP patients. In particular, the present study suggested that the OPRM1 rs179971 A>G in men was associated with better long-term pain recovery. In men, the OPRM1 rs1799971 explained 4.7% of the variance of pain intensity. We conclude that the MMP9 rs17576 and OPRM1 rs1799971 genotypes may affect 5-year recovery in patients with LBP and LRP.
A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects.
Schlipalius, D I; Waldron, J; Carroll, B J; Collins, P J; Ebert, P R
2001-12-01
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability in three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced approximately 50 scoreable polymorphic DNA markers, between individuals of three independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from individual DNA samples that had been combined to create the bulked samples.
Pometti, Carolina L; Bessega, Cecilia F; Saidman, Beatriz O; Vilardi, Juan C
2014-03-01
Bayesian clustering as implemented in STRUCTURE or GENELAND software is widely used to form genetic groups of populations or individuals. On the other hand, in order to satisfy the need for less computer-intensive approaches, multivariate analyses are specifically devoted to extracting information from large datasets. In this paper, we report the use of a dataset of AFLP markers belonging to 15 sampling sites of Acacia caven for studying the genetic structure and comparing the consistency of three methods: STRUCTURE, GENELAND and DAPC. Of these methods, DAPC was the fastest one and showed accuracy in inferring the K number of populations (K = 12 using the find.clusters option and K = 15 with a priori information of populations). GENELAND in turn, provides information on the area of membership probabilities for individuals or populations in the space, when coordinates are specified (K = 12). STRUCTURE also inferred the number of K populations and the membership probabilities of individuals based on ancestry, presenting the result K = 11 without prior information of populations and K = 15 using the LOCPRIOR option. Finally, in this work all three methods showed high consistency in estimating the population structure, inferring similar numbers of populations and the membership probabilities of individuals to each group, with a high correlation between each other.
A perspective on interaction effects in genetic association studies
2016-01-01
ABSTRACT The identification of gene–gene and gene–environment interaction in human traits and diseases is an active area of research that generates high expectation, and most often lead to high disappointment. This is partly explained by a misunderstanding of the inherent characteristics of standard regression‐based interaction analyses. Here, I revisit and untangle major theoretical aspects of interaction tests in the special case of linear regression; in particular, I discuss variables coding scheme, interpretation of effect estimate, statistical power, and estimation of variance explained in regard of various hypothetical interaction patterns. Linking this components it appears first that the simplest biological interaction models—in which the magnitude of a genetic effect depends on a common exposure—are among the most difficult to identify. Second, I highlight the demerit of the current strategy to evaluate the contribution of interaction effects to the variance of quantitative outcomes and argue for the use of new approaches to overcome this issue. Finally, I explore the advantages and limitations of multivariate interaction models, when testing for interaction between multiple SNPs and/or multiple exposures, over univariate approaches. Together, these new insights can be leveraged for future method development and to improve our understanding of the genetic architecture of multifactorial traits. PMID:27390122
Borgonio-Cuadra, Verónica Marusa; González-Huerta, Norma Celia; Rojas-Toledo, Emma Xochitl; Morales-Hernández, Eugenio; Pérez-Hernández, Nonanzit; Rodríguez-Pérez, José Manuel; Tovilla-Zárate, Carlos Alfonso; González-Castro, Thelma Beatriz; Hernández-Díaz, Yazmín; López-Narváez, María Lilia; Miranda-Duarte, Antonio
2018-05-18
Primary osteoarthritis (OA) is a complex entity in which several loci related to different molecular pathways or classes of molecules are associated with its development as demonstrated through genetic association studies. Genes involved in bone formation and mineralization, such as osteopontin (OPN) and Matrix Gla protein (MGP), could also be related with OA. The aim of this study was to evaluate the association between the genetic variants of OPN and MGP with primary knee osteoarthritis in a Mexican population. A case-control study was conducted in 296 patients with primary knee osteoarthritis and in 354 control subjects. Study groups were assessed radiologically. The rs11730582 of OPN and rs1800802, rs1800801, and rs4236 of MGP were determined by TaqMan allele discrimination assays. The haplotypes of the polymorphisms of MGP were constructed. The association was tested through univariate and multivariate non-conditional logistic regression analyses. The polymorphisms of MGP complied with Hardy-Weinberg (HW) equilibrium. The polymorphisms of OPN and MGP were not significantly associated with primary knee osteoarthritis in the codominant, dominant, and recessive models (p > 0.05). Our study suggests that there are no associations between OPN and MGP polymorphisms with primary knee osteoarthritis in Mexican population.
Population genetic structure of rare and endangered plants using molecular markers
Raji, Jennifer; Atkinson, Carter T.
2013-01-01
This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings, approaches that can assist conservation efforts of these species are proposed.
Awareness and attitude of the public toward personalized medicine in Korea
Lee, Iyn-Hyang; Kang, Hye-Young; Suh, Hae Sun; Lee, Sukhyang; Oh, Eun Sil
2018-01-01
Objectives As personalized medicine (PM) is expected to greatly improve health outcomes, efforts have recently been made for its clinical implementation in Korea. We aimed to evaluate public awareness and attitude regarding PM. Methods We performed a self-administered questionnaire survey to 703 adults, who participated in the survey on a voluntary basis. The primary outcome measures included public knowledge, attitude, and acceptance of PM. We conducted multinomial multivariate logistic analysis for outcome variables with three response categories and performed multivariate logistic regression analyses for dichotomous outcome variables. Results Only 28% of participants had knowledge that genetic factors can contribute to inter-individual variations in drug response and the definition of PM (199 out of 702). Higher family income was correlated with greater knowledge concerning PM (OR = 3.76, p = 0.034). A majority of respondents preferred integrated pharmacogenomic testing over drug-specific testing and agreed to inclusion of pharmacogenomic testing in the national health examination (64% and 77%, respectively), but only 51% were willing to pay for it. Discussion Our results identify the urgent need for public education as well as the potential health disparities in access to PM. This study helps to frame policies for implementing PM in clinical practice. PMID:29451916
Staphylococcus aureus Redirects Central Metabolism to Increase Iron Availability
Pishchany, Gleb; Whitwell, Corbin W; Torres, Victor J; Skaar, Eric P
2006-01-01
Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment) or genetic (Δfur) alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB), a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus. PMID:16933993
Felix, Janine F.; Gaillard, Romy; McMahon, George
2017-01-01
Background It has been suggested that greater maternal adiposity during pregnancy affects lifelong risk of offspring fatness via intrauterine mechanisms. Our aim was to use Mendelian randomisation (MR) to investigate the causal effect of intrauterine exposure to greater maternal body mass index (BMI) on offspring BMI and fat mass from childhood to early adulthood. Methods and Findings We used maternal genetic variants as instrumental variables (IVs) to test the causal effect of maternal BMI in pregnancy on offspring fatness (BMI and dual-energy X-ray absorptiometry [DXA] determined fat mass index [FMI]) in a MR approach. This was investigated, with repeat measurements, from ages 7 to 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 2,521 to 3,720 for different ages). We then sought to replicate findings with results for BMI at age 6 in Generation R (n = 2,337 for replication sample; n = 6,057 for total pooled sample). In confounder-adjusted multivariable regression in ALSPAC, a 1 standard deviation (SD, equivalent of 3.7 kg/m2) increase in maternal BMI was associated with a 0.25 SD (95% CI 0.21–0.29) increase in offspring BMI at age 7, with similar results at later ages and when FMI was used as the outcome. A weighted genetic risk score was generated from 32 genetic variants robustly associated with BMI (minimum F-statistic = 45 in ALSPAC). The MR results using this genetic risk score as an IV in ALSPAC were close to the null at all ages (e.g., 0.04 SD (95% CI -0.21–0.30) at age 7 and 0.03 SD (95% CI -0.26–0.32) at age 18 per SD increase in maternal BMI), which was similar when a 97 variant generic risk score was used in ALSPAC. When findings from age 7 in ALSPAC were meta-analysed with those from age 6 in Generation R, the pooled confounder-adjusted multivariable regression association was 0.22 SD (95% CI 0.19–0.25) per SD increase in maternal BMI and the pooled MR effect (pooling the 97 variant score results from ALSPAC with the 32 variant score results from Generation R) was 0.05 SD (95%CI -0.11–0.21) per SD increase in maternal BMI (p-value for difference between the two results = 0.05). A number of sensitivity analyses exploring violation of the MR results supported our main findings. However, power was limited for some of the sensitivity tests and further studies with relevant data on maternal, offspring, and paternal genotype are required to obtain more precise (and unbiased) causal estimates. Conclusions Our findings provide little evidence to support a strong causal intrauterine effect of incrementally greater maternal BMI resulting in greater offspring adiposity. PMID:28118352
Potential of SNP markers for the characterization of Brazilian cassava germplasm.
de Oliveira, Eder Jorge; Ferreira, Cláudia Fortes; da Silva Santos, Vanderlei; de Jesus, Onildo Nunes; Oliveira, Gilmara Alvarenga Fachardo; da Silva, Maiane Suzarte
2014-06-01
High-throughput markers, such as SNPs, along with different methodologies were used to evaluate the applicability of the Bayesian approach and the multivariate analysis in structuring the genetic diversity in cassavas. The objective of the present work was to evaluate the diversity and genetic structure of the largest cassava germplasm bank in Brazil. Complementary methodological approaches such as discriminant analysis of principal components (DAPC), Bayesian analysis and molecular analysis of variance (AMOVA) were used to understand the structure and diversity of 1,280 accessions genotyped using 402 single nucleotide polymorphism markers. The genetic diversity (0.327) and the average observed heterozygosity (0.322) were high considering the bi-allelic markers. In terms of population, the presence of a complex genetic structure was observed indicating the formation of 30 clusters by DAPC and 34 clusters by Bayesian analysis. Both methodologies presented difficulties and controversies in terms of the allocation of some accessions to specific clusters. However, the clusters suggested by the DAPC analysis seemed to be more consistent for presenting higher probability of allocation of the accessions within the clusters. Prior information related to breeding patterns and geographic origins of the accessions were not sufficient for providing clear differentiation between the clusters according to the AMOVA analysis. In contrast, the F ST was maximized when considering the clusters suggested by the Bayesian and DAPC analyses. The high frequency of germplasm exchange between producers and the subsequent alteration of the name of the same material may be one of the causes of the low association between genetic diversity and geographic origin. The results of this study may benefit cassava germplasm conservation programs, and contribute to the maximization of genetic gains in breeding programs.
Chen, Yuhong; Zeng, Jiexi; Zhao, Chao; Wang, Kevin; Trood, Elizabeth; Buehler, Jeanette; Weed, Matthew; Kasuga, Daniel; Bernstein, Paul S.; Hughes, Guy; Fu, Victoria; Chin, Jessica; Lee, Clara; Crocker, Maureen; Bedell, Matthew; Salasar, Francesca; Yang, Zhenglin; Goldbaum, Michael; Ferreyra, Henry; Freeman, William R.; Kozak, Igor; Zhang, Kang
2014-01-01
Objectives To evaluate the independent and joint effects of genetic factors and environmental variables on advanced forms of age-related macular degeneration (AMD), including geographic atrophy and choroidal neovascularization, and to develop a predictive model with genetic and environmental factors included. Methods Demographic information, including age at onset, smoking status, and body mass index, was collected for 1844 participants. Genotypes were evaluated for 8 variants in 5 genes related to AMD. Unconditional logistic regression analyses were performed to generate a risk predictive model. Results All genetic variants showed a strong association with AMD. Multivariate odds ratios were 3.52 (95% confidence interval, 2.08-5.94) for complement factor H, CFH rs1061170 CC, 4.21 (2.30-7.70) for CFH rs2274700 CC, 0.46 (0.27-0.80) for C2 rs9332739 CC/CG, 0.44 (0.30-0.66) for CFB rs641153 TT/CT, 10.99 (6.04-19.97) for HTRA1/LOC387715 rs10490924 TT, and 2.66 (1.43-4.96) for C3 rs2230199 GG. Smoking was independently associated with advanced AMD after controlling for age, sex, body mass index, and all genetic variants. Conclusion CFH confers more risk to the bilaterality of geographic atrophy, whereas HTRA1/LOC387715 contributes more to the bilaterality of choroidal neovascularization. C3 confers more risk for geographic atrophy than choroidal neovascularization. Risk models with combined genetic and environmental factors have notable discrimination power. Clinical Relevance Early detection and risk prediction of AMD could help to improve the prognosis of AMD and to reduce the outcome of blindness. Targeting high-risk individuals for surveillance and clinical interventions may help reduce disease burden. PMID:21402993
Márquez, Edna Judith; Restrepo-Escobar, Natalia; Montoya-Herrera, Francisco Luis
2016-12-01
The endangered species Strombus gigas is a marine gastropod of significant economic importance through the Greater Caribbean region. In contrast to phenotypic plasticity, the role of genetics on shell variations in S. gigas has not been addressed so far, despite its importance in evolution, management and conservation of this species. This work used geometric morphometrics to investigate the phenotypic variation of 219 shells of S. gigas from eight sites of the Colombian Southwest Caribbean. Differences in mean size between sexes and among sites were contrasted by analysis of variance. Allometry was tested by multivariate regression and the hypothesis of common slope was contrasted by covariance multivariate analysis. Differences in the shell shape among sites were analyzed by principal component analysis. Sexual size dimorphism was not significant, whereas sexual shape dimorphism was significant and variable across sites. Differences in the shell shape among sites were concordant with genetic differences based on microsatellite data, supporting its genetic background. Besides, differences in the shell shape between populations genetically similar suggest a role of phenotypic plasticity in the morphometric variation of the shell shape. These outcomes evidence the role of genetic background and phenotypic plasticity in the shell shape of S. gigas. Thus, geometric morphometrics of shell shape may constitute a complementary tool to explore the genetic diversity of this species.
Kerner, Berit; North, Kari E; Fallin, M Daniele
2010-01-01
Participants analyzed actual and simulated longitudinal data from the Framingham Heart Study for various metabolic and cardiovascular traits. The genetic information incorporated into these investigations ranged from selected single-nucleotide polymorphisms to genome-wide association arrays. Genotypes were incorporated using a broad range of methodological approaches including conditional logistic regression, linear mixed models, generalized estimating equations, linear growth curve estimation, growth modeling, growth mixture modeling, population attributable risk fraction based on survival functions under the proportional hazards models, and multivariate adaptive splines for the analysis of longitudinal data. The specific scientific questions addressed by these different approaches also varied, ranging from a more precise definition of the phenotype, bias reduction in control selection, estimation of effect sizes and genotype associated risk, to direct incorporation of genetic data into longitudinal modeling approaches and the exploration of population heterogeneity with regard to longitudinal trajectories. The group reached several overall conclusions: 1) The additional information provided by longitudinal data may be useful in genetic analyses. 2) The precision of the phenotype definition as well as control selection in nested designs may be improved, especially if traits demonstrate a trend over time or have strong age-of-onset effects. 3) Analyzing genetic data stratified for high-risk subgroups defined by a unique development over time could be useful for the detection of rare mutations in common multi-factorial diseases. 4) Estimation of the population impact of genomic risk variants could be more precise. The challenges and computational complexity demanded by genome-wide single-nucleotide polymorphism data were also discussed. PMID:19924713
El Lakis, Mustapha; Nockel, Pavel; Gaitanidis, Apostolos; Guan, Bin; Agarwal, Sunita; Welch, James; Simonds, William F; Weinstein, Lee; Marx, Stephen; Nilubol, Naris; Patel, Dhaval; Merkel, Roxanne; Tirosh, Amit; Kebebew, Electron
2018-05-01
Approximately 10% of patients with primary hyperparathyroidism (PHPT) have hereditary disease. Hereditary PHPT may be syndromic (MEN1, 2, and 4 and hyperparathyroidism-jaw tumor syndrome) or non-syndromic (familial isolated PHPT). There are limited data on the probability of testing positive for genetic mutation based on clinical presentation. The aim of this study was to determine potential associations between clinical and biochemical features and mutation in susceptibility genes for PHPT in patients with a family history of PHPT. A retrospective analysis of 657 patients who had an initial parathyroidectomy for PHPT at a tertiary referral center. Logistic regression analyses were performed in 205 patients with a family history of PHPT to identify factors associated with a positive genetic test. Of 657 patients, 205 (31.2%) had a family history of PHPT. Of those 205 patients, 123 (60%) had a germline mutation detected (91 MEN1, 14 CDC73, and 18 GCM2). In univariate analysis, younger age (45 years and younger), male sex, multigland disease, and parathyroid carcinoma were associated with positive germline mutation; biochemical cure after an initial parathyroidectomy was less frequent in patients with familial PHPT (96.2% vs 89.2%; p = 0.005). In multivariable analysis, age 45 years and younger, male sex, and multigland disease were independent factors associated with positive genetic testing. In addition to a family history of PHPT, male sex, age 45 years and younger, and presence of multigland disease, should prompt physicians to offer the opportunity for genetic counseling and testing, as it could influence the management of patients with PHPT. Published by Elsevier Inc.
Genetic variation in Southern USA rice genotypes for seedling salinity tolerance
De Leon, Teresa B.; Linscombe, Steven; Gregorio, Glenn; Subudhi, Prasanta K.
2015-01-01
The success of a rice breeding program in developing salt tolerant varieties depends on genetic variation and the salt stress response of adapted and donor rice germplasm. In this study, we used a combination of morphological and physiological traits in multivariate analyses to elucidate the phenotypic and genetic variation in salinity tolerance of 30 Southern USA rice genotypes, along with 19 donor genotypes with varying degree of tolerance. Significant genotypic variation and correlations were found among the salt injury score (SIS), ion leakage, chlorophyll reduction, shoot length reduction, shoot K+ concentration, and shoot Na+/K+ ratio. Using these parameters, the combined methods of cluster analysis and discriminant analysis validated the salinity response of known genotypes and classified most of the USA varieties into sensitive groups, except for three and seven varieties placed in the tolerant and moderately tolerant groups, respectively. Discriminant function and MANOVA delineated the differences in tolerance and suggested no differences between sensitive and highly sensitive (HS) groups. DNA profiling using simple sequence repeat markers showed narrow genetic diversity among USA genotypes. However, the overall genetic clustering was mostly due to subspecies and grain type differentiation and not by varietal grouping based on salinity tolerance. Among the donor genotypes, Nona Bokra, Pokkali, and its derived breeding lines remained the donors of choice for improving salinity tolerance during the seedling stage. However, due to undesirable agronomic attributes and photosensitivity of these donors, alternative genotypes such as TCCP266, Geumgangbyeo, and R609 are recommended as useful and novel sources of salinity tolerance for USA rice breeding programs. PMID:26074937
A multivariate twin study of trait mindfulness, depressive symptoms, and anxiety sensitivity.
Waszczuk, Monika A; Zavos, Helena M S; Antonova, Elena; Haworth, Claire M; Plomin, Robert; Eley, Thalia C
2015-04-01
Mindfulness-based therapies have been shown to be effective in treating depression and reducing cognitive biases. Anxiety sensitivity is one cognitive bias that may play a role in the association between mindfulness and depressive symptoms. It refers to an enhanced sensitivity toward symptoms of anxiety, with a belief that these are harmful. Currently, little is known about the mechanisms underpinning the association between mindfulness, depression, and anxiety sensitivity. The aim of this study was to examine the role of genetic and environmental factors in trait mindfulness, and its genetic and environmental overlap with depressive symptoms and anxiety sensitivity. Over 2,100 16-year-old twins from a population-based study rated their mindfulness, depressive symptoms, and anxiety sensitivity. Twin modeling analyses revealed that mindfulness is 32% heritable and 66% due to nonshared environmental factors, with no significant influence of shared environment. Genetic influences explained over half of the moderate phenotypic associations between low mindfulness, depressive symptoms, and anxiety sensitivity. About two-thirds of genetic influences and almost all nonshared environmental influences on mindfulness were independent of depression and anxiety sensitivity. This is the first study to show that both genes and environment play an important role in the etiology of mindfulness in adolescence. Future research should identify the specific environmental factors that influence trait mindfulness during development to inform targeted treatment and resilience interventions. Shared genetic liability underpinning the co-occurrence of low mindfulness, depression, and anxiety sensitivity suggests that the biological pathways shared between these traits should also be examined. © 2015 The Authors. Depression and Anxiety published by Wiley Periodicals, Inc.
High Loading of Polygenic Risk for ADHD in Children With Comorbid Aggression
Hamshere, Marian L.; Langley, Kate; Martin, Joanna; Agha, Sharifah Shameem; Stergiakouli, Evangelia; Anney, Richard J.L.; Buitelaar, Jan; Faraone, Stephen V.; Lesch, Klaus-Peter; Neale, Benjamin M.; Franke, Barbara; Sonuga-Barke, Edmund; Asherson, Philip; Merwood, Andrew; Kuntsi, Jonna; Medland, Sarah E.; Ripke, Stephan; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Roeyers, Herbert; Biederman, Joseph; Doyle, Alysa E.; Hakonarson, Hakon; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; McGough, James J.; Kent, Lindsey; Williams, Nigel; Owen, Michael J.; Holmans, Peter
2013-01-01
Objective Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder. Method Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression. Results Polygenic risk for ADHD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by the aggression items. Conclusions Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity. PMID:23599091
Olsson, C A; Byrnes, G B; Anney, R J L; Collins, V; Hemphill, S A; Williamson, R; Patton, G C
2007-10-01
We investigated whether a composite genetic factor, based on the combined actions of catechol-O-methyltransferase (COMT) (Val(158)Met) and serotonin transporter (5HTTLPR) (Long-Short) functional loci, has a greater capacity to predict persistence of anxiety across adolescence than either locus in isolation. Analyses were performed on DNA collected from 962 young Australians participating in an eight-wave longitudinal study of mental health and well-being (Victorian Adolescent Health Cohort Study). When the effects of each locus were examined separately, small dose-response reductions in the odds of reporting persisting generalized (free-floating) anxiety across adolescence were observed for the COMT Met(158) [odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.76-0.95, P = 0.004] and 5HTTLPR Short alleles (OR = 0.88, CI = 0.79-0.99, P = 0.033). There was no evidence for a dose-response interaction effect between loci. However, there was a double-recessive interaction effect in which the odds of reporting persisting generalized anxiety were more than twofold reduced (OR = 0.45, CI = 0.29-0.70, P < 0.001) among carriers homozygous for both the COMT Met(158) and the 5HTTLPR Short alleles (Met(158)Met + Short-Short) compared with the remaining cohort. The double-recessive effect remained after multivariate adjustment for a range of psychosocial predictors of anxiety. Exploratory stratified analyses suggested that genetic protection may be more pronounced under conditions of high stress (insecure attachments and sexual abuse), although strata differences did not reach statistical significance. By describing the interaction between genetic loci, it may be possible to describe composite genetic factors that have a more substantial impact on psychosocial development than individual loci alone, and in doing so, enhance understanding of the contribution of constitutional processes in mental health outcomes.
Tang, Weijuan; Hazebroek, Jan; Zhong, Cathy; Harp, Teresa; Vlahakis, Chris; Baumhover, Brian; Asiago, Vincent
2017-06-28
We evaluated the variability of metabolites in various maize hybrids due to the effect of environment, genotype, phenotype as well as the interaction of the first two factors. We analyzed 480 forage and the same number of grain samples from 21 genetically diverse non-GM Pioneer brand maize hybrids, including some with drought tolerance and viral resistance phenotypes, grown at eight North American locations. As complementary platforms, both GC/MS and LC/MS were utilized to detect a wide diversity of metabolites. GC/MS revealed 166 and 137 metabolites in forage and grain samples, respectively, while LC/MS captured 1341 and 635 metabolites in forage and grain samples, respectively. Univariate and multivariate analyses were utilized to investigate the response of the maize metabolome to the environment, genotype, phenotype, and their interaction. Based on combined percentages from GC/MS and LC/MS datasets, the environment affected 36% to 84% of forage metabolites, while less than 7% were affected by genotype. The environment affected 12% to 90% of grain metabolites, whereas less than 27% were affected by genotype. Less than 10% and 11% of the metabolites were affected by phenotype in forage and grain, respectively. Unsupervised PCA and HCA analyses revealed similar trends, i.e., environmental effect was much stronger than genotype or phenotype effects. On the basis of comparisons of disease tolerant and disease susceptible hybrids, neither forage nor grain samples originating from different locations showed obvious phenotype effects. Our findings demonstrate that the combination of GC/MS and LC/MS based metabolite profiling followed by broad statistical analysis is an effective approach to identify the relative impact of environmental, genetic and phenotypic effects on the forage and grain composition of maize hybrids.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
Davatzikos, Christos
2016-10-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.
Davatzikos, Christos
2017-01-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582
A multivariate ecogeographic analysis of macaque craniodental variation.
Grunstra, Nicole D S; Mitteroecker, Philipp; Foley, Robert A
2018-06-01
To infer the ecogeographic conditions that underlie the evolutionary diversification of macaques, we investigated the within- and between-species relationships of craniodental dimensions, geography, and environment in extant macaque species. We studied evolutionary processes by contrasting macroevolutionary patterns, phylogeny, and within-species associations. Sixty-three linear measurements of the permanent dentition and skull along with data about climate, ecology (environment), and spatial geography were collected for 711 specimens of 12 macaque species and analyzed by a multivariate approach. Phylogenetic two-block partial least squares was used to identify patterns of covariance between craniodental and environmental variation. Phylogenetic reduced rank regression was employed to analyze spatial clines in morphological variation. Between-species associations consisted of two distinct multivariate patterns. The first represents overall craniodental size and is negatively associated with temperature and habitat, but positively with latitude. The second pattern shows an antero-posterior tooth size contrast related to diet, rainfall, and habitat productivity. After controlling for phylogeny, however, the latter dimension was diminished. Within-species analyses neither revealed significant association between morphology, environment, and geography, nor evidence of isolation by distance. We found evidence for environmental adaptation in macaque body and craniodental size, primarily driven by selection for thermoregulation. This pattern cannot be explained by the within-species pattern, indicating an evolved genetic basis for the between-species relationship. The dietary signal in relative tooth size, by contrast, can largely be explained by phylogeny. This cautions against adaptive interpretations of phenotype-environment associations when phylogeny is not explicitly modelled. © 2018 Wiley Periodicals, Inc.
A Multivariate Twin Study of the DSM-IV Criteria for Antisocial Personality Disorder
Kendler, Kenneth S.; Aggen, Steven H.; Patrick, Christopher J.
2012-01-01
BACKGROUND Many assessment instruments for psychopathy are multidimensional, suggesting that distinguishable factors are needed to effectively capture variation in this personality domain. However, no prior study has examined the factor structure of the DSM-IV criteria for antisocial personality disorder (ASPD). METHODS Self-report questionnaire items reflecting all A criteria for DSM-IV ASPD were available from 4,291 twins (including both members of 1,647 pairs) from the Virginia Adult Study of Psychiatric and Substance Use Disorders. Exploratory factor analysis and twin model fitting were performed using, respectively, Mplus and Mx. RESULTS Phenotypic factor analysis produced evidence for 2 correlated factors: aggressive-disregard and disinhibition. The best-fitting multivariate twin model included two genetic and one unique environmental common factor, along with criteria-specific genetic and environmental effects. The two genetic factors closely resembled the phenotypic factors and varied in their prediction of a range of relevant criterion variables. Scores on the genetic aggressive-disregard factor score were more strongly associated with risk for conduct disorder, early and heavy alcohol use, and low educational status, whereas scores on the genetic disinhibition factor score were more strongly associated with younger age, novelty seeking, and major depression. CONCLUSION From a genetic perspective, the DSM-IV criteria for ASPD do not reflect a single dimension of liability but rather are influenced by two dimensions of genetic risk reflecting aggressive-disregard and disinhibition. The phenotypic structure of the ASPD criteria results largely from genetic and not from environmental influences. PMID:21762879
Parisod, Christian; Trippi, Charlotte; Galland, Nicole
2005-01-01
The long-lived and mainly outcrossing species Sarracenia purpurea has been introduced into Switzerland and become invasive. This creates the opportunity to study reactions to founder effect and how a species can circumvent deleterious effects of bottlenecks such as reduced genetic diversity, inbreeding and extinction through mutational meltdown, to emerge as a highly invasive plant. A population genetic survey by random amplified polymorphism DNA markers (RAPD) together with historical insights and a field pollination experiment were carried out. At the regional scale, S. purpurea shows low structure (thetast=0.072) due to a recent founder event and important subsequent growth. Nevertheless, multivariate statistical analyses reveal that, because of a bottleneck that shifted allele frequencies, most of the variability is independent among populations. In one population (Tenasses) the species has become invasive and genetic analysis reveals restricted gene flow and family structure (thetast=0.287). Although inbreeding appears to be high (Fis >0.410 from a Bayesian estimation), a field pollination experiment failed to detect significant inbreeding depression upon F1 seed number and seed weight fitness-traits. Furthermore, crosses between unrelated individuals produced F1 seeds with significantly reduced fitness, thus showing local outbreeding depression. The results suggest that, under restricted gene flow among families, the species may not only have rapidly purged deleterious alleles, but also have undergone some form of selection for inbreeding due to co-adaptation between loci.
Racial differences in enrolment in a cancer genetics registry.
Moorman, Patricia G; Skinner, Celette Sugg; Evans, James P; Newman, Beth; Sorenson, James R; Calingaert, Brian; Susswein, Lisa; Crankshaw, T Sydnee; Hoyo, Cathrine; Schildkraut, Joellen M
2004-08-01
Lower enrolment of minorities into research studies has been reported frequently. Most studies have little information about nonparticipants, making it difficult to identify characteristics associated with enrolment and how they might vary by race. Women who had previously participated in a population-based, case-control study of breast cancer in North Carolina were invited to enroll in a cancer genetics registry. Detailed questionnaire data on sociodemographic characteristics and cancer risk factors were available for all women. We compared characteristics of women who agreed to be in the registry with those who were deceased, were unlocatable, or declined enrolment. Unconditional logistic regression analyses were done to identify predictors of enrolment. Enrolment rates were markedly lower among African Americans than Whites (15% and 36%, respectively) due to both lower contact rates (41% versus 63%) and lower enrolment rates among those contacted (37% versus 58%). Logistic regression models suggested that racial differences in enrolment were not due to socioeconomic characteristics or other cancer risk factors; race was the only significant predictor of enrolment in multivariable models (odds ratio 0.41, 95% confidence interval 0.23-0.72). Although all women had previously taken part in a research study, African American women were less likely to enroll in the cancer genetics registry than White women. A possible explanation of these findings is that studies of genetics may present particular concerns for African Americans. Further research is needed to identify attitudes and issues that present barriers to participation among minorities.
Multi-country health surveys: are the analyses misleading?
Masood, Mohd; Reidpath, Daniel D
2014-05-01
The aim of this paper was to review the types of approaches currently utilized in the analysis of multi-country survey data, specifically focusing on design and modeling issues with a focus on analyses of significant multi-country surveys published in 2010. A systematic search strategy was used to identify the 10 multi-country surveys and the articles published from them in 2010. The surveys were selected to reflect diverse topics and foci; and provide an insight into analytic approaches across research themes. The search identified 159 articles appropriate for full text review and data extraction. The analyses adopted in the multi-country surveys can be broadly classified as: univariate/bivariate analyses, and multivariate/multivariable analyses. Multivariate/multivariable analyses may be further divided into design- and model-based analyses. Of the 159 articles reviewed, 129 articles used model-based analysis, 30 articles used design-based analyses. Similar patterns could be seen in all the individual surveys. While there is general agreement among survey statisticians that complex surveys are most appropriately analyzed using design-based analyses, most researchers continued to use the more common model-based approaches. Recent developments in design-based multi-level analysis may be one approach to include all the survey design characteristics. This is a relatively new area, however, and there remains statistical, as well as applied analytic research required. An important limitation of this study relates to the selection of the surveys used and the choice of year for the analysis, i.e., year 2010 only. There is, however, no strong reason to believe that analytic strategies have changed radically in the past few years, and 2010 provides a credible snapshot of current practice.
Borrowing of strength and study weights in multivariate and network meta-analysis.
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2017-12-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).
Borrowing of strength and study weights in multivariate and network meta-analysis
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2016-01-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254
USDA-ARS?s Scientific Manuscript database
To mitigate the effects of heat and drought stress, an understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in...
Olah, Eva; Balogh, Erzsebet; Pajor, Laszlo; Jakab, Zsuzsanna
2011-03-01
A nationwide study was started in 1993 to provide genetic diagnosis for all newly diagnosed childhood ALL cases in Hungary using cytogenetic examination, DNA-index determination, FISH (aneuploidy, ABL/BCR, TEL/AML1) and molecular genetic tests (ABL/BCR, MLL/AF4, TEL/AML1). Aim of the study was to assess the usefulness of different genetic methods, to study the frequency of various aberrations and their prognostic significance. Results were synthesized for genetic subgrouping of patients. To assess the prognostic value of genetic aberrations overall and event-free survival of genetic subgroups were compared using Kaplan-Meier method. Prognostic role of aberrations was investigated by multivariate analysis (Cox's regression) as well in comparison with other factors (age, sex, major congenital abnormalities, initial WBC, therapy, immunophenotype). Five hundred eighty-eight ALL cases were diagnosed between 1993-2002. Cytogenetic examination was performed in 537 (91%) (success rate 73%), DNA-index in 265 (45%), FISH in 74 (13%), TEL/AML1 RT-PCR in 219 (37%) cases producing genetic diagnosis in 457 patients (78%). Proportion of subgroups with good prognosis in prae-B-cell ALL was lower than expected: hyperdiploidB 18% (73/400), TEL/AML1+ 9% (36/400). Univariate analysis showed significantly better 5-year EFS in TEL/AML1+ (82%) and hyperdiploidB cases (78%) than in tetraploid (44%) or pseudodiploid (52%) subgroups. By multivariate analysis main negative prognostic factors were: congenital abnormalities, high WBC, delay in therapy, specific translocations. Complementary use of each of genetic methods used is necessary for reliable genetic diagnosis according to the algorithm presented. Specific genetic alterations proved to be of prognostic significance.
Mapping eQTL Networks with Mixed Graphical Markov Models
Tur, Inma; Roverato, Alberto; Castelo, Robert
2014-01-01
Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303
Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits
van Zanten, Martijn
2015-01-01
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492
Sussner, K M; Edwards, T A; Thompson, H S; Jandorf, L; Kwate, N O; Forman, A; Brown, K; Kapil-Pair, N; Bovbjerg, D H; Schwartz, M D; Valdimarsdottir, H B
2011-01-01
Due to disparities in the use of genetic services, there has been growing interest in examining beliefs and attitudes related to genetic testing for breast and/or ovarian cancer risk among women of African descent. However, to date, few studies have addressed critical cultural variations among this minority group and their influence on such beliefs and attitudes. We assessed ethnic, racial and cultural identity and examined their relationships with perceived benefits and barriers related to genetic testing for cancer risk in a sample of 160 women of African descent (49% self-identified African American, 39% Black-West Indian/Caribbean, 12% Black-Other) who met genetic risk criteria and were participating in a larger longitudinal study including the opportunity for free genetic counseling and testing in New York City. All participants completed the following previously validated measures: (a) the multi-group ethnic identity measure (including ethnic search and affirmation subscales) and other-group orientation for ethnic identity, (b) centrality to assess racial identity, and (c) Africentrism to measure cultural identity. Perceived benefits and barriers related to genetic testing included: (1) pros/advantages (including family-related pros), (2) cons/disadvantages (including family-related cons, stigma and confidentiality concerns), and (3) concerns about abuses of genetic testing. In multivariate analyses, several ethnic identity elements showed significant, largely positive relationships to perceived benefits about genetic testing for breast and/or ovarian cancer risk, the exception being ethnic search, which was positively associated with cons/disadvantages, in general, and family-related cons/disadvantages. Racial identity (centrality) showed a significant association with confidentiality concerns. Cultural identity (Africentrism) was not related to perceived benefits and/or barriers. Ethnic and racial identity may influence perceived benefits and barriers related to genetic testing for breast and/or ovarian cancer risk among at-risk women of African descent. Genetic counseling services may want to take into account these factors in the creation of culturally-appropriate services which best meet the needs of this heterogenous population. Copyright © 2011 S. Karger AG, Basel.
Mansour, Ibrahim N; Bress, Adam P; Groo, Vicki; Ismail, Sahar; Wu, Grace; Patel, Shitalben R; Duarte, Julio D; Kittles, Rick A; Stamos, Thomas D; Cavallari, Larisa H
2016-09-01
Procollagen type III N-terminal peptide (PIIINP) is a biomarker of cardiac fibrosis that is associated with heart failure prognosis in whites. Its prognostic significance in African Americans is unknown. We sought to determine whether PIIINP is associated with outcomes in African Americans with heart failure. Blood was collected from 138 African Americans with heart failure for determining PIIINP and genetic ancestry, and patients were followed prospectively for death or hospitalization for heart failure. PIIINP was inversely correlated with West African ancestry (R(2) = 0.061; P = .010). PIIINP > 4.88 ng/mL was associated with all-cause mortality on univariate (hazard ratio [HR] 4.9, 95% confidence interval [CI] 2.2-11.0; P < .001) and multivariate (HR 5.8; 95% CI 1.9-17.3; P = .002) analyses over a median follow-up period of 3 years. We also observed an increased risk for the combined outcome of all-cause mortality or hospitalization for heart failure with PIIINP > 4.88 ng/mL on univariate (HR 2.6, 95% CI 1.6-5.0; P < .001) and multivariate (HR 2.4, 95% CI 1.2-4.7; P = .016) analyses. High circulating PIIINP is associated with poor outcomes in African Americans with chronic heart failure, suggesting that PIIINP may be useful in identifying African Americans who may benefit from additional therapy to combat fibrosis as a means of improving prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.
New evidence for involvement of ESR1 gene in susceptibility to Chinese migraine.
An, Xingkai; Fang, Jie; Lin, Qing; Lu, Congxia; Ma, Qilin; Qu, Hongli
2017-01-01
Migraine is a common and disabling nervous system disease with a significant genetic predisposition. The sex hormones play an important role in the pathogenesis of migraine. However, the conclusions of the previous genetic relation studies are conflicting. The aim of this study is to determine whether variants in genes involved in estrogen receptor and estrogen hormone metabolism are related to Chinese migraine. By employing a case-control approach, 8 SNPs in the ESR1, ESR2, and CYP19A1 genes are studied in a cohort of 494 migraine cases and 533 controls. In addition, genotyping is performed using Sequenom MALDI-TOF mass spectrometry iPLEX platform. Univariate and multivariate analyses are carried out by logistic regression. The corresponding haplotypes are studied with the Haploview software and gene-gene interaction is assessed using the Generalized Multifactor Dimensionality Reduction (GMDR) analysis. There are significant differences in allelic distributions for rs2234693 and rs9340799 in ESR1 gene between patients with migraine and control subjects. Univariate logistic analysis shows that rs2234693 and rs9340799 are risk factors for migraine, but multivariate analysis reveals that only rs2234693 is significant associated with migraine. In the subgroup analysis, rs2234693 in ESR1 gene is found associated with menstrually related migraine. Further haplotypic analysis shows that rs2234693-rs9340799 TA haplotype serves as risk haplotype for migraine. The GMDR analysis identifies rs2234693 in ESR1 alone to be a crucial candidate in migraine susceptibility. This study is in agreement with the previous studies that variants in the ESR1 gene are associated with migraine suggesting that it plays a role in the migraine process.
Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego
2016-08-01
Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p < 0.001). The extent of medication dose reduction was not a predictor. TPH2 haplotype analysis confirmed the association with more severe symptoms and lower remission rates in the short- and the long-term (p < 0.005 for all analyses). The serotonergic system is likely to be involved in the pathophysiology of addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sample size calculations for case-control studies
This R package can be used to calculate the required samples size for unconditional multivariate analyses of unmatched case-control studies. The sample sizes are for a scalar exposure effect, such as binary, ordinal or continuous exposures. The sample sizes can also be computed for scalar interaction effects. The analyses account for the effects of potential confounder variables that are also included in the multivariate logistic model.
Xu, Chunsheng; Sun, Jianping; Ji, Fuling; Tian, Xiaocao; Duan, Haiping; Zhai, Yaoming; Wang, Shaojie; Pang, Zengchang; Zhang, Dongfeng; Zhao, Zhongtang; Li, Shuxia; Hjelmborg, Jacob V B; Christensen, Kaare; Tan, Qihua
2015-02-01
The genetic influences on aging-related phenotypes, including cognition and depression, have been well confirmed in the Western populations. We performed the first twin-based analysis on cognitive performance, memory and depression status in middle-aged and elderly Chinese twins, representing the world's largest and most rapidly aging population. The sample consisted of 384 twin pairs with a median age of 50 years. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) scale; memory was assessed using the revised Wechsler Adult Intelligence scale; depression symptomatology was evaluated by the self-reported 30-item Geriatric Depression (GDS-30)scale. Both univariate and multivariate twin models were fitted to the three phenotypes with full and nested models and compared to select the best fitting models. Univariate analysis showed moderate-to-high genetic influences with heritability 0.44 for cognition and 0.56 for memory. Multivariate analysis by the reduced Cholesky model estimated significant genetic (rG = 0.69) and unique environmental (rE = 0.25) correlation between cognitive ability and memory. The model also estimated weak but significant inverse genetic correlation for depression with cognition (-0.31) and memory (-0.28). No significant unique environmental correlation was found for depression with other two phenotypes. In conclusion, there can be a common genetic architecture for cognitive ability and memory that weakly correlates with depression symptomatology, but in the opposite direction.
Luiselli, D; Simoni, L; Tarazona-Santos, E; Pastor, S; Pettener, D
2000-09-01
A sample of 141 Quechua-speaking individuals of the population of Tayacaja, in the Peruvian Central Andes, was typed for the following 16 genetic systems: ABO, Rh, MNSs, P, Duffy, AcP1, EsD, GLOI, PGM1, AK, 6-PGD, Hp, Gc, Pi, C3, and Bf. The genetic structure of the population was analyzed in relation to the allele frequencies available for other South Amerindian populations, using a combination of multivariate and multivariable techniques. Spatial autocorrelation analysis was performed independently for 13 alleles to identify patterns of gene flow in South America as a whole and in more specific geographic regions. We found a longitudinal cline for the AcP1*a and EsD*1 alleles which we interpreted as the result of an ancient longitudinal expansion of a putative ancestral population of modern Amerindians. Monmonnier's algorithm, used to identify areas of sharp genetic discontinuity, suggested a clear east-west differentiation of native South American populations, which was confirmed by analysis of the distribution of genetic distances. We suggest that this pattern of genetic structures is the consequence of the independent peopling of western and eastern South America or to low levels of gene flow between these regions, related to different environmental and demographic histories. Copyright 2000 Wiley-Liss, Inc.
Common Aetiology for Diverse Language Skills in 4 1/2-Year-Old Twins
ERIC Educational Resources Information Center
Hayiou-Thomas, Marianna E.; Kovas, Yulia; Harlaar, Nicole; Plomin, Robert; Bishop, Dorothy V. M.; Dale, Philip S.
2006-01-01
Multivariate genetic analysis was used to examine the genetic and environmental aetiology of the interrelationships of diverse linguistic skills. This study used data from a large sample of 4 1/2-year-old twins who were tested on measures assessing articulation, phonology, grammar, vocabulary, and verbal memory. Phenotypic analysis suggested two…
Genetic polymorphisms and the risk of stroke after cardiac surgery.
Grocott, Hilary P; White, William D; Morris, Richard W; Podgoreanu, Mihai V; Mathew, Joseph P; Nielsen, Dahlia M; Schwinn, Debra A; Newman, Mark F
2005-09-01
Stroke represents a significant cause of morbidity and mortality after cardiac surgery. Although the risk of stroke varies according to both patient and procedural factors, the impact of genetic variants on stroke risk is not well understood. Therefore, we tested the hypothesis that specific genetic polymorphisms are associated with an increased risk of stroke after cardiac surgery. Patients undergoing cardiac surgery utilizing cardiopulmonary bypass surgery were studied. DNA was isolated from preoperative blood and analyzed for 26 different single-nucleotide polymorphisms. Multivariable logistic regression modeling was used to determine the association of clinical and genetic characteristics with stroke. Permutation analysis was used to adjust for multiple comparisons inherent in genetic association studies. A total of 1635 patients experiencing 28 strokes (1.7%) were included in the final genetic model. The combination of the 2 minor alleles of C-reactive protein (CRP; 3'UTR 1846C/T) and interleukin-6 (IL-6; -174G/C) polymorphisms, occurring in 583 (35.7%) patients, was significantly associated with stroke (odds ratio, 3.3; 95% CI, 1.4 to 8.1; P=0.0023). In a multivariable logistic model adjusting for age, the CRP and IL-6 single-nucleotide polymorphism combination remained significantly associated with stroke (P=0.0020). We demonstrate that common genetic variants of CRP (3'UTR 1846C/T) and IL-6 (-174G/C) are significantly associated with the risk of stroke after cardiac surgery, suggesting a pivotal role of inflammation in post-cardiac surgery stroke.
Relationship of obesity with osteoporosis
Zhao, Lan-Juan; Liu, Yong-Jun; Liu, Peng-Yuan; Hamilton, James; Recker, Robert R.; Deng, Hong-Wen
2007-01-01
Context The relationship between obesity and osteoporosis has been widely studied, and epidemiological evidence shows that obesity is correlated with increased bone mass. Previous analyses, however, did not control for the mechanical loading effects of total body weight on bone mass and may have generated a confounded or even biased relationship between obesity and osteoporosis. Objective To re-evaluate the relationship between obesity and osteoporosis by accounting for the mechanical loading effects of total body weight on bone mass. Methods We measured whole body fat mass, lean mass, percentage fat mass (PFM), body mass index (BMI), and bone mass in two large samples of different ethnicity: 1,988 unrelated Chinese subjects and 4,489 Caucasian subjects from 512 pedigrees. We first evaluated the Pearson correlations among different phenotypes. We then dissected the phenotypic correlations into genetic and environmental components, with bone mass unadjusted, or adjusted, for body weight. This allowed us to compare the results with and without controlling for mechanical loading effects of body weight on bone mass. Results In both Chinese and Caucasians, when the mechanical loading effect of body weight on bone mass was adjusted for, the phenotypic correlation (including its genetic and environmental components) between fat mass (or PFM) and bone mass was negative. Further multivariate analyses in subjects stratified by body weight confirmed the inverse relationship between bone mass and fat mass, after mechanical loading effects due to total body weight was controlled. Conclusions Increasing fat mass may not have a beneficial effect on bone mass. PMID:17299077
A mixed model for the relationship between climate and human cranial form.
Katz, David C; Grote, Mark N; Weaver, Timothy D
2016-08-01
We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Davis, O S P; Kovas, Y; Harlaar, N; Busfield, P; McMillan, A; Frances, J; Petrill, S A; Dale, P S; Plomin, R
2008-06-01
A key translational issue for neuroscience is to understand how genes affect individual differences in brain function. Although it is reasonable to suppose that genetic effects on specific learning abilities, such as reading and mathematics, as well as general cognitive ability (g), will overlap very little, the counterintuitive finding emerging from multivariate genetic studies is that the same genes affect these diverse learning abilities: a Generalist Genes hypothesis. To conclusively test this hypothesis, we exploited the widespread access to inexpensive and fast Internet connections in the UK to assess 2541 pairs of 10-year-old twins for reading, mathematics and g, using a web-based test battery. Heritabilities were 0.38 for reading, 0.49 for mathematics and 0.44 for g. Multivariate genetic analysis showed substantial genetic correlations between learning abilities: 0.57 between reading and mathematics, 0.61 between reading and g, and 0.75 between mathematics and g, providing strong support for the Generalist Genes hypothesis. If genetic effects on cognition are so general, the effects of these genes on the brain are also likely to be general. In this way, generalist genes may prove invaluable in integrating top-down and bottom-up approaches to the systems biology of the brain.
A multivariate twin study of the DSM-IV criteria for antisocial personality disorder.
Kendler, Kenneth S; Aggen, Steven H; Patrick, Christopher J
2012-02-01
Many assessment instruments for psychopathy are multidimensional, suggesting that distinguishable factors are needed to effectively capture variation in this personality domain. However, no prior study has examined the factor structure of the DSM-IV criteria for antisocial personality disorder (ASPD). Self-report questionnaire items reflecting all A criteria for DSM-IV ASPD were available from 4291 twins (including both members of 1647 pairs) from the Virginia Adult Study of Psychiatric and Substance Use Disorders. Exploratory factor analysis and twin model fitting were performed using, respectively, Mplus and Mx. Phenotypic factor analysis produced evidence for two correlated factors: aggressive-disregard and disinhibition. The best-fitting multivariate twin model included two genetic and one unique environmental common factor, along with criteria-specific genetic and environmental effects. The two genetic factors closely resembled the phenotypic factors and varied in their prediction of a range of relevant criterion variables. Scores on the genetic aggressive-disregard factor score were more strongly associated with risk for conduct disorder, early and heavy alcohol use, and low educational status, whereas scores on the genetic disinhibition factor score were more strongly associated with younger age, novelty seeking, and major depression. From a genetic perspective, the DSM-IV criteria for ASPD do not reflect a single dimension of liability but rather are influenced by two dimensions of genetic risk reflecting aggressive-disregard and disinhibition. The phenotypic structure of the ASPD criteria results largely from genetic and not from environmental influences. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Patient-Centered Care in Breast Cancer Genetic Clinics
Brédart, Anne; Anota, Amélie; Kuboth, Violetta; Lareyre, Olivier; Cano, Alejandra; Stoppa-Lyonnet, Dominique; Schmutzler, Rita; Dolbeault, Sylvie
2018-01-01
With advances in breast cancer (BC) gene panel testing, risk counseling has become increasingly complex, potentially leading to unmet psychosocial needs. We assessed psychosocial needs and correlates in women initiating testing for high genetic BC risk in clinics in France and Germany, and compared these results with data from a literature review. Among the 442 counselees consecutively approached, 212 (83%) in France and 180 (97%) in Germany, mostly BC patients (81% and 92%, respectively), returned the ‘Psychosocial Assessment in Hereditary Cancer’ questionnaire. Based on the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) BC risk estimation model, the mean BC lifetime risk estimates were 19% and 18% in France and Germany, respectively. In both countries, the most prevalent needs clustered around the “living with cancer” and “children-related issues” domains. In multivariate analyses, a higher number of psychosocial needs were significantly associated with younger age (b = −0.05), higher anxiety (b = 0.78), and having children (b = 1.51), but not with country, educational level, marital status, depression, or loss of a family member due to hereditary cancer. These results are in line with the literature review data. However, this review identified only seven studies that quantitatively addressed psychosocial needs in the BC genetic counseling setting. Current data lack understandings of how cancer risk counseling affects psychosocial needs, and improves patient-centered care in that setting. PMID:29439543
Patient-Centered Care in Breast Cancer Genetic Clinics.
Brédart, Anne; Anota, Amélie; Dick, Julia; Kuboth, Violetta; Lareyre, Olivier; De Pauw, Antoine; Cano, Alejandra; Stoppa-Lyonnet, Dominique; Schmutzler, Rita; Dolbeault, Sylvie; Kop, Jean-Luc
2018-02-12
With advances in breast cancer (BC) gene panel testing, risk counseling has become increasingly complex, potentially leading to unmet psychosocial needs. We assessed psychosocial needs and correlates in women initiating testing for high genetic BC risk in clinics in France and Germany, and compared these results with data from a literature review. Among the 442 counselees consecutively approached, 212 (83%) in France and 180 (97%) in Germany, mostly BC patients (81% and 92%, respectively), returned the 'Psychosocial Assessment in Hereditary Cancer' questionnaire. Based on the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) BC risk estimation model, the mean BC lifetime risk estimates were 19% and 18% in France and Germany, respectively. In both countries, the most prevalent needs clustered around the "living with cancer" and "children-related issues" domains. In multivariate analyses, a higher number of psychosocial needs were significantly associated with younger age (b = -0.05), higher anxiety (b = 0.78), and having children (b = 1.51), but not with country, educational level, marital status, depression, or loss of a family member due to hereditary cancer. These results are in line with the literature review data. However, this review identified only seven studies that quantitatively addressed psychosocial needs in the BC genetic counseling setting. Current data lack understandings of how cancer risk counseling affects psychosocial needs, and improves patient-centered care in that setting.
Pometti, Carolina L.; Bessega, Cecilia F.; Saidman, Beatriz O.; Vilardi, Juan C.
2014-01-01
Bayesian clustering as implemented in STRUCTURE or GENELAND software is widely used to form genetic groups of populations or individuals. On the other hand, in order to satisfy the need for less computer-intensive approaches, multivariate analyses are specifically devoted to extracting information from large datasets. In this paper, we report the use of a dataset of AFLP markers belonging to 15 sampling sites of Acacia caven for studying the genetic structure and comparing the consistency of three methods: STRUCTURE, GENELAND and DAPC. Of these methods, DAPC was the fastest one and showed accuracy in inferring the K number of populations (K = 12 using the find.clusters option and K = 15 with a priori information of populations). GENELAND in turn, provides information on the area of membership probabilities for individuals or populations in the space, when coordinates are specified (K = 12). STRUCTURE also inferred the number of K populations and the membership probabilities of individuals based on ancestry, presenting the result K = 11 without prior information of populations and K = 15 using the LOCPRIOR option. Finally, in this work all three methods showed high consistency in estimating the population structure, inferring similar numbers of populations and the membership probabilities of individuals to each group, with a high correlation between each other. PMID:24688293
Heritability of carotid intima-media thickness: a twin study.
Zhao, Jinying; Cheema, Faiz A; Bremner, J Douglas; Goldberg, Jack; Su, Shaoyong; Snieder, Harold; Maisano, Carisa; Jones, Linda; Javed, Farhan; Murrah, Nancy; Le, Ngoc-Anh; Vaccarino, Viola
2008-04-01
To estimate the heritability of carotid intima-media thickness (IMT), a surrogate marker for atherosclerosis, independent of traditional coronary risk factors. We performed a classical twin study of carotid IMT using 98 middle-aged male twin pairs, 58 monozygotic (MZ) and 40 dizygotic (DZ) pairs, from the Vietnam Era Twin Registry. All twins were free of overt cardiovascular disease. Carotid IMT was measured by ultrasound. Bivariate and multivariate analyses were used to determine the association between traditional cardiovascular risk factors and carotid IMT. Intraclass correlation coefficients and genetic modeling techniques were used to determine the relative contributions of genes and environment to the variation in carotid IMT. In our sample, the mean of the maximum carotid IMT was 0.75+/-0.11. Age, systolic blood pressure and HDL were significantly associated with carotid IMT. The intraclass correlation coefficient for carotid IMT was larger in MZ (0.66; 95% confidence interval [CI], 0.62-0.69) than in DZ twins (0.37; 95% CI, 0.29-0.44), and the unadjusted heritability was 0.69 (95% CI, 0.54-0.79). After adjusting for traditional coronary risk factors, the heritability of carotid IMT was slightly reduced but still of considerable magnitude (0.59; 95% CI, 0.39-0.73). Genetic factors have a substantial influence on the variation of carotid IMT. Most of this genetic effect occurs through pathways independent of traditional coronary risk factors.
Wang, Yongzhi; Li, Shouwei; Chen, Lingchao; You, Gan; Bao, Zhaoshi; Yan, Wei; Shi, Zhendong; Chen, Yin; Yao, Kun; Zhang, Wei; Kang, Chunsheng; Jiang, Tao
2012-04-01
Glioblastomas (GBMs) containing foci that resemble oligodendroglioma are defined as GBM with oligodendroglioma component (GBMO). However, whether GBMO is a distinct clinicopathological variant of GBM or merely represents a divergent pattern of differentiation remains controversial. We investigated 219 consecutive primary GBMs, of which 40 (18.3%) were confirmed as GBMOs. The clinical features and genetic profiles of the GBMOs were analyzed and compared with the conventional GBMs. The GBMO group showed more frequent tumor-related seizures (P= .027), higher frequency of IDH1 mutation (31% vs. <5%, P= .015), lower MGMT expression (P= .016), and longer survival (19.0 vs. 13.2 months; P= .022). In multivariate Cox regression analyses, presence of an oligodendroglioma component was predictive of longer survival (P= .001), but the extent of the oligodendroglial component appeared not to be linked to prognosis (P= .664). The codeletions of 1p/19q, somewhat surprisingly, were infrequent (<5%) in both GBMO and conventional GBM. In addition, the response to aggressive therapy differed: the GBMO group had no survival advantage associated with aggressive treatment protocols, whereas a clear treatment effect was observed in the conventional GBM group. Collectively, the clinical behavior and genetic alterations of GBMO thus differs from those of conventional GBM. Presence of an oligodendroglial component may therefore be a useful classification and stratification variable in therapeutic trials of GBMs.
Basto, Mafalda P; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W; Fernandes, Carlos
2016-01-01
The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning offer further verification of possible population structure and may be useful for revealing cryptic spatial genetic patterns worth further investigation.
Olšavská, Katarína; Slovák, Marek; Marhold, Karol; Štubňová, Eliška; Kučera, Jaromír
2016-11-01
The Balkan Peninsula is one of the most important centres of plant diversity in Europe. Here we aim to fill the gap in the current knowledge of the evolutionary processes and factors modelling this astonishing biological richness by applying multiple approaches to the Cyanus napulifer group. To reconstruct the mode of diversification within the C. napulifer group and to uncover its relationships with potential relatives with x = 10 from Europe and Northern Africa, we examined variation in genetic markers (amplified fragment length polymorphisms [AFLPs]; 460 individuals), relative DNA content (4',6-diamidino-2-phenylindole [DAPI] flow cytometry, 330 individuals) and morphology (multivariate morphometrics, 40 morphological characters, 710 individuals). To elucidate its evolutionary history, we analysed chloroplast DNA (cpDNA) sequences of the genus Cyanus deposited in the GenBank database. The AFLPs revealed a suite of closely related entities with variable levels of differentiation. The C. napulifer group formed a genetically well-defined unit. Samples outside the group formed strongly diversified and mostly species-specific genetic lineages with no further geographical patterns, often characterized also by a different DNA content. AFLP analysis of the C. napulifer group revealed extensive radiation and split it into nine allopatric (sub)lineages with varying degrees of congruence among genetic, DNA-content and morphological patterns. Genetic admixture was usually detected in contact zones between genetic lineages. Plastid data indicated extensive maintenance of ancestral variation across Cyanus perennials. The C. napulifer group is an example of a rapidly and recently diversified plant group whose genetic lineages have evolved in spatio-temporal isolation on the topographically complex Balkan Peninsula. Adaptive radiation, accompanied in some cases by long-term isolation and hybridization, has contributed to the formation of this species complex and its mosaic pattern. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Figueredo-Urbina, Carmen J.; Torres-García, Ignacio
2017-01-01
Agave inaequidens and A. cupreata are wild species with some populations under incipient management, while A. hookeri is exclusively cultivated, used for producing the fermented beverage pulque. These species are closely related and sympatric members of the Crenatae group, but taxonomists have previously hypothesized that A. inaequidens is the most probable ancestor of A. hookeri. Our study aims at evaluating patterns of morphological and genetic divergence among populations of the three species, in order to analyze their ecological and possible evolutionary relationships. We studied 24 agave populations, 16 of them of Agave inaequidens, four of A. cupreata and four of A. hookeri. Population morphometric and genetics studies were performed using 39 morphological characters and 10 nuclear microsatellites, respectively. We estimated levels of morphological and genetic diversity and dissimilarity, as well as genetic structure and gene flow among populations and species. The three species were clearly differentiated by general plant size, lateral teeth, terminal spines, flowers and fruit size. The largest plants were those of A. hookeri followed by A. inaequidens and the smallest were A. cupreata. Multivariate analyses indicated greater morphological similarity between A. hookeri and cultivated A. inaequidens, while A. cupreata consistently appeared as a separate group. We identified similar levels of morphological diversity index (MDI) in the three species, but higher genetic diversity in A. inaequidens (MDI = 0.401–0.435; HE = 0.704–0.733), than in A. cupreata (MDI = 0.455–0.523; HE = 0.480–0.510) and the predominantly vegetative propagated crop A. hookeri (MDI = 0.335–0.688; HE = 0.450–0.567), a pattern consistent with our expectations. The morphological and genetic similarities between cultivated A. inaequidens and A. hookeri support the hypothetical evolutionary relationships among these species, but studies with cpDNA and SNPs, and including other member of the Crenatae group are necessary to further resolve these relationships. PMID:29117217
Figueredo-Urbina, Carmen J; Casas, Alejandro; Torres-García, Ignacio
2017-01-01
Agave inaequidens and A. cupreata are wild species with some populations under incipient management, while A. hookeri is exclusively cultivated, used for producing the fermented beverage pulque. These species are closely related and sympatric members of the Crenatae group, but taxonomists have previously hypothesized that A. inaequidens is the most probable ancestor of A. hookeri. Our study aims at evaluating patterns of morphological and genetic divergence among populations of the three species, in order to analyze their ecological and possible evolutionary relationships. We studied 24 agave populations, 16 of them of Agave inaequidens, four of A. cupreata and four of A. hookeri. Population morphometric and genetics studies were performed using 39 morphological characters and 10 nuclear microsatellites, respectively. We estimated levels of morphological and genetic diversity and dissimilarity, as well as genetic structure and gene flow among populations and species. The three species were clearly differentiated by general plant size, lateral teeth, terminal spines, flowers and fruit size. The largest plants were those of A. hookeri followed by A. inaequidens and the smallest were A. cupreata. Multivariate analyses indicated greater morphological similarity between A. hookeri and cultivated A. inaequidens, while A. cupreata consistently appeared as a separate group. We identified similar levels of morphological diversity index (MDI) in the three species, but higher genetic diversity in A. inaequidens (MDI = 0.401-0.435; HE = 0.704-0.733), than in A. cupreata (MDI = 0.455-0.523; HE = 0.480-0.510) and the predominantly vegetative propagated crop A. hookeri (MDI = 0.335-0.688; HE = 0.450-0.567), a pattern consistent with our expectations. The morphological and genetic similarities between cultivated A. inaequidens and A. hookeri support the hypothetical evolutionary relationships among these species, but studies with cpDNA and SNPs, and including other member of the Crenatae group are necessary to further resolve these relationships.
Basto, Mafalda P.; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W.; Fernandes, Carlos
2016-01-01
The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning offer further verification of possible population structure and may be useful for revealing cryptic spatial genetic patterns worth further investigation. PMID:26727497
Sie, Aisha S; Spruijt, Liesbeth; van Zelst-Stams, Wendy A G; Mensenkamp, Arjen R; Ligtenberg, Marjolijn J L; Brunner, Han G; Prins, Judith B; Hoogerbrugge, Nicoline
2016-06-01
According to standard practice following referral to clinical genetics, most high risk breast cancer (BC) patients in many countries receive face-to-face genetic counseling prior to BRCA-mutation testing (DNA-intake). We evaluated a novel format by prospective study: replacing the intake consultation with telephone, written and digital information sent home. Face-to-face counseling then followed BRCA-mutation testing (DNA-direct). One year after BRCA-result disclosure, 108 participants returned long-term follow-up questionnaires, of whom 59 (55 %) had previously chosen DNA-direct (intervention) versus DNA-intake (standard practice i.e., control: 45 %). Questionnaires assessed satisfaction and psychological distress. All participants were satisfied and 85 % of DNA-direct participants would choose this procedure again; 10 % would prefer DNA-intake and 5 % were undecided. In repeated measurements ANOVA, general distress (GHQ-12, p = 0.01) and BC-specific distress (IES-bc, p = 0.03) were lower in DNA-direct than DNA-intake at all time measurements. Heredity-specific distress (IES-her) did not differ significantly between groups. Multivariate regression analyses showed that choice of procedure did not significantly contribute to either general or heredity-specific distress. BC-specific distress (after BC diagnosis) did contribute to both general and heredity-specific distress. This suggests that higher distress scores reflected BC experience, rather than the type of genetic diagnostic procedure. In conclusion, the large majority of BC patients that used DNA-direct reported high satisfaction without increased distress both in the short term, and 1 year after conclusion of genetic testing.
Chung, Sharon A.; Tian, Chao; Taylor, Kimberly E.; Lee, Annette T.; Ortmann, Ward A.; Hom, Geoffrey; Graham, Robert R.; Nititham, Joanne; Kelly, Jennifer A.; Morrisey, Jean; Wu, Hui; Yin, Hong; Alarcón-Riquelme, Marta E.; Tsao, Betty P.; Harley, John B.; Gaffney, Patrick M.; Moser, Kathy L.; Manzi, Susan; Petri, Michelle; Gregersen, Peter K.; Langefeld, Carl D.; Behrens, Timothy W.; Seldin, Michael F.; Criswell, Lindsey A.
2009-01-01
Objective To determine whether genetic substructure in European-derived populations is associated with specific manifestations of systemic lupus erythematosus (SLE), including mucocutaneous phenotypes, autoantibody production, and renal disease. Methods SLE patients of European descent (n=1754) from 8 case collections were genotyped for over 1,400 ancestry informative markers that define a north/south gradient of European substructure. Based on these genetic markers, we used the STRUCTURE program to characterize each SLE patient in terms of percent northern (vs. southern) European ancestry. Non-parametric methods, including tests of trend, were used to identify associations between northern European ancestry and specific SLE manifestations. Results In multivariate analyses, increasing levels of northern European ancestry were significantly associated with photosensitivity (ptrend=0.0021, OR for highest quartile of northern European ancestry compared to lowest quartile 1.64, 95% CI 1.13–2.35) and discoid rash (ptrend=0.014, ORhigh-low 1.93, 95% CI 0.98–3.83). In contrast, northern European ancestry was protective for anticardiolipin (ptrend=1.6 × 10−4, ORhigh-low 0.46, 95% CI 0.30–0.69) and anti-dsDNA (ptrend=0.017, ORhigh-low 0.67, 95% CI 0.46–0.96) autoantibody production. Conclusions This study demonstrates that specific SLE manifestations vary according to northern vs. southern European ancestry. Thus, genetic ancestry may contribute to the clinical heterogeneity and variation in disease outcomes among SLE patients of European descent. Moreover, these results suggest that genetic studies of SLE subphenotypes will need to carefully address issues of population substructure due to genetic ancestry. PMID:19644962
Genetic loci associated with nonobstructive coronary artery disease in Caucasian women.
Weng, Liming; Taylor, Kent D; Chen, Yii-Der Ida; Sopko, George; Kelsey, Sheryl F; Bairey Merz, C Noel; Pepine, Carl J; Miller, Virginia M; Rotter, Jerome I; Gulati, Martha; Goodarzi, Mark O; Cooper-DeHoff, Rhonda M
2016-01-01
Nonobstructive coronary artery disease (CAD) in women is associated with adverse cardiovascular (CV) outcomes; however, information regarding genetic variants that predispose women to nonobstructive CAD is lacking. Women from the Women's Ischemia Syndrome Evaluation (WISE) Study and the St. James Women Take Heart (WTH) Study were genotyped with the Cardio-MetaboChip. WISE enrolled women with symptoms and signs of ischemia referred for coronary angiography; WTH enrolled asymptomatic, community-based women without heart disease. Analyses were conducted with a case (WISE)--control (WTH) design and multivariate logistic regression models to investigate genetic variation associated with likelihood of nonobstructive CAD. One genetic marker, single nucleotide polymorphism (SNP) rs2301753 on chromosome 6 in RNF39, achieved chip-wide significance for nonobstructive CAD (P < 9.5 × 10(-7)). After adjusting for baseline characteristics, we found no variants achieved chip-wide significance. However, SNP rs2301753 on chromosome 6 in RNF39 was associated with reduced likelihood of nonobstructive CAD [odds ratio (OR) 0.42 and 95% confidence interval (CI) of 0.29 to 0.68], at a nominal level of P = 5.6 × 10(-6), while SNP rs12818945 in the ATP2B1 locus on chromosome 12 was associated with increased odds for nonobstructive CAD (OR 2.38 and 95% CI of 1.63 to 3.45) and nominal P = 5.8 × 10(-6). The functions of RNF39 and ATP2B1 raise the possibility that genes involved in cardio-dysfunction may contribute to nonobstructive CAD in Caucasian women and may provide insights into novel approaches for therapy and prevention. If replicated, incorporation of these genetic variants into diagnostic evaluation may identify women at high risk for nonobstructive CAD.
Medrano, Mónica; Herrera, Carlos M; Bazaga, Pilar
2014-10-01
The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation-sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker-trait association analyses for 20 whole-plant, leaf and regenerative functional traits in a large sample of wild-growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south-eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between-site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity. © 2014 John Wiley & Sons Ltd.
Lang, B M; Biedermann, L; van Haaften, W T; de Vallière, C; Schuurmans, M; Begré, S; Zeitz, J; Scharl, M; Turina, M; Greuter, T; Schreiner, P; Heinrich, H; Kuntzen, T; Vavricka, S R; Rogler, G; Beerenwinkel, N; Misselwitz, B
2018-01-01
Smoking is a strong environmental factor leading to adverse outcomes in Crohn's disease, but a more benign course in ulcerative colitis. Several single nucleotide polymorphisms (SNPs) are associated with smoking quantity and behaviour. To assess whether smoking-associated SNPs interact with smoking to influence the clinical course of inflammatory bowel diseases. Genetic and prospectively obtained clinical data from 1434 Swiss inflammatory bowel disease cohort patients (821 Crohn's disease and 613 ulcerative colitis) were analysed. Six SNPs associated with smoking quantity and behaviour (rs588765, rs1051730, rs1329650, rs4105144, rs6474412 and rs3733829) were combined to form a risk score (range: 0-12) by adding the number of risk alleles. We calculated multivariate models for smoking, risk of surgery, fistula, Crohn's disease location and ulcerative colitis disease extent. In Crohn's disease patients who smoke, the number of surgeries was associated with the genetic risk score. This translates to a predicted 3.5-fold (95% confidence interval: 2.4- to 5.7-fold, P<.0001) higher number of surgical procedures in smokers with 12 risk alleles than individuals with the lowest risk. Patients with a risk score >7 had a significantly shorter time to first intestinal surgery. The genetic risk score did not predict surgery in ulcerative colitis or occurrence of fistulae in Crohn's disease. SNP rs6265 was associated with ileal disease in Crohn's disease (P<.05) and proctitis in ulcerative colitis (P<.05). SNPs associated with smoking quantity is associated with an increased risk for surgery in Crohn's disease patients who smoke. Our data provide an example of genetics interacting with the environment to influence the disease course of inflammatory bowel disease. © 2017 John Wiley & Sons Ltd.
Wilson, David M.; Brasser, Susan M.
2011-01-01
In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol. PMID:21918002
Lemon, Christian H; Wilson, David M; Brasser, Susan M
2011-12-01
In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.
Effect of environment and genotype on commercial maize hybrids using LC/MS-based metabolomics.
Baniasadi, Hamid; Vlahakis, Chris; Hazebroek, Jan; Zhong, Cathy; Asiago, Vincent
2014-02-12
We recently applied gas chromatography coupled to time-of-flight mass spectrometry (GC/TOF-MS) and multivariate statistical analysis to measure biological variation of many metabolites due to environment and genotype in forage and grain samples collected from 50 genetically diverse nongenetically modified (non-GM) DuPont Pioneer commercial maize hybrids grown at six North American locations. In the present study, the metabolome coverage was extended using a core subset of these grain and forage samples employing ultra high pressure liquid chromatography (uHPLC) mass spectrometry (LC/MS). A total of 286 and 857 metabolites were detected in grain and forage samples, respectively, using LC/MS. Multivariate statistical analysis was utilized to compare and correlate the metabolite profiles. Environment had a greater effect on the metabolome than genetic background. The results of this study support and extend previously published insights into the environmental and genetic associated perturbations to the metabolome that are not associated with transgenic modification.
Dimou, Niki L; Pantavou, Katerina G; Bagos, Pantelis G
2017-09-01
Apolipoprotein E (ApoE) is potentially a genetic risk factor for the development of left ventricular failure (LVF), the main cause of death in beta-thalassemia homozygotes. In the present study, we synthesize the results of independent studies examining the effect of ApoE on LVF development in thalassemic patients through a meta-analytic approach. However, all studies report more than one outcome, as patients are classified into three groups according to the severity of the symptoms and the genetic polymorphism. Thus, a multivariate meta-analytic method that addresses simultaneously multiple exposures and multiple comparison groups was developed. Four individual studies were included in the meta-analysis involving 613 beta-thalassemic patients and 664 controls. The proposed method that takes into account the correlation of log odds ratios (log(ORs)), revealed a statistically significant overall association (P-value = 0.009), mainly attributed to the contrast of E4 versus E3 allele for patients with evidence (OR: 2.32, 95% CI: 1.19, 4.53) or patients with clinical and echocardiographic findings (OR: 3.34, 95% CI: 1.78, 6.26) of LVF. This study suggests that E4 is a genetic risk factor for LVF in beta-thalassemia major. The presented multivariate approach can be applied in several fields of research. © 2017 John Wiley & Sons Ltd/University College London.
ERIC Educational Resources Information Center
Silberg, Judy L.; Bulik, Cynthia M.
2005-01-01
Objective: We investigated the role of genetic and environmental factors in the developmental association among symptoms of eating disorders, depression, and anxiety syndromes in 8-13-year-old and 14-17-year-old twin girls. Methods: Multivariate genetic models were fitted to child-reported longitudinal symptom data gathered from clinical interview…
Evolutionary rates for multivariate traits: the role of selection and genetic variation
Pitchers, William; Wolf, Jason B.; Tregenza, Tom; Hunt, John; Dworkin, Ian
2014-01-01
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. PMID:25002697
Multivariate Cholesky models of human female fertility patterns in the NLSY.
Rodgers, Joseph Lee; Bard, David E; Miller, Warren B
2007-03-01
Substantial evidence now exists that variables measuring or correlated with human fertility outcomes have a heritable component. In this study, we define a series of age-sequenced fertility variables, and fit multivariate models to account for underlying shared genetic and environmental sources of variance. We make predictions based on a theory developed by Udry [(1996) Biosocial models of low-fertility societies. In: Casterline, JB, Lee RD, Foote KA (eds) Fertility in the United States: new patterns, new theories. The Population Council, New York] suggesting that biological/genetic motivations can be more easily realized and measured in settings in which fertility choices are available. Udry's theory, along with principles from molecular genetics and certain tenets of life history theory, allow us to make specific predictions about biometrical patterns across age. Consistent with predictions, our results suggest that there are different sources of genetic influence on fertility variance at early compared to later ages, but that there is only one source of shared environmental influence that occurs at early ages. These patterns are suggestive of the types of gene-gene and gene-environment interactions for which we must account to better understand individual differences in fertility outcomes.
Association between sex, systemic iron variation and probability of Parkinson's disease.
Mariani, S; Ventriglia, M; Simonelli, I; Bucossi, S; Siotto, M; Donno, S; Vernieri, F; Squitti, R
2016-01-01
Iron homeostasis appears altered in Parkinson's disease (PD). Recent genetic studies and meta-analyses have produced heterogeneous and inconclusive results. In order to verify the possible role of iron status in PD, we have screened some of the main metal gene variants, evaluated their effects on iron systemic status, and checked for possible interactions with PD. In 92 PD patients and 112 healthy controls, we screened the D544E and R793H variants of the ceruloplasmin gene (CP), the P589S variant of the transferrin gene (TF), and the H63D and C282Y variants of the HFE gene, encoding for homologous proteins, respectively. Furthermore, we analyzed serum concentrations of iron, copper and their related proteins. The genetic investigation revealed no significant differences in allelic and genotype distributions between patients and controls. Two different multivariable forward stepwise logistic models showed that, when the effect of sex is considered, an increase of the probability of having PD is associated with low iron concentration and Tf-saturation. This study provides new evidence of the involvement of iron metabolism in PD pathogenesis and reveals a biological effect of sex.
FTO gene variant modulates the neural correlates of visual food perception.
Kühn, Anne B; Feis, Delia-Lisa; Schilbach, Leonhard; Kracht, Lutz; Hess, Martin E; Mauer, Jan; Brüning, Jens C; Tittgemeyer, Marc
2016-03-01
Variations in the fat mass and obesity associated (FTO) gene are currently the strongest known genetic factor predisposing humans to non-monogenic obesity. Recent experiments have linked these variants to a broad spectrum of behavioural alterations, including food choice and substance abuse. Yet, the underlying neurobiological mechanisms by which these genetic variations influence body weight remain elusive. Here, we explore the brain structural substrate of the obesity-predisposing rs9939609 T/A variant of the FTO gene in non-obese subjects by means of multivariate classification and use fMRI to investigate genotype-specific differences in neural food-cue reactivity by analysing correlates of a visual food perception task. Our findings demonstrate that MRI-derived measures of morphology along middle and posterior fusiform gyrus (FFG) are highly predictive for FTO at-risk allele carriers, who also show enhanced neural responses elicited by food cues in the same posterior FFG area. In brief, these findings provide first-time evidence for FTO-specific differences in both brain structure and function already in non-obese individuals, thereby contributing to a mechanistic understanding of why FTO is a predisposing factor for obesity. Copyright © 2015 Elsevier Inc. All rights reserved.
De Steur, H; Gellynck, X; Storozhenko, S; Liqun, G; Lambert, W; Van Der Straeten, D; Viaene, J
2010-02-01
Neural-tube defects (NTDs) are considered to be the most common congenital malformations. As Shanxi Province, a poor region in the North of China, has one of the highest reported prevalence rates of NTDs in the world, folate fortification of rice is an excellent alternative to low intake of folate acid pills in this region. This paper investigates the relations between socio-demographic indicators, consumer characteristics (knowledge, consumer perceptions on benefits, risks, safety and price), willingness-to-accept and willingness-to-pay genetically modified (GM) rice. The consumer survey compromises 944 face-to-face interviews with rice consumers in Shanxi Province, China. Multivariate analyses consist of multinomial logistic regression and multiple regression. The results indicate that consumers generally are willing-to-accept GM rice, with an acceptance rate of 62.2%. Acceptance is influenced by objective knowledge and consumers' perceptions on benefits and risks. Willingness-to-pay GM rice is influenced by objective knowledge, risk perception and acceptance. Communication towards the use of GM rice should target mainly improving knowledge and consumers' perceptions on high-risk groups within Shanxi Province, in particular low educated women. 2009 Elsevier Ltd. All rights reserved.
Lapointe, Julie; Dorval, Michel; Noguès, Catherine; Fabre, Roxane; Julian-Reynier, Claire
2013-12-01
Receiving the results of genetic tests for a breast and ovarian cancer susceptibility can be a stressful experience. Here we studied the effects of social support (SS) and the sharing of test results on the psychological impact of BRCA1/2 test result disclosure. We also compared carriers and non-carriers on sharing, SS and psychological impact. Five-hundred and twenty-two unaffected women were followed prospectively for 2 years after receiving their test results. Psychological impact was measured on the impact of event scale. Multivariate multi-level models were used, and all the analyses were stratified depending on mutation status (carriers vs non-carriers). Two weeks after receiving their BRCA1/2 results, carriers had shared their test results less frequently than non-carriers (p < 0.01). Sharing test results was not significantly associated with psychological impact. Availability of SS was significantly associated with better psychological adjustment across time among carriers (p < 0.01), but not among non-carriers. For female BRCA1/2 mutation carriers, the importance of SS should be stressed, and possible ways of enlisting people in their entourage for this purpose should be discussed in the context of clinical encounters.
de Falco, Bruna; Incerti, Guido; Pepe, Rosa; Amato, Mariana; Lanzotti, Virginia
2016-09-01
Globe artichoke (Cynara cardunculus L. var. scolymus L. Fiori) and cardoon (Cynara cardunculus L. var. altilis DC) are sources of nutraceuticals and bioactive compounds. To apply a NMR metabolomic fingerprinting approach to Cynara cardunculus heads to obtain simultaneous identification and quantitation of the major classes of organic compounds. The edible part of 14 Globe artichoke populations, belonging to the Romaneschi varietal group, were extracted to obtain apolar and polar organic extracts. The analysis was also extended to one species of cultivated cardoon for comparison. The (1) H-NMR of the extracts allowed simultaneous identification of the bioactive metabolites whose quantitation have been obtained by spectral integration followed by principal component analysis (PCA). Apolar organic extracts were mainly based on highly unsaturated long chain lipids. Polar organic extracts contained organic acids, amino acids, sugars (mainly inulin), caffeoyl derivatives (mainly cynarin), flavonoids, and terpenes. The level of nutraceuticals was found to be highest in the Italian landraces Bianco di Pertosa zia E and Natalina while cardoon showed the lowest content of all metabolites thus confirming the genetic distance between artichokes and cardoon. Metabolomic approach coupling NMR spectroscopy with multivariate data analysis allowed for a detailed metabolite profile of artichoke and cardoon varieties to be obtained. Relevant differences in the relative content of the metabolites were observed for the species analysed. This work is the first application of (1) H-NMR with multivariate statistics to provide a metabolomic fingerprinting of Cynara scolymus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
PARISOD, CHRISTIAN; TRIPPI, CHARLOTTE; GALLAND, NICOLE
2004-01-01
• Background and Aims The long-lived and mainly outcrossing species Sarracenia purpurea has been introduced into Switzerland and become invasive. This creates the opportunity to study reactions to founder effect and how a species can circumvent deleterious effects of bottlenecks such as reduced genetic diversity, inbreeding and extinction through mutational meltdown, to emerge as a highly invasive plant. • Methods A population genetic survey by random amplified polymorphism DNA markers (RAPD) together with historical insights and a field pollination experiment were carried out. • Key Results At the regional scale, S. purpurea shows low structure (θst = 0·072) due to a recent founder event and important subsequent growth. Nevertheless, multivariate statistical analyses reveal that, because of a bottleneck that shifted allele frequencies, most of the variability is independent among populations. In one population (Tenasses) the species has become invasive and genetic analysis reveals restricted gene flow and family structure (θst = 0·287). Although inbreeding appears to be high (Fis > 0·410 from a Bayesian estimation), a field pollination experiment failed to detect significant inbreeding depression upon F1 seed number and seed weight fitness-traits. Furthermore, crosses between unrelated individuals produced F1 seeds with significantly reduced fitness, thus showing local outbreeding depression. • Conclusions The results suggest that, under restricted gene flow among families, the species may not only have rapidly purged deleterious alleles, but also have undergone some form of selection for inbreeding due to co-adaptation between loci. PMID:15546932
Corallite skeletal morphological variation in Hawaiian Porites lobata
NASA Astrophysics Data System (ADS)
Tisthammer, Kaho H.; Richmond, Robert H.
2018-06-01
Due to their high morphological plasticity and complex evolutionary history, the species boundaries of many reef-building corals are poorly understood. The skeletal structures of corals have traditionally been used for species identification, but these structures can be highly variable, and currently we lack knowledge regarding the extent of morphological variation within species. Porites species are notorious for their taxonomic difficulties, both morphologically and genetically, and currently there are several unresolved species complexes in the Pacific. Despite its ubiquitous presence and broad use in coral research, Porites lobata belongs to one such unresolved species complex. To understand the degree of intraspecific variation in skeletal morphology, 120 corallites from the Hawaiian P. lobata were examined. A subset of samples from two genetically differentiated populations from contrasting high- and low-stress environments in Maunalua Bay, Hawaii, were then quantitatively analyzed using multivariate morphometrics. Our observations revealed high intraspecific variation in corallite morphology, as well as significant morphological differences between the two populations of P. lobata. Additionally, significant correlation was found between the morphological and genetic distances calculated from approximately 18,000 loci generated from restriction site-associated DNA sequencing. The unique morphological characters observed from the genetically differentiated population under environmental stress suggest that these characters may have adaptive values, but how such traits relate to fitness and how much plasticity they can exhibit remain to be determined by future studies. Relatively simple morphometric analyses used in our study can be useful in clarifying the existing ambiguity in skeletal architecture, thus contributing to resolving species issues in corals.
Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu
2014-03-01
The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.
Genetic Susceptibility, Change in Physical Activity, and Long-term Weight Gain.
Wang, Tiange; Huang, Tao; Heianza, Yoriko; Sun, Dianjianyi; Zheng, Yan; Ma, Wenjie; Jensen, Majken K; Kang, Jae H; Wiggs, Janey L; Pasquale, Louis R; Rimm, Eric B; Manson, JoAnn E; Hu, Frank B; Willett, Walter C; Qi, Lu
2017-10-01
Whether change in physical activity over time modifies the genetic susceptibility to long-term weight gain is unknown. We calculated a BMI-genetic risk score (GRS) based on 77 BMI-associated single nucleotide polymorphisms (SNPs) and a body fat percentage (BF%)-GRS based on 12 BF%-associated SNPs in 9,390 women from the Nurses' Health Study (NHS) and 5,291 men from the Health Professionals Follow-Up Study (HPFS). We analyzed the interactions between each GRS and change in physical activity on BMI/body weight change within five 4-year intervals from 1986 to 2006 using multivariable generalized linear models with repeated-measures analyses. Both the BMI-GRS and the BF%-GRS were associated with long-term increases in BMI/weight, and change in physical activity consistently interacted with the BF%-GRS on BMI change in the NHS ( P for interaction = 0.025) and HPFS ( P for interaction = 0.001). In the combined cohorts, 4-year BMI change per 10-risk allele increment was -0.02 kg/m 2 among participants with greatest increase in physical activity and 0.24 kg/m 2 among those with greatest decrease in physical activity ( P for interaction < 0.001), corresponding to 0.01 kg versus 0.63 kg weight changes every 4 years ( P for interaction = 0.001). Similar but marginal interactions were observed for the BMI-GRS ( P for interaction = 0.045). Our data indicate that the genetic susceptibility to weight gain may be diminished by increasing physical activity. © 2017 by the American Diabetes Association.
Colón-Ramos, Uriyoán; Racette, Susan B.; Ganiban, Jody; Nguyen, Thuy G.; Kocak, Mehmet; Carroll, Kecia N.; Völgyi, Eszter; Tylavsky, Frances A.
2015-01-01
Despite increased interest in promoting nutrition during pregnancy, the association between maternal dietary patterns and birth outcomes has been equivocal. We examined maternal dietary patterns during pregnancy as a determinant of offspring’s birth weight-for-length (WLZ), weight-for-age (WAZ), length-for-age (LAZ), and head circumference (HCZ) Z-scores in Southern United States (n = 1151). Maternal diet during pregnancy was assessed by seven dietary patterns. Multivariable linear regression models described the association of WLZ, WAZ, LAZ, and HCZ with diet patterns controlling for other maternal and child characteristics. In bivariate analyses, WAZ and HCZ were significantly lower for processed and processed-Southern compared to healthy dietary patterns, whereas LAZ was significantly higher for these patterns. In the multivariate models, mothers who consumed a healthy-processed dietary pattern had children with significantly higher HCZ compared to the ones who consumed a healthy dietary pattern (HCZ β: 0.36; p = 0.019). No other dietary pattern was significantly associated with any of the birth outcomes. Instead, the major outcome determinants were: African American race, pre-pregnancy BMI, and gestational weight gain. These findings justify further investigation about socio-environmental and genetic factors related to race and birth outcomes in this population. PMID:25690420
Bacher, Adrienne; Mittoo, Shikha; Hudson, Marie; Tatibouet, Solène; Baron, Murray
2013-07-01
Certain North American Native (NAN) populations are known to have higher rates of systemic sclerosis (SSc) compared to non-NAN; however, little is known of the specific disease characteristics in this population in Canada. This study compares the clinical and serological manifestations of SSc in NAN and white patients. This cross-sectional, multicenter study included subjects enrolled in the Canadian Scleroderma Research Group registry between September 2004 and June 2012. Subjects were evaluated with complete medical histories, physical examinations, and self-questionnaires. Ethnicity was defined by self-report. Disease characteristics were compared between NAN and white patients and multivariate analyses were performed to determine the independent association between ethnicity and various clinical manifestations. Of 1278 patients, 1038 (81%) were white, 71 (6%) were NAN, and 169 (13%) were classified as non-white/non-NAN. There were important differences between NAN and white subjects with SSc. In multivariate analysis adjusting for socioeconomic differences and smoking status, NAN ethnicity was an independent risk factor for the severity of Raynaud phenomenon and more gastrointestinal symptoms, and was associated with a nonsignificant increase in the presence of digital ulcers. NAN patients with SSc have a distinct clinical phenotype. Our study provides a strong rationale to pursue further research into genetic and environmental determinants of SSc.
Moazami-Goudarzi, K; Laloë, D
2002-01-01
To determine the relationships among closely related populations or species, two methods are commonly used in the literature: phylogenetic reconstruction or multivariate analysis. The aim of this article is to assess the reliability of multivariate analysis. We describe a method that is based on principal component analysis and Mantel correlations, using a two-step process: The first step consists of a single-marker analysis and the second step tests if each marker reveals the same typology concerning population differentiation. We conclude that if single markers are not congruent, the compromise structure is not meaningful. Our model is not based on any particular mutation process and it can be applied to most of the commonly used genetic markers. This method is also useful to determine the contribution of each marker to the typology of populations. We test whether our method is efficient with two real data sets based on microsatellite markers. Our analysis suggests that for closely related populations, it is not always possible to accept the hypothesis that an increase in the number of markers will increase the reliability of the typology analysis. PMID:12242255
Applying Multivariate Discrete Distributions to Genetically Informative Count Data.
Kirkpatrick, Robert M; Neale, Michael C
2016-03-01
We present a novel method of conducting biometric analysis of twin data when the phenotypes are integer-valued counts, which often show an L-shaped distribution. Monte Carlo simulation is used to compare five likelihood-based approaches to modeling: our multivariate discrete method, when its distributional assumptions are correct, when they are incorrect, and three other methods in common use. With data simulated from a skewed discrete distribution, recovery of twin correlations and proportions of additive genetic and common environment variance was generally poor for the Normal, Lognormal and Ordinal models, but good for the two discrete models. Sex-separate applications to substance-use data from twins in the Minnesota Twin Family Study showed superior performance of two discrete models. The new methods are implemented using R and OpenMx and are freely available.
50 CFR 224.101 - Enumeration of endangered marine and anadromous species.
Code of Federal Regulations, 2012 CFR
2012-10-01
... institutions) and which are identified as fish belonging to the NYB DPS based on genetics analyses, previously... genetics analyses, previously applied tags, previously applied marks, or documentation to verify that the... Carolina DPS based on genetics analyses, previously applied tags, previously applied marks, or...
50 CFR 224.101 - Enumeration of endangered marine and anadromous species.
Code of Federal Regulations, 2013 CFR
2013-10-01
... institutions) and which are identified as fish belonging to the NYB DPS based on genetics analyses, previously... genetics analyses, previously applied tags, previously applied marks, or documentation to verify that the... Carolina DPS based on genetics analyses, previously applied tags, previously applied marks, or...
Many multivariate methods are used in describing and predicting relation; each has its unique usage of categorical and non-categorical data. In multivariate analysis of variance (MANOVA), many response variables (y's) are related to many independent variables that are categorical...
Genetic Risk, Coronary Heart Disease Events, and the Clinical Benefit of Statin Therapy
Smith, JG; Chasman, DI; Caulfield, M; Devlin, JJ; Nordio, F; Hyde, C; Cannon, CP; Sacks, F; Poulter, N; Sever, P; Ridker, PM; Braunwald, E; Melander, O
2015-01-01
Background Genetic variants have been associated with the risk of coronary heart disease (CHD). We tested whether a composite of these variants could identify the risk of both incident as well as recurrent CHD events and distinguish individuals who derived greater clinical benefit from statin therapy. Methods A community-based cohort and four randomized controlled trials of both primary (JUPITER and ASCOT) and secondary (CARE and PROVE IT-TIMI 22) prevention with statin therapy totaling 48,421 individuals and 3,477 events were included in these analyses. We examined the association of a genetic risk score based on 27 genetic variants with incident or recurrent CHD, adjusting for established clinical predictors. We then investigated the relative and absolute risk reductions in CHD events with statin therapy stratified by genetic risk. Data from studies were combined using meta-analysis. Findings When individuals were divided into low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5) genetic risk categories, a significant gradient of risk for incident or recurrent CHD was demonstrated with the multivariable-adjusted HRs (95% CI) for CHD for the intermediate and high genetic risk categories vs. low genetic risk category being 1.32 (1.20-1.46, P<0.0001) and 1.71 (1.54-1.91, P<0.0001), respectively. In terms of the benefit of statin therapy in the four randomized trials, there was a significant gradient of increasing relative risk reduction across the low, intermediate, and high genetic risk categories (13%, 29%, and 48%, P=0.0277). Similarly, greater absolute risk reductions were seen in those individuals in higher genetic risk categories (P=0.0101), resulting in an approximate three-fold gradient in the number needed to treat (NNT) in the primary prevention trials. Specifically, in the primary prevention trials, the NNT to prevent one MACE over 10 years for the low, intermediate, and high GRS individuals was 66, 42, and 25 in JUPITER and 57, 47, and 20 in ASCOT. Interpretation A genetic risk score identified individuals at increased risk for both incident and recurrent CHD events. Individuals with the highest burden of genetic risk derived the largest relative and absolute clinical benefit with statin therapy. PMID:25748612
Sariaslan, A; Larsson, H; Fazel, S
2016-09-01
Patients diagnosed with psychotic disorders (for example, schizophrenia and bipolar disorder) have elevated risks of committing violent acts, particularly if they are comorbid with substance misuse. Despite recent insights from quantitative and molecular genetic studies demonstrating considerable pleiotropy in the genetic architecture of these phenotypes, there is currently a lack of large-scale studies that have specifically examined the aetiological links between psychotic disorders and violence. Using a sample of all Swedish individuals born between 1958 and 1989 (n=3 332 101), we identified a total of 923 259 twin-sibling pairs. Patients were identified using the National Patient Register using validated algorithms based on International Classification of Diseases (ICD) 8-10. Univariate quantitative genetic models revealed that all phenotypes (schizophrenia, bipolar disorder, substance misuse, and violent crime) were highly heritable (h(2)=53-71%). Multivariate models further revealed that schizophrenia was a stronger predictor of violence (r=0.32; 95% confidence interval: 0.30-0.33) than bipolar disorder (r=0.23; 0.21-0.25), and large proportions (51-67%) of these phenotypic correlations were explained by genetic factors shared between each disorder, substance misuse, and violence. Importantly, we found that genetic influences that were unrelated to substance misuse explained approximately a fifth (21%; 20-22%) of the correlation with violent criminality in bipolar disorder but none of the same correlation in schizophrenia (Pbipolar disorder<0.001; Pschizophrenia=0.55). These findings highlight the problems of not disentangling common and unique sources of covariance across genetically similar phenotypes as the latter sources may include aetiologically important clues. Clinically, these findings underline the importance of assessing risk of different phenotypes together and integrating interventions for psychiatric disorders, substance misuse, and violence.
Determinants of airflow obstruction in severe alpha‐1‐antitrypsin deficiency
DeMeo, Dawn L; Sandhaus, Robert A; Barker, Alan F; Brantly, Mark L; Eden, Edward; McElvaney, N Gerard; Rennard, Stephen; Burchard, Esteban; Stocks, James M; Stoller, James K; Strange, Charlie; Turino, Gerard M; Campbell, Edward J; Silverman, Edwin K
2007-01-01
Background Severe α1‐antitrypsin (AAT) deficiency is an autosomal recessive genetic condition associated with an increased but variable risk for chronic obstructive pulmonary disease (COPD). A study was undertaken to assess the impact of chronic bronchitis, pneumonia, asthma and sex on the development of COPD in individuals with severe AAT deficiency. Methods The AAT Genetic Modifier Study is a multicentre family‐based cohort study designed to study the genetic and epidemiological determinants of COPD in AAT deficiency. 378 individuals (age range 33–80 years), confirmed to be homozygous for the SERPINA1 Z mutation, were included in the analyses. The primary outcomes of interest were a quantitative outcome, forced expiratory volume in 1 s (FEV1) percentage predicted, and a qualitative outcome, severe airflow obstruction (FEV1 <50% predicted). Results In multivariate analysis of the overall cohort, cigarette smoking, sex, asthma, chronic bronchitis and pneumonia were risk factors for reduced FEV1 percentage predicted and severe airflow obstruction (p<0.01). Index cases had lower FEV1 values, higher smoking histories and more reports of adult asthma, pneumonia and asthma before age 16 than non‐index cases (p<0.01). Men had lower pre‐ and post‐bronchodilator FEV1 percentage predicted than women (p<0.0001); the lowest FEV1 values were observed in men reporting a history of childhood asthma (26.9%). This trend for more severe obstruction in men remained when index and non‐index groups were examined separately, with men representing the majority of non‐index individuals with airflow obstruction (71%). Chronic bronchitis (OR 3.8, CI 1.8 to 12.0) and a physician's report of asthma (OR 4.2, CI 1.4 to 13.1) were predictors of severe airflow obstruction in multivariate analysis of non‐index men but not women. Conclusion In individuals with severe AAT deficiency, sex, asthma, chronic bronchitis and pneumonia are risk factors for severe COPD, in addition to cigarette smoking. These results suggest that, in subjects severely deficient in AAT, men, individuals with symptoms of chronic bronchitis and/or a past diagnosis of asthma or pneumonia may benefit from closer monitoring and potentially earlier treatment. PMID:17389752
ERIC Educational Resources Information Center
Hayiou-Thomas, Marianna E.; Dale, Philip S.; Plomin, Robert
2012-01-01
The present study is the first long-term longitudinal examination of the etiology of individual differences in language from early childhood through to adolescence. We applied a multivariate latent factor genetic model to longitudinal data from the Twins Early Development Study in order to (a) compare the magnitude of genetic and environmental…
Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture
Pauli, Duke; Ziegler, Greg; Ren, Min; Jenks, Matthew A.; Hunsaker, Douglas J.; Zhang, Min; Baxter, Ivan; Gore, Michael A.
2018-01-01
To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the population were profiled in addition to those of soil samples taken from throughout the field site to better model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification method identified multiple genomic regions where QTL for individual elements colocalized, suggesting that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant physiological responses to adverse environmental conditions. PMID:29437829
MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.
Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin
2015-04-01
Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Tercyak, Kenneth P; Peshkin, Beth N; Demarco, Tiffani A; Patenaude, Andrea Farkas; Schneider, Katherine A; Garber, Judy E; Valdimarsdottir, Heiddis B; Schwartz, Marc D
2007-01-01
Mothers who participate in genetic testing for hereditary breast/ovarian cancer risk must decide if, when, and how to ultimately share their BRCA1 and BRCA2 (BRCA1/2) test results with their minor-age children. One of the primary aides for mothers in making this decision is cancer genetic counseling. However, counseling is limited in how well it can educate mothers about such decisions without the availability of resources that are specific to family communication and genetic testing per se. In an effort to fill this gap and identify mothers most likely to benefit from such resources, surveys were conducted with 187 mothers undergoing BRCA1/2 testing who had children 8-21 years old. Data were collected weeks after genetic testing but prior to mothers' learning of their test results; quantitative assessments of informational resource needs (i.e., speaking with previous BRCA1/2 testing participants who are parents regarding their experiences, reading educational literature about options and what to expect, speaking with a family counselor, attending a family support group, and self-nominated other resources), testing motivations, decision making vigilance, and decisional conflict regarding communicating test results to children were included. Mothers' most-to-least frequently cited information resource needs were: literature (93.4%), family counseling (85.8%), prior participants (79.0%), support groups (53.9%), and other (28.9%; e.g., pediatricians and psychologists). Seventy-eight percent of mothers were interested in accessing three or more resources. In multivariate regression analyses, testing motivations (beta = 0.35, p = 0.03), decision-making vigilance (beta = 0.16, p = 0.00), and decisional conflict (beta = 0.10, p = 0.00) were associated with mothers' need level; mothers with a greater interest in testing to learn about their children's risks, those with more vigilant decision-making styles, and those with higher decisional conflict had the greatest need. In conjunction with enhanced genetic counseling focusing on family disclosure, educational literature, and psychosocial support may promote improved outcomes.
Selection and constraints on offspring size-number trade-offs in sand lizards (Lacerta agilis).
Ljungström, G; Stjernstedt, M; Wapstra, E; Olsson, M
2016-05-01
The trade-off between offspring size and number is a central component of life-history theory, postulating that larger investment into offspring size inevitably decreases offspring number. This trade-off is generally discussed in terms of genetic, physiological or morphological constraints; however, as among-individual differences can mask individual trade-offs, the underlying mechanisms may be difficult to reveal. In this study, we use multivariate analyses to investigate whether there is a trade-off between offspring size and number in a population of sand lizards by separating among- and within-individual patterns using a 15-year data set collected in the wild. We also explore the ecological and evolutionary causes and consequences of this trade-off by investigating how a female's resource (condition)- vs. age-related size (snout-vent length) influences her investment into offspring size vs. number (OSN), whether these traits are heritable and under selection and whether the OSN trade-off has a genetic component. We found a negative correlation between offspring size and number within individual females and physical constraints (size of body cavity) appear to limit the number of eggs that a female can produce. This suggests that the OSN trade-off occurs due to resource constraints as a female continues to grow throughout life and, thus, produces larger clutches. In contrast to the assumptions of classic OSN theory, we did not detect selection on offspring size; however, there was directional selection for larger clutch sizes. The repeatabilities of both offspring size and number were low and we did not detect any additive genetic variance in either trait. This could be due to strong selection (past or current) on these life-history traits, or to insufficient statistical power to detect significant additive genetic effects. Overall, the findings of this study are an important illustration of how analyses of within-individual patterns can reveal trade-offs and their underlying causes, with potential evolutionary and ecological consequences that are otherwise hidden by among-individual variation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Weyrich, Peter; Machicao, Fausto; Reinhardt, Julia; Machann, Jürgen; Schick, Fritz; Tschritter, Otto; Stefan, Norbert; Fritsche, Andreas; Häring, Hans-Ulrich
2008-11-12
Sirtuin1 (SIRT1) regulates gene expression in distinct metabolic pathways and mediates beneficial effects of caloric restriction in animal models. In humans, SIRT1 genetic variants associate with fasting energy expenditure. To investigate the relevance of SIRT1 for human metabolism and caloric restriction, we analyzed SIRT1 genetic variants in respect to the outcome of a controlled lifestyle intervention in Caucasians at risk for type 2 diabetes. A total of 1013 non-diabetic Caucasians from the Tuebingen Family Study (TUEF) were genotyped for four tagging SIRT1 SNPs (rs730821, rs12413112, rs7069102, rs2273773) for cross-sectional association analyses with prediabetic traits. SNPs that associated with basal energy expenditure in the TUEF cohort were additionally analyzed in 196 individuals who underwent a controlled lifestyle intervention (Tuebingen Lifestyle Intervention Program; TULIP). Multivariate regressions analyses with adjustment for relevant covariates were performed to detect associations of SIRT1 variants with the changes in anthropometrics, weight, body fat or metabolic characteristics (blood glucose, insulin sensitivity, insulin secretion and liver fat, measured by magnetic resonance techniques) after the 9-month follow-up test in the TULIP study. Minor allele (X/A) carriers of rs12413112 (G/A) had a significantly lower basal energy expenditure (p = 0.04) and an increased respiratory quotient (p = 0.02). This group (rs12413112: X/A) was resistant against lifestyle-induced improvement of fasting plasma glucose (GG: -2.01%, X/A: 0.53%; p = 0.04), had less increase in insulin sensitivity (GG: 17.3%, X/A: 9.6%; p = 0.05) and an attenuated decline in liver fat (GG: -38.4%, X/A: -7.5%; p = 0.01). SIRT1 plays a role for the individual lifestyle intervention response, possibly owing to decreased basal energy expenditure and a lower lipid-oxidation rate in rs12413112 X/A allele carriers. SIRT1 genetic variants may, therefore, represent a relevant determinant for the response rate of individuals undergoing caloric restriction and increased physical activity.
Keller, Thomas E; Lasky, Jesse R; Yi, Soojin V
2016-04-01
Epigenetic changes can occur due to extracellular environmental conditions. Consequently, epigenetic mechanisms can play an intermediate role to translate environmental signals to intracellular changes. Such a role might be particularly important in plants, which often show strong local adaptation and have the potential for heritable epigenetic states. However, little is currently known about the role of epigenetic variation in the ecological mechanisms of adaptation. Here, we used multivariate redundancy analyses to examine genomewide associations between DNA methylation polymorphisms and climate variation in two independent panels of Arabidopsis accessions, including 122 Eurasian accessions as well as in a regional panel of 148 accessions in Sweden. At the single-nucleotide methylation level, climate and space (geographic spatial structure) explain small yet significant amount of variation in both panels. On the other hand, when viewed in a context of genomic clusters of methylated and unmethylated cytosines, climate and space variables explain much greater amounts of variation in DNA methylation than those explained by variation at the single-nucleotide level. We found that the single-nucleotide methylation polymorphisms with the strongest associations with climate were enriched in transposable elements and in potentially RNA-directed methylation contexts. When viewed in the context of genomic clusters, variation of DNA methylation at different sequence contexts exhibit distinctive segregation along different axes of variation in the redundancy analyses. Genomewide methylation showed much stronger associations with climate within the regional panel (Sweden) compared to the global (Eurasia). Together, these findings indicate that genetic and epigenetic variation across the genome may play a role in response to climate conditions and local adaptation. © 2016 John Wiley & Sons Ltd.
Farag, Mohamed A; Otify, Asmaa; Porzel, Andrea; Michel, Camilia George; Elsayed, Aly; Wessjohann, Ludger A
2016-05-01
Passiflora incarnata as well as some other Passiflora species are reported to possess anxiolytic and sedative activity and to treat various CNS disorders. The medicinal use of only a few Passiflora species has been scientifically verified. There are over 400 species in the Passiflora genus worldwide, most of which have been little characterized in terms of phytochemical or pharmacological properties. Herein, large-scale multi-targeted metabolic profiling and fingerprinting techniques were utilized to help gain a broader insight into Passiflora species leaves' chemical composition. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) spectra of extracted components derived from 17 Passiflora accessions and from different geographical origins were analyzed using multivariate data analyses. A total of 78 metabolites were tentatively identified, that is, 20 C-flavonoids, 8 O-flavonoids, 21 C, O-flavonoids, 2 cyanogenic glycosides, and 23 fatty acid conjugates, of which several flavonoid conjugates are for the first time to be reported in Passiflora spp. To the best of our knowledge, this study provides the most complete map for secondary metabolite distribution within that genus. Major signals in (1)H-NMR and MS spectra contributing to species discrimination were assigned to those of C-flavonoids including isovitexin-2″-O-xyloside, luteolin-C-deoxyhexoside-O-hexoside, schaftoside, isovitexin, and isoorientin. P. incarnata was found most enriched in C-flavonoids, justifying its use as an official drug within that genus. Compared to NMR, LC-MS was found more effective in sample classification based on genetic and/ or geographical origin as revealed from derived multivariate data analyses. Novel insight on metabolite candidates to mediate for Passiflora CNS sedative effects is also presented.
Fluoroquinolone-resistant Escherichia coli carriage in long-term care facility.
Maslow, Joel N; Lee, Betsy; Lautenbach, Ebbing
2005-06-01
We conducted a cross-sectional study to determine the prevalence of, and risk factors for, colonization with fluoroquinolone (FQ)-resistant Escherichia coli in residents in a long-term care facility. FQ-resistant E. coli were identified from rectal swabs for 25 (51%) of 49 participants at study entry. On multivariable analyses, prior FQ use was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures in the previous 3, 6, 9, or 12 months. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified clonal spread of 1 strain among 16 residents. Loss (6 residents) or acquisition (7 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. Unlike the case in the hospital setting, FQ-resistant E. coli carriage in long-term care facilities is associated with clonal spread.
Fluoroquinolone-resistant Escherichia coli Carriage in Long-Term Care Facility
Lee, Betsy; Lautenbach, Ebbing
2005-01-01
We conducted a cross-sectional study to determine the prevalence of, and risk factors for, colonization with fluoroquinolone (FQ)-resistant Escherichia coli in residents in a long-term care facility. FQ-resistant E. coli were identified from rectal swabs for 25 (51%) of 49 participants at study entry. On multivariable analyses, prior FQ use was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures in the previous 3, 6, 9, or 12 months. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified clonal spread of 1 strain among 16 residents. Loss (6 residents) or acquisition (7 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. Unlike the case in the hospital setting, FQ-resistant E. coli carriage in long-term care facilities is associated with clonal spread. PMID:15963284
A Study of Stakeholder Views to Shape a Communication Strategy for GMO in Brazil
Capalbo, Deise Maria Fontana; Arantes, Olivia Márcia Nagy; Maia, Alexandre Gori; Borges, Izaias Carvalho; da Silveira, José Maria Ferreira Jardim
2015-01-01
This paper analyzes the view of stakeholders on genetically modified organisms (GMOs) and the implications of these views on communication strategies for agricultural biotechnology in Brazil. It identifies and describes common groups of attitudes toward GMOs using multivariate statistical analyses. The study then looks for patterns of association between the common attitude groups and the following variables: socioeconomic characteristics trust in institutions as information sources and familiarity with the Brazilian biosafety authority. The article contributes to the understanding of public awareness by highlighting how information sources, trust in institutions, and socioeconomic characteristics, such as age and occupational qualification, play important roles in defining patterns of attitudes toward GMOs. The paper also discusses the implications of this knowledge for the development of a communication strategy plan that would promote public awareness and stimulate a well-informed Brazilian public debate on biosafety. PMID:26618152
A Study of Stakeholder Views to Shape a Communication Strategy for GMO in Brazil.
Capalbo, Deise Maria Fontana; Arantes, Olivia Márcia Nagy; Maia, Alexandre Gori; Borges, Izaias Carvalho; da Silveira, José Maria Ferreira Jardim
2015-01-01
This paper analyzes the view of stakeholders on genetically modified organisms (GMOs) and the implications of these views on communication strategies for agricultural biotechnology in Brazil. It identifies and describes common groups of attitudes toward GMOs using multivariate statistical analyses. The study then looks for patterns of association between the common attitude groups and the following variables: socioeconomic characteristics trust in institutions as information sources and familiarity with the Brazilian biosafety authority. The article contributes to the understanding of public awareness by highlighting how information sources, trust in institutions, and socioeconomic characteristics, such as age and occupational qualification, play important roles in defining patterns of attitudes toward GMOs. The paper also discusses the implications of this knowledge for the development of a communication strategy plan that would promote public awareness and stimulate a well-informed Brazilian public debate on biosafety.
Causal diagrams and multivariate analysis II: precision work.
Jupiter, Daniel C
2014-01-01
In this Investigators' Corner, I continue my discussion of when and why we researchers should include variables in multivariate regression. My examination focuses on studies comparing treatment groups and situations for which we can either exclude variables from multivariate analyses or include them for reasons of precision. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Determinants of survival after liver resection for metastatic colorectal carcinoma.
Parau, Angela; Todor, Nicolae; Vlad, Liviu
2015-01-01
Prognostic factors for survival after liver resection for metastatic colorectal cancer identified up to date are quite inconsistent with a great inter-study variability. In this study we aimed to identify predictors of outcome in our patient population. A series of 70 consecutive patients from the oncological hepatobiliary database, who had undergone curative hepatic surgical resection for hepatic metastases of colorectal origin, operated between 2006 and 2011, were identified. At 44.6 months (range 13.7-73), 30 of 70 patients (42.85%) were alive. Patient demographics, primary tumor and liver tumor factors, operative factors, pathologic findings, recurrence patterns, disease-free survival (DFS), overall survival (OS) and cancer-specific survival (CSS) were analyzed. Clinicopathologic variables were tested using univariate and multivariate analyses. The 3-year CSS after first hepatic resection was 54%. Median CSS survival after first hepatic resection was 40.2 months. Median CSS after second hepatic resection was 24.2 months. The 3-year DFS after first hepatic resection was 14%. Median disease free survival after first hepatic resection was 18 months. The 3-year DFS after second hepatic resection was 27% and median DFS after second hepatic resection 12 months. The 30-day mortality and morbidity rate after first hepatic resection was 5.71% and 12.78%, respectively. In univariate analysis CSS was significantly reduced for the following factors: age >53 years, advanced T stage of primary tumor, moderately- poorly differentiated tumor, positive and narrow resection margin, preoperative CEA level >30 ng/ml, DFS <18 months. Perioperative chemotherapy related to metastasectomy showed a trend in improving CSS (p=0.07). Perioperative chemotherapy improved DFS in a statistically significant way (p=0.03). Perioperative chemotherapy and achievement of resection margins beyond 1 mm were the major determinants of both CSS and DFS after first liver resection in multivariate analysis. In our series predictors of outcome in multivariate analysis were resection margins beyond 1mm and perioperative chemotherapy. Studies on larger population and analyses of additional clinicopathologic factors like genetic markers could contribute to development of clinical scoring models to assess the risk of relapse and survival.
Mahammi, F Z; Gaouar, S B S; Laloë, D; Faugeras, R; Tabet-Aoul, N; Rognon, X; Tixier-Boichard, M; Saidi-Mehtar, N
2016-02-01
The objectives of this study were to characterize the genetic variability of village chickens from three agro-ecological regions of western Algeria: coastal (CT), inland plains (IP) and highlands (HL), to reveal any underlying population structure, and to evaluate potential genetic introgression from commercial lines into local populations. A set of 233 chickens was genotyped with a panel of 23 microsatellite markers. Geographical coordinates were individually recorded. Eight reference populations were included in the study to investigate potential gene flow: four highly selected commercial pure lines and four lines of French slow-growing chickens. Two populations of wild red jungle fowls were also genotyped to compare the range of diversity between domestic and wild fowls. A genetic diversity analysis was conducted both within and between populations. Multivariate redundancy analyses were performed to assess the relative influence of geographical location among Algerian ecotypes. The results showed a high genetic variability within the Algerian population, with 184 alleles and a mean number of 8.09 alleles per locus. The values of heterozygosity (He and Ho) ranged from 0.55 to 0.62 in Algerian ecotypes and were smaller than values found in Jungle fowl populations and higher than values found in commercial populations. Although the structuring analysis of genotypes did not reveal clear subpopulations within Algerian ecotypes, the supervised approach using geographical data showed a significant (p < 0.01) differentiation between the three ecotypes which was mainly due to altitude. Thus, the genetic diversity of Algerian ecotypes may be under the influence of two factors with contradictory effects: the geographical location and climatic conditions may induce some differentiation, whereas the high level of exchanges and gene flow may suppress it. Evidence of gene flow between commercial and Algerian local populations was observed, which may be due to unrecorded crossing with commercial chickens. Chicken ecotypes from western Algeria are characterized by a high genetic diversity and must be safeguarded as an important reservoir of genetic diversity. © 2015 Blackwell Verlag GmbH.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
Molecular Fingerprinting of Cyanobacteria from River Biofilms as a Water Quality Monitoring Tool
Loza, Virginia; Perona, Elvira
2013-01-01
Benthic cyanobacterial communities from Guadarrama River (Spain) biofilms were examined using temperature gradient gel electrophoresis (TGGE), comparing the results with microscopic analyses of field-fixed samples and the genetic characterization of cultured isolates from the river. Changes in the structure and composition of cyanobacterial communities and their possible association with eutrophication in the river downstream were studied by examining complex TGGE patterns, band extraction, and subsequent sequencing of 16S rRNA gene fragments. Band profiles differed among sampling sites depending on differences in water quality. The results showed that TGGE band richness decreased in a downstream direction, and there was a clear clustering of phylotypes on the basis of their origins from different locations according to their ecological requirements. Multivariate analyses (cluster analysis and canonical correspondence analysis) corroborated these differences. Results were consistent with those obtained from microscopic observations of field-fixed samples. According to the phylogenetic analysis, morphotypes observed in natural samples were the most common phylotypes in the TGGE sequences. These phylotypes were closely related to Chamaesiphon, Aphanocapsa, Pleurocapsa, Cyanobium, Pseudanabaena, Phormidium, and Leptolyngbya. Differences in the populations in response to environmental variables, principally nutrient concentrations (dissolved inorganic nitrogen and soluble reactive phosphorus), were found. Some phylotypes were associated with low nutrient concentrations and high levels of dissolved oxygen, while other phylotypes were associated with eutrophic-hypertrophic conditions. These results support the view that once a community has been characterized and its genetic fingerprint obtained, this technique could be used for the purpose of monitoring rivers. PMID:23263954
Tandon, Arti; Chen, Ching J; Penman, Alan; Hancock, Heather; James, Maurice; Husain, Deeba; Andreoli, Christopher; Li, Xiaohui; Kuo, Jane Z; Idowu, Omolola; Riche, Daniel; Papavasilieou, Evangelia; Brauner, Stacey; Smith, Sataria O; Hoadley, Suzanne; Richardson, Cole; Kieser, Troy; Vazquez, Vanessa; Chi, Cheryl; Fernandez, Marlene; Harden, Maegan; Cotch, Mary Frances; Siscovick, David; Taylor, Herman A; Wilson, James G; Reich, David; Wong, Tien Y; Klein, Ronald; Klein, Barbara E K; Rotter, Jerome I; Patterson, Nick; Sobrin, Lucia
2015-06-01
To examine the relationship between proportion of African ancestry (PAA) and proliferative diabetic retinopathy (PDR) and to identify genetic loci associated with PDR using admixture mapping in African Americans with type 2 diabetes (T2D). Between 1993 and 2013, 1440 participants enrolled in four different studies had fundus photographs graded using the Early Treatment Diabetic Retinopathy Study scale. Cases (n = 305) had PDR while controls (n = 1135) had nonproliferative diabetic retinopathy (DR) or no DR. Covariates included diabetes duration, hemoglobin A1C, systolic blood pressure, income, and education. Genotyping was performed on the Affymetrix platform. The association between PAA and PDR was evaluated using logistic regression. Genome-wide admixture scanning was performed using ANCESTRYMAP software. In the univariate analysis, PDR was associated with increased PAA (odds ratio [OR] = 1.36, 95% confidence interval [CI] = 1.16-1.59, P = 0.0002). In multivariate regression adjusting for traditional DR risk factors, income and education, the association between PAA and PDR was attenuated and no longer significant (OR = 1.21, 95% CI = 0.59-2.47, P = 0.61). For the admixture analyses, the maximum genome-wide score was 1.44 on chromosome 1. In this largest study of PDR in African Americans with T2D to date, an association between PAA and PDR is not present after adjustment for clinical, demographic, and socioeconomic factors. No genome-wide significant locus (defined as having a locus-genome statistic > 5) was identified with admixture analysis. Further analyses with even larger sample sizes are needed to definitively assess if any admixture signal for DR is present.
Haruma, Tomoko; Nagasaka, Takeshi; Nakamura, Keiichiro; Haraga, Junko; Nyuya, Akihiro; Nishida, Takeshi; Goel, Ajay; Masuyama, Hisashi; Hiramatsu, Yuji
2018-01-01
The molecular characterization of endometrial cancer (EC) can facilitate identification of various tumor subtypes. Although EC patients with POLE mutations reproducibly demonstrate better prognosis, the outcome of patients with microsatellite instability (MSI) remains controversial. This study attempted to interrogate whether genetic stratification of EC can identify distinct subsets with prognostic significance. A cohort of 138 EC patients who underwent surgical resection with curative intent was enrolled. Sanger sequencing was used to evaluate mutations in the POLE and KRAS genes. MSI analysis was performed using four mononucleotide repeat markers and methylation status of the MLH1 promoter was measured by a fluorescent bisulfite polymerase chain reaction (PCR). Protein expression for mismatch repair (MMR) proteins was evaluated by immunohistochemistry (IHC). Extensive hypermethylation of the MLH1 promoter was observed in 69.6% ECs with MLH1 deficiency and 3.5% with MMR proficiency, but in none of the ECs with loss of other MMR genes (P < .0001). MSI-positive and POLE mutations were found in 29.0% and 8.7% EC patients, respectively. Our MSI analysis showed a sensitivity of 92.7% for EC patients with MMR deficiency, and a specificity of 97.9% for EC patients with MMR proficiency. In univariate and multivariate analyses, POLE mutations and MSI status was significantly associated with progression-free survival (P = 0.0129 and 0.0064, respectively) but not with endometrial cancer-specific survival. This study provides significant evidence that analyses of proofreading POLE mutations and MSI status based on mononucleotide repeat markers are potentially useful biomarkers to identify EC patients with better prognosis.
A survey of variable selection methods in two Chinese epidemiology journals
2010-01-01
Background Although much has been written on developing better procedures for variable selection, there is little research on how it is practiced in actual studies. This review surveys the variable selection methods reported in two high-ranking Chinese epidemiology journals. Methods Articles published in 2004, 2006, and 2008 in the Chinese Journal of Epidemiology and the Chinese Journal of Preventive Medicine were reviewed. Five categories of methods were identified whereby variables were selected using: A - bivariate analyses; B - multivariable analysis; e.g. stepwise or individual significance testing of model coefficients; C - first bivariate analyses, followed by multivariable analysis; D - bivariate analyses or multivariable analysis; and E - other criteria like prior knowledge or personal judgment. Results Among the 287 articles that reported using variable selection methods, 6%, 26%, 30%, 21%, and 17% were in categories A through E, respectively. One hundred sixty-three studies selected variables using bivariate analyses, 80% (130/163) via multiple significance testing at the 5% alpha-level. Of the 219 multivariable analyses, 97 (44%) used stepwise procedures, 89 (41%) tested individual regression coefficients, but 33 (15%) did not mention how variables were selected. Sixty percent (58/97) of the stepwise routines also did not specify the algorithm and/or significance levels. Conclusions The variable selection methods reported in the two journals were limited in variety, and details were often missing. Many studies still relied on problematic techniques like stepwise procedures and/or multiple testing of bivariate associations at the 0.05 alpha-level. These deficiencies should be rectified to safeguard the scientific validity of articles published in Chinese epidemiology journals. PMID:20920252
Schenker, Victoria J.; Petrill, Stephen A.
2015-01-01
This study investigated the genetic and environmental influences on observed associations between listening comprehension, reading motivation, and reading comprehension. Univariate and multivariate quantitative genetic models were conducted in a sample of 284 pairs of twins at a mean age of 9.81 years. Genetic and nonshared environmental factors accounted for statistically significant variance in listening and reading comprehension, and nonshared environmental factors accounted for variance in reading motivation. Furthermore, listening comprehension demonstrated unique genetic and nonshared environmental influences but also had overlapping genetic influences with reading comprehension. Reading motivation and reading comprehension each had unique and overlapping nonshared environmental contributions. Therefore, listening comprehension appears to be related to reading primarily due to genetic factors whereas motivation appears to affect reading via child-specific, nonshared environmental effects. PMID:26321677
Schenker, Victoria J; Petrill, Stephen A
2015-01-01
This study investigated the genetic and environmental influences on observed associations between listening comprehension, reading motivation, and reading comprehension. Univariate and multivariate quantitative genetic models were conducted in a sample of 284 pairs of twins at a mean age of 9.81 years. Genetic and nonshared environmental factors accounted for statistically significant variance in listening and reading comprehension, and nonshared environmental factors accounted for variance in reading motivation. Furthermore, listening comprehension demonstrated unique genetic and nonshared environmental influences but also had overlapping genetic influences with reading comprehension. Reading motivation and reading comprehension each had unique and overlapping nonshared environmental contributions. Therefore, listening comprehension appears to be related to reading primarily due to genetic factors whereas motivation appears to affect reading via child-specific, nonshared environmental effects. Copyright © 2015 Elsevier Inc. All rights reserved.
Molecular and morphologic data reveal multiple species in Peromyscus pectoralis
Bradley, Robert D.; Schmidly, David J.; Amman, Brian R.; Platt, Roy N.; Neumann, Kathy M.; Huynh, Howard M.; Muñiz-Martínez, Raúl; López-González, Celia; Ordóñez-Garza, Nicté
2015-01-01
DNA sequence and morphometric data were used to re-evaluate the taxonomy and systematics of Peromyscus pectoralis. Phylogenetic analyses (maximum likelihood and Bayesian inference) of DNA sequences from the mitochondrial cytochrome-b gene in 44 samples of P. pectoralis indicated 2 well-supported monophyletic clades. The 1st clade contained specimens from Texas historically assigned to P. p. laceianus; the 2nd was comprised of specimens previously referable to P. p. collinus, P. p. laceianus, and P. p. pectoralis obtained from northern and eastern Mexico. Levels of genetic variation (~7%) between these 2 clades indicated that the genetic divergence typically exceeded that reported for other species of Peromyscus. Samples of P. p. laceianus north and south of the Río Grande were not monophyletic. In addition, samples representing P. p. collinus and P. p. pectoralis formed 2 clades that differed genetically by 7.14%. Multivariate analyses of external and cranial measurements from 63 populations of P. pectoralis revealed 4 morpho-groups consistent with clades in the DNA sequence analysis: 1 from Texas and New Mexico assignable to P. p. laceianus; a 2nd from western and southern Mexico assignable to P. p. pectoralis; a 3rd from northern and central Mexico previously assigned to P. p. pectoralis but herein shown to represent an undescribed taxon; and a 4th from southeastern Mexico assignable to P. p. collinus. Based on the concordance of these results, populations from the United States are referred to as P. laceianus, whereas populations from Mexico are referred to as P. pectoralis (including some samples historically assigned to P. p. collinus, P. p. laceianus, and P. p. pectoralis). A new subspecies is described to represent populations south of the Río Grande in northern and central Mexico. Additional research is needed to discern if P. p. collinus warrants species recognition. PMID:26937045
Berger, D; Walters, R J; Blanckenhorn, W U
2014-09-01
Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist-specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist-specialist dimension. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Routledge, Kylie M; Williams, Leanne M; Harris, Anthony W F; Schofield, Peter R; Clark, C Richard; Gatt, Justine M
2018-06-01
Currently there is a very limited understanding of how mental wellbeing versus anxiety and depression symptoms are associated with emotion processing behaviour. For the first time, we examined these associations using a behavioural emotion task of positive and negative facial expressions in 1668 healthy adult twins. Linear mixed model results suggested faster reaction times to happy facial expressions was associated with higher wellbeing scores, and slower reaction times with higher depression and anxiety scores. Multivariate twin modelling identified a significant genetic correlation between depression and anxiety symptoms and reaction time to happy facial expressions, in the absence of any significant correlations with wellbeing. We also found a significant negative phenotypic relationship between depression and anxiety symptoms and accuracy for identifying neutral emotions, although the genetic or environment correlations were not significant in the multivariate model. Overall, the phenotypic relationships between speed of identifying happy facial expressions and wellbeing on the one hand, versus depression and anxiety symptoms on the other, were in opposing directions. Twin modelling revealed a small common genetic correlation between response to happy faces and depression and anxiety symptoms alone, suggesting that wellbeing and depression and anxiety symptoms show largely independent relationships with emotion processing at the behavioral level. Copyright © 2018 Elsevier B.V. All rights reserved.
Evolutionary rates for multivariate traits: the role of selection and genetic variation.
Pitchers, William; Wolf, Jason B; Tregenza, Tom; Hunt, John; Dworkin, Ian
2014-08-19
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (Δz(-)=Gβ), which predicts evolutionary change for a suite of phenotypic traits (Δz(-)) as a product of directional selection acting on them (β) and the genetic variance-covariance matrix for those traits (G ). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Foust, C M; Preite, V; Schrey, A W; Alvarez, M; Robertson, M H; Verhoeven, K J F; Richards, C L
2016-04-01
While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using AFLP and methylation-sensitive AFLP, we tested the hypothesis that differentiation to habitats along natural salt marsh environmental gradients occurs at epigenetic, but not genetic loci in two salt marsh perennials. We detected significant genetic and epigenetic structure among populations and among subpopulations, but we found multilocus patterns of differentiation to habitat type only in epigenetic variation for both species. In addition, more epigenetic than genetic loci were correlated with habitat in both species. When we analysed genetic and epigenetic variation simultaneously with partial Mantel, we found no correlation between genetic variation and habitat and a significant correlation between epigenetic variation and habitat in Spartina alterniflora. In Borrichia frutescens, we found significant correlations between epigenetic and/or genetic variation and habitat in four of five populations when populations were analysed individually, but there was no significant correlation between genetic or epigenetic variation and habitat when analysed jointly across the five populations. These analyses suggest that epigenetic mechanisms are involved in the response to salt marsh habitats, but also that the relationships among genetic and epigenetic variation and habitat vary by species. Site-specific conditions may also cloud our ability to detect response in replicate populations with similar environmental gradients. Future studies analysing sequence data and the correlation between genetic variation and DNA methylation will be powerful to identify the contributions of genetic and epigenetic response to environmental gradients. © 2016 John Wiley & Sons Ltd.
Rabosky, Daniel L; Hutchinson, Mark N; Donnellan, Stephen C; Talaba, Amanda L; Lovette, Irby J
2014-08-01
Scincid lizards in the genus Ctenotus represent one of Australia's most species-rich vertebrate clades, with more than 100 recognized species. Formal diagnoses of many species have relied on qualitative assessments of adult color pattern, but the validity of many such species has not been tested in a phylogenetic framework. We used mitochondrial and nuclear DNA to perform the first phylogenetic analysis of species in the Ctenotus inornatus group, a complex of at least 11 nominal forms that are distributed widely across the Australian continent. Mitochondrial and nuclear gene phylogenies support the presence of multiple species in the group, but these clades largely fail to match species boundaries as currently defined. Multivariate analyses of color pattern indicate that extreme intraspecific morphological variation in this character has created a significant impediment to understanding taxonomic diversity in the group. Our results suggest that nearly all species in the C. inornatus group require substantial taxonomic revision, and several geographically widespread forms ("C. saxatilis" and "C. robustus") appear to be polyphyletic taxa drawn from phenotypically similar but genetically distinct lineages. We describe one new species and provide redescriptions for three additional species. We synonymize names applied to a number of genetically incoherent or otherwise poorly-defined forms. The results of our study highlight an acute need for population genetic studies of species boundaries in Australian skinks, many of which are recognized by morphological traits that vary greatly within and between populations. Copyright © 2014 Elsevier Inc. All rights reserved.
Assessment of coyote-wolf-dog admixture using ancestry-informative diagnostic SNPs
Monzón, J.; Kays, R.; Dykhuizen, D. E.
2014-01-01
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human-dominated environments. We genotyped 63 ancestry-informative single nucleotide polymorphisms in 427 canids in order to examine the prevalence, spatial distribution, and ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf-like, suggesting that natural selection for wolf-like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, reveal a pattern of sex-biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry-informative markers. PMID:24148003
Assessment of coyote-wolf-dog admixture using ancestry-informative diagnostic SNPs.
Monzón, J; Kays, R; Dykhuizen, D E
2014-01-01
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human-dominated environments. We genotyped 63 ancestry-informative single-nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf-like, suggesting that natural selection for wolf-like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex-biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry-informative markers. © 2013 John Wiley & Sons Ltd.
Natural selection stops the evolution of male attractiveness
Hine, Emma; McGuigan, Katrina; Blows, Mark W.
2011-01-01
Sexual selection in natural populations acts on highly heritable traits and tends to be relatively strong, implicating sexual selection as a causal agent in many phenotypic radiations. Sexual selection appears to be ineffectual in promoting phenotypic divergence among contemporary natural populations, however, and there is little evidence from artificial selection experiments that sexual fitness can evolve. Here, we demonstrate that a multivariate male trait preferred by Drosophila serrata females can respond to selection and results in the maintenance of male mating success. The response to selection was associated with a gene of major effect increasing in frequency from 12 to 35% in seven generations. No further response to selection, or increase in frequency of the major gene, was observed between generations 7 and 11, indicating an evolutionary limit had been reached. Genetic analyses excluded both depletion of genetic variation and overdominance as causes of the evolutionary limit. Relaxing artificial selection resulted in the loss of 52% of the selection response after a further five generations, demonstrating that the response under artificial sexual selection was opposed by antagonistic natural selection. We conclude that male D. serrata sexually selected traits, and attractiveness to D. serrata females conferred by these traits, were held at an evolutionary limit by the lack of genetic variation that would allow an increase in sexual fitness while simultaneously maintaining nonsexual fitness. Our results suggest that sexual selection is unlikely to cause divergence among natural populations without a concomitant change in natural selection, a conclusion consistent with observational evidence from natural populations. PMID:21321197
2013-01-01
Background The association of genetic polymorphisms of Tanis with triglyceride concentration in human has not been thoroughly examined. We aimed to investigate the relationship between triglyceride concentrations and Tanis genetic polymorphisms. Methods All participants (n=1497) selected from subjects participating in the Cardiovascular Risk Survey (CRS) study were divided into two groups according to ethnicity (Han: n=1059; Uygur: n= 438). Four tagging SNPs (rs12910524, rs1384565, rs2101171, rs4965814) of Tanis gene were genotyped using TaqMan® assays from Applied Biosystems following the manufacturer’s suggestions and analyzed in an ABI 7900HT Fast Real-Time PCR System. Results We found that the SNP rs12910524 was associated with triglyceride levels by analyses of a dominant model (P<0.001), recessive model (P <0.001) and additive model (P < 0.001) not only in Han ethnic but also in Uygur ethnic group, and the difference remained significant after the adjustment of sex, age, alcohol intake, smoking, BMI and plasma glucose (GLU) level (All P < 0.001). However, this relationship was not observed in rs1384565, rs2101171, and rs4965814 before and after multivariate adjustment (All P > 0.05). Furthermore, there were significant interactions between rs12910524 and GLU on TG both in Han (P=0.001) and Uygur population (P=2.60×10-4). Conclusion Our results indicated that the rs12910524 in the Tanis gene was associated with triglyceride concentrations in subjects without diabetes in China. PMID:23829426
Lack of Association between Genetic Risk Loci for Restless Legs Syndrome and Multimorbidity.
Szentkirályi, András; Völzke, Henry; Hoffmann, Wolfgang; Winkelmann, Julianne; Berger, Klaus
2016-01-01
Multimorbidity is a risk factor for incident restless legs syndrome (RLS). In this relationship, the potential role of known genetic risk loci for RLS has not been studied. Our aim was to evaluate whether carriers of specific RLS risk alleles have higher comorbidity burden than noncarriers. The Dortmund Health Study (DHS) and the Study of Health in Pomerania (SHIP) are two independent cohort studies in Germany based on age-stratified, random samples drawn from the respective population registers. DHS included 1,312 subjects and SHIP included 4,308 subjects. RLS status was assessed according to the RLS standard minimal criteria. A comorbidity index was calculated by summing the scores of the following conditions: diabetes, hypertension, myocardial infarction, obesity, stroke, cancer, renal disease, anemia, depression, thyroid disease, and migraine. Thirteen single nucleotide polymorphisms (SNP) previously associated with elevated risk of RLS were genotyped. Analyses were carried out on the pooled sample of the two studies. The mean age was 50.4 ± 15.9 y, and the proportion of women was 51.4%. The mean number of comorbid conditions was 1.5 ± 1.3. In multivariable regression, the mean number of comorbidities was not significantly different between carriers of any of the RLS risk alleles and noncarriers either in the total pooled sample or in those having RLS symptoms. Based on these results it is unlikely that known genetic risk factors for RLS would lead to increased multimorbidity. © 2016 Associated Professional Sleep Societies, LLC.
Heritability of Carotid Intima-Media Thickness: A Twin Study
Zhao, Jinying; Cheema, Faiz A.; Bremner, J. Douglas; Goldberg, Jack; Su, Shaoyong; Snieder, Harold; Maisano, Carisa; Jones, Linda; Javed, Farhan; Murrah, Nancy; Le, Ngoc-Anh; Vaccarino, Viola
2008-01-01
Objective To estimate the heritability of carotid intima-media thickness (IMT), a surrogate marker for atherosclerosis, independent of traditional coronary risk factors. Methods and Results We performed a classical twin study of carotid IMT using 98 middle-aged male twin pairs, 58 monozygotic (MZ) and 40 dizygotic (DZ) pairs, from the Vietnam Era Twin Registry. All twins were free of overt cardiovascular disease. Carotid IMT was measured by ultrasound. Bivariate and multivariate analyses were used to determine the association between traditional cardiovascular risk factors and carotid IMT. Intraclass correlation coefficients and genetic modeling techniques were used to determine the relative contributions of genes and environment to the variation in carotid IMT. In our sample, the mean of the maximum carotid IMT was 0.75 ± 0.11. Age, systolic blood pressure and HDL were significantly associated with carotid IMT. The intraclass correlation coefficient for carotid IMT was larger in MZ (0.66; 95% confidence interval [CI], 0.62–0.69) than in DZ twins (0.37; 95% CI, 0.29–0.44), and the unadjusted heritability was 0.69 (95% CI, 0.54–0.79). After adjusting for traditional coronary risk factors, the heritability of carotid IMT was slightly reduced but still of considerable magnitude (0.59; 95% CI, 0.39–0.73). Conclusion Genetic factors have a substantial influence on the variation of carotid IMT. Most of this genetic effect occurs through pathways independent of traditional coronary risk factors. PMID:17825306
Accurate and fast multiple-testing correction in eQTL studies.
Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm
2015-06-04
In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Examining the etiological associations among higher-order temperament dimensions
Allan, Nicholas P.; Mikolajewski, Amy J.; Lonigan, Christopher J.; Hart, Sara A.; Taylor, Jeanette
2014-01-01
A multivariate independent pathway model was used to examine the shared and unique genetic and environmental influences of Positive Affect (PA), Negative Affect (NA), and effortful control (EC) in a sample of 686 twin pairs (M age = 10.07, SD = 1.74). There were common genetic influences and nonshared environmental influences shared across all three temperament dimensions and shared environmental influences in common to NA and EC. There were also significant independent genetic influences unique to PA and NA and significant independent shared environmental influences unique to PA. This study demonstrates that there are genetic and environmental influences that affect the covariance among temperament dimensions as well as unique genetic and environmental influences that influence the dimensions independently. PMID:24729641
Sork, Victoria L.; Davis, Frank W.; Westfall, Robert; Flint, Alan L.; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine
2010-01-01
Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata N??e, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions. ?? 2010 Blackwell Publishing Ltd.
Steiger, S; Capodeanu-Nägler, A; Gershman, S N; Weddle, C B; Rapkin, J; Sakaluk, S K; Hunt, J
2015-12-01
Indirect genetic benefits derived from female mate choice comprise additive (good genes) and nonadditive genetic benefits (genetic compatibility). Although good genes can be revealed by condition-dependent display traits, the mechanism by which compatibility alleles are detected is unclear because evaluation of the genetic similarity of a prospective mate requires the female to assess the genotype of the male and compare it to her own. Cuticular hydrocarbons (CHCs), lipids coating the exoskeleton of most insects, influence female mate choice in a number of species and offer a way for females to assess genetic similarity of prospective mates. Here, we determine whether female mate choice in decorated crickets is based on male CHCs and whether it is influenced by females' own CHC profiles. We used multivariate selection analysis to estimate the strength and form of selection acting on male CHCs through female mate choice, and employed different measures of multivariate dissimilarity to determine whether a female's preference for male CHCs is based on similarity to her own CHC profile. Female mating preferences were significantly influenced by CHC profiles of males. Male CHC attractiveness was not, however, contingent on the CHC profile of the choosing female, as certain male CHC phenotypes were equally attractive to most females, evidenced by significant linear and stabilizing selection gradients. These results suggest that additive genetic benefits, rather than nonadditive genetic benefits, accrue to female mate choice, in support of earlier work showing that CHC expression of males, but not females, is condition dependent. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Sork, Victoria L; Davis, Frank W; Westfall, Robert; Flint, Alan; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine
2010-09-01
Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata Née, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions.
Reichborn-Kjennerud, Ted; Czajkowski, Nikolai; Neale, Michael C; Ørstavik, Ragnhild E; Torgersen, Svenn; Tambs, Kristian; Røysamb, Espen; Harris, Jennifer R; Kendler, Kenneth S
2007-05-01
The DSM-IV cluster C Axis II disorders include avoidant (AVPD), dependent (DEPD) and obsessive-compulsive (OCPD) personality disorders. We aimed to estimate the genetic and environmental influences on dimensional representations of these disorders and examine the validity of the cluster C construct by determining to what extent common familial factors influence the individual PDs. PDs were assessed using the Structured Interview for DSM-IV Personality (SIDP-IV) in a sample of 1386 young adult twin pairs from the Norwegian Institute of Public Health Twin Panel (NIPHTP). A single-factor independent pathway multivariate model was applied to the number of endorsed criteria for the three cluster C disorders, using the statistical modeling program Mx. The best-fitting model included genetic and unique environmental factors only, and equated parameters for males and females. Heritability ranged from 27% to 35%. The proportion of genetic variance explained by a common factor was 83, 48 and 15% respectively for AVPD, DEPD and OCPD. Common genetic and environmental factors accounted for 54% and 64% respectively of the variance in AVPD and DEPD but only 11% of the variance in OCPD. Cluster C PDs are moderately heritable. No evidence was found for shared environmental or sex effects. Common genetic and individual environmental factors account for a substantial proportion of the variance in AVPD and DEPD. However, OCPD appears to be largely etiologically distinct from the other two PDs. The results do not support the validity of the DSM-IV cluster C construct in its present form.
Kische, Hanna; Ewert, Ralf; Fietze, Ingo; Gross, Stefan; Wallaschofski, Henri; Völzke, Henry; Dörr, Marcus; Nauck, Matthias; Obst, Anne; Stubbe, Beate; Penzel, Thomas; Haring, Robin
2016-11-01
Associations between sex hormones and sleep habits originate mainly from small and selected patient-based samples. We examined data from a population-based sample with various sleep characteristics and the major part of sex hormones measured by mass spectrometry. We used data from 204 men and 213 women of the cross-sectional Study of Health in Pomerania-TREND. Associations of total T (TT) and free T, androstenedione (ASD), estrone, estradiol (E2), dehydroepiandrosterone-sulphate, SHBG, and E2 to TT ratio with sleep measures (including total sleep time, sleep efficiency, wake after sleep onset, apnea-hypopnea index [AHI], Insomnia Severity Index, Epworth Sleepiness Scale, and Pittsburgh Sleep Quality Index) were assessed by sex-specific multivariable regression models. In men, age-adjusted associations of TT (odds ratio 0.62; 95% confidence interval (CI) 0.46-0.83), free T, and SHBG with AHI were rendered nonsignificant after multivariable adjustment. In multivariable analyses, ASD was associated with Epworth Sleepiness Scale (β-coefficient per SD increase in ASD: -0.71; 95% CI: -1.18 to -0.25). In women, multivariable analyses showed positive associations of dehydroepiandrosterone-sulphate with wake after sleep onset (β-coefficient: .16; 95% CI 0.03-0.28) and of E2 and E2 to TT ratio with Epworth Sleepiness Scale. Additionally, free T and SHBG were associated with AHI in multivariable models among premenopausal women. The present cross-sectional, population-based study observed sex-specific associations of androgens, E2, and SHBG with sleep apnea and daytime sleepiness. However, multivariable-adjusted analyses confirmed the impact of body composition and health-related lifestyle on the association between sex hormones and sleep.
Hu, Valerie W.; Steinberg, Mara E.
2009-01-01
Heterogeneity in phenotypic presentation of ASD has been cited as one explanation for the difficulty in pinpointing specific genes involved in autism. Recent studies have attempted to reduce the “noise” in genetic and other biological data by reducing the phenotypic heterogeneity of the sample population. The current study employs multiple clustering algorithms on 123 item scores from the Autism Diagnostic Interview-Revised (ADI-R) diagnostic instrument of nearly 2000 autistic individuals to identify subgroups of autistic probands with clinically relevant behavioral phenotypes in order to isolate more homogeneous groups of subjects for gene expression analyses. Our combined cluster analyses suggest optimal division of the autistic probands into 4 phenotypic clusters based on similarity of symptom severity across the 123 selected item scores. One cluster is characterized by severe language deficits, while another exhibits milder symptoms across the domains. A third group possesses a higher frequency of savant skills while the fourth group exhibited intermediate severity across all domains. Grouping autistic individuals by multivariate cluster analysis of ADI-R scores reveals meaningful phenotypes of subgroups within the autistic spectrum which we show, in a related (accompanying) study, to be associated with distinct gene expression profiles. PMID:19455643
Nabi, Hermann; Bochud, Murielle; Glaus, Jennifer; Lasserre, Aurélie M; Waeber, Gérard; Vollenweider, Peter; Preisig, Martin
2013-10-01
Studies on the association between homocysteine levels and depression have shown conflicting results. To examine the association between serum total homocysteine (tHcy) levels and major depressive disorder (MDD) in a large community sample with an extended age range. A total of 3392 men and women aged 35-66 years participating in the CoLaus study and its psychiatric arm (PsyCoLaus) were included in the analyses. High tHcy measured from fasting blood samples was defined as a concentration ≥15μmol/L. MDD was assessed using the semi-structured Diagnostic Interview for Genetics Studies. In multivariate analyses, elevated tHcy levels were associated with greater odds of meeting the diagnostic criteria for lifetime MDD among men (OR=1.71; 95% CI, 1.18-2.50). This was particularly the case for remitted MDD. Among women, there was no significant association between tHcy levels and MDD and the association tended to be in the opposite direction (OR=0.61; 95% CI, 0.34-1.08). In this large population-based study, elevated tHcy concentrations are associated with lifetime MDD and particularly with remitted MDD among men. Copyright © 2013 Elsevier Ltd. All rights reserved.
D'Avolio, Antonio; De Nicolò, Amedeo; Cusato, Jessica; Ciancio, Alessia; Boglione, Lucio; Strona, Silvia; Cariti, Giuseppe; Troshina, Giulia; Caviglia, Gian Paolo; Smedile, Antonina; Rizzetto, Mario; Di Perri, Giovanni
2013-10-01
Functional variants rs7270101 and rs1127354 of inosine triphosphatase (ITPA) were recently found to protect against ribavirin (RBV)-induced hemolytic anemia. However, no definitive data are yet available on the role of no functional rs6051702 polymorphism. Since a simultaneous evaluation of the three ITPA SNPs for hemolytic anemia has not yet been investigated, we aimed to understand the contribution of each SNPs and its potential clinical use to predict anemia in HCV treated patients. A retrospective analysis included 379 HCV treated patients. The ITPA variants rs6051702, rs7270101 and rs1127354 were genotyped and tested for association with achieving anemia at week 4. We also investigated, using multivariate logistic regression, the impact of each single and paired associated polymorphism on anemia onset. All SNPs were associated with Hb decrease. The carrier of at least one variant allele in the functional ITPA SNPs was associated with a lower decrement of Hb, as compared to patients without a variant allele. In multivariate logistic regression analyses the carrier of a variant allele in the rs6051702/rs1127354 association (OR=0.11, p=1.75×10(-5)) and Hb at baseline (OR=1.51, p=1.21×10(-4)) were independently associated with protection against clinically significant anemia at week 4. All ITPA polymorphisms considered were shown to be significantly associated with anemia onset. A multivariate regression model based on ITPA genetic polymorphisms was developed for predicting the risk of anemia. Considering the characterization of pre-therapy anemia predictors, rs6051702 SNP in association to rs1127354 is more informative in order to avoid this relevant adverse event. Copyright © 2013 Elsevier B.V. All rights reserved.
Heritability, linkage, and genetic associations of exercise treadmill test responses.
Ingelsson, Erik; Larson, Martin G; Vasan, Ramachandran S; O'Donnell, Christopher J; Yin, Xiaoyan; Hirschhorn, Joel N; Newton-Cheh, Christopher; Drake, Jared A; Musone, Stacey L; Heard-Costa, Nancy L; Benjamin, Emelia J; Levy, Daniel; Atwood, Larry D; Wang, Thomas J; Kathiresan, Sekar
2007-06-12
The blood pressure (BP) and heart rate responses to exercise treadmill testing predict incidence of cardiovascular disease, but the genetic determinants of hemodynamic and chronotropic responses to exercise are largely unknown. We assessed systolic BP, diastolic BP, and heart rate during the second stage of the Bruce protocol and at the third minute of recovery in 2982 Framingham Offspring participants (mean age 43 years; 53% women). With use of residuals from multivariable models adjusted for clinical correlates of exercise treadmill testing responses, we estimated the heritability (variance-components methods), genetic linkage (multipoint quantitative trait analyses), and association with 235 single-nucleotide polymorphisms in 14 candidate genes selected a priori from neurohormonal pathways for their potential role in exercise treadmill testing responses. Heritability estimates for heart rate during exercise and during recovery were 0.32 and 0.34, respectively. Heritability estimates for BP variables during exercise were 0.25 and 0.26 (systolic and diastolic BP) and during recovery, 0.16 and 0.13 (systolic and diastolic BP), respectively. Suggestive linkage was found for systolic BP during recovery from exercise (locus 1q43-44, log-of-the-odds score 2.59) and diastolic BP during recovery from exercise (locus 4p15.3, log-of-the-odds score 2.37). Among 235 single-nucleotide polymorphisms tested for association with exercise treadmill testing responses, the minimum nominal probability value was 0.003, which was nonsignificant after adjustment for multiple testing. Hemodynamic and chronotropic responses to exercise are heritable and demonstrate suggestive linkage to select loci. Genetic mapping with newer approaches such as genome-wide association may yield novel insights into the physiological responses to exercise.
Heritability and intrafamilial aggregation of arterial characteristics.
Seidlerová, Jitka; Bochud, Murielle; Staessen, Jan A; Cwynar, Marcin; Dolejsová, Milena; Kuznetsova, Tatiana; Nawrot, Tim; Olszanecka, Agnieszka; Stolarz, Katarzyna; Thijs, Lutgarde; Wojciechowska, Wiktoria; Struijker-Boudier, Harry A; Kawecka-Jaszcz, Kalina; Elston, Robert C; Fagard, Robert; Filipovský, Jan
2008-04-01
We investigated the heritability and familial aggregation of various indexes of arterial stiffness and wave reflection and we partitioned the phenotypic correlation between these traits into shared genetic and environmental components. Using a family-based population sample, we recruited 204 parents (mean age, 51.7 years) and 290 offspring (29.4 years) from the population in Cracow, Poland (62 families), Hechtel-Eksel, Belgium (36), and Pilsen, the Czech Republic (50). We measured peripheral pulse pressure (PPp) sphygmomanometrically at the brachial artery; central pulse pressure (PPc), the peripheral augmentation indexes (PAIxs) and central augmentation indexes (CAIxs) by applanation tonometry at the radial artery; and aortic pulse wave velocity (PWV) by tonometry or ultrasound. In multivariate-adjusted analyses, we used the ASSOC and PROC GENMOD procedures as implemented in SAGE and SAS, respectively. We found significant heritability for PAIx, CAIx, PPc and mean arterial pressure ranging from 0.37 to 0.41; P < or = 0.0001. The method of intrafamilial concordance confirmed these results; intrafamilial correlation coefficients were significant for all arterial indexes (r > or = 0.12; P < or = 0.02) with the exception of PPc (r = -0.007; P = 0.90) in parent-offspring pairs. The sib-sib correlations were also significant for CAIx (r = 0.22; P = 0.001). The genetic correlation between PWV and the other arterial indexes were significant (rhoG > or = 0.29; P < 0.0001). The corresponding environmental correlations were only significantly positive for PPp (rhoE = 0.10, P = 0.03). The observation of significant intrafamilial concordance and heritability of various indexes of arterial stiffness as well as the genetic correlations among arterial phenotypes strongly support the search for shared genetic determinants underlying these traits.
2011-01-01
Background While the gene flow in some organisms is strongly affected by physical barriers and geographical distance, other highly mobile species are able to overcome such constraints. In southern South America, the Andes (here up to 6,900 m) may constitute a formidable barrier to dispersal. In addition, this region was affected by cycles of intercalating arid/moist periods during the Upper/Late Pleistocene and Holocene. These factors may have been crucial in driving the phylogeographic structure of the vertebrate fauna of the region. Here we test these hypotheses in the burrowing parrot Cyanoliseus patagonus (Aves, Psittaciformes) across its wide distributional range in Chile and Argentina. Results Our data show a Chilean origin for this species, with a single migration event across the Andes during the Upper/Late Pleistocene, which gave rise to all extant Argentinean mitochondrial lineages. Analyses suggest a complex population structure for burrowing parrots in Argentina, which includes a hybrid zone that has remained stable for several thousand years. Within this zone, introgression by expanding haplotypes has resulted in the evolution of an intermediate phenotype. Multivariate regressions show that present day climatic variables have a strong influence on the distribution of genetic heterogeneity, accounting for almost half of the variation in the data. Conclusions Here we show how huge barriers like the Andes and the regional environmental conditions imposed constraints on the ability of a parrot species to colonise new habitats, affecting the way in which populations diverged and thus, genetic structure. When contact between divergent populations was re-established, a stable hybrid zone was formed, functioning as a channel for genetic exchange between populations. PMID:21672266
Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs.
Laucou, Valérie; Launay, Amandine; Bacilieri, Roberto; Lacombe, Thierry; Adam-Blondon, Anne-Françoise; Bérard, Aurélie; Chauveau, Aurélie; de Andrés, Maria Teresa; Hausmann, Ludger; Ibáñez, Javier; Le Paslier, Marie-Christine; Maghradze, David; Martinez-Zapater, José Miguel; Maul, Erika; Ponnaiah, Maharajah; Töpfer, Reinhard; Péros, Jean-Pierre; Boursiquot, Jean-Michel
2018-01-01
Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26-0.32) and linkage disequilibrium (LD, 28.8-58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine.
Vaccarino, Viola; Lampert, Rachel; Bremner, J. Douglas; Lee, Forrester; Su, Shaoyong; Maisano, Carisa; Murrah, Nancy V.; Jones, Linda; Jawed, Farhan; Afzal, Nadeem; Ashraf, Ali; Goldberg, Jack
2018-01-01
Objective To clarify the relationship between depression and heart rate variability (HRV) in a sample of twins. Reduced HRV, a measure of autonomic dysfunction, has been linked to depression but many studies have inadequately controlled for familial and environmental factors. Furthermore, little is known about whether depression and HRV share common genetic pathways. Methods We performed power spectral analysis on 24-hour ambulatory electrocardiograms in 288 middle-aged male twins. Log-normalized ultra low, very low, low, high frequency, and total power were calculated. A lifetime history of major depressive disorder (MDD) was determined, using the Structured Clinical Interview for Psychiatry Disorders, and current depressive symptoms were measured with the Beck Depression Inventory. Mixed-effect regression models were used to account for intrapair variability and estimate within-pair effects at the same time controlling for potential confounders. Results Both current depressive symptoms and a history of MDD were significantly associated with lower HRV. There was a graded effect, and power in each frequency band was 29% to 36% lower in the lowest band compared with the highest BDI category. All HRV measures except high frequency remained significantly associated with current depressive symptoms in multivariable analysis, but not with lifetime history of MDD. When analyses were stratified by zygosity, a significant within-pair association between BDI score and HRV was found in the dizygotic but not in the monozygotic twins, suggesting a genetic influence on the association. Conclusions A shared, genetically influenced biological pathway underlies the association between depression and lower HRV. These two phenotypes may be the expression of a generalized neurobiological perturbation. PMID:18606724
Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs
Launay, Amandine; Bacilieri, Roberto; Lacombe, Thierry; Adam-Blondon, Anne-Françoise; Bérard, Aurélie; Chauveau, Aurélie; de Andrés, Maria Teresa; Maghradze, David; Maul, Erika; Ponnaiah, Maharajah; Töpfer, Reinhard; Péros, Jean-Pierre; Boursiquot, Jean-Michel
2018-01-01
Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26–0.32) and linkage disequilibrium (LD, 28.8–58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine. PMID:29420602
Xie, Shaobing; Qiang, Qingfen; Mei, Lingyun; He, Chufeng; Feng, Yong; Sun, Hong; Wu, Xuewen
2018-01-01
The objective of this study is to evaluate possible prognostic factors of idiopathic sudden sensorineural hearing loss (ISSNHL) treated with adjuvant hyperbaric oxygen therapy (HBOT) using univariate and multivariate analyses. From January 2008 to October 2016, records of 178 ISSNHL patients treated with auxiliary hyperbaric oxygen therapy were reviewed to assess hearing recovery and evaluate associated prognostic factors (gender, age, localization, initial hearing threshold, presence of tinnitus, vertigo, ear fullness, hypertension, diabetes, onset of HBOT, number of HBOT, and audiogram), by using univariate and multivariate analyses. The overall recovery rate was 37.1%, including complete recovery (19.7%) and partial recovery (17.4%). According to multivariate analysis, later onset of HBOT and higher initial hearing threshold were associated with a poor prognosis in ISSNHL patients treated with HBOT. HBOT is a safe and beneficial adjuvant therapy for ISSNHL patients. 20 sessions of HBOT is possibly enough to show its therapeutic effect. Earlier HBOT onset and lower initial hearing threshold is associated with favorable hearing recovery.
The genetic epidemiology of personality disorders
Reichborn-Kjennerud, Ted
2010-01-01
Genetic epidemiologic studies indicate that all ten personality disorders (PDs) classified on the DSM-IV axis II are modestly to moderately heritable. Shared environmental and nonadditive genetic factors are of minor or no importance. No sex differences have been identified. Multivariate studies suggest that the extensive comorbidity between the PDs can be explained by three common genetic and environmental risk factors. The genetic factors do not reflect the DSM-IV cluster structure, but rather: i) broad vulnerability to PD pathology or negative emotionality; ii) high impulsivity/low agreeableness; and iii) introversion. Common genetic and environmental liability factors contribute to comorbidity between pairs or clusters of axis I and axis II disorders. Molecular genetic studies of PDs, mostly candidate gene association studies, indicate that genes linked to neurotransmitter pathways, especially in the serotonergic and dopaminergic systems, are involved. Future studies, using newer methods like genome-wide association, might take advantage of the use of endophenotypes. PMID:20373672
‘Generalist genes’ and mathematics in 7-year-old twins
Kovas, Y.; Harlaar, N.; Petrill, S. A.; Plomin, R.
2009-01-01
Mathematics performance at 7 years as assessed by teachers using UK national curriculum criteria has been found to be highly heritable. For almost 3000 pairs of 7-year-old same-sex twins, we used multivariate genetic analysis to investigate the extent to which these genetic effects on mathematics performance overlap with genetic effects on reading and general intelligence (g) as predicted by the ‘generalist genes’ hypothesis. We found substantial genetic overlap between mathematics and reading (genetic correlation=0.74) and between mathematics and g (0.67). These findings support the ‘generalist genes’ hypothesis that most of the genes that contribute to individual differences in mathematics are the same genes that affect reading and g. Nonetheless, the genetic correlations are less than unity and about a third of the genetic variance on mathematics is independent of reading and g, suggesting that there are also some genes whose effects are specific to mathematics. PMID:19319204
Beaton, Derek; Dunlop, Joseph; Abdi, Hervé
2016-12-01
For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Sen, S. K.
2007-01-01
Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *
Kennedy, Emma V; Tonk, Linda; Foster, Nicola L; Chollett, Iliana; Ortiz, Juan-Carlos; Dove, Sophie; Hoegh-Guldberg, Ove; Mumby, Peter J; Stevens, Jamie R
2016-11-16
The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium While Orbicella annularis-a dominant reef-building coral in the Wider Caribbean-is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest-southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described. © 2016 The Authors.
Left ventricular diastolic function in patients with treated haemochromatosis.
Davidsen, Einar Skulstad; Omvik, Per; Hervig, Tor; Gerdts, Eva
2009-02-01
We recently demonstrated reduced exercise capacity in phlebotomy treated genetic haemochromatosis in spite of normal systolic function. The present objective was to investigate diastolic function at rest. Diastolic function was echocardiographically assessed in 132 phlebotomy treated genetic haemochromatosis patients and 50 controls. Patients had higher body mass index and heart rate, higher transmitral early (E) (11.2+/-2.6 versus 10.4+/-2.2 cm) and atrial (A) (5.7+/-1.6 versus 5.0+/-1.6) velocity time integrals, pulmonary venous systolic peak velocity (0.58+/-0.12 versus 0.54+/-0.13 m/s) and ratio of E to spectral tissue Doppler E' velocity (6.3+/-1.6 versus 5.6+/-1.4, all p <0.05). Independently of age, heart rate, systolic blood pressure and body weight, having haemochromatosis remained statistically significantly associated with higher E (beta=0.27) and A (beta =0.18) velocity time integrals, pulmonary venous systolic peak velocity (beta =0.21), and E/E'-ratio (beta=0.25) in separate multivariate analyses (all p <0.05). In the youngest age tertile, patients had longer isovolumic relaxation time and lower E' than controls. Our findings are compatible with mildly impaired diastolic function in treated haemochromatosis, with delayed relaxation in the younger tertile, and an elevated filling pressure and pseudonormalisation with increasing age.
Tonk, Linda; Chollett, Iliana; Ortiz, Juan-Carlos; Dove, Sophie; Hoegh-Guldberg, Ove; Mumby, Peter J.
2016-01-01
The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium. While Orbicella annularis—a dominant reef-building coral in the Wider Caribbean—is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest–southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described. PMID:27807263
Interleukin-6 -174 and -572 genotypes and the volume of deep gray matter in preterm infants.
Reiman, Milla; Parkkola, Riitta; Lapinleimu, Helena; Lehtonen, Liisa; Haataja, Leena
2009-01-01
Preterm infants have smaller cerebral and cerebellar volumes at term compared with term born infants. Perinatal factors leading to the reduction in volumes are not well known. IL-6 -174 and -572 genotypes partly regulate individual immunologic responses and have also been connected with deviant neurologic development in preterm infants. Our hypothesis was that IL-6 -174 and -572 genetic polymorphisms are associated with brain lesions and regional brain volumes in very low birth weight or in very preterm infants. DNA was genotyped for IL-6 -174 and -572 polymorphisms (GG/GC/CC). Study infants (n = 175) were categorized into three groups according to the most pathologic brain finding in ultrasound examinations until term. The brain MRI performed at term was analyzed for regional brain volumes. Analyzed IL-6 genotypes did not show statistically significant association with structural brain lesions. However, IL-6 -174 CC and -572 GG genotypes associated with reduced volume of one brain region, the combined volume of basal ganglia and thalami, both in univariate and in multivariate analyses (p = 0.009, 0.009, respectively). The association of IL-6 -174 and -572 genetic polymorphisms with smaller volumes in deep gray matter provides us new ways to understand the processes leading to neurologic impairments in preterm infants.
Herman, Joseph M; Jabbour, Salma K; Lin, Steven H; Deek, Matthew P; Hsu, Charles C; Fishman, Elliot K; Kim, Sinae; Cameron, John L; Chekmareva, Marina; Laheru, Daniel A; Narang, Amol K; Pawlik, Timothy M; Hruban, Ralph H; Wolfgang, Christopher L; Iacobuzio-Donahue, Christine A
2018-02-01
The tumor suppressor gene SMAD4 (DPC4) is genetically inactivated in approximately half of pancreatic ductal adenocarcinomas (PDAs). We examined whether Smad4 tumor status was associated with outcomes after adjuvant chemoradiation (CRT) for resected PDAs. Patients treated with adjuvant CRT were identified (N = 145). Smad4 status was determined by immunolabeling and graded as intact or lost. Kaplan-Meier method and multivariable competing risk analyses were performed. On multivariate competing risk analysis, Smad4 loss was associated with increased risk of local recurrence (LR) (hazard ratio, 2.37; 95% confidence interval, 1.10-5.11; P = 0.027), distant failure (DF) (hazard ratio, 1.71; 95% confidence interval, 1.03-2.83; P = 0.037), and synchronous LR and DF at first recurrence (14.9 % vs 5.3%, P = 0.07) compared with Smad4 intact cancers. Smad4 loss was not associated with median overall survival (22 vs 22 months; P = 0.63) or disease-free survival (lost [13.6 months] vs intact [13.5 months], P = 0.79). After PDA resection and adjuvant CRT, Smad4 loss correlated with higher risk of LR and DF, but not with survival. Smad4 loss may help predict which surgical patients are at higher risk for failure after definitive management and may benefit from intensified adjuvant therapy.
Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F.; Hovmøller, Mogens S.; Enjalbert, Jérôme; de Vallavieille-Pope, Claude
2014-01-01
Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen. PMID:24465211
Cecchinato, A; Penasa, M; De Marchi, M; Gallo, L; Bittante, G; Carnier, P
2011-08-01
The aim of this study was to estimate heritabilities of rennet coagulation time (RCT) and curd firmness (a(30)) and their genetic correlations with test-day milk yield, composition (fat, protein, and casein content), somatic cell score, and acidity (pH and titratable acidity) using coagulating and noncoagulating (NC) milk information. Data were from 1,025 Holstein-Friesian (HF) and 1,234 Brown Swiss (BS) cows, which were progeny of 54 HF and 58 BS artificial insemination sires, respectively. Milk coagulation properties (MCP) of each cow were measured once using a computerized renneting meter and samples not exhibiting coagulation within 31 min after rennet addition were classified as NC milk. For NC samples, RCT was unobserved. Multivariate analyses, using Bayesian methodology, were performed to estimate the genetic relationships of RCT or a(30) with the other traits and statistical inference was based on the marginal posterior distributions of parameters of concern. For analyses involving RCT, a right-censored Gaussian linear model was used and records of NC milk samples, being censored records, were included as unknown parameters in the model implementing a data augmentation procedure. Rennet coagulation time was more heritable [heritability (h(2))=0.240 and h(2)=0.210 for HF and BS, respectively] than a(30) (h(2)=0.148 and h(2)=0.168 for HF and BS, respectively). Milk coagulation properties were more heritable than a single test-day milk yield (h(2)=0.103 and h(2)=0.097 for HF and BS, respectively) and less heritable than milk composition traits whose heritability ranged from 0.275 to 0.275, with the only exception of fat content of BS milk (h(2)=0.108). A negative genetic correlation, lower than -0.85, was estimated between RCT and a(30) for both breeds. Genetic relationships of MCP with yield and composition were low or moderate and favorable. The genetic correlation of somatic cell score with RCT in BS cows was large and positive and even more positive were those of RCT with pH and titratable acidity in both breeds, ranging from 0.80 to 0.94. Including NC milk information in the data affected the estimated correlations and decreased the uncertainty associated with the estimation process. On the basis of the estimated heritabilities and genetic correlations, enhancement of MCP through selective breeding with no detrimental effects on yield and composition seems feasible in both breeds. Milk acidity may play a role as an indicator trait for indirect enhancement of MCP. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Su, H; Golden, B; Hyde, L; Sanders, S; Garrick, D
2017-11-01
Genetic parameters are required to evaluate carcass merit using correlated real-time ultrasound (RTU) measurements. Many registered bulls and heifers are measured using RTU before consideration for selection as parents, whereas few animals are recorded for carcass traits and those are often crossbred steers. The objective of this study was to estimate genetic parameters required for evaluating carcass merit in the American Hereford Association (AHA) and the American Simmental Association (ASA) using multivariate models and to assess accuracy of carcass trait estimated breeding values (EBV) for selection candidates. All available carcass data including carcass weight (CWT), fat thickness (FAT), longissimus muscle area (LMA), and marbling score (MRB) were provided by the AHA and the ASA along with RTU data including fat thickness (UFAT), longissimus muscle area (ULMA), and percentage of intramuscular fat (UIMF). Carcass data comprised 6,054 AHA and 9,056 ASA cattle, while RTU data in comparable numbers from close relatives comprised 6,074 AHA and 7,753 ASA cattle. Pedigrees included 33,226 AHA and 37,665 ASA animals. Fixed effects for carcass and RTU data included contemporary group, age at scan/slaughter, and major breed percentages. Restricted maximum likelihood procedures were applied to all the carcass and RTU measurements, along with birth weight to account for selection, fitting 8-trait multivariate models separately for each breed association. Heritability estimates for AHA and ASA carcass traits were 0.41 ± 0.04 and 0.25 ± 0.03 for FAT, 0.47 ± 0.04 and 0.32 ± 0.03 for LMA, 0.48 ± 0.04 and 0.43 ± 0.04 for MRB, 0.51 ± 0.04 and 0.34 ± 0.03 for CWT, and for RTU traits were 0.29 ± 0.04 and 0.37 ± 0.03 for UFAT, 0.31 ± 0.04 and 0.44 ± 0.03 for ULMA, and 0.45 ± 0.04 and 0.42 ± 0.03 for UIMF. Genetic correlations for AHA and ASA analyses between FAT and UFAT were 0.74 ± 0.08 and 0.28 ± 0.13, between LMA and ULMA were 0.81 ± 0.07 and 0.57 ± 0.10, and between MRB and UIMF were 0.54 ± 0.08 and 0.73 ± 0.07. Predictions of carcass merit using RTU measurements in Hereford cattle would be more reliable for FAT and LMA than MRB, but the reverse would be true for admixed Simmental cattle. Genetic correlations for MRB in AHA and for FAT and LMA in ASA are less than currently assumed in their national evaluations. Collection of greater numbers of carcass measurements would improve the accuracy of genetic evaluations for carcass traits in both breeds.
Chan, Ruth; Wong, Vincent Wai-Sun; Chu, Winnie Chiu-Wing; Wong, Grace Lai-Hung; Li, Liz Sin; Leung, Jason; Chim, Angel Mei-Ling; Yeung, David Ka-Wai; Sea, Mandy Man-Mei; Woo, Jean; Chan, Francis Ka-Leung; Chan, Henry Lik-Yuen
2015-01-01
Dietary pattern analysis is an alternative approach to examine the association between diet and nonalcoholic fatty liver disease (NAFLD). This study examined the association of two diet-quality scores, namely Diet Quality Index-International (DQI-I) and Mediterranean Diet Score (MDS) with NAFLD prevalence. Apparently healthy Chinese adults (332 male, 465 female) aged 18 years or above were recruited through a population screening between 2008 and 2010 in a cross-sectional population-based study in Hong Kong. DQI-I and MDS, as well as major food group and nutrient intakes were calculated based on dietary data from a food frequency questionnaire. NAFLD was defined as intrahepatic triglyceride content at ≥5% by proton-magnetic resonance spectroscopy. Multivariate logistic regression models were used to examine the association between each diet-quality score or dietary component and prevalent NAFLD with adjustment for potential lifestyle, metabolic and genetic factors. A total of 220 subjects (27.6%) were diagnosed with NAFLD. DQI-I but not MDS was associated with the prevalence of NAFLD. A 10-unit decrease in DQI-I was associated with 24% increase in the likelihood of having NAFLD in the age and sex adjusted model (95% CI: 1.06–1.45, p = 0.009), and the association remained significant when the model was further adjusted for other lifestyle factors, metabolic and genetic factors [OR: 1.26 (95% CI: 1.03–1.54), p = 0.027]. Multivariate regression analyses showed an inverse association of the intake of vegetables and legumes, fruits and dried fruits, as well as vitamin C with the NAFLD prevalence (p<0.05). In conclusion, a better diet quality as characterized by a higher DQI-I and a higher consumption of vegetables, legumes and fruits was associated with a reduced likelihood of having NAFLD in Hong Kong Chinese. PMID:26418083
Evidence-based provisional clinical classification criteria for autoinflammatory periodic fevers.
Federici, Silvia; Sormani, Maria Pia; Ozen, Seza; Lachmann, Helen J; Amaryan, Gayane; Woo, Patricia; Koné-Paut, Isabelle; Dewarrat, Natacha; Cantarini, Luca; Insalaco, Antonella; Uziel, Yosef; Rigante, Donato; Quartier, Pierre; Demirkaya, Erkan; Herlin, Troels; Meini, Antonella; Fabio, Giovanna; Kallinich, Tilmann; Martino, Silvana; Butbul, Aviel Yonatan; Olivieri, Alma; Kuemmerle-Deschner, Jasmin; Neven, Benedicte; Simon, Anna; Ozdogan, Huri; Touitou, Isabelle; Frenkel, Joost; Hofer, Michael; Martini, Alberto; Ruperto, Nicolino; Gattorno, Marco
2015-05-01
The objective of this work was to develop and validate a set of clinical criteria for the classification of patients affected by periodic fevers. Patients with inherited periodic fevers (familial Mediterranean fever (FMF); mevalonate kinase deficiency (MKD); tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS); cryopyrin-associated periodic syndromes (CAPS)) enrolled in the Eurofever Registry up until March 2013 were evaluated. Patients with periodic fever, aphthosis, pharyngitis and adenitis (PFAPA) syndrome were used as negative controls. For each genetic disease, patients were considered to be 'gold standard' on the basis of the presence of a confirmatory genetic analysis. Clinical criteria were formulated on the basis of univariate and multivariate analysis in an initial group of patients (training set) and validated in an independent set of patients (validation set). A total of 1215 consecutive patients with periodic fevers were identified, and 518 gold standard patients (291 FMF, 74 MKD, 86 TRAPS, 67 CAPS) and 199 patients with PFAPA as disease controls were evaluated. The univariate and multivariate analyses identified a number of clinical variables that correlated independently with each disease, and four provisional classification scores were created. Cut-off values of the classification scores were chosen using receiver operating characteristic curve analysis as those giving the highest sensitivity and specificity. The classification scores were then tested in an independent set of patients (validation set) with an area under the curve of 0.98 for FMF, 0.95 for TRAPS, 0.96 for MKD, and 0.99 for CAPS. In conclusion, evidence-based provisional clinical criteria with high sensitivity and specificity for the clinical classification of patients with inherited periodic fevers have been developed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Steffen, Lyn M; Dai, Shifan; Fulton, Janet E; Labarthe, Darwin R
2009-07-01
Parental obesity and TV viewing are risk factors for childhood obesity. This study assessed the association of children's TV viewing and computer use with body mass and examined whether parental weight status modified the association. Cross-sectional associations of parental weight status, hours of TV viewing and computer use, and children's body composition were studied in a subsample of 526 black and nonblack children, aged 8, 11, and 14 years at baseline, enrolled in Project HeartBeat!, a longitudinal study of cardiovascular disease risk factors, 1991-1995. BMI, fat-free mass (FFM), and percent body fat (PBF) were calculated from children's body composition measured at baseline. Children's TV viewing and computer use habits and parental height and weight were self-reported. Multivariate regression analysis was used in assessing inter-relations of parental weight status and child's TV viewing and computer use habits with BMI, FFM, PBF, and risk for overweight status (BMI > or =85th percentile), adjusting for age, gender, race, and Tanner stage. Children of one or two overweight/obese parents watched an average of 22+/-6 minutes or 30+/-11 minutes more TV per day than children of normal-weight parents, respectively (both p<0.01). In multivariate regression analyses, BMI and PBF increased significantly by 0.42 kg/m(2) and 1.14% (both p<0.001), respectively, for each hour of TV watched among children with overweight parents, but not for those with normal-weight parents (p(interaction)<0.05). Similar results were observed for total screen time. These study findings are consistent with a genetic contribution of parental weight; however, overweight/obese parents may also exhibit behavior patterns that negatively influence children's TV viewing and have an impact on child overweight status. The effect of parental BMI on children's BMI may have both a genetic and an environmental linkage.
Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative
NASA Astrophysics Data System (ADS)
Luna-Gómez, Carlos D.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Galván-Tejada, Carlos E.; Celaya-Padilla, José M.
2017-03-01
Osteoarthritis is the most common rheumatic disease in the world. Knee pain is the most disabling symptom in the disease, the prediction of pain is one of the targets in preventive medicine, this can be applied to new therapies or treatments. Using the magnetic resonance imaging and the grading scales, a multivariate model based on genetic algorithms is presented. Using a predictive model can be useful to associate minor structure changes in the joint with the future knee pain. Results suggest that multivariate models can be predictive with future knee chronic pain. All models; T0, T1 and T2, were statistically significant, all p values were < 0.05 and all AUC > 0.60.
Mega, J L; Stitziel, N O; Smith, J G; Chasman, D I; Caulfield, M; Devlin, J J; Nordio, F; Hyde, C; Cannon, C P; Sacks, F; Poulter, N; Sever, P; Ridker, P M; Braunwald, E; Melander, O; Kathiresan, S; Sabatine, M S
2015-06-06
Genetic variants have been associated with the risk of coronary heart disease. In this study, we tested whether or not a composite of these variants could ascertain the risk of both incident and recurrent coronary heart disease events and identify those individuals who derive greater clinical benefit from statin therapy. A community-based cohort study (the Malmo Diet and Cancer Study) and four randomised controlled trials of both primary prevention (JUPITER and ASCOT) and secondary prevention (CARE and PROVE IT-TIMI 22) with statin therapy, comprising a total of 48,421 individuals and 3477 events, were included in these analyses. We studied the association of a genetic risk score based on 27 genetic variants with incident or recurrent coronary heart disease, adjusting for traditional clinical risk factors. We then investigated the relative and absolute risk reductions in coronary heart disease events with statin therapy stratified by genetic risk. We combined data from the different studies using a meta-analysis. When individuals were divided into low (quintile 1), intermediate (quintiles 2-4), and high (quintile 5) genetic risk categories, a significant gradient in risk for incident or recurrent coronary heart disease was shown. Compared with the low genetic risk category, the multivariable-adjusted hazard ratio for coronary heart disease for the intermediate genetic risk category was 1·34 (95% CI 1·22-1·47, p<0·0001) and that for the high genetic risk category was 1·72 (1·55-1·92, p<0·0001). In terms of the benefit of statin therapy in the four randomised trials, we noted a significant gradient (p=0·0277) of increasing relative risk reductions across the low (13%), intermediate (29%), and high (48%) genetic risk categories. Similarly, we noted greater absolute risk reductions in those individuals in higher genetic risk categories (p=0·0101), resulting in a roughly threefold decrease in the number needed to treat to prevent one coronary heart disease event in the primary prevention trials. Specifically, in the primary prevention trials, the number needed to treat to prevent one such event in 10 years was 66 in people at low genetic risk, 42 in those at intermediate genetic risk, and 25 in those at high genetic risk in JUPITER, and 57, 47, and 20, respectively, in ASCOT. A genetic risk score identified individuals at increased risk for both incident and recurrent coronary heart disease events. People with the highest burden of genetic risk derived the largest relative and absolute clinical benefit from statin therapy. National Institutes of Health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimation of Genetic Parameters from Longitudinal Records of Body Weight of Berkshire Pigs
Lee, Dong-Hee; Do, Chang-Hee
2012-01-01
Direct and maternal genetic heritabilities and their correlations with body weight at 5 stages in the life span of purebred Berkshire pigs, from birth to harvest, were estimated to scrutinize body weight development with the records for 5,088 purebred Berkshire pigs in a Korean farm, using the REML based on an animal model. Body weights were measured at birth (Birth), at weaning (Weaning: mean 22.9 d), at the beginning of a performance test (On: mean 72.7 d), at the end of a performance test (Off: mean 152.4 d), and at harvest (Finish: mean 174.3 d). Ordinary polynomials and Legendre with order 1, 2, and 3 were adopted to adjust body weight with age in the multivariate animal models. Legendre with order 3 fitted best concerning prediction error deviation (PED) and yielded the lowest AIC for multivariate analysis of longitudinal body weights. Direct genetic correlations between body weight at Birth and body weight at Weaning, On, Off, and Finish were 0.48, 0.36, 0.10, and 0.10, respectively. The estimated maternal genetic correlations of body weight at Finish with body weight at Birth, Weaning, On, and Off were 0.39, 0.49, 0.65, and 0.90, respectively. Direct genetic heritabilities progressively increased from birth to harvest and were 0.09, 0.11, 0.20, 0.31, and 0.43 for body weight at Birth, Weaning, On, Off, and Finish, respectively. Maternal genetic heritabilities generally decreased and were 0.26, 0.34, 0.15, 0.10, and 0.10 for body weight at Birth, Weaning, On, Off, and Finish, respectively. As pigs age, maternal genetic effects on growth are reduced and pigs begin to rely more on the expression of their own genes. Although maternal genetic effects on body weight may not be large, they are sustained through life. PMID:25049624
Sariaslan, A; Larsson, H; Fazel, S
2016-01-01
Patients diagnosed with psychotic disorders (for example, schizophrenia and bipolar disorder) have elevated risks of committing violent acts, particularly if they are comorbid with substance misuse. Despite recent insights from quantitative and molecular genetic studies demonstrating considerable pleiotropy in the genetic architecture of these phenotypes, there is currently a lack of large-scale studies that have specifically examined the aetiological links between psychotic disorders and violence. Using a sample of all Swedish individuals born between 1958 and 1989 (n=3 332 101), we identified a total of 923 259 twin-sibling pairs. Patients were identified using the National Patient Register using validated algorithms based on International Classification of Diseases (ICD) 8–10. Univariate quantitative genetic models revealed that all phenotypes (schizophrenia, bipolar disorder, substance misuse, and violent crime) were highly heritable (h2=53–71%). Multivariate models further revealed that schizophrenia was a stronger predictor of violence (r=0.32; 95% confidence interval: 0.30–0.33) than bipolar disorder (r=0.23; 0.21–0.25), and large proportions (51–67%) of these phenotypic correlations were explained by genetic factors shared between each disorder, substance misuse, and violence. Importantly, we found that genetic influences that were unrelated to substance misuse explained approximately a fifth (21% 20–22%) of the correlation with violent criminality in bipolar disorder but none of the same correlation in schizophrenia (Pbipolar disorder<0.001; Pschizophrenia=0.55). These findings highlight the problems of not disentangling common and unique sources of covariance across genetically similar phenotypes as the latter sources may include aetiologically important clues. Clinically, these findings underline the importance of assessing risk of different phenotypes together and integrating interventions for psychiatric disorders, substance misuse, and violence. PMID:26666206
Sucheston, Lara E; Bensen, Jeannette T; Xu, Zongli; Singh, Prashant K; Preus, Leah; Mohler, James L; Su, L Joseph; Fontham, Elizabeth T H; Ruiz, Bernardo; Smith, Gary J; Taylor, Jack A
2012-01-01
Family history and African-American race are important risk factors for both prostate cancer (CaP) incidence and aggressiveness. When studying complex diseases such as CaP that have a heritable component, chances of finding true disease susceptibility alleles can be increased by accounting for genetic ancestry within the population investigated. Race, ethnicity and ancestry were studied in a geographically diverse cohort of men with newly diagnosed CaP. Individual ancestry (IA) was estimated in the population-based North Carolina and Louisiana Prostate Cancer Project (PCaP), a cohort of 2,106 incident CaP cases (2063 with complete ethnicity information) comprising roughly equal numbers of research subjects reporting as Black/African American (AA) or European American/Caucasian/Caucasian American/White (EA) from North Carolina or Louisiana. Mean genome wide individual ancestry estimates of percent African, European and Asian were obtained and tested for differences by state and ethnicity (Cajun and/or Creole and Hispanic/Latino) using multivariate analysis of variance models. Principal components (PC) were compared to assess differences in genetic composition by self-reported race and ethnicity between and within states. Mean individual ancestries differed by state for self-reporting AA (p = 0.03) and EA (p = 0.001). This geographic difference attenuated for AAs who answered "no" to all ethnicity membership questions (non-ethnic research subjects; p = 0.78) but not EA research subjects, p = 0.002. Mean ancestry estimates of self-identified AA Louisiana research subjects for each ethnic group; Cajun only, Creole only and both Cajun and Creole differed significantly from self-identified non-ethnic AA Louisiana research subjects. These ethnicity differences were not seen in those who self-identified as EA. Mean IA differed by race between states, elucidating a potential contributing factor to these differences in AA research participants: self-reported ethnicity. Accurately accounting for genetic admixture in this cohort is essential for future analyses of the genetic and environmental contributions to CaP.
Meisel, Susanne F; Side, Lucy; Gessler, Sue; Hann, Katie E J; Wardle, Jane; Lanceley, Anne
2017-01-01
Background Genetic risk assessment for breast cancer and ovarian cancer (BCOC) is expected to make major inroads into mainstream clinical practice. It is important to evaluate the potential impact on women ahead of its implementation in order to maximise health benefits, as predictive genetic testing without adequate support could lead to adverse psychological and behavioural responses to risk disclosure. Objective To examine anticipated health behaviour changes and perceived control to disclosure of genetic risk for BCOC and establish demographic and person-specific correlates of adverse anticipated responses in a population-based sample of women. Design Cross-sectional quantitative survey study carried out by the UK Office for National Statistics in January and March 2014. Setting Face-to-face computer-assisted interviews conducted by trained researchers in participants’ homes. Participants 837 women randomly chosen from households across the UK identified from the Royal Mail’s Postcode Address File. Outcome measures Anticipated health behaviour change and perceived control to disclosure of BCOC risk. Results In response to a genetic test result, most women (72%) indicated ‘I would try harder to have a healthy lifestyle’, and over half (55%) felt ‘it would give me more control over my life’. These associations were independent of demographic factors or perceived risk of BCOC in Bonferroni-corrected multivariate analyses. However, a minority of women (14%) felt ‘it isn’t worth making lifestyle changes’ and that ‘I would feel less free to make choices in my life’ (16%) in response to BCOC risk disclosure. The former belief was more likely to be held by women who were educated below university degree level (P<0.001) after adjusting for other demographic and person-specific correlates. Conclusion These findings indicate that women in the UK largely anticipate that they would engage in positive health behaviour changes in response to BCOC risk disclosure. PMID:29275340
Lambert, Sabrina Mota; Borba, Eduardo Leite; Machado, Marlon Câmara; Da Silva Andrade, Sónia Cristina
2006-03-01
Melocacatus paucispinus (Cactaceae) is endemic to the state of Bahia, Brazil, and due to its rarity and desirability to collectors it has been considered threatened with extinction. This species is usually sympatric and inter-fertile with M. concinnus, and morphological evidence for hybridization between them is present in some populations. Levels of genetic and morphological variation and sub-structuring in populations of these species were assessed and an attempt was made to verify the occurrence of natural hybridization between them. Genetic variability was surveyed using allozymes (12 loci) and morphological variability using multivariate morphometric analyses (17 vegetative characters) in ten populations of M. paucispinus and three of M. concinnus occurring in the Chapada Diamantina, Bahia. Genetic variability was low in both species (P = 0.0-33.3, A = 1.0-1.6, H(e) = 0.000-0.123 in M. paucispinus; P = 0.0-25.0, A = 1.0-1.4, H(e) = 0.000-0.104 in M. concinnus). Deficit of heterozygotes within the populations was detected in both species, with high values of F(IS) (0.732 and 0.901 in M. paucispinus and M. concinnus, respectively). Evidence of hybridization was detected by the relative allele frequency in the two diaphorase loci. High levels of genetic (F(ST) = 0.504 in M. paucispinus and 0.349 in M. concinnus) and morphological (A = 0.20 in M. paucispinus and 0.17 in M. concinnus) structuring among populations were found. The Melocactus spp. displayed levels of genetic variability lower than the values reported for other cactus species. The evidence indicates the occurrence of introgression in both species at two sites. The high F(ST) values cannot be explained by geographical substructuring, but are consistent with hybridization. Conversely, morphological differentiation in M. paucispinus, but not in M. concinnus, is probably due to isolation by distance.
Hervella, Montserrat; Izagirre, Neskuts; Alonso, Santos; Fregel, Rosa; Alonso, Antonio; Cabrera, Vicente M.; de la Rúa, Concepción
2012-01-01
Background/Principal Findings The phenomenon of Neolithisation refers to the transition of prehistoric populations from a hunter-gatherer to an agro-pastoralist lifestyle. Traditionally, the spread of an agro-pastoralist economy into Europe has been framed within a dichotomy based either on an acculturation phenomenon or on a demic diffusion. However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. In the present study, we have analyzed the mitochondrial DNA diversity in hunter-gatherers and first farmers from Northern Spain, in relation to the debate surrounding the phenomenon of Neolithisation in Europe. Methodology/Significance Analysis of mitochondrial DNA was carried out on 54 individuals from Upper Paleolithic and Early Neolithic, which were recovered from nine archaeological sites from Northern Spain (Basque Country, Navarre and Cantabria). In addition, to take all necessary precautions to avoid contamination, different authentication criteria were applied in this study, including: DNA quantification, cloning, duplication (51% of the samples) and replication of the results (43% of the samples) by two independent laboratories. Statistical and multivariate analyses of the mitochondrial variability suggest that the genetic influence of Neolithisation did not spread uniformly throughout Europe, producing heterogeneous genetic consequences in different geographical regions, rejecting the traditional models that explain the Neolithisation in Europe. Conclusion The differences detected in the mitochondrial DNA lineages of Neolithic groups studied so far (including these ones of this study) suggest different genetic impact of Neolithic in Central Europe, Mediterranean Europe and the Cantabrian fringe. The genetic data obtained in this study provide support for a random dispersion model for Neolithic farmers. This random dispersion had a different impact on the various geographic regions, and thus contradicts the more simplistic total acculturation and replacement models proposed so far to explain Neolithisation. PMID:22563371
Effect of Body Composition Methodology on Heritability Estimation of Body Fatness
Elder, Sonya J.; Roberts, Susan B.; McCrory, Megan A.; Das, Sai Krupa; Fuss, Paul J.; Pittas, Anastassios G.; Greenberg, Andrew S.; Heymsfield, Steven B.; Dawson-Hughes, Bess; Bouchard, Thomas J.; Saltzman, Edward; Neale, Michael C.
2014-01-01
Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male and female monozygotic twin pairs reared apart or together. Body composition was assessed by six methods – body mass index (BMI), dual energy x-ray absorptiometry (DXA), underwater weighing (UWW), total body water (TBW), bioelectric impedance (BIA), and skinfold thickness. Body fatness was expressed as percent body fat, fat mass, and fat mass/height2 to assess the effect of body fatness expression on heritability estimates. Model-fitting multivariate analyses were used to assess the genetic and environmental components of variance. Mean BMI was 24.5 kg/m2 (range of 17.8–43.4 kg/m2). There was a significant effect of body composition methodology (p<0.001) on heritability estimates, with UWW giving the highest estimate (69%) and BIA giving the lowest estimate (47%) for fat mass/height2. Expression of body fatness as percent body fat resulted in significantly higher heritability estimates (on average 10.3% higher) compared to expression as fat mass/height2 (p=0.015). DXA and TBW methods expressing body fatness as fat mass/height2 gave the least biased heritability assessments, based on the small contribution of specific genetic factors to their genetic variance. A model combining DXA and TBW methods resulted in a relatively low FM/ht2 heritability estimate of 60%, and significant contributions of common and unique environmental factors (22% and 18%, respectively). The body fatness heritability estimate of 60% indicates a smaller contribution of genetic variance to total variance than many previous studies using less powerful research designs have indicated. The results also highlight the importance of environmental factors and possibly genotype by environmental interactions in the etiology of weight gain and the obesity epidemic. PMID:25067962
Jennings, Amy; MacGregor, Alex; Pallister, Tess; Spector, Tim; Cassidy, Aedín
2016-11-15
Conflicting data exist on the impact of dietary and circulating levels of branched chain amino acids (BCAA) on cardiometabolic health and it is unclear to what extent these relations are mediated by genetics. In a cross-sectional study of 1997 female twins we examined associations between BCAA intake, measured using food frequency-questionnaires, and a range of markers of cardiometabolic health, including DXA-measured body fat, blood pressure, HOMA-IR, high-sensitivity C-reactive protein (hs-CRP) and lipids. We also measured plasma concentrations of BCAA and known metabolites of amino acid metabolism using untargeted mass spectrometry. Using a within-twin design, multivariable analyses were used to compare the associations between BCAA intake and endpoints of cardiometabolic health, independently of genetic confounding. Higher BCAA intake was significantly associated with lower HOMA-IR (-0.1, P-trend 0.02), insulin (-0.5μU/mL, P-trend 0.03), hs-CRP -0.3mg/L, P-trend 0.01), systolic blood pressure (-2.3mmHg, P-trend 0.01) and waist-to-height ratio (-0.01, P-trend 0.04), comparing extreme quintiles of intake. These associations persisted in within-pair analysis for monozygotic twins for insulin resistance (P<0.01), inflammation (P=0.03), and blood pressure (P=0.04) suggesting independence from genetic confounding. There was no association between BCAA intake and plasma concentrations, although two metabolites previously associated with obesity were inversely associated with BCAA intake (alpha-hydroxyisovalerate and trans-4-hydroxyproline). Higher intakes of BCAA were associated, independently of genetics, with lower insulin resistance, inflammation, blood pressure and adiposity-related metabolites. The BCAA intake associated with our findings is easily achievable in the habitual diet. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Rangel-Gamboa, Lucia; Martinez-Hernandez, Fernando; Maravilla, Pablo; Flisser, Ana
2018-02-02
Sporotrichosis is a subcutaneous mycosis that is caused by diverse species of Sporothrix. High levels of genetic diversity in Sporothrix isolates have been reported, but few population genetics analyses have been documented. To analyse the genetic variability and population genetics relations of Sporothrix schenckii Mexican clinical isolates and to compare them with other reported isolates. We studied the partial sequences of calmodulin and calcium/calmodulin-dependent kinase genes in 24 isolates; 22 from Mexico, one from Colombia, and one ATCC ® 6331™; the latter was used as a positive control. In total, 24 isolates were analysed. Phylogenetic, haplotype and population genetic analyses were performed with 24 sequences obtained by us and 345 sequences obtained from GenBank. The frequency of S. schenckii sensu stricto was 81% in the 22 Mexican isolates, while the remaining 19% were Sporothrix globosa. Mexican S. schenckii sensu stricto had high genetic diversity and was related to isolates from South America. In contrast, S. globosa showed one haplotype related to isolates from Asia, Brazil, Spain and the USA. In S. schenckii sensu stricto, S. brasiliensis and S. globosa, haplotype polymorphism (θ) values were higher than the nucleotide diversity data (π). In addition, Tajima's D plus Fu and Li's tests analyses displayed negative values, suggesting directional selection and arguing against the model of neutral evolution in these populations. In addition, analyses showed that calcium/calmodulin-dependent kinase was a suitable genetic marker to discriminate between common Sporothrix species. © 2018 Blackwell Verlag GmbH.
2013-01-01
Background The sea louse Lepeophtheirus salmonis is the most important ectoparasite of farmed Atlantic salmon (Salmo salar) in Norwegian aquaculture. Control of sea lice is primarily dependent on the use of delousing chemotherapeutants, which are both expensive and toxic to other wildlife. The method most commonly used for monitoring treatment effectiveness relies on measuring the percentage reduction in the mobile stages of Lepeophtheirus salmonis only. However, this does not account for changes in the other sea lice stages and may result in misleading or incomplete interpretation regarding the effectiveness of treatment. With the aim of improving the evaluation of delousing treatments, we explored multivariate analyses of bath treatments using the topical pyrethroid, cypermethrin, in salmon pens at five Norwegian production sites. Results Conventional univariate analysis indicated reductions of over 90% in mobile stages at all sites. In contrast, multivariate analyses indicated differing treatment effectiveness between sites (p-value < 0.01) based on changes in the proportion and abundance of the chalimus and PAAM (pre-adult and adult males) stages. Low water temperatures and shortened intervals between sampling after treatment may account for the differences in the composition of chalimus and PAAM stage groups following treatment. Using multivariate analysis, such factors could be separated from those which were attributable to inadequate treatment or chemotherapeutant failure. Conclusions Multivariate analyses for evaluation of treatment effectiveness against multiple life cycle stages of L. salmonis yield additional information beyond that derivable from univariate methods. This can aid in the identification of causes of apparent treatment failure in salmon aquaculture. PMID:24354936
Firmat, C; Delzon, S; Louvet, J-M; Parmentier, J; Kremer, A
2017-12-01
It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long-lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common-garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change-induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short-term population survival in a changing climate. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Burri, Andrea; Spector, Tim; Rahman, Qazi
2015-04-01
Homosexuality is a stable population-level trait in humans that lowers direct fitness and yet is substantially heritable, resulting in a so-called Darwinian "paradox." Evolutionary models have proposed that polymorphic genes influencing homosexuality confer a reproductive benefit to heterosexual carriers, thus offsetting the fitness costs associated with persistent homosexuality. This benefit may consist of a "sex typicality" intermediate phenotype. However, there are few empirical tests of this hypothesis using genetically informative data in humans. This study aimed to test the hypothesis that common genetic factors can explain the association between measures of sex typicality, mating success, and homosexuality in a Western (British) sample of female twins. Here, we used data from 996 female twins (498 twin pairs) comprising 242 full dizygotic pairs and 256 full monozygotic pairs (mean age 56.8) and 1,555 individuals whose co-twin did not participate. Measures of sexual orientation, sex typicality (recalled childhood gender nonconformity), and mating success (number of lifetime sexual partners) were completed. Variables were subject to multivariate variance component analysis. We found that masculine women are more likely to be nonheterosexual, report more sexual partners, and, when heterosexual, also report more sexual partners. Multivariate twin modeling showed that common genetic factors explained the relationship between sexual orientation, sex typicality, and mating success through a shared latent factor. Our findings suggest that genetic factors responsible for nonheterosexuality are shared with genetic factors responsible for the number of lifetime sexual partners via a latent sex typicality phenotype in human females. These results may have implications for evolutionary models of homosexuality but are limited by potential mediating variables (such as personality traits) and measurement issues. © 2015 International Society for Sexual Medicine.
Nivard, Michel G; Gage, Suzanne H; Hottenga, Jouke J; van Beijsterveldt, Catharina E M; Abdellaoui, Abdel; Bartels, Meike; Baselmans, Bart M L; Ligthart, Lannie; Pourcain, Beate St; Boomsma, Dorret I; Munafò, Marcus R; Middeldorp, Christel M
2017-10-21
Several nonpsychotic psychiatric disorders in childhood and adolescence can precede the onset of schizophrenia, but the etiology of this relationship remains unclear. We investigated to what extent the association between schizophrenia and psychiatric disorders in childhood is explained by correlated genetic risk factors. Polygenic risk scores (PRS), reflecting an individual's genetic risk for schizophrenia, were constructed for 2588 children from the Netherlands Twin Register (NTR) and 6127 from the Avon Longitudinal Study of Parents And Children (ALSPAC). The associations between schizophrenia PRS and measures of anxiety, depression, attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder/conduct disorder (ODD/CD) were estimated at age 7, 10, 12/13, and 15 years in the 2 cohorts. Results were then meta-analyzed, and a meta-regression analysis was performed to test differences in effects sizes over, age and disorders. Schizophrenia PRS were associated with childhood and adolescent psychopathology. Meta-regression analysis showed differences in the associations over disorders, with the strongest association with childhood and adolescent depression and a weaker association for ODD/CD at age 7. The associations increased with age and this increase was steepest for ADHD and ODD/CD. Genetic correlations varied between 0.10 and 0.25. By optimally using longitudinal data across diagnoses in a multivariate meta-analysis this study sheds light on the development of childhood disorders into severe adult psychiatric disorders. The results are consistent with a common genetic etiology of schizophrenia and developmental psychopathology as well as with a stronger shared genetic etiology between schizophrenia and adolescent onset psychopathology. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com
From sexless to sexy: Why it is time for human genetics to consider and report analyses of sex.
Powers, Matthew S; Smith, Phillip H; McKee, Sherry A; Ehringer, Marissa A
2017-01-01
Science has come a long way with regard to the consideration of sex differences in clinical and preclinical research, but one field remains behind the curve: human statistical genetics. The goal of this commentary is to raise awareness and discussion about how to best consider and evaluate possible sex effects in the context of large-scale human genetic studies. Over the course of this commentary, we reinforce the importance of interpreting genetic results in the context of biological sex, establish evidence that sex differences are not being considered in human statistical genetics, and discuss how best to conduct and report such analyses. Our recommendation is to run stratified analyses by sex no matter the sample size or the result and report the findings. Summary statistics from stratified analyses are helpful for meta-analyses, and patterns of sex-dependent associations may be hidden in a combined dataset. In the age of declining sequencing costs, large consortia efforts, and a number of useful control samples, it is now time for the field of human genetics to appropriately include sex in the design, analysis, and reporting of results.
Frankfort, Suzanne V; van Campen, Jos P C M; Tulner, Linda R; Beijnen, Jos H
2008-09-01
By using surface enhanced laser desorption/ionisation- time of flight mass spectrometry (SELDI-TOF MS) an amyloid beta (Abeta) profile was shown in cerebrospinal fluid (CSF) of patients with dementia. To investigate the Abeta-profile in serum with SELDI-TOF MS, to evaluate if this profile resembles CSF profiles and to investigate the correlation between intensity of Abeta-peptide-peaks in serum and clinical, demographical and genetic variables. Duplicate profiling of Abeta by an SELDI-TOF MS immunocapture assay was performed in 106 patients, suffering from Alzheimer's Disease or Vascular Dementia and age-matched non-demented control patients. Linear regression analyses were performed to investigate the intensities of four selected Abeta peaks as dependent variables in relation to the independent clinical, demographic or genetic variables. Abeta37, Abeta38 and Abeta40 were found among additional unidentified Abeta peptides, with the most pronounced Abeta peak at a molecular mass of 7752. This profile partly resembled the CSF profile. The clinical diagnosis was not a predictive independent variable, however ABCB1 genotypes C1236T, G2677T/A, age and creatinine level showed to be related to Abeta peak intensities in multivariate analyses. We found an Abeta profile in serum that partly resembled the CSF profile in demented patients. Age, creatinine levels, presence of the APOE epsilon4 allele and ABCB1 genotypes (C1236T and G2677T/A) were correlated with the Abeta serum profile. The role of P-gp as an Abeta transporter and the role of ABCB1 genotypes deserves further research. The investigated serum Abeta profile is probably not useful in the diagnosis of dementia.
Tandon, Arti; Chen, Ching J.; Penman, Alan; Hancock, Heather; James, Maurice; Husain, Deeba; Andreoli, Christopher; Li, Xiaohui; Kuo, Jane Z.; Idowu, Omolola; Riche, Daniel; Papavasilieou, Evangelia; Brauner, Stacey; Smith, Sataria O.; Hoadley, Suzanne; Richardson, Cole; Kieser, Troy; Vazquez, Vanessa; Chi, Cheryl; Fernandez, Marlene; Harden, Maegan; Cotch, Mary Frances; Siscovick, David; Taylor, Herman A.; Wilson, James G.; Reich, David; Wong, Tien Y.; Klein, Ronald; Klein, Barbara E. K.; Rotter, Jerome I.; Patterson, Nick; Sobrin, Lucia
2015-01-01
Purpose. To examine the relationship between proportion of African ancestry (PAA) and proliferative diabetic retinopathy (PDR) and to identify genetic loci associated with PDR using admixture mapping in African Americans with type 2 diabetes (T2D). Methods. Between 1993 and 2013, 1440 participants enrolled in four different studies had fundus photographs graded using the Early Treatment Diabetic Retinopathy Study scale. Cases (n = 305) had PDR while controls (n = 1135) had nonproliferative diabetic retinopathy (DR) or no DR. Covariates included diabetes duration, hemoglobin A1C, systolic blood pressure, income, and education. Genotyping was performed on the Affymetrix platform. The association between PAA and PDR was evaluated using logistic regression. Genome-wide admixture scanning was performed using ANCESTRYMAP software. Results. In the univariate analysis, PDR was associated with increased PAA (odds ratio [OR] = 1.36, 95% confidence interval [CI] = 1.16–1.59, P = 0.0002). In multivariate regression adjusting for traditional DR risk factors, income and education, the association between PAA and PDR was attenuated and no longer significant (OR = 1.21, 95% CI = 0.59–2.47, P = 0.61). For the admixture analyses, the maximum genome-wide score was 1.44 on chromosome 1. Conclusions. In this largest study of PDR in African Americans with T2D to date, an association between PAA and PDR is not present after adjustment for clinical, demographic, and socioeconomic factors. No genome-wide significant locus (defined as having a locus-genome statistic > 5) was identified with admixture analysis. Further analyses with even larger sample sizes are needed to definitively assess if any admixture signal for DR is present. PMID:26098467
Developing educational resources for population genetics in R: An open and collaborative approach
USDA-ARS?s Scientific Manuscript database
The R computing and statistical language community has developed a myriad of resources for conducting populations genetic analyses. However, resources for learning how to carry out population genetic analyses in R are scattered and often incomplete, which can make acquiring this skill unnecessarily ...
Shiota, Makoto; Iwasawa, Ai; Suzuki-Iwashima, Ai; Iida, Fumiko
2015-12-01
The impact of flavor composition, texture, and other factors on desirability of different commercial sources of Gouda-type cheese using multivariate analyses on the basis of sensory and instrumental analyses were investigated. Volatile aroma compounds were measured using headspace solid-phase microextraction gas chromatography/mass spectrometry (GC/MS) and steam distillation extraction (SDE)-GC/MS, and fatty acid composition, low-molecular-weight compounds, including amino acids, and organic acids, as well pH, texture, and color were measured to determine their relationship with sensory perception. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was performed to discriminate between 2 different ripening periods in 7 sample sets, revealing that ethanol, ethyl acetate, hexanoic acid, and octanoic acid increased with increasing sensory attribute scores for sweetness, fruity, and sulfurous. A partial least squares (PLS) regression model was constructed to predict the desirability of cheese using these parameters. We showed that texture and buttery flavors are important factors affecting the desirability of Gouda-type cheeses for Japanese consumers using these multivariate analyses. © 2015 Institute of Food Technologists®
Multivariate studies on the genetics of dermal ridges.
Rostron, J
1977-10-01
In order to investigate the inheritance of the series of ten ridgecounts, factor analysis was used to reduce the dimensionability to two. These two factors are inherited more or less independently and the heritability of the first is 0.97.
Online health communication about human genetics: perceptions and preferences of internet users.
Bernhardt, Jay M; McClain, Jacqueline; Parrott, Roxanne L
2004-12-01
Unprecedented advancements in human genetics research necessitate keeping the public abreast of new information, applications, and implications and the Internet represents an important method of communicating with the public. Our research used cross-sectional self-report survey data collected from a diverse convenience sample of 780 Internet users in two states. Multivariate regression analysis explored the relationships between experiences, perceptions, and preferences for online health and genetics communication. Online health information seeking was associated with previous genetic information seeking, comfort with online genetic communication, perceived risk for genetic abnormality, being female, and having more education. Comfort with online genetics communication was associated with a preference for online genetic information, previous online health and off-line genetics information seeking, having a healthy lifestyle, believing in the positive impact of human genetics research, and being female. Perceiving online health information to be accurate was associated with preferring the Internet for genetics communication, being older, less educated, and perceiving Internet use as anonymous. Preferring online genetics communication to other communication channels was associated with perceiving online health information as accurate, being comfortable receiving online genetics information, having lower intrinsic religiosity, and being male. The implications of findings for Web-based health message design are discussed.
Genetic Knowledge Among Participants in the Coriell Personalized Medicine Collaborative.
Schmidlen, Tara J; Scheinfeldt, Laura; Zhaoyang, Ruixue; Kasper, Rachel; Sweet, Kevin; Gordon, Erynn S; Keller, Margaret; Stack, Cathy; Gharani, Neda; Daly, Mary B; Jarvis, Joseph; Christman, Michael F
2016-04-01
Genetic literacy is essential for the effective integration of genomic information into healthcare; yet few recent studies have been conducted to assess the current state of this knowledge base. Participants in the Coriell Personalized Medicine Collaborative (CPMC), a prospective study assessing the impact of personalized genetic risk reports for complex diseases and drug response on behavior and health outcomes, completed genetic knowledge questionnaires and other surveys through an online portal. To assess the association between genetic knowledge and genetic education background, multivariate linear regression was performed. 4 062 participants completed a genetic knowledge and genetic education background questionnaire. Most were older (mean age: 50), Caucasian (90 %), female (59 %), highly educated (69 % bachelor's or higher), with annual household income over $100 000 (49 %). Mean percent correct was 76 %. Controlling for demographics revealed that health care providers, participants previously exposed to genetics, and participants with 'better than most' self-rated knowledge were significantly more likely to have a higher knowledge score (p < 0.001). Overall, genetic knowledge was high with previous genetic education experience predictive of higher genetic knowledge score. Education is likely to improve genetic literacy, an important component to expanded use of genomics in personalized medicine.
Ferreira, Fábio S; Pereira, João M S; Duarte, João V; Castelo-Branco, Miguel
2017-01-01
Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately - using standard univariate VBM - and simultaneously, with multivariate analyses. Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities.
Ferreira, Fábio S.; Pereira, João M.S.; Duarte, João V.; Castelo-Branco, Miguel
2017-01-01
Background: Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Objective: Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). Method: We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately – using standard univariate VBM - and simultaneously, with multivariate analyses. Results: Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. Conclusion: While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities. PMID:28761571
Troyer, Ryan M.; LaPatra, Scott E.; Kurath, Gael
2000-01-01
Infectious haematopoietic necrosis virus (IHNV) is the most significant virus pathogen of salmon and trout in North America. Previous studies have shown relatively low genetic diversity of IHNV within large geographical regions. In this study, the genetic heterogeneity of 84 IHNV isolates sampled from rainbow trout (Oncorhynchus mykiss) over a 20 year period at four aquaculture facilities within a 12 mile stretch of the Snake River in Idaho, USA was investigated. The virus isolates were characterized using an RNase protection assay (RPA) and nucleotide sequence analyses. Among the 84 isolates analysed, 46 RPA haplotypes were found and analyses revealed a high level of genetic heterogeneity relative to that detected in other regions. Sequence analyses revealed up to 7·6% nucleotide divergence, which is the highest level of diversity reported for IHNV to date. Phylogenetic analyses identified four distinct monophyletic clades representing four virus lineages. These lineages were distributed across facilities, and individual facilities contained multiple lineages. These results suggest that co-circulating IHNV lineages of relatively high genetic diversity are present in the IHNV populations in this rainbow trout culture study site. Three of the four lineages exhibited temporal trends consistent with rapid evolution.
Martinez-Gonzalez, L J; Alvarez-Cubero, M J; Saiz, M; Alvarez, J C; Martinez-Labarga, C; Lorente, J A
2016-09-01
Currently, the Guatemalan population comprises genetically isolated groups due to geographic, linguistic and cultural factors. For example, Mayan groups within the Guatemala population have preserved their own language, culture and religion. These practices have limited genetic admixture and have maintained the genetic identity of Mayan populations. This study is designed to define the genetic structure of the Mayan-Guatemalan groups Kaqchiquel, K'iche', Mam and Q'eqchi' through autosomal short tandem repeat (STR) polymorphisms and to analyse the genetic relationships between them and with other Mayan groups. Fifteen STR polymorphisms were analysed in 200 unrelated donors belonging to the Kaqchiquel (n = 50), K'iche' (n = 50), Mam (n = 50) and Q'eqchi' (n = 50) groups living in Guatemala. Genetic distance, non-metric MDS and AMOVA were used to analyse the genetic relationships between population groups. Within the Mayan population, the STRs D18S51 and FGA were the most informative markers and TH01 was the least informative. AMOVA and genetic distance analyses showed that the Guatemalan-Native American populations are highly similar to Mayan populations living in Mexico. The Mayan populations from Guatemala and other Native American groups display high genetic homogeneity. Genetic relationships between these groups are more affected by cultural and linguistic factors than geographical and local flow. This study represents one of the first steps in understanding Mayan-Guatemalan populations, the associations between their sub-populations and differences in gene diversity with other populations. This article also demonstrates that the Mestizo population shares most of its ancestral genetic components with the Guatemala Mayan populations.
Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.
2012-01-01
Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824
Physical exercise counteracts genetic susceptibility to depression.
Haslacher, Helmuth; Michlmayr, Matthias; Batmyagmar, Delgerdalai; Perkmann, Thomas; Ponocny-Seliger, Elisabeth; Scheichenberger, Vanessa; Pilger, Alexander; Dal-Bianco, Peter; Lehrner, Johann; Pezawas, Lukas; Wagner, Oswald; Winker, Robert
2015-01-01
Depression is a highly prevalent disorder in elderly individuals. A genetic variant (rs6265) of the brain-derived neurotrophic factor (BDNF) impacting on emotion processing is known to increase the risk for depression. We aim to investigate whether intensive endurance sports might attenuate this genetic susceptibility in a cohort of elderly marathon athletes. Fifty-five athletes and 58 controls were included. rs6265 of the BDNF gene was genotyped by the TaqMan method. Depressive symptoms were assessed by standardized self-rating tests (BDI = Beck Depression Inventory, GDS = Geriatric Depression Scale). In multivariable analysis of BDI and GDS scores, the interaction between group (athletes vs. controls) and genotypes ([C];[C] vs. [C];[T] + [T];[T]) was found to be statistically significant (BDI: p = 0.027, GDS: p = 0.013). Among [C];[C] carriers, merely controls had an increased relative risk of 3.537 (95% CI = 1.276-9.802) of achieving a subclinical depression score ≥10 on the BDI. There was no such effect in carriers of the [T] allele. In a multivariable binary logistic regression, genetic information, group (athletes/controls), but no information on rs6265 allele carrier status presented as a significant predictor of BDI scores ≥10. Physical exercise positively affects BDNF effects on mood. Since 66Met BDNF secretion is impaired, this effect seems to be much stronger in [C];[C] homozygous individuals expressing the 66Val variant. This confirms that genetic susceptibility to depressive symptoms can indeed be influenced by endurance sports in elderly people. © 2015 S. Karger AG, Basel.
Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A
2012-08-01
Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.
Richard. D. Wood-Smith; John M. Buffington
1996-01-01
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...
Hemmati, Philipp G; Vuong, Lam G; Terwey, Theis H; Jehn, Christian F; le Coutre, Philipp; Penack, Olaf; Na, Il-Kang; Dörken, Bernd; Arnold, Renate
2017-02-01
The purpose of this study was to evaluate the predictive capacity of the European LeukemiaNet (ELN) classification of genetic risk in patients with acute myeloid leukaemia (AML) undergoing allogeneic stem cell transplantation (alloSCT). We retrospectively analysed 274 patients transplanted at our centre between 2004 and 2014. The ELN grouping is comparable to the Southwest Oncology Group/Eastern Cooperative Oncology Group (SWOG/ECOG) stratification in predicting the outcome after alloSCT [overall P = 0.0064 for disease-free survival (DFS), overall P = 0.003 for relapse]. Patients with an intermediate-1 profile have a significantly elevated 5-yr relapse incidence as compared to favourable risk patients, that is 40% vs. 15%, [hazard ratio (HR) 2.58, P = 0.048]. An intermediate-1 risk profile is an independent predictor for relapse as determined by multivariate Cox regression analysis (HR 3.05, P = 0.023). In intermediate-1 patients, the presence of an FLT3 internal tandem duplication (FLT3-ITD) is associated with a significantly increased relapse incidence (P = 0.0323), and a lower DFS (P = 0.0465). FLT3-ITD is an independent predictor for overall survival, DFS and relapse incidence in the intermediate-1 subgroup. The ELN stratification of genetic risk predicts the outcome of patients with AML undergoing alloSCT. Patients with an intermediate-1 profile have a high risk for treatment failure due to relapse, which prompts the development of alternative treatment strategies. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Deep phylogeographic divergence and cytonuclear discordance in the grasshopper Oedaleus decorus.
Kindler, Eveline; Arlettaz, Raphaël; Heckel, Gerald
2012-11-01
The grasshopper Oedaleus decorus is a thermophilic insect with a large, mostly south-Palaearctic distribution range, stretching from the Mediterranean regions in Europe to Central-Asia and China. In this study, we analyzed the extent of phylogenetic divergence and the recent evolutionary history of the species based on 274 specimens from 26 localities across the distribution range in Europe. Phylogenetic relationships were determined using sequences of two mitochondrial loci (ctr, ND2) with neighbour-joining and Bayesian methods. Additionally, genetic differentiation was analyzed based on mitochondrial DNA and 11 microsatellite markers using F-statistics, model-free multivariate and model-based Bayesian clustering approaches. Phylogenetic analyses detected consistently two highly divergent, allopatrically distributed lineages within O. decorus. The divergence among these Western and Eastern lineages meeting in the region of the Alps was similar to the divergence of each lineage to the sister species O. asiaticus. Genetic differentiation for ctr was extremely high between Western and Eastern grasshopper populations (F(ct)=0.95). Microsatellite markers detected much lower but nevertheless very significant genetic structure among population samples. The nuclear data also demonstrated a case of cytonuclear discordance because the affiliation with mitochondrial lineages was incongruent in Northern Italy. Taken together these results provide evidence of an ancient separation within Oedaleus and either historical introgression of mtDNA among lineages and/or ongoing sex-specific gene flow in this grasshopper. Our study stresses the importance of multilocus approaches for unravelling the history and status of taxa of uncertain evolutionary divergence. Copyright © 2012 Elsevier Inc. All rights reserved.
Female mediation of competitive fertilization success in Drosophila melanogaster.
Lüpold, Stefan; Pitnick, Scott; Berben, Kirstin S; Blengini, Cecilia S; Belote, John M; Manier, Mollie K
2013-06-25
How females store and use sperm after remating can generate postcopulatory sexual selection on male ejaculate traits. Variation in ejaculate performance traits generally is thought to be intrinsic to males but is likely to interact with the environment in which sperm compete (e.g., the female reproductive tract). Our understanding of female contributions to competitive fertilization success is limited, however, in part because of the challenges involved in observing events within the reproductive tract of internally fertilizing species while discriminating among sperm from competing males. Here, we used females from crosses among isogenic lines of Drosophila melanogaster, each mated to two genetically standardized males (the first with green- and the second with red-tagged sperm heads) to demonstrate heritable variation in female remating interval, progeny production rate, sperm-storage organ morphology, and a number of sperm performance, storage, and handling traits. We then used multivariate analyses to examine relationships between this female-mediated variation and competitive paternity. In particular, the timing of female ejection of excess second-male and displaced first-male sperm was genetically variable and, by terminating the process of sperm displacement, significantly influenced the relative numbers of sperm from each male competing for fertilization, and consequently biased paternity. Our results demonstrate that females do not simply provide a static arena for sperm competition but rather play an active and pivotal role in postcopulatory processes. Resolving the adaptive significance of genetic variation in female-mediated mechanisms of sperm handling is critical for understanding sexual selection, sexual conflict, and the coevolution of male and female reproductive traits.
Dagostino, Concetta; De Gregori, Manuela; Gieger, Christian; Manz, Judith; Gudelj, Ivan; Lauc, Gordan; Divizia, Laura; Wang, Wei; Sim, Moira; Pemberton, Iain K; MacDougall, Jane; Williams, Frances; Van Zundert, Jan; Primorac, Dragan; Aulchenko, Yurii; Kapural, Leonardo; Allegri, Massimo
2017-01-01
Chronic low back pain (CLBP) is one of the most common medical conditions, ranking as the greatest contributor to global disability and accounting for huge societal costs based on the Global Burden of Disease 2010 study. Large genetic and -omics studies provide a promising avenue for the screening, development and validation of biomarkers useful for personalized diagnosis and treatment (precision medicine). Multicentre studies are needed for such an effort, and a standardized and homogeneous approach is vital for recruitment of large numbers of participants among different centres (clinical and laboratories) to obtain robust and reproducible results. To date, no validated standard operating procedures (SOPs) for genetic/-omics studies in chronic pain have been developed. In this study, we validated an SOP model that will be used in the multicentre (5 centres) retrospective "PainOmics" study, funded by the European Community in the 7th Framework Programme, which aims to develop new biomarkers for CLBP through three different -omics approaches: genomics, glycomics and activomics. The SOPs describe the specific procedures for (1) blood collection, (2) sample processing and storage, (3) shipping details and (4) cross-check testing and validation before assays that all the centres involved in the study have to follow. Multivariate analysis revealed the absolute specificity and homogeneity of the samples collected by the five centres for all genetics, glycomics and activomics analyses. The SOPs used in our multicenter study have been validated. Hence, they could represent an innovative tool for the correct management and collection of reliable samples in other large-omics-based multicenter studies.
Morgan, Ethan; Nyaku, Amesika N; DʼAquila, Richard T; Schneider, John A
2017-07-01
Phylogenetic analysis determines similarities among HIV genetic sequences from persons infected with HIV, identifying clusters of transmission. We determined characteristics associated with both membership in an HIV transmission cluster and the number of clustered sequences among a cohort of young black men who have sex with men (YBMSM) in Chicago. Pairwise genetic distances of HIV-1 pol sequences were collected during 2013-2016. Potential transmission ties were identified among HIV-infected persons whose sequences were ≤1.5% genetically distant. Putative transmission pairs were defined as ≥1 tie to another sequence. We then determined demographic and risk attributes associated with both membership in an HIV transmission cluster and the number of ties to the sequences from other persons in the cluster. Of 86 available sequences, 31 (36.0%) were tied to ≥1 other sequence. Through multivariable analyses, we determined that those who reported symptoms of depression and those who had a higher number of confidants in their network had significantly decreased odds of membership in transmission clusters. We found that those who had unstable housing and who reported heavy marijuana use had significantly more ties to other individuals within transmission clusters, whereas those identifying as bisexual, those participating in group sex, and those with higher numbers of sexual partners had significantly fewer ties. This study demonstrates the potential for combining phylogenetic and individual and network attributes to target HIV control efforts to persons with potentially higher transmission risk, as well as suggesting some unappreciated specific predictors of transmission risk among YBMSM in Chicago for future study.
Sork, Victoria L; Squire, Kevin; Gugger, Paul F; Steele, Stephanie E; Levy, Eric D; Eckert, Andrew J
2016-01-01
The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change. © 2016 Botanical Society of America.
Alg, Varinder S; Ke, Xiayi; Grieve, Joan; Bonner, Stephen; Walsh, Daniel C; Bulters, Diederik; Kitchen, Neil; Houlden, Henry; Werring, David J
2018-01-15
Abnormalities in Matrix Metalloproteinase (MMP) genes, which are important in extracellular matrix (ECM) maintenance and therefore arterial wall integrity are a plausible underlying mechanism of intracranial aneurysm (IA) formation, growth and subsequent rupture. We investigated whether the rs243865 C > T SNP (single nucleotide polymorphism) within the MMP-2 gene (which influences gene transcription) is associated with IA compared to matched controls. We conducted a case-control genetic association study, adjusted for known IA risk factors (smoking and hypertension), in a UK Caucasian population of 1409 patients with intracranial aneurysms (IA), and 1290 matched controls, to determine the association of the rs243865 C > T functional MMP-2 gene SNP with IA (overall, and classified as ruptured and unruptured). We also undertook a meta-analysis of two previous studies examining this SNP. The rs243865 T allele was associated with IA presence in univariate (OR 1.18 [95% CI 1.04-1.33], p = .01) and in multi-variable analyses adjusted for smoking and hypertension status (OR 1.16 [95% CI 1.01-1.35], p = .042). Subgroup analysis demonstrated an association of the rs243865 SNP with ruptured IA (OR 1.18 [95% CI 1.03-1.34] p = .017), but, not unruptured IA (OR 1.17 [95% CI 0.97-1.42], p = .11). Our study demonstrated an association between the functional MMP-2 rs243865 variant and IAs. Our findings suggest a genetic role for altered extracellular matrix integrity in the pathogenesis of IA development and rupture.
Application of multivariate statistical techniques in microbial ecology.
Paliy, O; Shankar, V
2016-03-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.
Genetic thinking in the study of social relationships: Five points of entry
Reiss, David
2014-01-01
For nearly a generation, researchers studying human behavioral development have combined genetically informed research designs with careful measures of social relationships: parenting, sibling relationships, peer relationships, marital processes, social class stratifications and patterns of social engagement in the elderly. In what way have these genetically informed studies altered the construction and testing of social theories of human development? We consider five points where genetic thinking is taking hold. First, genetic findings suggest an alternative scenario for explaining social data. Associations between measures of the social environment and human development may be due to genes that influence both. Second, genetic studies add to other prompts to study the early developmental origins of current social phenomena in mid-life and beyond. Third, genetic analyses promise to bring to the surface understudied social systems, such as sibling relationships, that have an impact on human development independent of genotype. Fourth, genetic analyses anchor in neurobiology individual differences in resilience and sensitivity to both adverse and favorable social environments. Finally, genetic analyses increase the utility of laboratory simulations of human social processes and of animal models. PMID:25419225
NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES
He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.
2017-01-01
Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225
Graphite Web: web tool for gene set analysis exploiting pathway topology
Sales, Gabriele; Calura, Enrica; Martini, Paolo; Romualdi, Chiara
2013-01-01
Graphite web is a novel web tool for pathway analyses and network visualization for gene expression data of both microarray and RNA-seq experiments. Several pathway analyses have been proposed either in the univariate or in the global and multivariate context to tackle the complexity and the interpretation of expression results. These methods can be further divided into ‘topological’ and ‘non-topological’ methods according to their ability to gain power from pathway topology. Biological pathways are, in fact, not only gene lists but can be represented through a network where genes and connections are, respectively, nodes and edges. To this day, the most used approaches are non-topological and univariate although they miss the relationship among genes. On the contrary, topological and multivariate approaches are more powerful, but difficult to be used by researchers without bioinformatic skills. Here we present Graphite web, the first public web server for pathway analysis on gene expression data that combines topological and multivariate pathway analyses with an efficient system of interactive network visualizations for easy results interpretation. Specifically, Graphite web implements five different gene set analyses on three model organisms and two pathway databases. Graphite Web is freely available at http://graphiteweb.bio.unipd.it/. PMID:23666626
Genetic parameter estimation for pre- and post-weaning traits in Brahman cattle in Brazil.
Vargas, Giovana; Buzanskas, Marcos Eli; Guidolin, Diego Gomes Freire; Grossi, Daniela do Amaral; Bonifácio, Alexandre da Silva; Lôbo, Raysildo Barbosa; da Fonseca, Ricardo; Oliveira, João Ademir de; Munari, Danísio Prado
2014-10-01
Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality.
Zambon, Carlo-Federico; Prayer-Galetti, Tommaso; Basso, Daniela; Padoan, Andrea; Rossi, Elisa; Secco, Silvia; Pelloso, Michela; Fogar, Paola; Navaglia, Filippo; Moz, Stefania; Zattoni, Filiberto; Plebani, Mario
2012-10-01
Of serum prostate specific antigen variability 40% depends on inherited factors. We ascertained whether the knowledge of KLK3 genetics would enhance prostate specific antigen diagnostic performance in patients with clinical suspicion of prostate cancer. We studied 1,058 men who consecutively underwent prostate biopsy for clinical suspicion of prostate cancer. At histology prostate cancer was present in 401 cases and absent in 657. Serum total prostate specific antigen and the free-to-total prostate specific antigen ratio were determined. Four polymorphisms of the KLK3 gene (rs2569733, rs2739448, rs925013 and rs2735839) and 1 polymorphism of the SRD5A2 gene (rs523349) were studied. The influence of genetics on prostate specific antigen variability was evaluated by multivariate linear regression analysis. The performance of total prostate specific antigen and the free-to-total prostate specific antigen ratio alone or combined with a genetically based patient classification were defined by ROC curve analyses. For prostate cancer diagnosis the free-to-total prostate specific antigen ratio index alone (cutoff 11%) was superior to total prostate specific antigen (cutoff 4 ng/ml) and to free-to-total prostate specific antigen ratio reflex testing (positive predictive value 61%, 43% and 54%, respectively). Prostate specific antigen correlated with KLK3 genetics (rs2735839 polymorphism p = 0.001, and rs2569733, rs2739448 and rs925013 haplotype combination p = 0.003). In patients with different KLK3 genetics 2 optimal free-to-total prostate specific antigen ratio cutoffs (11% and 14.5%) were found. For free-to-total prostate specific antigen ratio values between 11% and 14.5% the prostate cancer probability ranged from 30.0% to 47.4% according to patient genetics. The free-to-total prostate specific antigen ratio is superior to total prostate specific antigen for prostate cancer diagnosis, independent of total prostate specific antigen results. Free-to-total prostate specific antigen ratio findings below 11% are positively associated with prostate cancer and those above 14.5% are negatively associated with prostate cancer, while the interpretation of those between 11% and 14.5% is improved by patient KLK3 genetic analysis. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Li, L; Qiu, L; Wu, M
2017-11-21
Objective: To analyze patients' tendency towards genetics counseling and tests based on a prospective cohort study on hereditary ovarian cancer. Methods: From February 2017 to June 2017, among 220 cases of epithelial ovarian cancer in Peking Union Medical College Hospital, we collected epidemiological, pathological and tendency towards genetics counseling and tests via medical records and questionnaire.All patients would get education about hereditary ovarian cancer by pamphlets and WeChat.If they would receive further counseling, a face to face interview and tests will be given. Results: Among all 220 patients, 10 (4.5%) denied further counseling.For 210 patients receiving genetic counseling, 170 (81%) accepted genetic tests.In multivariate analysis, risk factors relevant to acceptance of genetic tests included: being charged by physicians of gynecologic oncology for diagnosis and treatment, receiving counseling in genetic counseling clinics, and having family history of breast cancer.For patients denying genetic tests, there were many subjective reasons, among which, "still not understanding genetic tests" (25%) and "unable bear following expensive targeting medicine" . Conclusions: High proportion patients of epithelial ovarian cancer would accept genetic counseling and tests.Genetic counseling clinics for gynecologic oncology would further improve genetic tests for patients.
Lee, V; Chan, Sum-Yin; Choi, Cheuk-Wai; Kwong, D; Lam, Ka-On; Tong, Chi-Chung; Sze, Chun-Kin; Ng, S; Leung, To-Wai; Lee, A
2016-08-01
To investigate dosimetric predictors of hypothyroidism after radical intensity-modulated radiation therapy (IMRT) for non-metastatic nasopharyngeal carcinoma (NPC). Patients with non-metastatic NPC treated with radical IMRT from 2008 to 2013 were reviewed. Serum thyroid function tests before and after IMRT were regularly monitored. Univariable and multivariable analyses were carried out for predictors of biochemical and clinical hypothyroidism. In total, 149 patients were recruited. After a median follow-up duration of 3.1 years, 33 (22.1%) and 21 (14.1%) patients developed biochemical and clinical hypothyroidism, respectively. Eight (24.2%) patients who had biochemical hypothyroidism developed clinical hypothyroidism later. Univariable and multivariable analyses revealed that the volume of the thyroid (P=0.002, multivariable), VS60 (the absolute thyroid volume spared from 60 Gy or less) (P<0.001, multivariable) and VS45 (P<0.001, multivariable) of the thyroid were significant predictors of biochemical hypothyroidism. The freedom from biochemical hypothyroidism was longer for those whose VS60 ≥ 10 cm(3) (mean 90.9 versus 62.6 months; P<0.001) and VS45 ≥ 5 cm(3) (mean 91.9 versus 65.2 months; P=0.001). Similarly multivariable analyses revealed that VS60 (P=0.001) and VS45 (P=0.003) were significant predictors of clinical hypothyroidism. The freedom from clinical hypothyroidism was longer for those whose VS60 ≥ 10 cm(3) (91.5 versus 73.3 months; P=0.002) and VS45 ≥ 5 cm(3) (91.5 versus 75.9 months; P=0.007). VS60 and VS45 of the thyroid should be considered important dose constraints against hypothyroidism without compromising target coverage during IMRT optimisation for NPC. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Partition of genetic trends by origin in Landrace and Large-White pigs.
Škorput, D; Gorjanc, G; Kasap, A; Luković, Z
2015-10-01
The objective of this study was to analyse the effectiveness of genetic improvement via domestic selection and import for backfat thickness and time on test in a conventional pig breeding programme for Landrace (L) and Large-White (LW) breeds. Phenotype data was available for 25 553 L and 10 432 LW pigs born between 2002 and 2012 from four large-scale farms and 72 family farms. Pedigree information indicated whether each animal was born and registered within the domestic breeding programme or has been imported. This information was used for defining the genetic groups of unknown parents in a pedigree and the partitioning analysis. Breeding values were estimated using a Bayesian analysis of an animal model with and without genetic groups. Such analysis enabled full Bayesian inference of the genetic trends and their partitioning by the origin of germplasm. Estimates of genetic group indicated that imported germplasm was overall better than domestic and substantial changes in estimates of breeding values was observed when genetic group were fitted. The estimated genetic trends in L were favourable and significantly different from zero by the end of the analysed period. Overall, the genetic trends in LW were not different from zero. The relative contribution of imported germplasm to genetic trends was large, especially towards the end of analysed period with 78% and 67% in L and from 50% to 67% in LW. The analyses suggest that domestic breeding activities and sources of imported animals need to be re-evaluated, in particular in LW breed.
ERIC Educational Resources Information Center
Ebejer, Jane L.; Coventry, William L.; Byrne, Brian; Willcutt, Erik G.; Olson, Richard K.; Corley, Robin; Samuelsson, Stefan
2010-01-01
Twin children from Australia, Scandinavia, and the United States were assessed for inattention, hyperactivity-impulsivity, and reading across the first 3 school years. Univariate behavior-genetic analyses indicated substantial heritability for all three variables in all years. Longitudinal analyses showed one genetic source operating across the…
Cow and herd variation in milk urea nitrogen concentrations in lactating dairy cattle.
Aguilar, M; Hanigan, M D; Tucker, H A; Jones, B L; Garbade, S K; McGilliard, M L; Stallings, C C; Knowlton, K F; James, R E
2012-12-01
Milk urea nitrogen (MUN) is correlated with N balance, N intake, and dietary N content, and thus is a good indicator of proper feeding management with respect to protein. It is commonly used to monitor feeding programs to achieve environmental goals; however, genetic diversity also exists among cows. It was hypothesized that phenotypic diversity among cows could bias feed management decisions when monitoring tools do not consider genetic diversity associated with MUN. The objective of the work was to evaluate the effect of cow and herd variation on MUN. Data from 2 previously published research trials and a field trial were subjected to multivariate regression analyses using a mixed model. Analyses of the research trial data showed that MUN concentrations could be predicted equally well from diet composition, milk yield, and milk components regardless of whether dry matter intake was included in the regression model. This indicated that cow and herd variation could be accurately estimated from field trial data when feed intake was not known. Milk urea N was correlated with dietary protein and neutral detergent fiber content, milk yield, milk protein content, and days in milk for both data sets. Cow was a highly significant determinant of MUN regardless of the data set used, and herd trended to significance for the field trial data. When all other variables were held constant, a percentage unit change in dietary protein concentration resulted in a 1.1mg/dL change in MUN. Least squares means estimates of MUN concentrations across herds ranged from a low of 13.6 mg/dL to a high of 17.3 mg/dL. If the observed MUN for the high herd were caused solely by high crude protein feeding, then the herd would have to reduce dietary protein to a concentration of 12.8% of dry matter to achieve a MUN concentration of 12 mg/dL, likely resulting in lost milk production. If the observed phenotypic variation is due to genetic differences among cows, genetic choices could result in herds that exceed target values for MUN when adhering to best management practices, which is consistent with the trend for differences in MUN among herds. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Giri, Veda N; Obeid, Elias; Hegarty, Sarah E; Gross, Laura; Bealin, Lisa; Hyatt, Colette; Fang, Carolyn Y; Leader, Amy
2018-04-14
Genetic testing (GT) for prostate cancer (PCA) is rising, with limited insights regarding genetic counseling (GC) needs of males. Genetic Evaluation of Men (GEM) is a prospective multigene testing study for inherited PCA. Men undergoing GC were surveyed on knowledge of cancer risk and genetics (CRG) and understanding of personal GT results to identify GC needs. GEM participants with or high-risk for PCA were recruited. Pre-test GC was in-person, with video and handout, or via telehealth. Post-test disclosure was in-person, by phone, or via telehealth. Clinical and family history data were obtained from participant surveys and medical records. Participants completed measures of knowledge of CRG, literacy, and numeracy pre-test and post-test. Understanding of personal genetic results was assessed post-test. Factors associated with knowledge of CRG and understanding of personal genetic results were examined using multivariable linear regression or McNemar's test. Among 109 men who completed pre- and post-GT surveys, multivariable analysis revealed family history meeting hereditary cancer syndrome (HCS) criteria was significantly predictive of higher baseline knowledge (P = 0.040). Of 101 men who responded definitively regarding understanding of results, 13 incorrectly reported their result (McNemar's P < 0.001). Factors significantly associated with discordance between reported and actual results included having a variant of uncertain significance (VUS) (P < 0.001) and undergoing GC via pre-test video and post-test phone disclosure (P = 0.015). While meeting criteria for HCS was associated with higher knowledge of CRG, understanding of personal GT results was lacking among a subset of males with VUS. A more exploratory finding was lack of understanding of results among men who underwent GC utilizing video and phone. Studies optimizing GC strategies for males undergoing multigene testing for inherited PCA are warranted. © 2018 Wiley Periodicals, Inc.
Gordon, Derek; Londono, Douglas; Patel, Payal; Kim, Wonkuk; Finch, Stephen J; Heiman, Gary A
2016-01-01
Our motivation here is to calculate the power of 3 statistical tests used when there are genetic traits that operate under a pleiotropic mode of inheritance and when qualitative phenotypes are defined by use of thresholds for the multiple quantitative phenotypes. Specifically, we formulate a multivariate function that provides the probability that an individual has a vector of specific quantitative trait values conditional on having a risk locus genotype, and we apply thresholds to define qualitative phenotypes (affected, unaffected) and compute penetrances and conditional genotype frequencies based on the multivariate function. We extend the analytic power and minimum-sample-size-necessary (MSSN) formulas for 2 categorical data-based tests (genotype, linear trend test [LTT]) of genetic association to the pleiotropic model. We further compare the MSSN of the genotype test and the LTT with that of a multivariate ANOVA (Pillai). We approximate the MSSN for statistics by linear models using a factorial design and ANOVA. With ANOVA decomposition, we determine which factors most significantly change the power/MSSN for all statistics. Finally, we determine which test statistics have the smallest MSSN. In this work, MSSN calculations are for 2 traits (bivariate distributions) only (for illustrative purposes). We note that the calculations may be extended to address any number of traits. Our key findings are that the genotype test usually has lower MSSN requirements than the LTT. More inclusive thresholds (top/bottom 25% vs. top/bottom 10%) have higher sample size requirements. The Pillai test has a much larger MSSN than both the genotype test and the LTT, as a result of sample selection. With these formulas, researchers can specify how many subjects they must collect to localize genes for pleiotropic phenotypes. © 2017 S. Karger AG, Basel.
Tanaka, Haruka; Ogata, Soshiro; Omura, Kayoko; Honda, Chika; Kamide, Kei; Hayakawa, Kazuo
2016-03-01
The aim of this study was to investigate the association between subjective memory complaints (SMCs) and depressive symptoms, with and without adjustment for genetic and family environmental factors. We conducted a cross-sectional study using twins and measured SMCs and depressive symptoms as outcomes and explanatory variables, respectively. First, we performed regression analyses using generalized estimating equations to investigate the associations between SMCs and depressive symptoms without adjustment for genetic and family environmental factors (individual-level analyses). We then performed regression analyses for within-pair differences using monozygotic (MZ) and dizygotic (DZ) twin pairs and MZ twin pairs to investigate these associations with adjustment for genetic and family environmental factors by subtracting the values of one twin from those of co-twin variables (within-pair level analyses). Therefore, differences between the associations at individual- and within-pair level analyses suggested confounding by genetic factors. We included 556 twins aged ≥ 20 years. In the individual-level analyses, SMCs were significantly associated with depressive symptoms in both males and females [standardized coefficients: males, 0.23 (95% CI 0.08-0.38); females, 0.35 (95% CI 0.23-0.46)]. In the within-pair level analyses using MZ and same-sex DZ twin pairs, SMCs were significantly associated with depressive symptoms. In the within-pair level analyses using the MZ twin pairs, SMCs were significantly associated with depressive symptoms [standardized coefficients: males, 0.32 (95% CI 0.08-0.56); females, 0.24 (95% CI 0.13-0.42)]. This study suggested that SMCs were significantly associated with depressive symptoms after adjustment for genetic and family environmental factors.
Marital assortment for genetic similarity.
Eckman, Ronael E; Williams, Robert; Nagoshi, Craig
2002-10-01
The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.
Multivariate data analysis methods for the interpretation of microbial flow cytometric data.
Davey, Hazel M; Davey, Christopher L
2011-01-01
Flow cytometry is an important technique in cell biology and immunology and has been applied by many groups to the analysis of microorganisms. This has been made possible by developments in hardware that is now sensitive enough to be used routinely for analysis of microbes. However, in contrast to advances in the technology that underpin flow cytometry, there has not been concomitant progress in the software tools required to analyse, display and disseminate the data and manual analysis, of individual samples remains a limiting aspect of the technology. We present two new data sets that illustrate common applications of flow cytometry in microbiology and demonstrate the application of manual data analysis, automated visualisation (including the first description of a new piece of software we are developing to facilitate this), genetic programming, principal components analysis and artificial neural nets to these data. The data analysis methods described here are equally applicable to flow cytometric applications with other cell types.
Prevalence and Correlates of Subclinical Atherosclerosis in Alaskan Eskimos
Cutchins, Alexis; Roman, Mary J.; Devereux, Richard B.; Ebbesson, Sven O.E.; Umans, Jason G.; Zhu, Jianhui; Weissman, Neil J.; Howard, Barbara V.
2009-01-01
Background and Purpose The recent increase in clinical cardiovascular disease in Alaska Eskimos suggests that changes in traditional lifestyle may have adverse public health consequences. This study examines the prevalence of subclinical vascular disease and its relation to risk factors in Alaska Eskimos. Methods Participants in the population-based Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) Study underwent evaluation of cardiovascular disease risk factors and carotid ultrasound. Outcome variables were carotid intimal-medial thickness and presence and extent of atherosclerosis. Results In multivariate analyses, intimal-medial thickness and presence and extent of atherosclerosis were all associated with traditional cardiovascular disease risk factors but not dietary intake of omega-3 fatty acids. Rates of carotid atherosclerosis were higher than those reported in 2 large population-based US studies. Conclusions Alaska Eskimos have similar traditional risk factors for carotid atherosclerosis as other ethnic and racial populations but have higher prevalences of atherosclerosis, possibly attributable to higher rates of smoking. PMID:18617652
Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California
Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.
2013-01-01
Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.
Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave
2014-01-01
We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...
PLASMA DIHYDROCERAMIDE SPECIES ASSOCIATE WITH WAIST CIRCUMFERENCE IN MEXICAN AMERICAN FAMILIES
Mamtani, Manju; Meikle, Peter J.; Kulkarni, Hemant; Weir, Jacquelyn M.; Barlow, Christopher K.; Jowett, Jeremy B.; Bellis, Claire; Dyer, Thomas D.; Almasy, Laura; Mahaney, Michael C.; Duggirala, Ravindranath; Comuzzie, Anthony G.; Blangero, John; Curran, Joanne E.
2013-01-01
Objective Waist circumference (WC), the clinical marker of central obesity, is gaining popularity as a screening tool for type 2 diabetes (T2D). While there is epidemiologic evidence favoring the WC-T2D association, its biological substantiation is generally weak. Our objective was to determine the independent association of plasma lipid repertoire with WC. Design and methods We used samples and data from the San Antonio Family Heart Study of 1208 Mexican Americans from 42 extended families. We determined association of plasma lipidomic profiles with the cross-sectionally assessed WC. Plasma lipidomic profiling entailed liquid chromatography with mass spectrometry. Statistical analyses included multivariable polygenic regression models and bivariate trait analyses using the SOLAR software. Results After adjusting for age and sex interactions, body mass index, homeostasis model of assessment – insulin resistance, total cholesterol, triglycerides, high density lipoproteins and use of lipid lowering drugs, dihydroceramides as a class were associated with WC. Dihydroceramide species 18:0, 20:0, 22:0 and 24:1 were significantly associated and genetically correlated with WC. Two sphingomyelin species (31:1 and 41:1) were also associated with WC. Conclusions Plasma dihydroceramide levels independently associate with WC. Thus, high resolution plasma lipidomic studies can provide further credence to the biological underpinnings of the association of WC with T2D. PMID:23929697
Nature and Nurture in Early Feeding Behavior.
Cooke, Lucy; Llewellyn, Clare
2016-01-01
Obesity has reached epidemic proportions and research into its prevention is increasingly focusing on the earliest stages of life. Avidity of appetite has been linked to a higher risk of obesity, but studies in infancy were scarce. The Gemini twin cohort was established to investigate genetic and environmental determinants of weight trajectories in early childhood with a focus on appetite and the home environment. Gemini families have been supplying questionnaire data at regular intervals, starting when the twins were 8 months old. Analyses of data on infant appetite and weight have provided a number of important findings. Firstly, a prospective study found that appetite in infancy drives weight gain more strongly than weight drives appetite, although the two processes do coexist. A further study using a subsample of twins discordant for appetite ruled out the possibility of familial confounding, suggesting a causal role for appetite in weight. Heritability estimates for appetitive traits were moderate to high (53-84%). Finally, multivariate analyses indicated that roughly one third of the genes related to weight are also related to appetite and vice versa. Environmental factors affecting appetite in infancy are understudied, but some potential strategies for minimizing over- or underconsumption by at-risk individuals are suggested. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.
Gao, Xian Hua; Yu, Guan Yu; Gong, Hai Feng; Liu, Lian Jie; Xu, Yi; Hao, Li Qiang; Liu, Peng; Liu, Zhi Hong; Bai, Chen Guang; Zhang, Wei
2017-08-11
To compare protein expression levels, gene mutation and survival among Right-Sided Colon Cancer (RSCC), Left-Sided Colon Cancer (LSCC) and rectal cancer patients, 57 cases of RSCC, 87 LSCC and 145 rectal cancer patients were included retrospectively. Our results demonstrated significant differences existed among RSCC, LSCC and rectal cancer regarding tumor diameter, differentiation, invasion depth and TNM stage. No significant difference was identified in expression levels of MLH1, MSH2, MSH6, PMS2, β-Tubulin III, P53, Ki67 and TOPIIα, and gene mutation of KRAS and BRAF among three groups. Progression Free Survival (PFS) of RSCC was significantly lower than that of LRCC and rectal cancer. In univariate analyses, RSCC, preoperative chemoradiotherapy, poor differentiation, advanced TNM stage, elevated serum CEA and CA19-9 level, tumor deposit, perineural and vascular invasion were found to be predictive factors of shorter PFS. In multivariate analyses, only differentiation and TNM stages were found to be independent predictors of PFS. In conclusion, compared with LSCC and rectal cancer, RSCC has larger tumor size, poor differentiation, advanced TNM stage and shorter survival. The shorter survival in RSCC might be attributed to the advanced tumor stage caused by its inherent position feature of proximal colon rather than genetic difference.
Benítez-Benítez, Carmen; Fernández-Mazuecos, Mario; Martín-Bravo, Santiago
2017-01-01
Plants growing in high-mountain environments may share common morphological features through convergent evolution resulting from an adaptative response to similar ecological conditions. The Carex flava species complex (sect. Ceratocystis, Cyperaceae) includes four dwarf morphotypes from Circum-Mediterranean mountains whose taxonomic status has remained obscure due to their apparent morphological resemblance. In this study we investigate whether these dwarf mountain morphotypes result from convergent evolution or common ancestry, and whether there are ecological differences promoting differentiation between the dwarf morphotypes and their taxonomically related large, well-developed counterparts. We used phylogenetic analyses of nrDNA (ITS) and ptDNA (rps16 and 5’trnK) sequences, ancestral state reconstruction, multivariate analyses of macro- and micromorphological data, and species distribution modeling. Dwarf morphotype populations were found to belong to three different genetic lineages, and several morphotype shifts from well-developed to dwarf were suggested by ancestral state reconstructions. Distribution modeling supported differences in climatic niche at regional scale between the large forms, mainly from lowland, and the dwarf mountain morphotypes. Our results suggest that dwarf mountain morphotypes within this sedge group are small forms of different lineages that have recurrently adapted to mountain habitats through convergent evolution. PMID:29281689
Schmid, M A; Egeland, G M; Salomeyesudas, B; Satheesh, P V; Kuhnlein, H V
2006-11-01
To describe prevalence of malnutrition and their correlates of nutrient and traditional food consumption in rural Dalit mothers. In a cross-sectional study, we used socio-cultural questionnaires, anthropometric measurements and clinical eye examinations during the rainy season in 2003. Food frequency questionnaires and 24-h recalls were conducted during both summer and rainy seasons. Dalit mothers with young children were recruited from 37 villages in the Medak District of rural Andhra Pradesh, India. Dalit mothers (n = 220) participated. The prevalence of chronic energy-deficient (CED) mothers (body mass index <18.5 kg/m2) was 58%. Illiterate women and active women were more likely to have CED than those literate and non-active (relative risks (RR) = 1.6 and 1.4, respectively, P < or = 0.05), but literacy and activity level were not significant in multivariable analyses including sanitation and number of children < or =5 years of age. Increasing levels of fat intake, as a percent of total energy, was significantly associated with lower risk of CED (RR of the lowest 25th percentile compared to those in the 75th percentile or above was 1.6, P < or = 0.05), findings that remained significant in multivariable analyses. Consumption of pulses (g/day) was also inversely related to CED in univariate and multivariable analyses. Carbohydrate intake, as a percent of total energy, was inversely related to percent energy from fat (r = -0.96, P < or = 0.01), and, although positively related to CED in univariate analyses, carbohydrate consumption was not significant in multivariable analyses. Mothers' age in years and income was positively related to vitamin A deficiency. These results confirm that CED and vitamin A malnutrition among Dalit women are predominant problems in this area. Increased consumption of local traditional Dalit food (particularly sorghum, pulses, vegetables and animal source food) should be incorporated as an important component of intervention strategies to improve nutritional status.
Augustin, Regina; Lichtenthaler, Stefan F.; Greeff, Michael; Hansen, Jens; Wurst, Wolfgang; Trümbach, Dietrich
2011-01-01
The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases. PMID:21559189
GeNets: a unified web platform for network-based genomic analyses.
Li, Taibo; Kim, April; Rosenbluh, Joseph; Horn, Heiko; Greenfeld, Liraz; An, David; Zimmer, Andrew; Liberzon, Arthur; Bistline, Jon; Natoli, Ted; Li, Yang; Tsherniak, Aviad; Narayan, Rajiv; Subramanian, Aravind; Liefeld, Ted; Wong, Bang; Thompson, Dawn; Calvo, Sarah; Carr, Steve; Boehm, Jesse; Jaffe, Jake; Mesirov, Jill; Hacohen, Nir; Regev, Aviv; Lage, Kasper
2018-06-18
Functional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2016-04-01
Three simple, specific, accurate and precise spectrophotometric methods were developed for the determination of cefprozil (CZ) in the presence of its alkaline induced degradation product (DCZ). The first method was the bivariate method, while the two other multivariate methods were partial least squares (PLS) and spectral residual augmented classical least squares (SRACLS). The multivariate methods were applied with and without variable selection procedure (genetic algorithm GA). These methods were tested by analyzing laboratory prepared mixtures of the above drug with its alkaline induced degradation product and they were applied to its commercial pharmaceutical products.
da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira
2010-04-01
Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.
Genetic Thinking in the Study of Social Relationships: Five Points of Entry.
Reiss, David
2010-09-01
For nearly a generation, researchers studying human behavioral development have combined genetically informed research designs with careful measures of social relationships such as parenting, sibling relationships, peer relationships, marital processes, social class stratifications, and patterns of social engagement in the elderly. In what way have these genetically informed studies altered the construction and testing of social theories of human development? We consider five points of entry where genetic thinking is taking hold. First, genetic findings suggest an alternative scenario for explaining social data. Associations between measures of the social environment and human development may be due to genes that influence both. Second, genetic studies add to other prompts to study the early developmental origins of current social phenomena in midlife and beyond. Third, genetic analyses promise to shed light on understudied social systems, such as sibling relationships, that have an impact on human development independent of genotype. Fourth, genetic analyses anchor in neurobiology individual differences in resilience and sensitivity to both adverse and favorable social environments. Finally, genetic analyses increase the utility of laboratory simulations of human social processes and of animal models. © The Author(s) 2010.
NASA Astrophysics Data System (ADS)
de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.
2018-04-01
A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.
Paterson, Rachel L.; McLaren, Terri L.; Hewitt, Alex W.; Hoffmann, Ling; Lamey, Tina M.
2012-01-01
Purpose Retinitis pigmentosa (RP) is the most common form of inherited blindness, caused by progressive degeneration of photoreceptor cells in the retina, and affects approximately 1 in 3,000 people. Over the past decade, significant progress has been made in gene therapy for RP and related diseases, making genetic characterization increasingly important. Recently, high-throughput technologies have provided an option for reasonably fast, cost-effective genetic characterization of autosomal recessive RP (arRP). The current study used a single nucleotide polymorphism (SNP) genotyping method to exclude up to 28 possible disease-causing genes in 31 non-consanguineous Australian families affected by arRP. Methods DNA samples were collected from 59 individuals affected with arRP and 74 unaffected family members from 31 Australian families. Five to six SNPs were genotyped for 28 genes known to cause arRP or the related disease Leber congenital amaurosis (LCA). Cosegregation analyses were used to exclude possible causative genes from each of the 31 families. Bidirectional sequencing was used to identify disease-causing mutations in prioritized genes that were not excluded with cosegregation analyses. Results Two families were excluded from analysis due to identification of false paternity. An average of 28.9% of genes were excluded per family when only one affected individual was available, in contrast to an average of 71.4% or 89.8% of genes when either two, or three or more affected individuals were analyzed, respectively. A statistically significant relationship between the proportion of genes excluded and the number of affected individuals analyzed was identified using a multivariate regression model (p<0.0001). Subsequent DNA sequencing resulted in identification of the likely disease-causing gene as CRB1 in one family (c.2548 G>A) and USH2A in two families (c.2276 G>T). Conclusions This study has shown that SNP genotyping cosegregation analysis can be successfully used to refine and expedite the genetic characterization of arRP in a non-consanguineous population; however, this method is effective only when DNA samples are available from more than one affected individual. PMID:22876132
Paterson, Rachel L; De Roach, John N; McLaren, Terri L; Hewitt, Alex W; Hoffmann, Ling; Lamey, Tina M
2012-01-01
Retinitis pigmentosa (RP) is the most common form of inherited blindness, caused by progressive degeneration of photoreceptor cells in the retina, and affects approximately 1 in 3,000 people. Over the past decade, significant progress has been made in gene therapy for RP and related diseases, making genetic characterization increasingly important. Recently, high-throughput technologies have provided an option for reasonably fast, cost-effective genetic characterization of autosomal recessive RP (arRP). The current study used a single nucleotide polymorphism (SNP) genotyping method to exclude up to 28 possible disease-causing genes in 31 non-consanguineous Australian families affected by arRP. DNA samples were collected from 59 individuals affected with arRP and 74 unaffected family members from 31 Australian families. Five to six SNPs were genotyped for 28 genes known to cause arRP or the related disease Leber congenital amaurosis (LCA). Cosegregation analyses were used to exclude possible causative genes from each of the 31 families. Bidirectional sequencing was used to identify disease-causing mutations in prioritized genes that were not excluded with cosegregation analyses. Two families were excluded from analysis due to identification of false paternity. An average of 28.9% of genes were excluded per family when only one affected individual was available, in contrast to an average of 71.4% or 89.8% of genes when either two, or three or more affected individuals were analyzed, respectively. A statistically significant relationship between the proportion of genes excluded and the number of affected individuals analyzed was identified using a multivariate regression model (p<0.0001). Subsequent DNA sequencing resulted in identification of the likely disease-causing gene as CRB1 in one family (c.2548 G>A) and USH2A in two families (c.2276 G>T). This study has shown that SNP genotyping cosegregation analysis can be successfully used to refine and expedite the genetic characterization of arRP in a non-consanguineous population; however, this method is effective only when DNA samples are available from more than one affected individual.
Ohnishi, Hiroyuki; Iihara, Koji; Kaku, Yasuyuki; Yamauchi, Keita; Fukuda, Kenji; Nishimura, Kunihiro; Nakai, Michikazu; Satow, Tetsu; Nakajima, Norio; Ikegawa, Masaya
2013-05-01
Vasospasm (VS) and delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) are thought to greatly affect prognosis. Haptoglobin (Hp) is a hemoglobin-binding protein expressed by a genetic polymorphism (1-1, 2-1, and 2-2). Our objects were to investigate whether the Hp phenotype could predict the incidence of cerebral infarction, favorable outcome, clinical deterioration by DCI, and angiographical VS after aneurysmal SAH. Ninety-five consecutive patients who underwent clipping or coil embolization were studied. Favorable functional outcome was defined as a modified Rankin Scale score of 0-2 at 3 months. Angiographical VS was diagnosed based on cerebral angiography findings performed between days 7 and 10 after SAH. The Hp 2-2 group had a significantly greater risk of angiographical VS than that of Hp 2-1 and 1-1 groups combined on univariate (odds ratio [OR]: 3.60, confidence interval [CI]: 1.49-8.67, P = .003) and multivariate logistic regression analyses after being adjusted for age, sex, Fisher groups, and other risk factors (OR: 3.75, CI: 1.54-9.16, P = .004). The Hp 2-2 group also showed the tendency of a greater risk of clinical deterioration by DCI with marginal significance on univariate and age- and sex-adjusted analyses (univariate OR: 2.46, CI: .90-6.74, P = .080; age- and sex-adjusted OR: 2.46, CI: .89-6.82, P = .080) but not after being adjusted for other multiple risk factors. The Hp 2-2 group was not associated with the favorable 3-month outcome and cerebral infarction (univariate: P = .867, P = .209; multivariate: P = .905, P = .292). The Hp phenotype seems to be associated with a higher rate of angiographical VS and clinical deterioration by DCI but does not affect the incidence of cerebral infarction and favorable outcome. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.
The population structure of Escherichia coli isolated from subtropical and temperate soils.
Byappanahalli, Muruleedhara N; Yan, Tao; Hamilton, Matthew J; Ishii, Satoshi; Fujioka, Roger S; Whitman, Richard L; Sadowsky, Michael J
2012-02-15
While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora. Copyright © 2012 Elsevier B.V. All rights reserved.
The population structure of Escherichia coli isolated from subtropical and temperate soils
Byappanahalli, Muruleedhara N.; Yan, Tao; Hamilton, Matthew J.; Ishii, Satoshi; Fujioka, Roger S.; Whitman, Richard L.; Sadowsky, Michael J.
2012-01-01
While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora.
Akhtar, Muhammad Tayyab; Bin Mohd Sarib, Mohamad Syakir; Ismail, Intan Safinar; Abas, Faridah; Ismail, Amin; Lajis, Nordin Hj; Shaari, Khozirah
2016-08-09
Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese-diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.
Cell Lines Models of Drug Response: Successes and Lessons from this Pharmacogenomic Model
Jack, J.; Rotroff, D.; Motsinger-Reif, A.
2015-01-01
A new standard for medicine is emerging that aims to improve individual drug responses through studying associations with genetic variations. This field, pharmacogenomics, is undergoing a rapid expansion due to a variety of technological advancements that are enabling higher throughput with reductions in cost. Here we review the advantages, limitations, and opportunities for using lymphoblastoid cell lines (LCL) as a model system for human pharmacogenomic studies. There are a wide range of publicly available resources with genome-wide data available for LCLs from both related and unrelated populations, removing the cost of genotyping the data for drug response studies. Furthermore, in contrast to human clinical trials or in vivo model systems, with high-throughput in vitro screening technologies, pharmacogenomics studies can easily be scaled to accommodate large sample sizes. An important component to leveraging genome-wide data in LCL models is association mapping. Several methods are discussed herein, and include multivariate concentration response modeling, issues with multiple testing, and successful examples of the ‘triangle model’ to identify candidate variants. Once candidate gene variants have been determined, their biological roles can be elucidated using pathway analyses and functionally confirmed using siRNA knockdown experiments. The wealth of genomics data being produced using related and unrelated populations is creating many exciting opportunities leading to new insights into the genetic contribution and heritability of drug response. PMID:25109794
Amin, Arwa M; Sheau Chin, Lim; Teh, Chin-Hoe; Mostafa, Hamza; Mohamed Noor, Dzul Azri; Sk Abdul Kader, Muhamad Ali; Kah Hay, Yuen; Ibrahim, Baharudin
2017-11-30
Clopidogrel high on treatment platelets reactivity (HTPR) has burdened achieving optimum therapeutic outcome. Although there are known genetic and non-genetic factors associated with clopidogrel HTPR, which explain in part clopidogrel HTPR, yet, great portion remains unknown, often hindering personalizing antiplatelet therapy. Nuclear magnetic resonance ( 1 H NMR) pharmacometabolomics analysis is useful technique to phenotype drug response. We investigated using 1 H NMR analysis to phenotype clopidogrel HTPR in urine. Urine samples were collected from 71 coronary artery disease (CAD) patients who were planned for interventional angiographic procedure prior to taking 600mg clopidogrel loading dose (LD) and 6h post LD. Patients' platelets function testing was assessed with the VerifyNow ® P2Y12 assay at 6h after LD. Urine samples were analysed using 1 H NMR. Multivariate statistical analysis was used to identify metabolites associated with clopidogrel HTPR. In pre-dose samples, 16 metabolites were associated with clopidogrel HTPR. However, 18 metabolites were associated with clopidogrel HTPR in post-dose samples. The pathway analysis of the identified biomarkers reflected that multifactorial conditions are associated with clopidogrel HTPR. It also revealed the implicated role of gut microbiota in clopidogrel HTPR. Pharmacometabolomics not only discovered novel biomarkers of clopidogrel HTPR but also revealed implicated pathways and conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stefani, Fabrizio; Benzoni, F.; Yang, S.-Y.; Pichon, M.; Galli, P.; Chen, C. A.
2011-12-01
A combined morphological and genetic study of the coral genus Stylophora investigated species boundaries in the Gulf of Aden, Yemen. Two mitochondrial regions, including the hypervariable IGS9 spacer and the control region, and a fragment of rDNA were used for phylogenetic analysis. Results were compared by multivariate analysis on the basis of branch morphology and corallite morphometry. Two species were clearly discriminated by both approaches. The first species was characterised by small corallites and a low morphological variability and was ascribed to a new geographical record of Stylophora madagascarensis on the basis of its phylogenetic distinction and its morphological similarity to the type material. The second species was characterised by larger corallite size and greater morphological variability and was ascribed to Stylophora pistillata. The analysis was extended to the intrageneric level for other S. pistillata populations from the Red Sea and the Pacific Ocean. Strong internal divergence was evident in the genus Sty lophora. S. pistillata populations were split into two highly divergent Red Sea/Gulf of Aden and western Pacific lineages with significant morphological overlap, which suggests they represent two distinct cryptic species. The combined use of morphological and molecular approaches, so far proved to be a powerful tool for the re-delineation of species boundaries in corals, provided novel evidence of cryptic divergence in this group of marine metazoans.
Tsao, Connie W.; Gona, Philimon; Salton, Carol; Murabito, Joanne M.; Oyama, Noriko; Danias, Peter G.; O’Donnell, Christopher J.; Manning, Warren J.; Yeon, Susan B.
2011-01-01
We aimed to determine the relationships between resting left ventricular (LV) wall motion abnormalities (WMAs), aortic plaque, and PAD in a community cohort. 1726 Framingham Heart Study Offspring Cohort participants (806 males, 65±9 years) underwent cardiovascular magnetic resonance with quantification of aortic plaque volume and assessment of regional LV systolic function. Claudication, lower extremity revascularization, and ankle-brachial index (ABI) were recorded at Examination 7. WMAs were associated with greater aortic plaque burden, decreased ABI, and claudication in age- and sex-adjusted analyses (all p<0.001), which were not significant after adjustment for cardiovascular risk factors. In age- and sex-adjusted analyses, both the presence (p<0.001) and volume of aortic plaque were associated with decreased ABI (p<0.001). After multivariable adjustment, ABI≤0.9 or prior revascularization was associated with a three-fold odds of aortic plaque (p=0.0083). Plaque volume significantly increased with decreasing ABI in multivariable-adjusted analyses (p<0.0001). In this free-living population, associations of WMAs with aortic plaque burden and clinical measures of PAD were attenuated after adjustment for coronary heart disease risk factors. Aortic plaque volume and ABI remained strongly negatively correlated after multivariable adjustment. Our findings suggest that the association between coronary heart disease and non-coronary atherosclerosis is explained by cardiovascular risk factors. Aortic atherosclerosis and PAD remain strongly associated after multivariable adjustment suggesting shared mechanisms beyond those captured by traditional risk factors. PMID:21708875
A unifying theory for genetic epidemiological analysis of binary disease data
2014-01-01
Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness. PMID:24552188
A unifying theory for genetic epidemiological analysis of binary disease data.
Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B
2014-02-19
Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.
NASA Astrophysics Data System (ADS)
Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar
2015-06-01
In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.
Inherited genetic variants associated with occurrence of multiple primary melanoma.
Gibbs, David C; Orlow, Irene; Kanetsky, Peter A; Luo, Li; Kricker, Anne; Armstrong, Bruce K; Anton-Culver, Hoda; Gruber, Stephen B; Marrett, Loraine D; Gallagher, Richard P; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Sharma, Ajay; La Pilla, Emily; From, Lynn; Busam, Klaus J; Cust, Anne E; Ollila, David W; Begg, Colin B; Berwick, Marianne; Thomas, Nancy E
2015-06-01
Recent studies, including genome-wide association studies, have identified several putative low-penetrance susceptibility loci for melanoma. We sought to determine their generalizability to genetic predisposition for multiple primary melanoma in the international population-based Genes, Environment, and Melanoma (GEM) Study. GEM is a case-control study of 1,206 incident cases of multiple primary melanoma and 2,469 incident first primary melanoma participants as the control group. We investigated the odds of developing multiple primary melanoma for 47 SNPs from 21 distinct genetic regions previously reported to be associated with melanoma. ORs and 95% confidence intervals were determined using logistic regression models adjusted for baseline features (age, sex, age by sex interaction, and study center). We investigated univariable models and built multivariable models to assess independent effects of SNPs. Eleven SNPs in 6 gene neighborhoods (TERT/CLPTM1L, TYRP1, MTAP, TYR, NCOA6, and MX2) and a PARP1 haplotype were associated with multiple primary melanoma. In a multivariable model that included only the most statistically significant findings from univariable modeling and adjusted for pigmentary phenotype, back nevi, and baseline features, we found TERT/CLPTM1L rs401681 (P = 0.004), TYRP1 rs2733832 (P = 0.006), MTAP rs1335510 (P = 0.0005), TYR rs10830253 (P = 0.003), and MX2 rs45430 (P = 0.008) to be significantly associated with multiple primary melanoma, while NCOA6 rs4911442 approached significance (P = 0.06). The GEM Study provides additional evidence for the relevance of these genetic regions to melanoma risk and estimates the magnitude of the observed genetic effect on development of subsequent primary melanoma. ©2015 American Association for Cancer Research.
Inherited genetic variants associated with occurrence of multiple primary melanoma
Gibbs, David C.; Orlow, Irene; Kanetsky, Peter A.; Luo, Li; Kricker, Anne; Armstrong, Bruce K.; Anton-Culver, Hoda; Gruber, Stephen B.; Marrett, Loraine D.; Gallagher, Richard P.; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Sharma, Ajay; La Pilla, Emily; From, Lynn; Busam, Klaus J.; Cust, Anne E.; Ollila, David W.; Begg, Colin B.; Berwick, Marianne; Thomas, Nancy E.
2015-01-01
Recent studies including genome-wide association studies have identified several putative low-penetrance susceptibility loci for melanoma. We sought to determine their generalizability to genetic predisposition for multiple primary melanoma in the international population-based Genes, Environment, and Melanoma (GEM) Study. GEM is a case-control study of 1,206 incident cases of multiple primary melanoma and 2,469 incident first primary melanoma participants as the control group. We investigated the odds of developing multiple primary melanoma for 47 single nucleotide polymorphisms (SNP) from 21 distinct genetic regions previously reported to be associated with melanoma. ORs and 95% CIs were determined using logistic regression models adjusted for baseline features (age, sex, age by sex interaction, and study center). We investigated univariable models and built multivariable models to assess independent effects of SNPs. Eleven SNPs in 6 gene neighborhoods (TERT/CLPTM1L, TYRP1, MTAP, TYR, NCOA6, and MX2) and a PARP1 haplotype were associated with multiple primary melanoma. In a multivariable model that included only the most statistically significant findings from univariable modeling and adjusted for pigmentary phenotype, back nevi, and baseline features, we found TERT/CLPTM1L rs401681 (P = 0.004), TYRP1 rs2733832 (P = 0.006), MTAP rs1335510 (P = 0.0005), TYR rs10830253 (P = 0.003), and MX2 rs45430 (P = 0.008) to be significantly associated with multiple primary melanoma while NCOA6 rs4911442 approached significance (P = 0.06). The GEM study provides additional evidence for the relevance of these genetic regions to melanoma risk and estimates the magnitude of the observed genetic effect on development of subsequent primary melanoma. PMID:25837821
Morris, John A.; Francois, Cedric; Olson, Paul K.; Cotton, Bryan A.; Summar, Marshall; Jenkins, Judith M.; Norris, Patrick R.; Moore, Jason H.; Williams, Anna E.; McNew, Brent S.; Canter, Jeffrey A.
2009-01-01
Trauma is a disease of inflammation. Complement Component 2 (C2) is a protease involved in activation of complement through the classical pathway and has been implicated in a variety of chronic inflammatory diseases. We hypothesized that genetic variation in C2 (E318D) identifies a high-risk subgroup of trauma patients reflecting increased mortality and infection (Ventilator associated pneumonia: VAP). Consequently, genetic variation in C2 may stratify patient risk and illuminate underlying mechanisms for therapeutic intervention. Methods DNA samples from 702 trauma patients were genotyped for C2 E318D and linked with covariates (age: mean 42.8 years, gender: 74% male, ethnicity: 80% Caucasian, mechanism: 84% blunt, ISS: mean 25.0, admission lactate: mean 3.13 mEq/L) and outcomes: mortality 9.9% and VAP: 18.5%. VAP was defined by quantitative bronchoalveolar lavage (>104). Multivariate regression determined the relationship of genotype and covariates to risk of death and VAP. However, patients with ISS ≥ 45 were excluded from the multivariate analysis, as magnitude of injury overwhelms genetics and covariates in determining outcome. Results 52 patients (8.3%) had the high-risk heterozygous genotype, associated with a significant increase in mortality and VAP. Conclusion In 702 trauma patients, 8.3% had a high-risk genetic variation in C2 associated with increased mortality (OR=2.65) and infection (OR=2.00). This variation: 1) Identifies a previously unknown high risk group for infection and mortality; 2) Can be determined on admission; 3) May provide opportunity for early therapeutic intervention; and 4) Requires validation in a distinct cohort of patients. PMID:19430225
Role of Blood Lipids in the Development of Ischemic Stroke and its Subtypes
Engström, Gunnar; Larsson, Susanna C.; Traylor, Matthew; Markus, Hugh S.; Melander, Olle; Orho-Melander, Marju
2018-01-01
Background and Purpose— Statin therapy is associated with a lower risk of ischemic stroke supporting a causal role of low-density lipoprotein (LDL) cholesterol. However, more evidence is needed to answer the question whether LDL cholesterol plays a causal role in ischemic stroke subtypes. In addition, it is unknown whether high-density lipoprotein cholesterol and triglycerides have a causal relationship to ischemic stroke and its subtypes. Our aim was to investigate the causal role of LDL cholesterol, high-density lipoprotein cholesterol, and triglycerides in ischemic stroke and its subtypes through Mendelian randomization (MR). Methods— Summary data on 185 genome-wide lipids-associated single nucleotide polymorphisms were obtained from the Global Lipids Genetics Consortium and the Stroke Genetics Network for their association with ischemic stroke (n=16 851 cases and 32 473 controls) and its subtypes, including large artery atherosclerosis (n=2410), small artery occlusion (n=3186), and cardioembolic (n=3427) stroke. Inverse-variance–weighted MR was used to obtain the causal estimates. Inverse-variance–weighted multivariable MR, MR-Egger, and sensitivity exclusion of pleiotropic single nucleotide polymorphisms after Steiger filtering and MR-Pleiotropy Residual Sum and Outlier test were used to adjust for pleiotropic bias. Results— A 1-SD genetically elevated LDL cholesterol was associated with an increased risk of ischemic stroke (odds ratio: 1.12; 95% confidence interval: 1.04–1.20) and large artery atherosclerosis stroke (odds ratio: 1.28; 95% confidence interval: 1.10–1.49) but not with small artery occlusion or cardioembolic stroke in multivariable MR. A 1-SD genetically elevated high-density lipoprotein cholesterol was associated with a decreased risk of small artery occlusion stroke (odds ratio: 0.79; 95% confidence interval: 0.67–0.90) in multivariable MR. MR-Egger indicated no pleiotropic bias, and results did not markedly change after sensitivity exclusion of pleiotropic single nucleotide polymorphisms. Genetically elevated triglycerides did not associate with ischemic stroke or its subtypes. Conclusions— LDL cholesterol lowering is likely to prevent large artery atherosclerosis but may not prevent small artery occlusion nor cardioembolic strokes. High-density lipoprotein cholesterol elevation may lead to benefits in small artery disease prevention. Finally, triglyceride lowering may not yield benefits in ischemic stroke and its subtypes. PMID:29535274
Multivariate analysis of molecular and morphological diversity in fig (Ficus carica L.)
USDA-ARS?s Scientific Manuscript database
Genetic polymorphism across 15 microsatellite loci among 194 fig accessions including Common, Smyrna, San Pedro, and Caprifig were analyzed using a cluster analysis (CA) and the principal components analysis (PCA). The collection was moderately variable with observed number of alleles per locus rang...
Individual Differences in Executive Functions Are Almost Entirely Genetic in Origin
ERIC Educational Resources Information Center
Friedman, Naomi P.; Miyake, Akira; Young, Susan E.; DeFries, John C.; Corley, Robin P.; Hewitt, John K.
2008-01-01
Recent psychological and neuropsychological research suggests that executive functions--the cognitive control processes that regulate thought and action--are multifaceted and that different types of executive functions are correlated but separable. The present multivariate twin study of 3 executive functions (inhibiting dominant responses,…
Cichy, Radoslaw Martin; Pantazis, Dimitrios
2017-09-01
Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.
Changes in Landscape Greenness and Climatic Factors over ...
Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and rapid changes (e.g., fire, land development) is challenging as changes can be confounded by time-dependent patterns, and variation associated with climatic factors. In the present study we leveraged a method, that we previously developed for a pilot study, to address these confounding factors by evaluating NDVI change using autoregression techniques that compare results from univariate (NDVI vs. time) and multivariate analyses (NDVI vs. time and climatic factors) for ~7,660,636 1-km2 pixels comprising the 48 contiguous states of the USA, over a 25-year period (1989−2013). NDVI changed significantly for 48% of the nation over the 25-year in the univariate analyses where most significant trends (85%) indicated an increase in greenness over time. By including climatic factors in the multivariate analyses of NDVI over time, the detection of significant NDVI trends increased to 53% (an increase of 5%). Comparisons of univariate and multivariate analyses for each pixel showed that less than 4% of the pixels had a significant NDVI trend attributable to gradual climatic changes while the remainder of pixels with a significant NDVI trend indicated that changes were due to direct factors. Whi
Dissecting the genetics of complex traits using summary association statistics.
Pasaniuc, Bogdan; Price, Alkes L
2017-02-01
During the past decade, genome-wide association studies (GWAS) have been used to successfully identify tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyse summary association statistics. Here, we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases.
Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila
2015-11-01
Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels
2015-01-01
The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland. PMID:24801759
Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels
2015-02-01
The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland.
Schwartz, Joseph A; Beaver, Kevin M
2015-05-01
Academic achievement has been found to have a pervasive and substantial impact on a wide range of developmental outcomes and has also been implicated in the critical transition from adolescence into early adulthood. Previous research has revealed that self-reported grades tend to diverge from official transcript grade point average (GPA) scores, with students being more likely to report inflated scores. Making use of a sample of monozygotic twin (N = 282 pairs), dizygotic twin (N = 441 pairs), and full sibling (N = 1,757 pairs) pairs from the National Longitudinal Study of Adolescent Health (Add Health; 65 % White; 50 % male; mean age = 16.14), the current study is the first to investigate the role that genetic and environmental factors play in misreporting grade information. A comparison between self-reported GPA (mean score of 2.86) and official transcript GPA scores (mean score of 2.44) revealed that self-reported scores were approximately one-half letter grade greater than official scores. Liability threshold models revealed that additive genetic influences explained between 40 and 63 % of the variance in reporting inflated grades and correctly reporting GPA, with the remaining variance explained by the nonshared environment. Conversely, 100 % of the variance in reporting deflated grade information was explained by nonshared environmental influences. In an effort to identify specific nonshared environmental influences on reporting accuracy, multivariate models that adequately control for genetic influences were estimated and revealed that siblings with lower transcript GPA scores were significantly less likely to correctly report their GPA and significantly more likely to report inflated GPA scores. Additional analyses revealed that verbal IQ and self-control were not significantly associated with self-reported GPA accuracy after controlling for genetic influences. These findings indicate that previous studies that implicate verbal IQ and self-control as significant predictors of misreporting grade information may have been the result of model misspecification and genetic confounding. The findings from the current study indicate that genetic influences play a crucial role in the accuracy in which grade information is reported, but that nonshared environmental influences also play a significant role in specific circumstances. The theoretical and methodological implications of the results are discussed.
Porto, Arthur; Sebastião, Harley; Pavan, Silvia Eliza; VandeBerg, John L.; Marroig, Gabriel; Cheverud, James M.
2015-01-01
We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyze the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation. PMID:25818173
Panic disorder and agoraphobia: A direct comparison of their multivariate comorbidity patterns.
Greene, Ashley L; Eaton, Nicholas R
2016-01-15
Scientific debate has long surrounded whether agoraphobia is a severe consequence of panic disorder or a frequently comorbid diagnosis. Multivariate comorbidity investigations typically treat these diagnoses as fungible in structural models, assuming both are manifestations of the fear-subfactor in the internalizing-externalizing model. No studies have directly compared these disorders' multivariate associations, which could clarify their conceptualization in classification and comorbidity research. In a nationally representative sample (N=43,093), we examined the multivariate comorbidity of panic disorder (1) without agoraphobia, (2) with agoraphobia, and (3) regardless of agoraphobia; and (4) agoraphobia without panic. We conducted exploratory and confirmatory factor analyses of these and 10 other lifetime DSM-IV diagnoses in a nationally representative sample (N=43,093). Differing bivariate and multivariate relations were found. Panic disorder without agoraphobia was largely a distress disorder, related to emotional disorders. Agoraphobia without panic was largely a fear disorder, related to phobias. When considered jointly, concomitant agoraphobia and panic was a fear disorder, and when panic was assessed without regard to agoraphobia (some individuals had agoraphobia while others did not) it was a mixed distress and fear disorder. Diagnoses were obtained from comprehensively trained lay interviewers, not clinicians and analyses used DSM-IV diagnoses (rather than DSM-5). These findings support the conceptualization of agoraphobia as a distinct diagnostic entity and the independent classification of both disorders in DSM-5, suggesting future multivariate comorbidity studies should not assume various panic/agoraphobia diagnoses are invariably fear disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong
2017-01-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696
Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong
2017-02-01
To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.
Trends in childhood cancer incidence: review of environmental linkages.
Buka, Irena; Koranteng, Samuel; Osornio Vargas, Alvaro R
2007-02-01
Cancer in children is rare and accounts for about 1% of all malignancies. In the developed world, however, it is the commonest cause of disease-related deaths in childhood, carrying with it a great economic and emotional cost. Cancers are assumed to be multivariate, multifactorial diseases that occur when a complex and prolonged process involving genetic and environmental factors interact in a multistage sequence. This article explores the available evidence for this process, primarily from the environmental linkages perspective but including some evidence of the genetic factors.
Hoppe, Fred M
2008-06-01
We show that the formula of Faà di Bruno for the derivative of a composite function gives, in special cases, the sampling distributions in population genetics that are due to Ewens and to Pitman. The composite function is the same in each case. Other sampling distributions also arise in this way, such as those arising from Dirichlet, multivariate hypergeometric, and multinomial models, special cases of which correspond to Bose-Einstein, Fermi-Dirac, and Maxwell-Boltzmann distributions in physics. Connections are made to compound sampling models.
Miller, Mark P.; Bellinger, R.M.; Forsman, E.D.; Haig, Susan M.
2006-01-01
Phylogeographical analyses conducted in the Pacific Northwestern United States have often revealed concordant patterns of genetic diversity among taxa. These studies demonstrate distinct North/South genetic discontinuities that have been attributed to Pleistocene glaciation. We examined phylogeographical patterns of red tree voles (Phenacomys longicaudus) in western Oregon by analysing mitochondrial control region sequences for 169 individuals from 18 areas across the species' range. Cytochrome b sequences were also analysed from a subset of our samples to confirm the presence of major haplotype groups. Phylogenetic network analyses suggested the presence of two haplotype groups corresponding to northern and southern regions of P. longicaudus' range. Spatial genetic analyses (samova and Genetic Landscape Shapes) of control region sequences demonstrated a primary genetic discontinuity separating northern and southern sampling areas, while a secondary discontinuity separated northern sampling areas into eastern and western groups divided by the Willamette Valley. The North/South discontinuity likely corresponds to a region of secondary contact between lineages rather than an overt barrier. Although the Cordilleran ice sheet (maximum a??12 000 years ago) did not move southward to directly affect the region occupied by P. longicaudus, climate change during glaciation fragmented the forest landscape that it inhabits. Signatures of historical fragmentation were reflected by positive associations between latitude and variables such as Tajima's D and patterns associated with location-specific alleles. Genetic distances between southern sampling areas were smaller, suggesting that forest fragmentation was reduced in southern vs. northern regions.
Ananian, Viviana; Tozzo, Pamela; Ponzano, Elena; Nitti, Donato; Rodriguez, Daniele; Caenazzo, Luciana
2011-05-01
In certain circumstances, tumour tissue specimens are the only DNA resource available for forensic DNA analysis. However, cancer tissues can show microsatellite instability and loss of heterozygosity which, if concerning the short tandem repeats (STRs) used in the forensic field, can cause misinterpretation of the results. Moreover, though formalin-fixed paraffin-embedded tissues (FFPET) represent a large resource for these analyses, the quality of the DNA obtained from this kind of specimen can be an important limit. In this study, we evaluated the use of tumoural tissue as biological material for the determination of genetic profiles in the forensic field, highlighting which STR polymorphisms are more susceptible to tumour genetic alterations and which of the analysed tumours show a higher genetic variability. The analyses were conducted on samples of the same tissues conserved in different storage conditions, to compare genetic profiles obtained by frozen tissues and formalin-fixed paraffin-embedded tissues. The importance of this study is due to the large number of specimens analysed (122), the large number of polymorphisms analysed for each specimen (39), and the possibility to compare, many years after storage, the same tissue frozen and formalin-fixed paraffin-embedded. In the comparison between the genetic profiles of frozen tumour tissues and FFPET, the same genetic alterations have been reported in both kinds of specimens. However, FFPET showed new alterations. We conclude that the use of FFPET requires greater attention than frozen tissues in the results interpretation and great care in both pre-extraction and extraction processes.
The effects of stress and sex on selection, genetic covariance, and the evolutionary response.
Holman, L; Jacomb, F
2017-10-01
The capacity of a population to adapt to selection (evolvability) depends on whether the structure of genetic variation permits the evolution of fitter trait combinations. Selection, genetic variance and genetic covariance can change under environmental stress, and males and females are not genetically independent, yet the combined effects of stress and dioecy on evolvability are not well understood. Here, we estimate selection, genetic (co)variance and evolvability in both sexes of Tribolium castaneum flour beetles under stressful and benign conditions, using a half-sib breeding design. Although stress uncovered substantial latent heritability, stress also affected genetic covariance, such that evolvability remained low under stress. Sexual selection on males and natural selection on females favoured a similar phenotype, and there was positive intersex genetic covariance. Consequently, sexual selection on males augmented adaptation in females, and intralocus sexual conflict was weak or absent. This study highlights that increased heritability does not necessarily increase evolvability, suggests that selection can deplete genetic variance for multivariate trait combinations with strong effects on fitness, and tests the recent hypothesis that sexual conflict is weaker in stressful or novel environments. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Lewis, G J; Plomin, R
2015-07-01
Although behavioural problems (e.g., anxiety, conduct, hyperactivity, peer problems) are known to be heritable both in early childhood and in adolescence, limited work has examined prediction across these ages, and none using a genetically informative sample. We examined, first, whether parental ratings of behavioural problems (indexed by the Strengths and Difficulties questionnaire) at ages 4, 7, 9, 12, and 16 years were stable across these ages. Second, we examined the extent to which stability reflected genetic or environmental effects through multivariate quantitative genetic analysis on data from a large (n > 3000) population (UK) sample of monozygotic and dizygotic twins. Behavioural problems in early childhood (age 4 years) showed significant associations with the corresponding behavioural problem at all subsequent ages. Moreover, stable genetic influences were observed across ages, indicating that biological bases underlying behavioural problems in adolescence are underpinned by genetic influences expressed as early as age 4 years. However, genetic and environmental innovations were also observed at each age. These observations indicate that genetic factors are important for understanding stable individual differences in behavioural problems across childhood and adolescence, although novel genetic influences also facilitate change in such behaviours.
Multi-locus Analyses Reveal Four Giraffe Species Instead of One.
Fennessy, Julian; Bidon, Tobias; Reuss, Friederike; Kumar, Vikas; Elkan, Paul; Nilsson, Maria A; Vamberger, Melita; Fritz, Uwe; Janke, Axel
2016-09-26
Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies
ERIC Educational Resources Information Center
Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.
2012-01-01
In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…
Yi, Xin; Cheng, Jingye; Jiang, Zhengning; Hu, Wenjing; Bie, Tongde; Gao, Derong; Li, Dongsheng; Wu, Ronglin; Li, Yuling; Chen, Shulin; Cheng, Xiaoming; Liu, Jian; Zhang, Yong; Cheng, Shunhe
2018-01-01
Fusarium head blight (FHB) is a destructive wheat disease present throughout the world, and host resistance is an effective and economical strategy used to control FHB. Lack of adequate resistance resource is still a main bottleneck for FHB genetics and wheat breeding research. The synthetic-derived bread wheat line C615, which does not carry the Fhb1 gene, is a promising source of FHB resistance for breeding. A population of 198 recombinant inbred lines (RILs) produced by crossing C615 with the susceptible cultivar Yangmai 13 was evaluated for FHB response using point and spray inoculations. As the disease phenotype is frequently complicated by other agronomic traits, we used both traditional and multivariate conditional QTL mapping approaches to investigate the genetic relationships (at the individual QTL level) between FHB resistance and plant height (PH), spike compactness (SC), and days to flowering (FD). A linkage map was constructed from 3,901 polymorphic SNP markers, which covered 2,549.2 cM. Traditional and conditional QTL mapping analyses found 13 and 22 QTL for FHB, respectively; 10 were identified by both methods. Among these 10, three QTL from C615 were detected in multiple years; these QTL were located on chromosomes 2AL, 2DS, and 2DL. Conditional QTL mapping analysis indicated that, at the QTL level, SC strongly influenced FHB in point inoculation; whereas PH and SC contributed more to FHB than did FD in spray inoculation. The three stable QTL (QFhbs-jaas.2AL, QFhbp-jaas.2DS, and QFhbp-jaas.2DL) for FHB were partly affected by or were independent of the three agronomic traits. The QTL detected in this study improve our understanding of the genetic relationships between FHB response and related traits at the QTL level and provide useful information for marker-assisted selection for the improvement of FHB resistance in breeding. PMID:29780395
Yi, Xin; Cheng, Jingye; Jiang, Zhengning; Hu, Wenjing; Bie, Tongde; Gao, Derong; Li, Dongsheng; Wu, Ronglin; Li, Yuling; Chen, Shulin; Cheng, Xiaoming; Liu, Jian; Zhang, Yong; Cheng, Shunhe
2018-01-01
Fusarium head blight (FHB) is a destructive wheat disease present throughout the world, and host resistance is an effective and economical strategy used to control FHB. Lack of adequate resistance resource is still a main bottleneck for FHB genetics and wheat breeding research. The synthetic-derived bread wheat line C615, which does not carry the Fhb1 gene, is a promising source of FHB resistance for breeding. A population of 198 recombinant inbred lines (RILs) produced by crossing C615 with the susceptible cultivar Yangmai 13 was evaluated for FHB response using point and spray inoculations. As the disease phenotype is frequently complicated by other agronomic traits, we used both traditional and multivariate conditional QTL mapping approaches to investigate the genetic relationships (at the individual QTL level) between FHB resistance and plant height (PH), spike compactness (SC), and days to flowering (FD). A linkage map was constructed from 3,901 polymorphic SNP markers, which covered 2,549.2 cM. Traditional and conditional QTL mapping analyses found 13 and 22 QTL for FHB, respectively; 10 were identified by both methods. Among these 10, three QTL from C615 were detected in multiple years; these QTL were located on chromosomes 2AL, 2DS, and 2DL. Conditional QTL mapping analysis indicated that, at the QTL level, SC strongly influenced FHB in point inoculation; whereas PH and SC contributed more to FHB than did FD in spray inoculation. The three stable QTL ( QFhbs-jaas.2AL, QFhbp-jaas.2DS , and QFhbp-jaas.2DL ) for FHB were partly affected by or were independent of the three agronomic traits. The QTL detected in this study improve our understanding of the genetic relationships between FHB response and related traits at the QTL level and provide useful information for marker-assisted selection for the improvement of FHB resistance in breeding.