Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng
2013-05-01
Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.
Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S
2015-09-01
Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.
MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)
We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...
Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E
2017-11-10
A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.
An R2 statistic for fixed effects in the linear mixed model.
Edwards, Lloyd J; Muller, Keith E; Wolfinger, Russell D; Qaqish, Bahjat F; Schabenberger, Oliver
2008-12-20
Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R(2) statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R(2) statistic for the linear mixed model by using only a single model. The proposed R(2) statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model. The R(2) statistic arises as a 1-1 function of an appropriate F statistic for testing all fixed effects (except typically the intercept) in a full model. The statistic compares the full model with a null model with all fixed effects deleted (except typically the intercept) while retaining exactly the same covariance structure. Furthermore, the R(2) statistic leads immediately to a natural definition of a partial R(2) statistic. A mixed model in which ethnicity gives a very small p-value as a longitudinal predictor of blood pressure (BP) compellingly illustrates the value of the statistic. In sharp contrast to the extreme p-value, a very small R(2) , a measure of statistical and scientific importance, indicates that ethnicity has an almost negligible association with the repeated BP outcomes for the study.
Matos, Larissa A.; Bandyopadhyay, Dipankar; Castro, Luis M.; Lachos, Victor H.
2015-01-01
In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyse these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013b) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes. PMID:26190871
Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.
Lin, Tsung-I; Wang, Wan-Lun
2017-10-01
In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yang, James J; Williams, L Keoki; Buu, Anne
2017-08-24
A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.
Multivariate Longitudinal Analysis with Bivariate Correlation Test
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692
Multivariate Longitudinal Analysis with Bivariate Correlation Test.
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.
Multivariate statistical approach to estimate mixing proportions for unknown end members
Valder, Joshua F.; Long, Andrew J.; Davis, Arden D.; Kenner, Scott J.
2012-01-01
A multivariate statistical method is presented, which includes principal components analysis (PCA) and an end-member mixing model to estimate unknown end-member hydrochemical compositions and the relative mixing proportions of those end members in mixed waters. PCA, together with the Hotelling T2 statistic and a conceptual model of groundwater flow and mixing, was used in selecting samples that best approximate end members, which then were used as initial values in optimization of the end-member mixing model. This method was tested on controlled datasets (i.e., true values of estimates were known a priori) and found effective in estimating these end members and mixing proportions. The controlled datasets included synthetically generated hydrochemical data, synthetically generated mixing proportions, and laboratory analyses of sample mixtures, which were used in an evaluation of the effectiveness of this method for potential use in actual hydrological settings. For three different scenarios tested, correlation coefficients (R2) for linear regression between the estimated and known values ranged from 0.968 to 0.993 for mixing proportions and from 0.839 to 0.998 for end-member compositions. The method also was applied to field data from a study of end-member mixing in groundwater as a field example and partial method validation.
A mixed model for the relationship between climate and human cranial form.
Katz, David C; Grote, Mark N; Weaver, Timothy D
2016-08-01
We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Wang, Ming; Li, Zheng; Lee, Eun Young; Lewis, Mechelle M; Zhang, Lijun; Sterling, Nicholas W; Wagner, Daymond; Eslinger, Paul; Du, Guangwei; Huang, Xuemei
2017-09-25
It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data. Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve. First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals. Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD. The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).
ERIC Educational Resources Information Center
Malin, Heather; Han, Hyemin; Liauw, Indrawati
2017-01-01
This study investigated the effects of internal and demographic variables on civic development in late adolescence using the construct "civic purpose." We conducted surveys on civic engagement with 480 high school seniors, and surveyed them again 2 years later. Using multivariate regression and linear mixed models, we tested the main…
Robust Nonlinear Feedback Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)
2001-01-01
This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.
Multivariate meta-analysis using individual participant data
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2016-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484
Koerner, Tess K; Zhang, Yang
2017-02-27
Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers.
POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models
Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.
2014-01-01
The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516
Multivariate meta-analysis using individual participant data.
Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R
2015-06-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
Zhang, Peng; Luo, Dandan; Li, Pengfei; Sharpsten, Lucie; Medeiros, Felipe A.
2015-01-01
Glaucoma is a progressive disease due to damage in the optic nerve with associated functional losses. Although the relationship between structural and functional progression in glaucoma is well established, there is disagreement on how this association evolves over time. In addressing this issue, we propose a new class of non-Gaussian linear-mixed models to estimate the correlations among subject-specific effects in multivariate longitudinal studies with a skewed distribution of random effects, to be used in a study of glaucoma. This class provides an efficient estimation of subject-specific effects by modeling the skewed random effects through the log-gamma distribution. It also provides more reliable estimates of the correlations between the random effects. To validate the log-gamma assumption against the usual normality assumption of the random effects, we propose a lack-of-fit test using the profile likelihood function of the shape parameter. We apply this method to data from a prospective observation study, the Diagnostic Innovations in Glaucoma Study, to present a statistically significant association between structural and functional change rates that leads to a better understanding of the progression of glaucoma over time. PMID:26075565
Factors associated with parasite dominance in fishes from Brazil.
Amarante, Cristina Fernandes do; Tassinari, Wagner de Souza; Luque, Jose Luis; Pereira, Maria Julia Salim
2016-06-14
The present study used regression models to evaluate the existence of factors that may influence the numerical parasite dominance with an epidemiological approximation. A database including 3,746 fish specimens and their respective parasites were used to evaluate the relationship between parasite dominance and biotic characteristics inherent to the studied hosts and the parasite taxa. Multivariate, classical, and mixed effects linear regression models were fitted. The calculations were performed using R software (95% CI). In the fitting of the classical multiple linear regression model, freshwater and planktivorous fish species and body length, as well as the species of the taxa Trematoda, Monogenea, and Hirudinea, were associated with parasite dominance. However, the fitting of the mixed effects model showed that the body length of the host and the species of the taxa Nematoda, Trematoda, Monogenea, Hirudinea, and Crustacea were significantly associated with parasite dominance. Studies that consider specific biological aspects of the hosts and parasites should expand the knowledge regarding factors that influence the numerical dominance of fish in Brazil. The use of a mixed model shows, once again, the importance of the appropriate use of a model correlated with the characteristics of the data to obtain consistent results.
Multivariate longitudinal data analysis with censored and intermittent missing responses.
Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun
2018-05-08
The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.
Koerner, Tess K.; Zhang, Yang
2017-01-01
Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers. PMID:28264422
Diagnostic tools for mixing models of stream water chemistry
Hooper, Richard P.
2003-01-01
Mixing models provide a useful null hypothesis against which to evaluate processes controlling stream water chemical data. Because conservative mixing of end‐members with constant concentration is a linear process, a number of simple mathematical and multivariate statistical methods can be applied to this problem. Although mixing models have been most typically used in the context of mixing soil and groundwater end‐members, an extension of the mathematics of mixing models is presented that assesses the “fit” of a multivariate data set to a lower dimensional mixing subspace without the need for explicitly identified end‐members. Diagnostic tools are developed to determine the approximate rank of the data set and to assess lack of fit of the data. This permits identification of processes that violate the assumptions of the mixing model and can suggest the dominant processes controlling stream water chemical variation. These same diagnostic tools can be used to assess the fit of the chemistry of one site into the mixing subspace of a different site, thereby permitting an assessment of the consistency of controlling end‐members across sites. This technique is applied to a number of sites at the Panola Mountain Research Watershed located near Atlanta, Georgia.
Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O
2018-01-01
Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.
ERIC Educational Resources Information Center
Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.
2008-01-01
This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…
Implementing Restricted Maximum Likelihood Estimation in Structural Equation Models
ERIC Educational Resources Information Center
Cheung, Mike W.-L.
2013-01-01
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…
The impact of the National Denture Service on oral health-related quality of life among poor elders.
Ha, J E; Heo, Y J; Jin, B H; Paik, D I; Bae, K H
2012-08-01
The objective of this study was to assess the effects of the Korean National Denture Service (NDS) for poor elderly people requiring dentures on oral health-related quality of life (OHRQOL). Data from follow-up studies were collected from 439 subjects at eight public health centres who answered every question of a questionnaire, and the OHRQOL was measured at the baseline and at 3-month follow-up after receiving the NDS according to the type of denture provision. The multivariate linear mixed model with a public health centre as a random effect for the score change of Oral Health Impact Profile (OHIP)-14K was carried out to confirm the factors related to the improvement in OHRQOL. The mean OHIP-14K was 28.60 at the baseline time points, and there was a decrease in the OHIP-14 scores to 21.14 ± 12.52 at the 3-month follow-up of the removable partial denture beneficiaries. The changes in OHIP-14K among complete denture beneficiaries were 21.53 ± 12.01 for previously dentate subjects and 22.54 ± 11.12 for edentate subjects. The multivariate linear mixed model of dentate subjects demonstrated that the improvement in the OHRQOL was associated with the number of remaining teeth, satisfaction with denture and self-reported oral health status after 3 months. In the case of the edentate model, satisfaction with denture was the only factor related to the improvement in OHRQOL. This study revealed considerable improvement in OHRQOL among poor elderly people after NDS. Satisfaction with provision of dentures was associated with improvement in the OHRQOL. © 2012 Blackwell Publishing Ltd.
Queiroz, Valterlinda A O; Assis, Ana Marlúcia O; Pinheiro, Sandra Maria C; Ribeiro, Hugo C Ribeiro
2012-01-01
To investigate covariates that could affect the variation in mean length/age z scores in the first year of life of children born full term with normal birth weight. This was a prospective study of a cohort of mother-infant pairs recruited at public maternity units in two municipalities in the Brazilian state of Bahia, from March 2005 to October 2006. This paper reports the results for linear growth of 489 children who were followed-up for the first 12 months of their lives. A mixed-effect regression model was used to investigate the influence of covariates of mean length/age z score during the first year of life. The multivariate mixed effect analysis indicated that mothers not cohabiting with a partner (beta = 0.2347; p = 0.004) and increased duration of exclusive breastfeeding (beta = 0.0031; p < 0.001) had a positive impact, whereas mother's height less than 150 cm (beta = -0.4393; p < 0.001), birth weight of 2,500-2,999 g (beta = -0.8084; p < 0.001) and anemia in the child (beta = -0.0875; p < 0.001) all had a negative impact on the variation in estimated length/age z score. Therefore, the results of this study indicate that short maternal stature, birth weight < 3,000 g and anemia in the infant had a negative effect on linear growth during the first year of life, whereas longer duration of exclusive breastfeeding and mothers who did not cohabit with a partner had a positive effect.
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
Jaffa, Miran A; Gebregziabher, Mulugeta; Jaffa, Ayad A
2015-06-14
Renal transplant patients are mandated to have continuous assessment of their kidney function over time to monitor disease progression determined by changes in blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Multivariate analysis of these outcomes that aims at identifying the differential factors that affect disease progression is of great clinical significance. Thus our study aims at demonstrating the application of different joint modeling approaches with random coefficients on a cohort of renal transplant patients and presenting a comparison of their performance through a pseudo-simulation study. The objective of this comparison is to identify the model with best performance and to determine whether accuracy compensates for complexity in the different multivariate joint models. We propose a novel application of multivariate Generalized Linear Mixed Models (mGLMM) to analyze multiple longitudinal kidney function outcomes collected over 3 years on a cohort of 110 renal transplantation patients. The correlated outcomes BUN, Cr, and eGFR and the effect of various covariates such patient's gender, age and race on these markers was determined holistically using different mGLMMs. The performance of the various mGLMMs that encompass shared random intercept (SHRI), shared random intercept and slope (SHRIS), separate random intercept (SPRI) and separate random intercept and slope (SPRIS) was assessed to identify the one that has the best fit and most accurate estimates. A bootstrap pseudo-simulation study was conducted to gauge the tradeoff between the complexity and accuracy of the models. Accuracy was determined using two measures; the mean of the differences between the estimates of the bootstrapped datasets and the true beta obtained from the application of each model on the renal dataset, and the mean of the square of these differences. The results showed that SPRI provided most accurate estimates and did not exhibit any computational or convergence problem. Higher accuracy was demonstrated when the level of complexity increased from shared random coefficient models to the separate random coefficient alternatives with SPRI showing to have the best fit and most accurate estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupšys, P.
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2016-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2017-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future. PMID:28167896
ERIC Educational Resources Information Center
Ker, H. W.
2014-01-01
Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…
Haem, Elham; Harling, Kajsa; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Karlsson, Mats O
2017-02-01
One important aim in population pharmacokinetics (PK) and pharmacodynamics is identification and quantification of the relationships between the parameters and covariates. Lasso has been suggested as a technique for simultaneous estimation and covariate selection. In linear regression, it has been shown that Lasso possesses no oracle properties, which means it asymptotically performs as though the true underlying model was given in advance. Adaptive Lasso (ALasso) with appropriate initial weights is claimed to possess oracle properties; however, it can lead to poor predictive performance when there is multicollinearity between covariates. This simulation study implemented a new version of ALasso, called adjusted ALasso (AALasso), to take into account the ratio of the standard error of the maximum likelihood (ML) estimator to the ML coefficient as the initial weight in ALasso to deal with multicollinearity in non-linear mixed-effect models. The performance of AALasso was compared with that of ALasso and Lasso. PK data was simulated in four set-ups from a one-compartment bolus input model. Covariates were created by sampling from a multivariate standard normal distribution with no, low (0.2), moderate (0.5) or high (0.7) correlation. The true covariates influenced only clearance at different magnitudes. AALasso, ALasso and Lasso were compared in terms of mean absolute prediction error and error of the estimated covariate coefficient. The results show that AALasso performed better in small data sets, even in those in which a high correlation existed between covariates. This makes AALasso a promising method for covariate selection in nonlinear mixed-effect models.
Hossain, Ahmed; Beyene, Joseph
2014-01-01
This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.
Williams, L. Keoki; Buu, Anne
2017-01-01
We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
Lefcheck, Jonathan S; Duffy, J Emmett
2015-11-01
The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.
Estimating correlation between multivariate longitudinal data in the presence of heterogeneity.
Gao, Feng; Philip Miller, J; Xiong, Chengjie; Luo, Jingqin; Beiser, Julia A; Chen, Ling; Gordon, Mae O
2017-08-17
Estimating correlation coefficients among outcomes is one of the most important analytical tasks in epidemiological and clinical research. Availability of multivariate longitudinal data presents a unique opportunity to assess joint evolution of outcomes over time. Bivariate linear mixed model (BLMM) provides a versatile tool with regard to assessing correlation. However, BLMMs often assume that all individuals are drawn from a single homogenous population where the individual trajectories are distributed smoothly around population average. Using longitudinal mean deviation (MD) and visual acuity (VA) from the Ocular Hypertension Treatment Study (OHTS), we demonstrated strategies to better understand the correlation between multivariate longitudinal data in the presence of potential heterogeneity. Conditional correlation (i.e., marginal correlation given random effects) was calculated to describe how the association between longitudinal outcomes evolved over time within specific subpopulation. The impact of heterogeneity on correlation was also assessed by simulated data. There was a significant positive correlation in both random intercepts (ρ = 0.278, 95% CI: 0.121-0.420) and random slopes (ρ = 0.579, 95% CI: 0.349-0.810) between longitudinal MD and VA, and the strength of correlation constantly increased over time. However, conditional correlation and simulation studies revealed that the correlation was induced primarily by participants with rapid deteriorating MD who only accounted for a small fraction of total samples. Conditional correlation given random effects provides a robust estimate to describe the correlation between multivariate longitudinal data in the presence of unobserved heterogeneity (NCT00000125).
Kamstra, J I; Dijkstra, P U; van Leeuwen, M; Roodenburg, J L N; Langendijk, J A
2015-05-01
Aims of this prospective cohort study were (1) to analyze the course of mouth opening up to 48months post-radiotherapy (RT), (2) to assess risk factors predicting decrease in mouth opening, and (3) to develop a multivariable prediction model for change in mouth opening in a large sample of patients irradiated for head and neck cancer. Mouth opening was measured prior to RT (baseline) and at 6, 12, 18, 24, 36, and 48months post-RT. The primary outcome variable was mouth opening. Potential risk factors were entered into a linear mixed model analysis (manual backward-stepwise elimination) to create a multivariable prediction model. The interaction terms between time and risk factors that were significantly related to mouth opening were explored. The study population consisted of 641 patients: 70.4% male, mean age at baseline 62.3years (sd 12.5). Primary tumors were predominantly located in the oro- and nasopharynx (25.3%) and oral cavity (20.6%). Mean mouth opening at baseline was 38.7mm (sd 10.8). Six months post-RT, mean mouth opening was smallest, 36.7mm (sd 10.0). In the linear mixed model analysis, mouth opening was statistically predicted by the location of the tumor, natural logarithm of time post-RT in months (Ln (months)), gender, baseline mouth opening, and baseline age. All main effects interacted with Ln (months). The mean mouth opening decreased slightly over time. Mouth opening was predicted by tumor location, time, gender, baseline mouth opening, and age. The model can be used to predict mouth opening. Copyright © 2015 Elsevier Ltd. All rights reserved.
Predictive and mechanistic multivariate linear regression models for reaction development
Santiago, Celine B.; Guo, Jing-Yao
2018-01-01
Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711
Mosing, Martina; Waldmann, Andreas D.; MacFarlane, Paul; Iff, Samuel; Auer, Ulrike; Bohm, Stephan H.; Bettschart-Wolfensberger, Regula; Bardell, David
2016-01-01
This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT). Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline) and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding), the fraction of total tidal ventilation within each of four stacked regions of interest (ROI) (distribution of ventilation) and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at p<0.05. All horses demonstrated inspiratory breath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia. PMID:27331910
On the Bayesian Treed Multivariate Gaussian Process with Linear Model of Coregionalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konomi, Bledar A.; Karagiannis, Georgios; Lin, Guang
2015-02-01
The Bayesian treed Gaussian process (BTGP) has gained popularity in recent years because it provides a straightforward mechanism for modeling non-stationary data and can alleviate computational demands by fitting models to less data. The extension of BTGP to the multivariate setting requires us to model the cross-covariance and to propose efficient algorithms that can deal with trans-dimensional MCMC moves. In this paper we extend the cross-covariance of the Bayesian treed multivariate Gaussian process (BTMGP) to that of linear model of Coregionalization (LMC) cross-covariances. Different strategies have been developed to improve the MCMC mixing and invert smaller matrices in the Bayesianmore » inference. Moreover, we compare the proposed BTMGP with existing multiple BTGP and BTMGP in test cases and multiphase flow computer experiment in a full scale regenerator of a carbon capture unit. The use of the BTMGP with LMC cross-covariance helped to predict the computer experiments relatively better than existing competitors. The proposed model has a wide variety of applications, such as computer experiments and environmental data. In the case of computer experiments we also develop an adaptive sampling strategy for the BTMGP with LMC cross-covariance function.« less
Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.
Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao
2016-11-30
Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Stewart analysis of apparently normal acid-base state in the critically ill.
Moviat, Miriam; van den Boogaard, Mark; Intven, Femke; van der Voort, Peter; van der Hoeven, Hans; Pickkers, Peter
2013-12-01
This study aimed to describe Stewart parameters in critically ill patients with an apparently normal acid-base state and to determine the incidence of mixed metabolic acid-base disorders in these patients. We conducted a prospective, observational multicenter study of 312 consecutive Dutch intensive care unit patients with normal pH (7.35 ≤ pH ≤ 7.45) on days 3 to 5. Apparent (SIDa) and effective strong ion difference (SIDe) and strong ion gap (SIG) were calculated from 3 consecutive arterial blood samples. Multivariate linear regression analysis was performed to analyze factors potentially associated with levels of SIDa and SIG. A total of 137 patients (44%) were identified with an apparently normal acid-base state (normal pH and -2 < base excess < 2 and 35 < PaCO2 < 45 mm Hg). In this group, SIDa values were 36.6 ± 3.6 mEq/L, resulting from hyperchloremia (109 ± 4.6 mEq/L, sodium-chloride difference 30.0 ± 3.6 mEq/L); SIDe values were 33.5 ± 2.3 mEq/L, resulting from hypoalbuminemia (24.0 ± 6.2 g/L); and SIG values were 3.1 ± 3.1 mEq/L. During admission, base excess increased secondary to a decrease in SIG levels and, subsequently, an increase in SIDa levels. Levels of SIDa were associated with positive cation load, chloride load, and admission SIDa (multivariate r(2) = 0.40, P < .001). Levels of SIG were associated with kidney function, sepsis, and SIG levels at intensive care unit admission (multivariate r(2) = 0.28, P < .001). Intensive care unit patients with an apparently normal acid-base state have an underlying mixed metabolic acid-base disorder characterized by acidifying effects of a low SIDa (caused by hyperchloremia) and high SIG combined with the alkalinizing effect of hypoalbuminemia. © 2013.
Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.
Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P
2017-03-01
The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.
A mixed-effects regression model for longitudinal multivariate ordinal data.
Liu, Li C; Hedeker, Donald
2006-03-01
A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model.
Antimicrobial Drug Prescription and Neisseria gonorrhoeae Susceptibility, United States, 2005–2013
Bartoces, Monina G.; Soge, Olusegun O.; Riedel, Stefan; Kubin, Grace; Del Rio, Carlos; Papp, John R.; Hook, Edward W.; Hicks, Lauri A.
2017-01-01
We investigated whether outpatient antimicrobial drug prescribing is associated with Neisseria gonorrhoeae antimicrobial drug susceptibility in the United States. Using susceptibility data from the Gonococcal Isolate Surveillance Project during 2005–2013 and QuintilesIMS data on outpatient cephalosporin, macrolide, and fluoroquinolone prescribing, we constructed multivariable linear mixed models for each antimicrobial agent with 1-year lagged annual prescribing per 1,000 persons as the exposure and geometric mean MIC as the outcome of interest. Multivariable models did not demonstrate associations between antimicrobial drug prescribing and N. gonorrhoeae susceptibility for any of the studied antimicrobial drugs during 2005–2013. Elucidation of epidemiologic factors contributing to resistance, including further investigation of the potential role of antimicrobial drug use, is needed. PMID:28930001
Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert
2012-01-01
Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748
Global determinants of mortality in under 5s: 10 year worldwide longitudinal study.
Hanf, Matthieu; Nacher, Mathieu; Guihenneuc, Chantal; Tubert-Bitter, Pascale; Chavance, Michel
2013-11-08
To assess at country level the association of mortality in under 5s with a large set of determinants. Longitudinal study. 193 United Nations member countries, 2000-09. Yearly data between 2000 and 2009 based on 12 world development indicators were used in a multivariable general additive mixed model allowing for non-linear relations and lag effects. National rate of deaths in under 5s per 1000 live births The model retained the variables: gross domestic product per capita; percentage of the population having access to improved water sources, having access to improved sanitation facilities, and living in urban areas; adolescent fertility rate; public health expenditure per capita; prevalence of HIV; perceived level of corruption and of violence; and mean number of years in school for women of reproductive age. Most of these variables exhibited non-linear behaviours and lag effects. By providing a unified framework for mortality in under 5s, encompassing both high and low income countries this study showed non-linear behaviours and lag effects of known or suspected determinants of mortality in this age group. Although some of the determinants presented a linear action on log mortality indicating that whatever the context, acting on them would be a pertinent strategy to effectively reduce mortality, others had a threshold based relation potentially mediated by lag effects. These findings could help designing efficient strategies to achieve maximum progress towards millennium development goal 4, which aims to reduce mortality in under 5s by two thirds between 1990 and 2015.
Power analysis to detect treatment effects in longitudinal clinical trials for Alzheimer's disease.
Huang, Zhiyue; Muniz-Terrera, Graciela; Tom, Brian D M
2017-09-01
Assessing cognitive and functional changes at the early stage of Alzheimer's disease (AD) and detecting treatment effects in clinical trials for early AD are challenging. Under the assumption that transformed versions of the Mini-Mental State Examination, the Clinical Dementia Rating Scale-Sum of Boxes, and the Alzheimer's Disease Assessment Scale-Cognitive Subscale tests'/components' scores are from a multivariate linear mixed-effects model, we calculated the sample sizes required to detect treatment effects on the annual rates of change in these three components in clinical trials for participants with mild cognitive impairment. Our results suggest that a large number of participants would be required to detect a clinically meaningful treatment effect in a population with preclinical or prodromal Alzheimer's disease. We found that the transformed Mini-Mental State Examination is more sensitive for detecting treatment effects in early AD than the transformed Clinical Dementia Rating Scale-Sum of Boxes and Alzheimer's Disease Assessment Scale-Cognitive Subscale. The use of optimal weights to construct powerful test statistics or sensitive composite scores/endpoints can reduce the required sample sizes needed for clinical trials. Consideration of the multivariate/joint distribution of components' scores rather than the distribution of a single composite score when designing clinical trials can lead to an increase in power and reduced sample sizes for detecting treatment effects in clinical trials for early AD.
Model Selection with the Linear Mixed Model for Longitudinal Data
ERIC Educational Resources Information Center
Ryoo, Ji Hoon
2011-01-01
Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…
KMgene: a unified R package for gene-based association analysis for complex traits.
Yan, Qi; Fang, Zhou; Chen, Wei; Stegle, Oliver
2018-02-09
In this report, we introduce an R package KMgene for performing gene-based association tests for familial, multivariate or longitudinal traits using kernel machine (KM) regression under a generalized linear mixed model (GLMM) framework. Extensive simulations were performed to evaluate the validity of the approaches implemented in KMgene. http://cran.r-project.org/web/packages/KMgene. qi.yan@chp.edu or wei.chen@chp.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.
Functional Mixed Effects Model for Small Area Estimation.
Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou
2016-09-01
Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.
Estimation of the linear mixed integrated Ornstein–Uhlenbeck model
Hughes, Rachael A.; Kenward, Michael G.; Sterne, Jonathan A. C.; Tilling, Kate
2017-01-01
ABSTRACT The linear mixed model with an added integrated Ornstein–Uhlenbeck (IOU) process (linear mixed IOU model) allows for serial correlation and estimation of the degree of derivative tracking. It is rarely used, partly due to the lack of available software. We implemented the linear mixed IOU model in Stata and using simulations we assessed the feasibility of fitting the model by restricted maximum likelihood when applied to balanced and unbalanced data. We compared different (1) optimization algorithms, (2) parameterizations of the IOU process, (3) data structures and (4) random-effects structures. Fitting the model was practical and feasible when applied to large and moderately sized balanced datasets (20,000 and 500 observations), and large unbalanced datasets with (non-informative) dropout and intermittent missingness. Analysis of a real dataset showed that the linear mixed IOU model was a better fit to the data than the standard linear mixed model (i.e. independent within-subject errors with constant variance). PMID:28515536
Multivariate Models for Normal and Binary Responses in Intervention Studies
ERIC Educational Resources Information Center
Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen
2016-01-01
Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…
Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H
2016-01-01
Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.
Moayyeri, Alireza; Hart, Deborah J; Snieder, Harold; Hammond, Christopher J; Spector, Timothy D; Steves, Claire J
2016-02-01
Little is known about the extent to which aging trajectories of different body systems share common sources of variance. We here present a large twin study investigating the trajectories of change in five systems: cardiovascular, respiratory, skeletal, morphometric, and metabolic. Longitudinal clinical data were collected on 3,508 female twins in the TwinsUK registry (complete pairs:740 monozygotic (MZ), 986 dizygotic (DZ), mean age at entry 48.9 ± 10.4, range 18-75 years; mean follow-up 10.2 ± 2.8 years, range 4-17.8 years). Panel data on multiple age-related variables were used to estimate biological ages for each individual at each time point, in linear mixed effects models. A weighted average approach was used to combine variables within predefined body system groups. Aging trajectories for each system in each individual were then constructed using linear modeling. Multivariate structural equation modeling of these aging trajectories showed low genetic effects (heritability), ranging from 2% in metabolic aging to 22% in cardiovascular aging. However, we found a significant effect of shared environmental factors on the variations in aging trajectories in cardiovascular (54%), skeletal (34%), morphometric (53%), and metabolic systems (53%). The remainder was due to environmental factors unique to each individual plus error. Multivariate Cholesky decomposition showed that among aging trajectories for various body systems there were significant and substantial correlations between the unique environmental latent factors as well as shared environmental factors. However, there was no evidence for a single common factor for aging. This study, the first of its kind in aging, suggests that diverse organ systems share non-genetic sources of variance for aging trajectories. Confirmatory studies are needed using population-based twin cohorts and alternative methods of handling missing data.
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Sliding Mode Control of a Thermal Mixing Process
NASA Technical Reports Server (NTRS)
Richter, Hanz; Figueroa, Fernando
2004-01-01
In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.
Ramamoorthy, Venkataraghavan; Campa, Adriana; Rubens, Muni; Martinez, Sabrina S; Fleetwood, Christina; Stewart, Tiffanie; Liuzzi, Juan P; George, Florence; Khan, Hafiz; Li, Yinghui; Baum, Marianna K
2017-05-01
Although there are many studies on adverse health effects of substance use and HIV disease progression, similar studies about caffeine consumption are few. In this study, we investigated the effects of caffeine on immunological and virological markers of HIV disease progression. A convenience sample of 130 clinically stable people living with HIV/AIDS on antiretroviral therapy (65 consuming ≤250 mg/day and 65 consuming >250 mg/day of caffeine) were recruited from the Miami Adult Studies on HIV (MASH) cohort. This study included a baseline and 3-month follow-up visit. Demographics, body composition measures, substance use, Modified Caffeine Consumption Questionnaire (MCCQ), and CD4 count and HIV viral load were obtained for all participants. Multivariable linear regression and Linear Mixed Models (LMMs) were used to understand the effect of caffeine consumption on CD4 count and HIV viral load. The mean age of the cohort was 47.9 ± 6.4 years, 60.8% were men and 75.4% were African Americans. All participants were on ART during both the visits. Mean caffeine intake at baseline was 337.6 ± 305.0 mg/day and did not change significantly at the 3-month follow-up visit. Multivariable linear regressions after adjustment for covariates showed significant association between caffeine consumption and higher CD4 count (β = 1.532, p = 0.049) and lower HIV viral load (β = -1.067, p = 0.048). LMM after adjustment for covariates showed that the relationship between caffeine and CD4 count (β = 1.720, p = 0.042) and HIV viral load (β = -1.389, p = 0.033) continued over time in a dose-response manner. Higher caffeine consumption was associated with higher CD4 cell counts and lower HIV viral loads indicating beneficial effects on HIV disease progression. Further studies examining biochemical effects of caffeine on CD4 cell counts and viral replication need to be done in the future.
The effect of work shift configurations on emergency medical dispatch center response.
Montassier, Emmanuel; Labady, Julien; Andre, Antoine; Potel, Gilles; Berthier, Frederic; Jenvrin, Joel; Penverne, Yann
2015-01-01
It has been proved that emergency medical dispatch centers (EMDC) save lives by promoting an appropriate allocation of emergency medical service resources. Indeed, optimal dispatcher call duration is pivotal to reduce the time gap between the time a call is placed and the delivery of medical care. However, little is known about the impact of work shift configurations (i.e., work shift duration and work shift rotation throughout the day) and dispatcher call duration. Thus, the objective of our study was to assess the effect of work shift configurations on dispatcher call duration. During a 1-year study period, we analyzed the dispatcher call durations for medical and trauma calls during the 4 different work shift rotations (day, morning, evening, and night) and during the 10-hour work shift of each dispatcher in the EMDC of Nantes. We extracted dispatcher call durations from our advanced telephone system, configured with CC Pulse + (Genesys, Alcatel Lucent), and collected them in a custom designed database (Excel, Microsoft). Afterward, we analyzed these data using linear mixed effects models. During the study period, our EMDC received 408,077 calls. Globally, the mean dispatcher call duration was 107 ± 45 seconds. Based on multivariate linear mixed effects models, the dispatcher call duration was affected by night work shift and work shift duration greater than 8 hours, increasing it by about 10 ± 1 seconds and 4 ± 1 seconds, respectively (both p < 0.001). Our study showed that there was a statistically significant difference in dispatcher call duration over work shift rotation and duration, with longer durations seen over night shifts and shifts over 8 hours. While these differences are small and may not have clinical significance, they may have implications for EMDC efficiency.
Variable Importance in Multivariate Group Comparisons.
ERIC Educational Resources Information Center
Huberty, Carl J.; Wisenbaker, Joseph M.
1992-01-01
Interpretations of relative variable importance in multivariate analysis of variance are discussed, with attention to (1) latent construct definition; (2) linear discriminant function scores; and (3) grouping variable effects. Two numerical ranking methods are proposed and compared by the bootstrap approach using two real data sets. (SLD)
Trabecular Meshwork Height in Primary Open-Angle Glaucoma Versus Primary Angle-Closure Glaucoma.
Masis, Marisse; Chen, Rebecca; Porco, Travis; Lin, Shan C
2017-11-01
To determine if trabecular meshwork (TM) height differs between primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) eyes. Prospective, cross-sectional clinical study. Adult patients were consecutively recruited from glaucoma clinics at the University of California, San Francisco, from January 2012 to July 2015. Images were obtained from spectral-domain optical coherence tomography (Cirrus OCT; Carl Zeiss Meditec, Inc, Dublin, California, USA). Univariate and multivariate linear mixed models comparing TM height and glaucoma type were performed to assess the relationship between TM height and glaucoma subtype. Mixed-effects regression was used to adjust for the use of both eyes in some subjects. The study included 260 eyes from 161 subjects, composed of 61 men and 100 women. Mean age was 70 years (SD 11.77). There were 199 eyes (123 patients) in the POAG group and 61 eyes (38 patients) in the PACG group. Mean TM heights in the POAG and PACG groups were 812 ± 13 μm and 732 ± 27 μm, respectively, and the difference was significant in univariate analysis (P = .004) and in multivariate analysis (β = -88.7 [24.05-153.5]; P = .008). In this clinic-based population, trabecular meshwork height is shorter in PACG patients compared to POAG patients. This finding may provide insight into the pathophysiology of angle closure and provide assistance in future diagnosis, prevention, and management of the angle-closure spectrum of disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Postma, Erik; Siitari, Heli; Schwabl, Hubert; Richner, Heinz; Tschirren, Barbara
2014-03-01
Egg components are important mediators of prenatal maternal effects in birds and other oviparous species. Because different egg components can have opposite effects on offspring phenotype, selection is expected to favour their mutual adjustment, resulting in a significant covariation between egg components within and/or among clutches. Here we tested for such correlations between maternally derived yolk immunoglobulins and yolk androgens in great tit (Parus major) eggs using a multivariate mixed-model approach. We found no association between yolk immunoglobulins and yolk androgens within clutches, indicating that within clutches the two egg components are deposited independently. Across clutches, however, there was a significant negative relationship between yolk immunoglobulins and yolk androgens, suggesting that selection has co-adjusted their deposition. Furthermore, an experimental manipulation of ectoparasite load affected patterns of covariance among egg components. Yolk immunoglobulins are known to play an important role in nestling immune defence shortly after hatching, whereas yolk androgens, although having growth-enhancing effects under many environmental conditions, can be immunosuppressive. We therefore speculate that variation in the risk of parasitism may play an important role in shaping optimal egg composition and may lead to the observed pattern of yolk immunoglobulin and yolk androgen deposition across clutches. More generally, our case study exemplifies how multivariate mixed-model methodology presents a flexible tool to not only quantify, but also test patterns of (co)variation across different organisational levels and environments, allowing for powerful hypothesis testing in ecophysiology.
Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth
ERIC Educational Resources Information Center
Jeon, Minjeong
2012-01-01
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
Imatoh, Takuya; Kamimura, Seiichiro; Miyazaki, Motonobu
2017-03-01
It has been reported that adipocytes secrete vascular endothelial growth factor. Therefore, we conducted a 5-year longitudinal epidemiological study to further elucidate the association between vascular endothelial growth factor levels and temporal changes in body mass index. Our study subjects were Japanese male workers, who had regular health check-ups. Vascular endothelial growth factor levels were measured at baseline. To examine the association between vascular endothelial growth factor levels and overweight, we calculated the odds ratio using a multivariate logistic regression model. Moreover, linear mixed effect models were used to assess the association between vascular endothelial growth factor level and temporal changes in body mass index during the 5-year follow-up period. Vascular endothelial growth factor levels were marginally higher in subjects with a body mass index greater than 25 kg/m 2 compared with in those with a body mass index less than 25 kg/m 2 (505.4 vs. 465.5 pg/mL, P = 0.1) and were weakly correlated with leptin levels (β: 0.05, P = 0.07). In multivariate logistic regression, subjects in the highest vascular endothelial growth factor quantile were significantly associated with an increased risk for overweight compared with those in the lowest quantile (odds ratio 1.65, 95 % confidential interval: 1.10-2.50). Moreover P for trend was significant (P for trend = 0.003). However, the linear mixed effect model revealed that vascular endothelial growth factor levels were not associated with changes in body mass index over a 5-year period (quantile 2, β: 0.06, P = 0.46; quantile 3, β: -0.06, P = 0.45; quantile 4, β: -0.10, P = 0.22; quantile 1 as reference). Our results suggested that high vascular endothelial growth factor levels were significantly associated with overweight in Japanese males but high vascular endothelial growth factor levels did not necessarily cause obesity.
Multivariate Strategies in Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Hansen, Lars Kai
2007-01-01
We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.
Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.
Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C
2014-12-01
D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.
2012-01-01
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Elastic properties and optical absorption studies of mixed alkali borogermanate glasses
NASA Astrophysics Data System (ADS)
Taqiullah, S. M.; Ahmmad, Shaik Kareem; Samee, M. A.; Rahman, Syed
2018-05-01
First time the mixed alkali effect (MAE) has been investigated in the glass system xNa2O-(30-x)Li2O-40B2O3- 30GeO2 (0≤x≤30 mol%) through density and optical absorption studies. The present glasses were prepared by melt quench technique. The density of the present glasses varies non-linearly exhibiting mixed alkali effect. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter. From the absorption edge studies, the values of optical band gap energies for all transitions have been evaluated. It was established that the type of electronic transition in the present glass system is indirect allowed. The indirect optical band gap exhibit non-linear behavior with compositional parameter showing the mixed alkali effect.
Comparison of connectivity analyses for resting state EEG data
NASA Astrophysics Data System (ADS)
Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo
2017-06-01
Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
Nikoloulopoulos, Aristidis K
2017-10-01
A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality.
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine
2010-09-01
Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.
Ubara, Yoshifumi; Mise, Koki; Ueno, Toshiharu; Sumida, Keiichi; Yamanouchi, Masayuki; Hayami, Noriko; Hoshino, Junichi; Kawada, Masahiro; Imafuku, Aya; Hiramatsu, Rikako; Hasegawa, Eiko; Sawa, Naoki; Takaichi, Kenmei
2016-01-01
In patients with autosomal dominant polycystic kidney disease (ADPKD), massive renal enlargement is a serious problem. Renal transcatheter arterial embolization (TAE) can reduce renal volume (RV), but effectiveness varies widely, and the reasons remain unclear. We investigated factors affecting renal volume reduction rate (RVRR) after renal TAE in all 449 patients with ADPKD who received renal TAE at Toranomon Hospital from January of 2006 to July of 2013, including 228 men and 221 women (mean age =57.0±9.1 years old). One year after renal TAE, the RVRR ranged from 3.9% to 84.8%, and the least squares mean RVRR calculated using a linear mixed model was 45.5% (95% confidence interval [95% CI], 44.2% to 46.8%). Multivariate analysis using the linear mixed model revealed that RVRR was affected by the presence of large cysts with wall thickening (regression coefficient [RC], −6.10; 95% CI, −9.04 to −3.16; P<0.001), age (RC, −0.82; 95% CI, −1.03 to −0.60; P<0.001), dialysis duration (RC, −0.10; 95% CI, −0.18 to −0.03; P<0.01), systolic BP (RC, 0.39; 95% CI, 0.19 to 0.59; P<0.001), and the number of microcoils used for renal TAE (RC, 1.35; 95% CI, 0.83 to 1.86; P<0.001). Significantly more microcoils were needed to achieve renal TAE in patients with younger age and shorter dialysis duration. In conclusion, cyst wall thickening had an important effect on cyst volume reduction. Renal TAE was more effective in patients who were younger, had shorter dialysis duration, or had hypertension, parameters that might associate with cyst wall stiffness and renal artery blood flow. PMID:26620095
Weaver, Anne M; Parveen, Shahana; Goswami, Doli; Crabtree-Ide, Christina; Rudra, Carole; Yu, Jihnhee; Mu, Lina; Fry, Alicia M; Sharmin, Iffat; Luby, Stephen P; Ram, Pavani K
2017-08-01
Fine particulate matter (PM 2.5 ) is a risk factor for pneumonia; ventilation may be protective. We tested behavioral and structural ventilation interventions on indoor PM 2.5 in Dhaka, Bangladesh. We recruited 59 good ventilation (window or door in ≥ 3 walls) and 29 poor ventilation (no window, one door) homes. We monitored baseline indoor and outdoor PM 2.5 for 48 hours. We asked all participants to increase ventilation behavior, including opening windows and doors, and operating fans. Where permitted, we installed windows in nine poor ventilation homes, then repeated PM 2.5 monitoring. We estimated effects using linear mixed-effects models and conducted qualitative interviews regarding motivators and barriers to ventilation. Compared with poor ventilation homes, good ventilation homes were larger, their residents wealthier and less likely to use biomass fuel. In multivariable linear mixed-effects models, ventilation structures and opening a door or window were inversely associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Outdoor air pollution was positively associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Few homes accepted window installation, due to landlord refusal and fear of theft. Motivators for ventilation behavior included cooling of the home and sunlight; barriers included rain, outdoor odors or noise, theft risk, mosquito entry, and, for fan use, perceptions of wasting electricity or unavailability of electricity. We concluded that ventilation may reduce indoor PM 2.5 concentrations but, there are barriers to increasing ventilation and, in areas with high ambient PM 2.5 concentrations, indoor concentrations may remain above recommended levels.
Suwabe, Tatsuya; Ubara, Yoshifumi; Mise, Koki; Ueno, Toshiharu; Sumida, Keiichi; Yamanouchi, Masayuki; Hayami, Noriko; Hoshino, Junichi; Kawada, Masahiro; Imafuku, Aya; Hiramatsu, Rikako; Hasegawa, Eiko; Sawa, Naoki; Takaichi, Kenmei
2016-07-01
In patients with autosomal dominant polycystic kidney disease (ADPKD), massive renal enlargement is a serious problem. Renal transcatheter arterial embolization (TAE) can reduce renal volume (RV), but effectiveness varies widely, and the reasons remain unclear. We investigated factors affecting renal volume reduction rate (RVRR) after renal TAE in all 449 patients with ADPKD who received renal TAE at Toranomon Hospital from January of 2006 to July of 2013, including 228 men and 221 women (mean age =57.0±9.1 years old). One year after renal TAE, the RVRR ranged from 3.9% to 84.8%, and the least squares mean RVRR calculated using a linear mixed model was 45.5% (95% confidence interval [95% CI], 44.2% to 46.8%). Multivariate analysis using the linear mixed model revealed that RVRR was affected by the presence of large cysts with wall thickening (regression coefficient [RC], -6.10; 95% CI, -9.04 to -3.16; P<0.001), age (RC, -0.82; 95% CI, -1.03 to -0.60; P<0.001), dialysis duration (RC, -0.10; 95% CI, -0.18 to -0.03; P<0.01), systolic BP (RC, 0.39; 95% CI, 0.19 to 0.59; P<0.001), and the number of microcoils used for renal TAE (RC, 1.35; 95% CI, 0.83 to 1.86; P<0.001). Significantly more microcoils were needed to achieve renal TAE in patients with younger age and shorter dialysis duration. In conclusion, cyst wall thickening had an important effect on cyst volume reduction. Renal TAE was more effective in patients who were younger, had shorter dialysis duration, or had hypertension, parameters that might associate with cyst wall stiffness and renal artery blood flow. Copyright © 2016 by the American Society of Nephrology.
Rajeswaran, Jeevanantham; Blackstone, Eugene H
2017-02-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time-varying coefficients.
Haware, Rahul V; Bauer-Brandl, Annette; Tho, Ingunn
2010-01-01
The present work challenges a newly developed approach to tablet formulation development by using chemically identical materials (grades and brands of microcrystalline cellulose). Tablet properties with respect to process and formulation parameters (e.g. compression speed, added lubricant and Emcompress fractions) were evaluated by 2(3)-factorial designs. Tablets of constant true volume were prepared on a compaction simulator at constant pressure (approx. 100 MPa). The highly repeatable and accurate force-displacement data obtained was evaluated by simple 'in-die' Heckel method and work descriptors. Relationships and interactions between formulation, process and tablet parameters were identified and quantified by multivariate analysis techniques; principal component analysis (PCA) and partial least square regressions (PLS). The method proved to be able to distinguish between different grades of MCC and even between two different brands of the same grade (Avicel PH 101 and Vivapur 101). One example of interaction was studied in more detail by mixed level design: The interaction effect of lubricant and Emcompress on elastic recovery of Avicel PH 102 was demonstrated to be complex and non-linear using the development tool under investigation.
Riveros, Ricardo; Makarova, Natalya; Riveros-Perez, Efrain; Chodavarapu, Praneeta; Saasouh, Wael; Yılmaz, Hüseyin Oğuz; Cuko, Evis; Babazade, Rovnat; Kimatian, Stephen; Turan, Alparslan
2017-12-01
Dexmedetomidine is increasingly used in children undergoing cardiac catheterization procedures. We compared the percentage of surgical time with hemodynamic instability and the incidence of postoperative agitation between pediatric cardiac catheterization patients who received dexmedetomidine infusion and those who did not and the incidence of postoperative agitation. We matched 653 pediatric patients scheduled for cardiac catheterization. Two separate multivariable linear mixed models were used to assess the association between dexmedetomidine use and intraoperative blood pressure and heart rate instability. A multivariate logistic regression was used for relationship between dexmedetomidine and postoperative agitation. No difference between the study groups was found in the duration of MAP ( P = .867) or heart rate (HR) instabilities ( P = .224). The relationship between dexmedetomidine use and the duration of negative hemodynamic effects does not depend on any of the considered CHD types (all P > .001) or intervention ( P = .453 for MAP and P = .023 for HR). No difference in postoperative agitation was found between the study groups ( P = .590). Our study demonstrated no benefit in using dexmedetomidine infusion compared with other general anesthesia techniques to maintain hemodynamic stability or decrease agitation in pediatric patients undergoing cardiac catheterization procedures.
Vossoughi, Mehrdad; Ayatollahi, S M T; Towhidi, Mina; Ketabchi, Farzaneh
2012-03-22
The summary measure approach (SMA) is sometimes the only applicable tool for the analysis of repeated measurements in medical research, especially when the number of measurements is relatively large. This study aimed to describe techniques based on summary measures for the analysis of linear trend repeated measures data and then to compare performances of SMA, linear mixed model (LMM), and unstructured multivariate approach (UMA). Practical guidelines based on the least squares regression slope and mean of response over time for each subject were provided to test time, group, and interaction effects. Through Monte Carlo simulation studies, the efficacy of SMA vs. LMM and traditional UMA, under different types of covariance structures, was illustrated. All the methods were also employed to analyze two real data examples. Based on the simulation and example results, it was found that the SMA completely dominated the traditional UMA and performed convincingly close to the best-fitting LMM in testing all the effects. However, the LMM was not often robust and led to non-sensible results when the covariance structure for errors was misspecified. The results emphasized discarding the UMA which often yielded extremely conservative inferences as to such data. It was shown that summary measure is a simple, safe and powerful approach in which the loss of efficiency compared to the best-fitting LMM was generally negligible. The SMA is recommended as the first choice to reliably analyze the linear trend data with a moderate to large number of measurements and/or small to moderate sample sizes.
Generalized linear mixed models with varying coefficients for longitudinal data.
Zhang, Daowen
2004-03-01
The routinely assumed parametric functional form in the linear predictor of a generalized linear mixed model for longitudinal data may be too restrictive to represent true underlying covariate effects. We relax this assumption by representing these covariate effects by smooth but otherwise arbitrary functions of time, with random effects used to model the correlation induced by among-subject and within-subject variation. Due to the usually intractable integration involved in evaluating the quasi-likelihood function, the double penalized quasi-likelihood (DPQL) approach of Lin and Zhang (1999, Journal of the Royal Statistical Society, Series B61, 381-400) is used to estimate the varying coefficients and the variance components simultaneously by representing a nonparametric function by a linear combination of fixed effects and random effects. A scaled chi-squared test based on the mixed model representation of the proposed model is developed to test whether an underlying varying coefficient is a polynomial of certain degree. We evaluate the performance of the procedures through simulation studies and illustrate their application with Indonesian children infectious disease data.
Jackson, Dan; White, Ian R; Riley, Richard D
2013-01-01
Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213
A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation
Rajeswaran, Jeevanantham; Blackstone, Eugene H.
2014-01-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830
NASA Astrophysics Data System (ADS)
Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.
2018-02-01
Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.
Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz
2015-04-01
Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Wen Deng; Chen, Guang De; Yuan, Zhao Lin; Yang, Chuang Hua; Ye, Hong Gang; Wu, Ye Long
2016-02-01
The theoretical investigations of the interface optical phonons, electron-phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron-phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1-xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron-phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1-xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron-phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron-phonon coupling strengths appear linear changes.
Pediatric Inflammatory Bowel Diseases: Should We Be Looking for Kidney Abnormalities?
Lauritzen, Didde; Andreassen, Bente Utoft; Heegaard, Niels Henrik H; Klinge, Lone Gabriels; Walsted, Anne-Mette; Neland, Mette; Nielsen, Rasmus Gaardskær; Wittenhagen, Per
2018-04-26
Kidney disease has been reported in adults with inflammatory bowel disease (IBD) and is regarded an extraintestinal manifestation or more rarely a side effect of the medical treatment. In this cross-sectional study we describe the extent of kidney pathology in a cohort of 56 children with IBD. Blood and urine samples were analyzed for markers of kidney disease and ultrasonography was performed to evaluate pole-to-pole kidney length. We found that 25% of the patients had either previously reported kidney disease or ultrasonographic signs of chronic kidney disease. The median kidney size compared with normal children was significantly reduced. In a multivariate linear mixed model, small kidneys significantly correlated with the use of infliximab, whereas the use of enteral nutritional therapy was associated with larger kidneys. Children with IBD are at risk of chronic kidney disease, and the risk seems to be increased with the severity of the disease.
Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza; Lu, Ying; Vahter, Marie
2016-05-01
There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5-1660μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D3, serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25μg/L (range 1.9-145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D3 (-6.1nmol/L [95%CI -9.5; -2.6] for a 25μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D3. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Validation of Single-Item Screening Measures for Provider Burnout in a Rural Health Care Network.
Waddimba, Anthony C; Scribani, Melissa; Nieves, Melinda A; Krupa, Nicole; May, John J; Jenkins, Paul
2016-06-01
We validated three single-item measures for emotional exhaustion (EE) and depersonalization (DP) among rural physician/nonphysician practitioners. We linked cross-sectional survey data (on provider demographics, satisfaction, resilience, and burnout) with administrative information from an integrated health care network (1 academic medical center, 6 community hospitals, 31 clinics, and 19 school-based health centers) in an eight-county underserved area of upstate New York. In total, 308 physicians and advanced-practice clinicians completed a self-administered, multi-instrument questionnaire (65.1% response rate). Significant proportions of respondents reported high EE (36.1%) and DP (9.9%). In multivariable linear mixed models, scores on EE/DP subscales of the Maslach Burnout Inventory were regressed on each single-item measure. The Physician Work-Life Study's single-item measure (classifying 32.8% of respondents as burning out/completely burned out) was correlated with EE and DP (Spearman's ρ = .72 and .41, p < .0001; Kruskal-Wallis χ(2) = 149.9 and 56.5, p < .0001, respectively). In multivariable models, it predicted high EE (but neither low EE nor low/high DP). EE/DP single items were correlated with parent subscales (Spearman's ρ = .89 and .81, p < .0001; Kruskal-Wallis χ(2) = 230.98 and 197.84, p < .0001, respectively). In multivariable models, the EE item predicted high/low EE, whereas the DP item predicted only low DP. Therefore, the three single-item measures tested varied in effectiveness as screeners for EE/DP dimensions of burnout. © The Author(s) 2015.
Dong, Ling-Bo; Liu, Zhao-Gang; Li, Feng-Ri; Jiang, Li-Chun
2013-09-01
By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.
Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models
ERIC Educational Resources Information Center
Wagler, Amy E.
2014-01-01
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Modeling containment of large wildfires using generalized linear mixed-model analysis
Mark Finney; Isaac C. Grenfell; Charles W. McHugh
2009-01-01
Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...
Posterior propriety for hierarchical models with log-likelihoods that have norm bounds
Michalak, Sarah E.; Morris, Carl N.
2015-07-17
Statisticians often use improper priors to express ignorance or to provide good frequency properties, requiring that posterior propriety be verified. Our paper addresses generalized linear mixed models, GLMMs, when Level I parameters have Normal distributions, with many commonly-used hyperpriors. It provides easy-to-verify sufficient posterior propriety conditions based on dimensions, matrix ranks, and exponentiated norm bounds, ENBs, for the Level I likelihood. Since many familiar likelihoods have ENBs, which is often verifiable via log-concavity and MLE finiteness, our novel use of ENBs permits unification of posterior propriety results and posterior MGF/moment results for many useful Level I distributions, including those commonlymore » used with multilevel generalized linear models, e.g., GLMMs and hierarchical generalized linear models, HGLMs. Furthermore, those who need to verify existence of posterior distributions or of posterior MGFs/moments for a multilevel generalized linear model given a proper or improper multivariate F prior as in Section 1 should find the required results in Sections 1 and 2 and Theorem 3 (GLMMs), Theorem 4 (HGLMs), or Theorem 5 (posterior MGFs/moments).« less
Row, Jeff R; Oyler-McCance, Sara J.; Fike, Jennifer; O'Donnell, Michael; Doherty, Kevin E.; Aldridge, Cameron L.; Bowen, Zachary H.; Fedy, Brad C.
2015-01-01
Given the significance of animal dispersal to population dynamics and geographic variability, understanding how dispersal is impacted by landscape patterns has major ecological and conservation importance. Speaking to the importance of dispersal, the use of linear mixed models to compare genetic differentiation with pairwise resistance derived from landscape resistance surfaces has presented new opportunities to disentangle the menagerie of factors behind effective dispersal across a given landscape. Here, we combine these approaches with novel resistance surface parameterization to determine how the distribution of high- and low-quality seasonal habitat and individual landscape components shape patterns of gene flow for the greater sage-grouse (Centrocercus urophasianus) across Wyoming. We found that pairwise resistance derived from the distribution of low-quality nesting and winter, but not summer, seasonal habitat had the strongest correlation with genetic differentiation. Although the patterns were not as strong as with habitat distribution, multivariate models with sagebrush cover and landscape ruggedness or forest cover and ruggedness similarly had a much stronger fit with genetic differentiation than an undifferentiated landscape. In most cases, landscape resistance surfaces transformed with 17.33-km-diameter moving windows were preferred, suggesting small-scale differences in habitat were unimportant at this large spatial extent. Despite the emergence of these overall patterns, there were differences in the selection of top models depending on the model selection criteria, suggesting research into the most appropriate criteria for landscape genetics is required. Overall, our results highlight the importance of differences in seasonal habitat preferences to patterns of gene flow and suggest the combination of habitat suitability modeling and linear mixed models with our resistance parameterization is a powerful approach to discerning the effects of landscape on gene flow.
Method of determining the optimal dilution ratio for fluorescence fingerprint of food constituents.
Trivittayasil, Vipavee; Tsuta, Mizuki; Kokawa, Mito; Yoshimura, Masatoshi; Sugiyama, Junichi; Fujita, Kaori; Shibata, Mario
2015-01-01
Quantitative determination by fluorescence spectroscopy is possible because of the linear relationship between the intensity of emitted fluorescence and the fluorophore concentration. However, concentration quenching may cause the relationship to become nonlinear, and thus, the optimal dilution ratio has to be determined. In the case of fluorescence fingerprint (FF) measurement, fluorescence is measured under multiple wavelength conditions and a method of determining the optimal dilution ratio for multivariate data such as FFs has not been reported. In this study, the FFs of mixed solutions of tryptophan and epicatechin of different concentrations and composition ratios were measured. Principal component analysis was applied, and the resulting loading plots were found to contain useful information about each constituent. The optimal concentration ranges could be determined by identifying the linear region of the PC score plotted against total concentration.
1993-06-18
the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991
Seggers, Jorien; Haadsma, Maaike L; Bastide-van Gemert, Sacha la; Heineman, Maas Jan; Kok, Joke H; Middelburg, Karin J; Roseboom, Tessa J; Schendelaar, Pamela; Van den Heuvel, Edwin R; Hadders-Algra, Mijna
2013-11-01
Recent studies suggest that in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are associated with suboptimal cardiometabolic outcome in offspring. It is unknown whether preimplantation genetic screening (PGS), which involves embryo biopsy, affects blood pressure (BP), anthropometrics, and the frequency of received medical care. In this prospective multicenter follow-up study, we assessed BP, anthropometrics, and received medical care of 4-y-old children born to women who were randomly assigned to IVF/ICSI with PGS (n = 49) or without PGS (controls; n = 64). We applied linear and generalized linear mixed-effects models to investigate possible effects of PGS. BP in the PGS and control groups was similar: 102/64 and 100/64 mm Hg, respectively. Main anthropometric outcomes in the PGS vs. control group were: BMI: 16.1 vs. 15.8; triceps skinfold: 108 vs. 98 mm; and subscapular skinfold: 54 vs. 53 mm (all P values > 0.05). More PGS children than controls had received paramedical care (speech, physical, or occupational therapy: 14 (29%) vs. 9 (14%); P = 0.03 in multivariable analysis). The frequency of medicial treatment was comparable. PGS does not seem to affect BP or anthropometrics in 4-y-old children. The higher frequency of received paramedical care after PGS may suggest an effect of PGS on subtle developmental parameters.
Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan
2012-01-01
Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.
Multivariate predictors of music perception and appraisal by adult cochlear implant users.
Gfeller, Kate; Oleson, Jacob; Knutson, John F; Breheny, Patrick; Driscoll, Virginia; Olszewski, Carol
2008-02-01
The research examined whether performance by adult cochlear implant recipients on a variety of recognition and appraisal tests derived from real-world music could be predicted from technological, demographic, and life experience variables, as well as speech recognition scores. A representative sample of 209 adults implanted between 1985 and 2006 participated. Using multiple linear regression models and generalized linear mixed models, sets of optimal predictor variables were selected that effectively predicted performance on a test battery that assessed different aspects of music listening. These analyses established the importance of distinguishing between the accuracy of music perception and the appraisal of musical stimuli when using music listening as an index of implant success. Importantly, neither device type nor processing strategy predicted music perception or music appraisal. Speech recognition performance was not a strong predictor of music perception, and primarily predicted music perception when the test stimuli included lyrics. Additionally, limitations in the utility of speech perception in predicting musical perception and appraisal underscore the utility of music perception as an alternative outcome measure for evaluating implant outcomes. Music listening background, residual hearing (i.e., hearing aid use), cognitive factors, and some demographic factors predicted several indices of perceptual accuracy or appraisal of music.
Statistical Methodology for the Analysis of Repeated Duration Data in Behavioral Studies.
Letué, Frédérique; Martinez, Marie-José; Samson, Adeline; Vilain, Anne; Vilain, Coriandre
2018-03-15
Repeated duration data are frequently used in behavioral studies. Classical linear or log-linear mixed models are often inadequate to analyze such data, because they usually consist of nonnegative and skew-distributed variables. Therefore, we recommend use of a statistical methodology specific to duration data. We propose a methodology based on Cox mixed models and written under the R language. This semiparametric model is indeed flexible enough to fit duration data. To compare log-linear and Cox mixed models in terms of goodness-of-fit on real data sets, we also provide a procedure based on simulations and quantile-quantile plots. We present two examples from a data set of speech and gesture interactions, which illustrate the limitations of linear and log-linear mixed models, as compared to Cox models. The linear models are not validated on our data, whereas Cox models are. Moreover, in the second example, the Cox model exhibits a significant effect that the linear model does not. We provide methods to select the best-fitting models for repeated duration data and to compare statistical methodologies. In this study, we show that Cox models are best suited to the analysis of our data set.
MacNab, Ying C
2016-08-01
This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.
Extended Mixed-Efects Item Response Models with the MH-RM Algorithm
ERIC Educational Resources Information Center
Chalmers, R. Philip
2015-01-01
A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…
Karimi, Hamid Reza; Gao, Huijun
2008-07-01
A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.
Tavarez, Melissa M; Kenkre, Tanya S; Zuckerbraun, Noel
2017-05-30
The aim of this study was to determine if implementation of our evidence-based medicine (EBM) curriculum had an effect on pediatric emergency medicine fellows' scores on the relevant section of the in-training examination (ITE). We obtained deidentified subscores for 22 fellows over 6 academic years for the Core Knowledge in Scholarly Activities (SA) and, as a balance measure, Emergencies Treated Medically sections. We divided the subscores into the following 3 instruction periods: "baseline" for academic years before our current EBM curriculum, "transition" for academic years with use of a research method curriculum with some overlapping EBM content, and "EBM" for academic years with our current EBM curriculum. We analyzed data using the Kruskal-Wallis test, the Mann-Whitney U test, and multivariate mixed-effects linear models. The SA subscore median was higher during the EBM period in comparison with the baseline and transition periods. In contrast, the Emergencies Treated Medically subscore median was similar across instruction periods. Multivariate modeling demonstrated that our EBM curriculum had the following independent effects on the fellows' SA subscore: (1) in comparison with the transition period, the fellows' SA subscore was 21 percentage points higher (P = 0.005); and (2) in comparison to the baseline period, the fellows' SA subscore was 28 percentage points higher during the EBM curriculum instruction period (P < 0.001). Our EBM curriculum was associated with significantly higher scores on the SA section of the ITE. Pediatric emergency medicine educators could consider using fellows' scores on this section of the ITE to assess the effect of their EBM curricula.
Alcohol Policy Comprehension, Compliance and Consequences Among Young Adult Restaurant Workers
Ames, Genevieve M.; Cunradi, Carol B.; Duke, Michael R.
2012-01-01
SUMMARY This study explores relationships between young adult restaurant employees' understanding and compliance with workplace alcohol control policies and consequences of alcohol policy violation. A mixed method analysis of 67 semi-structured interviews and 1,294 telephone surveys from restaurant chain employees found that alcohol policy details confused roughly a third of employees. Among current drinkers (n=1,093), multivariable linear regression analysis found that frequency of alcohol policy violation was positively associated with frequency of experiencing problems at work; perceived supervisor enforcement of alcohol policy was negatively associated with this outcome. Implications for preventing workplace alcohol-related problems include streamlining confusing alcohol policy guidelines. PMID:22984360
Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index
NASA Astrophysics Data System (ADS)
Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun
2018-02-01
It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.
A mixed model framework for teratology studies.
Braeken, Johan; Tuerlinckx, Francis
2009-10-01
A mixed model framework is presented to model the characteristic multivariate binary anomaly data as provided in some teratology studies. The key features of the model are the incorporation of covariate effects, a flexible random effects distribution by means of a finite mixture, and the application of copula functions to better account for the relation structure of the anomalies. The framework is motivated by data of the Boston Anticonvulsant Teratogenesis study and offers an integrated approach to investigate substantive questions, concerning general and anomaly-specific exposure effects of covariates, interrelations between anomalies, and objective diagnostic measurement.
Magezi, David A
2015-01-01
Linear mixed-effects models (LMMs) are increasingly being used for data analysis in cognitive neuroscience and experimental psychology, where within-participant designs are common. The current article provides an introductory review of the use of LMMs for within-participant data analysis and describes a free, simple, graphical user interface (LMMgui). LMMgui uses the package lme4 (Bates et al., 2014a,b) in the statistical environment R (R Core Team).
Bouloux, Gary F; Zerweck, Ashley G; Celano, Marianne; Dai, Tian; Easley, Kirk A
2015-11-01
Psychological assessment has been used successfully to predict patient outcomes after cardiothoracic and bariatric surgery. The purpose of this study was to determine whether preoperative psychological assessment could be used to predict patient outcomes after temporomandibular joint arthroscopy. Consecutive patients with temporomandibular dysfunction (TMD) who could benefit from arthroscopy were enrolled in a prospective cohort study. All patients completed the Millon Behavior Medicine Diagnostic survey before surgery. The primary predictor variable was the preoperative psychological scores. The primary outcome variable was the difference in pain between the pre- and postoperative periods. The Spearman rank correlation coefficient and the Pearson product-moment correlation were used to determine the association between psychological factors and change in pain. Univariable and multivariable analyses were performed using a mixed-effects linear model and multiple linear regression. A P value of .05 was considered significant. Eighty-six patients were enrolled in the study. Seventy-five patients completed the study and were included in the final analyses. The mean change in visual analog scale (VAS) pain score 1 month after arthroscopy was -15.4 points (95% confidence interval, -6.0 to -24.7; P < .001). Jaw function also improved after surgery (P < .001). No association between change in VAS pain score and each of the 5 preoperative psychological factors was identified with univariable correlation analyses. Multivariable analyses identified that a greater pain decrease was associated with a longer duration of preoperative symptoms (P = .054) and lower chronic anxiety (P = .064). This study has identified a weak association between chronic anxiety and the magnitude of pain decrease after arthroscopy for TMD. Further studies are needed to clarify the role of chronic anxiety in the outcome after surgical procedures for the treatment of TMD. Copyright © 2015. Published by Elsevier Inc.
Yoon, Seungwon; Mooney, Michael A; Bohl, Michael A; Sheehy, John P; Nakaji, Peter; Little, Andrew S; Lawton, Michael T
2018-05-01
OBJECTIVE With drastic changes to the health insurance market, patient cost sharing has significantly increased in recent years. However, the patient financial burden, or out-of-pocket (OOP) costs, for surgical procedures is poorly understood. The goal of this study was to analyze patient OOP spending in cranial neurosurgery and identify drivers of OOP spending growth. METHODS For 6569 consecutive patients who underwent cranial neurosurgery from 2013 to 2016 at the authors' institution, the authors created univariate and multivariate mixed-effects models to investigate the effect of patient demographic and clinical factors on patient OOP spending. The authors examined OOP payments stratified into 10 subsets of case categories and created a generalized linear model to study the growth of OOP spending over time. RESULTS In the multivariate model, case categories (craniotomy for pain, tumor, and vascular lesions), commercial insurance, and out-of-network plans were significant predictors of higher OOP payments for patients (all p < 0.05). Patient spending varied substantially across procedure types, with patients undergoing craniotomy for pain ($1151 ± $209) having the highest mean OOP payments. On average, commercially insured patients spent nearly twice as much in OOP payments as the overall population. From 2013 to 2016, the mean patient OOP spending increased 17%, from $598 to $698 per patient encounter. Commercially insured patients experienced more significant growth in OOP spending, with a cumulative rate of growth of 42% ($991 in 2013 to $1403 in 2016). CONCLUSIONS Even after controlling for inflation, case-mix differences, and partial fiscal periods, OOP spending for cranial neurosurgery patients significantly increased from 2013 to 2016. The mean OOP spending for commercially insured neurosurgical patients exceeded $1400 in 2016, with an average annual growth rate of 13%. As patient cost sharing in health insurance plans becomes more prevalent, patients and providers must consider the potential financial burden for patients receiving specialized neurosurgical care.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
Liu, Chia-Chuan; Shih, Chih-Shiun; Pennarun, Nicolas; Cheng, Chih-Tao
2016-01-01
The feasibility and radicalism of lymph node dissection for lung cancer surgery by a single-port technique has frequently been challenged. We performed a retrospective cohort study to investigate this issue. Two chest surgeons initiated multiple-port thoracoscopic surgery in a 180-bed cancer centre in 2005 and shifted to a single-port technique gradually after 2010. Data, including demographic and clinical information, from 389 patients receiving multiport thoracoscopic lobectomy or segmentectomy and 149 consecutive patients undergoing either single-port lobectomy or segmentectomy for primary non-small-cell lung cancer were retrieved and entered for statistical analysis by multivariable linear regression models and Box-Cox transformed multivariable analysis. The mean number of total dissected lymph nodes in the lobectomy group was 28.5 ± 11.7 for the single-port group versus 25.2 ± 11.3 for the multiport group; the mean number of total dissected lymph nodes in the segmentectomy group was 19.5 ± 10.8 for the single-port group versus 17.9 ± 10.3 for the multiport group. In linear multivariable and after Box-Cox transformed multivariable analyses, the single-port approach was still associated with a higher total number of dissected lymph nodes. The total number of dissected lymph nodes for primary lung cancer surgery by single-port video-assisted thoracoscopic surgery (VATS) was higher than by multiport VATS in univariable, multivariable linear regression and Box-Cox transformed multivariable analyses. This study confirmed that highly effective lymph node dissection could be achieved through single-port VATS in our setting. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Multivariate moment closure techniques for stochastic kinetic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less
[Analysis of variance of repeated data measured by water maze with SPSS].
Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang
2007-01-01
To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P
Lu, Tao; Lu, Minggen; Wang, Min; Zhang, Jun; Dong, Guang-Hui; Xu, Yong
2017-12-18
Longitudinal competing risks data frequently arise in clinical studies. Skewness and missingness are commonly observed for these data in practice. However, most joint models do not account for these data features. In this article, we propose partially linear mixed-effects joint models to analyze skew longitudinal competing risks data with missingness. In particular, to account for skewness, we replace the commonly assumed symmetric distributions by asymmetric distribution for model errors. To deal with missingness, we employ an informative missing data model. The joint models that couple the partially linear mixed-effects model for the longitudinal process, the cause-specific proportional hazard model for competing risks process and missing data process are developed. To estimate the parameters in the joint models, we propose a fully Bayesian approach based on the joint likelihood. To illustrate the proposed model and method, we implement them to an AIDS clinical study. Some interesting findings are reported. We also conduct simulation studies to validate the proposed method.
Prevalence, Risk Factors and Consequent Effect of Dystocia in Holstein Dairy Cows in Iran
Atashi, Hadi; Abdolmohammadi, Alireza; Dadpasand, Mohammad; Asaadi, Anise
2012-01-01
The objective of this research was to determine the prevalence, risk factors and consequent effect of dystocia on lactation performance in Holstein dairy cows in Iran. The data set consisted of 55,577 calving records on 30,879 Holstein cows in 30 dairy herds for the period March 2000 to April 2009. Factors affecting dystocia were analyzed using multivariable logistic regression models through the maximum likelihood method in the GENMOD procedure. The effect of dystocia on lactation performance and factors affecting calf birth weight were analyzed using mixed linear model in the MIXED procedure. The average incidence of dystocia was 10.8% and the mean (SD) calf birth weight was 42.13 (5.42) kg. Primiparous cows had calves with lower body weight and were more likely to require assistance at parturition (p<0.05). Female calves had lower body weight, and had a lower odds ratio for dystocia than male calves (p<0.05). Twins had lower birth weight, and had a higher odds ratio for dystocia than singletons (p<0.05). Cows which gave birth to a calf with higher weight at birth experienced more calving difficulty (OR (95% CI) = 1.1(1.08–1.11). Total 305-d milk, fat and protein yield was 135 (23), 3.16 (0.80) and 6.52 (1.01) kg less, in cows that experienced dystocia at calving compared with those that did not (p<0.05). PMID:25049584
Bjork, K E; Kopral, C A; Wagner, B A; Dargatz, D A
2015-12-01
Antimicrobial use in agriculture is considered a pathway for the selection and dissemination of resistance determinants among animal and human populations. From 1997 through 2003 the U.S. National Antimicrobial Resistance Monitoring System (NARMS) tested clinical Salmonella isolates from multiple animal and environmental sources throughout the United States for resistance to panels of 16-19 antimicrobials. In this study we applied two mixed effects models, the generalized linear mixed model (GLMM) and accelerated failure time frailty (AFT-frailty) model, to susceptible/resistant and interval-censored minimum inhibitory concentration (MIC) metrics, respectively, from Salmonella enterica subspecies enterica serovar Typhimurium isolates from livestock and poultry. Objectives were to compare characteristics of the two models and to examine the effects of time, species, and multidrug resistance (MDR) on the resistance of isolates to individual antimicrobials, as revealed by the models. Fixed effects were year of sample collection, isolate source species and MDR indicators; laboratory study site was included as a random effect. MDR indicators were significant for every antimicrobial and were dominant effects in multivariable models. Temporal trends and source species influences varied by antimicrobial. In GLMMs, the intra-class correlation coefficient ranged up to 0.8, indicating that the proportion of variance accounted for by laboratory study site could be high. AFT models tended to be more sensitive, detecting more curvilinear temporal trends and species differences; however, high levels of left- or right-censoring made some models unstable and results uninterpretable. Results from GLMMs may be biased by cutoff criteria used to collapse MIC data into binary categories, and may miss signaling important trends or shifts if the series of antibiotic dilutions tested does not span a resistance threshold. Our findings demonstrate the challenges of measuring the AMR ecosystem and the complexity of interacting factors, and have implications for future monitoring. We include suggestions for future data collection and analyses, including alternative modeling approaches. Published by Elsevier B.V.
Fixed order dynamic compensation for multivariable linear systems
NASA Technical Reports Server (NTRS)
Kramer, F. S.; Calise, A. J.
1986-01-01
This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.
Milloy, M-J; Marshall, Brandon; Kerr, Thomas; Richardson, Lindsey; Hogg, Robert; Guillemi, Silvia; Montaner, Julio S G; Wood, Evan
2015-03-01
Cannabis use is common among people who are living with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS). While there is growing pre-clinical evidence of the immunomodulatory and anti-viral effects of cannabinoids, their possible effects on HIV disease parameters in humans are largely unknown. Thus, we sought to investigate the possible effects of cannabis use on plasma HIV-1 RNA viral loads (pVLs) among recently seroconverted illicit drug users. We used data from two linked longitudinal observational cohorts of people who use injection drugs. Using multivariable linear mixed-effects modelling, we analysed the relationship between pVL and high-intensity cannabis use among participants who seroconverted following recruitment. Between May 1996 and March 2012, 88 individuals seroconverted after recruitment and were included in these analyses. Median pVL in the first 365 days among all seroconverters was 4.66 log10 c mL(-1) . In a multivariable model, at least daily cannabis use was associated with 0.51 log10 c mL(-1) lower pVL (β = -0.51, standard error = 0.170, P value = 0.003). Consistent with the findings from recent in vitro and in vivo studies, including one conducted among lentiviral-infected primates, we observed a strong association between cannabis use and lower pVL following seroconversion among illicit drug-using participants. Our findings support the further investigation of the immunomodulatory or antiviral effects of cannabinoids among individuals living with HIV/AIDS. © 2014 Australasian Professional Society on Alcohol and other Drugs.
Skew-t partially linear mixed-effects models for AIDS clinical studies.
Lu, Tao
2016-01-01
We propose partially linear mixed-effects models with asymmetry and missingness to investigate the relationship between two biomarkers in clinical studies. The proposed models take into account irregular time effects commonly observed in clinical studies under a semiparametric model framework. In addition, commonly assumed symmetric distributions for model errors are substituted by asymmetric distribution to account for skewness. Further, informative missing data mechanism is accounted for. A Bayesian approach is developed to perform parameter estimation simultaneously. The proposed model and method are applied to an AIDS dataset and comparisons with alternative models are performed.
How self-reported hot flashes may relate to affect, cognitive performance and sleep.
Regestein, Quentin; Friebely, Joan; Schiff, Isaac
2015-08-01
To explain the controversy about whether midlife women who self-report hot flashes have relatively increased affective symptoms, poor cognitive performance or worse sleep. Retrospective data from 88 women seeking relief from bothersome day and night hot flashes were submitted to mixed linear regression modeling to find if estimated hot flashes, as measured by Women's Health Questionnaire (WHQ) items, or diary-documented hot flashes recorded daily, were associated with each other, or with affective, cognitive or sleep measures. Subjects averaged 6.3 daytime diary-documented hot flashes and 2.4 nighttime diary-documented hot flashes per 24h. Confounder-controlled diary-documented hot flashes but not estimated hot flashes were associated with increased Leeds anxiety scores (F=4.9; t=2.8; p=0.01) and Leeds depression scores (3.4; 2.5; 0.02), decreased Stroop Color-Word test performance (9.4; 3.5; 0.001), increased subjective sleep disturbance (effect size=0.83) and increased objective sleep disturbance (effect size=0.35). Hot flash effects were small to moderate in size. Univariate but not multivariate analyses revealed that all hot flash measures were associated with all affect measures. Different measures of hot flashes associated differently with affect, cognition and sleep. Only nighttime diary-document hot flash consistently correlated with any affect measures in multivariate analyses. The use of differing measures for hot flashes, affect, cognition and sleep may account for the continually reported inconsistencies in menopause study outcomes. This problem impedes forging a consensus on whether hot flashes correlate with neuropsychological symptoms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jin; Sun, Tao; Fu, Anmin; Xu, Hao; Wang, Xinjie
2018-05-01
Degradation in drylands is a critically important global issue that threatens ecosystem and environmental in many ways. Researchers have tried to use remote sensing data and meteorological data to perform residual trend analysis and identify human-induced vegetation changes. However, complex interactions between vegetation and climate, soil units and topography have not yet been considered. Data used in the study included annual accumulated Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m normalized difference vegetation index (NDVI) from 2002 to 2013, accumulated rainfall from September to August, digital elevation model (DEM) and soil units. This paper presents linear mixed-effect (LME) modeling methods for the NDVI-rainfall relationship. We developed linear mixed-effects models that considered the random effects of sample points nested in soil units for nested two-level modeling and single-level modeling of soil units and sample points, respectively. Additionally, three functions, including the exponential function (exp), the power function (power), and the constant plus power function (CPP), were tested to remove heterogeneity, and an additional three correlation structures, including the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and the compound symmetry structure (CS), were used to address the spatiotemporal correlations. It was concluded that the nested two-level model considering both heteroscedasticity with (CPP) and spatiotemporal correlation with [ARMA(1,1)] showed the best performance (AMR = 0.1881, RMSE = 0.2576, adj- R 2 = 0.9593). Variations between soil units and sample points that may have an effect on the NDVI-rainfall relationship should be included in model structures, and linear mixed-effects modeling achieves this in an effective and accurate way.
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
Load compensation in a lean burn natural gas vehicle
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anupam
A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.
Cook, James P; Mahajan, Anubha; Morris, Andrew P
2017-02-01
Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.
Effect of Contact Damage on the Strength of Ceramic Materials.
1982-10-01
variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F
Dunn, Sandra; Sprague, Ann E; Grimshaw, Jeremy M; Graham, Ian D; Taljaard, Monica; Fell, Deshayne; Peterson, Wendy E; Darling, Elizabeth; Harrold, JoAnn; Smith, Graeme N; Reszel, Jessica; Lanes, Andrea; Truskoski, Carolyn; Wilding, Jodi; Weiss, Deborah; Walker, Mark
2016-05-04
There are wide variations in maternal-newborn care practices and outcomes across Ontario. To help institutions and care providers learn about their own performance, the Better Outcomes Registry & Network (BORN) Ontario has implemented an audit and feedback system, the Maternal-Newborn Dashboard (MND), for all hospitals providing maternal-newborn care. The dashboard provides (1) near real-time feedback, with site-specific and peer comparison data about six key performance indicators; (2) a visual display of evidence-practice gaps related to the indicators; and (3) benchmarks to provide direction for practice change. This study aims to evaluate the effects of the dashboard, dashboard attributes, contextual factors, and facilitation/support needs that influence the use of this audit and feedback system to improve performance. The objectives of this study are to (1) evaluate the effect of implementing the dashboard across Ontario; (2) explore factors that potentially explain differences in the use of the MND among hospitals; (3) measure factors potentially associated with differential effectiveness of the MND; and (4) identify factors that predict differences in hospital performance. A mixed methods design includes (1) an interrupted time series analysis to evaluate the effect of the intervention on six indicators, (2) key informant interviews with a purposeful sample of directors/managers from up to 20 maternal-newborn care hospitals to explore factors that influence the use of the dashboard, (3) a provincial survey of obstetrical directors/managers from all maternal-newborn hospitals in the province to measure factors that influence the use of the dashboard, and (4) a multivariable generalized linear mixed effects regression analysis of the indicators at each hospital to quantitatively evaluate the change in practice following implementation of the dashboard and to identify factors most predictive of use. Study results will provide essential data to develop knowledge translation strategies for facilitating practice change, which can be further evaluated through a future cluster randomized trial.
NASA Technical Reports Server (NTRS)
Ramsey, Michael S.; Christensen, Philip R.
1992-01-01
Accurate interpretation of thermal infrared data depends upon the understanding and removal of complicating effects. These effects may include physical mixing of various mineralogies and particle sizes, atmospheric absorption and emission, surficial coatings, geometry effects, and differential surface temperatures. The focus is the examination of the linear spectral mixing of individual mineral or endmember spectra. Linear addition of spectra, for particles larger than the wavelength, allows for a straight-forward method of deconvolving the observed spectra, predicting a volume percent of each endmember. The 'forward analysis' of linear mixing (comparing the spectra of physical mixtures to numerical mixtures) has received much attention. The reverse approach of un-mixing thermal emission spectra was examined with remotely sensed data, but no laboratory verification exists. Understanding of the effects of spectral mixing on high resolution laboratory spectra allows for the extrapolation to lower resolution, and often more complicated, remotely gathered data. Thermal Infrared Multispectral Scanner (TIMS) data for Meteor Crater, Arizona were acquired in Sep. 1987. The spectral un-mixing of these data gives a unique test of the laboratory results. Meteor Crater (1.2 km in diameter and 180 m deep) is located in north-central Arizona, west of Canyon Diablo. The arid environment, paucity of vegetation, and low relief make the region ideal for remote data acquisition. Within the horizontal sedimentary sequence that forms the upper Colorado Plateau, the oldest unit sampled by the impact crater was the Permian Coconino Sandstone. A thin bed of the Toroweap Formation, also of Permian age, conformably overlays the Coconino. Above the Toroweap lies the Permian Kiabab Limestone which, in turn, is covered by a thin veneer of the Moenkopi Formation. The Moenkopi is Triassic in age and has two distinct sub-units in the vicinity of the crater. The lower Wupatki member is a fine-grained sandstone, while the upper Moqui member is a fissile siltstone. Ejecta from these units are preserved as inverted stratigraphy up to 2 crater radii from the rim. The mineralogical contrast between the units, relative lack of post-emplacement erosion and ejecta mixing provide a unique site to apply the un-mixing model. Selection of the aforementioned units as endmembers reveals distinct patterns in the ejecta of the crater.
Multivariate Predictors of Music Perception and Appraisal by Adult Cochlear Implant Users
Gfeller, Kate; Oleson, Jacob; Knutson, John F.; Breheny, Patrick; Driscoll, Virginia; Olszewski, Carol
2009-01-01
The research examined whether performance by adult cochlear implant recipients on a variety of recognition and appraisal tests derived from real-world music could be predicted from technological, demographic, and life experience variables, as well as speech recognition scores. A representative sample of 209 adults implanted between 1985 and 2006 participated. Using multiple linear regression models and generalized linear mixed models, sets of optimal predictor variables were selected that effectively predicted performance on a test battery that assessed different aspects of music listening. These analyses established the importance of distinguishing between the accuracy of music perception and the appraisal of musical stimuli when using music listening as an index of implant success. Importantly, neither device type nor processing strategy predicted music perception or music appraisal. Speech recognition performance was not a strong predictor of music perception, and primarily predicted music perception when the test stimuli included lyrics. Additionally, limitations in the utility of speech perception in predicting musical perception and appraisal underscore the utility of music perception as an alternative outcome measure for evaluating implant outcomes. Music listening background, residual hearing (i.e., hearing aid use), cognitive factors, and some demographic factors predicted several indices of perceptual accuracy or appraisal of music. PMID:18669126
Performance characteristics of LOX-H2, tangential-entry, swirl-coaxial, rocket injectors
NASA Technical Reports Server (NTRS)
Howell, Doug; Petersen, Eric; Clark, Jim
1993-01-01
Development of a high performing swirl-coaxial injector requires an understanding of fundamental performance characteristics. This paper addresses the findings of studies on cold flow atomic characterizations which provided information on the influence of fluid properties and element operating conditions on the produced droplet sprays. These findings are applied to actual rocket conditions. The performance characteristics of swirl-coaxial injection elements under multi-element hot-fire conditions were obtained by analysis of combustion performance data from three separate test series. The injection elements are described and test results are analyzed using multi-variable linear regression. A direct comparison of test results indicated that reduced fuel injection velocity improved injection element performance through improved propellant mixing.
Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara
2017-01-01
In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.
A Bayesian Semiparametric Latent Variable Model for Mixed Responses
ERIC Educational Resources Information Center
Fahrmeir, Ludwig; Raach, Alexander
2007-01-01
In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…
Warnke, Ingeborg; Gamma, Alex; Buadze, Anna; Schleifer, Roman; Canela, Carlos; Rüsch, Nicolas; Rössler, Wulf; Strebel, Bernd; Tényi, Tamás; Liebrenz, Michael
While forensic psychiatry is of increasing importance in mental health care, limited available evidence shows that attitudes toward the discipline are contradictory and that knowledge about it seems to be limited in medical students. We aimed to shed light on this subject by analyzing medical students' central attitudes toward and their association with knowledge about forensic psychiatry as well as with socio-demographic and education-specific predictor variables. We recruited N = 1345 medical students from 45 universities with a German language curriculum across four European countries (Germany, Switzerland, Austria and Hungary) by using an innovative approach, namely snowball sampling via Facebook. Students completed an online questionnaire, and data were analyzed descriptively and multivariably by linear mixed effects models and multinomial regression. The results showed overall neutral to positive attitudes toward forensic psychiatry, with indifferent attitudes toward the treatment of sex offenders, and forensic psychiatrists' expertise in the media. Whereas medical students knew about the term 'forensic psychiatry', they showed a lack of specific medico-legal knowledge. Multivariable models on predictor variables revealed statistically significant findings with, however, small estimates and variance explanation. Therefore, further research is required along with the development of a refined assessment instrument for medical students to explore both attitudes and knowledge in forensic psychiatry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fabian C.C. Uzoh; William W. Oliver
2008-01-01
A diameter increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in the United States using a multilevel linear mixed model. Stochastic variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting at tree and stand level, as breast height diameter, density, site index...
Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules
NASA Astrophysics Data System (ADS)
Sitek, A.; Machnikowski, P.
2008-11-01
We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.
Ringham, Brandy M; Kreidler, Sarah M; Muller, Keith E; Glueck, Deborah H
2016-07-30
Multilevel and longitudinal studies are frequently subject to missing data. For example, biomarker studies for oral cancer may involve multiple assays for each participant. Assays may fail, resulting in missing data values that can be assumed to be missing completely at random. Catellier and Muller proposed a data analytic technique to account for data missing at random in multilevel and longitudinal studies. They suggested modifying the degrees of freedom for both the Hotelling-Lawley trace F statistic and its null case reference distribution. We propose parallel adjustments to approximate power for this multivariate test in studies with missing data. The power approximations use a modified non-central F statistic, which is a function of (i) the expected number of complete cases, (ii) the expected number of non-missing pairs of responses, or (iii) the trimmed sample size, which is the planned sample size reduced by the anticipated proportion of missing data. The accuracy of the method is assessed by comparing the theoretical results to the Monte Carlo simulated power for the Catellier and Muller multivariate test. Over all experimental conditions, the closest approximation to the empirical power of the Catellier and Muller multivariate test is obtained by adjusting power calculations with the expected number of complete cases. The utility of the method is demonstrated with a multivariate power analysis for a hypothetical oral cancer biomarkers study. We describe how to implement the method using standard, commercially available software products and give example code. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Access disparities to Magnet hospitals for patients undergoing neurosurgical operations
Missios, Symeon; Bekelis, Kimon
2017-01-01
Background Centers of excellence focusing on quality improvement have demonstrated superior outcomes for a variety of surgical interventions. We investigated the presence of access disparities to hospitals recognized by the Magnet Recognition Program of the American Nurses Credentialing Center (ANCC) for patients undergoing neurosurgical operations. Methods We performed a cohort study of all neurosurgery patients who were registered in the New York Statewide Planning and Research Cooperative System (SPARCS) database from 2009–2013. We examined the association of African-American race and lack of insurance with Magnet status hospitalization for neurosurgical procedures. A mixed effects propensity adjusted multivariable regression analysis was used to control for confounding. Results During the study period, 190,535 neurosurgical patients met the inclusion criteria. Using a multivariable logistic regression, we demonstrate that African-Americans had lower admission rates to Magnet institutions (OR 0.62; 95% CI, 0.58–0.67). This persisted in a mixed effects logistic regression model (OR 0.77; 95% CI, 0.70–0.83) to adjust for clustering at the patient county level, and a propensity score adjusted logistic regression model (OR 0.75; 95% CI, 0.69–0.82). Additionally, lack of insurance was associated with lower admission rates to Magnet institutions (OR 0.71; 95% CI, 0.68–0.73), in a multivariable logistic regression model. This persisted in a mixed effects logistic regression model (OR 0.72; 95% CI, 0.69–0.74), and a propensity score adjusted logistic regression model (OR 0.72; 95% CI, 0.69–0.75). Conclusions Using a comprehensive all-payer cohort of neurosurgery patients in New York State we identified an association of African-American race and lack of insurance with lower rates of admission to Magnet hospitals. PMID:28684152
Shi, Xiangnan; Cao, Libo; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen
2014-07-18
In this study, we developed a statistical rib cage geometry model accounting for variations by age, sex, stature and body mass index (BMI). Thorax CT scans were obtained from 89 subjects approximately evenly distributed among 8 age groups and both sexes. Threshold-based CT image segmentation was performed to extract the rib geometries, and a total of 464 landmarks on the left side of each subject׳s ribcage were collected to describe the size and shape of the rib cage as well as the cross-sectional geometry of each rib. Principal component analysis and multivariate regression analysis were conducted to predict rib cage geometry as a function of age, sex, stature, and BMI, all of which showed strong effects on rib cage geometry. Except for BMI, all parameters also showed significant effects on rib cross-sectional area using a linear mixed model. This statistical rib cage geometry model can serve as a geometric basis for developing a parametric human thorax finite element model for quantifying effects from different human attributes on thoracic injury risks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Cao, Xiaodong; MacNaughton, Piers; Deng, Zhengyi; Yin, Jie; Zhang, Xi; Allen, Joseph G
2018-02-02
Twitter provides a rich database of spatiotemporal information about users who broadcast their real-time opinions, sentiment, and activities. In this paper, we sought to investigate the holistic influence of land use and time period on public sentiment. A total of 880,937 tweets posted by 26,060 active users were collected across Massachusetts (MA), USA, through 31 November 2012 to 3 June 2013. The IBM Watson Alchemy API (application program interface) was employed to quantify the sentiment scores conveyed by tweets on a large scale. Then we statistically analyzed the sentiment scores across different spaces and times. A multivariate linear mixed-effects model was used to quantify the fixed effects of land use and the time period on the variations in sentiment scores, considering the clustering effect of users. The results exposed clear spatiotemporal patterns of users' sentiment. Higher sentiment scores were mainly observed in the commercial and public areas, during the noon/evening and on weekends. Our findings suggest that social media outputs can be used to better understand the spatial and temporal patterns of public happiness and well-being in cities and regions.
Harbour porpoises react to low levels of high frequency vessel noise
Dyndo, Monika; Wiśniewska, Danuta Maria; Rojano-Doñate, Laia; Madsen, Peter Teglberg
2015-01-01
Cetaceans rely critically on sound for navigation, foraging and communication and are therefore potentially affected by increasing noise levels from human activities at sea. Shipping is the main contributor of anthropogenic noise underwater, but studies of shipping noise effects have primarily considered baleen whales due to their good hearing at low frequencies, where ships produce most noise power. Conversely, the possible effects of vessel noise on small toothed whales have been largely ignored due to their poor low-frequency hearing. Prompted by recent findings of energy at medium- to high-frequencies in vessel noise, we conducted an exposure study where the behaviour of four porpoises (Phocoena phocoena) in a net-pen was logged while they were exposed to 133 vessel passages. Using a multivariate generalised linear mixed-effects model, we show that low levels of high frequency components in vessel noise elicit strong, stereotyped behavioural responses in porpoises. Such low levels will routinely be experienced by porpoises in the wild at ranges of more than 1000 meters from vessels, suggesting that vessel noise is a, so far, largely overlooked, but substantial source of disturbance in shallow water areas with high densities of both porpoises and vessels. PMID:26095689
MacNaughton, Piers; Deng, Zhengyi; Yin, Jie; Zhang, Xi; Allen, Joseph G.
2018-01-01
Twitter provides a rich database of spatiotemporal information about users who broadcast their real-time opinions, sentiment, and activities. In this paper, we sought to investigate the holistic influence of land use and time period on public sentiment. A total of 880,937 tweets posted by 26,060 active users were collected across Massachusetts (MA), USA, through 31 November 2012 to 3 June 2013. The IBM Watson Alchemy API (application program interface) was employed to quantify the sentiment scores conveyed by tweets on a large scale. Then we statistically analyzed the sentiment scores across different spaces and times. A multivariate linear mixed-effects model was used to quantify the fixed effects of land use and the time period on the variations in sentiment scores, considering the clustering effect of users. The results exposed clear spatiotemporal patterns of users’ sentiment. Higher sentiment scores were mainly observed in the commercial and public areas, during the noon/evening and on weekends. Our findings suggest that social media outputs can be used to better understand the spatial and temporal patterns of public happiness and well-being in cities and regions. PMID:29393869
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.
Turbulence closure for mixing length theories
NASA Astrophysics Data System (ADS)
Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.
2018-05-01
We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.
Separation and reconstruction of high pressure water-jet reflective sound signal based on ICA
NASA Astrophysics Data System (ADS)
Yang, Hongtao; Sun, Yuling; Li, Meng; Zhang, Dongsu; Wu, Tianfeng
2011-12-01
The impact of high pressure water-jet on the different materials target will produce different reflective mixed sound. In order to reconstruct the reflective sound signals distribution on the linear detecting line accurately and to separate the environment noise effectively, the mixed sound signals acquired by linear mike array were processed by ICA. The basic principle of ICA and algorithm of FASTICA were described in detail. The emulation experiment was designed. The environment noise signal was simulated by using band-limited white noise and the reflective sound signal was simulated by using pulse signal. The reflective sound signal attenuation produced by the different distance transmission was simulated by weighting the sound signal with different contingencies. The mixed sound signals acquired by linear mike array were synthesized by using the above simulated signals and were whitened and separated by ICA. The final results verified that the environment noise separation and the reconstruction of the detecting-line sound distribution can be realized effectively.
ERIC Educational Resources Information Center
Seco, Guillermo Vallejo; Izquierdo, Marcelino Cuesta; Garcia, M. Paula Fernandez; Diez, F. Javier Herrero
2006-01-01
The authors compare the operating characteristics of the bootstrap-F approach, a direct extension of the work of Berkovits, Hancock, and Nevitt, with Huynh's improved general approximation (IGA) and the Brown-Forsythe (BF) multivariate approach in a mixed repeated measures design when normality and multisample sphericity assumptions do not hold.…
Piecewise multivariate modelling of sequential metabolic profiling data.
Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan
2008-02-19
Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.
Non-fragile multivariable PID controller design via system augmentation
NASA Astrophysics Data System (ADS)
Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan
2017-07-01
In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.
Schouwenburg, M G; Busweiler, L A D; Beck, N; Henneman, D; Amodio, S; van Berge Henegouwen, M I; Cats, A; van Hillegersberg, R; van Sandick, J W; Wijnhoven, B P L; Wouters, M W J; Nieuwenhuijzen, G A P
2018-04-01
Dutch national guidelines on the diagnosis and treatment of gastric cancer recommend the use of perioperative chemotherapy in patients with resectable gastric cancer. However, adjuvant chemotherapy is often not administered. The aim of this study was to evaluate hospital variation on the probability to receive adjuvant chemotherapy and to identify associated factors with special attention to postoperative complications. All patients who received neoadjuvant chemotherapy and underwent an elective surgical resection for stage IB-IVa (M0) gastric adenocarcinoma between 2011 and 2015 were identified from a national database (Dutch Upper GI Cancer Audit). A multivariable linear mixed model was used to evaluate case-mix adjusted hospital variation and to identify factors associated with adjuvant therapy. Of all surgically treated gastric cancer patients who received neoadjuvant chemotherapy (n = 882), 68% received adjuvant chemo(radio)therapy. After adjusting for case-mix and random variation, a large hospital variation in the administration rates for adjuvant was observed (OR range 0.31-7.1). In multivariable analysis, weight loss, a poor health status and failure of neoadjuvant chemotherapy completion were strongly associated with an increased likelihood of adjuvant therapy omission. Patients with severe postoperative complications had a threefold increased likelihood of adjuvant therapy omission (OR 3.07 95% CI 2.04-4.65). Despite national guidelines, considerable hospital variation was observed in the probability of receiving adjuvant chemo(radio)therapy. Postoperative complications were strongly associated with adjuvant chemo(radio)therapy omission, underlining the need to further reduce perioperative morbidity in gastric cancer surgery. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
40 CFR 60.667 - Chemicals affected by subpart NNN.
Code of Federal Regulations, 2010 CFR
2010-07-01
... alcohols, ethoxylated, mixed Linear alcohols, ethoxylated, and sulfated, sodium salt, mixed Linear alcohols, sulfated, sodium salt, mixed Linear alkylbenzene 123-01-3 Magnesium acetate 142-72-3 Maleic anhydride 108...
40 CFR 60.667 - Chemicals affected by subpart NNN.
Code of Federal Regulations, 2011 CFR
2011-07-01
... alcohols, ethoxylated, mixed Linear alcohols, ethoxylated, and sulfated, sodium salt, mixed Linear alcohols, sulfated, sodium salt, mixed Linear alkylbenzene 123-01-3 Magnesium acetate 142-72-3 Maleic anhydride 108...
DOT National Transportation Integrated Search
2016-09-01
We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...
NASA Astrophysics Data System (ADS)
Mendonça Costa, Lucimara; Ribeiro, Emerson Schwingel; Segatelli, Mariana Gava; do Nascimento, Danielle Raphael; de Oliveira, Fernanda Midori; Tarley, César Ricardo Teixeira
2011-05-01
The present study describes the adsorption characteristic of Cd(II) onto Nb 2O 5/Al 2O 3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area ( SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g -1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO 2/Al 2O 3/Nb 2O 5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L -1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2 4 full factorial design and Doehlert matrix. The effect of SO 42-, Cu 2+, Zn 2+ and Ni 2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h -1, concentration efficiency of 4.35 min -1, linear range from 5.0 up to 35.0 μg L -1 and limits of detection and quantification of 0.19 and 0.65 μg L -1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).
Katz, Daniel H.; Selvaraj, Senthil; Aguilar, Frank G.; Martinez, Eva E.; Beussink, Lauren; Kim, Kwang-Youn A.; Peng, Jie; Sha, Jin; Irvin, Marguerite R.; Eckfeldt, John H.; Turner, Stephen T.; Freedman, Barry I.; Arnett, Donna K.; Shah, Sanjiv J.
2013-01-01
Introduction Albuminuria is a marker of endothelial dysfunction and has been associated with adverse cardiovascular outcomes. The reasons for this association are unclear, but may be due to the relationship between endothelial dysfunction and intrinsic myocardial dysfunction. Methods and Results In the HyperGEN study, a population- and family-based study of hypertension, we examined the relationship between urine albumin-to-creatinine ratio (UACR) and cardiac mechanics (N=1894, all of whom had normal left ventricular ejection fraction and wall motion). We performed speckle-tracking echocardiographic analysis to quantify global longitudinal, circumferential, and radial strain (GLS, GCS, and GRS, respectively), and early diastolic (e′) tissue velocities. We used E/e′ ratio as a marker of increased LV filling pressures. We used multivariable-adjusted linear mixed effect models to determine independent associations between UACR and cardiac mechanics. The mean age was 50±14 years, 59% were female, and 46% were African-American. Comorbidities were increasingly prevalent among higher UACR quartiles. Albuminuria was associated with GLS, GCS, GRS, e′ velocity, and E/e′ ratio on unadjusted analyses. After adjustment for covariates, UACR was independently associated with lower absolute GLS (multivariable-adjusted mean GLS [95% CI] for UACR Quartile 1 = 15.3 [15.0–15.5]% vs. UACR Q4 = 14.6 [14.3–14.9]%, P for trend <0.001) and increased E/e′ ratio (Q1 = 25.3 [23.5–27.1] vs. Q4 = 29.0 [27.0–31.0], P= 0.003). The association between UACR and GLS was present even in participants with UACR < 30 mg/g (P<0.001 after multivariable adjustment). Conclusions Albuminuria, even at low levels, is associated with adverse cardiac mechanics and higher E/e′ ratio. PMID:24077169
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.
ERIC Educational Resources Information Center
Hong, Guanglei; Yu, Bing
2008-01-01
This study examines the effects of kindergarten retention on children's social-emotional development in the early, middle, and late elementary years. Previous studies have generated mixed results partly due to some major methodological challenges, including selection bias, measurement error, and divergent perceptions of multiple respondents in…
Rich, Ashleigh J; Lachowsky, Nathan J; Cui, Zishan; Sereda, Paul; Lal, Allan; Moore, David M; Hogg, Robert S; Roth, Eric A
2015-01-01
This study analyzed event-level partnership data from a computer-assisted survey of 719 gay and bisexual men (GBM) enrolled in the Momentum Health Study to delineate potential linkages between anal sex roles and so-called “sex drugs”, i.e. erectile dysfunction drugs (EDD), poppers and crystal methamphetamine. Univariable and multivariable analyses using generalized linear mixed models with logit link function with sexual encounters (n=2,514) as the unit of analysis tested four hypotheses: 1) EDD are significantly associated with insertive anal sex roles, 2) poppers are significantly associated with receptive anal sex, 3) both poppers and EDD are significantly associated with anal sexual versatility and, 4) crystal methamphetamine is significantly associated with all anal sex roles. Data for survey respondents and their sexual partners allowed testing these hypotheses for both anal sex partners in the same encounter. Multivariable results supported the first three hypotheses. Crystal methamphetamine was significantly associated with all anal sex roles in the univariable models, but not significant in any multivariable ones. Other multivariable significant variables included attending group sex events, venue where first met, and self-described sexual orientation. Results indicate that GBM sex-drug use behavior features rational decision-making strategies linked to anal sex roles. They also suggest that more research on anal sex roles, particularly versatility, is needed, and that sexual behavior research can benefit from partnership analysis. PMID:26525571
Rich, Ashleigh J; Lachowsky, Nathan J; Cui, Zishan; Sereda, Paul; Lal, Allan; Moore, David M; Hogg, Robert S; Roth, Eric A
2016-08-01
This study analyzed event-level partnership data from a computer-assisted survey of 719 gay and bisexual men (GBM) enrolled in the Momentum Health Study to delineate potential linkages between anal sex roles and the so-called "sex drugs," i.e., erectile dysfunction drugs (EDD), poppers, and crystal methamphetamine. Univariable and multivariable analyses using generalized linear mixed models with logit link function with sexual encounters (n = 2514) as the unit of analysis tested four hypotheses: (1) EDD are significantly associated with insertive anal sex roles, (2) poppers are significantly associated with receptive anal sex, (3) both poppers and EDD are significantly associated with anal sexual versatility, and (4) crystal methamphetamine is significantly associated with all anal sex roles. Data for survey respondents and their sexual partners allowed testing these hypotheses for both anal sex partners in the same encounter. Multivariable results supported the first three hypotheses. Crystal methamphetamine was significantly associated with all anal sex roles in the univariable models, but not significant in any multivariable ones. Other multivariable significant variables included attending group sex events, venue where first met, and self-described sexual orientation. Results indicate that GBM sex-drug use behavior features rational decision-making strategies linked to anal sex roles. They also suggest that more research on anal sex roles, particularly versatility, is needed, and that sexual behavior research can benefit from partnership analysis.
Mapping eQTL Networks with Mixed Graphical Markov Models
Tur, Inma; Roverato, Alberto; Castelo, Robert
2014-01-01
Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
Chow, Sy-Miin; Bendezú, Jason J.; Cole, Pamela M.; Ram, Nilam
2016-01-01
Several approaches currently exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA), generalized local linear approximation (GLLA), and generalized orthogonal local derivative approximation (GOLD). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children’s self-regulation. PMID:27391255
Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam
2016-01-01
Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation.
ERIC Educational Resources Information Center
Pliszka, Steven R.; Matthews, Thomas L.; Braslow, Kenneth J.; Watson, Melissa A.
2006-01-01
Objective: To determine whether methylphenidate (MPH) and mixed salts amphetamine (MSA) have different effects on growth in children with attention-deficit/hyperactivity disorder. Method: Patients treated for at least 1 year with MPH or MSA were identified. A linear regression was performed to determine the effect of stimulant type, patient…
Biostatistics Series Module 10: Brief Overview of Multivariate Methods.
Hazra, Avijit; Gogtay, Nithya
2017-01-01
Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.
Power of Models in Longitudinal Study: Findings from a Full-Crossed Simulation Design
ERIC Educational Resources Information Center
Fang, Hua; Brooks, Gordon P.; Rizzo, Maria L.; Espy, Kimberly Andrews; Barcikowski, Robert S.
2009-01-01
Because the power properties of traditional repeated measures and hierarchical multivariate linear models have not been clearly determined in the balanced design for longitudinal studies in the literature, the authors present a power comparison study of traditional repeated measures and hierarchical multivariate linear models under 3…
Ulibarri, Monica D; Hiller, Sarah P; Lozada, Remedios; Rangel, M Gudelia; Stockman, Jamila K; Silverman, Jay G; Ojeda, Victoria D
2013-01-01
This mixed methods study examined the prevalence and characteristics of physical and sexual abuse and depression symptoms among 624 injection drug-using female sex workers (FSW-IDUs) in Tijuana and Ciudad Juarez, Mexico; a subset of 47 from Tijuana also underwent qualitative interviews. Linear regressions identified correlates of current depression symptoms. In the interviews, FSW-IDUs identified drug use as a method of coping with the trauma they experienced from abuse that occurred before and after age 18 and during the course of sex work. In a multivariate linear regression model, two factors-ever experiencing forced sex and forced sex in the context of sex work-were significantly associated with higher levels of depression symptoms. Our findings suggest the need for integrated mental health and drug abuse services for FSW-IDUs addressing history of trauma as well as for further research on violence revictimization in the context of sex work in Mexico.
Ulibarri, Monica D.; Hiller, Sarah P.; Lozada, Remedios; Rangel, M. Gudelia; Stockman, Jamila K.; Silverman, Jay G.; Ojeda, Victoria D.
2013-01-01
This mixed methods study examined the prevalence and characteristics of physical and sexual abuse and depression symptoms among 624 injection drug-using female sex workers (FSW-IDUs) in Tijuana and Ciudad Juarez, Mexico; a subset of 47 from Tijuana also underwent qualitative interviews. Linear regressions identified correlates of current depression symptoms. In the interviews, FSW-IDUs identified drug use as a method of coping with the trauma they experienced from abuse that occurred before and after age 18 and during the course of sex work. In a multivariate linear regression model, two factors—ever experiencing forced sex and forced sex in the context of sex work—were significantly associated with higher levels of depression symptoms. Our findings suggest the need for integrated mental health and drug abuse services for FSW-IDUs addressing history of trauma as well as for further research on violence revictimization in the context of sex work in Mexico. PMID:23737808
Cumulative total effective whole-body radiation dose in critically ill patients.
Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J
2013-11-01
Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.
Percutaneous Breast Biopsy: Effect on Short-term Quality of Life
Humphrey, Kathryn L.; Donelan, Karen; Kong, Chung Y.; Williams, Olubunmi; Itauma, Omosalewa; Halpern, Elkan F.; Gerade, Beverly J.; Rafferty, Elizabeth A.; Swan, J. Shannon
2014-01-01
Purpose To examine the effects of percutaneous breast biopsy on short-term quality of life. Materials and Methods The institutional review board approved this HIPAA-compliant prospective study. From December 1, 2007, through February 28, 2010, women undergoing percutaneous breast biopsy in an academic medical center were recruited to participate in a mixed-mode survey 2–4 days after biopsy. Patients described their biopsy experience by using the Testing Morbidities Index (TMI), a validated instrument for assessing short-term quality of life related to diagnostic testing. The scale ranged from 0 (worst possible experience) to 100 (no adverse effects). Seven attributes were assessed: pain or discomfort before and during testing, fear or anxiety before and during testing, embarrassment during testing, and physical and mental function after testing. Demographic and clinical information were also collected. Univariate and multivariate linear regression analyses were performed to identify significant predictors of TMI score. Results In 188 women (mean age, 51.4 years; range, 22–80 years), the mean TMI score (±standard deviation) was 82 ± 12. Univariate analysis revealed age and race as significant predictors of the TMI score (P < .05). In the multivariate model, only patient age remained a significant independent predictor (P = .001). TMI scores decreased by approximately three points for every decade decrease in patient age, which suggests that younger women were more adversely affected by the biopsy experience. Conclusion Younger patient age is a significant predictor of decreased short-term quality of life related to percutaneous breast biopsy procedures. Tailored prebiopsy counseling may better prepare women for percutaneous biopsy procedures and improve their experience. © RSNA, 2013 PMID:24471385
Spinnato, J; Roubaud, M-C; Burle, B; Torrésani, B
2015-06-01
The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.
Multivariable control theory applied to hierarchial attitude control for planetary spacecraft
NASA Technical Reports Server (NTRS)
Boland, J. S., III; Russell, D. W.
1972-01-01
Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.
Drunk driving detection based on classification of multivariate time series.
Li, Zhenlong; Jin, Xue; Zhao, Xiaohua
2015-09-01
This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Bentein, Kathleen; Vandenberghe, Christian; Vandenberg, Robert; Stinglhamber, Florence
2005-05-01
Through the use of affective, normative, and continuance commitment in a multivariate 2nd-order factor latent growth modeling approach, the authors observed linear negative trajectories that characterized the changes in individuals across time in both affective and normative commitment. In turn, an individual's intention to quit the organization was characterized by a positive trajectory. A significant association was also found between the change trajectories such that the steeper the decline in an individual's affective and normative commitments across time, the greater the rate of increase in that individual's intention to quit, and, further, the greater the likelihood that the person actually left the organization over the next 9 months. Findings regarding continuance commitment and its components were mixed.
Wang, Yuanjia; Chen, Huaihou
2012-01-01
Summary We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic approximation may be unreliable and conservative. PMID:23020801
Wang, Yuanjia; Chen, Huaihou
2012-12-01
We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.
2011-01-01
Background Many nursing and health related research studies have continuous outcome measures that are inherently non-normal in distribution. The Box-Cox transformation provides a powerful tool for developing a parsimonious model for data representation and interpretation when the distribution of the dependent variable, or outcome measure, of interest deviates from the normal distribution. The objectives of this study was to contrast the effect of obtaining the Box-Cox power transformation parameter and subsequent analysis of variance with or without a priori knowledge of predictor variables under the classic linear or linear mixed model settings. Methods Simulation data from a 3 × 4 factorial treatments design, along with the Patient Falls and Patient Injury Falls from the National Database of Nursing Quality Indicators (NDNQI®) for the 3rd quarter of 2007 from a convenience sample of over one thousand US hospitals were analyzed. The effect of the nonlinear monotonic transformation was contrasted in two ways: a) estimating the transformation parameter along with factors with potential structural effects, and b) estimating the transformation parameter first and then conducting analysis of variance for the structural effect. Results Linear model ANOVA with Monte Carlo simulation and mixed models with correlated error terms with NDNQI examples showed no substantial differences on statistical tests for structural effects if the factors with structural effects were omitted during the estimation of the transformation parameter. Conclusions The Box-Cox power transformation can still be an effective tool for validating statistical inferences with large observational, cross-sectional, and hierarchical or repeated measure studies under the linear or the mixed model settings without prior knowledge of all the factors with potential structural effects. PMID:21854614
Hou, Qingjiang; Mahnken, Jonathan D; Gajewski, Byron J; Dunton, Nancy
2011-08-19
Many nursing and health related research studies have continuous outcome measures that are inherently non-normal in distribution. The Box-Cox transformation provides a powerful tool for developing a parsimonious model for data representation and interpretation when the distribution of the dependent variable, or outcome measure, of interest deviates from the normal distribution. The objectives of this study was to contrast the effect of obtaining the Box-Cox power transformation parameter and subsequent analysis of variance with or without a priori knowledge of predictor variables under the classic linear or linear mixed model settings. Simulation data from a 3 × 4 factorial treatments design, along with the Patient Falls and Patient Injury Falls from the National Database of Nursing Quality Indicators (NDNQI® for the 3rd quarter of 2007 from a convenience sample of over one thousand US hospitals were analyzed. The effect of the nonlinear monotonic transformation was contrasted in two ways: a) estimating the transformation parameter along with factors with potential structural effects, and b) estimating the transformation parameter first and then conducting analysis of variance for the structural effect. Linear model ANOVA with Monte Carlo simulation and mixed models with correlated error terms with NDNQI examples showed no substantial differences on statistical tests for structural effects if the factors with structural effects were omitted during the estimation of the transformation parameter. The Box-Cox power transformation can still be an effective tool for validating statistical inferences with large observational, cross-sectional, and hierarchical or repeated measure studies under the linear or the mixed model settings without prior knowledge of all the factors with potential structural effects.
An error bound for a discrete reduced order model of a linear multivariable system
NASA Technical Reports Server (NTRS)
Al-Saggaf, Ubaid M.; Franklin, Gene F.
1987-01-01
The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.
Sick of our loans: Student borrowing and the mental health of young adults in the United States.
Walsemann, Katrina M; Gee, Gilbert C; Gentile, Danielle
2015-01-01
Student loans are increasingly important and commonplace, especially among recent cohorts of young adults in the United States. These loans facilitate the acquisition of human capital in the form of education, but may also lead to stress and worries related to repayment. This study investigated two questions: 1) what is the association between the cumulative amount of student loans borrowed over the course of schooling and psychological functioning when individuals are 25-31 years old; and 2) what is the association between annual student loan borrowing and psychological functioning among currently enrolled college students? We also examined whether these relationships varied by parental wealth, college enrollment history (e.g. 2-year versus 4-year college), and educational attainment (for cumulative student loans only). We analyzed data from the National Longitudinal Survey of Youth 1997 (NLSY97), a nationally representative sample of young adults in the United States. Analyses employed multivariate linear regression and within-person fixed-effects models. Student loans were associated with poorer psychological functioning, adjusting for covariates, in both the multivariate linear regression and the within-person fixed effects models. This association varied by level of parental wealth in the multivariate linear regression models only, and did not vary by college enrollment history or educational attainment. The present findings raise novel questions for further research regarding student loan debt and the possible spillover effects on other life circumstances, such as occupational trajectories and health inequities. The study of student loans is even more timely and significant given the ongoing rise in the costs of higher education. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparative Robustness of Recent Methods for Analyzing Multivariate Repeated Measures Designs
ERIC Educational Resources Information Center
Seco, Guillermo Vallejo; Gras, Jaime Arnau; Garcia, Manuel Ato
2007-01-01
This study evaluated the robustness of two recent methods for analyzing multivariate repeated measures when the assumptions of covariance homogeneity and multivariate normality are violated. Specifically, the authors' work compares the performance of the modified Brown-Forsythe (MBF) procedure and the mixed-model procedure adjusted by the…
Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne
2016-04-01
Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Multivariate analysis of longitudinal rates of change.
Bryan, Matthew; Heagerty, Patrick J
2016-12-10
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rijken, Bianca Francisca Maria; den Ottelander, Bianca Kelly; van Veelen, Marie-Lise Charlotte; Lequin, Maarten Hans; Mathijssen, Irene Margreet Jacqueline
2015-05-01
OBJECT Patients with syndromic and complex craniosynostosis are characterized by the premature fusion of one or more cranial sutures. These patients are at risk for developing elevated intracranial pressure (ICP). There are several factors known to contribute to elevated ICP in these patients, including craniocerebral disproportion, hydrocephalus, venous hypertension, and obstructive sleep apnea. However, the causal mechanism is unknown, and patients develop elevated ICP even after skull surgery. In clinical practice, the occipitofrontal circumference (OFC) is used as an indirect measure for intracranial volume (ICV), to evaluate skull growth. However, it remains unknown whether OFC is a reliable predictor of ICV in patients with a severe skull deformity. Therefore, in this study the authors evaluated the relation between ICV and OFC. METHODS Eighty-four CT scans obtained in 69 patients with syndromic and complex craniosynostosis treated at the Erasmus University Medical Center-Sophia Children's Hospital were included. The ICV was calculated based on CT scans by using autosegmentation with an HU threshold < 150. The OFC was collected from electronic patient files. The CT scans and OFC measurements were matched based on a maximum amount of the time that was allowed between these examinations, which was dependent on age. A Pearson correlation coefficient was calculated to evaluate the correlations between OFC and ICV. The predictive value of OFC, age, and sex on ICV was then further evaluated using a univariate linear mixed model. The significant factors in the univariate analysis were subsequently entered in a multivariate mixed model. RESULTS The correlations found between OFC and ICV were r = 0.908 for the total group (p < 0.001), r = 0.981 for Apert (p < 0.001), r = 0.867 for Crouzon-Pfeiffer (p < 0.001), r = 0.989 for Muenke (p < 0.001), r = 0.858 for Saethre- Chotzen syndrome (p = 0.001), and r = 0.917 for complex craniosynostosis (p < 0.001). Age and OFC were significant predictors of ICV in the univariate linear mixed model (p < 0.001 for both factors). The OFC was the only predictor that remained significant in the multivariate analysis (p < 0.001). CONCLUSIONS The OFC is a significant predictor of ICV in patients with syndromic and complex craniosynostosis. Therefore, measuring the OFC during clinical practice is very useful in determining which patients are at risk for impaired skull growth.
Real longitudinal data analysis for real people: building a good enough mixed model.
Cheng, Jing; Edwards, Lloyd J; Maldonado-Molina, Mildred M; Komro, Kelli A; Muller, Keith E
2010-02-20
Mixed effects models have become very popular, especially for the analysis of longitudinal data. One challenge is how to build a good enough mixed effects model. In this paper, we suggest a systematic strategy for addressing this challenge and introduce easily implemented practical advice to build mixed effects models. A general discussion of the scientific strategies motivates the recommended five-step procedure for model fitting. The need to model both the mean structure (the fixed effects) and the covariance structure (the random effects and residual error) creates the fundamental flexibility and complexity. Some very practical recommendations help to conquer the complexity. Centering, scaling, and full-rank coding of all the predictor variables radically improve the chances of convergence, computing speed, and numerical accuracy. Applying computational and assumption diagnostics from univariate linear models to mixed model data greatly helps to detect and solve the related computational problems. Applying computational and assumption diagnostics from the univariate linear models to the mixed model data can radically improve the chances of convergence, computing speed, and numerical accuracy. The approach helps to fit more general covariance models, a crucial step in selecting a credible covariance model needed for defensible inference. A detailed demonstration of the recommended strategy is based on data from a published study of a randomized trial of a multicomponent intervention to prevent young adolescents' alcohol use. The discussion highlights a need for additional covariance and inference tools for mixed models. The discussion also highlights the need for improving how scientists and statisticians teach and review the process of finding a good enough mixed model. (c) 2009 John Wiley & Sons, Ltd.
Ma, Qiuyun; Jiao, Yan; Ren, Yiping
2017-01-01
In this study, length-weight relationships and relative condition factors were analyzed for Yellow Croaker (Larimichthys polyactis) along the north coast of China. Data covered six regions from north to south: Yellow River Estuary, Coastal Waters of Northern Shandong, Jiaozhou Bay, Coastal Waters of Qingdao, Haizhou Bay, and South Yellow Sea. In total 3,275 individuals were collected during six years (2008, 2011-2015). One generalized linear model, two simply linear models and nine linear mixed effect models that applied the effects from regions and/or years to coefficient a and/or the exponent b were studied and compared. Among these twelve models, the linear mixed effect model with random effects from both regions and years fit the data best, with lowest Akaike information criterion value and mean absolute error. In this model, the estimated a was 0.0192, with 95% confidence interval 0.0178~0.0308, and the estimated exponent b was 2.917 with 95% confidence interval 2.731~2.945. Estimates for a and b with the random effects in intercept and coefficient from Region and Year, ranged from 0.013 to 0.023 and from 2.835 to 3.017, respectively. Both regions and years had effects on parameters a and b, while the effects from years were shown to be much larger than those from regions. Except for Coastal Waters of Northern Shandong, a decreased from north to south. Condition factors relative to reference years of 1960, 1986, 2005, 2007, 2008~2009 and 2010 revealed that the body shape of Yellow Croaker became thinner in recent years. Furthermore relative condition factors varied among months, years, regions and length. The values of a and relative condition factors decreased, when the environmental pollution became worse, therefore, length-weight relationships could be an indicator for the environment quality. Results from this study provided basic description of current condition of Yellow Croaker along the north coast of China.
The effect of dropout on the efficiency of D-optimal designs of linear mixed models.
Ortega-Azurduy, S A; Tan, F E S; Berger, M P F
2008-06-30
Dropout is often encountered in longitudinal data. Optimal designs will usually not remain optimal in the presence of dropout. In this paper, we study D-optimal designs for linear mixed models where dropout is encountered. Moreover, we estimate the efficiency loss in cases where a D-optimal design for complete data is chosen instead of that for data with dropout. Two types of monotonically decreasing response probability functions are investigated to describe dropout. Our results show that the location of D-optimal design points for the dropout case will shift with respect to that for the complete and uncorrelated data case. Owing to this shift, the information collected at the D-optimal design points for the complete data case does not correspond to the smallest variance. We show that the size of the displacement of the time points depends on the linear mixed model and that the efficiency loss is moderate.
Linear Mixed Models: Gum and Beyond
NASA Astrophysics Data System (ADS)
Arendacká, Barbora; Täubner, Angelika; Eichstädt, Sascha; Bruns, Thomas; Elster, Clemens
2014-04-01
In Annex H.5, the Guide to the Evaluation of Uncertainty in Measurement (GUM) [1] recognizes the necessity to analyze certain types of experiments by applying random effects ANOVA models. These belong to the more general family of linear mixed models that we focus on in the current paper. Extending the short introduction provided by the GUM, our aim is to show that the more general, linear mixed models cover a wider range of situations occurring in practice and can be beneficial when employed in data analysis of long-term repeated experiments. Namely, we point out their potential as an aid in establishing an uncertainty budget and as means for gaining more insight into the measurement process. We also comment on computational issues and to make the explanations less abstract, we illustrate all the concepts with the help of a measurement campaign conducted in order to challenge the uncertainty budget in calibration of accelerometers.
Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam
2014-07-01
This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Evaluation of third-degree and fourth-degree laceration rates as quality indicators.
Friedman, Alexander M; Ananth, Cande V; Prendergast, Eri; D'Alton, Mary E; Wright, Jason D
2015-04-01
To examine the patterns and predictors of third-degree and fourth-degree laceration in women undergoing vaginal delivery. We identified a population-based cohort of women in the United States who underwent a vaginal delivery between 1998 and 2010 using the Nationwide Inpatient Sample. Multivariable log-linear regression models were developed to account for patient, obstetric, and hospital factors related to lacerations. Between-hospital variability of laceration rates was calculated using generalized log-linear mixed models. Among 7,096,056 women who underwent vaginal delivery in 3,070 hospitals, 3.3% (n=232,762) had a third-degree laceration and 1.1% (n=76,347) had a fourth-degree laceration. In an adjusted model for fourth-degree lacerations, important risk factors included shoulder dystocia and forceps and vacuum deliveries with and without episiotomy. Other demographic, obstetric, medical, and hospital variables, although statistically significant, were not major determinants of lacerations. Risk factors in a multivariable model for third-degree lacerations were similar to those in the fourth-degree model. Regression analysis of hospital rates (n=3,070) of lacerations demonstrated limited between-hospital variation. Risk of third-degree and fourth-degree laceration was most strongly related to operative delivery and shoulder dystocia. Between-hospital variation was limited. Given these findings and that the most modifiable practice related to lacerations would be reduction in operative vaginal deliveries (and a possible increase in cesarean delivery), third-degree and fourth-degree laceration rates may be a quality metric of limited utility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qichun; Zhou, Jinglin; Wang, Hong
In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
Potential of a smartphone as a stress-free sensor of daily human behaviour.
Mimura, Koki; Kishino, Hirohisa; Karino, Genta; Nitta, Etsuko; Senoo, Aya; Ikegami, Kentaro; Kunikata, Tetsuya; Yamanouchi, Hideo; Nakamura, Shun; Sato, Kan; Koshiba, Mamiko
2015-01-01
Behaviour is one of the most powerful objective signals that connotes psychological functions regulated by neuronal network systems. This study searched for simple behaviours using smartphone sensors with three axes for measuring acceleration, angular speed and direction. We used quantitative analytic methodology of pattern recognition for work contexts, individual workers and seasonal effects in our own longitudinally recorded data. Our 13 laboratory members were involved in the care of common marmosets and domestic chicks, which lived in separate rooms. They attached a smartphone to their front waist-belts during feeding and cleaning in five care tasks. Behavioural characteristics such as speed, acceleration and azimuth, pitch, and roll angles were monitored. Afterwards, participants noted subjective scores of warmth sensation and work efficiency. The multivariate time series behavioral data were characterized by the subjective scores and environmental factors such as room temperature, season, and humidity, using the linear mixed model. In contrast to high-precision but stress-inducing sensors, the mobile sensors measuring daily behaviours allowed us to quantify the effects of the psychological states and environmental factors on the behavioural traits. Copyright © 2014 Elsevier B.V. All rights reserved.
Casas, Vanessa; Llompart, Maria; García-Jares, Carmen; Cela, Rafael; Dagnac, Thierry
2006-08-18
A method based on solid-phase microextraction (SPME) and gas chromatography with micro-electron capture detection (GC-microECD) has been optimized for the analysis of pyrethroids in water samples. The influence of parameters such as temperature, fibre coating, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mix-level factorial design, which allowed the study of main effects as well as two factor interactions. Finally, a method based on direct SPME at 50 degrees C, using polydimethylsiloxane fibre is proposed. The method showed good linearity (R2>0.995) and repeatability (RSD
Dechavanne, Célia; Sadissou, Ibrahim; Bouraima, Aziz; Ahouangninou, Claude; Amoussa, Roukiyath; Milet, Jacqueline; Moutairou, Kabirou; Massougbodji, Achille; Theisen, Michael; Remarque, Edmond J; Courtin, David; Nuel, Gregory; Migot-Nabias, Florence; Garcia, André
2016-09-27
To our knowledge, effects of age, placental malaria infection, infections during follow-up, nutritional habits, sickle-cell trait and individual exposure to Anopheles bites were never explored together in a study focusing on the acquisition of malaria antibody responses among infants living in endemic areas.Five hundred and sixty-seven Beninese infants were weekly followed-up from birth to 18 months of age. Immunoglobulin G (IgG), IgG1 and IgG3 specific for 5 malaria antigens were measured every 3 months. A linear mixed model was used to analyze the effect of each variable on the acquisition of antimalarial antibodies in 6-to18-month old infants in univariate and multivariate analyses. Placental malaria, nutrition intakes and sickle-cell trait did not influence the infant antibody levels to P. falciparum antigens. In contrary, age, malaria antibody levels at birth, previous and present malaria infections as well as exposure to Anopheles bites were significantly associated with the natural acquisition of malaria antibodies in 6-to18-month old Beninese infants. This study highlighted inescapable factors to consider simultaneously in an immuno-epidemiological study or a vaccine trial in early life.
Assessing exposure to violence using multiple informants: application of hierarchical linear model.
Kuo, M; Mohler, B; Raudenbush, S L; Earls, F J
2000-11-01
The present study assesses the effects of demographic risk factors on children's exposure to violence (ETV) and how these effects vary by informants. Data on exposure to violence of 9-, 12-, and 15-year-olds were collected from both child participants (N = 1880) and parents (N = 1776), as part of the assessment of the Project on Human Development in Chicago Neighborhoods (PHDCN). A two-level hierarchical linear model (HLM) with multivariate outcomes was employed to analyze information obtained from these two different groups of informants. The findings indicate that parents generally report less ETV than do their children and that associations of age, gender, and parent education with ETV are stronger in the self-reports than in the parent reports. The findings support a multivariate approach when information obtained from different sources is being integrated. The application of HLM allows an assessment of interactions between risk factors and informants and uses all available data, including data from one informant when data from the other informant is missing.
Correcting for population structure and kinship using the linear mixed model: theory and extensions.
Hoffman, Gabriel E
2013-01-01
Population structure and kinship are widespread confounding factors in genome-wide association studies (GWAS). It has been standard practice to include principal components of the genotypes in a regression model in order to account for population structure. More recently, the linear mixed model (LMM) has emerged as a powerful method for simultaneously accounting for population structure and kinship. The statistical theory underlying the differences in empirical performance between modeling principal components as fixed versus random effects has not been thoroughly examined. We undertake an analysis to formalize the relationship between these widely used methods and elucidate the statistical properties of each. Moreover, we introduce a new statistic, effective degrees of freedom, that serves as a metric of model complexity and a novel low rank linear mixed model (LRLMM) to learn the dimensionality of the correction for population structure and kinship, and we assess its performance through simulations. A comparison of the results of LRLMM and a standard LMM analysis applied to GWAS data from the Multi-Ethnic Study of Atherosclerosis (MESA) illustrates how our theoretical results translate into empirical properties of the mixed model. Finally, the analysis demonstrates the ability of the LRLMM to substantially boost the strength of an association for HDL cholesterol in Europeans.
Moerbeek, Mirjam; van Schie, Sander
2016-07-11
The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.
Options for refractive index and viscosity matching to study variable density flows
NASA Astrophysics Data System (ADS)
Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.
2018-02-01
Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.
Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.
Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard
2017-04-01
To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Eckner, James T; Oh, Youkeun K; Joshi, Monica S; Richardson, James K; Ashton-Miller, James A
2014-03-01
Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes. In each anatomic plane, peak linear velocity (ΔV) and peak angular velocity (Δω) of the head are inversely related to maximal isometric cervical muscle strength in the opposing direction (H1). Under impulsive loading, ΔV and Δω will be decreased during anticipatory cervical muscle activation compared with the baseline state (H2). Descriptive laboratory study. Maximum isometric neck strength was measured in each anatomic plane in 46 male and female contact sport athletes aged 8 to 30 years. A loading apparatus applied impulsive test forces to athletes' heads in flexion, extension, lateral flexion, and axial rotation during baseline and anticipatory cervical muscle activation conditions. Multivariate linear mixed models were used to determine the effects of neck strength and cervical muscle activation on head ΔV and Δω. Greater isometric neck strength and anticipatory activation were independently associated with decreased head ΔV and Δω after impulsive loading across all planes of motion (all P < .001). Inverse relationships between neck strength and head ΔV and Δω presented moderately strong effect sizes (r = 0.417 to r = 0.657), varying by direction of motion and cervical muscle activation. In male and female athletes across the age spectrum, greater neck strength and anticipatory cervical muscle activation ("bracing for impact") can reduce the magnitude of the head's kinematic response. Future studies should determine whether neck strength contributes to the observed sex and age group differences in concussion incidence. Neck strength and impact anticipation are 2 potentially modifiable risk factors for concussion. Interventions aimed at increasing athletes' neck strength and reducing unanticipated impacts may decrease the risk of concussion associated with sport participation.
Multivariate meta-analysis for non-linear and other multi-parameter associations
Gasparrini, A; Armstrong, B; Kenward, M G
2012-01-01
In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043
A Call for Conducting Multivariate Mixed Analyses
ERIC Educational Resources Information Center
Onwuegbuzie, Anthony J.
2016-01-01
Several authors have written methodological works that provide an introductory- and/or intermediate-level guide to conducting mixed analyses. Although these works have been useful for beginning and emergent mixed researchers, with very few exceptions, works are lacking that describe and illustrate advanced-level mixed analysis approaches. Thus,…
Estimation of value at risk in currency exchange rate portfolio using asymmetric GJR-GARCH Copula
NASA Astrophysics Data System (ADS)
Nurrahmat, Mohamad Husein; Noviyanti, Lienda; Bachrudin, Achmad
2017-03-01
In this study, we discuss the problem in measuring the risk in a portfolio based on value at risk (VaR) using asymmetric GJR-GARCH Copula. The approach based on the consideration that the assumption of normality over time for the return can not be fulfilled, and there is non-linear correlation for dependent model structure among the variables that lead to the estimated VaR be inaccurate. Moreover, the leverage effect also causes the asymmetric effect of dynamic variance and shows the weakness of the GARCH models due to its symmetrical effect on conditional variance. Asymmetric GJR-GARCH models are used to filter the margins while the Copulas are used to link them together into a multivariate distribution. Then, we use copulas to construct flexible multivariate distributions with different marginal and dependence structure, which is led to portfolio joint distribution does not depend on the assumptions of normality and linear correlation. VaR obtained by the analysis with confidence level 95% is 0.005586. This VaR derived from the best Copula model, t-student Copula with marginal distribution of t distribution.
Log-normal frailty models fitted as Poisson generalized linear mixed models.
Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver
2016-12-01
The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A comparison of methods for estimating the random effects distribution of a linear mixed model.
Ghidey, Wendimagegn; Lesaffre, Emmanuel; Verbeke, Geert
2010-12-01
This article reviews various recently suggested approaches to estimate the random effects distribution in a linear mixed model, i.e. (1) the smoothing by roughening approach of Shen and Louis,(1) (2) the semi-non-parametric approach of Zhang and Davidian,(2) (3) the heterogeneity model of Verbeke and Lesaffre( 3) and (4) a flexible approach of Ghidey et al. (4) These four approaches are compared via an extensive simulation study. We conclude that for the considered cases, the approach of Ghidey et al. (4) often shows to have the smallest integrated mean squared error for estimating the random effects distribution. An analysis of a longitudinal dental data set illustrates the performance of the methods in a practical example.
A multivariate model and statistical method for validating tree grade lumber yield equations
Donald W. Seegrist
1975-01-01
Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.
Item Purification in Differential Item Functioning Using Generalized Linear Mixed Models
ERIC Educational Resources Information Center
Liu, Qian
2011-01-01
For this dissertation, four item purification procedures were implemented onto the generalized linear mixed model for differential item functioning (DIF) analysis, and the performance of these item purification procedures was investigated through a series of simulations. Among the four procedures, forward and generalized linear mixed model (GLMM)…
Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
NASA Astrophysics Data System (ADS)
Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.
2016-04-01
> A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).
Song, Mi-Kyung; Paul, Sudeshna; Ward, Sandra E; Gilet, Constance A; Hladik, Gerald A
2018-01-25
This study evaluated 1-year linear trajectories of patient-reported dimensions of quality of life among patients receiving dialysis. Longitudinal observational study. 227 patients recruited from 12 dialysis centers. Sociodemographic and clinical characteristics. Participants completed an hour-long interview monthly for 12 months. Each interview included patient-reported outcome measures of overall symptoms (Edmonton Symptom Assessment System), physical functioning (Activities of Daily Living/Instrumental Activities of Daily Living), cognitive functioning (Patient's Assessment of Own Functioning Inventory), emotional well-being (Center for Epidemiologic Studies Depression Scale, State Anxiety Inventory, and Positive and Negative Affect Schedule), and spiritual well-being (Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale). For each dimension, linear and generalized linear mixed-effects models were used. Linear trajectories of the 5 dimensions were jointly modeled as a multivariate outcome over time. Although dimension scores fluctuated greatly from month to month, overall symptoms, cognitive functioning, emotional well-being, and spiritual well-being improved over time. Older compared with younger participants reported higher scores across all dimensions (all P<0.05). Higher comorbidity scores were associated with worse scores in most dimensions (all P<0.01). Nonwhite participants reported better spiritual well-being compared with their white counterparts (P<0.01). Clustering analysis of dimension scores revealed 2 distinctive clusters. Cluster 1 was characterized by better scores than those of cluster 2 in nearly all dimensions at baseline and by gradual improvement over time. Study was conducted in a single region of the United States and included mostly patients with high levels of function across the dimensions of quality of life studied. Multidimensional patient-reported quality of life varies widely from month to month regardless of whether overall trajectories improve or worsen over time. Additional research is needed to identify the best approaches to incorporate patient-reported outcome measures into dialysis care. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E
2016-07-15
Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of Numeric Representation of Women on Interest in Engineering as a Career
ERIC Educational Resources Information Center
Creamer, Elizabeth G.
2012-01-01
Little is known about how the presence of women influences undergraduates' experiences in engineering. This paper presents results from a mixed methods, multivariate, and multi-institutional study to determine the impact of the numeric representation of women on the intent to be employed in engineering following graduation. Results from the…
Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
Lee, Dongha; Jang, Changwon; Park, Hae-Jeong
2015-03-01
Signal drift in functional magnetic resonance imaging (fMRI) is an unavoidable artifact that limits classification performance in multi-voxel pattern analysis of fMRI. As conventional methods to reduce signal drift, global demeaning or proportional scaling disregards regional variations of drift, whereas voxel-wise univariate detrending is too sensitive to noisy fluctuations. To overcome these drawbacks, we propose a multivariate real-time detrending method for multiclass classification that involves spatial demeaning at each scan and the recursive detrending of drifts in the classifier outputs driven by a multiclass linear support vector machine. Experiments using binary and multiclass data showed that the linear trend estimation of the classifier output drift for each class (a weighted sum of drifts in the class-specific voxels) was more robust against voxel-wise artifacts that lead to inconsistent spatial patterns and the effect of online processing than voxel-wise detrending. The classification performance of the proposed method was significantly better, especially for multiclass data, than that of voxel-wise linear detrending, global demeaning, and classifier output detrending without demeaning. We concluded that the multivariate approach using classifier output detrending of fMRI signals with spatial demeaning preserves spatial patterns, is less sensitive than conventional methods to sample size, and increases classification performance, which is a useful feature for real-time fMRI classification. Copyright © 2014 Elsevier Inc. All rights reserved.
Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo
2011-03-04
Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.
Zhang, Jinming; Cavallari, Jennifer M; Fang, Shona C; Weisskopf, Marc G; Lin, Xihong; Mittleman, Murray A; Christiani, David C
2017-01-01
Background Environmental and occupational exposure to metals is ubiquitous worldwide, and understanding the hazardous metal components in this complex mixture is essential for environmental and occupational regulations. Objective To identify hazardous components from metal mixtures that are associated with alterations in cardiac autonomic responses. Methods Urinary concentrations of 16 types of metals were examined and ‘acceleration capacity’ (AC) and ‘deceleration capacity’ (DC), indicators of cardiac autonomic effects, were quantified from ECG recordings among 54 welders. We fitted linear mixed-effects models with least absolute shrinkage and selection operator (LASSO) to identify metal components that are associated with AC and DC. The Bayesian Information Criterion was used as the criterion for model selection procedures. Results Mercury and chromium were selected for DC analysis, whereas mercury, chromium and manganese were selected for AC analysis through the LASSO approach. When we fitted the linear mixed-effects models with ‘selected’ metal components only, the effect of mercury remained significant. Every 1 µg/L increase in urinary mercury was associated with −0.58 ms (−1.03, –0.13) changes in DC and 0.67 ms (0.25, 1.10) changes in AC. Conclusion Our study suggests that exposure to several metals is associated with impaired cardiac autonomic functions. Our findings should be replicated in future studies with larger sample sizes. PMID:28663305
Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A
2016-08-01
The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data basis for multivariate analysis methods, equivalent to data resulting from chromatographic separations. The alternative evaluation of very large data series based on linear regression analysis produced information equivalent to results obtained through application of PCA an CA. Copyright © 2016 Elsevier B.V. All rights reserved.
Genetic mixed linear models for twin survival data.
Ha, Il Do; Lee, Youngjo; Pawitan, Yudi
2007-07-01
Twin studies are useful for assessing the relative importance of genetic or heritable component from the environmental component. In this paper we develop a methodology to study the heritability of age-at-onset or lifespan traits, with application to analysis of twin survival data. Due to limited period of observation, the data can be left truncated and right censored (LTRC). Under the LTRC setting we propose a genetic mixed linear model, which allows general fixed predictors and random components to capture genetic and environmental effects. Inferences are based upon the hierarchical-likelihood (h-likelihood), which provides a statistically efficient and unified framework for various mixed-effect models. We also propose a simple and fast computation method for dealing with large data sets. The method is illustrated by the survival data from the Swedish Twin Registry. Finally, a simulation study is carried out to evaluate its performance.
Finto Antony; Laurence R. Schimleck; Alex Clark; Richard F. Daniels
2012-01-01
Specific gravity (SG) and moisture content (MC) both have a strong influence on the quantity and quality of wood fiber. We proposed a multivariate mixed model system to model the two properties simultaneously. Disk SG and MC at different height levels were measured from 3 trees in 135 stands across the natural range of loblolly pine and the stand level values were used...
Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman
2011-01-01
This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626
Linear, multivariable robust control with a mu perspective
NASA Technical Reports Server (NTRS)
Packard, Andy; Doyle, John; Balas, Gary
1993-01-01
The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.
Multivariate Time Series Decomposition into Oscillation Components.
Matsuda, Takeru; Komaki, Fumiyasu
2017-08-01
Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.
NASA Astrophysics Data System (ADS)
Gürcan, Eser Kemal
2017-04-01
The most commonly used methods for analyzing time-dependent data are multivariate analysis of variance (MANOVA) and nonlinear regression models. The aim of this study was to compare some MANOVA techniques and nonlinear mixed modeling approach for investigation of growth differentiation in female and male Japanese quail. Weekly individual body weight data of 352 male and 335 female quail from hatch to 8 weeks of age were used to perform analyses. It is possible to say that when all the analyses are evaluated, the nonlinear mixed modeling is superior to the other techniques because it also reveals the individual variation. In addition, the profile analysis also provides important information.
The effects of Medicare Health Management Organizations on hospital operating profit in Florida.
Large, John T; Sear, Alan M
2005-02-01
Between 1992 and 1997, the number of members enrolled in Medicare Health Management Organizations (HMOs) nationwide in the USA more than doubled. During this period, managed care organizations wielded considerable influence over the health care of a large segment of the Medicare population in Florida. This study examined the impact on operational profit of 148 short-term, acute-care Florida hospitals in this period from Medicare HMO patients, as part of a hospital's payer mix. Three measures of hospital profitability were used: operating profit per actual bed, total operating profit with no adjustment for bed size, and operating margins. The multivariate statistical model employed in this study was a linear mixed model with an autoregressive order one (AR[1]) parametric structure on the covariance matrix. The results of the study indicate that Florida hospitals experienced greater profit pressures from Medicare HMO inpatients than from traditional Medicare inpatients. Further, these hospitals could have experienced positive profit effects with greater traditional Medicare participation and negative financial effects with greater Medicare HMO participation. Additionally, Medicare HMO patients appear to have been admitted to hospitals in worse health condition than those in traditional Medicare. Medicare HMO patients were more likely to have used emergency rooms as the source of admission than traditional Medicare patients. Also, Medicare HMO patients were more likely to have been admitted as emergent cases than traditional Medicare patients. Other research has shown that Medicare HMO patients, at the time of enrolment, are probably healthier than traditional Medicare enrollees, but here they appear to have been admitted to hospitals with higher levels of severity of illness. Explanations are offered for these findings.
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.
Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California
Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.
2013-01-01
Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.
Interaction Analysis in MANOVA.
ERIC Educational Resources Information Center
Betz, M. Austin
Simultaneous test procedures (STPS for short) in the context of the unrestricted full rank general linear multivariate model for population cell means are introduced and utilized to analyze interactions in factorial designs. By appropriate choice of an implying hypothesis, it is shown how to test overall main effects, interactions, simple main,…
A modeling study of 2006 Huntington Beach (Lake Erie) beach bacteria concentrations indicates multi-variable linear regression (MLR) can effectively estimate bacteria concentrations compared to the persistence model. Our use of the Virtual Beach (VB) model affirms that fact. VB i...
Mohd Salleh, Nur Afiqah; Richardson, Lindsey; Kerr, Thomas; Shoveller, Jean; Montaner, Julio; Kamarulzaman, Adeeba; Milloy, M-J
2018-03-07
Among people living with HIV (PLWH), high levels of adherence to prescribed antiretroviral therapy (ART) is required to achieve optimal treatment outcomes. However, little is known about the effects of daily pill burden on adherence amongst PLWH who use drugs. We sought to investigate the association between daily pill burden and adherence to ART among members of this key population in Vancouver, Canada. We used data from the AIDS Care Cohort to Evaluate Exposure to Survival Services study, a long-running community-recruited cohort of PLWH who use illicit drugs linked to comprehensive HIV clinical records. The longitudinal relationship between daily pill burden and the odds of ≥95% adherence to ART among ART-exposed individuals was analyzed using multivariable generalized linear mixed-effects modeling, adjusting for sociodemographic, behavioural, and structural factors linked to adherence. Between December 2005 and May 2014, the study enrolled 770 ART-exposed participants, including 257 (34%) women, with a median age of 43 years. At baseline, 437 (56.7%) participants achieved ≥95% adherence in the previous 180 days. Among all interview periods, the median adherence was 100% (interquartile range 71%-100%). In a multivariable model, a greater number of pills per day was negatively associated with ≥95% adherence (adjusted odds ratio [AOR] 0.87 per pill, 95% confidence interval [CI] 0.84-0.91). Further analysis showed that once-a-day ART regimens were positively associated with optimal adherence (AOR 1.39, 95% CI 1.07-1.80). In conclusion, simpler dosing demands (ie, fewer pills and once-a-day single tablet regimens) promoted optimal adherence among PLWH who use drugs. Our findings highlight the need for simpler dosing to be encouraged explicitly for PWUD with multiple adherence barriers.
Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.
Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs
2009-02-01
This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.
Experimental comparison of conventional and nonlinear model-based control of a mixing tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haeggblom, K.E.
1993-11-01
In this case study concerning control of a laboratory-scale mixing tank, conventional multiloop single-input single-output (SISO) control is compared with model-based'' control where the nonlinearity and multivariable characteristics of the process are explicitly taken into account. It is shown, especially if the operating range of the process is large, that the two outputs (level and temperature) cannot be adequately controlled by multiloop SISO control even if gain scheduling is used. By nonlinear multiple-input multiple-output (MIMO) control, on the other hand, very good control performance is obtained. The basic approach to nonlinear control used in this study is first to transformmore » the process into a globally linear and decoupled system, and then to design controllers for this system. Because of the properties of the resulting MIMO system, the controller design is very easy. Two nonlinear control system designs based on a steady-state and a dynamic model, respectively, are considered. In the dynamic case, both setpoint tracking and disturbance rejection can be addressed separately.« less
Hierarchical Bayes approach for subgroup analysis.
Hsu, Yu-Yi; Zalkikar, Jyoti; Tiwari, Ram C
2017-01-01
In clinical data analysis, both treatment effect estimation and consistency assessment are important for a better understanding of the drug efficacy for the benefit of subjects in individual subgroups. The linear mixed-effects model has been used for subgroup analysis to describe treatment differences among subgroups with great flexibility. The hierarchical Bayes approach has been applied to linear mixed-effects model to derive the posterior distributions of overall and subgroup treatment effects. In this article, we discuss the prior selection for variance components in hierarchical Bayes, estimation and decision making of the overall treatment effect, as well as consistency assessment of the treatment effects across the subgroups based on the posterior predictive p-value. Decision procedures are suggested using either the posterior probability or the Bayes factor. These decision procedures and their properties are illustrated using a simulated example with normally distributed response and repeated measurements.
Binquet, C; Abrahamowicz, M; Mahboubi, A; Jooste, V; Faivre, J; Bonithon-Kopp, C; Quantin, C
2008-12-30
Flexible survival models, which avoid assumptions about hazards proportionality (PH) or linearity of continuous covariates effects, bring the issues of model selection to a new level of complexity. Each 'candidate covariate' requires inter-dependent decisions regarding (i) its inclusion in the model, and representation of its effects on the log hazard as (ii) either constant over time or time-dependent (TD) and, for continuous covariates, (iii) either loglinear or non-loglinear (NL). Moreover, 'optimal' decisions for one covariate depend on the decisions regarding others. Thus, some efficient model-building strategy is necessary.We carried out an empirical study of the impact of the model selection strategy on the estimates obtained in flexible multivariable survival analyses of prognostic factors for mortality in 273 gastric cancer patients. We used 10 different strategies to select alternative multivariable parametric as well as spline-based models, allowing flexible modeling of non-parametric (TD and/or NL) effects. We employed 5-fold cross-validation to compare the predictive ability of alternative models.All flexible models indicated significant non-linearity and changes over time in the effect of age at diagnosis. Conventional 'parametric' models suggested the lack of period effect, whereas more flexible strategies indicated a significant NL effect. Cross-validation confirmed that flexible models predicted better mortality. The resulting differences in the 'final model' selected by various strategies had also impact on the risk prediction for individual subjects.Overall, our analyses underline (a) the importance of accounting for significant non-parametric effects of covariates and (b) the need for developing accurate model selection strategies for flexible survival analyses. Copyright 2008 John Wiley & Sons, Ltd.
Fitzsimmons, Eric J; Kvam, Vanessa; Souleyrette, Reginald R; Nambisan, Shashi S; Bonett, Douglas G
2013-01-01
Despite recent improvements in highway safety in the United States, serious crashes on curves remain a significant problem. To assist in better understanding causal factors leading to this problem, this article presents and demonstrates a methodology for collection and analysis of vehicle trajectory and speed data for rural and urban curves using Z-configured road tubes. For a large number of vehicle observations at 2 horizontal curves located in Dexter and Ames, Iowa, the article develops vehicle speed and lateral position prediction models for multiple points along these curves. Linear mixed-effects models were used to predict vehicle lateral position and speed along the curves as explained by operational, vehicle, and environmental variables. Behavior was visually represented for an identified subset of "risky" drivers. Linear mixed-effect regression models provided the means to predict vehicle speed and lateral position while taking into account repeated observations of the same vehicle along horizontal curves. Speed and lateral position at point of entry were observed to influence trajectory and speed profiles. Rural horizontal curve site models are presented that indicate that the following variables were significant and influenced both vehicle speed and lateral position: time of day, direction of travel (inside or outside lane), and type of vehicle.
Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu
2015-01-01
A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.
Lv, Yong; Song, Gangbing
2018-01-01
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510
Yuan, Rui; Lv, Yong; Song, Gangbing
2018-04-16
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.
Kerner, Berit; North, Kari E; Fallin, M Daniele
2010-01-01
Participants analyzed actual and simulated longitudinal data from the Framingham Heart Study for various metabolic and cardiovascular traits. The genetic information incorporated into these investigations ranged from selected single-nucleotide polymorphisms to genome-wide association arrays. Genotypes were incorporated using a broad range of methodological approaches including conditional logistic regression, linear mixed models, generalized estimating equations, linear growth curve estimation, growth modeling, growth mixture modeling, population attributable risk fraction based on survival functions under the proportional hazards models, and multivariate adaptive splines for the analysis of longitudinal data. The specific scientific questions addressed by these different approaches also varied, ranging from a more precise definition of the phenotype, bias reduction in control selection, estimation of effect sizes and genotype associated risk, to direct incorporation of genetic data into longitudinal modeling approaches and the exploration of population heterogeneity with regard to longitudinal trajectories. The group reached several overall conclusions: 1) The additional information provided by longitudinal data may be useful in genetic analyses. 2) The precision of the phenotype definition as well as control selection in nested designs may be improved, especially if traits demonstrate a trend over time or have strong age-of-onset effects. 3) Analyzing genetic data stratified for high-risk subgroups defined by a unique development over time could be useful for the detection of rare mutations in common multi-factorial diseases. 4) Estimation of the population impact of genomic risk variants could be more precise. The challenges and computational complexity demanded by genome-wide single-nucleotide polymorphism data were also discussed. PMID:19924713
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza
There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5–1660 μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D{sub 3},more » serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25 μg/L (range 1.9–145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D{sub 3} (−6.1 nmol/L [95%CI −9.5; −2.6] for a 25 μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D{sub 3}. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30 nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25 μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. - Highlights: • Elevated drinking water lithium (Li) concentrations are increasingly reported. • We studied a Li-exposed population-based mother-child cohort in northern Argentina. • Li exposure during pregnancy affected maternal calcium homeostasis. • Blood Li was consistently inversely associated with maternal plasma vitamin D{sub 3}. • Associations were independent of season of sampling and lifestyle.« less
NASA Technical Reports Server (NTRS)
Merenyi, E.; Miller, J. S.; Singer, R. B.
1992-01-01
The linear mixing model approach was successfully applied to data sets of various natures. In these sets, the measured radiance could be assumed to be a linear combination of radiance contributions. The present work is an attempt to analyze a spectral image of Mars with linear mixing modeling.
Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data
Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard
2017-01-01
Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
2016-09-23
Lauren Menke3 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER H0HJ (53290813) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...as prior work has demonstrated that friendship can facilitate performance in decision-making and motor tasks (e.g., Shah & Jehn, 1993). However, a...Relationship between Team Performance and Joint Attention with Longitudinal Multivariate Mixed Models 5a. CONTRACT NUMBER FA8650-14-D-6501-0009 5b
Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.
1980-01-01
A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.
Chen, Han; Wang, Chaolong; Conomos, Matthew P.; Stilp, Adrienne M.; Li, Zilin; Sofer, Tamar; Szpiro, Adam A.; Chen, Wei; Brehm, John M.; Celedón, Juan C.; Redline, Susan; Papanicolaou, George J.; Thornton, Timothy A.; Laurie, Cathy C.; Rice, Kenneth; Lin, Xihong
2016-01-01
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. PMID:27018471
Effect of correlation on covariate selection in linear and nonlinear mixed effect models.
Bonate, Peter L
2017-01-01
The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Multivariate Analysis of Longitudinal Rates of Change
Bryan, Matthew; Heagerty, Patrick J.
2016-01-01
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed by Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] among others. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, Gray and Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale time in longitudinal models for disease progression. In this manuscript we detail an alternative multivariate model formulation that directly structures longitudinal rates of change, and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. PMID:27417129
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.
Mixed models, linear dependency, and identification in age-period-cohort models.
O'Brien, Robert M
2017-07-20
This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Xiaoqiu Zuo; Urs Buehlmann; R. Edward Thomas
2004-01-01
Solving the least-cost lumber grade mix problem allows dimension mills to minimize the cost of dimension part production. This problem, due to its economic importance, has attracted much attention from researchers and industry in the past. Most solutions used linear programming models and assumed that a simple linear relationship existed between lumber grade mix and...
Stinchcombe, Thomas E; Zhang, Ying; Vokes, Everett E; Schiller, Joan H; Bradley, Jeffrey D; Kelly, Karen; Curran, Walter J; Schild, Steven E; Movsas, Benjamin; Clamon, Gerald; Govindan, Ramaswamy; Blumenschein, George R; Socinski, Mark A; Ready, Neal E; Akerley, Wallace L; Cohen, Harvey J; Pang, Herbert H; Wang, Xiaofei
2017-09-01
Purpose Concurrent chemoradiotherapy is standard treatment for patients with stage III non-small-cell lung cancer. Elderly patients may experience increased rates of adverse events (AEs) or less benefit from concurrent chemoradiotherapy. Patients and Methods Individual patient data were collected from 16 phase II or III trials conducted by US National Cancer Institute-supported cooperative groups of concurrent chemoradiotherapy alone or with consolidation or induction chemotherapy for stage III non-small-cell lung cancer from 1990 to 2012. Overall survival (OS), progression-free survival, and AEs were compared between patients age ≥ 70 (elderly) and those younger than 70 years (younger). Unadjusted and adjusted hazard ratios (HRs) for survival time and CIs were estimated by single-predictor and multivariable frailty Cox models. Unadjusted and adjusted odds ratio (ORs) for AEs and CIs were obtained from single-predictor and multivariable generalized linear mixed-effect models. Results A total of 2,768 patients were classified as younger and 832 as elderly. In unadjusted and multivariable models, elderly patients had worse OS (HR, 1.20; 95% CI, 1.09 to 1.31 and HR, 1.17; 95% CI, 1.07 to 1.29, respectively). In unadjusted and multivariable models, elderly and younger patients had similar progression-free survival (HR, 1.01; 95% CI, 0.93 to 1.10 and HR, 1.00; 95% CI, 0.91 to 1.09, respectively). Elderly patients had a higher rate of grade ≥ 3 AEs in unadjusted and multivariable models (OR, 1.35; 95% CI, 1.07 to 1.70 and OR, 1.38; 95% CI, 1.10 to 1.74, respectively). Grade 5 AEs were significantly higher in elderly compared with younger patients (9% v 4%; P < .01). Fewer elderly compared with younger patients completed treatment (47% v 57%; P < .01), and more discontinued treatment because of AEs (20% v 13%; P < .01), died during treatment (7.8% v 2.9%; P < .01), and refused further treatment (5.8% v 3.9%; P = .02). Conclusion Elderly patients in concurrent chemoradiotherapy trials experienced worse OS, more toxicity, and had a higher rate of death during treatment than younger patients.
A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Watts, Stephen R.
1995-01-01
This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.
Cavallari, Jennifer M; Osborn, Linda V; Snawder, John E; Kriech, Anthony J; Olsen, Larry D; Herrick, Robert F; McClean, Michael D
2012-03-01
The primary objective of this study was to identify the source and work practices that affect dermal exposure to polycyclic aromatic compounds (PACs) among hot-mix asphalt (HMA) paving workers. Four workers were recruited from each of three asphalt paving crews (12 workers) and were monitored for three consecutive days over 4 weeks for a total of 12 sampling days per worker (144 worker days). Two sampling weeks were conducted under standard conditions for dermal exposures. The third week included the substitution of biodiesel for diesel oil used to clean tools and equipment and the fourth week included dermal protection through the use of gloves, hat and neck cloth, clean pants, and long-sleeved shirts. Dermal exposure to PACs was quantified using two methods: a passive organic dermal (POD) sampler specifically developed for this study and a sunflower oil hand wash technique. Linear mixed-effects models were used to evaluate predictors of PAC exposures. Dermal exposures measured under all conditions via POD and hand wash were low with most samples for each analyte being below the limit of the detection with the exception of phenanthrene and pyrene. The geometric mean (GM) concentrations of phenanthrene were 0.69 ng cm(-2) on the polypropylene layer of the POD sampler and 1.37 ng cm(-2) in the hand wash sample. The GM concentrations of pyrene were 0.30 ng cm(-2) on the polypropylene layer of the POD sampler and 0.29 ng cm(-2) in the hand wash sample. Both the biodiesel substitution and dermal protection scenarios were effective in reducing dermal exposures. Based on the results of multivariate linear mixed-effects models, increasing frequency of glove use was associated with significant (P < 0.0001) reductions for hand wash and POD phenanthrene and pyrene concentrations; percent reductions ranged from 40 to 90%. Similar reductions in hand wash concentrations of phenanthrene (P = 0.01) and pyrene (P = 0.003) were observed when biodiesel was substituted for diesel oil as a cleaning agent, although reductions were not significant for the POD sampler data. Although task was not a predictor of dermal exposure, job site characteristics such as HMA application temperature, asphalt grade, and asphalt application rate (tons per hour) were found to significantly affect exposure. Predictive models suggest that the combined effect of substituting biodiesel for diesel oil as a cleaning agent, frequent glove use, and reducing the HMA application temperature from 149°C (300°F) to 127°C (260°F) may reduce dermal exposures by 76-86%, varying by analyte and assessment method. Promising strategies for reducing dermal exposure to PACs among asphalt paving workers include requiring the use of dermal coverage (e.g. wearing gloves and/or long sleeves), substituting biodiesel for diesel oil as a cleaning agent, and decreasing the HMA application temperature.
Klebe, Stephan; Golmard, Jean-Louis; Nalls, Michael A; Saad, Mohamad; Singleton, Andrew B; Bras, Jose M; Hardy, John; Simon-Sanchez, Javier; Heutink, Peter; Kuhlenbäumer, Gregor; Charfi, Rim; Klein, Christine; Hagenah, Johann; Gasser, Thomas; Wurster, Isabel; Lesage, Suzanne; Lorenz, Delia; Deuschl, Günther; Durif, Franck; Pollak, Pierre; Damier, Philippe; Tison, François; Durr, Alexandra; Amouyel, Philippe; Lambert, Jean-Charles; Tzourio, Christophe; Maubaret, Cécilia; Charbonnier-Beaupel, Fanny; Tahiri, Khadija; Vidailhet, Marie; Martinez, Maria; Brice, Alexis; Corvol, Jean-Christophe
2013-01-01
The catechol-O-methyltranferase (COMT) is one of the main enzymes that metabolise dopamine in the brain. The Val158Met polymorphism in the COMT gene (rs4680) causes a trimodal distribution of high (Val/Val), intermediate (Val/Met) and low (Met/Met) enzyme activity. We tested whether the Val158Met polymorphism is a modifier of the age at onset (AAO) in Parkinson's disease (PD). The rs4680 was genotyped in a total of 16 609 subjects from five independent cohorts of European and North American origin (5886 patients with PD and 10 723 healthy controls). The multivariate analysis for comparing PD and control groups was based on a stepwise logistic regression, with gender, age and cohort origin included in the initial model. The multivariate analysis of the AAO was a mixed linear model, with COMT genotype and gender considered as fixed effects and cohort and cohort-gender interaction as random effects. COMT genotype was coded as a quantitative variable, assuming a codominant genetic effect. The distribution of the COMT polymorphism was not significantly different in patients and controls (p=0.22). The Val allele had a significant effect on the AAO with a younger AAO in patients with the Val/Val (57.1±13.9, p=0.03) than the Val/Met (57.4±13.9) and the Met/Met genotypes (58.3±13.5). The difference was greater in men (1.9 years between Val/Val and Met/Met, p=0.007) than in women (0.2 years, p=0.81). Thus, the Val158Met COMT polymorphism is not associated with PD in the Caucasian population but acts as a modifier of the AAO in PD with a sexual dimorphism: the Val allele is associated with a younger AAO in men with idiopathic PD. PMID:23408064
Deiss, RG; Mesner, O; Agan, BK; Ganesan, A; Okulicz, JF; Bavaro, M; Lalani, T; O'Bryan, TA; Bebu, I; Macalino, GE
2016-01-01
Background The effects of at-risk drinking on HIV infection remain controversial. We investigated the impact of self-reported alcohol consumption on surrogate markers of HIV progression among individuals initiated on highly active antiretroviral therapy (HAART). Methods We analyzed individuals who were surveyed on alcohol use within a year of HAART initiation between 2006-14. At-risk drinking was defined as consumption of at least three or four drinks/day, or seven and 14 drinks/week among women and men, respectively. We performed time-updated generalized estimating equation (GEE) logistic regression to determine the effect of at-risk drinking on virologic failure (VF) and mixed-effects linear regression on CD4 count reconstitution, controlling for potential confounders. Results Of 907 individuals initiated on HAART, 752 individuals with alcohol survey data were included in the analysis. Of these, 45% (n=336) met criteria for at-risk drinking at HAART initiation on at least one survey. The rates of VF were 4.30 per 100 person-years (95%CI [2.86, 6.21]) for at-risk drinkers and 2.45 per 100 person-years (95%CI [(1.57,3.65)] for individuals without at-risk drinking. At-risk drinking was not significantly associated with VF (OR 1.73, 95% CI [0.92, 3.25]) 0.087 or CD4 reconstitution (CD4 increase 11.4; 95% CI [-19.8, 42.7]) in univariate analyses; however, in our multivariate model, a statistically significant relationship between VF and at-risk drinking was observed (OR 2.28 [95% CI 1.01, 5.15]). Conclusions We found a high proportion of at-risk drinking in our military cohort, which was predictive of VF in multivariate analysis. Given alcohol's effect on myriad HIV and non-HIV outcomes, interventions to decrease the prevalence of at-risk drinking among HIV-infected individuals are warranted. PMID:26916712
A Multivariate Quality Loss Function Approach for Optimization of Spinning Processes
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Mitra, Ankan
2018-05-01
Recent advancements in textile industry have given rise to several spinning techniques, such as ring spinning, rotor spinning etc., which can be used to produce a wide variety of textile apparels so as to fulfil the end requirements of the customers. To achieve the best out of these processes, they should be utilized at their optimal parametric settings. However, in presence of multiple yarn characteristics which are often conflicting in nature, it becomes a challenging task for the spinning industry personnel to identify the best parametric mix which would simultaneously optimize all the responses. Hence, in this paper, the applicability of a new systematic approach in the form of multivariate quality loss function technique is explored for optimizing multiple quality characteristics of yarns while identifying the ideal settings of two spinning processes. It is observed that this approach performs well against the other multi-objective optimization techniques, such as desirability function, distance function and mean squared error methods. With slight modifications in the upper and lower specification limits of the considered quality characteristics, and constraints of the non-linear optimization problem, it can be successfully applied to other processes in textile industry to determine their optimal parametric settings.
Chen, Shufeng; Yeh, Fawn; Lin, Jue; Matsuguchi, Tet; Blackburn, Elizabeth; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying
2014-05-01
Shorter leukocyte telomere length (LTL) has been associated with a wide range of age-related disorders including cardiovascular disease (CVD) and diabetes. Obesity is an important risk factor for CVD and diabetes. The association of LTL with obesity is not well understood. This study for the first time examines the association of LTL with obesity indices including body mass index, waist circumference, percent body fat, waist-to-hip ratio, and waist-to-height ratio in 3,256 American Indians (14-93 years old, 60% women) participating in the Strong Heart Family Study. Association of LTL with each adiposity index was examined using multivariate generalized linear mixed model, adjusting for chronological age, sex, study center, education, lifestyle (smoking, alcohol consumption, and total energy intake), high-sensitivity C-reactive protein, hypertension and diabetes. Results show that obese participants had significantly shorter LTL than non-obese individuals (age-adjusted P=0.0002). Multivariate analyses demonstrate that LTL was significantly and inversely associated with all of the studied obesity parameters. Our results may shed light on the potential role of biological aging in pathogenesis of obesity and its comorbidities.
Sananes, Nicolas; Rodo, Carlota; Peiro, Jose Luis; Britto, Ingrid Schwach Werneck; Sangi-Haghpeykar, Haleh; Favre, Romain; Joal, Arnaud; Gaudineau, Adrien; Silva, Marcos Marques da; Tannuri, Uenis; Zugaib, Marcelo; Carreras, Elena; Ruano, Rodrigo
2016-09-01
To evaluate the independent association of fetal pulmonary response and prematurity to postnatal outcomes after fetal tracheal occlusion for congenital diaphragmatic hernia. Fetal pulmonary response, prematurity (<37 weeks at delivery) and extreme prematurity (<32 weeks at delivery) were evaluated and compared between survivors and non-survivors at 6 months of life. Multivariable analysis was conducted with generalized linear mixed models for variables significantly associated with survival in univariate analysis. Eighty-four infants were included, of whom 40 survived (47.6%) and 44 died (52.4%). Univariate analysis demonstrated that survival was associated with greater lung response (p=0.006), and the absence of extreme preterm delivery (p=0.044). In multivariable analysis, greater pulmonary response after FETO was an independent predictor of survival (aOR 1.87, 95% CI 1.08-3.33, p=0.023), whereas the presence of extreme prematurity was not statistically associated with mortality after controlling for fetal pulmonary response (aOR 0.52, 95% CI 0.12-2.30, p=0.367). Fetal pulmonary response after FETO is the most important factor associated with survival, independently from the gestational age at delivery.
Musculoskeletal ultrasonography delineates ankle symptoms in rheumatoid arthritis.
Toyota, Yukihiro; Tamura, Maasa; Kirino, Yohei; Sugiyama, Yumiko; Tsuchida, Naomi; Kunishita, Yosuke; Kishimoto, Daiga; Kamiyama, Reikou; Miura, Yasushi; Minegishi, Kaoru; Yoshimi, Ryusuke; Ueda, Atsuhisa; Nakajima, Hideaki
2017-05-01
To clarify the use of musculoskeletal ultrasonography (US) of ankle joints in rheumatoid arthritis (RA). Consecutive RA patients with or without ankle symptoms participated in the study. The US, clinical examination (CE), and patients' visual analog scale for pain (pVAS) for ankles were assessed. Prevalence of tibiotalar joint synovitis and tenosynovitis were assessed by grayscale (GS) and power Doppler (PD) US using a semi-quantitative grading (0-3). The positive US and CE findings were defined as GS score ≥2 and/or PD score ≥1, and joint swelling and/or tenderness, respectively. Multivariate analysis with the generalized linear mixed model was performed by assigning ankle pVAS as a dependent variable. Among a total of 120 ankles from 60 RA patients, positive ankle US findings were found in 21 (35.0%) patients. The concordance rate of CE and US was moderate (kappa 0.57). Of the 88 CE negative ankles, US detected positive findings in 9 (10.2%) joints. Multivariate analysis revealed that ankle US, clinical disease activity index, and foot Health Assessment Questionnaire, but not CE, was independently associated with ankle pVAS. US examination is useful to illustrate RA ankle involvement, especially for patients who complain ankle pain but lack CE findings.
Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.
McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T
2013-12-13
Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.
Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W.; Xia, Yinglin; Tu, Xin M.
2011-01-01
Summary The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. PMID:21671252
Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models
Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong
2015-01-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong
2015-05-01
In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.
NASA Astrophysics Data System (ADS)
Liu, Zhaoxin; Zhao, Liaoying; Li, Xiaorun; Chen, Shuhan
2018-04-01
Owing to the limitation of spatial resolution of the imaging sensor and the variability of ground surfaces, mixed pixels are widesperead in hyperspectral imagery. The traditional subpixel mapping algorithms treat all mixed pixels as boundary-mixed pixels while ignoring the existence of linear subpixels. To solve this question, this paper proposed a new subpixel mapping method based on linear subpixel feature detection and object optimization. Firstly, the fraction value of each class is obtained by spectral unmixing. Secondly, the linear subpixel features are pre-determined based on the hyperspectral characteristics and the linear subpixel feature; the remaining mixed pixels are detected based on maximum linearization index analysis. The classes of linear subpixels are determined by using template matching method. Finally, the whole subpixel mapping results are iteratively optimized by binary particle swarm optimization algorithm. The performance of the proposed subpixel mapping method is evaluated via experiments based on simulated and real hyperspectral data sets. The experimental results demonstrate that the proposed method can improve the accuracy of subpixel mapping.
Drew, L.J.; Grunsky, E.C.; Sutphin, D.M.; Woodruff, L.G.
2010-01-01
Soils collected in 2004 along two North American continental-scale transects were subjected to geochemical and mineralogical analyses. In previous interpretations of these analyses, data were expressed in weight percent and parts per million, and thus were subject to the effect of the constant-sum phenomenon. In a new approach to the data, this effect was removed by using centered log-ratio transformations to 'open' the mineralogical and geochemical arrays. Multivariate analyses, including principal component and linear discriminant analyses, of the centered log-ratio data reveal the effects of soil-forming processes, including soil parent material, weathering, and soil age, at the continental-scale of the data arrays that were not readily apparent in the more conventionally presented data. Linear discriminant analysis of the data arrays indicates that the majority of the soil samples collected along the transects can be more successfully classified with Level 1 ecological regional-scale classification by the soil geochemistry than soil mineralogy. A primary objective of this study is to discover and describe, in a parsimonious way, geochemical processes that are both independent and inter-dependent and manifested through compositional data including estimates of the elements and corresponding mineralogy. ?? 2010.
NASA Astrophysics Data System (ADS)
Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng
2013-10-01
Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.
Lai, Peggy S; Hang, Jing-Qing; Valeri, Linda; Zhang, Feng-Ying; Zheng, Bu-Yong; Mehta, Amar J; Shi, Jing; Su, Li; Brown, Dan; Eisen, Ellen A; Christiani, David C
2015-08-01
The purpose of this study is to determine the trajectory of lung function change after exposure cessation to occupational organic dust exposure, and to identify factors that modify improvement. The Shanghai Textile Worker Study is a longitudinal study of 447 cotton workers exposed to endotoxin-containing dust and 472 silk workers exposed to non-endotoxin-containing dust. Spirometry was performed at 5-year intervals. Air sampling was performed to estimate individual cumulative exposures. The effect of work cessation on forced expiratory volume in 1 s (FEV1) was modelled using generalised additive mixed effects models to identify the trajectory of FEV1 recovery. Linear mixed effects models incorporating interaction terms were used to identify modifiers of FEV1 recovery. Loss to follow-up was accounted for with inverse probability of censoring weights. 74.2% of the original cohort still alive participated in 2011. Generalised additive mixed models identified a non-linear improvement in FEV1 for all workers after exposure cessation, with no plateau noted 25 years after retirement. Linear mixed effects models incorporating interaction terms identified prior endotoxin exposure (p=0.01) and male gender (p=0.002) as risk factors for impaired FEV1 improvement after exposure cessation. After adjusting for gender, smoking delayed the onset of FEV1 gain but did not affect the overall magnitude of change. Lung function improvement after cessation of exposure to organic dust is sustained. Endotoxin exposure and male gender are risk factors for less FEV1 improvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Rudolph, Heike; Röhl, Andreas; Walter, Michael H; Luthardt, Ralph G; Quaas, Sebastian
2014-01-01
Fast-setting impression materials may be prone to inaccuracies due to accidental divergence from the recommended mixing protocol. This prospective randomized clinical trial aimed to assess three-dimensional (3D) deviations in the reproduction of subgingival tooth surfaces and to determine the effect of either following or purposely diverging from the recommended mixing procedure for a fast-setting addition-curing silicone (AS) and fast-setting polyether (PE). After three impressions each were taken from 96 participants, sawcut gypsum casts were fabricated with a standardized procedure and then optically digitized. Data were assessed with a computer-aided 3D analysis. For AS impressions, multivariate analysis of variance revealed a significant influence of the individual tooth and the degree to which the recommended mixing protocol was violated. For PE impressions, the ambient air temperature and individual tooth showed significant effects, while divergence from the recommended mixing protocol was not of significance. The fast-setting PE material was not affected by changes in the recommended mixing protocol. For the two fast-setting materials examined, no divergences from the recommended mixing protocol of less than 2 minutes led to failures in the reproduction of the subgingival tooth surfaces.
Perez, Claudio I; Chansangpetch, Sunee; Feinstein, Max; Mora, Marta; Nguyen, Anwell; Badr, Mai; Masis, Marisse; Lin, Shan C
2018-05-04
To evaluate a novel gonioscopy score as a potential predictor for intraocular pressure (IOP) reduction after cataract surgery. Prospective study that included consecutive patients with or without glaucoma, either with open or narrow angles but without peripheral anterior synechiae, who underwent phacoemulsification. Eyes with intraoperative complications and secondary glaucoma were excluded. A preoperative gonioscopy score was created, summing the Shaffer gonioscopy grading in 4 quadrants (range 0-16). To determine variables associated with IOP change at 6 months, univariate and multivariate linear mixed-effects regression analysis was performed adjusting for age, sex, and preoperative IOP. 188 eyes from 137 patients were enrolled. The mean age of the patients was 75.0 (±8.5) years and the average preoperative IOP was 15.6 (±3.6) mm Hg with 0.7 (range 0-4) glaucoma medications. The mean IOP reduction after phaco was 3.0 (±2.6) mm Hg at postoperative month 6. After multivariate analysis, preop IOP (β=0.49 [0.41 - 0.58] P<0.0001), gonioscopy score (β=-0.17 [-0.24 - -0.09] P<0.0001), ACD (β=-0.88 [-1.64 - -0.14] P=0.02) and IOP/ACD ratio (β=0.45 [0.07 - 0.83] P=0.021) were associated with IOP reduction at 6 months. Preoperative predictors for IOP reduction after cataract surgery were preoperative IOP, ACD, gonioscopy score and IOP/ACD ratio. The IOP/ACD ratio and gonioscopy score can be easy parameters to obtain and may help clinicians to estimate the IOP reduction after phaco.
Adolescent endogenous sex hormones and breast density in early adulthood.
Jung, Seungyoun; Egleston, Brian L; Chandler, D Walt; Van Horn, Linda; Hylton, Nola M; Klifa, Catherine C; Lasser, Norman L; LeBlanc, Erin S; Paris, Kenneth; Shepherd, John A; Snetselaar, Linda G; Stanczyk, Frank Z; Stevens, Victor J; Dorgan, Joanne F
2015-06-04
During adolescence the breasts undergo rapid growth and development under the influence of sex hormones. Although the hormonal etiology of breast cancer is hypothesized, it remains unknown whether adolescent sex hormones are associated with adult breast density, which is a strong risk factor for breast cancer. Percentage of dense breast volume (%DBV) was measured in 2006 by magnetic resonance imaging in 177 women aged 25-29 years who had participated in the Dietary Intervention Study in Children from 1988 to 1997. They had sex hormones and sex hormone-binding globulin (SHBG) measured in serum collected on one to five occasions between 8 and 17 years of age. Multivariable linear mixed-effect regression models were used to evaluate the associations of adolescent sex hormones and SHBG with %DBV. Dehydroepiandrosterone sulfate (DHEAS) and SHBG measured in premenarche serum samples were significantly positively associated with %DBV (all P trend ≤0.03) but not when measured in postmenarche samples (all P trend ≥0.42). The multivariable geometric mean of %DBV across quartiles of premenarcheal DHEAS and SHBG increased from 16.7 to 22.1 % and from 14.1 to 24.3 %, respectively. Estrogens, progesterone, androstenedione, and testosterone in pre- or postmenarche serum samples were not associated with %DBV (all P trend ≥0.16). Our results suggest that higher premenarcheal DHEAS and SHBG levels are associated with higher %DBV in young women. Whether this association translates into an increased risk of breast cancer later in life is currently unknown. ClinicalTrials.gov Identifier, NCT00458588 April 9, 2007; NCT00000459 October 27, 1999.
Lin, Meng-Yin; Chang, David C K; Shen, Yun-Dun; Lin, Yen-Kuang; Lin, Chang-Ping; Wang, I-Jong
2016-01-01
The aim of this study is to describe factors that influence the measured intraocular pressure (IOP) change and to develop a predictive model after myopic laser in situ keratomileusis (LASIK) with a femtosecond (FS) laser or a microkeratome (MK). We retrospectively reviewed preoperative, intraoperative, and 12-month postoperative medical records in 2485 eyes of 1309 patients who underwent LASIK with an FS laser or an MK for myopia and myopic astigmatism. Data were extracted, such as preoperative age, sex, IOP, manifest spherical equivalent (MSE), central corneal keratometry (CCK), central corneal thickness (CCT), and intended flap thickness and postoperative IOP (postIOP) at 1, 6 and 12 months. Linear mixed model (LMM) and multivariate linear regression (MLR) method were used for data analysis. In both models, the preoperative CCT and ablation depth had significant effects on predicting IOP changes in the FS and MK groups. The intended flap thickness was a significant predictor only in the FS laser group (P < .0001 in both models). In the FS group, LMM and MLR could respectively explain 47.00% and 18.91% of the variation of postoperative IOP underestimation (R2 = 0.47 and R(2) = 0.1891). In the MK group, LMM and MLR could explain 37.79% and 19.13% of the variation of IOP underestimation (R(2) = 0.3779 and 0.1913 respectively). The best-fit model for prediction of IOP changes was the LMM in LASIK with an FS laser.
Lin, Meng-Yin; Chang, David C. K.; Shen, Yun-Dun; Lin, Yen-Kuang; Lin, Chang-Ping; Wang, I-Jong
2016-01-01
The aim of this study is to describe factors that influence the measured intraocular pressure (IOP) change and to develop a predictive model after myopic laser in situ keratomileusis (LASIK) with a femtosecond (FS) laser or a microkeratome (MK). We retrospectively reviewed preoperative, intraoperative, and 12-month postoperative medical records in 2485 eyes of 1309 patients who underwent LASIK with an FS laser or an MK for myopia and myopic astigmatism. Data were extracted, such as preoperative age, sex, IOP, manifest spherical equivalent (MSE), central corneal keratometry (CCK), central corneal thickness (CCT), and intended flap thickness and postoperative IOP (postIOP) at 1, 6 and 12 months. Linear mixed model (LMM) and multivariate linear regression (MLR) method were used for data analysis. In both models, the preoperative CCT and ablation depth had significant effects on predicting IOP changes in the FS and MK groups. The intended flap thickness was a significant predictor only in the FS laser group (P < .0001 in both models). In the FS group, LMM and MLR could respectively explain 47.00% and 18.91% of the variation of postoperative IOP underestimation (R2 = 0.47 and R2 = 0.1891). In the MK group, LMM and MLR could explain 37.79% and 19.13% of the variation of IOP underestimation (R2 = 0.3779 and 0.1913 respectively). The best-fit model for prediction of IOP changes was the LMM in LASIK with an FS laser. PMID:26824754
Rosen, Sophia; Davidov, Ori
2012-07-20
Multivariate outcomes are often measured longitudinally. For example, in hearing loss studies, hearing thresholds for each subject are measured repeatedly over time at several frequencies. Thus, each patient is associated with a multivariate longitudinal outcome. The multivariate mixed-effects model is a useful tool for the analysis of such data. There are situations in which the parameters of the model are subject to some restrictions or constraints. For example, it is known that hearing thresholds, at every frequency, increase with age. Moreover, this age-related threshold elevation is monotone in frequency, that is, the higher the frequency, the higher, on average, is the rate of threshold elevation. This means that there is a natural ordering among the different frequencies in the rate of hearing loss. In practice, this amounts to imposing a set of constraints on the different frequencies' regression coefficients modeling the mean effect of time and age at entry to the study on hearing thresholds. The aforementioned constraints should be accounted for in the analysis. The result is a multivariate longitudinal model with restricted parameters. We propose estimation and testing procedures for such models. We show that ignoring the constraints may lead to misleading inferences regarding the direction and the magnitude of various effects. Moreover, simulations show that incorporating the constraints substantially improves the mean squared error of the estimates and the power of the tests. We used this methodology to analyze a real hearing loss study. Copyright © 2012 John Wiley & Sons, Ltd.
On the repeated measures designs and sample sizes for randomized controlled trials.
Tango, Toshiro
2016-04-01
For the analysis of longitudinal or repeated measures data, generalized linear mixed-effects models provide a flexible and powerful tool to deal with heterogeneity among subject response profiles. However, the typical statistical design adopted in usual randomized controlled trials is an analysis of covariance type analysis using a pre-defined pair of "pre-post" data, in which pre-(baseline) data are used as a covariate for adjustment together with other covariates. Then, the major design issue is to calculate the sample size or the number of subjects allocated to each treatment group. In this paper, we propose a new repeated measures design and sample size calculations combined with generalized linear mixed-effects models that depend not only on the number of subjects but on the number of repeated measures before and after randomization per subject used for the analysis. The main advantages of the proposed design combined with the generalized linear mixed-effects models are (1) it can easily handle missing data by applying the likelihood-based ignorable analyses under the missing at random assumption and (2) it may lead to a reduction in sample size, compared with the simple pre-post design. The proposed designs and the sample size calculations are illustrated with real data arising from randomized controlled trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Convex set and linear mixing model
NASA Technical Reports Server (NTRS)
Xu, P.; Greeley, R.
1993-01-01
A major goal of optical remote sensing is to determine surface compositions of the earth and other planetary objects. For assessment of composition, single pixels in multi-spectral images usually record a mixture of the signals from various materials within the corresponding surface area. In this report, we introduce a closed and bounded convex set as a mathematical model for linear mixing. This model has a clear geometric implication because the closed and bounded convex set is a natural generalization of a triangle in n-space. The endmembers are extreme points of the convex set. Every point in the convex closure of the endmembers is a linear mixture of those endmembers, which is exactly how linear mixing is defined. With this model, some general criteria for selecting endmembers could be described. This model can lead to a better understanding of linear mixing models.
Concurrent generation of multivariate mixed data with variables of dissimilar types.
Amatya, Anup; Demirtas, Hakan
2016-01-01
Data sets originating from wide range of research studies are composed of multiple variables that are correlated and of dissimilar types, primarily of count, binary/ordinal and continuous attributes. The present paper builds on the previous works on multivariate data generation and develops a framework for generating multivariate mixed data with a pre-specified correlation matrix. The generated data consist of components that are marginally count, binary, ordinal and continuous, where the count and continuous variables follow the generalized Poisson and normal distributions, respectively. The use of the generalized Poisson distribution provides a flexible mechanism which allows under- and over-dispersed count variables generally encountered in practice. A step-by-step algorithm is provided and its performance is evaluated using simulated and real-data scenarios.
Simple linear and multivariate regression models.
Rodríguez del Águila, M M; Benítez-Parejo, N
2011-01-01
In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.
Linear models for sound from supersonic reacting mixing layers
NASA Astrophysics Data System (ADS)
Chary, P. Shivakanth; Samanta, Arnab
2016-12-01
We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.
Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C
2015-01-01
We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.
Differential effects of cigarette price changes on adult smoking behaviours.
Cavazos-Rehg, Patricia A; Krauss, Melissa J; Spitznagel, Edward L; Chaloupka, Frank J; Luke, Douglas A; Waterman, Brian; Grucza, Richard A; Bierut, Laura Jean
2014-03-01
Raising cigarette prices through taxation is an important policy approach to reduce smoking. Yet, cigarette price increases may not be equally effective in all subpopulations of smokers. To examine differing effects of state cigarette price changes with individual changes in smoking among smokers of different intensity levels. Data were derived from the National Epidemiologic Survey on Alcohol and Related Conditions, a nationally representative sample of US adults originally interviewed in 2001-2002 (Wave 1) and re-interviewed in 2004-2005 (Wave 2): 34 653 were re-interviewed in Wave 2, and 7068 smokers defined at Wave 1 were included in our study. Mixed effects linear regression models were used to assess whether the effects of changes in state cigarette prices on changes in daily smoking behaviour differed by level of daily smoking. In the multivariable model, there was a significant interaction between change in price per pack of cigarettes from Wave 1 to Wave 2 and the number of cigarettes smoked per day (p=0.044). The more cigarettes smoked per day at baseline, the more responsive the smokers were to increases in price per pack of cigarettes (ie, number of cigarettes smoked per day was reduced in response to price increases). Our findings that heavier smokers successfully and substantially reduced their cigarette smoking behaviours in response to state cigarette price increases provide fresh insight to the evidence on the effectiveness of higher cigarette prices in reducing smoking.
Roy, Anuradha; Fuller, Clifton D; Rosenthal, David I; Thomas, Charles R
2015-08-28
Comparison of imaging measurement devices in the absence of a gold-standard comparator remains a vexing problem; especially in scenarios where multiple, non-paired, replicated measurements occur, as in image-guided radiotherapy (IGRT). As the number of commercially available IGRT presents a challenge to determine whether different IGRT methods may be used interchangeably, an unmet need conceptually parsimonious and statistically robust method to evaluate the agreement between two methods with replicated observations. Consequently, we sought to determine, using an previously reported head and neck positional verification dataset, the feasibility and utility of a Comparison of Measurement Methods with the Mixed Effects Procedure Accounting for Replicated Evaluations (COM3PARE), a unified conceptual schema and analytic algorithm based upon Roy's linear mixed effects (LME) model with Kronecker product covariance structure in a doubly multivariate set-up, for IGRT method comparison. An anonymized dataset consisting of 100 paired coordinate (X/ measurements from a sequential series of head and neck cancer patients imaged near-simultaneously with cone beam CT (CBCT) and kilovoltage X-ray (KVX) imaging was used for model implementation. Software-suggested CBCT and KVX shifts for the lateral (X), vertical (Y) and longitudinal (Z) dimensions were evaluated for bias, inter-method (between-subject variation), intra-method (within-subject variation), and overall agreement using with a script implementing COM3PARE with the MIXED procedure of the statistical software package SAS (SAS Institute, Cary, NC, USA). COM3PARE showed statistically significant bias agreement and difference in inter-method between CBCT and KVX was observed in the Z-axis (both p - value<0.01). Intra-method and overall agreement differences were noted as statistically significant for both the X- and Z-axes (all p - value<0.01). Using pre-specified criteria, based on intra-method agreement, CBCT was deemed preferable for X-axis positional verification, with KVX preferred for superoinferior alignment. The COM3PARE methodology was validated as feasible and useful in this pilot head and neck cancer positional verification dataset. COM3PARE represents a flexible and robust standardized analytic methodology for IGRT comparison. The implemented SAS script is included to encourage other groups to implement COM3PARE in other anatomic sites or IGRT platforms.
Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W; Xia, Yinglin; Zhu, Liang; Tu, Xin M
2011-09-10
The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. Copyright © 2011 John Wiley & Sons, Ltd.
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.
2017-01-01
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971
Neutron response of GafChromic® EBT2 film
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Chen; Liu, Yuan-Hao; Chen, Wei-Lin; Jiang, Shiang-Huei
2013-03-01
Neutron and gamma-ray mixed field dosimetry remains one of the most challenging topics in radiation dosimetry studies. However, the requirement for accurate mixed field dosimetry is increasing because of the considerable interest in high-energy radiotherapy machines, medical ion beams and BNCT epithermal neutron beams. Therefore, this study investigated the GafChromic® EBT2 film. The linearity, reproducibility, energy dependence and homogeneity of the film were tested in a 60Co medical beam, 6-MV LINAC and 10-MV LINAC. The linearity and self-developing effect of the film irradiated in an epithermal neutron beam were also examined. These basic detector characteristics showed that EBT2 film can be effectively applied in mixed field dosimetry. A general detector response model was developed to determine the neutron relative effectiveness (RE) values. The RE value of fast neutrons varies with neutron spectra. By contrast, the RE value of thermal neutrons was determined as a constant; it is only 32.5% in relation to gamma rays. No synergy effect was observed in this study. The lithium-6 capture reaction dominates the neutron response in the thermal neutron energy range, and the recoil hydrogen dose becomes the dominant component in the fast neutron energy region. Based on this study, the application of the EBT2 film in the neutron and gamma-ray mixed field is feasible.
Feature combinations and the divergence criterion
NASA Technical Reports Server (NTRS)
Decell, H. P., Jr.; Mayekar, S. M.
1976-01-01
Classifying large quantities of multidimensional remotely sensed agricultural data requires efficient and effective classification techniques and the construction of certain transformations of a dimension reducing, information preserving nature. The construction of transformations that minimally degrade information (i.e., class separability) is described. Linear dimension reducing transformations for multivariate normal populations are presented. Information content is measured by divergence.
Fujimoto, Kayo; Williams, Mark L
2015-06-01
Mixing patterns within sexual networks have been shown to have an effect on HIV transmission, both within and across groups. This study examined sexual mixing patterns involving HIV-unknown status and risky sexual behavior conditioned on assortative/dissortative mixing by race/ethnicity. The sample used for this study consisted of drug-using male sex workers and their male sex partners. A log-linear analysis of 257 most at-risk MSM and 3,072 sex partners was conducted. The analysis found two significant patterns. HIV-positive most at-risk Black MSM had a strong tendency to have HIV-unknown Black partners (relative risk, RR = 2.91, p < 0.001) and to engage in risky sexual behavior (RR = 2.22, p < 0.001). White most at-risk MSM with unknown HIV status also had a tendency to engage in risky sexual behavior with Whites (RR = 1.72, p < 0.001). The results suggest that interventions that target the most at-risk MSM and their sex partners should account for specific sexual network mixing patterns by HIV status.
Chen, Han; Wang, Chaolong; Conomos, Matthew P; Stilp, Adrienne M; Li, Zilin; Sofer, Tamar; Szpiro, Adam A; Chen, Wei; Brehm, John M; Celedón, Juan C; Redline, Susan; Papanicolaou, George J; Thornton, Timothy A; Laurie, Cathy C; Rice, Kenneth; Lin, Xihong
2016-04-07
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie
2017-08-01
Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.
NASA Astrophysics Data System (ADS)
Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan
2018-05-01
Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.
Mao, Hui-ling; Mao, Hua-long; Wang, J K; Liu, J X; Yoon, I
2013-07-01
Two experiments were conducted to investigate the effects of a Saccharomyces cerevisiae fermentation product (XP, Diamond V, Cedar Rapids, IA) on in vitro ruminal fermentation of single forage and mixed diets. In Exp. 1, an in vitro test was used to determine the effects of various concentrations (0, 1, 2, and 3 g/L) of XP on ruminal fermentation of the major forage sources of China (rice straw, RS; corn stover, CS; corn silage without grain, CSNG; and corn silage with grain, CSG). Total VFA reached a peak at 1 g/L XP for RS, CSNG, and CSG and increased linearly (P < 0.01) for CS. The molar proportion of acetate decreased and propionate increased linearly (P < 0.01) with an increasing amount of XP for RS, CS, and CSNG. Microbial protein (MCP) increased linearly (P < 0.01) with an increasing level of XP for RS, and it reached peak values at 1 and 2 g/L XP for CSG and CSNG, respectively. Fungi population was increased (P < 0.05) with 1 g/L XP for all forages except CSNG. The population of Ruminococcus flavefaciens increased (P < 0.05) at 1 or 2 g/L XP for RS, CSNG, and CSG. In Exp. 2, the effects of 3 concentrations of XP (0, 1, and 2 g/L) were tested on in vitro ruminal fermentation of 3 mixed diets with various ingredient combinations: 1) CSC (corn:soybean meal:corn stover = 33:22:45), 2) CSCC (corn:soybean meal:corn stover:corn silage = 33:22:22.5:22.5), and 3) CSCCA (corn:soybean meal:corn stover:corn silage:alfalfa = 33:22:19:21:5). Total VFA concentrations were influenced by diets (P < 0.01) and were enhanced linearly by increasing concentrations of XP (P < 0.01). The molar proportion of acetate was reduced (P < 0.01), but the propionate proportion was enhanced with increasing concentrations of XP (P < 0.01). Ammonia N was decreased and MCP was increased by the addition of XP (linear, P < 0.01; quadratic, P < 0.05). The fungi population was greater with XP addition (quadratic, P < 0.01). The percentage of R. albus was affected by diets (P < 0.01), the level of XP (linear and quadratic, P < 0.01), and their interaction (P < 0.01). From these 2 in vitro studies, it is inferred that the addition of XP could improve the rumen fermentation of forages and mixed diets by stimulating the number of fiber-digesting rumen microbes, especially fungi populations.
Becker, Silke; Wang, Haibo; Yu, Baifeng; Brown, Randy; Han, Xiaokun; Lane, Robert H.; Hartnett, M. Elizabeth
2017-01-01
To address the hypothesis that maternal uteroplacental insufficiency (UPI) increases severity of retinopathy of prematurity, we developed a composite rat model of UPI and oxygen-fluctuations and removed premature birth as a confounding factor. Timed-pregnant Sprague-Dawley dams underwent bilateral uterine artery ligation or anesthesia (control) at e19.5. Full-term pups developed in room air (RA) or an oxygen-induced retinopathy (OIR) model. Isolectin-stained retinal flat-mounts were analyzed for percent of areas of avascular/total retina (AVA) and of intravitreal neovascular/total retina (IVNV). Pup weights and serum and mRNA of liver and kidney VEGF, IGF-1, and erythropoietin (EPO) were determined. Multivariable mixed effects linear regressions and Pearson correlations were performed using STATA14. Postnatal growth restriction occurred in pups in UPI/RA, but not in UPI/OIR. Weight gain was similar between UPI/OIR and control/OIR pups. AVA was reduced and a trend toward reduced IVNV was seen in UPI/OIR compared to control/OIR. No difference in birth weights of UPI/OIR vs. control/OIR pups occurred. Serum and renal IGF-1 and EPO were significantly increased in UPI/OIR compared to control/OIR pups. In the absence of prematurity, UPI increased angiogenic factors in association with reduced OIR severity, suggesting that ischemia from UPI could yield protective angiogenic effects by offspring. PMID:28195189
Griswold, Cortland K
2015-12-21
Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gupta, Diksha; Kumar, Lokendra; Bég, O. Anwar; Singh, Bani
2017-10-01
The objective of this paper is to study theoretically and numerically the effect of thermal radiation on mixed convection boundary layer flow of a dissipative micropolar non-Newtonian fluid from a continuously moving vertical porous sheet. The governing partial differential equations are transformed into a set of non-linear differential equations by using similarity transformations. These equations are solved iteratively with the Bellman-Kalaba quasi-linearization algorithm. This method converges quadratically and the solution is valid for a large range of parameters. The effects of transpiration (suction or injection) parameter, buoyancy parameter, radiation parameter and Eckert number on velocity, microrotation and temperature functions have been studied. Under a special case comparison of the present numerical results is made with the results available in the literature and an excellent agreement is found. Additionally skin friction and rate of heat transfer have also been computed. The study has applications in polymer processing.
Numerical simulation of the non-Newtonian mixing layer
NASA Technical Reports Server (NTRS)
Azaiez, Jalel; Homsy, G. M.
1993-01-01
This work is a continuing effort to advance our understanding of the effects of polymer additives on the structures of the mixing layer. In anticipation of full nonlinear simulations of the non-Newtonian mixing layer, we examined in a first stage the linear stability of the non-Newtonian mixing layer. The results of this study show that, for a fluid described by the Oldroyd-B model, viscoelasticity reduces the instability of the inviscid mixing layer in a special limit where the ratio (We/Re) is of order 1 where We is the Weissenberg number, a measure of the elasticity of the flow, and Re is the Reynolds number. In the present study, we pursue this project with numerical simulations of the non-Newtonian mixing layer. Our primary objective is to determine the effects of viscoelasticity on the roll-up structure. We also examine the origin of the numerical instabilities usually encountered in the simulations of non-Newtonian fluids.
Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin
2011-01-01
Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292
Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong
2009-02-01
A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.
Stey, Anne M; Brook, Robert H; Needleman, Jack; Hall, Bruce L; Zingmond, David S; Lawson, Elise H; Ko, Clifford Y
2015-02-01
This study aims to describe the magnitude of hospital costs among patients undergoing elective colectomy, cholecystectomy, and pancreatectomy, determine whether these costs relate as expected to duration of care, patient case-mix severity and comorbidities, and whether risk-adjusted costs vary significantly by hospital. Correctly estimating the cost of production of surgical care may help decision makers design mechanisms to improve the efficiency of surgical care. Patient data from 202 hospitals in the ACS-NSQIP were linked to Medicare inpatient claims. Patient charges were mapped to cost center cost-to-charge ratios in the Medicare cost reports to estimate costs. The association of patient case-mix severity and comorbidities with cost was analyzed using mixed effects multivariate regression. Cost variation among hospitals was quantified by estimating risk-adjusted hospital cost ratios and 95% confidence intervals from the mixed effects multivariate regression. There were 21,923 patients from 202 hospitals who underwent an elective colectomy (n = 13,945), cholecystectomy (n = 5,569), or pancreatectomy (n = 2,409). Median cost was lowest for cholecystectomy ($15,651) and highest for pancreatectomy ($37,745). Room and board costs accounted for the largest proportion (49%) of costs and were correlated with length of stay, R = 0.89, p < 0.001. The patient case-mix severity and comorbidity variables most associated with cost were American Society of Anesthesiologists (ASA) class IV (estimate 1.72, 95% CI 1.57 to 1.87) and fully dependent functional status (estimate 1.63, 95% CI 1.53 to 1.74). After risk-adjustment, 66 hospitals had significantly lower costs than the average hospital and 57 hospitals had significantly higher costs. The hospital costs estimates appear to be consistent with clinical expectations of hospital resource use and differ significantly among 202 hospitals after risk-adjustment for preoperative patient characteristics and procedure type. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Equicontrollability and the model following problem
NASA Technical Reports Server (NTRS)
Curran, R. T.
1971-01-01
Equicontrollability and its application to the linear time-invariant model-following problem are discussed. The problem is presented in the form of two systems, the plant and the model. The requirement is to find a controller to apply to the plant so that the resultant compensated plant behaves, in an input-output sense, the same as the model. All systems are assumed to be linear and time-invariant. The basic approach is to find suitable equicontrollable realizations of the plant and model and to utilize feedback so as to produce a controller of minimal state dimension. The concept of equicontrollability is a generalization of control canonical (phase variable) form applied to multivariable systems. It allows one to visualize clearly the effects of feedback and to pinpoint the parameters of a multivariable system which are invariant under feedback. The basic contributions are the development of equicontrollable form; solution of the model-following problem in an entirely algorithmic way, suitable for computer programming; and resolution of questions on system decoupling.
Postpartum weight loss and infant feeding.
Haiek, L N; Kramer, M S; Ciampi, A; Tirado, R
2001-01-01
Women are often advised that lactation accelerates loss of the excess weight gained during pregnancy, but the evidence underlying this advice is sparse and conflicting. To help fill this gap, we assessed differences in the rate of postpartum weight loss in the first 9 months postpartum according to method of infant feeding. Two hundred thirty-six women attending two public health clinics in Montreal were weighed in one to four routine infant immunization visits up to the 9th postpartum month. After each weighing, we administered a telephone questionnaire assessing the method of infant feeding (predominantly breast-feeding, mixed-feeding, or predominantly bottle-feeding) and potential confounders. Data were analyzed using unbalanced multivariate repeated measures linear regression. Infant feeding was not associated with statistically significant differences in the rate of weight loss. Gestational weight gain, postpartum smoking, and maternal birthplace were important predictors of postpartum weight change. Although our results cannot exclude an effect of more exclusive or more prolonged breast-feeding, breast-feeding as commonly practiced does not appear to influence the rate of postpartum weight loss. This information should be useful in counseling new or prospective mothers and in avoiding unrealistic expectations.
Drumright, Lydia N; Little, Susan J; Strathdee, Steffanie A; Slymen, Donald J; Araneta, Maria Rosario G; Malcarne, Vanessa L; Daar, Eric S; Gorbach, Pamina M
2006-11-01
To examine within-subjects and combined between- and within-subjects associations between substance use and unprotected anal intercourse (UAI) among men who have sex with men (MSM) with recent HIV infection. One hundred ninety-four MSM who were recently infected with HIV completed a computer-assisted questionnaire regarding sexual behaviors and substance use with their last 3 partners. Associations between UAI and substance use were assessed using conditional logistic regression (CLR) to assess associations among the 116 MSM reporting UAI with some but not all partners and generalized linear mixed effects models (GLMMs) to examine a combination of within- and between-subjects associations in the entire sample (N = 194). In multivariate CLR models and GLMMs, UAI was associated with the use of methamphetamine (odds ratio [OR] = 4.9 and OR = 3.5, respectively), marijuana (OR = 4.0 and OR = 2.2, respectively) and erectile dysfunction medications (EDMs) when used with a main partner (OR = 13.8 and OR = 10.1, respectively). Results indicate that a direct association may exist between specific substances and UAI and provide evidence that the use of methamphetamine and EDMs may contribute to HIV transmission.
Deierlein, Andrea L.; Siega-Riz, Anna Maria; Herring, Amy H.; Adair, Linda S.; Daniels, Julie L.
2011-01-01
Objective To determine how gestational weight gain (GWG), categorized using the 2009 Institute of Medicine recommendations, relates to changes in offspring weight-for-age (WAZ), length-for-age (LAZ), and weight-for-length z-scores (WLZ) between early infancy and 3 years. Methods Women with singleton infants were recruited from the third cohort of the Pregnancy, Infection, and Nutrition Study (2001-2005). Term infants with at least one weight or length measurement during the study period were included (n=476). Multivariable linear mixed effects regression models estimated longitudinal changes in WAZ, LAZ, and WLZ associated with GWG. Results In early infancy, compared to infants of women with adequate weight gain, those of women with excessive weight gains had higher WAZ, LAZ, and WLZ. Excessive GWG≥200% of the recommended amount was associated with faster rates of change in WAZ and LAZ and noticeably higher predicted mean WAZ and WLZ that persisted across the study period. Conclusions GWG represents a modifiable behavioral factor that is associated with offspring anthropometric outcomes. More longitudinal studies that utilize maternal and pediatric body composition measures are necessary to understand the nature of this association. PMID:22434753
Effective Teaching Results in Increased Science Achievement for All Students
ERIC Educational Resources Information Center
Johnson, Carla C.; Kahle, Jane Butler; Fargo, Jamison D.
2007-01-01
This study of teacher effectiveness and student achievement in science demonstrated that effective teachers positively impact student learning. A general linear mixed model was used to assess change in student scores on the Discovery Inquiry Test as a function of time, race, teacher effectiveness, gender, and impact of teacher effectiveness in…
A green vehicle routing problem with customer satisfaction criteria
NASA Astrophysics Data System (ADS)
Afshar-Bakeshloo, M.; Mehrabi, A.; Safari, H.; Maleki, M.; Jolai, F.
2016-12-01
This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers' satisfaction have been taken into account. Meanwhile, the introduced model prepares an effective dashboard for decision-makers that determines appropriate routes, the best mixed fleet, speed and idle time of vehicles. Additionally, some new factors evaluate the greening of each decision based on three criteria. This model applies piecewise linear functions (PLFs) to linearize a nonlinear fuzzy interval for incorporating customers' satisfaction into other linear objectives. We have presented a mixed integer linear programming formulation for the S-GVRP. This model enriches managerial insights by providing trade-offs between customers' satisfaction, total costs and emission levels. Finally, we have provided a numerical study for showing the applicability of the model.
Laurens, L M L; Wolfrum, E J
2013-12-18
One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.
1977-01-01
The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.
Arribas-Gil, Ana; De la Cruz, Rolando; Lebarbier, Emilie; Meza, Cristian
2015-06-01
We propose a classification method for longitudinal data. The Bayes classifier is classically used to determine a classification rule where the underlying density in each class needs to be well modeled and estimated. This work is motivated by a real dataset of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. The proposed model, which is a semiparametric linear mixed-effects model (SLMM), is a particular case of the semiparametric nonlinear mixed-effects class of models (SNMM) in which finite dimensional (fixed effects and variance components) and infinite dimensional (an unknown function) parameters have to be estimated. In SNMM's maximum likelihood estimation is performed iteratively alternating parametric and nonparametric procedures. However, if one can make the assumption that the random effects and the unknown function interact in a linear way, more efficient estimation methods can be used. Our contribution is the proposal of a unified estimation procedure based on a penalized EM-type algorithm. The Expectation and Maximization steps are explicit. In this latter step, the unknown function is estimated in a nonparametric fashion using a lasso-type procedure. A simulation study and an application on real data are performed. © 2015, The International Biometric Society.
Variation in fistula use across dialysis facilities: is it explained by case-mix?
Tangri, Navdeep; Moorthi, Ranjani; Tighiouhart, Hocine; Meyer, Klemens B; Miskulin, Dana C
2010-02-01
Arteriovenous fistulas (AVFs) remain the preferred vascular access for hemodialysis patients. Dialysis facilities that fail to meet Centers for Medicare & Medicaid Services goals cite patient case-mix as a reason for low AVF prevalence. This study aimed to determine the magnitude of the variability in AVF usage across dialysis facilities and the extent to which patient case-mix explains it. The vascular access used in 10,112 patients dialyzed at 173 Dialysis Clinic Inc. facilities from October 1 to December 31, 2004, was evaluated. The access in use was considered to be an AVF if it was used for >70% of hemodialysis treatments. Mixed-effects models with a random intercept for dialysis facilities evaluated the effect of facilities on AVF usage. Sequentially adjusted multivariate models measured the extent to which patient factors (case-mix) explain variation across facilities in AVF rates. 3787 patients (38%) were dialyzed using AVFs. There was a significant facility effect: 7.6% of variation in AVF use was attributable to facility. This was reduced to 7.1% after case-mix adjustment. There were no identified specific facility-level factors that explained the interfacility variation. AVF usage varies across dialysis facilities, and patient case-mix did not reduce this variation. In this study, 92% of the total variation in AVF usage was due to patient factors, but most were not measurable. A combination of patient factors and process indicators should be considered in adjudicating facility performance for this quality indicator.
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
Random Effects Structure for Confirmatory Hypothesis Testing: Keep It Maximal
ERIC Educational Resources Information Center
Barr, Dale J.; Levy, Roger; Scheepers, Christoph; Tily, Harry J.
2013-01-01
Linear mixed-effects models (LMEMs) have become increasingly prominent in psycholinguistics and related areas. However, many researchers do not seem to appreciate how random effects structures affect the generalizability of an analysis. Here, we argue that researchers using LMEMs for confirmatory hypothesis testing should minimally adhere to the…
Quality of life after lacunar stroke: the Secondary Prevention of Small Subcortical Strokes study.
Dhamoon, Mandip S; McClure, Leslie A; White, Carole L; Lau, Helena; Benavente, Oscar; Elkind, Mitchell S V
2014-01-01
We sought to describe the course and predictors of quality of life (QOL) after lacunar stroke. We hypothesized that there is a decline in QOL after recovery from lacunar stroke. The Secondary Prevention of Small Subcortical Strokes is a clinical trial in lacunar stroke patients with annual assessments of QOL with the stroke-specific QOL score. The overall score was used and analyzed as a continuous variable (range 0-5). We fit linear mixed models to assess the trend in QOL over time, assuming linearity of time, and adjusted for demographics, medical risk factors, cognitive factors, and functional status in univariable and multivariable models. Among 2870 participants, mean age was 63.4 years (SD 10.7), 63% were men, 51% White, 32% Hispanic, 36% had college education, 36% had diabetes, 89% had hypertension, and 10% had prior stroke. Mean poststroke Barthel Index (BI) score was 95.4 (assessed on average 6 months after stroke). In the final multivariable model, there was an average increase in QOL of .6% per year, and factors associated with decline in QOL over time included age (-.0003 per year, P < .0001), any college education (-.0013 per year, .01), prior stroke (-.004 per year, P < .0001), and BI (-.0002 per year, P < .0001). In this clinical trial of lacunar stroke patients, there was a slight annual increase in QOL overall, and age, level of education, and prior stroke were associated with changes in QOL over time. Multiple strokes may cause decline in QOL over time in the absence of recurrent events. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Heggeseth, Brianna C; Jewell, Nicholas P
2013-07-20
Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach for the representation of heterogeneous multivariate outcomes. When the outcome is a vector of repeated measurements taken on the same subject, there is often inherent dependence between observations. However, a common covariance assumption is conditional independence-that is, given the mixture component label, the outcomes for subjects are independent. In this paper, we study, through asymptotic bias calculations and simulation, the impact of covariance misspecification in multivariate Gaussian mixtures. Although maximum likelihood estimators of regression and mixing probability parameters are not consistent under misspecification, they have little asymptotic bias when mixture components are well separated or if the assumed correlation is close to the truth even when the covariance is misspecified. We also present a robust standard error estimator and show that it outperforms conventional estimators in simulations and can indicate that the model is misspecified. Body mass index data from a national longitudinal study are used to demonstrate the effects of misspecification on potential inferences made in practice. Copyright © 2013 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises t...
Chan, Gloria; Farzan, Abdolvahab; Soltes, Glenn; Nicholson, Vivian M; Pei, Yanlong; Friendship, Robert; Prescott, John F
2012-09-04
There is poor understanding of most aspects of Clostridium perfringens type A as a possible cause of neonatal diarrhea in piglets, and the prevalence and types of C. perfringens present on Ontario swine farms is unknown. To study the prevalence of fecal C. perfringens and selected toxin genes, 48 Ontario swine farms were visited between August 2010 and May 2011, and 354 fecal samples were collected from suckling pigs, lactating sows, weanling pigs, grower-finisher pigs, and gestating sows, as well as from manure pits. The fecal samples were cultured quantitatively, and toxin genes were detected by real-time multiplex polymerase chain reaction (PCR). In mixed multivariable linear analysis, log(10) C. perfringens in fecal samples from suckling pigs were higher than that of weanling pigs, grower-finisher pigs, and manure pit samples (P <0.05). In mixed multivariable logistic analysis, the C. perfringens isolates recovered from lactating sows (OR = 0.069, P <0.001), gestating sows (OR = 0.020, P <0.001), grower-finishers (OR = 0.017, P <0.001), and manure pits (OR = 0.11, P <0.001) were less likely to be positive for the consensus beta2 toxin gene cpb2 compared to the isolates from suckling pigs. The prevalence of cpb2 in the isolates recovered from weanlings did not differ significantly from suckling pigs. C. perfringens isolates that were positive for cpb2 were more likely to carry the atypical cpb2 gene (atyp-cpb2) (OR = 19, P <0.001) compared to isolates that were negative for cpb2. Multivariable analysis did not identify farm factors affecting the presence of consensus cpb2 and atyp-cpb2 genes. This study provides baseline data on the prevalence of C. perfringens and associated toxin genes in healthy pigs at different stages of production on Ontario swine farms. The study suggests that if C. perfringens type A are involved in neonatal enteritis, there may be strains with specific characteristics that cannot be identified by the existing genotyping system.
Ferreira, Vicente; Herrero, Paula; Zapata, Julián; Escudero, Ana
2015-08-14
SPME is extremely sensitive to experimental parameters affecting liquid-gas and gas-solid distribution coefficients. Our aims were to measure the weights of these factors and to design a multivariate strategy based on the addition of a pool of internal standards, to minimize matrix effects. Synthetic but real-like wines containing selected analytes and variable amounts of ethanol, non-volatile constituents and major volatile compounds were prepared following a factorial design. The ANOVA study revealed that even using a strong matrix dilution, matrix effects are important and additive with non-significant interaction effects and that it is the presence of major volatile constituents the most dominant factor. A single internal standard provided a robust calibration for 15 out of 47 analytes. Then, two different multivariate calibration strategies based on Partial Least Square Regression were run in order to build calibration functions based on 13 different internal standards able to cope with matrix effects. The first one is based in the calculation of Multivariate Internal Standards (MIS), linear combinations of the normalized signals of the 13 internal standards, which provide the expected area of a given unit of analyte present in each sample. The second strategy is a direct calibration relating concentration to the 13 relative areas measured in each sample for each analyte. Overall, 47 different compounds can be reliably quantified in a single fully automated method with overall uncertainties better than 15%. Copyright © 2015 Elsevier B.V. All rights reserved.
Routledge, Kylie M; Williams, Leanne M; Harris, Anthony W F; Schofield, Peter R; Clark, C Richard; Gatt, Justine M
2018-06-01
Currently there is a very limited understanding of how mental wellbeing versus anxiety and depression symptoms are associated with emotion processing behaviour. For the first time, we examined these associations using a behavioural emotion task of positive and negative facial expressions in 1668 healthy adult twins. Linear mixed model results suggested faster reaction times to happy facial expressions was associated with higher wellbeing scores, and slower reaction times with higher depression and anxiety scores. Multivariate twin modelling identified a significant genetic correlation between depression and anxiety symptoms and reaction time to happy facial expressions, in the absence of any significant correlations with wellbeing. We also found a significant negative phenotypic relationship between depression and anxiety symptoms and accuracy for identifying neutral emotions, although the genetic or environment correlations were not significant in the multivariate model. Overall, the phenotypic relationships between speed of identifying happy facial expressions and wellbeing on the one hand, versus depression and anxiety symptoms on the other, were in opposing directions. Twin modelling revealed a small common genetic correlation between response to happy faces and depression and anxiety symptoms alone, suggesting that wellbeing and depression and anxiety symptoms show largely independent relationships with emotion processing at the behavioral level. Copyright © 2018 Elsevier B.V. All rights reserved.
Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello
2018-04-22
A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.
Moazzez, Ashkan; de Virgilio, Christian
2016-10-01
With constant changes in health-care laws and payment methods, profitability, and financial sustainability of hospitals are of utmost importance. The purpose of this study is to determine the relationship between surgical services and hospital profitability. The Office of Statewide Health Planning and Development annual financial databases for the years 2009 to 2011 were used for this study. The hospitals' characteristics and income statement elements were extracted for statistical analysis using bivariate and multivariate linear regression. A total of 989 financial records of 339 hospitals were included. On bivariate analysis, the number of inpatient and ambulatory operating rooms (ORs), the number of cases done both as inpatient and outpatient in each OR, and the average minutes used in inpatient ORs were significantly related with the net income of the hospital. On multivariate regression analysis, when controlling for hospitals' payer mix and the study year, only the number of inpatient cases done in the inpatient ORs (β = 832, P = 0.037), and the number of ambulatory ORs (β = 1,485, 466, P = 0.001) were significantly related with the net income of the hospital. These findings suggest that hospitals can maximize their profitability by diverting and allocating outpatient surgeries to ambulatory ORs, to allow for more inpatient surgeries.
Perceived racism in relation to weight change in the Black Women's Health Study.
Cozier, Yvette C; Wise, Lauren A; Palmer, Julie R; Rosenberg, Lynn
2009-06-01
Obesity is more common in black women than in white women. Racial discrimination is a form of chronic stress that may influence weight. We assessed the association of perceived racism with weight change between 1997 and 2005 in 43,103 women from the Black Women's Health Study, a prospective follow-up of U.S. black women aged 21-69 years at entry in 1995. Eight questions about perceptions and experiences of racism were asked in 1997 from which two summary variables were created: everyday racism (e.g., how often do people act "as if you are not intelligent?"), and lifetime racism (e.g., unfair treatment due to race "on the job"). Mixed linear regression models were used to calculate the multivariate adjusted means for changes in body weight across categories of perceived racism. Weight gain increased as levels of everyday and lifetime racism increased. The mean multivariable-adjusted difference in weight change between the highest and the lowest quartile of everyday racism was 0.56 kg. The mean difference comparing the highest category of lifetime racism to the lowest was 0.48 kg. These prospective data suggest that experiences of racism may contribute to the excess burden of obesity in U.S. black women.
Nonlinear multivariate and time series analysis by neural network methods
NASA Astrophysics Data System (ADS)
Hsieh, William W.
2004-03-01
Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.
Diaz, Francisco J
2016-10-15
We propose statistical definitions of the individual benefit of a medical or behavioral treatment and of the severity of a chronic illness. These definitions are used to develop a graphical method that can be used by statisticians and clinicians in the data analysis of clinical trials from the perspective of personalized medicine. The method focuses on assessing and comparing individual effects of treatments rather than average effects and can be used with continuous and discrete responses, including dichotomous and count responses. The method is based on new developments in generalized linear mixed-effects models, which are introduced in this article. To illustrate, analyses of data from the Sequenced Treatment Alternatives to Relieve Depression clinical trial of sequences of treatments for depression and data from a clinical trial of respiratory treatments are presented. The estimation of individual benefits is also explained. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Formation of parametric images using mixed-effects models: a feasibility study.
Huang, Husan-Ming; Shih, Yi-Yu; Lin, Chieh
2016-03-01
Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
A Parameter Subset Selection Algorithm for Mixed-Effects Models
Schmidt, Kathleen L.; Smith, Ralph C.
2016-01-01
Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less
Cernuda, Carlos; Lughofer, Edwin; Klein, Helmut; Forster, Clemens; Pawliczek, Marcin; Brandstetter, Markus
2017-01-01
During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229-235), Zhang et al. (J I Brewing. 2012;118(4):361-367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (-PLSSVR and ν-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company. Figure Workflow for calibration of non-Linear model ensembles from FT-MIR spectra in beer production .
Cuellar, Alison; Krist, Alex H; Nichols, Len M; Kuzel, Anton J
2018-04-01
Physicians have joined larger groups and hospital systems in the face of multiple environmental challenges. We examine whether there are differences across practice ownership in self-reported work environment, a practice culture of learning, psychological safety, and burnout. Using cross-sectional data from staff surveys of small and medium-size practices that participated in EvidenceNOW in Virginia, we tested for differences in work environment, culture of learning, psychological safety, and burnout by practice type. We conducted weighted multivariate linear regression of outcomes on ownership, controlling for practice size, specialty mix, payer mix, and whether the practice was located in a medically underserved area. We further analyzed clinician and staff responses separately. Participating were 104 hospital-owned and 61 independent practices and 24 federally qualified health centers (FQHCs). We analyzed 2,005 responses from practice clinicians and staff, a response rate of 49%. Working in a hospital-owned practice was associated with favorable ratings of work environment, psychological safety, and burnout compared with independent practices. When we examined separately the responses of clinicians vs staff, however, the association appears to be largely driven by staff. Hospital ownership was associated with positive perceptions of practice work environment and lower burnout for staff relative to independent ownership, whereas clinicians in FQHCs perceive a more negative, less joyful work environment and burnout. Our findings are suggestive that clinician and nonclinician staff perceive practice adaptive reserve differently, which may have implications for creating the energy for ongoing quality improvement work. © 2018 Annals of Family Medicine, Inc.
Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Pihos, Greg
1994-01-01
The static response of sea level to the forcing of atmospheric pressure, the so-called inverted barometer (IB) effect, is investigated using TOPEX/POSEIDON data. This response, characterized by the rise and fall of sea level to compensate for the change of atmospheric pressure at a rate of -1 cm/mbar, is not associated with any ocean currents and hence is normally treated as an error to be removed from sea level observation. Linear regression and spectral transfer function analyses are applied to sea level and pressure to examine the validity of the IB effect. In regions outside the tropics, the regression coefficient is found to be consistently close to the theoretical value except for the regions of western boundary currents, where the mesoscale variability interferes with the IB effect. The spectral transfer function shows near IB response at periods of 30 degrees is -0.84 +/- 0.29 cm/mbar (1 standard deviation). The deviation from = 1 cm /mbar is shown to be caused primarily by the effect of wind forcing on sea level, based on multivariate linear regression model involving both pressure and wind forcing. The regression coefficient for pressure resulting from the multivariate analysis is -0.96 +/- 0.32 cm/mbar. In the tropics the multivariate analysis fails because sea level in the tropics is primarily responding to remote wind forcing. However, after removing from the data the wind-forced sea level estimated by a dynamic model of the tropical Pacific, the pressure regression coefficient improves from -1.22 +/- 0.69 cm/mbar to -0.99 +/- 0.46 cm/mbar, clearly revealing an IB response. The result of the study suggests that with a proper removal of the effect of wind forcing the IB effect is valid in most of the open ocean at periods longer than 20 days and spatial scales larger than 500 km.
Liao, Duanping; Shaffer, Michele L.; He, Fan; Rodriguez-Colon, Sol; Wu, Rongling; Whitsel, Eric A.; Bixler, Edward O.; Cascio, Wayne E.
2011-01-01
The acute effects and the time course of fine particulate pollution (PM2.5) on atrial fibrillation/flutter (AF) predictors, including P-wave duration, PR interval duration, and P-wave complexity, were investigated in a community-dwelling sample of 106 nonsmokers. Individual-level 24-h beat-to-beat electrocardiogram (ECG) data were visually examined. After identifying and removing artifacts and arrhythmic beats, the 30-min averages of the AF predictors were calculated. A personal PM2.5 monitor was used to measure individual-level, real-time PM2.5 exposures during the same 24-h period, and corresponding 30-min average PM2.5 concentration were calculated. Under a linear mixed-effects modeling framework, distributed lag models were used to estimate regression coefficients (βs) associating PM2.5 with AF predictors. Most of the adverse effects on AF predictors occurred within 1.5–2 h after PM2.5 exposure. The multivariable adjusted βs per 10-µg/m3 rise in PM2.5 at lag 1 and lag 2 were significantly associated with P-wave complexity. PM2.5 exposure was also significantly associated with prolonged PR duration at lag 3 and lag 4. Higher PM2.5 was found to be associated with increases in P-wave complexity and PR duration. Maximal effects were observed within 2 h. These findings suggest that PM2.5 adversely affects AF predictors; thus, PM2.5 may be indicative of greater susceptibility to AF. PMID:21480044
Functional mixed effects spectral analysis
KRAFTY, ROBERT T.; HALL, MARTICA; GUO, WENSHENG
2011-01-01
SUMMARY In many experiments, time series data can be collected from multiple units and multiple time series segments can be collected from the same unit. This article introduces a mixed effects Cramér spectral representation which can be used to model the effects of design covariates on the second-order power spectrum while accounting for potential correlations among the time series segments collected from the same unit. The transfer function is composed of a deterministic component to account for the population-average effects and a random component to account for the unit-specific deviations. The resulting log-spectrum has a functional mixed effects representation where both the fixed effects and random effects are functions in the frequency domain. It is shown that, when the replicate-specific spectra are smooth, the log-periodograms converge to a functional mixed effects model. A data-driven iterative estimation procedure is offered for the periodic smoothing spline estimation of the fixed effects, penalized estimation of the functional covariance of the random effects, and unit-specific random effects prediction via the best linear unbiased predictor. PMID:26855437
Timing of opioid administration as a quality indicator for pain crises in sickle cell disease.
Mathias, Melissa D; McCavit, Timothy L
2015-03-01
Time to opioid administration (TTO) has been suggested as a quality of care measure for sickle cell disease patients with vaso-occlusive crisis (VOC). We sought to determine whether TTO was associated with outcomes of emergency department (ED) visits for VOC. We conducted a single-center retrospective cohort study of ED visits for VOC. The primary outcome was hospital admission, with secondary outcomes of change between the first 2 pain scores, area under the curve (AUC) for pain scores at 4 hours (pain score AUC), total ED length of stay, and total intravenous opioids. In both univariate and multivariate analyses, mixed regression (logistic for admission, linear for secondary outcome variables) was used to evaluate association of TTO with outcome. In 177 subjects, 414 ED visits for VOC were identified. Inpatient admission occurred in 53% of visits. The median TTO for admitted patients was 86 minutes vs 87 minutes for those not admitted. TTO was not associated with inpatient admission in either univariate or multivariate analyses. In multivariate analyses with secondary outcomes, decreased TTO was associated with greater improvement between the first 2 pain scores, decreased pain score AUC, decreased total ED length of stay, and increased total opioids. Although TTO was not associated with admission, it was independently associated with 4 important secondary outcomes: change in initial pain scores, pain score AUC, total ED length of stay, and total intravenous opioids. The association of a process measure, TTO, with these outcomes encourages the institution of TTO reduction efforts in the ED. Copyright © 2015 by the American Academy of Pediatrics.
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.
2018-03-01
This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco
2017-10-01
The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was <4 PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.
Gene set analysis using variance component tests.
Huang, Yen-Tsung; Lin, Xihong
2013-06-28
Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.
Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M
2016-05-01
Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.
Child Restraint Use and Driver Screening in Fatal Crashes Involving Drugs and Alcohol.
Huang, Yanlan; Liu, Chang; Pressley, Joyce C
2016-09-01
There are reports that the incidence of alcohol-involved crashes has remained stable among fatally injured drivers while drug involvement has increased in recent years. Data from the Fatality Analysis Reporting System (FARS) from 2010 to 2013 were used to examine drug and alcohol status of drivers (N = 10 864) of 4-wheeled passenger vehicles involved in a fatal crash while transporting a passenger aged 0 to 14 years (N = 17 179). Mixed effect multivariable logistic regression used SAS GLIMMIX to control for clustering. Odds ratios are reported with 95% confidence intervals (CIs). Only 28.9% of drivers were screened for both alcohol and drugs, and 56.7% were not tested for either. The total proportion of unrestrained child passengers increased nearly linearly by age. Findings ranged as high as 70% for 13- to 14-year-olds with drivers positive for drugs and alcohol. In multivariable adjusted models, inappropriate child seating with drivers who tested positive was as follows: alcohol, 1.30 (95% CI, 0.92-1.82); drugs, 1.54 (95% CI, 1.24-1.92); and for both drugs and alcohol, 1.88 (95% CI, 1.38-2.55). More than one-fourth were unrestrained with drivers positive for cannabis (27.7%). Overall mortality was approximately triple for unrestrained versus restrained (33.5% vs 11.5%; P < .0001) and was higher in front-seated than rear-seated passengers (40.7% vs 31.5%; P < .0001). Passengers were less likely to be appropriately seated and to be restrained when transported by a driver positive for drugs and alcohol, but this finding varied according to passenger age and drug/alcohol category. Copyright © 2016 by the American Academy of Pediatrics.
Child Restraint Use and Driver Screening in Fatal Crashes Involving Drugs and Alcohol
Huang, Yanlan; Liu, Chang
2016-01-01
BACKGROUND: There are reports that the incidence of alcohol-involved crashes has remained stable among fatally injured drivers while drug involvement has increased in recent years. METHODS: Data from the Fatality Analysis Reporting System (FARS) from 2010 to 2013 were used to examine drug and alcohol status of drivers (N = 10 864) of 4-wheeled passenger vehicles involved in a fatal crash while transporting a passenger aged 0 to 14 years (N = 17 179). Mixed effect multivariable logistic regression used SAS GLIMMIX to control for clustering. Odds ratios are reported with 95% confidence intervals (CIs). RESULTS: Only 28.9% of drivers were screened for both alcohol and drugs, and 56.7% were not tested for either. The total proportion of unrestrained child passengers increased nearly linearly by age. Findings ranged as high as 70% for 13- to 14-year-olds with drivers positive for drugs and alcohol. In multivariable adjusted models, inappropriate child seating with drivers who tested positive was as follows: alcohol, 1.30 (95% CI, 0.92–1.82); drugs, 1.54 (95% CI, 1.24–1.92); and for both drugs and alcohol, 1.88 (95% CI, 1.38–2.55). More than one-fourth were unrestrained with drivers positive for cannabis (27.7%). Overall mortality was approximately triple for unrestrained versus restrained (33.5% vs 11.5%; P < .0001) and was higher in front-seated than rear-seated passengers (40.7% vs 31.5%; P < .0001). CONCLUSIONS: Passengers were less likely to be appropriately seated and to be restrained when transported by a driver positive for drugs and alcohol, but this finding varied according to passenger age and drug/alcohol category. PMID:27550984
Measurements of Infrared and Acoustic Source Distributions in Jet Plumes
NASA Technical Reports Server (NTRS)
Agboola, Femi A.; Bridges, James; Saiyed, Naseem
2004-01-01
The aim of this investigation was to use the linear phased array (LPA) microphones and infrared (IR) imaging to study the effects of advanced nozzle-mixing techniques on jet noise reduction. Several full-scale engine nozzles were tested at varying power cycles with the linear phased array setup parallel to the jet axis. The array consisted of 16 sparsely distributed microphones. The phased array microphone measurements were taken at a distance of 51.0 ft (15.5 m) from the jet axis, and the results were used to obtain relative overall sound pressure levels from one nozzle design to the other. The IR imaging system was used to acquire real-time dynamic thermal patterns of the exhaust jet from the nozzles tested. The IR camera measured the IR radiation from the nozzle exit to a distance of six fan diameters (X/D(sub FAN) = 6), along the jet plume axis. The images confirmed the expected jet plume mixing intensity, and the phased array results showed the differences in sound pressure level with respect to nozzle configurations. The results show the effects of changes in configurations to the exit nozzles on both the flows mixing patterns and radiant energy dissipation patterns. By comparing the results from these two measurements, a relationship between noise reduction and core/bypass flow mixing is demonstrated.
Modulation of Additive and Interactive Effects in Lexical Decision by Trial History
ERIC Educational Resources Information Center
Masson, Michael E. J.; Kliegl, Reinhold
2013-01-01
Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test theoretical claims about the cognitive architecture of word-reading processes. Additive effects among these factors have been taken as evidence for discrete-stage models of word reading. We present evidence from linear mixed-model…
Liu, Xiaolei; Huang, Meng; Fan, Bin; Buckler, Edward S.; Zhang, Zhiwu
2016-01-01
False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. PMID:26828793
Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors
NASA Astrophysics Data System (ADS)
Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.
2014-12-01
This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.
Falcaro, Milena; Pickles, Andrew
2007-02-10
We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.
Multivariate longitudinal data analysis with mixed effects hidden Markov models.
Raffa, Jesse D; Dubin, Joel A
2015-09-01
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.
Small area estimation for semicontinuous data.
Chandra, Hukum; Chambers, Ray
2016-03-01
Survey data often contain measurements for variables that are semicontinuous in nature, i.e. they either take a single fixed value (we assume this is zero) or they have a continuous, often skewed, distribution on the positive real line. Standard methods for small area estimation (SAE) based on the use of linear mixed models can be inefficient for such variables. We discuss SAE techniques for semicontinuous variables under a two part random effects model that allows for the presence of excess zeros as well as the skewed nature of the nonzero values of the response variable. In particular, we first model the excess zeros via a generalized linear mixed model fitted to the probability of a nonzero, i.e. strictly positive, value being observed, and then model the response, given that it is strictly positive, using a linear mixed model fitted on the logarithmic scale. Empirical results suggest that the proposed method leads to efficient small area estimates for semicontinuous data of this type. We also propose a parametric bootstrap method to estimate the MSE of the proposed small area estimator. These bootstrap estimates of the MSE are compared to the true MSE in a simulation study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.
COSOLVENT EFFECTS ON SORPTION ISOTHERM LINEARITY
Sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic polymers associated with soils and sediments. In this study, aqueous and mixed solvent systems were used t...
Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
ERIC Educational Resources Information Center
Murakami, Akira
2016-01-01
This article introduces two sophisticated statistical modeling techniques that allow researchers to analyze systematicity, individual variation, and nonlinearity in second language (L2) development. Generalized linear mixed-effects models can be used to quantify individual variation and examine systematic effects simultaneously, and generalized…
Survival advantage in black versus white men with CKD: effect of estimated GFR and case mix.
Kovesdy, Csaba P; Quarles, L Darryl; Lott, Evan H; Lu, Jun Ling; Ma, Jennie Z; Molnar, Miklos Z; Kalantar-Zadeh, Kamyar
2013-08-01
Black dialysis patients have significantly lower mortality compared with white patients, in contradistinction to the higher mortality seen in blacks in the general population. It is unclear whether a similar paradox exists in patients with non-dialysis-dependent chronic kidney disease (CKD), and if it does, what its underlying reasons are. Historical cohort. 518,406 white and 52,402 black male US veterans with non-dialysis-dependent CKD stages 3-5. Black race. We examined overall and CKD stage-specific all-cause mortality using parametric survival models. The effect of sociodemographic characteristics, comorbid conditions, and laboratory characteristics on the observed differences was explored in multivariable models. During a median follow-up of 4.7 years, 172,093 patients died (mortality rate, 71.0 [95% CI, 70.6-71.3] per 1,000 patient-years). Black race was associated with significantly lower crude mortality (HR, 0.95; 95% CI, 0.94-0.97; P < 0.001). The survival advantage was attenuated after adjustment for age (HR, 1.14; 95% CI, 1.12-1.16), but was magnified after full multivariable adjustment (HR, 0.72; 95% CI, 0.70-0.73; P < 0.001). The unadjusted survival advantage of blacks was more prominent in those with more advanced stages of CKD, but CKD stage-specific differences were attenuated by multivariable adjustment. Exclusively male patients. Black patients with CKD have lower mortality compared with white patients. The survival advantage seen in blacks is accentuated in patients with more advanced stages of CKD, which may be explained by changes in case-mix and laboratory characteristics occurring during the course of kidney disease. Published by Elsevier Inc. on behalf of the National Kidney Foundation, Inc.
Survival Advantage in Black Versus White Men With CKD: Effect of Estimated GFR and Case Mix
Kovesdy, Csaba P.; Quarles, L. Darryl; Lott, Evan H.; Lu, Jun Ling; Ma, Jennie Z.; Molnar, Miklos Z.; Kalantar-Zadeh, Kamyar
2013-01-01
Background Black dialysis patients have significantly lower mortality compared to white patients, in contradistinction to the higher mortality seen in blacks in the general population. It is unclear if a similar paradox exists in non–dialysis-dependent CKD, and if it does, what its underlying reasons are. Study Design Historical cohort. Setting & Participants 518,406 white and 52,402 black male US veterans with non-dialysis dependent CKD stages 3–5. Predictor Black race. Outcomes & Measurements We examined overall and CKD stage-specific all-cause mortality using parametric survival models. The effect of sociodemographic characteristics, comorbidities and laboratory characteristics on the observed differences was explored in multivariable models. Results Over a median follow-up of 4.7 years 172,093 patients died (mortality rate, 71.0 [95% CI, 70.6–71.3] per 1000 patient-years). Black race was associated with significantly lower crude mortality (HR, 0.95; 95% CI, 0.94–0.97; p<0.001). The survival advantage was attenuated after adjustment for age (HR, 1.14; 95% CI, 1.12–1.16), but was even magnified after full multivariable adjustment (HR, 0.72; 95% CI, 0.70–0.73; p<0.001). The unadjusted survival advantage of blacks was more prominent in those with more advanced stages of CKD, but CKD stage-specific differences were attenuated by multivariable adjustment. Limitations Exclusively male patients. Conclusions Black patients with CKD have lower mortality compared to white patients. The survival advantage seen in blacks is accentuated in patients with more advanced stages of CKD, which may be explained by changes in case mix and laboratory characteristics occurring during the course of kidney disease. PMID:23369826
Piek, Jan P; Kane, Robert; Rigoli, Daniela; McLaren, Sue; Roberts, Clare M; Rooney, Rosanna; Jensen, Lynn; Dender, Alma; Packer, Tanya; Straker, Leon
2015-10-01
Animal Fun was designed to enhance motor and social development in young children. Its efficacy in improving motor skills was presented previously using a randomised controlled trial and a multivariate nested cohort design. Based on the Environmental Stress Hypothesis, it was argued that the program would also result in positive mental health outcomes, investigated in the current study. Pre-intervention scores were recorded for 511 children aged 4.83-6.17 years (M=5.42, SD=.30). Intervention and control groups were compared 6 months following intervention, and again in their first school year. Changes in teacher-rated prosocial behaviour and total difficulties were assessed using the Strengths and Difficulties Questionnaire, and data analysed using Generalised Linear Mixed Models. There was a significant improvement in prosocial behaviour of children in the intervention group six months after initial testing, which remained at 18-month follow-up. Total difficulties decreased at 6 months for the intervention group, with no change at 18 months. This effect was present only for the hyperactivity/inattention subscale. The only significant change for the control group was an increase in hyperactivity/inattention scores from pre-intervention to 18-month follow-up. The Animal Fun program appears to be effective in improving social and behavioural outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.
Oxytocin regimen for labor augmentation, labor progression, and perinatal outcomes.
Zhang, Jun; Branch, D Ware; Ramirez, Mildred M; Laughon, S Katherine; Reddy, Uma; Hoffman, Mathew; Bailit, Jennifer; Kominiarek, Michelle; Chen, Zhen; Hibbard, Judith U
2011-08-01
To examine the effects and safety of high-dose (compared with low-dose) oxytocin regimen for labor augmentation on perinatal outcomes. Data from the Consortium on Safe Labor were used. A total of 15,054 women from six hospitals were eligible for the analysis. Women were grouped based on their oxytocin starting dose and incremental dosing of 1, 2, and 4 milliunits/min. Duration of labor and a number of maternal and neonatal outcomes were compared among these three groups stratified by parity. Multivariable logistic regression and generalized linear mixed model were used to adjust for potential confounders. Oxytocin regimen did not affect the rate of cesarean delivery or other perinatal outcomes. Compared with 1 milliunit/min, the regimens starting with 2 milliunits/min and 4 milliunits/min reduced the duration of first stage by 0.8 hours (95% confidence interval 0.5-1.1) and 1.3 hours (1.0-1.7), respectively, in nulliparous women. No effect was observed on the second stage of labor. Similar patterns were observed in multiparous women. High-dose regimen was associated with a reduced risk of meconium stain, chorioamnionitis, and newborn fever in multiparous women. High-dose oxytocin regimen (starting dose at 4 milliunits/min and increment of 4 millliunits/min) is associated with a shorter duration of first-stage of labor for all parities without increasing the cesarean delivery rate or adversely affecting perinatal outcomes. II.
Edema is not a reliable diagnostic sign to exclude small brain metastases.
Schneider, Tanja; Kuhne, Jan Felix; Bittrich, Paul; Schroeder, Julian; Magnus, Tim; Mohme, Malte; Grosser, Malte; Schoen, Gerhard; Fiehler, Jens; Siemonsen, Susanne
2017-01-01
No prior systematic study on the extent of vasogenic edema (VE) in patients with brain metastases (BM) exists. Here, we aim to determine 1) the general volumetric relationship between BM and VE, 2) a threshold diameter above which a BM shows VE, and 3) the influence of the primary tumor and location of the BM in order to improve diagnostic processes and understanding of edema formation. This single center, retrospective study includes 173 untreated patients with histologically proven BM. Semi-manual segmentation of 1416 BM on contrast-enhanced T1-weighted images and of 865 VE on fluid-attenuated inversion recovery/T2-weighted images was conducted. Statistical analyses were performed using a paired-samples t-test, linear regression/generalized mixed-effects model, and receiver-operating characteristic (ROC) curve controlling for the possible effect of non-uniformly distributed metastases among patients. For BM with non-confluent edema (n = 545), there was a statistically significant positive correlation between the volumes of the BM and the VE (P < 0.001). The optimal threshold for edema formation was a diameter of 9.4 mm for all BM. The primary tumors as interaction term in multivariate analysis had a significant influence on VE formation whereas location had not. Hence VE development is dependent on the volume of the underlying BM and the site of the primary neoplasm, but not from the location of the BM.
Pregnancy in polymyositis or dermatomyositis: retrospective results from a tertiary centre in China.
Zhong, Zhiqiang; Lin, Fuan; Yang, Jing; Zhang, Fengchun; Zeng, Xiaofeng; You, Xin
2017-08-01
To examine if patients with PM/DM are at higher risk of complicated pregnancies. In a retrospective cohort in a large tertiary centre in North China, the outcomes of 144 pregnancies were evaluated in 62 women with PM/DM. Generalized linear mixed effect models were fitted to assess the effect of pregnancy occurring after disease on pregnancy outcomes including preterm birth (PTB), abortion (spontaneous or induced) and normal delivery. Adjustment for confounding factors including parity, maternal age and pregnancy-disease interval were achieved with a multivariable model. For women who became pregnant after disease onset, there was significantly higher risk of either PTB or spontaneous abortion (adjusted odds ratio, OR = 9.36, 95% CI: 1.10, 79.88; P = 0.041). The odds increase was more prominent if PM/DM was also active during pregnancy (adjusted OR = 435.35, 95% CI: 5.32, 35628.18; P = 0.007). Disease flare upon conception was observed in 4 of 22 post-PM/DM pregnancies (P = 0.125), and responded well to steroids and IVIG but resulted in PTB or spontaneous abortion. PM/DM, especially those less well controlled, might contribute to an increased risk of complicated pregnancy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena
2007-11-05
A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2015-10-01
In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.
NASA Astrophysics Data System (ADS)
Barra, Adriano; Contucci, Pierluigi; Sandell, Rickard; Vernia, Cecilia
2014-02-01
How does immigrant integration in a country change with immigration density? Guided by a statistical mechanics perspective we propose a novel approach to this problem. The analysis focuses on classical integration quantifiers such as the percentage of jobs (temporary and permanent) given to immigrants, mixed marriages, and newborns with parents of mixed origin. We find that the average values of different quantifiers may exhibit either linear or non-linear growth on immigrant density and we suggest that social action, a concept identified by Max Weber, causes the observed non-linearity. Using the statistical mechanics notion of interaction to quantitatively emulate social action, a unified mathematical model for integration is proposed and it is shown to explain both growth behaviors observed. The linear theory instead, ignoring the possibility of interaction effects would underestimate the quantifiers up to 30% when immigrant densities are low, and overestimate them as much when densities are high. The capacity to quantitatively isolate different types of integration mechanisms makes our framework a suitable tool in the quest for more efficient integration policies.
Zhao, Xiao-Mei; Pu, Shi-Biao; Zhao, Qing-Guo; Gong, Man; Wang, Jia-Bo; Ma, Zhi-Jie; Xiao, Xiao-He; Zhao, Kui-Jun
2016-08-01
In this paper, the spectrum-effect correlation analysis method was used to explore the main effective components of Tripterygium wilfordii for liver toxicity, and provide reference for promoting the quality control of T. wilfordii. Chinese medicine T.wilfordii was taken as the study object, and LC-Q-TOF-MS was used to characterize the chemical components in T. wilfordii samples from different areas, and their main components were initially identified after referring to the literature. With the normal human hepatocytes (LO2 cell line)as the carrier, acetaminophen as positive medicine, and cell inhibition rate as testing index, the simple correlation analysis and multivariate linear correlation analysis methods were used to screen the main components of T. wilfordii for liver toxicity. As a result, 10 kinds of main components were identified, and the spectrum-effect correlation analysis showed that triptolide may be the toxic component, which was consistent with previous results of traditional literature. Meanwhile it was found that tripterine and demethylzeylasteral may greatly contribute to liver toxicity in multivariate linear correlation analysis. T. wilfordii samples of different varieties or different origins showed large difference in quality, and the T. wilfordii from southwest China showed lower liver toxicity, while those from Hunan and Anhui province showed higher liver toxicity. This study will provide data support for further rational use of T. wilfordii and research on its liver toxicity ingredients. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Daftedar Abdelhadi, Raghda Mohamed
Although the Next Generation Science Standards (NGSS) present a detailed set of Science and Engineering Practices, a finer grained representation of the underlying skills is lacking in the standards document. Therefore, it has been reported that teachers are facing challenges deciphering and effectively implementing the standards, especially with regards to the Practices. This analytical study assessed the development of high school chemistry students' (N = 41) inquiry, multivariable causal reasoning skills, and metacognition as a mediator for their development. Inquiry tasks based on concepts of element properties of the periodic table as well as reaction kinetics required students to conduct controlled thought experiments, make inferences, and declare predictions of the level of the outcome variable by coordinating the effects of multiple variables. An embedded mixed methods design was utilized for depth and breadth of understanding. Various sources of data were collected including students' written artifacts, audio recordings of in-depth observational groups and interviews. Data analysis was informed by a conceptual framework formulated around the concepts of coordinating theory and evidence, metacognition, and mental models of multivariable causal reasoning. Results of the study indicated positive change towards conducting controlled experimentation, making valid inferences and justifications. Additionally, significant positive correlation between metastrategic and metacognitive competencies, and sophistication of experimental strategies, signified the central role metacognition played. Finally, lack of consistency in indicating effective variables during the multivariable prediction task pointed towards the fragile mental models of multivariable causal reasoning the students had. Implications for teacher education, science education policy as well as classroom research methods are discussed. Finally, recommendations for developing reform-based chemistry curricula based on the Practices are presented.
Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures.
Palva, J Matias; Wang, Sheng H; Palva, Satu; Zhigalov, Alexander; Monto, Simo; Brookes, Matthew J; Schoffelen, Jan-Mathijs; Jerbi, Karim
2018-06-01
When combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been proposed. Being by definition insensitive to zero-lag correlations, these techniques have become increasingly popular in the identification of correlations that cannot be attributed to field spread or volume conduction. We show here, however, that while these measures are immune to the direct effects of linear mixing, they may still reveal large numbers of spurious false positive connections through field spread in the vicinity of true interactions. This fundamental problem affects both region-of-interest-based analyses and all-to-all connectome mappings. Most importantly, beyond defining and illustrating the problem of spurious, or "ghost" interactions, we provide a rigorous quantification of this effect through extensive simulations. Additionally, we further show that signal mixing also significantly limits the separability of neuronal phase and amplitude correlations. We conclude that spurious correlations must be carefully considered in connectivity analyses in MEG/EEG source space even when using measures that are immune to zero-lag correlations. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Time-dependent analysis of the mixed-field orientation of molecules without rotational symmetry
NASA Astrophysics Data System (ADS)
Thesing, Linda V.; Küpper, Jochen; González-Férez, Rosario
2017-06-01
We present a theoretical study of the mixed-field orientation of molecules without rotational symmetry. The time-dependent one-dimensional and three-dimensional orientation of a thermal ensemble of 6-chloropyridazine-3-carbonitrile molecules in combined linearly or elliptically polarized laser fields and tilted dc electric fields is computed. The results are in good agreement with recent experimental results of one-dimensional orientation for weak dc electric fields [J. L. Hansen, J. Chem. Phys. 139, 234313 (2013)]. Moreover, they predict that using elliptically polarized laser fields or strong dc fields, three-dimensional orientation is obtained. The field-dressed dynamics of excited rotational states is characterized by highly non-adiabatic effects. We analyze the sources of these non-adiabatic effects and investigate their impact on the mixed-field orientation for different field configurations in mixed-field-orientation experiments.
Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A
2010-07-01
Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.
Li, Jianghong; Akaliyski, Plamen; Schäfer, Jakob; Kendall, Garth; Oddy, Wendy H; Stanley, Fiona; Strazdins, Lyndall
2017-08-01
Using longitudinal data from the Western Australia Pregnancy Cohort (Raine) Study and both random-effects and fixed-effects models, this study examined the connection between maternal work hours and child overweight or obesity. Following children in two-parent families from early childhood to early adolescence, multivariate analyses revealed a non-linear and developmentally dynamic relationship. Among preschool children (ages 2 to 5), we found lower likelihood of child overweight and obesity when mothers worked 24 h or less per week, compared to when mothers worked 35 or more hours. This effect was stronger in low-to-medium income families. For older children (ages 8 to 14), compared to working 35-40 h a week, working shorter hours (1-24, 25-34) or longer hours (41 or more) was both associated with increases in child overweight and obesity. These non-linear effects were more pronounced in low-to-medium income families, particularly when fathers also worked long hours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Yue; Schnelle, John; Spector, William D; Glance, Laurent G; Mukamel, Dana B
2010-02-01
To assess the impact of facility case mix on cross-sectional variations and short-term stability of the "Nursing Home Compare" incontinence quality measure (QM) and to determine whether multivariate risk adjustment can minimize such impacts. Retrospective analyses of the 2005 national minimum data set (MDS) that included approximately 600,000 long-term care residents in over 10,000 facilities in each quarterly sample. Mixed logistic regression was used to construct the risk-adjusted QM (nonshrinkage estimator). Facility-level ordinary least-squares models and adjusted R(2) were used to estimate the impact of case mix on cross-sectional and short-term longitudinal variations of currently published and risk-adjusted QMs. At least 50 percent of the cross-sectional variation and 25 percent of the short-term longitudinal variation of the published QM are explained by facility case mix. In contrast, the cross-sectional and short-term longitudinal variations of the risk-adjusted QM are much less susceptible to case-mix variations (adjusted R(2)<0.10), even for facilities with more extreme or more unstable outcome. Current "Nursing Home Compare" incontinence QM reflects considerable case-mix variations across facilities and over time, and therefore it may be biased. This issue can be largely addressed by multivariate risk adjustment using risk factors available in the MDS.
Zeng, Maomao; Li, Yang; He, Zhiyong; Qin, Fang; Chen, Jie
2016-06-01
Ultra performance liquid chromatography-tandem mass spectrometry and multivariate analysis were used to exploit the effect and further synergistic or antagonistic interactions of main phenolic compounds with the same ratios as in spices consumed in China, on the profiles of HAs in roast beef patties. Quantitative levels of harman (1-methyl-9H-pyrido[3,4-b]indole), norharman (9H-pyrido[3,4-b]indole), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), DMIP (2-amino-1,6-dimethylimidazo[4,5-b]pyridine), 1,5,6-TMIP (2-amino-1,5,6-trimethylimidazo[4,5-b]pyridine), MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline) were detected in all of the beef patties. The formation of most of these seven HAs was significantly (P<0.05) enhanced by phenolic compounds. Mixed and corresponding single phenolic compounds had different effects on HA profiles. DMIP, 1,5,6-TMIP and 4,8-DiMeIQx were investigated as differentiating factors for single compounds, while harman and MeIQx for mixed ones. Moreover, certain combination of phenolic compounds have synergistic on harman, norharman and MeIQx, but antagonistic effects on the formation of DMIP and 4,8-DiMeIQx. The results may shed light on the mechanism for the effects of spices on the formation of HAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effects of storage on the net calorific value of wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jun Sian; Sokhansanj, S.; Lau, A. K.
The wood pellet export from Canada to Europe has been increasing steadily in recent years (roughly 1.8 million ton in 2013). Due to distances involved, wood pellets remain in transit and storage for months before their final consumption. The net calorific value determines the price of wood pellet purchase in Europe. There have been concerns about the changes of net calorific values over time. In this study, the effects of storage time, storage configuration, storage temperature, and wood pellet quality on the net calorific value of wood pellets for a period of 6 months were investigated. Storage configurations were openmore » or closed and storage temperatures were 25 °C, 35 °C and 45 °C. Two types of wood pellets used were whitewood and mixed. The results in closed storage indicated that storage time had a positive effect on the net calorific value where the net calorific value increased by 1% to 2% over the storage period. In open storage, the moisture content had the most significant impact on the net calorific value. The net calorific values of the two types of wood pellets were found to be significantly different at p < 0.001. A multivariable linear regression and analyses of variance performed verified the graphical results. Lastly, the authors postulated that the higher energy potential compounds, such as aldehyde and ketone, produced during pellet storage, caused the increase in net calorific values.« less
The effects of storage on the net calorific value of wood pellets
Lee, Jun Sian; Sokhansanj, S.; Lau, A. K.; ...
2015-06-30
The wood pellet export from Canada to Europe has been increasing steadily in recent years (roughly 1.8 million ton in 2013). Due to distances involved, wood pellets remain in transit and storage for months before their final consumption. The net calorific value determines the price of wood pellet purchase in Europe. There have been concerns about the changes of net calorific values over time. In this study, the effects of storage time, storage configuration, storage temperature, and wood pellet quality on the net calorific value of wood pellets for a period of 6 months were investigated. Storage configurations were openmore » or closed and storage temperatures were 25 °C, 35 °C and 45 °C. Two types of wood pellets used were whitewood and mixed. The results in closed storage indicated that storage time had a positive effect on the net calorific value where the net calorific value increased by 1% to 2% over the storage period. In open storage, the moisture content had the most significant impact on the net calorific value. The net calorific values of the two types of wood pellets were found to be significantly different at p < 0.001. A multivariable linear regression and analyses of variance performed verified the graphical results. Lastly, the authors postulated that the higher energy potential compounds, such as aldehyde and ketone, produced during pellet storage, caused the increase in net calorific values.« less
Karsten, Schober; Stephanie, Savino; Vedat, Yildiz
2017-11-10
The objective of the study was to evaluate the effects of body weight (BW), breed, and sex on two-dimensional (2D) echocardiographic measures, reference ranges, and prediction intervals using allometrically-scaled data of left atrial (LA) and left ventricular (LV) size and LV wall thickness in healthy cats. Study type was retrospective, observational, and clinical cohort. 150 healthy cats were enrolled and 2D echocardiograms analyzed. LA diameter, LV wall thickness, and LV dimension were quantified using three different imaging views. The effect of BW, breed, sex, age, and interaction (BW*sex) on echocardiographic variables was assessed using univariate and multivariate regression and linear mixed model analysis. Standard (using raw data) and allometrically scaled (Y=a × M b ) reference intervals and prediction intervals were determined. BW had a significant (P<0.05) independent effect on 2D variables whereas breed, sex, and age did not. There were clinically relevant differences between reference intervals using mean ± 2SD of raw data and mean and 95% prediction interval of allometrically-scaled variables, most prominent in larger (>6 kg) and smaller (<3 kg) cats. A clinically relevant difference between thickness of the interventricular septum (IVS) and dimension of the LV posterior wall (LVPW) was identified. In conclusion, allometric scaling and BW-based 95% prediction intervals should be preferred over conventional 2D echocardiographic reference intervals in cats, in particular in small and large cats. These results are particularly relevant to screening examinations for feline hypertrophic cardiomyopathy.
Rural Hospital Ownership: Medical Service Provision, Market Mix, and Spillover Effects
Horwitz, Jill R; Nichols, Austin
2011-01-01
Objective To test whether nonprofit, for-profit, or government hospital ownership affects medical service provision in rural hospital markets, either directly or through the spillover effects of ownership mix. Data Sources/Study Setting Data are from the American Hospital Association, U.S. Census, CMS Healthcare Cost Report Information System and Prospective Payment System Minimum Data File, and primary data collection for geographic coordinates. The sample includes all nonfederal, general medical, and surgical hospitals located outside of metropolitan statistical areas and within the continental United States from 1988 to 2005. Study Design We estimate multivariate regression models to examine the effects of (1) hospital ownership and (2) hospital ownership mix within rural hospital markets on profitable versus unprofitable medical service offerings. Principal Findings Rural nonprofit hospitals are more likely than for-profit hospitals to offer unprofitable services, many of which are underprovided services. Nonprofits respond less than for-profits to changes in service profitability. Nonprofits with more for-profit competitors offer more profitable services and fewer unprofitable services than those with fewer for-profit competitors. Conclusions Rural hospital ownership affects medical service provision at the hospital and market levels. Nonprofit hospital regulation should reflect both the direct and spillover effects of ownership. PMID:21639860
Rural hospital ownership: medical service provision, market mix, and spillover effects.
Horwitz, Jill R; Nichols, Austin
2011-10-01
To test whether nonprofit, for-profit, or government hospital ownership affects medical service provision in rural hospital markets, either directly or through the spillover effects of ownership mix. Data are from the American Hospital Association, U.S. Census, CMS Healthcare Cost Report Information System and Prospective Payment System Minimum Data File, and primary data collection for geographic coordinates. The sample includes all nonfederal, general medical, and surgical hospitals located outside of metropolitan statistical areas and within the continental United States from 1988 to 2005. We estimate multivariate regression models to examine the effects of (1) hospital ownership and (2) hospital ownership mix within rural hospital markets on profitable versus unprofitable medical service offerings. Rural nonprofit hospitals are more likely than for-profit hospitals to offer unprofitable services, many of which are underprovided services. Nonprofits respond less than for-profits to changes in service profitability. Nonprofits with more for-profit competitors offer more profitable services and fewer unprofitable services than those with fewer for-profit competitors. Rural hospital ownership affects medical service provision at the hospital and market levels. Nonprofit hospital regulation should reflect both the direct and spillover effects of ownership. © Health Research and Educational Trust.
NASA Astrophysics Data System (ADS)
Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.
2008-12-01
The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.
Understanding Mixed Emotions: Paradigms and Measures
Kreibig, Sylvia D.; Gross, James J.
2017-01-01
In this review, we examine the paradigms and measures available for experimentally studying mixed emotions in the laboratory. For eliciting mixed emotions, we describe a mixed emotions film library that allows for the repeated elicitation of a specific homogeneous mixed emotional state and appropriately matched pure positive, pure negative, and neutral emotional states. For assessing mixed emotions, we consider subjective and objective measures that fall into univariate, bivariate, and multivariate measurement categories. As paradigms and measures for objectively studying mixed emotions are still in their early stages, we conclude by outlining future directions that focus on the reliability, temporal dynamics, and response coherence of mixed emotions paradigms and measures. This research will build a strong foundation for future studies and significantly advance our understanding of mixed emotions. PMID:28804752
Understanding Mixed Emotions: Paradigms and Measures.
Kreibig, Sylvia D; Gross, James J
2017-06-01
In this review, we examine the paradigms and measures available for experimentally studying mixed emotions in the laboratory. For eliciting mixed emotions, we describe a mixed emotions film library that allows for the repeated elicitation of a specific homogeneous mixed emotional state and appropriately matched pure positive, pure negative, and neutral emotional states. For assessing mixed emotions, we consider subjective and objective measures that fall into univariate, bivariate, and multivariate measurement categories. As paradigms and measures for objectively studying mixed emotions are still in their early stages, we conclude by outlining future directions that focus on the reliability, temporal dynamics, and response coherence of mixed emotions paradigms and measures. This research will build a strong foundation for future studies and significantly advance our understanding of mixed emotions.
NASA Astrophysics Data System (ADS)
Zozulya, A. A.
1988-12-01
A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.
Humphries, Stephen M; Yagihashi, Kunihiro; Huckleberry, Jason; Rho, Byung-Hak; Schroeder, Joyce D; Strand, Matthew; Schwarz, Marvin I; Flaherty, Kevin R; Kazerooni, Ella A; van Beek, Edwin J R; Lynch, David A
2017-10-01
Purpose To evaluate associations between pulmonary function and both quantitative analysis and visual assessment of thin-section computed tomography (CT) images at baseline and at 15-month follow-up in subjects with idiopathic pulmonary fibrosis (IPF). Materials and Methods This retrospective analysis of preexisting anonymized data, collected prospectively between 2007 and 2013 in a HIPAA-compliant study, was exempt from additional institutional review board approval. The extent of lung fibrosis at baseline inspiratory chest CT in 280 subjects enrolled in the IPF Network was evaluated. Visual analysis was performed by using a semiquantitative scoring system. Computer-based quantitative analysis included CT histogram-based measurements and a data-driven textural analysis (DTA). Follow-up CT images in 72 of these subjects were also analyzed. Univariate comparisons were performed by using Spearman rank correlation. Multivariate and longitudinal analyses were performed by using a linear mixed model approach, in which models were compared by using asymptotic χ 2 tests. Results At baseline, all CT-derived measures showed moderate significant correlation (P < .001) with pulmonary function. At follow-up CT, changes in DTA scores showed significant correlation with changes in both forced vital capacity percentage predicted (ρ = -0.41, P < .001) and diffusing capacity for carbon monoxide percentage predicted (ρ = -0.40, P < .001). Asymptotic χ 2 tests showed that inclusion of DTA score significantly improved fit of both baseline and longitudinal linear mixed models in the prediction of pulmonary function (P < .001 for both). Conclusion When compared with semiquantitative visual assessment and CT histogram-based measurements, DTA score provides additional information that can be used to predict diminished function. Automatic quantification of lung fibrosis at CT yields an index of severity that correlates with visual assessment and functional change in subjects with IPF. © RSNA, 2017.
Samsuddin, Niza; Rampal, Krishna Gopal; Ismail, Noor Hassim; Abdullah, Nor Zamzila; Nasreen, Hashima E
2016-02-01
Research findings have linked exposure to pesticides to an increased risk of cardiovascular (CVS) diseases. Therefore, this study aimed to assess the impact of chronic mix-pesticides exposure on CVS hemodynamic parameters. A total of 198 male Malay pesticide-exposed and 195 male Malay nonexposed workers were examined. Data were collected through exposure-matrix assessment, questionnaire, blood analyses, and CVS assessment. Explanatory variables comprised of lipid profiles, paraoxonase 1 (PON1), and oxidized low-density lipoprotein (ox-LDL). Outcome measures comprised of brachial and aortic diastolic blood pressure (DBP) and systolic BP (SBP), heart rate, and pulse wave velocity (PWV). Linear regressions identified the B coefficient showing how many units of CVS parameters are associated with each unit of covariates. Diazoxonase was significantly lower and ox-LDL was higher among pesticide-exposed workers than the comparison group. The final multivariate linear regression model revealed that age, body mass index (BMI), smoking, and pesticide exposure were independent predictors of brachial and aortic DBP and SBP. Pesticide exposure was also associated with heart rate, but not with PWV. Lipid profiles, PON1 enzymes, and ox-LDL showed no association with any of the CVS parameters. Chronic mix-pesticide exposure among workers involved in mosquito control has possible association with depression of diazoxonase and the increase in ox-LDL, brachial and aortic DBP and SBP, and heart rate. This study raises concerns that those using pesticides may be exposed to hitherto unrecognized CVS risks among others. If this is confirmed by further studies, greater efforts will be needed to protect these workers. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gemignani, Jessica; Middell, Eike; Barbour, Randall L; Graber, Harry L; Blankertz, Benjamin
2018-04-04
The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA). This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-based method is to be favored.
Pennec, Sophie; Monnier, Alain; Stephan, Amandine; Brouard, Nicolas; Bilsen, Johan; Cohen, Joachim
2016-01-01
Background Monitoring medical decisions at the end of life has become an important issue in many societies. Built on previous European experiences, the survey and project Fin de Vie en France (“End of Life in France,” or EOLF) was conducted in 2010 to provide an overview of medical end-of-life decisions in France. Objective To describe the methodology of EOLF and evaluate the effects of design innovations on data quality. Methods EOLF used a mixed-mode data collection strategy (paper and Internet) along with follow-up campaigns that employed various contact modes (paper and telephone), all of which were gathered from various institutions (research team, hospital, and medical authorities at the regional level). A telephone nonresponse survey was also used. Through descriptive statistics and multivariate logistic regressions, these innovations were assessed in terms of their effects on the response rate, quality of the sample, and differences between Web-based and paper questionnaires. Results The participation rate was 40.0% (n=5217). The respondent sample was very close to the sampling frame. The Web-based questionnaires represented only 26.8% of the questionnaires, and the Web-based secured procedure led to limitations in data management. The follow-up campaigns had a strong effect on participation, especially for paper questionnaires. With higher participation rates (63.21% and 63.74%), the telephone follow-up and nonresponse surveys showed that only a very low proportion of physicians refused to participate because of the topic or the absence of financial incentive. A multivariate analysis showed that physicians who answered on the Internet reported less medication to hasten death, and that they more often took no medical decisions in the end-of-life process. Conclusions Varying contact modes is a useful strategy. Using a mixed-mode design is interesting, but selection and measurement effects must be studied further in this sensitive field. PMID:26892632
Lindblad, Caroline; Thelin, Eric Peter; Nekludov, Michael; Frostell, Arvid; Nelson, David W; Svensson, Mikael; Bellander, Bo-Michael
2018-01-01
Despite seemingly functional coagulation, hemorrhagic lesion progression is a common and devastating condition following traumatic brain injury (TBI), stressing the need for new diagnostic techniques. Multiple electrode aggregometry (MEA) measures platelet function and could aid in coagulopathy assessment following TBI. The aims of this study were to evaluate MEA temporal dynamics, influence of concomitant therapy, and its capabilities to predict lesion progression and clinical outcome in a TBI cohort. Adult TBI patients in a neurointensive care unit that underwent MEA sampling were retrospectively included. MEA was sampled if the patient was treated with antiplatelet therapy, bled heavily during surgery, or had abnormal baseline coagulation values. We assessed platelet activation pathways involving the arachidonic acid receptor (ASPI), P2Y 12 receptor, and thrombin receptor (TRAP). ASPI was the primary focus of analysis. If several samples were obtained, they were included. Retrospective data were extracted from hospital charts. Outcome variables were radiologic hemorrhagic progression and Glasgow Outcome Scale assessed prospectively at 12 months posttrauma. MEA levels were compared between patients on antiplatelet therapy. Linear mixed effect models and uni-/multivariable regression models were used to study longitudinal dynamics, hemorrhagic progression and outcome, respectively. In total, 178 patients were included (48% unfavorable outcome). ASPI levels increased from initially low values in a time-dependent fashion ( p < 0.001). Patients on cyclooxygenase inhibitors demonstrated low ASPI levels ( p < 0.001), while platelet transfusion increased them ( p < 0.001). The first ASPI ( p = 0.039) and TRAP ( p = 0.009) were significant predictors of outcome, but not lesion progression, in univariate analyses. In multivariable analysis, MEA values were not independently correlated with outcome. A general longitudinal trend of MEA is identified in this TBI cohort, even in patients without known antiplatelet therapies. Values appear also affected by platelet inhibitory treatment and by platelet transfusions. While significant in univariate models to predict outcome, MEA values did not independently correlate to outcome or lesion progression in multivariable analyses. Further prospective studies to monitor coagulation in TBI patients are warranted, in particular the interpretation of pathological MEA values in patients without antiplatelet therapies.
NASA Technical Reports Server (NTRS)
Chen, Jyh-Yuan; Echekki, Tarek
2001-01-01
Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of disturbances increase with the magnitude of the gravity vector. Moreover, disturbances appear to be most amplified just downstream of the premixed branches. The effects of mixing width and differential diffusion are investigated and their roles on the flame stability are studied.
Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes.
Xu, Tao; Brandmaier, Stefan; Messias, Ana C; Herder, Christian; Draisma, Harmen H M; Demirkan, Ayse; Yu, Zhonghao; Ried, Janina S; Haller, Toomas; Heier, Margit; Campillos, Monica; Fobo, Gisela; Stark, Renee; Holzapfel, Christina; Adam, Jonathan; Chi, Shen; Rotter, Markus; Panni, Tommaso; Quante, Anne S; He, Ying; Prehn, Cornelia; Roemisch-Margl, Werner; Kastenmüller, Gabi; Willemsen, Gonneke; Pool, René; Kasa, Katarina; van Dijk, Ko Willems; Hankemeier, Thomas; Meisinger, Christa; Thorand, Barbara; Ruepp, Andreas; Hrabé de Angelis, Martin; Li, Yixue; Wichmann, H-Erich; Stratmann, Bernd; Strauch, Konstantin; Metspalu, Andres; Gieger, Christian; Suhre, Karsten; Adamski, Jerzy; Illig, Thomas; Rathmann, Wolfgang; Roden, Michael; Peters, Annette; van Duijn, Cornelia M; Boomsma, Dorret I; Meitinger, Thomas; Wang-Sattler, Rui
2015-10-01
Metformin is used as a first-line oral treatment for type 2 diabetes (T2D). However, the underlying mechanism is not fully understood. Here, we aimed to comprehensively investigate the pleiotropic effects of metformin. We analyzed both metabolomic and genomic data of the population-based KORA cohort. To evaluate the effect of metformin treatment on metabolite concentrations, we quantified 131 metabolites in fasting serum samples and used multivariable linear regression models in three independent cross-sectional studies (n = 151 patients with T2D treated with metformin [mt-T2D]). Additionally, we used linear mixed-effect models to study the longitudinal KORA samples (n = 912) and performed mediation analyses to investigate the effects of metformin intake on blood lipid profiles. We combined genotyping data with the identified metformin-associated metabolites in KORA individuals (n = 1,809) and explored the underlying pathways. We found significantly lower (P < 5.0E-06) concentrations of three metabolites (acyl-alkyl phosphatidylcholines [PCs]) when comparing mt-T2D with four control groups who were not using glucose-lowering oral medication. These findings were controlled for conventional risk factors of T2D and replicated in two independent studies. Furthermore, we observed that the levels of these metabolites decreased significantly in patients after they started metformin treatment during 7 years' follow-up. The reduction of these metabolites was also associated with a lowered blood level of LDL cholesterol (LDL-C). Variations of these three metabolites were significantly associated with 17 genes (including FADS1 and FADS2) and controlled by AMPK, a metformin target. Our results indicate that metformin intake activates AMPK and consequently suppresses FADS, which leads to reduced levels of the three acyl-alkyl PCs and LDL-C. Our findings suggest potential beneficial effects of metformin in the prevention of cardiovascular disease. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Zhang, Zhen-Ya; Wu, Shao-Yi; Zhang, Fu; Zhang, Cheng-Xi; Qin, Rui-Jie; Gao, Han
2018-03-01
The local distortions and electron paramagnetic resonance parameters for Cu 2+ in the mixed alkali borate glasses xNa 2 O-(30-x)K 2 O-70B 2 O 3 (5 ≤ x ≤ 25 mol%) are theoretically studied with distinct modifier Na 2 O compositions x. Owing to the Jahn-Teller effect, the octahedral [CuO 6 ] 10- clusters show significant tetragonal elongation ratios p ~19% along the C 4 axis. With the increase of composition x, the cubic field parameter Dq and the orbital reduction factor k exhibit linearly and quasi-linearly decreasing tendencies, respectively, whereas the relative tetragonal elongation ratio p has quasi-linearly increasing rule with some fluctuations, leading to the minima of g factors at x = 10 mol%. The composition dependences of the optical spectra and the electron paramagnetic resonance parameters are suitably reproduced by the linear or quasi-linear relationships of the relevant quantities (i.e., Dq, k, and p) with x. The above composition dependences are analyzed from mixed alkali effect, which brings forward the modifications of the local crystal-fields and the electronic cloud distribution around Cu 2+ with the variation of the composition of Na 2 O. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kannan, Rohit; Tangirala, Arun K.
2014-06-01
Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1986-01-01
A hypothetical turbofan engine simplified simulation with a multivariable control and sensor failure detection, isolation, and accommodation logic (HYTESS II) is presented. The digital program, written in FORTRAN, is self-contained, efficient, realistic and easily used. Simulated engine dynamics were developed from linearized operating point models. However, essential nonlinear effects are retained. The simulation is representative of the hypothetical, low bypass ratio turbofan engine with an advanced control and failure detection logic. Included is a description of the engine dynamics, the control algorithm, and the sensor failure detection logic. Details of the simulation including block diagrams, variable descriptions, common block definitions, subroutine descriptions, and input requirements are given. Example simulation results are also presented.
NASA Astrophysics Data System (ADS)
Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji
2005-09-01
A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.
Multivariable control of a twin lift helicopter system using the LQG/LTR design methodology
NASA Technical Reports Server (NTRS)
Rodriguez, A. A.; Athans, M.
1986-01-01
Guidelines for developing a multivariable centralized automatic flight control system (AFCS) for a twin lift helicopter system (TLHS) are presented. Singular value ideas are used to formulate performance and stability robustness specifications. A linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design is obtained and evaluated.
Effects of Body Mass Index on Lung Function Index of Chinese Population
NASA Astrophysics Data System (ADS)
Guo, Qiao; Ye, Jun; Yang, Jian; Zhu, Changan; Sheng, Lei; Zhang, Yongliang
2018-01-01
To study the effect of body mass index (BMI) on lung function indexes in Chinese population. A cross-sectional study was performed on 10, 592 participants. The linear relationship between lung function and BMI was evaluated by multivariate linear regression analysis, and the correlation between BMI and lung function was assessed by Pearson correlation analysis. Correlation analysis showed that BMI was positively related with the decreasing of forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and FEV1/FVC (P <0.05), the increasing of FVC% predicted value (FVC%pre) and FEV1% predicted value (FEV1%pre). These suggested that Chinese people can restrain the decline of lung function to prevent the occurrence and development of COPD by the control of BMI.
The Effect of Primary School Size on Academic Achievement
ERIC Educational Resources Information Center
Gershenson, Seth; Langbein, Laura
2015-01-01
Evidence on optimal school size is mixed. We estimate the effect of transitory changes in school size on the academic achievement of fourth-and fifth-grade students in North Carolina using student-level longitudinal administrative data. Estimates of value-added models that condition on school-specific linear time trends and a variety of…
Perturbation Effects on a Supercritical C7H16/N2 Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo'o, Nora; Bellan, Josette
2008-01-01
A computational-simulation study has been presented of effects of perturbation wavelengths and initial Reynolds numbers on the transition to turbulence of a heptane/nitrogen mixing layer at supercritical pressure. The governing equations for the simulations were the same as those of related prior studies reported in NASA Tech Briefs. Two-dimensional (2D) simulations were performed with initially im posed span wise perturbations whereas three-dimensional (3D) simulations had both streamwise and spanwise initial perturbations. The 2D simulations were undertaken to ascertain whether perturbations having the shortest unstable wavelength obtained from a linear stability analysis for inviscid flow are unstable in viscous nonlinear flows. The goal of the 3D simulations was to ascertain whether perturbing the mixing layer at different wavelengths affects the transition to turbulence. It was found that transitions to turbulence can be obtained at different perturbation wavelengths, provided that they are longer than the shortest unstable wavelength as determined by 2D linear stability analysis for the inviscid case and that the initial Reynolds number is proportionally increased as the wavelength is decreased. The transitional states thus obtained display different dynamic and mixture characteristics, departing strongly from the behaviors of perfect gases and ideal mixtures.
Linear mixed model for heritability estimation that explicitly addresses environmental variation.
Heckerman, David; Gurdasani, Deepti; Kadie, Carl; Pomilla, Cristina; Carstensen, Tommy; Martin, Hilary; Ekoru, Kenneth; Nsubuga, Rebecca N; Ssenyomo, Gerald; Kamali, Anatoli; Kaleebu, Pontiano; Widmer, Christian; Sandhu, Manjinder S
2016-07-05
The linear mixed model (LMM) is now routinely used to estimate heritability. Unfortunately, as we demonstrate, LMM estimates of heritability can be inflated when using a standard model. To help reduce this inflation, we used a more general LMM with two random effects-one based on genomic variants and one based on easily measured spatial location as a proxy for environmental effects. We investigated this approach with simulated data and with data from a Uganda cohort of 4,778 individuals for 34 phenotypes including anthropometric indices, blood factors, glycemic control, blood pressure, lipid tests, and liver function tests. For the genomic random effect, we used identity-by-descent estimates from accurately phased genome-wide data. For the environmental random effect, we constructed a covariance matrix based on a Gaussian radial basis function. Across the simulated and Ugandan data, narrow-sense heritability estimates were lower using the more general model. Thus, our approach addresses, in part, the issue of "missing heritability" in the sense that much of the heritability previously thought to be missing was fictional. Software is available at https://github.com/MicrosoftGenomics/FaST-LMM.
Wang, Weidong; Chen, Bo; Huang, Yuming
2014-08-13
A new solid-phase extraction (SPE) format was demonstrated, based on eggshell membrane (ESM) templating of the mixed hemimicelle/admicelle of linear alkylbenzenesulfonates (LAS) as an adsorbent for the enrichment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. The LAS mixed hemimicelle/admicelle formation and SPE of the target PAHs were conducted simultaneously by adding the organic target and LAS through a column filled with 500 mg of ESM. The effect of various factors, including LAS concentration, solution pH, ionic strength, and humic acid concentration on the recoveries of PAHs were investigated and optimized. The results showed that LAS concentration and solution pH had obvious effect on extraction of PAHs, and the recoveries of PAHs compounds decreased in the presence of salt and humic acid. Under the optimized analytical conditions, the present method could respond down to 0.1-8.6 ng/L PAHs with a linear calibration ranging from 0.02 to 10 μg/L, showing a good PAHs enrichment ability with high sensitivity. The developed method was used satisfactorily for the detection of PAHs in environmental water samples. The mixed hemimicelle/admicelle adsorbent exhibited high extraction efficiency to PAHs and good selectivity with respect to natural organic matter and was advantageous over commercial C₁₈ adsorbent, for example, high extraction yield, high breakthrough volume, and easy regeneration.
An approximate generalized linear model with random effects for informative missing data.
Follmann, D; Wu, M
1995-03-01
This paper develops a class of models to deal with missing data from longitudinal studies. We assume that separate models for the primary response and missingness (e.g., number of missed visits) are linked by a common random parameter. Such models have been developed in the econometrics (Heckman, 1979, Econometrica 47, 153-161) and biostatistics (Wu and Carroll, 1988, Biometrics 44, 175-188) literature for a Gaussian primary response. We allow the primary response, conditional on the random parameter, to follow a generalized linear model and approximate the generalized linear model by conditioning on the data that describes missingness. The resultant approximation is a mixed generalized linear model with possibly heterogeneous random effects. An example is given to illustrate the approximate approach, and simulations are performed to critique the adequacy of the approximation for repeated binary data.
Predictors of Using a Microbicide-like Product Among Adolescent Girls
Short, Mary B.; Succop, Paul A.; Ugueto, Ana M.; Rosenthal, Susan L.
2007-01-01
Purpose This study examined demographic, sexual history and weekly contextual variables, and perceptions about microbicides as predictors of microbicide-like product use. Methods Adolescent girls (N=208; 14-21 years) participated in a 6-month study in which they completed three face-to-face interviews and 24-weekly phone call interviews. Participants were given microbicide-like products (vaginal lubricants) and encouraged to use them with condoms when they had intercourse. Results Seventy-five percent of girls had a sexual opportunity to use the product. Using multi-variable logistic regression, the following variables independently predicted ever using the product: length of sexual experience, number of lifetime vaginal partners, and the Comparison to Condoms subscale on the Perceptions of Microbicides Scale. Using mixed model repeat measure linear regression, the following variables independently predicted frequency of use: week of the study, age, condom frequency prior to the study, and 3 subscales on the Perceptions of Microbicide Scale including the Comparison to Condoms subscale, the Negative Effects subscale, and the Pleasure subscale. Conclusion Most girls used the product, including those who were not protecting themselves with condoms. Girls’ initial perceptions regarding the product predicted initial use and frequency of use. Further research should evaluate the best methods for supporting the use of these products by young or sexually less experienced girls. PMID:17875461
Deierlein, A L; Siega-Riz, A M; Herring, A H; Adair, L S; Daniels, J L
2012-04-01
To determine how gestational weight gain (GWG), categorized using the 2009 Institute of Medicine recommendations, relates to changes in offspring weight-for-age (WAZ), length-for-age (LAZ) and weight-for-length z-scores (WLZ) between early infancy and 3 years. Women with singleton infants were recruited from the third cohort of the Pregnancy, Infection, and Nutrition Study (2001-2005). Term infants with at least one weight or length measurement during the study period were included (n = 476). Multivariable linear mixed effects regression models estimated longitudinal changes in WAZ, LAZ and WLZ associated with GWG. In early infancy, compared with infants of women with adequate weight gain, those of women with excessive weight gains had higher WAZ, LAZ and WLZ. Excessive GWG ≥ 200% of the recommended amount was associated with faster rates of change in WAZ and LAZ and noticeably higher predicted mean WAZ and WLZ that persisted across the study period. GWG is associated with significant differences in offspring anthropometrics in early infancy that persisted to 3 years of age. More longitudinal studies that utilize maternal and paediatric body composition measures are necessary to understand the nature of this association. © 2012 The Authors. Pediatric Obesity © 2012 International Association for the Study of Obesity.
Does the Animal Fun program improve motor performance in children aged 4-6 years?
Piek, J P; McLaren, S; Kane, R; Jensen, L; Dender, A; Roberts, C; Rooney, R; Packer, T; Straker, L
2013-10-01
The Animal Fun program was designed to enhance the motor ability of young children by imitating the movements of animals in a fun, inclusive setting. The efficacy of this program was investigated through a randomized controlled trial using a multivariate nested cohort design. Pre-intervention scores were recorded for 511 children aged 4.83 years to 6.17 years (M=5.42 years, SD=3.58 months). Six control and six intervention schools were compared 6 months later following the intervention, and then again at 18 months after the initial testing when the children were in their first school year. Changes in motor performance were examined using the Bruininks-Oseretsky Test of Motor Proficiency short form. Data were analyzed using multi-level-mixed effects linear regression. A significant Condition×Time interaction was found, F(2,1219)=3.35, p=.035, demonstrating that only the intervention group showed an improvement in motor ability. A significant Sex×Time interaction was also found, F(2,1219)=3.84, p=.022, with boys improving over time, but not girls. These findings have important implications for the efficacy of early intervention of motor skills and understanding the differences in motor performance between boys and girls. Copyright © 2012 Elsevier B.V. All rights reserved.
Roopwani, Rahul; Buckner, Ira S
2011-10-14
Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.
Feldthusen, Caroline; Grimby-Ekman, Anna; Forsblad-d'Elia, Helena; Jacobsson, Lennart; Mannerkorpi, Kaisa
2016-04-28
To investigate the impact of disease-related aspects on long-term variations in fatigue in persons with rheumatoid arthritis. Observational longitudinal study. Sixty-five persons with rheumatoid arthritis, age range 20-65 years, were invited to a clinical examination at 4 time-points during the 4 seasons. Outcome measures were: general fatigue rated on visual analogue scale (0-100) and aspects of fatigue assessed by the Bristol Rheumatoid Arthritis Fatigue Multidimensional Questionnaire. Disease-related variables were: disease activity (erythrocyte sedimentation rate), pain threshold (pressure algometer), physical capacity (six-minute walk test), pain (visual analogue scale (0-100)), depressive mood (Hospital Anxiety and Depression scale, depression subscale), personal factors (age, sex, body mass index) and season. Multivariable regression analysis, linear mixed effects models were applied. The strongest explanatory factors for all fatigue outcomes, when recorded at the same time-point as fatigue, were pain threshold and depressive mood. Self-reported pain was an explanatory factor for physical aspects of fatigue and body mass index contributed to explaining the consequences of fatigue on everyday living. For predicting later fatigue pain threshold and depressive mood were the strongest predictors. Pain threshold and depressive mood were the most important factors for fatigue in persons with rheumatoid arthritis.
Microcredit participation and women's health: results from a cross-sectional study in Peru.
Hamad, Rita; Fernald, Lia C H
2015-08-05
Social and economic conditions are powerful determinants of women's health status. Microcredit, which involves the provision of small loans to low-income women in the hopes of improving their living conditions, is an increasingly popular intervention to improve women's socioeconomic status. Studies examining the health effects of microcredit programs have had mixed results. We conduct a cross-sectional study among female clients of a non-profit microcredit program in Peru (N = 1,593). The predictor variable is length of microcredit participation. We conduct bivariate and multivariate linear regressions to examine the associations between length of microcredit participation and a variety of measures of women's health. We control for participants' sociodemographic characteristics. We find that longer participation is associated with decreased depressive symptoms, increased social support, and increased perceived control, but these differences are attenuated with the inclusion of covariates. We find no association between length of participation and contraception use, cancer screening, or self-reported days sick. These results demonstrate a positive association between length of microcredit participation and measures of women's psychological health, but not physical health. These findings contribute to the discussion on the potential of microcredit programs to address the socioeconomic determinants of health, and suggest that addressing socioeconomic status may be a key way to improve women's health worldwide.
Elementary school practices and children's objectively measured physical activity during school.
Carlson, Jordan A; Sallis, James F; Norman, Gregory J; McKenzie, Thomas L; Kerr, Jacqueline; Arredondo, Elva M; Madanat, Hala; Mignano, Alexandra M; Cain, Kelli L; Elder, John P; Saelens, Brian E
2013-11-01
To examine the relation of physical activity practices covering physical education (PE), recess, and classroom time in elementary schools to children's objectively measured physical activity during school. Participants were 172 children from 97 elementary schools in the San Diego, CA and Seattle, WA USA regions recruited in 2009-2010. Children's moderate-to-vigorous physical activity (MVPA) during school was assessed via accelerometry, and school practices were assessed via survey of school informants. Multivariate linear mixed models were adjusted for participant demographics and unstandardized regression coefficients are reported. The 5 practices with the strongest associations with physical activity were combined into an index to investigate additive effects of these practices on children's MVPA. Providing ≥ 100 min/week of PE (B=6.7 more min/day; p=.049), having ≤ 75 students/supervisor in recess (B=6.4 fewer min/day; p=.031), and having a PE teacher (B=5.8 more min/day; p=.089) were related to children's MVPA during school. Children at schools with 4 of the 5 practices in the index had 20 more min/day of MVPA during school than children at schools with 0 or 1 of the 5 practices (p<.001). The presence of multiple school physical activity practices doubled children's physical activity during school. © 2013.
Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S
2014-12-30
A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.
Drug awareness in adolescents attending a mental health service: analysis of longitudinal data.
Arnau, Jaume; Bono, Roser; Díaz, Rosa; Goti, Javier
2011-11-01
One of the procedures used most recently with longitudinal data is linear mixed models. In the context of health research the increasing number of studies that now use these models bears witness to the growing interest in this type of analysis. This paper describes the application of linear mixed models to a longitudinal study of a sample of Spanish adolescents attending a mental health service, the aim being to investigate their knowledge about the consumption of alcohol and other drugs. More specifically, the main objective was to compare the efficacy of a motivational interviewing programme with a standard approach to drug awareness. The models used to analyse the overall indicator of drug awareness were as follows: (a) unconditional linear growth curve model; (b) growth model with subject-associated variables; and (c) individual curve model with predictive variables. The results showed that awareness increased over time and that the variable 'schooling years' explained part of the between-subjects variation. The effect of motivational interviewing was also significant.
Thorpe, Susannah K S; Crompton, Robin H
2005-05-01
The large body mass and exclusively arboreal lifestyle of Sumatran orangutans identify them as a key species in understanding the dynamic between primates and their environment. Increased knowledge of primate locomotor ecology, coupled with recent developments in the standardization of positional mode classifications (Hunt et al. [1996] Primates 37:363-387), opened the way for sophisticated multivariate statistical approaches, clarifying complex associations between multiple influences on locomotion. In this study we present a log-linear modelling approach used to identify key associations between orangutan locomotion, canopy level, support use, and contextual behavior. Log-linear modelling is particularly appropriate because it is designed for categorical data, provides a systematic method for testing alternative hypotheses regarding interactions between variables, and allows interactions to be ranked numerically in terms of relative importance. Support diameter and type were found to have the strongest associations with locomotor repertoire, suggesting that orangutans have evolved distinct locomotor modes to solve a variety of complex habitat problems. However, height in the canopy and contextual behavior do not directly influence locomotion: instead, their effect is modified by support type and support diameter, respectively. Contrary to classic predictions, age-sex category has only limited influence on orangutan support use and locomotion, perhaps reflecting the presence of arboreal pathways which individuals of all age-sex categories follow. Effects are primarily related to a tendency for adult, parous females to adopt a more cautious approach to locomotion than adult males and immature subjects. Copyright 2004 Wiley-Liss, Inc.
Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet
NASA Astrophysics Data System (ADS)
Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan
This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.
Luan, S; Cowles, K; Murphy, M R; Cardoso, F C
2016-03-01
The effects of a grain challenge on ruminal, urine, and fecal pH, apparent total-tract starch digestibility, and milk composition were determined. Six Holstein cows, 6 rumen-cannulated Holstein cows, and 6 Jersey cows were used in a replicated 3 × 3 Latin square design balanced to measure carryover effects. Periods (10 d) were divided into 4 stages (S): S1, d 1 to 3, served as baseline with regular total mixed ration ad libitum; S2, d 4, served as restricted feeding, with cows offered 50% of the total mixed ration fed on S1 (dry matter basis); S3, d 5, a grain challenge was performed, in which cows were fed total mixed ration ad libitum and not fed (CON) or fed an addition of 10% (MG) or 20% (HG) pellet wheat-barley (1:1) top-dressed onto the total mixed ration, based on dry matter intake obtained in S1; S4, d 6 to 10, served as recovery stage with regular total mixed ration fed ad libitum. Overall, cows had a quadratic treatment effect for milk yield where CON (22.6 kg/d) and HG (23.5 kg/d) had lower milk yield than cows in MG (23.7 kg/d). Jersey cows had a quadratic treatment effect for dry matter intake where cows in CON (13.2 kg/d) and HG (12.4 kg/d) had lower dry matter intake than cows in MG (14 kg/d). Holstein cows had a linear treatment effect for dry matter intake (17.7, 18.4, and 18.6 kg/d for CON, MG, and HG, respectively). Rumen pH for the rumen-cannulated cows had a linear treatment effect (6.45, 6.35, and 6.24 for CON, MG, and HG, respectively). Cows in HG spent more time with rumen pH below 5.8 (4.33 h) than MG (2 h) or CON (2.17 h) as shown by the quadratic treatment effect. Holstein cows in HG (8.46) had lower urine pH than MG (8.51) or CON (8.54) as showed by the linear treatment effect for urine pH. Apparent total-tract starch digestibility had a tendency for a linear treatment effect on S3 (97.62 ± 1.5, 97.47 ± 1.5, and 91.84 ± 1.6%, for CON, MG, and HG, respectively). Fecal pH was associated with rumen pH depression as early as 15 h after feeding for Holstein cows. In conclusion, a grain challenge reduced urine pH in Holstein cows but not in Jersey cows. Holstein cows' health were not affected when rumen pH was depressed. A potentially useful link between rumen pH and systemic (urine) pH within 2 h after feeding was quantified in Holstein cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Restructuring in response to case mix reimbursement in nursing homes: A contingency approach
Zinn, Jacqueline; Feng, Zhanlian; Mor, Vincent; Intrator, Orna; Grabowski, David
2013-01-01
Background Resident-based case mix reimbursement has become the dominant mechanism for publicly funded nursing home care. In 1998 skilled nursing facility reimbursement changed from cost-based to case mix adjusted payments under the Medicare Prospective Payment System for the costs of all skilled nursing facility care provided to Medicare recipients. In addition, as of 2004, 35 state Medicaid programs had implemented some form of case mix reimbursement. Purpose The purpose of the study is to determine if the implementation of Medicare and Medicaid case mix reimbursement increased the administrative burden on nursing homes, as evidenced by increased levels of nurses in administrative functions. Methodology/Approach The primary data for this study come from the Centers for Medicare and Medicaid Services Online Survey Certification and Reporting database from 1997 through 2004, a national nursing home database containing aggregated facility-level information, including staffing, organizational characteristics and resident conditions, on all Medicare/Medicaid certified nursing facilities in the country. We conducted multivariate regression analyses using a facility fixed-effects model to examine the effects of the implementation of Medicaid case mix reimbursement and Medicare Prospective Payment System on changes in the level of total administrative nurse staffing in nursing homes. Findings Both Medicaid case mix reimbursement and Medicare Prospective Payment System increased the level of administrative nurse staffing, on average by 5.5% and 4.0% respectively. However, lack of evidence for a substitution effect suggests that any decline in direct care staffing after the introduction of case mix reimbursement is not attributable to a shift from clinical nursing resources to administrative functions. Practice Implications Our findings indicate that the administrative burden posed by case mix reimbursement has resource implications for all freestanding facilities. At the margin, the increased administrative burden imposed by case mix may become a factor influencing a range of decisions, including resident admission and staff hiring. PMID:18360162
Restructuring in response to case mix reimbursement in nursing homes: a contingency approach.
Zinn, Jacqueline; Feng, Zhanlian; Mor, Vincent; Intrator, Orna; Grabowski, David
2008-01-01
Resident-based case mix reimbursement has become the dominant mechanism for publicly funded nursing home care. In 1998 skilled nursing facility reimbursement changed from cost-based to case mix adjusted payments under the Medicare Prospective Payment System for the costs of all skilled nursing facility care provided to Medicare recipients. In addition, as of 2004, 35 state Medicaid programs had implemented some form of case mix reimbursement. The purpose of the study is to determine if the implementation of Medicare and Medicaid case mix reimbursement increased the administrative burden on nursing homes, as evidenced by increased levels of nurses in administrative functions. The primary data for this study come from the Centers for Medicare and Medicaid Services Online Survey Certification and Reporting database from 1997 through 2004, a national nursing home database containing aggregated facility-level information, including staffing, organizational characteristics and resident conditions, on all Medicare/Medicaid certified nursing facilities in the country. We conducted multivariate regression analyses using a facility fixed-effects model to examine the effects of the implementation of Medicaid case mix reimbursement and Medicare Prospective Payment System on changes in the level of total administrative nurse staffing in nursing homes. Both Medicaid case mix reimbursement and Medicare Prospective Payment System increased the level of administrative nurse staffing, on average by 5.5% and 4.0% respectively. However, lack of evidence for a substitution effect suggests that any decline in direct care staffing after the introduction of case mix reimbursement is not attributable to a shift from clinical nursing resources to administrative functions. Our findings indicate that the administrative burden posed by case mix reimbursement has resource implications for all freestanding facilities. At the margin, the increased administrative burden imposed by case mix may become a factor influencing a range of decisions, including resident admission and staff hiring.
Agarwal, Shivani; Jawad, Abbas F; Miller, Victoria A
2016-11-01
The current study examined how a comprehensive set of variables from multiple domains, including at the adolescent and family level, were predictive of glycemic control in adolescents with type 1 diabetes (T1D). Participants included 100 adolescents with T1D ages 10-16 yrs and their parents. Participants were enrolled in a longitudinal study about youth decision-making involvement in chronic illness management of which the baseline data were available for analysis. Bivariate associations with glycemic control (HbA1C) were tested. Hierarchical linear regression was implemented to inform the predictive model. In bivariate analyses, race, family structure, household income, insulin regimen, adolescent-reported adherence to diabetes self-management, cognitive development, adolescent responsibility for T1D management, and parent behavior during the illness management discussion were associated with HbA1c. In the multivariate model, the only significant predictors of HbA1c were race and insulin regimen, accounting for 17% of the variance. Caucasians had better glycemic control than other racial groups. Participants using pre-mixed insulin therapy and basal-bolus insulin had worse glycemic control than those on insulin pumps. This study shows that despite associations of adolescent and family-level variables with glycemic control at the bivariate level, only race and insulin regimen are predictive of glycemic control in hierarchical multivariate analyses. This model offers an alternative way to examine the relationship of demographic and psychosocial factors on glycemic control in adolescents with T1D. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery
NASA Technical Reports Server (NTRS)
Athans, M.
1986-01-01
In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.
Weitz, Erica; Hollon, Steven D; Kerkhof, Ad; Cuijpers, Pim
2014-01-01
Many well-researched treatments for depression exist. However, there is not yet enough evidence on whether these therapies, designed for the treatment of depression, are also effective for reducing suicidal ideation. This research provides valuable information for researchers, clinicians, and suicide prevention policy makers. Analysis was conducted on the Treatment for Depression Research Collaborative (TDCRP) sample, which included CBT, IPT, medication, and placebo treatment groups. Participants were included in the analysis if they reported suicidal ideation on the HRSD or BDI (score of ≥1). Multivariate linear regression indicated that both IPT (b=.41, p<.05) and medication (b =.47, p<.05) yielded a significant reduction in suicide symptoms compared to placebo on the HRSD. Multivariate linear regression indicated that after adjustment for change in depression these treatment effects were no longer significant. Moderate Cohen׳s d effect sizes from baseline to post-test differences in suicide score by treatment group are reported. These analyses were completed on a single suicide item from each of the measures. Moreover, the TDCRP excluded participants with moderate to severe suicidal ideation. This study demonstrates the specific effectiveness of IPT and medications in reducing suicidal ideation (relative to placebo), albeit largely as a consequence of their more general effects on depression. This adds to the growing body of evidence that depression treatments, specifically IPT and medication, can also reduce suicidal ideation and serves to further our understanding of the complex relationship between depression and suicide. Copyright © 2014 Elsevier B.V. All rights reserved.
Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Rahaghi, Farbod N; Sanchez-Ferrero, Gonzalo Vegas; Putman, Rachel K; Hunninghake, Gary M; Onieva, Jorge Onieva; Martinez, Fernando J; Choi, Augustine M; Bowler, Russell P; Lynch, David A; Hatabu, Hiroto; Bhatt, Surya P; Dransfield, Mark T; Wells, J Michael; Rosas, Ivan O; San Jose Estepar, Raul; Washko, George R
2018-06-05
Purpose To determine if interstitial features at chest CT enhance the effect of emphysema on clinical disease severity in smokers without clinical pulmonary fibrosis. Materials and Methods In this retrospective cohort study, an objective CT analysis tool was used to measure interstitial features (reticular changes, honeycombing, centrilobular nodules, linear scar, nodular changes, subpleural lines, and ground-glass opacities) and emphysema in 8266 participants in a study of chronic obstructive pulmonary disease (COPD) called COPDGene (recruited between October 2006 and January 2011). Additive differences in patients with emphysema with interstitial features and in those without interstitial features were analyzed by using t tests, multivariable linear regression, and Kaplan-Meier analysis. Multivariable linear and Cox regression were used to determine if interstitial features modified the effect of continuously measured emphysema on clinical measures of disease severity and mortality. Results Compared with individuals with emphysema alone, those with emphysema and interstitial features had a higher percentage predicted forced expiratory volume in 1 second (absolute difference, 6.4%; P < .001), a lower percentage predicted diffusing capacity of lung for carbon monoxide (DLCO) (absolute difference, 7.4%; P = .034), a 0.019 higher right ventricular-to-left ventricular (RVLV) volume ratio (P = .029), a 43.2-m shorter 6-minute walk distance (6MWD) (P < .001), a 5.9-point higher St George's Respiratory Questionnaire (SGRQ) score (P < .001), and 82% higher mortality (P < .001). In addition, interstitial features modified the effect of emphysema on percentage predicted DLCO, RVLV volume ratio, 6WMD, SGRQ score, and mortality (P for interaction < .05 for all). Conclusion In smokers, the combined presence of interstitial features and emphysema was associated with worse clinical disease severity and higher mortality than was emphysema alone. In addition, interstitial features enhanced the deleterious effects of emphysema on clinical disease severity and mortality. © RSNA, 2018 Online supplemental material is available for this article.
Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.
1991-01-01
The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data.
NASA Astrophysics Data System (ADS)
Papalexiou, Simon Michael
2018-05-01
Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
ERIC Educational Resources Information Center
Van Norman, Ethan R.; Christ, Theodore J.; Zopluoglu, Cengiz
2013-01-01
This study examined the effect of baseline estimation on the quality of trend estimates derived from Curriculum Based Measurement of Oral Reading (CBM-R) progress monitoring data. The authors used a linear mixed effects regression (LMER) model to simulate progress monitoring data for schedules ranging from 6-20 weeks for datasets with high and low…
Using Qualitative Metasummary to Synthesize Qualitative and Quantitative Descriptive Findings
Sandelowski, Margarete; Barroso, Julie; Voils, Corrine I.
2008-01-01
The new imperative in the health disciplines to be more methodologically inclusive has generated a growing interest in mixed research synthesis, or the integration of qualitative and quantitative research findings. Qualitative metasummary is a quantitatively oriented aggregation of qualitative findings originally developed to accommodate the distinctive features of qualitative surveys. Yet these findings are similar in form and mode of production to the descriptive findings researchers often present in addition to the results of bivariate and multivariable analyses. Qualitative metasummary, which includes the extraction, grouping, and formatting of findings, and the calculation of frequency and intensity effect sizes, can be used to produce mixed research syntheses and to conduct a posteriori analyses of the relationship between reports and findings. PMID:17243111
NASA Technical Reports Server (NTRS)
Sankaran, V.
1974-01-01
An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.
An approach to multivariable control of manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
The paper presents simple schemes for multivariable control of multiple-joint robot manipulators in joint and Cartesian coordinates. The joint control scheme consists of two independent multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms - implying feedforward from the desired position, velocity and acceleration. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and is designed to achieve pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. Simple and explicit expressions of computation of the feedforward and feedback gains are obtained based on the linearized model of robot dynamics. This leads to computationally efficient schemes for either on-line gain computation or off-line gain scheduling to account for variations in the linearized robot model due to changes in the operating point. The joint control scheme is extended to direct control of the end-effector motion in Cartesian space. Simulation results are given for illustration.
Levine, Matthew E; Albers, David J; Hripcsak, George
2016-01-01
Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.
Xiong, Chengjie; Luo, Jingqin; Morris, John C; Bateman, Randall
2018-01-01
Modern clinical trials on Alzheimer disease (AD) focus on the early symptomatic stage or even the preclinical stage. Subtle disease progression at the early stages, however, poses a major challenge in designing such clinical trials. We propose a multivariate mixed model on repeated measures to model the disease progression over time on multiple efficacy outcomes, and derive the optimum weights to combine multiple outcome measures by minimizing the sample sizes to adequately power the clinical trials. A cross-validation simulation study is conducted to assess the accuracy for the estimated weights as well as the improvement in reducing the sample sizes for such trials. The proposed methodology is applied to the multiple cognitive tests from the ongoing observational study of the Dominantly Inherited Alzheimer Network (DIAN) to power future clinical trials in the DIAN with a cognitive endpoint. Our results show that the optimum weights to combine multiple outcome measures can be accurately estimated, and that compared to the individual outcomes, the combined efficacy outcome with these weights significantly reduces the sample size required to adequately power clinical trials. When applied to the clinical trial in the DIAN, the estimated linear combination of six cognitive tests can adequately power the clinical trial. PMID:29546251
Performance of 21 HPV vaccination programs implemented in low and middle-income countries, 2009–2013
2014-01-01
Background Cervical cancer is the third most common cancer in women worldwide, with high incidence in lowest income countries. Vaccination against Human Papilloma Virus (HPV) may help to reduce the incidence of cervical cancer. The aim of the study was to analyze HPV vaccination programs performance implemented in low and middle-income countries. Methods The Gardasil Access Program provides HPV vaccine at no cost to help national institutions gain experience implementing HPV vaccination. Data on vaccine delivery model, number of girls vaccinated, number of girls completing the three-dose campaign, duration of vaccination program, community involvement and sensitization strategies were collected from each program upon completion. Vaccine Uptake Rate (VUR) and Vaccine Adherence between the first and third doses (VA) rate were calculated. Multivariate linear regressions analyses were fitted. Results Twenty-one programs were included in 14 low and middle-income countries. Managing institutions were non-governmental organizations (NGOs) (n = 8) or Ministries of Health (n = 13). Twelve programs were school-based, five were health clinic-based and four utilized a mixed model. A total of 217,786 girls received a full course of vaccination. Mean VUR was 88.7% (SD = 10.5) and VA was 90.8% (SD = 7.3). The mean total number of girls vaccinated per program-month was 2,426.8 (SD = 2,826.6) in school model, 335.1 (SD = 202.5) in the health clinic and 544.7 (SD = 369.2) in the mixed models (p = 0.15). Community involvement in the follow-up of girls participating in the vaccination campaign was significantly associated with VUR. Multivariate analyses identified school-based (β = 13.35, p = 0.001) and health clinic (β = 13.51, p = 0.03) models, NGO management (β = 14.58, p < 10-3) and duration of program vaccination (β = -1.37, p = 0.03) as significant factors associated with VUR. Conclusion School and health clinic-based models appeared as predictive factors for vaccination coverage, as was management by an NGO; program duration could play a role in the program’s effectiveness. Results suggest that HPV vaccine campaigns tailored to meet the needs of communities can be effective. These results may be useful in the development of national HPV vaccination policies in low and middle-income countries. PMID:24981818
El-Mougy, Nehal S.; Abdel-Kader, Mokhtar M.
2013-01-01
Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied under in vitro conditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents. PMID:24307948
Shear-flexible finite-element models of laminated composite plates and shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Mathers, M. D.
1975-01-01
Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.
Riviere, Marie-Karelle; Ueckert, Sebastian; Mentré, France
2016-10-01
Non-linear mixed effect models (NLMEMs) are widely used for the analysis of longitudinal data. To design these studies, optimal design based on the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. In recent years, estimation algorithms for NLMEMs have transitioned from linearization toward more exact higher-order methods. Optimal design, on the other hand, has mainly relied on first-order (FO) linearization to calculate the FIM. Although efficient in general, FO cannot be applied to complex non-linear models and with difficulty in studies with discrete data. We propose an approach to evaluate the expected FIM in NLMEMs for both discrete and continuous outcomes. We used Markov Chain Monte Carlo (MCMC) to integrate the derivatives of the log-likelihood over the random effects, and Monte Carlo to evaluate its expectation w.r.t. the observations. Our method was implemented in R using Stan, which efficiently draws MCMC samples and calculates partial derivatives of the log-likelihood. Evaluated on several examples, our approach showed good performance with relative standard errors (RSEs) close to those obtained by simulations. We studied the influence of the number of MC and MCMC samples and computed the uncertainty of the FIM evaluation. We also compared our approach to Adaptive Gaussian Quadrature, Laplace approximation, and FO. Our method is available in R-package MIXFIM and can be used to evaluate the FIM, its determinant with confidence intervals (CIs), and RSEs with CIs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Enrichment of statistical power for genome-wide association studies
USDA-ARS?s Scientific Manuscript database
The inheritance of most human diseases and agriculturally important traits is controlled by many genes with small effects. Identifying these genes, while simultaneously controlling false positives, is challenging. Among available statistical methods, the mixed linear model (MLM) has been the most fl...
Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine
2016-01-01
The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition. PMID:27115148
Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine
2016-01-01
The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition.
Uosyte, Raimonda; Shaw, Darren J; Gunn-Moore, Danielle A; Fraga-Manteiga, Eduardo; Schwarz, Tobias
2015-01-01
Turbinate destruction is an important diagnostic criterion in canine and feline nasal computed tomography (CT). However decreased turbinate visibility may also be caused by technical CT settings and nasal fluid. The purpose of this experimental, crossover study was to determine whether fluid reduces conspicuity of canine and feline nasal turbinates in CT and if so, whether CT settings can maximize conspicuity. Three canine and three feline cadaver heads were used. Nasal slabs were CT-scanned before and after submerging them in a water bath; using sequential, helical, and ultrahigh resolution modes; with images in low, medium, and high frequency image reconstruction kernels; and with application of additional posterior fossa optimization and high contrast enhancing filters. Visible turbinate length was measured by a single observer using manual tracing. Nasal density heterogeneity was measured using the standard deviation (SD) of mean nasal density from a region of interest in each nasal cavity. Linear mixed-effect models using the R package ‘nlme’, multivariable models and standard post hoc Tukey pair-wise comparisons were performed to investigate the effect of several variables (nasal content, scanning mode, image reconstruction kernel, application of post reconstruction filters) on measured visible total turbinate length and SD of mean nasal density. All canine and feline water-filled nasal slabs showed significantly decreased visibility of nasal turbinates (P < 0.001). High frequency kernels provided the best turbinate visibility and highest SD of aerated nasal slabs, whereas medium frequency kernels were optimal for water-filled nasal slabs. Scanning mode and filter application had no effect on turbinate visibility. PMID:25867935
The effect of fluid intake on chronic kidney transplant failure: a pilot study.
Magpantay, Laurene; Ziai, Farzad; Oberbauer, Rainer; Haas, Martin
2011-11-01
Transplant recipients are generally instructed to increase their daily fluid intake so as to preserve kidney function. However, studies supporting this hypothesis are lacking. Prospective, randomized study at a tertiary care university hospital. Patients with chronic kidney transplant failure. Assignment to normal fluid intake (NFI: 2 L/day) or high fluid intake (HFI: 4 L/day) for 12 months. The effect of fluid intake on the decrease in estimated glomerular filtration rate (eGFR) was estimated by a mixed-effects general linear model. The analysis was adjusted for the observation period, age, intake of angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor blockers, diuretics, and transplant duration. A total of 33 patients were randomized to NFI and 29 to HFI. After 12 months, the mean eGFR had decreased to a similar extent in both groups (NFI: 44 ± 9 mL/min vs. 41 ± 9 mL/min; HFI: 46 ± 15 mL/min vs. 44 ± 15 mL/min). In the multivariate analysis, only the observation period had a significant effect on the decrease in eGFR. Randomization to NFI or HFI nor any other variable was associated with kidney function. The association between urine volume and urine osmolality was lost after 12 months. Recommendation of higher fluid intake does not seem to improve chronic kidney transplant failure. However, the lack of association between urine osmolality and reported urine volume at a later stage implies a loss of adherence to fluid intake over time. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Multivariate Quantitative Chemical Analysis
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Capezza, Mary
1995-01-01
Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, Tyler M.; Karunamuni, Roshan; Bartsch, Hauke
Purpose: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. Methods and Materials: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI beforemore » and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. Results: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=−0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean −6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). Conclusions: The hippocampus demonstrates radiation dose–dependent atrophy after treatment for brain tumors. Quantitative MRI is a noninvasive imaging technique capable of measuring radiation effects on intracranial structures. This technique could be investigated as a potential biomarker for development of reliable dose constraints for improved cognitive outcomes.« less
Linear quadratic regulators with eigenvalue placement in a horizontal strip
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1987-01-01
A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.
Kemmitt, G; Valverde-Garcia, P; Hufnagl, A; Bacci, L; Zotz, A
2015-04-01
The impact of the fungicides mancozeb, myclobutanil, and meptyldinocap on populations of Typhlodromus pyri Scheuten was evaluated under field conditions, when applied following the good agricultural practices recommended for their use. Two complementary statistical models were used to analyze the population reduction compared to the control: a linear mixed model to estimate the mean effect of the fungicide, and a generalized linear mixed model (proportional odds mixed model) to estimate the cumulative probability for those effects being equal or less than a specific IOBC class (International Organization for Biological and Integrated Control of Noxious Animal and Plants). Findings from 27 field experiments in a range of different vine-growing regions in Europe indicated that the use of mancozeb, myclobutanil, and meptyldinocap caused minimal impact on naturally occurring populations of T. pyri. Both statistical models confirmed that although adverse effects on T. pyri can occur under certain conditions after several applications of any of the three fungicides studied, the probability of the effects occurring is low and they will not persist. These methods demonstrated how data from a series of trials could be used to evaluate the variability of the effects caused by the chemical rather than relying on the worst-case findings from a single trial. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Spatial Characteristics of Small Green Spaces' Mitigating Effects on Microscopic Urban Heat Islands
NASA Astrophysics Data System (ADS)
Park, J.; Lee, D. K.; Jeong, W.; Kim, J. H.; Huh, K. Y.
2015-12-01
The purpose of the study is to find small greens' disposition, types and sizes to reduce air temperature effectively in urban blocks. The research sites were six high developed blocks in Seoul, Korea. Air temperature was measured with mobile loggers in clear daytime during summer, from August to September, at screen level. Also the measurement repeated over three times a day during three days by walking and circulating around the experimental blocks and the control blocks at the same time. By analyzing spatial characteristics, the averaged air temperatures were classified with three spaces, sunny spaces, building-shaded spaces and small green spaces by using Kruskal-Wallis Test; and small green spaces in 6 blocks were classified into their outward forms, polygonal or linear and single or mixed. The polygonal and mixed types of small green spaces mitigated averaged air temperature of each block which they belonged with a simple linear regression model with adjusted R2 = 0.90**. As the area and volume of these types increased, the effect of air temperature reduction (ΔT; Air temperature difference between sunny space and green space in a block) also increased in a linear relationship. The experimental range of this research is 100m2 ~ 2,000m2 of area, and 1,000m3 ~ 10,000m3 of volume of small green space. As a result, more than 300m2 and 2,300m3 of polygonal green spaces with mixed vegetation is required to lower 1°C; 650m2 and 5,000m3 of them to lower 2°C; about 2,000m2 and about 10,000m3 of them to lower 4°C air temperature reduction in an urban block.
NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES
He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.
2017-01-01
Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225
Sisti, Julia S.; Hankinson, Susan E.; Caporaso, Neil E.; Gu, Fangyi; Tamimi, Rulla M.; Rosner, Bernard; Xu, Xia; Ziegler, Regina; Eliassen, A. Heather
2015-01-01
Background Prior studies have found weak inverse associations between breast cancer and caffeine and coffee intake, possibly mediated through their effects on sex hormones. Methods High-performance liquid chromatography/tandem mass spectrometry was used to quantify levels of 15 individual estrogens and estrogen metabolites (EM) among 587 premenopausal women in the Nurses’ Health Study II with mid-luteal phase urine samples and caffeine, coffee and/or tea intakes from self-reported food frequency questionnaires. Multivariate linear mixed models were used to estimate geometric means of individual EM, pathways and ratios by intake categories, and P-values for tests of linear trend. Results Compared to women in the lowest quartile of caffeine consumption, those in the top quartile had higher urinary concentrations of 16α-hydroxyestrone (28% difference; P-trend=0.01) and 16-epiestriol (13% difference; P-trend=0.04), and a decreased parent estrogens/2-, 4-, 16-pathway ratio (P-trend=0.03). Coffee intake was associated with higher 2-catechols, including 2-hydroxyestradiol (57% difference, ≥4 cups/day vs. ≤6 cups/week; P-trend=0.001) and 2-hydroxyestrone (52% difference; P-trend=0.001), and several ratio measures. Decaffeinated coffee was not associated with 2-pathway metabolism, but women in the highest (vs. lowest) category of intake (≥2 cups/day vs. ≤1–3 cups/month) had significantly lower levels of two 16-pathway metabolites, estriol (25% difference; P-trend=0.01) and 17-epiestriol (48% difference; Ptrend=0.0004). Tea intake was positively associated with 17-epiestriol (52% difference; Ptrend=0.01). Conclusion Caffeine and coffee intake were both associated with profiles of estrogen metabolism in premenopausal women. Impact Consumption of caffeine and coffee may alter patterns of premenopausal estrogen metabolism. PMID:26063478
Sisti, Julia S; Hankinson, Susan E; Caporaso, Neil E; Gu, Fangyi; Tamimi, Rulla M; Rosner, Bernard; Xu, Xia; Ziegler, Regina; Eliassen, A Heather
2015-08-01
Prior studies have found weak inverse associations between breast cancer and caffeine and coffee intake, possibly mediated through their effects on sex hormones. High-performance liquid chromatography/tandem mass spectrometry was used to quantify levels of 15 individual estrogens and estrogen metabolites (EM) among 587 premenopausal women in the Nurses' Health Study II with mid-luteal phase urine samples and caffeine, coffee, and/or tea intakes from self-reported food frequency questionnaires. Multivariate linear mixed models were used to estimate geometric means of individual EM, pathways, and ratios by intake categories, and P values for tests of linear trend. Compared with women in the lowest quartile of caffeine consumption, those in the top quartile had higher urinary concentrations of 16α-hydroxyestrone (28% difference; Ptrend = 0.01) and 16-epiestriol (13% difference; Ptrend = 0.04), and a decreased parent estrogens/2-, 4-, 16-pathway ratio (Ptrend = 0.03). Coffee intake was associated with higher 2-catechols, including 2-hydroxyestradiol (57% difference, ≥4 cups/day vs. ≤6 cups/week; Ptrend = 0.001) and 2-hydroxyestrone (52% difference; Ptrend = 0.001), and several ratio measures. Decaffeinated coffee was not associated with 2-pathway metabolism, but women in the highest (vs. lowest) category of intake (≥2 cups/day vs. ≤1-3 cups/month) had significantly lower levels of two 16-pathway metabolites, estriol (25% difference; Ptrend = 0.01) and 17-epiestriol (48% difference; Ptrend = 0.0004). Tea intake was positively associated with 17-epiestriol (52% difference; Ptrend = 0.01). Caffeine and coffee intake were both associated with profiles of estrogen metabolism in premenopausal women. Consumption of caffeine and coffee may alter patterns of premenopausal estrogen metabolism. ©2015 American Association for Cancer Research.
Time and frequency domain analysis of sampled data controllers via mixed operation equations
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1981-01-01
Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.
Text-Based Recall and Extra-Textual Generations Resulting from Simplified and Authentic Texts
ERIC Educational Resources Information Center
Crossley, Scott A.; McNamara, Danielle S.
2016-01-01
This study uses a moving windows self-paced reading task to assess text comprehension of beginning and intermediate-level simplified texts and authentic texts by L2 learners engaged in a text-retelling task. Linear mixed effects (LME) models revealed statistically significant main effects for reading proficiency and text level on the number of…
Working Memory Effects in the L2 Processing of Ambiguous Relative Clauses
ERIC Educational Resources Information Center
Hopp, Holger
2014-01-01
This article investigates whether and how L2 sentence processing is affected by memory constraints that force serial parsing. Monitoring eye movements, we test effects of working memory on L2 relative-clause attachment preferences in a sample of 75 late-adult German learners of English and 25 native English controls. Mixed linear regression…
ERIC Educational Resources Information Center
Sperber, Nina R.; Bosworth, Hayden B.; Coffman, Cynthia J.; Lindquist, Jennifer H.; Oddone, Eugene Z.; Weinberger, Morris; Allen, Kelli D.
2013-01-01
We explored whether the effects of a telephone-based osteoarthritis (OA) self-management support intervention differed by race and health literacy. Participants included 515 veterans with hip and/or knee OA. Linear mixed models assessed differential effects of the intervention compared with health education (HE) and usual care (UC) on pain…
The Effects of Semantic Transparency and Base Frequency on the Recognition of English Complex Words
ERIC Educational Resources Information Center
Xu, Joe; Taft, Marcus
2015-01-01
A visual lexical decision task was used to examine the interaction between base frequency (i.e., the cumulative frequencies of morphologically related forms) and semantic transparency for a list of derived words. Linear mixed effects models revealed that high base frequency facilitates the recognition of the complex word (i.e., a "base…
Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake.
Shah-Kulkarni, Surabhi; Ha, Mina; Kim, Byung-Mi; Kim, Eunjeong; Hong, Yun-Chul; Park, Hyesook; Kim, Yangho; Kim, Bung-Nyun; Chang, Namsoo; Oh, Se-Young; Kim, Young Ju; Kimʼs, Young Ju; Lee, Boeun; Ha, Eun-Hee
2016-01-01
No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children.
Genomic selection for slaughter age in pigs using the Cox frailty model.
Santos, V S; Martins Filho, S; Resende, M D V; Azevedo, C F; Lopes, P S; Guimarães, S E F; Glória, L S; Silva, F F
2015-10-19
The aim of this study was to compare genomic selection methodologies using a linear mixed model and the Cox survival model. We used data from an F2 population of pigs, in which the response variable was the time in days from birth to the culling of the animal and the covariates were 238 markers [237 single nucleotide polymorphism (SNP) plus the halothane gene]. The data were corrected for fixed effects, and the accuracy of the method was determined based on the correlation of the ranks of predicted genomic breeding values (GBVs) in both models with the corrected phenotypic values. The analysis was repeated with a subset of SNP markers with largest absolute effects. The results were in agreement with the GBV prediction and the estimation of marker effects for both models for uncensored data and for normality. However, when considering censored data, the Cox model with a normal random effect (S1) was more appropriate. Since there was no agreement between the linear mixed model and the imputed data (L2) for the prediction of genomic values and the estimation of marker effects, the model S1 was considered superior as it took into account the latent variable and the censored data. Marker selection increased correlations between the ranks of predicted GBVs by the linear and Cox frailty models and the corrected phenotypic values, and 120 markers were required to increase the predictive ability for the characteristic analyzed.
Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake
Shah-Kulkarni, Surabhi; Ha, Mina; Kim, Byung-Mi; Kim, Eunjeong; Hong, Yun-Chul; Park, Hyesook; Kim, Yangho; Kim, Bung-Nyun; Chang, Namsoo; Oh, Se-Young; Kim, Young Ju; Lee, Boeun; Ha, Eun-Hee
2016-01-01
Abstract No safe threshold level of lead exposure in children has been recognized. Also, the information on shielding effect of maternal dietary iron intake during pregnancy on the adverse effects of prenatal lead exposure on children's postnatal neurocognitive development is very limited. We examined the association of prenatal lead exposure and neurodevelopment in children at 6, 12, 24, and 36 months and the protective action of maternal dietary iron intake against the impact of lead exposure. The study participants comprise 965 pregnant women and their subsequent offspring of the total participants enrolled in the Mothers and Children's environmental health study: a prospective birth cohort study. Generalized linear model and linear mixed model analysis were performed to analyze the effect of prenatal lead exposure and mother's dietary iron intake on children's cognitive development at 6, 12, 24, and 36 months. Maternal late pregnancy lead was marginally associated with deficits in mental development index (MDI) of children at 6 months. Mothers having less than 75th percentile of dietary iron intake during pregnancy showed significant increase in the harmful effect of late pregnancy lead exposure on MDI at 6 months. Linear mixed model analyses showed the significant detrimental effect of prenatal lead exposure in late pregnancy on cognitive development up to 36 months in children of mothers having less dietary iron intake during pregnancy. Thus, our findings imply importance to reduce prenatal lead exposure and have adequate iron intake for better neurodevelopment in children. PMID:26825887
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
Photon-Z mixing the Weinberg-Salam model: Effective charges and the a = -3 gauge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baulieu, L.; Coquereaux, R.
1982-04-15
We study some properties of the Weinberg-Salam model connected with the photon-Z mixing. We solve the linear Dyson-Schwinger equations between full and 1PI boson propagators. The task is made easier, by the two-point function Ward identities that we derive to all orders and in any gauge. Some aspects of the renormalization of the model are also discussed. We display the exact mass-dependent one-loop two-point functions involving the photon and Z field in any linear xi-gauge. The special gauge a = xi/sup -1/ = -3 is shown to play a peculiar role. In this gauge, the Z field is multiplicatively renormalizablemore » (at the one-loop level), and one can construct both electric and weak effective charges of the theory from the photon and Z propagators, with a very simple expression similar to that of the QED Petermann, Stueckelberg, Gell-Mann and Low charge.« less
Does Marriage Moderate Genetic Effects on Delinquency and Violence?
Li, Yi; Liu, Hexuan; Guo, Guang
2015-01-01
Using data from the National Longitudinal Study of Adolescent to Adult Health (N = 1,254), the authors investigated whether marriage can foster desistance from delinquency and violence by moderating genetic effects. In contrast to existing gene–environment research that typically focuses on one or a few genetic polymorphisms, they extended a recently developed mixed linear model to consider the collective influence of 580 single nucleotide polymorphisms in 64 genes related to aggression and risky behavior. The mixed linear model estimates the proportion of variance in the phenotype that is explained by the single nucleotide polymorphisms. The authors found that the proportion of variance in delinquency/violence explained was smaller among married individuals than unmarried individuals. Because selection, confounding, and heterogeneity may bias the estimate of the Gene × Marriage interaction, they conducted a series of analyses to address these issues. The findings suggest that the Gene × Marriage interaction results were not seriously affected by these issues. PMID:26549892
Pillai, Goonaseelan Colin; Mentré, France; Steimer, Jean-Louis
2005-04-01
Few scientific contributions have made significant impact unless there was a champion who had the vision to see the potential for its use in seemingly disparate areas-and who then drove active implementation. In this paper, we present a historical summary of the development of non-linear mixed effects (NLME) modeling up to the more recent extensions of this statistical methodology. The paper places strong emphasis on the pivotal role played by Lewis B. Sheiner (1940-2004), who used this statistical methodology to elucidate solutions to real problems identified in clinical practice and in medical research and on how he drove implementation of the proposed solutions. A succinct overview of the evolution of the NLME modeling methodology is presented as well as ideas on how its expansion helped to provide guidance for a more scientific view of (model-based) drug development that reduces empiricism in favor of critical quantitative thinking and decision making.
Xu, Chet C; Chan, Roger W; Sun, Han; Zhan, Xiaowei
2017-11-01
A mixed-effects model approach was introduced in this study for the statistical analysis of rheological data of vocal fold tissues, in order to account for the data correlation caused by multiple measurements of each tissue sample across the test frequency range. Such data correlation had often been overlooked in previous studies in the past decades. The viscoelastic shear properties of the vocal fold lamina propria of two commonly used laryngeal research animal species (i.e. rabbit, porcine) were measured by a linear, controlled-strain simple-shear rheometer. Along with published canine and human rheological data, the vocal fold viscoelastic shear moduli of these animal species were compared to those of human over a frequency range of 1-250Hz using the mixed-effects models. Our results indicated that tissues of the rabbit, canine and porcine vocal fold lamina propria were significantly stiffer and more viscous than those of human. Mixed-effects models were shown to be able to more accurately analyze rheological data generated from repeated measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Obesity in children with poorly controlled asthma: Sex differences.
Lang, Jason E; Holbrook, Janet T; Wise, Robert A; Dixon, Anne E; Teague, W Gerald; Wei, Christine Y; Irvin, Charles G; Shade, David; Lima, John J
2013-09-01
Obesity increases asthma risk, and may alter asthma severity. In adults, sex appears to modify the effect of obesity on asthma. Among children, the effect of sex on the relationship between obesity and asthma severity remains less clear, particularly when considering race. To determine how obesity affects disease characteristics in a diverse cohort of children with poorly controlled asthma, and if obesity effects are altered by sex. We analyzed 306 children between 6 and 17 years of age with poorly controlled asthma enrolled in a 6-month trial assessing lansoprazole for asthma control. In this secondary analysis, we determined associations between obesity and symptom severity, spirometry, exacerbation risk, airway biomarkers, bronchial reactivity, and airflow perception. We used both a multivariate linear regression and longitudinal mixed-effect model to determine if obesity interacted with sex to affect asthma severity. Regardless of sex, BMI >95th percentile did not affect asthma control, exacerbation risk or airway biomarkers. Sex changed the effect of obesity on lung function (sex × obesity FEV1%, interaction P-value < 0.01, sex × obesity FEV1/FVC, interaction P-value = 0.03). Obese males had significantly worse airflow obstruction compared to non-obese males, while in females there was no obesity effect on airflow obstruction. In females, obesity was associated with significantly greater FEV1 and FVC, and a trend toward reduced airway reactivity. Obesity did not affect asthma control, airway markers or disease stability; however obesity did affect lung function in a sex-dependent manner. In males, obesity associated with reduced FEV1/FVC, and in females, obesity associated with substantially improved lung function. Copyright © 2012 Wiley Periodicals, Inc.
Rogers, Laura Q; Courneya, Kerry S; Anton, Phillip M; Hopkins-Price, Patricia; Verhulst, Steven; Robbs, Randall S; Vicari, Sandra K; McAuley, Edward
2017-04-01
Most breast cancer survivors do not meet physical activity recommendations. Understanding mediators of physical activity behavior change can improve interventions designed to increase physical activity in this at-risk population. Study aims were to determine the 3-month Better Exercise Adherence after Treatment for Cancer (BEAT Cancer) behavior change intervention effects on social cognitive theory constructs and the mediating role of any changes on the increase in accelerometer-measured physical activity previously reported. Post-treatment breast cancer survivors (N = 222) were randomized to BEAT Cancer or usual care. Assessments occurred at baseline, 3 months (M3), and 6 months (M6). Adjusted linear mixed model analysis of variance determined intervention effects on walking self-efficacy, outcome expectations, goal setting, and perceived barrier interference at M3. Path analysis determined mediation of intervention effects on physical activity at M6 by changes in social cognitive constructs during the intervention (i.e., baseline to M3). BEAT Cancer significantly improved self-efficacy, goals, negative outcome expectations, and barriers. Total path analysis model explained 24 % of the variance in M6 physical activity. There were significant paths from randomized intervention group to self-efficacy (β = 0.15, p < .05) and barriers (β = -0.22, p < .01). Barriers demonstrated a borderline significant association with M6 physical activity (β = -0.24, p = .05). No statistically significant indirect effects were found. Although BEAT Cancer significantly improved social cognitive constructs, no significant indirect effects on physical activity improvements 3 months post-intervention were observed (NCT00929617).
DeAmicis, Stacey; Foggo, Andrew
2015-01-01
Invasive species can alter coastal ecosystems both directly, e.g. through competition for substratum and nutrients, and indirectly. Indirect effects may be mediated by creation of dissimilar or inimical habitats, changes in predator and/or prey assemblages, alterations in associated biota, and perturbations of water movement and thermal regimes. Previous studies have shown that invasive algae can modify native habitat architecture, disrupt intricately linked food webs and alter epibiotic assemblages. In the UK, the seagrass Zostera marina supports a diverse epibiotic assemblage, influencing key factors such as sediment dynamics, depositional regime and trophic linkages. Increasing encroachment of the invasive alga Sargassum muticum into seagrass meadows changes the physical and chemical characteristics of the local environment and creates the potential for changes in the epibionts associated with the seagrass blades, threatening the integrity of the seagrass ecosystem. We investigated the effects of S. muticum invasion upon the epibiota of Z. marina in a drowned river valley in SW England seasonally from spring to autumn over four years in an in-situ manipulative experiment, comparing permanent quadrats with and without artificially introduced S. muticum. Epibiota were weighed, identified to the most detailed operational taxonomic unit (OTU) possible, and unitary organisms were enumerated. Multivariate PERMANOVA+ analysis revealed significant differences in epibiont assemblages between Sargassum treatments. Linear mixed effects models indicated that differences in epibiota assemblage composition were not reflected as significant differences in mean biomass per sample, or number of epibiont OTUs per sample. We conclude that S. muticum invasion into Z. marina meadows may significantly alter the species composition and abundance distribution of epibiotic assemblages found on the blades of the seagrass. Thus S. muticum invasion could have more wide-reaching effects on processes within coastal ecosystems than predicted purely by direct effects.
Scott, Molly; Phiri, Tambosi; Chapota, Hilda; Kainja, Esther; Banda, Florida; Vera-Hernandez, Marcos
2018-01-01
Objective Parents may rely on information provided by extended family members when making decisions concerning the health of their children. We evaluate whether extended family members affected the success of an information intervention promoting infant health. Methods This is a secondary, sequential mixed-methods study based on a cluster randomised controlled trial of a peer-led home-education intervention conducted in Mchinji District, Malawi. We used linear multivariate regression to test whether the intervention impact on child height-for-age z-scores (HAZ) was influenced by extended family members. 12 of 24 clusters were assigned to the intervention, in which all pregnant women and new mothers were eligible to receive 5 home visits from a trained peer counsellor to discuss infant care and nutrition. We conducted focus group discussions with mothers, grandmothers and peer counsellors, and key-informant interviews with husbands, chiefs and community health workers to better understand the roles of extended family members in infant feeding. Results Exposure to the intervention increased child HAZ scores by 0.296 SD (95% CI 0.116 to 0.484). However, this effect is smaller in the presence of paternal grandmothers. Compared with an effect size of 0.441 to 0.467 SD (95% CI −0.344 to 1.050) if neither grandmother is alive, the effect size was 0.235 (95% CI −0.493 to 0.039) to 0.253 (95% CI −0.529 to 0.029) SD lower if the paternal grandmother was alive. There was no evidence of an effect of parents’ siblings. Maternal grandmothers did not affect intervention impact, but were associated with a lower HAZ score in the control group. Qualitative analysis suggested that grandmothers, who act as secondary caregivers and provide resources for infants, were slower to dismiss traditionally held practices and adopt intervention messages. Conclusion The results indicate that the intervention impacts are diminished by paternal grandmothers. Intervention success could be increased by integrating senior women. PMID:29880562
Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L
2016-01-01
The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n. , Camponotus androy sp. n. , Camponotus bevohitra sp. n. , Camponotus galoko sp. n. , Camponotus matsilo sp. n. , Camponotus mifaka sp. n. , Camponotus orombe sp. n. , Camponotus tafo sp. n. , Camponotus tratra sp. n. , Camponotus varatra sp. n. , and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi . This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases.
Rakotonirina, Jean Claude; Csősz, Sándor; Fisher, Brian L.
2016-01-01
Abstract The Malagasy Camponotus edmondi species group is revised based on both qualitative morphological traits and multivariate analysis of continuous morphometric data. To minimize the effect of the scaling properties of diverse traits due to worker caste polymorphism, and to achieve the desired near-linearity of data, morphometric analyses were done only on minor workers. The majority of traits exhibit broken scaling on head size, dividing Camponotus workers into two discrete subcastes, minors and majors. This broken scaling prevents the application of algorithms that uses linear combination of data to the entire dataset, hence only minor workers were analyzed statistically. The elimination of major workers resulted in linearity and the data meet required assumptions. However, morphometric ratios for the subsets of minor and major workers were used in species descriptions and redefinitions. Prior species hypotheses and the goodness of clusters were tested on raw data by confirmatory linear discriminant analysis. Due to the small sample size available for some species, a factor known to reduce statistical reliability, hypotheses generated by exploratory analyses were tested with extreme care and species delimitations were inferred via the combined evidence of both qualitative (morphology and biology) and quantitative data. Altogether, fifteen species are recognized, of which 11 are new to science: Camponotus alamaina sp. n., Camponotus androy sp. n., Camponotus bevohitra sp. n., Camponotus galoko sp. n., Camponotus matsilo sp. n., Camponotus mifaka sp. n., Camponotus orombe sp. n., Camponotus tafo sp. n., Camponotus tratra sp. n., Camponotus varatra sp. n., and Camponotus zavo sp. n. Four species are redescribed: Camponotus echinoploides Forel, Camponotus edmondi André, Camponotus ethicus Forel, and Camponotus robustus Roger. Camponotus edmondi ernesti Forel, syn. n. is synonymized under Camponotus edmondi. This revision also includes an identification key to species for both minor and major castes, information on geographic distribution and biology, taxonomic discussions, and descriptions of intraspecific variation. Traditional taxonomy and multivariate morphometric analysis are independent sources of information which, in combination, allow more precise species delimitation. Moreover, quantitative characters included in identification keys improve accuracy of determination in difficult cases. PMID:28050160
Polynomial compensation, inversion, and approximation of discrete time linear systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1987-01-01
The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.
Polymeric Materials for Electro-Optic Testing.
1987-07-01
what Langmuir Blodgett films are, how they are grown and deposited on a material, and the electro - optic effects in Langmuir/Blodgett films. Stephen...Kowel has experimented with several different types of organic dyes mixed in the films to increase the electro - optic effect in the films. The bulk of his...test integrated circuits. Keywords: Langmuir Blodgett films, Electro - optic testing, Integrated circuits, Linear electro - optic effect.
Polgreen, P M; Bohnett, L C; Yang, M; Pentella, M A; Cavanaugh, J E
2010-03-01
To characterize the association between county-level risk factors and the incidence of mumps in the 2006 Iowa outbreak, we used generalized linear mixed models with the number of mumps cases per county as the dependent variable. To assess the impact of spring-break travel, we tested for differences in the proportions of mumps cases in three different age groups. In the final multivariable model, the proportion of Iowa's college students per county was positively associated (P<0.0001) with mumps cases, but the number of colleges was negatively associated with cases (P=0.0002). Thus, if the college students in a county were spread among more campuses, this was associated with fewer mumps cases. Finally, we found the proportion of mumps cases in both older and younger persons increased after 1 April (P=0.0029), suggesting that spring-break college travel was associated with the spread of mumps to other age groups.
Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.
ERIC Educational Resources Information Center
Shama, Gilli; Dreyfus, Tommy
1994-01-01
Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…
Jahn-Teller effect in molecular electronics: quantum cellular automata
NASA Astrophysics Data System (ADS)
Tsukerblat, B.; Palii, A.; Clemente-Juan, J. M.; Coronado, E.
2017-05-01
The article summarizes the main results of application of the theory of the Jahn-Teller (JT) and pseudo JT effects to the description of molecular quantum dot cellular automata (QCA), a new paradigm of quantum computing. The following issues are discussed: 1) QCA as a new paradigm of quantum computing, principles and advantages; 2) molecular implementation of QCA; 3) role of the JT effect in charge trapping, encoding of binary information in the quantum cell and non-linear cell-cell response; 4) spin-switching in molecular QCA based on mixed-valence cell; 5) intervalence optical absorption in tetrameric molecular mixed-valence cell through the symmetry assisted approach to the multimode/multilevel JT and pseudo JT problems.
Mixed H∞ and passive control for linear switched systems via hybrid control approach
NASA Astrophysics Data System (ADS)
Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin
2018-03-01
This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.
Ponte, Belen; Pruijm, Menno; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Staessen, Jan A; Vogt, Bruno; Pechère-Bertschi, Antoinette; Burnier, Michel; Martin, Pierre-Yves; Eap, Chin B; Bochud, Murielle; Guessous, Idris
2018-05-01
To assess the influence of caffeine on arterial stiffness by exploring the association of urinary excretion of caffeine and its related metabolites with pulse pressure (PP) and pulse wave velocity (PWV). Families were randomly selected from the general population of 3 Swiss cities from November 25, 2009, through April 4, 2013. Pulse pressure was defined as the difference between the systolic and diastolic blood pressures obtained by 24-hour ambulatory monitoring. Carotid-femoral PWV was determined by applanation tonometry. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24-hour urine collections. Multivariate linear and logistic mixed models were used to explore the associations of quartiles of urinary caffeine and metabolite excretions with PP, high PP, and PWV. We included 863 participants with a mean ± SD age of 47.1±17.6 years, 24-hour PP of 41.9±9.2 mm Hg, and PWV of 8.0±2.3 m/s. Mean (SE) brachial PP decreased from 43.5 (0.5) to 40.5 (0.6) mm Hg from the lowest to the highest quartiles of 24-hour urinary caffeine excretion (P<.001). The odds ratio (95% CI) of high PP decreased linearly from 1.0 to 0.52 (0.31-0.89), 0.38 (0.22-0.65), and 0.31 (0.18-0.55) from the lowest to the highest quartile of 24-hour urinary caffeine excretion (P<.001). Mean (SE) PWV in the highest caffeine excretion quartile was significantly lower than in the lowest quartile (7.8 [0.1] vs 8.1 [0.1] m/s; P=.03). Similar associations were found for paraxanthine and theophylline, whereas no associations were found with theobromine. Urinary caffeine, paraxanthine, and theophylline excretions were associated with decreased parameters of arterial stiffness, suggesting a protective effect of caffeine intake beyond its blood pressure-lowering effect. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Wennberg, Alexandra M V; Hagen, Clinton E; Edwards, Kelly; Roberts, Rosebud O; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Mielke, Michelle M
2018-06-05
To determine the cross-sectional and longitudinal associations between diabetes treatment type and cognitive outcomes among type II diabetics. We examined the association between metformin use, as compared to other diabetic treatment (ie, insulin, other oral medications, and diet/exercise) and cognitive test performance and mild cognitive impairment (MCI) diagnosis among 508 cognitively unimpaired at baseline type II diabetics enrolled in the Mayo Clinic Study of Aging. We created propensity scores to adjust for treatment effects. We used multivariate linear and logistic regression models to investigate the cross-sectional association between treatment type and cognitive test z scores, respectively. Mixed effects models and competing risk regression models were used to determine the longitudinal association between treatment type and change in cognitive test z scores and risk of developing incident MCI. In linear regression analyses adjusted for age, sex, education, body mass index, APOE ε4, insulin treatment, medical comorbidities, number of medications, duration of diabetes, and propensity score, we did not observe an association between metformin use and cognitive test performance. Additionally, we did not observe an association between metformin use and cognitive test performance over time (median = 3.7-year follow-up). Metformin was associated with an increased risk of MCI (subhazard ratio (SHR) = 2.75; 95% CI = 1.64, 4.63, P < .001). Similarly, other oral medications (SHR = 1.96; 95% CI = 1.19, 3.25; P = .009) and insulin (SHR = 3.17; 95% CI = 1.27, 7.92; P = .014) use were also associated with risk of MCI diagnosis. These findings suggest that metformin use, as compared to management of diabetes with other treatments, is not associated with cognitive test performance. However, metformin was associated with incident MCI diagnosis. Copyright © 2018 John Wiley & Sons, Ltd.
Debette-Gratien, Marilyne; Woillard, Jean-Baptiste; Picard, Nicolas; Sebagh, Mylène; Loustaud-Ratti, Véronique; Sautereau, Denis; Samuel, Didier; Marquet, Pierre
2016-10-01
This study investigated the influence of the CYP3A4*22, CYP3A5*3, and ABCB1 exons 12, 21, and 26 polymorphisms in donors and recipients on clinical outcomes and renal function in 170 liver transplant patients on cyclosporin A (CsA) or tacrolimus (Tac). Allelic discrimination assays were used for genotyping. Multivariate time-dependent Cox proportional hazard models, multiple linear regression using the generalized estimating equation and linear mixed-effect models were used for statistical analysis. Expression of CYP3A5 by either or both the donor and the recipient was significantly associated with lower Tac, but not CsA, dose-normalized trough levels. In the whole population, graft loss was only significantly associated with longer exposure to high calcineurin inhibitor (CNI) concentrations (hazard ratio, 6.93; 95% confidence interval, 2.13-22.55), P = 0.00129), whereas in the Tac subgroup, the risk of graft loss was significantly higher in recipient CYP3A5*1 expressers (hazard ratio, 3.39; 95% confidence interval, 1.52-7.58; P = 0.0028). Renal function was significantly associated with: (1) baseline modification of diet in renal disease (β = 0.51 ± 0.05; P < 0.0001); (2) duration of patient follow-up (per visit, β = -0.98 ± 0.22; P < 0.0001); and (3) CNI exposure (per quantile increase, β = -2.42 ± 0.59; P < 0.0001). No genetic factor was associated with patient survival, acute rejection, liver function test results, recurrence of viral or other initial liver disease, or renal function. This study confirms the effect of CYP3A5*3 on tacrolimus dose requirement in liver transplantation and shows unexpected associations between the type of, and exposure to, CNI and either chronic rejection or graft loss. None of the genetic polymorphisms studied had a noticeable impact on renal function degradation at 10 years.
Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions
2013-01-01
Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370
Xuan Chi; Barry Goodwin
2012-01-01
Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...
ERIC Educational Resources Information Center
McGee, Daniel Lee; Moore-Russo, Deborah
2015-01-01
In two dimensions (2D), representations associated with slopes are seen in numerous forms before representations associated with derivatives are presented. These include the slope between two points and the constant slope of a linear function of a single variable. In almost all multivariable calculus textbooks, however, the first discussion of…
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
FREQ: A computational package for multivariable system loop-shaping procedures
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Armstrong, Ernest S.
1989-01-01
Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.
Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design
NASA Technical Reports Server (NTRS)
Whorton, Mark; Buschek, Harald; Calise, Anthony J.
1996-01-01
Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng
2018-03-01
In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.
General Multivariate Linear Modeling of Surface Shapes Using SurfStat
Chung, Moo K.; Worsley, Keith J.; Nacewicz, Brendon, M.; Dalton, Kim M.; Davidson, Richard J.
2010-01-01
Although there are many imaging studies on traditional ROI-based amygdala volumetry, there are very few studies on modeling amygdala shape variations. This paper present a unified computational and statistical framework for modeling amygdala shape variations in a clinical population. The weighted spherical harmonic representation is used as to parameterize, to smooth out, and to normalize amygdala surfaces. The representation is subsequently used as an input for multivariate linear models accounting for nuisance covariates such as age and brain size difference using SurfStat package that completely avoids the complexity of specifying design matrices. The methodology has been applied for quantifying abnormal local amygdala shape variations in 22 high functioning autistic subjects. PMID:20620211
A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Grunberg, D. B.
1986-01-01
A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.
Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E
2002-01-01
Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.
ERIC Educational Resources Information Center
Ferguson, Kristin M.; Bender, Kimberly; Thompson, Sanna J.; Maccio, Elaine M.; Pollio, David
2012-01-01
This mixed-methods study identified correlates of unemployment among homeless young adults in five cities. Two hundred thirty-eight homeless young people from Los Angeles (n = 50), Austin (n = 50), Denver (n = 50), New Orleans (n = 50), and St. Louis (n = 38) were recruited using comparable sampling strategies. Multivariate logistic regression…
Causo, Maria Serena; Ciccotti, Giovanni; Bonella, Sara; Vuilleumier, Rodolphe
2006-08-17
Linearized mixed quantum-classical simulations are a promising approach for calculating time-correlation functions. At the moment, however, they suffer from some numerical problems that may compromise their efficiency and reliability in applications to realistic condensed-phase systems. In this paper, we present a method that improves upon the convergence properties of the standard algorithm for linearized calculations by implementing a cumulant expansion of the relevant averages. The effectiveness of the new approach is tested by applying it to the challenging computation of the diffusion of an excess electron in a metal-molten salt solution.
Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.
Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang
2014-01-01
Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.
Accuracies of univariate and multivariate genomic prediction models in African cassava.
Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2017-12-04
Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies. In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model. We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.
Pre-natal exposures to cocaine and alcohol and physical growth patterns to age 8 years
Lumeng, Julie C.; Cabral, Howard J.; Gannon, Katherine; Heeren, Timothy; Frank, Deborah A.
2007-01-01
Two hundred and two primarily African American/Caribbean children (classified by maternal report and infant meconium as 38 heavier, 74 lighter and 89 not cocaine-exposed) were measured repeatedly from birth to age 8 years to assess whether there is an independent effect of prenatal cocaine exposure on physical growth patterns. Children with fetal alcohol syndrome identifiable at birth were excluded. At birth, cocaine and alcohol exposures were significantly and independently associated with lower weight, length and head circumference in cross-sectional multiple regression analyses. The relationship over time of pre-natal exposures to weight, height, and head circumference was then examined by multiple linear regression using mixed linear models including covariates: child’s gestational age, gender, ethnicity, age at assessment, current caregiver, birth mother’s use of alcohol, marijuana and tobacco during the pregnancy and pre-pregnancy weight (for child’s weight) and height (for child’s height and head circumference). The cocaine effects did not persist beyond infancy in piecewise linear mixed models, but a significant and independent negative effect of pre-natal alcohol exposure persisted for weight, height, and head circumference. Catch-up growth in cocaine-exposed infants occurred primarily by 6 months of age for all growth parameters, with some small fluctuations in growth rates in the preschool age range but no detectable differences between heavier versus unexposed nor lighter versus unexposed thereafter. PMID:17412558
Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.
Gantzer, Paul A; Bryant, Lee D; Little, John C
2009-04-01
Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.
Non-linear mixing effects on mass-47 CO2 clumped isotope thermometry: Patterns and implications.
Defliese, William F; Lohmann, Kyger C
2015-05-15
Mass-47 CO(2) clumped isotope thermometry requires relatively large (~20 mg) samples of carbonate minerals due to detection limits and shot noise in gas source isotope ratio mass spectrometry (IRMS). However, it is unreasonable to assume that natural geologic materials are homogenous on the scale required for sampling. We show that sample heterogeneities can cause offsets from equilibrium Δ(47) values that are controlled solely by end member mixing and are independent of equilibrium temperatures. A numerical model was built to simulate and quantify the effects of end member mixing on Δ(47). The model was run in multiple possible configurations to produce a dataset of mixing effects. We verified that the model accurately simulated real phenomena by comparing two artificial laboratory mixtures measured using IRMS to model output. Mixing effects were found to be dependent on end member isotopic composition in δ(13)C and δ(18)O values, and independent of end member Δ(47) values. Both positive and negative offsets from equilibrium Δ(47) can occur, and the sign is dependent on the interaction between end member isotopic compositions. The overall magnitude of mixing offsets is controlled by the amount of variability within a sample; the larger the disparity between end member compositions, the larger the mixing offset. Samples varying by less than 2 ‰ in both δ(13)C and δ(18)O values have mixing offsets below current IRMS detection limits. We recommend the use of isotopic subsampling for δ(13)C and δ(18)O values to determine sample heterogeneity, and to evaluate any potential mixing effects in samples suspected of being heterogonous. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Soeder, J. F.
1983-01-01
As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.
A Methodology for Conducting Integrative Mixed Methods Research and Data Analyses
Castro, Felipe González; Kellison, Joshua G.; Boyd, Stephen J.; Kopak, Albert
2011-01-01
Mixed methods research has gained visibility within the last few years, although limitations persist regarding the scientific caliber of certain mixed methods research designs and methods. The need exists for rigorous mixed methods designs that integrate various data analytic procedures for a seamless transfer of evidence across qualitative and quantitative modalities. Such designs can offer the strength of confirmatory results drawn from quantitative multivariate analyses, along with “deep structure” explanatory descriptions as drawn from qualitative analyses. This article presents evidence generated from over a decade of pilot research in developing an integrative mixed methods methodology. It presents a conceptual framework and methodological and data analytic procedures for conducting mixed methods research studies, and it also presents illustrative examples from the authors' ongoing integrative mixed methods research studies. PMID:22167325
The Bayesian group lasso for confounded spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.
2017-01-01
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.
Cernicchiaro, N; White, B J; Renter, D G; Babcock, A H; Kelly, L; Slattery, R
2012-06-01
Body weight loss during transport or shrink (SHK) is a common occurrence in feeder cattle that results from a physiological, complex process. Previous studies have assessed the effects of environmental and dietary stressors on transport-associated BW loss; however, data on associations between shrink and subsequent health and performance parameters in feeder cattle are limited. Operational data from 13 U.S. commercial feedlots (n = 16,590 cattle cohorts) were used to quantify how SHK was associated with bovine respiratory disease (BRD) morbidity and overall mortality risks, HCW and ADG in feeder cattle cohorts arriving to feedlots during 2000 to 2008. Multivariable mixed-effects negative binomial and linear regression models were employed to determine these associations while accounting for other cohort-level demographic variables. The median SHK among the study cohorts was 3.0% with a mean (± SEM) of 2.4 ± 0.02%. The mean (± SEM) cumulative BRD morbidity was 10.0% ± 0.09% (median = 5.8%; range 0 to 100%) and the mean (± SEM) overall cumulative mortality was 1.3% ± 0.01% (median = 0.9%; range: 0 to 25.6%). The mean and median number of days on feed of cohorts experiencing initial BRD cases was 143 and 150 d (range = 23 to 288 d). The effects of SHK were significantly (P < 0.05) associated with BRD morbidity, overall mortality, HCW and ADG, and these effects were significantly (P < 0.05) modified by gender, season and mean arrival BW of the cohort. Combining data on BW loss during transport with cohort demographics could allow a more precise prediction of health and performance of feedlot cattle.
Alfvén wave interactions in the solar wind
NASA Astrophysics Data System (ADS)
Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.
2012-11-01
Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.
Mutual Exclusion of Urea and Trimethylamine N-oxide from Amino Acids in Mixed Solvent Environment
NASA Astrophysics Data System (ADS)
Ganguly, Pritam; Hajari, Timir; Shea, Joan-Emma; van der Vegt, Nico F. A.
2015-03-01
We study the solvation thermodynamics of individual amino acids in mixed urea and trimethylamine N-oxide (TMAO) solutions using molecular dynamics simulations and the Kirkwood-Buff theory. Our results on the preferential interactions between the amino acids and the cosolvents (urea and TMAO) show a mutual exclusion of both the cosolvents from the amino acid surface in the mixed cosolvent condition which is followed by an increase in the cosolvent-cosolvent aggregation away from the amino acid surface. The effects of the mixed cosolvents on the association of the amino acids and the preferential solvation of the amino acids by water are found to be highly non-linear in terms of the effects of the individual cosolvents. A similar result has been found for the association of the protein backbone, mimicked by triglycine. Our results have been confirmed by different TMAO force-fields and the mutual exclusions of the cosolvents from the amino acids are found to be independent of the choice of the strength of the TMAO-water interactions. Based on our data, a general mechanism can potentially be proposed for the effects of the mixed cosolvents on the preferential solvations of the solutes including the case of cononsolvency.
Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry
2013-01-01
The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258
Nagrale, Amit Vinayak; Patil, Shubhangi Pandurang; Gandhi, Rita Amarchand; Learman, Ken
2012-01-01
Previous case reports, case series, and pilot studies have suggested that slump stretching may enhance the effects of spinal mobilization and stabilization exercises in patients with non-radicular low back pain (NRLBP). The purpose of this trial was to determine if slump stretching results in improvements in pain, disability, and fear and avoidance beliefs in patients with NRLBP with neural mechanosensitivity. Sixty patients, 18–60 years of age presenting with NRLBP with symptom duration >3 months, were randomized into one of two, 3-week physical therapy programs. Group one received lumbar spinal mobilization with stabilization exercises while group two received slump stretching in addition to lumbar spinal mobilization with exercise. Outcomes including the modified Oswestry disability index (ODI), numeric pain rating scale (NPRS), and the fear–avoidance belief questionnaire (FABQ) were collected at baseline, and at weeks 1, 2, 3, and 6. A doubly multivariate analysis of variance revealed a significant group–time interaction for ODI, NPRS, and FABQ. There were large within-group changes for all outcomes with P<0·01 and large between-group differences at weeks 3 and 6 for the ODI and weeks 1, 2, 3, and 6 for the NPRS and FABQ at P<0·01. A linear mixed-effect model comparing the composite slopes of the improvement lines revealed significant differences favoring the slump stretching group at P<0·01. The findings of the present study further support the use of slump stretching with spinal mobilization and stabilization exercises when treating NRLBP. PMID:23372392
Nagrale, Amit Vinayak; Patil, Shubhangi Pandurang; Gandhi, Rita Amarchand; Learman, Ken
2012-02-01
Previous case reports, case series, and pilot studies have suggested that slump stretching may enhance the effects of spinal mobilization and stabilization exercises in patients with non-radicular low back pain (NRLBP). The purpose of this trial was to determine if slump stretching results in improvements in pain, disability, and fear and avoidance beliefs in patients with NRLBP with neural mechanosensitivity. Sixty patients, 18-60 years of age presenting with NRLBP with symptom duration >3 months, were randomized into one of two, 3-week physical therapy programs. Group one received lumbar spinal mobilization with stabilization exercises while group two received slump stretching in addition to lumbar spinal mobilization with exercise. Outcomes including the modified Oswestry disability index (ODI), numeric pain rating scale (NPRS), and the fear-avoidance belief questionnaire (FABQ) were collected at baseline, and at weeks 1, 2, 3, and 6. A doubly multivariate analysis of variance revealed a significant group-time interaction for ODI, NPRS, and FABQ. There were large within-group changes for all outcomes with P<0·01 and large between-group differences at weeks 3 and 6 for the ODI and weeks 1, 2, 3, and 6 for the NPRS and FABQ at P<0·01. A linear mixed-effect model comparing the composite slopes of the improvement lines revealed significant differences favoring the slump stretching group at P<0·01. The findings of the present study further support the use of slump stretching with spinal mobilization and stabilization exercises when treating NRLBP.
Commentary on A General Curriculum in Mathematics for Colleges.
ERIC Educational Resources Information Center
Committee on the Undergraduate Program in Mathematics, Berkeley, CA.
This document constitutes a complete revision of the report of the same name first published in 1965. A new list of basic courses is described, consisting of Calculus I, Calculus II, Elementary Linear Algebra, Multivariable Calculus I, Linear Algebra, and Introductory Modern Algebra. Commentaries outline the content and spirit of these courses in…
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
NASA Astrophysics Data System (ADS)
Penland, C.
2017-12-01
One way to test for the linearity of a multivariate system is to perform Linear Inverse Modeling (LIM) to a multivariate time series. LIM yields an estimated operator by combining a lagged covariance matrix with the contemporaneous covariance matrix. If the underlying dynamics is linear, the resulting dynamical description should not depend on the particular lag at which the lagged covariance matrix is estimated. This test is known as the "tau test." The tau test will be severely compromised if the lag at which the analysis is performed is approximately half the period of an internal oscillation frequency. In this case, the tau test will fail even though the dynamics are actually linear. Thus, until now, the tau test has only been possible for lags smaller than this "Nyquist lag." In this poster, we investigate the use of Hilbert transforms as a way to avoid the problems associated with Nyquist lags. By augmenting the data with dimensions orthogonal to those spanning the original system, information that would be inaccessible to LIM in its original form may be sampled.
Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza
2017-09-27
Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.
Obstetric and Parental Psychiatric Variables as Potential Predictors of Autism Severity
ERIC Educational Resources Information Center
Wallace, Anna E.; Anderson, George M.; Dubrow, Robert
2008-01-01
Associations between obstetric and parental psychiatric variables and subjects' Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) domain scores were examined using linear mixed effects models. Data for the 228 families studied were provided by the Autism Genetic Resource Exchange. Hypertension (P =…