Sample records for multivariate models compared

  1. A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution.

    PubMed

    Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep

    2017-01-01

    The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section.

  2. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  4. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    ERIC Educational Resources Information Center

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  5. A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution

    PubMed Central

    Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep

    2017-01-01

    The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section. PMID:28983398

  6. Comparative Robustness of Recent Methods for Analyzing Multivariate Repeated Measures Designs

    ERIC Educational Resources Information Center

    Seco, Guillermo Vallejo; Gras, Jaime Arnau; Garcia, Manuel Ato

    2007-01-01

    This study evaluated the robustness of two recent methods for analyzing multivariate repeated measures when the assumptions of covariance homogeneity and multivariate normality are violated. Specifically, the authors' work compares the performance of the modified Brown-Forsythe (MBF) procedure and the mixed-model procedure adjusted by the…

  7. Multivariate Feature Selection of Image Descriptors Data for Breast Cancer with Computer-Assisted Diagnosis

    PubMed Central

    Galván-Tejada, Carlos E.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L.

    2017-01-01

    Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions. PMID:28216571

  8. Multivariate Feature Selection of Image Descriptors Data for Breast Cancer with Computer-Assisted Diagnosis.

    PubMed

    Galván-Tejada, Carlos E; Zanella-Calzada, Laura A; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L

    2017-02-14

    Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions.

  9. A multivariate time series approach to modeling and forecasting demand in the emergency department.

    PubMed

    Jones, Spencer S; Evans, R Scott; Allen, Todd L; Thomas, Alun; Haug, Peter J; Welch, Shari J; Snow, Gregory L

    2009-02-01

    The goals of this investigation were to study the temporal relationships between the demands for key resources in the emergency department (ED) and the inpatient hospital, and to develop multivariate forecasting models. Hourly data were collected from three diverse hospitals for the year 2006. Descriptive analysis and model fitting were carried out using graphical and multivariate time series methods. Multivariate models were compared to a univariate benchmark model in terms of their ability to provide out-of-sample forecasts of ED census and the demands for diagnostic resources. Descriptive analyses revealed little temporal interaction between the demand for inpatient resources and the demand for ED resources at the facilities considered. Multivariate models provided more accurate forecasts of ED census and of the demands for diagnostic resources. Our results suggest that multivariate time series models can be used to reliably forecast ED patient census; however, forecasts of the demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting.

  10. Comparing Within-Person Effects from Multivariate Longitudinal Models

    ERIC Educational Resources Information Center

    Bainter, Sierra A.; Howard, Andrea L.

    2016-01-01

    Several multivariate models are motivated to answer similar developmental questions regarding within-person (intraindividual) effects between 2 or more constructs over time, yet the within-person effects tested by each model are distinct. In this article, the authors clarify the types of within-person inferences that can be made from each model.…

  11. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  12. Partial Least Squares Calibration Modeling Towards the Multivariate Limit of Detection for Enriched Isotopic Mixtures via Laser Ablation Molecular Isotopic Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Candace; Profeta, Luisa; Akpovo, Codjo

    The psuedo univariate limit of detection was calculated to compare to the multivariate interval. ompared with results from the psuedounivariate LOD, the multivariate LOD includes other factors (i.e. signal uncertainties) and the reveals the significance in creating models that not only use the analyte’s emission line but also its entire molecular spectra.

  13. Univariate and multivariate spatial models of health facility utilisation for childhood fevers in an area on the coast of Kenya.

    PubMed

    Ouma, Paul O; Agutu, Nathan O; Snow, Robert W; Noor, Abdisalan M

    2017-09-18

    Precise quantification of health service utilisation is important for the estimation of disease burden and allocation of health resources. Current approaches to mapping health facility utilisation rely on spatial accessibility alone as the predictor. However, other spatially varying social, demographic and economic factors may affect the use of health services. The exclusion of these factors can lead to the inaccurate estimation of health facility utilisation. Here, we compare the accuracy of a univariate spatial model, developed only from estimated travel time, to a multivariate model that also includes relevant social, demographic and economic factors. A theoretical surface of travel time to the nearest public health facility was developed. These were assigned to each child reported to have had fever in the Kenya demographic and health survey of 2014 (KDHS 2014). The relationship of child treatment seeking for fever with travel time, household and individual factors from the KDHS2014 were determined using multilevel mixed modelling. Bayesian information criterion (BIC) and likelihood ratio test (LRT) tests were carried out to measure how selected factors improve parsimony and goodness of fit of the time model. Using the mixed model, a univariate spatial model of health facility utilisation was fitted using travel time as the predictor. The mixed model was also used to compute a multivariate spatial model of utilisation, using travel time and modelled surfaces of selected household and individual factors as predictors. The univariate and multivariate spatial models were then compared using the receiver operating area under the curve (AUC) and a percent correct prediction (PCP) test. The best fitting multivariate model had travel time, household wealth index and number of children in household as the predictors. These factors reduced BIC of the time model from 4008 to 2959, a change which was confirmed by the LRT test. Although there was a high correlation of the two modelled probability surfaces (Adj R 2  = 88%), the multivariate model had better AUC compared to the univariate model; 0.83 versus 0.73 and PCP 0.61 versus 0.45 values. Our study shows that a model that uses travel time, as well as household and individual-level socio-demographic factors, results in a more accurate estimation of use of health facilities for the treatment of childhood fever, compared to one that relies on only travel time.

  14. Species distribution modelling for plant communities: Stacked single species or multivariate modelling approaches?

    Treesearch

    Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald

    2014-01-01

    Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...

  15. Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure.

    PubMed

    Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C

    2018-06-29

    A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Mathematical Formulation of Multivariate Euclidean Models for Discrimination Methods.

    ERIC Educational Resources Information Center

    Mullen, Kenneth; Ennis, Daniel M.

    1987-01-01

    Multivariate models for the triangular and duo-trio methods are described, and theoretical methods are compared to a Monte Carlo simulation. Implications are discussed for a new theory of multidimensional scaling which challenges the traditional assumption that proximity measures and perceptual distances are monotonically related. (Author/GDC)

  18. Preliminary Multivariable Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  19. Confounder summary scores when comparing the effects of multiple drug exposures.

    PubMed

    Cadarette, Suzanne M; Gagne, Joshua J; Solomon, Daniel H; Katz, Jeffrey N; Stürmer, Til

    2010-01-01

    Little information is available comparing methods to adjust for confounding when considering multiple drug exposures. We compared three analytic strategies to control for confounding based on measured variables: conventional multivariable, exposure propensity score (EPS), and disease risk score (DRS). Each method was applied to a dataset (2000-2006) recently used to examine the comparative effectiveness of four drugs. The relative effectiveness of risedronate, nasal calcitonin, and raloxifene in preventing non-vertebral fracture, were each compared to alendronate. EPSs were derived both by using multinomial logistic regression (single model EPS) and by three separate logistic regression models (separate model EPS). DRSs were derived and event rates compared using Cox proportional hazard models. DRSs derived among the entire cohort (full cohort DRS) was compared to DRSs derived only among the referent alendronate (unexposed cohort DRS). Less than 8% deviation from the base estimate (conventional multivariable) was observed applying single model EPS, separate model EPS or full cohort DRS. Applying the unexposed cohort DRS when background risk for fracture differed between comparison drug exposure cohorts resulted in -7 to + 13% deviation from our base estimate. With sufficient numbers of exposed and outcomes, either conventional multivariable, EPS or full cohort DRS may be used to adjust for confounding to compare the effects of multiple drug exposures. However, our data also suggest that unexposed cohort DRS may be problematic when background risks differ between referent and exposed groups. Further empirical and simulation studies will help to clarify the generalizability of our findings.

  20. Assessing Reliability of Student Ratings of Advisor: A Comparison of Univariate and Multivariate Generalizability Approaches.

    ERIC Educational Resources Information Center

    Sun, Anji; Valiga, Michael J.

    In this study, the reliability of the American College Testing (ACT) Program's "Survey of Academic Advising" (SAA) was examined using both univariate and multivariate generalizability theory approaches. The primary purpose of the study was to compare the results of three generalizability theory models (a random univariate model, a mixed…

  1. Multivariate Generalizations of Student's t-Distribution. ONR Technical Report. [Biometric Lab Report No. 90-3.

    ERIC Educational Resources Information Center

    Gibbons, Robert D.; And Others

    In the process of developing a conditionally-dependent item response theory (IRT) model, the problem arose of modeling an underlying multivariate normal (MVN) response process with general correlation among the items. Without the assumption of conditional independence, for which the underlying MVN cdf takes on comparatively simple forms and can be…

  2. Regression Models For Multivariate Count Data

    PubMed Central

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2016-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data. PMID:28348500

  3. Regression Models For Multivariate Count Data.

    PubMed

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  4. Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.

    PubMed

    Aguero-Valverde, Jonathan

    2013-10-01

    Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  6. A comparison of bivariate, multivariate random-effects, and Poisson correlated gamma-frailty models to meta-analyze individual patient data of ordinal scale diagnostic tests.

    PubMed

    Simoneau, Gabrielle; Levis, Brooke; Cuijpers, Pim; Ioannidis, John P A; Patten, Scott B; Shrier, Ian; Bombardier, Charles H; de Lima Osório, Flavia; Fann, Jesse R; Gjerdingen, Dwenda; Lamers, Femke; Lotrakul, Manote; Löwe, Bernd; Shaaban, Juwita; Stafford, Lesley; van Weert, Henk C P M; Whooley, Mary A; Wittkampf, Karin A; Yeung, Albert S; Thombs, Brett D; Benedetti, Andrea

    2017-11-01

    Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Studying Resist Stochastics with the Multivariate Poisson Propagation Model

    DOE PAGES

    Naulleau, Patrick; Anderson, Christopher; Chao, Weilun; ...

    2014-01-01

    Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits.

  8. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  9. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    PubMed

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  10. Estimation and model selection of semiparametric multivariate survival functions under general censorship

    PubMed Central

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2013-01-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286

  11. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  12. Methodological challenges to multivariate syndromic surveillance: a case study using Swiss animal health data.

    PubMed

    Vial, Flavie; Wei, Wei; Held, Leonhard

    2016-12-20

    In an era of ubiquitous electronic collection of animal health data, multivariate surveillance systems (which concurrently monitor several data streams) should have a greater probability of detecting disease events than univariate systems. However, despite their limitations, univariate aberration detection algorithms are used in most active syndromic surveillance (SyS) systems because of their ease of application and interpretation. On the other hand, a stochastic modelling-based approach to multivariate surveillance offers more flexibility, allowing for the retention of historical outbreaks, for overdispersion and for non-stationarity. While such methods are not new, they are yet to be applied to animal health surveillance data. We applied an example of such stochastic model, Held and colleagues' two-component model, to two multivariate animal health datasets from Switzerland. In our first application, multivariate time series of the number of laboratories test requests were derived from Swiss animal diagnostic laboratories. We compare the performance of the two-component model to parallel monitoring using an improved Farrington algorithm and found both methods yield a satisfactorily low false alarm rate. However, the calibration test of the two-component model on the one-step ahead predictions proved satisfactory, making such an approach suitable for outbreak prediction. In our second application, the two-component model was applied to the multivariate time series of the number of cattle abortions and the number of test requests for bovine viral diarrhea (a disease that often results in abortions). We found that there is a two days lagged effect from the number of abortions to the number of test requests. We further compared the joint modelling and univariate modelling of the number of laboratory test requests time series. The joint modelling approach showed evidence of superiority in terms of forecasting abilities. Stochastic modelling approaches offer the potential to address more realistic surveillance scenarios through, for example, the inclusion of times series specific parameters, or of covariates known to have an impact on syndrome counts. Nevertheless, many methodological challenges to multivariate surveillance of animal SyS data still remain. Deciding on the amount of corroboration among data streams that is required to escalate into an alert is not a trivial task given the sparse data on the events under consideration (e.g. disease outbreaks).

  13. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    PubMed

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  14. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    PubMed Central

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  15. A Penalized Likelihood Framework For High-Dimensional Phylogenetic Comparative Methods And An Application To New-World Monkeys Brain Evolution.

    PubMed

    Julien, Clavel; Leandro, Aristide; Hélène, Morlon

    2018-06-19

    Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.

  16. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions

    PubMed Central

    2013-01-01

    Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370

  17. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  18. DigOut: viewing differential expression genes as outliers.

    PubMed

    Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan

    2010-12-01

    With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.

  19. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  20. Combining Frequency Doubling Technology Perimetry and Scanning Laser Polarimetry for Glaucoma Detection.

    PubMed

    Mwanza, Jean-Claude; Warren, Joshua L; Hochberg, Jessica T; Budenz, Donald L; Chang, Robert T; Ramulu, Pradeep Y

    2015-01-01

    To determine the ability of frequency doubling technology (FDT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) to detect glaucoma when used individually and in combination. One hundred ten normal and 114 glaucomatous subjects were tested with FDT C-20-5 screening protocol and the GDx-VCC. The discriminating ability was tested for each device individually and for both devices combined using GDx-NFI, GDx-TSNIT, number of missed points of FDT, and normal or abnormal FDT. Measures of discrimination included sensitivity, specificity, area under the curve (AUC), Akaike's information criterion (AIC), and prediction confidence interval lengths. For detecting glaucoma regardless of severity, the multivariable model resulting from the combination of GDx-TSNIT, number of abnormal points on FDT (NAP-FDT), and the interaction GDx-TSNIT×NAP-FDT (AIC: 88.28, AUC: 0.959, sensitivity: 94.6%, specificity: 89.5%) outperformed the best single-variable model provided by GDx-NFI (AIC: 120.88, AUC: 0.914, sensitivity: 87.8%, specificity: 84.2%). The multivariable model combining GDx-TSNIT, NAP-FDT, and interaction GDx-TSNIT×NAP-FDT consistently provided better discriminating abilities for detecting early, moderate, and severe glaucoma than the best single-variable models. The multivariable model including GDx-TSNIT, NAP-FDT, and the interaction GDx-TSNIT×NAP-FDT provides the best glaucoma prediction compared with all other multivariable and univariable models. Combining the FDT C-20-5 screening protocol and GDx-VCC improves glaucoma detection compared with using GDx or FDT alone.

  1. Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario

    NASA Astrophysics Data System (ADS)

    Ghanate, A. D.; Kothiwale, S.; Singh, S. P.; Bertrand, Dominique; Krishna, C. Murali

    2011-02-01

    Cancer is now recognized as one of the major causes of morbidity and mortality. Histopathological diagnosis, the gold standard, is shown to be subjective, time consuming, prone to interobserver disagreement, and often fails to predict prognosis. Optical spectroscopic methods are being contemplated as adjuncts or alternatives to conventional cancer diagnostics. The most important aspect of these approaches is their objectivity, and multivariate statistical tools play a major role in realizing it. However, rigorous evaluation of the robustness of spectral models is a prerequisite. The utility of Raman spectroscopy in the diagnosis of cancers has been well established. Until now, the specificity and applicability of spectral models have been evaluated for specific cancer types. In this study, we have evaluated the utility of spectroscopic models representing normal and malignant tissues of the breast, cervix, colon, larynx, and oral cavity in a broader perspective, using different multivariate tests. The limit test, which was used in our earlier study, gave high sensitivity but suffered from poor specificity. The performance of other methods such as factorial discriminant analysis and partial least square discriminant analysis are at par with more complex nonlinear methods such as decision trees, but they provide very little information about the classification model. This comparative study thus demonstrates not just the efficacy of Raman spectroscopic models but also the applicability and limitations of different multivariate tools for discrimination under complex conditions such as the multicancer scenario.

  2. Synthesis of a control model for a liquid nitrogen cooled, closed circuit, cryogenic nitrogen wind tunnel and its validation

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Goglia, G. L.

    1979-01-01

    The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated.

  3. Accuracies of univariate and multivariate genomic prediction models in African cassava.

    PubMed

    Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2017-12-04

    Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies. In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model. We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.

  4. Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.

    PubMed

    Lin, Tsung-I; Wang, Wan-Lun

    2017-10-01

    In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Multivariate analysis of longitudinal rates of change.

    PubMed

    Bryan, Matthew; Heagerty, Patrick J

    2016-12-10

    Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Voxelwise multivariate analysis of multimodality magnetic resonance imaging

    PubMed Central

    Naylor, Melissa G.; Cardenas, Valerie A.; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2015-01-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remains a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. PMID:23408378

  7. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets

    USGS Publications Warehouse

    Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.

    2013-01-01

    In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.

  8. A system to build distributed multivariate models and manage disparate data sharing policies: implementation in the scalable national network for effectiveness research.

    PubMed

    Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila

    2015-11-01

    Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  9. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2017-01-05

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Predicting trauma patient mortality: ICD [or ICD-10-AM] versus AIS based approaches.

    PubMed

    Willis, Cameron D; Gabbe, Belinda J; Jolley, Damien; Harrison, James E; Cameron, Peter A

    2010-11-01

    The International Classification of Diseases Injury Severity Score (ICISS) has been proposed as an International Classification of Diseases (ICD)-10-based alternative to mortality prediction tools that use Abbreviated Injury Scale (AIS) data, including the Trauma and Injury Severity Score (TRISS). To date, studies have not examined the performance of ICISS using Australian trauma registry data. This study aimed to compare the performance of ICISS with other mortality prediction tools in an Australian trauma registry. This was a retrospective review of prospectively collected data from the Victorian State Trauma Registry. A training dataset was created for model development and a validation dataset for evaluation. The multiplicative ICISS model was compared with a worst injury ICISS approach, Victorian TRISS (V-TRISS, using local coefficients), maximum AIS severity and a multivariable model including ICD-10-AM codes as predictors. Models were investigated for discrimination (C-statistic) and calibration (Hosmer-Lemeshow statistic). The multivariable approach had the highest level of discrimination (C-statistic 0.90) and calibration (H-L 7.65, P= 0.468). Worst injury ICISS, V-TRISS and maximum AIS had similar performance. The multiplicative ICISS produced the lowest level of discrimination (C-statistic 0.80) and poorest calibration (H-L 50.23, P < 0.001). The performance of ICISS may be affected by the data used to develop estimates, the ICD version employed, the methods for deriving estimates and the inclusion of covariates. In this analysis, a multivariable approach using ICD-10-AM codes was the best-performing method. A multivariable ICISS approach may therefore be a useful alternative to AIS-based methods and may have comparable predictive performance to locally derived TRISS models. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  11. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin

    2013-04-01

    The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.

  12. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables

    NASA Astrophysics Data System (ADS)

    Cannon, Alex J.

    2018-01-01

    Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin, particularly for annual maxima of the FWI distribution and spatiotemporal autocorrelation of precipitation fields.

  13. Multivariate modelling of endophenotypes associated with the metabolic syndrome in Chinese twins.

    PubMed

    Pang, Z; Zhang, D; Li, S; Duan, H; Hjelmborg, J; Kruse, T A; Kyvik, K O; Christensen, K; Tan, Q

    2010-12-01

    The common genetic and environmental effects on endophenotypes related to the metabolic syndrome have been investigated using bivariate and multivariate twin models. This paper extends the pairwise analysis approach by introducing independent and common pathway models to Chinese twin data. The aim was to explore the common genetic architecture in the development of these phenotypes in the Chinese population. Three multivariate models including the full saturated Cholesky decomposition model, the common factor independent pathway model and the common factor common pathway model were fitted to 695 pairs of Chinese twins representing six phenotypes including BMI, total cholesterol, total triacylglycerol, fasting glucose, HDL and LDL. Performances of the nested models were compared with that of the full Cholesky model. Cross-phenotype correlation coefficients gave clear indication of common genetic or environmental backgrounds in the phenotypes. Decomposition of phenotypic correlation by the Cholesky model revealed that the observed phenotypic correlation among lipid phenotypes had genetic and unique environmental backgrounds. Both pathway models suggest a common genetic architecture for lipid phenotypes, which is distinct from that of the non-lipid phenotypes. The declining performance with model restriction indicates biological heterogeneity in development among some of these phenotypes. Our multivariate analyses revealed common genetic and environmental backgrounds for the studied lipid phenotypes in Chinese twins. Model performance showed that physiologically distinct endophenotypes may follow different genetic regulations.

  14. Development of multivariate NTCP models for radiation-induced hypothyroidism: a comparative analysis.

    PubMed

    Cella, Laura; Liuzzi, Raffaele; Conson, Manuel; D'Avino, Vittoria; Salvatore, Marco; Pacelli, Roberto

    2012-12-27

    Hypothyroidism is a frequent late side effect of radiation therapy of the cervical region. Purpose of this work is to develop multivariate normal tissue complication probability (NTCP) models for radiation-induced hypothyroidism (RHT) and to compare them with already existing NTCP models for RHT. Fifty-three patients treated with sequential chemo-radiotherapy for Hodgkin's lymphoma (HL) were retrospectively reviewed for RHT events. Clinical information along with thyroid gland dose distribution parameters were collected and their correlation to RHT was analyzed by Spearman's rank correlation coefficient (Rs). Multivariate logistic regression method using resampling methods (bootstrapping) was applied to select model order and parameters for NTCP modeling. Model performance was evaluated through the area under the receiver operating characteristic curve (AUC). Models were tested against external published data on RHT and compared with other published NTCP models. If we express the thyroid volume exceeding X Gy as a percentage (Vx(%)), a two-variable NTCP model including V30(%) and gender resulted to be the optimal predictive model for RHT (Rs = 0.615, p < 0.001. AUC = 0.87). Conversely, if absolute thyroid volume exceeding X Gy (Vx(cc)) was analyzed, an NTCP model based on 3 variables including V30(cc), thyroid gland volume and gender was selected as the most predictive model (Rs = 0.630, p < 0.001. AUC = 0.85). The three-variable model performs better when tested on an external cohort characterized by large inter-individuals variation in thyroid volumes (AUC = 0.914, 95% CI 0.760-0.984). A comparable performance was found between our model and that proposed in the literature based on thyroid gland mean dose and volume (p = 0.264). The absolute volume of thyroid gland exceeding 30 Gy in combination with thyroid gland volume and gender provide an NTCP model for RHT with improved prediction capability not only within our patient population but also in an external cohort.

  15. Combining Frequency Doubling Technology Perimetry and Scanning Laser Polarimetry for Glaucoma Detection

    PubMed Central

    Mwanza, Jean-Claude; Warren, Joshua L.; Hochberg, Jessica T.; Budenz, Donald L.; Chang, Robert T.; Ramulu, Pradeep Y.

    2014-01-01

    Purpose To determine the ability of frequency doubling technology (FDT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) to detect glaucoma when used individually and in combination. Methods One hundred and ten normal and 114 glaucomatous subjects were tested with FDT C-20-5 screening protocol and the GDx-VCC. The discriminating ability was tested for each device individually and for both devices combined using GDx-NFI, GDx-TSNIT, number of missed points of FDT, and normal or abnormal FDT. Measures of discrimination included sensitivity, specificity, area under the curve (AUC), Akaike’s information criterion (AIC), and prediction confidence interval lengths (PIL). Results For detecting glaucoma regardless of severity, the multivariable model resulting from the combination of GDX-TSNIT, number of abnormal points on FDT (NAP-FDT), and the interaction GDx-TSNIT * NAP-FDT (AIC: 88.28, AUC: 0.959, sensitivity: 94.6%, specificity: 89.5%) outperformed the best single variable model provided by GDx-NFI (AIC: 120.88, AUC: 0.914, sensitivity: 87.8%, specificity: 84.2%). The multivariable model combining GDx-TSNIT, NAPFDT, and interaction GDx-TSNIT*NAP-FDT consistently provided better discriminating abilities for detecting early, moderate and severe glaucoma than the best single variable models. Conclusions The multivariable model including GDx-TSNIT, NAP-FDT, and the interaction GDX-TSNIT * NAP-FDT provides the best glaucoma prediction compared to all other multivariable and univariable models. Combining the FDT C-20-5 screening protocol and GDx-VCC improves glaucoma detection compared to using GDx or FDT alone. PMID:24777046

  16. Voxelwise multivariate analysis of multimodality magnetic resonance imaging.

    PubMed

    Naylor, Melissa G; Cardenas, Valerie A; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin

    2014-03-01

    Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remain a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. Copyright © 2013 Wiley Periodicals, Inc.

  17. Multivariate Analysis of Longitudinal Rates of Change

    PubMed Central

    Bryan, Matthew; Heagerty, Patrick J.

    2016-01-01

    Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed by Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] among others. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, Gray and Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale time in longitudinal models for disease progression. In this manuscript we detail an alternative multivariate model formulation that directly structures longitudinal rates of change, and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. PMID:27417129

  18. Cost Modeling for Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  19. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupšys, P.

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.

  20. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China.

    PubMed

    Pei, Ling-Ling; Li, Qin; Wang, Zheng-Xin

    2018-03-08

    The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China's pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N )) model based on the nonlinear least square (NLS) method. The Gauss-Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N ) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N ) and the NLS-based TNGM (1, N ) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO₂ and dust, alongside GDP per capita in China during the period 1996-2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N ) model presents greater precision when forecasting WDPC, SO₂ emissions and dust emissions per capita, compared to the traditional GM (1, N ) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO₂ and dust reduce accordingly.

  1. Pooled Analysis of Individual Patient Data on Concurrent Chemoradiotherapy for Stage III Non-Small-Cell Lung Cancer in Elderly Patients Compared With Younger Patients Who Participated in US National Cancer Institute Cooperative Group Studies.

    PubMed

    Stinchcombe, Thomas E; Zhang, Ying; Vokes, Everett E; Schiller, Joan H; Bradley, Jeffrey D; Kelly, Karen; Curran, Walter J; Schild, Steven E; Movsas, Benjamin; Clamon, Gerald; Govindan, Ramaswamy; Blumenschein, George R; Socinski, Mark A; Ready, Neal E; Akerley, Wallace L; Cohen, Harvey J; Pang, Herbert H; Wang, Xiaofei

    2017-09-01

    Purpose Concurrent chemoradiotherapy is standard treatment for patients with stage III non-small-cell lung cancer. Elderly patients may experience increased rates of adverse events (AEs) or less benefit from concurrent chemoradiotherapy. Patients and Methods Individual patient data were collected from 16 phase II or III trials conducted by US National Cancer Institute-supported cooperative groups of concurrent chemoradiotherapy alone or with consolidation or induction chemotherapy for stage III non-small-cell lung cancer from 1990 to 2012. Overall survival (OS), progression-free survival, and AEs were compared between patients age ≥ 70 (elderly) and those younger than 70 years (younger). Unadjusted and adjusted hazard ratios (HRs) for survival time and CIs were estimated by single-predictor and multivariable frailty Cox models. Unadjusted and adjusted odds ratio (ORs) for AEs and CIs were obtained from single-predictor and multivariable generalized linear mixed-effect models. Results A total of 2,768 patients were classified as younger and 832 as elderly. In unadjusted and multivariable models, elderly patients had worse OS (HR, 1.20; 95% CI, 1.09 to 1.31 and HR, 1.17; 95% CI, 1.07 to 1.29, respectively). In unadjusted and multivariable models, elderly and younger patients had similar progression-free survival (HR, 1.01; 95% CI, 0.93 to 1.10 and HR, 1.00; 95% CI, 0.91 to 1.09, respectively). Elderly patients had a higher rate of grade ≥ 3 AEs in unadjusted and multivariable models (OR, 1.35; 95% CI, 1.07 to 1.70 and OR, 1.38; 95% CI, 1.10 to 1.74, respectively). Grade 5 AEs were significantly higher in elderly compared with younger patients (9% v 4%; P < .01). Fewer elderly compared with younger patients completed treatment (47% v 57%; P < .01), and more discontinued treatment because of AEs (20% v 13%; P < .01), died during treatment (7.8% v 2.9%; P < .01), and refused further treatment (5.8% v 3.9%; P = .02). Conclusion Elderly patients in concurrent chemoradiotherapy trials experienced worse OS, more toxicity, and had a higher rate of death during treatment than younger patients.

  2. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    PubMed

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  3. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model.

    PubMed

    Snell, Kym I E; Hua, Harry; Debray, Thomas P A; Ensor, Joie; Look, Maxime P; Moons, Karel G M; Riley, Richard D

    2016-01-01

    Our aim was to improve meta-analysis methods for summarizing a prediction model's performance when individual participant data are available from multiple studies for external validation. We suggest multivariate meta-analysis for jointly synthesizing calibration and discrimination performance, while accounting for their correlation. The approach estimates a prediction model's average performance, the heterogeneity in performance across populations, and the probability of "good" performance in new populations. This allows different implementation strategies (e.g., recalibration) to be compared. Application is made to a diagnostic model for deep vein thrombosis (DVT) and a prognostic model for breast cancer mortality. In both examples, multivariate meta-analysis reveals that calibration performance is excellent on average but highly heterogeneous across populations unless the model's intercept (baseline hazard) is recalibrated. For the cancer model, the probability of "good" performance (defined by C statistic ≥0.7 and calibration slope between 0.9 and 1.1) in a new population was 0.67 with recalibration but 0.22 without recalibration. For the DVT model, even with recalibration, there was only a 0.03 probability of "good" performance. Multivariate meta-analysis can be used to externally validate a prediction model's calibration and discrimination performance across multiple populations and to evaluate different implementation strategies. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  5. Multivariate random-parameters zero-inflated negative binomial regression model: an application to estimate crash frequencies at intersections.

    PubMed

    Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan

    2014-09-01

    Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Insights on multivariate updates of physical and biogeochemical ocean variables using an Ensemble Kalman Filter and an idealized model of upwelling

    NASA Astrophysics Data System (ADS)

    Yu, Liuqian; Fennel, Katja; Bertino, Laurent; Gharamti, Mohamad El; Thompson, Keith R.

    2018-06-01

    Effective data assimilation methods for incorporating observations into marine biogeochemical models are required to improve hindcasts, nowcasts and forecasts of the ocean's biogeochemical state. Recent assimilation efforts have shown that updating model physics alone can degrade biogeochemical fields while only updating biogeochemical variables may not improve a model's predictive skill when the physical fields are inaccurate. Here we systematically investigate whether multivariate updates of physical and biogeochemical model states are superior to only updating either physical or biogeochemical variables. We conducted a series of twin experiments in an idealized ocean channel that experiences wind-driven upwelling. The forecast model was forced with biased wind stress and perturbed biogeochemical model parameters compared to the model run representing the "truth". Taking advantage of the multivariate nature of the deterministic Ensemble Kalman Filter (DEnKF), we assimilated different combinations of synthetic physical (sea surface height, sea surface temperature and temperature profiles) and biogeochemical (surface chlorophyll and nitrate profiles) observations. We show that when biogeochemical and physical properties are highly correlated (e.g., thermocline and nutricline), multivariate updates of both are essential for improving model skill and can be accomplished by assimilating either physical (e.g., temperature profiles) or biogeochemical (e.g., nutrient profiles) observations. In our idealized domain, the improvement is largely due to a better representation of nutrient upwelling, which results in a more accurate nutrient input into the euphotic zone. In contrast, assimilating surface chlorophyll improves the model state only slightly, because surface chlorophyll contains little information about the vertical density structure. We also show that a degradation of the correlation between observed subsurface temperature and nutrient fields, which has been an issue in several previous assimilation studies, can be reduced by multivariate updates of physical and biogeochemical fields.

  7. USING HYDROGRAPHIC DATA AND THE EPA VIRTUAL BEACH MODEL TO TEST PREDICTIONS OF BEACH BACTERIA CONCENTRATIONS

    EPA Science Inventory

    A modeling study of 2006 Huntington Beach (Lake Erie) beach bacteria concentrations indicates multi-variable linear regression (MLR) can effectively estimate bacteria concentrations compared to the persistence model. Our use of the Virtual Beach (VB) model affirms that fact. VB i...

  8. Transient multivariable sensor evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, Richard B.; Heifetz, Alexander

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  9. A Method for Comparing Multivariate Time Series with Different Dimensions

    PubMed Central

    Tapinos, Avraam; Mendes, Pedro

    2013-01-01

    In many situations it is desirable to compare dynamical systems based on their behavior. Similarity of behavior often implies similarity of internal mechanisms or dependency on common extrinsic factors. While there are widely used methods for comparing univariate time series, most dynamical systems are characterized by multivariate time series. Yet, comparison of multivariate time series has been limited to cases where they share a common dimensionality. A semi-metric is a distance function that has the properties of non-negativity, symmetry and reflexivity, but not sub-additivity. Here we develop a semi-metric – SMETS – that can be used for comparing groups of time series that may have different dimensions. To demonstrate its utility, the method is applied to dynamic models of biochemical networks and to portfolios of shares. The former is an example of a case where the dependencies between system variables are known, while in the latter the system is treated (and behaves) as a black box. PMID:23393554

  10. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    PubMed

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  11. Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models

    PubMed Central

    Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.

    2014-01-01

    Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071

  12. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  13. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China

    PubMed Central

    Pei, Ling-Ling; Li, Qin

    2018-01-01

    The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China’s pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N)) model based on the nonlinear least square (NLS) method. The Gauss–Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N) and the NLS-based TNGM (1, N) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO2 and dust, alongside GDP per capita in China during the period 1996–2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N) model presents greater precision when forecasting WDPC, SO2 emissions and dust emissions per capita, compared to the traditional GM (1, N) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO2 and dust reduce accordingly. PMID:29517985

  14. FGWAS: Functional genome wide association analysis.

    PubMed

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Bayesian multivariate hierarchical transformation models for ROC analysis.

    PubMed

    O'Malley, A James; Zou, Kelly H

    2006-02-15

    A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.

  16. Bayesian multivariate hierarchical transformation models for ROC analysis

    PubMed Central

    O'Malley, A. James; Zou, Kelly H.

    2006-01-01

    SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836

  17. Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.

    PubMed

    Levine, Matthew E; Albers, David J; Hripcsak, George

    2016-01-01

    Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.

  18. Predicting crash frequency for multi-vehicle collision types using multivariate Poisson-lognormal spatial model: A comparative analysis.

    PubMed

    Hosseinpour, Mehdi; Sahebi, Sina; Zamzuri, Zamira Hasanah; Yahaya, Ahmad Shukri; Ismail, Noriszura

    2018-06-01

    According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    PubMed

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  20. Finding Groups Using Model-Based Cluster Analysis: Heterogeneous Emotional Self-Regulatory Processes and Heavy Alcohol Use Risk

    ERIC Educational Resources Information Center

    Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2008-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…

  1. Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS)

    NASA Astrophysics Data System (ADS)

    Durmaz, Murat; Karslioglu, Mahmut Onur

    2015-04-01

    There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.

  2. Calibrated Multivariate Regression with Application to Neural Semantic Basis Discovery.

    PubMed

    Liu, Han; Wang, Lie; Zhao, Tuo

    2015-08-01

    We propose a calibrated multivariate regression method named CMR for fitting high dimensional multivariate regression models. Compared with existing methods, CMR calibrates regularization for each regression task with respect to its noise level so that it simultaneously attains improved finite-sample performance and tuning insensitiveness. Theoretically, we provide sufficient conditions under which CMR achieves the optimal rate of convergence in parameter estimation. Computationally, we propose an efficient smoothed proximal gradient algorithm with a worst-case numerical rate of convergence O (1/ ϵ ), where ϵ is a pre-specified accuracy of the objective function value. We conduct thorough numerical simulations to illustrate that CMR consistently outperforms other high dimensional multivariate regression methods. We also apply CMR to solve a brain activity prediction problem and find that it is as competitive as a handcrafted model created by human experts. The R package camel implementing the proposed method is available on the Comprehensive R Archive Network http://cran.r-project.org/web/packages/camel/.

  3. A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia.

    PubMed

    Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M

    2015-10-01

    To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Multivariate dynamic Tobit models with lagged observed dependent variables: An effectiveness analysis of highway safety laws.

    PubMed

    Dong, Chunjiao; Xie, Kun; Zeng, Jin; Li, Xia

    2018-04-01

    Highway safety laws aim to influence driver behaviors so as to reduce the frequency and severity of crashes, and their outcomes. For one specific highway safety law, it would have different effects on the crashes across severities. Understanding such effects can help policy makers upgrade current laws and hence improve traffic safety. To investigate the effects of highway safety laws on crashes across severities, multivariate models are needed to account for the interdependency issues in crash counts across severities. Based on the characteristics of the dependent variables, multivariate dynamic Tobit (MVDT) models are proposed to analyze crash counts that are aggregated at the state level. Lagged observed dependent variables are incorporated into the MVDT models to account for potential temporal correlation issues in crash data. The state highway safety law related factors are used as the explanatory variables and socio-demographic and traffic factors are used as the control variables. Three models, a MVDT model with lagged observed dependent variables, a MVDT model with unobserved random variables, and a multivariate static Tobit (MVST) model are developed and compared. The results show that among the investigated models, the MVDT models with lagged observed dependent variables have the best goodness-of-fit. The findings indicate that, compared to the MVST, the MVDT models have better explanatory power and prediction accuracy. The MVDT model with lagged observed variables can better handle the stochasticity and dependency in the temporal evolution of the crash counts and the estimated values from the model are closer to the observed values. The results show that more lives could be saved if law enforcement agencies can make a sustained effort to educate the public about the importance of motorcyclists wearing helmets. Motor vehicle crash-related deaths, injuries, and property damages could be reduced if states enact laws for stricter text messaging rules, higher speeding fines, older licensing age, and stronger graduated licensing provisions. Injury and PDO crashes would be significantly reduced with stricter laws prohibiting the use of hand-held communication devices and higher fines for drunk driving. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Association of educational status with cardiovascular disease: Teheran Lipid and Glucose Study.

    PubMed

    Hajsheikholeslami, Farhad; Hatami, Masumeh; Hadaegh, Farzad; Ghanbarian, Arash; Azizi, Fereidoun

    2011-06-01

    The aim of this study was to evaluate the associations between educational level and cardiovascular disease (CVD) in an older Iranian population. To estimate the odds ratio (OR) of educational level in a cross-sectional study, logistic regression analysis was used on 1,788 men and 2,204 women (222 men and 204 women positive based on their CVD status) aged ≥ 45 years. In men, educational levels of college degree and literacy level below diploma were inversely associated with CVD in the multivariate model [0.52 (0.28-0.94), 0.61 (0.40-0.92), respectively], but diploma level did not show any significant association with CVD, neither in the crude model nor in the multivariate model. In women, increase in educational level was inversely associated with risk of CVD in the crude model, but in the multivariate adjusted model, literacy level below diploma decreased risk of CVD by 39%, compared with illiteracy. Our findings support those of developed countries that, along with other CVD risk factors, educational status has an inverse association with CVD among a representative Iranian population of older men and women.

  6. Multivariate non-normally distributed random variables in climate research - introduction to the copula approach

    NASA Astrophysics Data System (ADS)

    Schölzel, C.; Friederichs, P.

    2008-10-01

    Probability distributions of multivariate random variables are generally more complex compared to their univariate counterparts which is due to a possible nonlinear dependence between the random variables. One approach to this problem is the use of copulas, which have become popular over recent years, especially in fields like econometrics, finance, risk management, or insurance. Since this newly emerging field includes various practices, a controversial discussion, and vast field of literature, it is difficult to get an overview. The aim of this paper is therefore to provide an brief overview of copulas for application in meteorology and climate research. We examine the advantages and disadvantages compared to alternative approaches like e.g. mixture models, summarize the current problem of goodness-of-fit (GOF) tests for copulas, and discuss the connection with multivariate extremes. An application to station data shows the simplicity and the capabilities as well as the limitations of this approach. Observations of daily precipitation and temperature are fitted to a bivariate model and demonstrate, that copulas are valuable complement to the commonly used methods.

  7. A power analysis for multivariate tests of temporal trend in species composition.

    PubMed

    Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel

    2011-10-01

    Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.

  8. Cross-country transferability of multi-variable damage models

    NASA Astrophysics Data System (ADS)

    Wagenaar, Dennis; Lüdtke, Stefan; Kreibich, Heidi; Bouwer, Laurens

    2017-04-01

    Flood damage assessment is often done with simple damage curves based only on flood water depth. Additionally, damage models are often transferred in space and time, e.g. from region to region or from one flood event to another. Validation has shown that depth-damage curve estimates are associated with high uncertainties, particularly when applied in regions outside the area where the data for curve development was collected. Recently, progress has been made with multi-variable damage models created with data-mining techniques, i.e. Bayesian Networks and random forest. However, it is still unknown to what extent and under which conditions model transfers are possible and reliable. Model validations in different countries will provide valuable insights into the transferability of multi-variable damage models. In this study we compare multi-variable models developed on basis of flood damage datasets from Germany as well as from The Netherlands. Data from several German floods was collected using computer aided telephone interviews. Data from the 1993 Meuse flood in the Netherlands is available, based on compensations paid by the government. The Bayesian network and random forest based models are applied and validated in both countries on basis of the individual datasets. A major challenge was the harmonization of the variables between both datasets due to factors like differences in variable definitions, and regional and temporal differences in flood hazard and exposure characteristics. Results of model validations and comparisons in both countries are discussed, particularly in respect to encountered challenges and possible solutions for an improvement of model transferability.

  9. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    PubMed

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Pregnancy outcome of patients following bariatric surgery as compared with obese women: a population-based study.

    PubMed

    Shai, Daniel; Shoham-Vardi, Ilana; Amsalem, Doron; Silverberg, Daniel; Levi, Isaac; Sheiner, Eyal

    2014-02-01

    To evaluate pregnancy outcome and rates of anemia in patients following bariatric operation in comparison with obese pregnant women. A retrospective population-based study comparing pregnancy outcome of patients following bariatric with the obese population was conducted. Multivariate logistic regression models were constructed to control for confounders. To evaluate the change in hemoglobin levels, we included women who had one pregnancy before the bariatric surgery and one following the surgery or two pregnancies for women with obesity. This study included 326 women who had one pregnancy before and after a bariatric surgery and 1612 obese women who had at least two consecutive deliveries. Using a multivariable logistic regression model, controlling for confounders such as maternal age, patients following bariatric surgery had lower rates of gestational diabetes mellitus (OR 0.7; 95% CI 0.5-0.9; p = 0.49) and macrosomia (OR 0.3; 95% CI 0.2-0.5; p < 0.001) as compared with obese parturients. Women post bariatric surgery were more likely to be anemic (hemoglobin <10 g/dL) as compared to obese parturients (48% versus 37%; OR, 1.5; 95% CI, 1.2-1.9; p < 0.001). A significant decline in hemoglobin level was noted in patients following bariatric surgery (a decline of 0.33 g/dL versus 0.18 g/dL between two consecutive pregnancies of obese women). Using another multivariable model with anemia as the outcome variable, bariatric was noted as a risk factor for anemia (adjusted OR = 1.45, 95%CI 1.13-1.86, p = 0.004). Women following bariatric surgery have lower risk for gestational diabetes mellitus and fetal macrosomia as compared with obese parturients. Nevertheless, bariatric surgery is a risk factor for anemia.

  11. On the Bayesian Treed Multivariate Gaussian Process with Linear Model of Coregionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Lin, Guang

    2015-02-01

    The Bayesian treed Gaussian process (BTGP) has gained popularity in recent years because it provides a straightforward mechanism for modeling non-stationary data and can alleviate computational demands by fitting models to less data. The extension of BTGP to the multivariate setting requires us to model the cross-covariance and to propose efficient algorithms that can deal with trans-dimensional MCMC moves. In this paper we extend the cross-covariance of the Bayesian treed multivariate Gaussian process (BTMGP) to that of linear model of Coregionalization (LMC) cross-covariances. Different strategies have been developed to improve the MCMC mixing and invert smaller matrices in the Bayesianmore » inference. Moreover, we compare the proposed BTMGP with existing multiple BTGP and BTMGP in test cases and multiphase flow computer experiment in a full scale regenerator of a carbon capture unit. The use of the BTMGP with LMC cross-covariance helped to predict the computer experiments relatively better than existing competitors. The proposed model has a wide variety of applications, such as computer experiments and environmental data. In the case of computer experiments we also develop an adaptive sampling strategy for the BTMGP with LMC cross-covariance function.« less

  12. Non-parametric identification of multivariable systems: A local rational modeling approach with application to a vibration isolation benchmark

    NASA Astrophysics Data System (ADS)

    Voorhoeve, Robbert; van der Maas, Annemiek; Oomen, Tom

    2018-05-01

    Frequency response function (FRF) identification is often used as a basis for control systems design and as a starting point for subsequent parametric system identification. The aim of this paper is to develop a multiple-input multiple-output (MIMO) local parametric modeling approach for FRF identification of lightly damped mechanical systems with improved speed and accuracy. The proposed method is based on local rational models, which can efficiently handle the lightly-damped resonant dynamics. A key aspect herein is the freedom in the multivariable rational model parametrizations. Several choices for such multivariable rational model parametrizations are proposed and investigated. For systems with many inputs and outputs the required number of model parameters can rapidly increase, adversely affecting the performance of the local modeling approach. Therefore, low-order model structures are investigated. The structure of these low-order parametrizations leads to an undesired directionality in the identification problem. To address this, an iterative local rational modeling algorithm is proposed. As a special case recently developed SISO algorithms are recovered. The proposed approach is successfully demonstrated on simulations and on an active vibration isolation system benchmark, confirming good performance of the method using significantly less parameters compared with alternative approaches.

  13. Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering

    PubMed Central

    Heinsch, Stephen C.; Das, Siba R.; Smanski, Michael J.

    2018-01-01

    Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems. PMID:29535690

  14. How to compare cross-lagged associations in a multilevel autoregressive model.

    PubMed

    Schuurman, Noémi K; Ferrer, Emilio; de Boer-Sonnenschein, Mieke; Hamaker, Ellen L

    2016-06-01

    By modeling variables over time it is possible to investigate the Granger-causal cross-lagged associations between variables. By comparing the standardized cross-lagged coefficients, the relative strength of these associations can be evaluated in order to determine important driving forces in the dynamic system. The aim of this study was twofold: first, to illustrate the added value of a multilevel multivariate autoregressive modeling approach for investigating these associations over more traditional techniques; and second, to discuss how the coefficients of the multilevel autoregressive model should be standardized for comparing the strength of the cross-lagged associations. The hierarchical structure of multilevel multivariate autoregressive models complicates standardization, because subject-based statistics or group-based statistics can be used to standardize the coefficients, and each method may result in different conclusions. We argue that in order to make a meaningful comparison of the strength of the cross-lagged associations, the coefficients should be standardized within persons. We further illustrate the bivariate multilevel autoregressive model and the standardization of the coefficients, and we show that disregarding individual differences in dynamics can prove misleading, by means of an empirical example on experienced competence and exhaustion in persons diagnosed with burnout. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using themore » leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.« less

  16. Survival in Patients with Advanced Non-cystic Fibrosis Bronchiectasis Versus Cystic Fibrosis on the Waitlist for Lung Transplantation.

    PubMed

    Hayes, Don; Kopp, Benjamin T; Tobias, Joseph D; Woodley, Frederick W; Mansour, Heidi M; Tumin, Dmitry; Kirkby, Stephen E

    2015-12-01

    Survival in non-cystic fibrosis (CF) bronchiectasis is not well studied. The United Network for Organ Sharing database was queried from 1987 to 2013 to compare survival in adult patients with non-CF bronchiectasis to patients with CF listed for lung transplantation (LTx). Each subject was tracked from waitlist entry date until death or censoring to determine survival differences between the two groups. Of 2112 listed lung transplant candidates with bronchiectasis (180 non-CF, 1932 CF), 1617 were used for univariate Cox and Kaplan-Meier survival function analysis, 1173 for multivariate Cox models, and 182 for matched-pairs analysis based on propensity scores. Compared to CF, patients with non-CF bronchiectasis had a significantly lower mortality by univariate Cox analysis (HR 0.565; 95 % CI 0.424, 0.754; p < 0.001). Adjusting for potential confounders, multivariate Cox models identified a significant reduction in risk for death associated with non-CF bronchiectasis who were lung transplant candidates (HR 0.684; 95 % CI 0.475, 0.985; p = 0.041). Results were consistent in multivariate models adjusting for pulmonary hypertension and forced expiratory volume in one second. Non-CF bronchiectasis with advanced lung disease was associated with significantly lower mortality hazard compared to CF bronchiectasis on the waitlist for LTx. Separate referral and listing criteria for LTx in non-CF and CF populations should be considered.

  17. Modeling a multivariable reactor and on-line model predictive control.

    PubMed

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  18. Multivariate Bias Correction Procedures for Improving Water Quality Predictions from the SWAT Model

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Libera, D.

    2017-12-01

    Water quality observations are usually not available on a continuous basis for longer than 1-2 years at a time over a decadal period given the labor requirements making calibrating and validating mechanistic models difficult. Further, any physical model predictions inherently have bias (i.e., under/over estimation) and require post-simulation techniques to preserve the long-term mean monthly attributes. This study suggests a multivariate bias-correction technique and compares to a common technique in improving the performance of the SWAT model in predicting daily streamflow and TN loads across the southeast based on split-sample validation. The approach is a dimension reduction technique, canonical correlation analysis (CCA) that regresses the observed multivariate attributes with the SWAT model simulated values. The common approach is a regression based technique that uses an ordinary least squares regression to adjust model values. The observed cross-correlation between loadings and streamflow is better preserved when using canonical correlation while simultaneously reducing individual biases. Additionally, canonical correlation analysis does a better job in preserving the observed joint likelihood of observed streamflow and loadings. These procedures were applied to 3 watersheds chosen from the Water Quality Network in the Southeast Region; specifically, watersheds with sufficiently large drainage areas and number of observed data points. The performance of these two approaches are compared for the observed period and over a multi-decadal period using loading estimates from the USGS LOADEST model. Lastly, the CCA technique is applied in a forecasting sense by using 1-month ahead forecasts of P & T from ECHAM4.5 as forcings in the SWAT model. Skill in using the SWAT model for forecasting loadings and streamflow at the monthly and seasonal timescale is also discussed.

  19. Authentication of Trappist beers by LC-MS fingerprints and multivariate data analysis.

    PubMed

    Mattarucchi, Elia; Stocchero, Matteo; Moreno-Rojas, José Manuel; Giordano, Giuseppe; Reniero, Fabiano; Guillou, Claude

    2010-12-08

    The aim of this study was to asses the applicability of LC-MS profiling to authenticate a selected Trappist beer as part of a program on traceability funded by the European Commission. A total of 232 beers were fingerprinted and classified through multivariate data analysis. The selected beer was clearly distinguished from beers of different brands, while only 3 samples (3.5% of the test set) were wrongly classified when compared with other types of beer of the same Trappist brewery. The fingerprints were further analyzed to extract the most discriminating variables, which proved to be sufficient for classification, even using a simplified unsupervised model. This reduced fingerprint allowed us to study the influence of batch-to-batch variability on the classification model. Our results can easily be applied to different matrices and they confirmed the effectiveness of LC-MS profiling in combination with multivariate data analysis for the characterization of food products.

  20. Applying Multivariate Discrete Distributions to Genetically Informative Count Data.

    PubMed

    Kirkpatrick, Robert M; Neale, Michael C

    2016-03-01

    We present a novel method of conducting biometric analysis of twin data when the phenotypes are integer-valued counts, which often show an L-shaped distribution. Monte Carlo simulation is used to compare five likelihood-based approaches to modeling: our multivariate discrete method, when its distributional assumptions are correct, when they are incorrect, and three other methods in common use. With data simulated from a skewed discrete distribution, recovery of twin correlations and proportions of additive genetic and common environment variance was generally poor for the Normal, Lognormal and Ordinal models, but good for the two discrete models. Sex-separate applications to substance-use data from twins in the Minnesota Twin Family Study showed superior performance of two discrete models. The new methods are implemented using R and OpenMx and are freely available.

  1. iVAR: a program for imputing missing data in multivariate time series using vector autoregressive models.

    PubMed

    Liu, Siwei; Molenaar, Peter C M

    2014-12-01

    This article introduces iVAR, an R program for imputing missing data in multivariate time series on the basis of vector autoregressive (VAR) models. We conducted a simulation study to compare iVAR with three methods for handling missing data: listwise deletion, imputation with sample means and variances, and multiple imputation ignoring time dependency. The results showed that iVAR produces better estimates for the cross-lagged coefficients than do the other three methods. We demonstrate the use of iVAR with an empirical example of time series electrodermal activity data and discuss the advantages and limitations of the program.

  2. Multivariate class modeling techniques applied to multielement analysis for the verification of the geographical origin of chili pepper.

    PubMed

    Naccarato, Attilio; Furia, Emilia; Sindona, Giovanni; Tagarelli, Antonio

    2016-09-01

    Four class-modeling techniques (soft independent modeling of class analogy (SIMCA), unequal dispersed classes (UNEQ), potential functions (PF), and multivariate range modeling (MRM)) were applied to multielement distribution to build chemometric models able to authenticate chili pepper samples grown in Calabria respect to those grown outside of Calabria. The multivariate techniques were applied by considering both all the variables (32 elements, Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Fe, Ga, La, Li, Mg, Mn, Na, Nd, Ni, Pb, Pr, Rb, Sc, Se, Sr, Tl, Tm, V, Y, Yb, Zn) and variables selected by means of stepwise linear discriminant analysis (S-LDA). In the first case, satisfactory and comparable results in terms of CV efficiency are obtained with the use of SIMCA and MRM (82.3 and 83.2% respectively), whereas MRM performs better than SIMCA in terms of forced model efficiency (96.5%). The selection of variables by S-LDA permitted to build models characterized, in general, by a higher efficiency. MRM provided again the best results for CV efficiency (87.7% with an effective balance of sensitivity and specificity) as well as forced model efficiency (96.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Multivariate Strategies in Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Hansen, Lars Kai

    2007-01-01

    We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.

  4. Investigating College and Graduate Students' Multivariable Reasoning in Computational Modeling

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Wu, Pai-Hsing; Zhang, Wen-Xin; Hsu, Ying-Shao

    2013-01-01

    Drawing upon the literature in computational modeling, multivariable reasoning, and causal attribution, this study aims at characterizing multivariable reasoning practices in computational modeling and revealing the nature of understanding about multivariable causality. We recruited two freshmen, two sophomores, two juniors, two seniors, four…

  5. PHI and PCA3 improve the prognostic performance of PRIAS and Epstein criteria in predicting insignificant prostate cancer in men eligible for active surveillance.

    PubMed

    Cantiello, Francesco; Russo, Giorgio Ivan; Cicione, Antonio; Ferro, Matteo; Cimino, Sebastiano; Favilla, Vincenzo; Perdonà, Sisto; De Cobelli, Ottavio; Magno, Carlo; Morgia, Giuseppe; Damiano, Rocco

    2016-04-01

    To assess the performance of prostate health index (PHI) and prostate cancer antigen 3 (PCA3) when added to the PRIAS or Epstein criteria in predicting the presence of pathologically insignificant prostate cancer (IPCa) in patients who underwent radical prostatectomy (RP) but eligible for active surveillance (AS). An observational retrospective study was performed in 188 PCa patients treated with laparoscopic or robot-assisted RP but eligible for AS according to Epstein or PRIAS criteria. Blood and urinary specimens were collected before initial prostate biopsy for PHI and PCA3 measurements. Multivariate logistic regression analyses and decision curve analysis were carried out to identify predictors of IPCa using the updated ERSPC definition. At the multivariate analyses, the inclusion of both PCA3 and PHI significantly increased the accuracy of the Epstein multivariate model in predicting IPCa with an increase of 17 % (AUC = 0.77) and of 32 % (AUC = 0.92), respectively. The inclusion of both PCA3 and PHI also increased the predictive accuracy of the PRIAS multivariate model with an increase of 29 % (AUC = 0.87) and of 39 % (AUC = 0.97), respectively. DCA revealed that the multivariable models with the addition of PHI or PCA3 showed a greater net benefit and performed better than the reference models. In a direct comparison, PHI outperformed PCA3 performance resulting in higher net benefit. In a same cohort of patients eligible for AS, the addition of PHI and PCA3 to Epstein or PRIAS models improved their prognostic performance. PHI resulted in greater net benefit in predicting IPCa compared to PCA3.

  6. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    PubMed

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  7. A Multivariate Model for the Study of Parental Acceptance-Rejection and Child Abuse.

    ERIC Educational Resources Information Center

    Rohner, Ronald P.; Rohner, Evelyn C.

    This paper proposes a multivariate strategy for the study of parental acceptance-rejection and child abuse and describes a research study on parental rejection and child abuse which illustrates the advantages of using a multivariate, (rather than a simple-model) approach. The multivariate model is a combination of three simple models used to study…

  8. An alternative derivation of the stationary distribution of the multivariate neutral Wright-Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data.

    PubMed

    Schrempf, Dominik; Hobolth, Asger

    2017-04-01

    Recently, Burden and Tang (2016) provided an analytical expression for the stationary distribution of the multivariate neutral Wright-Fisher model with low mutation rates. In this paper we present a simple, alternative derivation that illustrates the approximation. Our proof is based on the discrete multivariate boundary mutation model which has three key ingredients. First, the decoupled Moran model is used to describe genetic drift. Second, low mutation rates are assumed by limiting mutations to monomorphic states. Third, the mutation rate matrix is separated into a time-reversible part and a flux part, as suggested by Burden and Tang (2016). An application of our result to data from several great apes reveals that the assumption of stationarity may be inadequate or that other evolutionary forces like selection or biased gene conversion are acting. Furthermore we find that the model with a reversible mutation rate matrix provides a reasonably good fit to the data compared to the one with a non-reversible mutation rate matrix. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1984-01-01

    The objective of this investigation is to develop a state-of-the-art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies. A three-dimensional multivariate O/I analysis scheme has been developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  10. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    The development of a state of the art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies was investigated. A three dimensional multivariate O/I analysis scheme was developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  11. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing.

    PubMed

    Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel

    2015-01-01

    The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.

  12. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing

    PubMed Central

    STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL

    2015-01-01

    Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749

  13. Using Multivariate Adaptive Regression Spline and Artificial Neural Network to Simulate Urbanization in Mumbai, India

    NASA Astrophysics Data System (ADS)

    Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.

    2015-12-01

    Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.

  14. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution

    PubMed Central

    Lo, Kenneth

    2011-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375

  15. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution.

    PubMed

    Lo, Kenneth; Gottardo, Raphael

    2012-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.

  16. Extensions to Multivariate Space Time Mixture Modeling of Small Area Cancer Data.

    PubMed

    Carroll, Rachel; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Aregay, Mehreteab; Watjou, Kevin

    2017-05-09

    Oral cavity and pharynx cancer, even when considered together, is a fairly rare disease. Implementation of multivariate modeling with lung and bronchus cancer, as well as melanoma cancer of the skin, could lead to better inference for oral cavity and pharynx cancer. The multivariate structure of these models is accomplished via the use of shared random effects, as well as other multivariate prior distributions. The results in this paper indicate that care should be taken when executing these types of models, and that multivariate mixture models may not always be the ideal option, depending on the data of interest.

  17. A Comparison of Conventional Linear Regression Methods and Neural Networks for Forecasting Educational Spending.

    ERIC Educational Resources Information Center

    Baker, Bruce D.; Richards, Craig E.

    1999-01-01

    Applies neural network methods for forecasting 1991-95 per-pupil expenditures in U.S. public elementary and secondary schools. Forecasting models included the National Center for Education Statistics' multivariate regression model and three neural architectures. Regarding prediction accuracy, neural network results were comparable or superior to…

  18. Quantifying the Value of Downscaled Climate Model Information for Adaptation Decisions: When is Downscaling a Smart Decision?

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Wootten, A.; Eaton, M. J.; Runge, M. C.; Littell, J. S.; Bryan, A. M.; Carter, S. L.

    2015-12-01

    Two types of decisions face society with respect to anthropogenic climate change: (1) whether to enact a global greenhouse gas abatement policy, and (2) how to adapt to the local consequences of current and future climatic changes. The practice of downscaling global climate models (GCMs) is often used to address (2) because GCMs do not resolve key features that will mediate global climate change at the local scale. In response, the development of downscaling techniques and models has accelerated to aid decision makers seeking adaptation guidance. However, quantifiable estimates of the value of information are difficult to obtain, particularly in decision contexts characterized by deep uncertainty and low system-controllability. Here we demonstrate a method to quantify the additional value that decision makers could expect if research investments are directed towards developing new downscaled climate projections. As a proof of concept we focus on a real-world management problem: whether to undertake assisted migration for an endangered tropical avian species. We also take advantage of recently published multivariate methods that account for three vexing issues in climate impacts modeling: maximizing climate model quality information, accounting for model dependence in ensembles of opportunity, and deriving probabilistic projections. We expand on these global methods by including regional (Caribbean Basin) and local (Puerto Rico) domains. In the local domain, we test whether a high resolution (2km) dynamically downscaled GCM reduces the multivariate error estimate compared to the original coarse-scale GCM. Initial tests show little difference between the downscaled and original GCM multivariate error. When propagated through to a species population model, the Value of Information analysis indicates that the expected utility that would accrue to the manager (and species) if this downscaling were completed may not justify the cost compared to alternative actions.

  19. Inference of reactive transport model parameters using a Bayesian multivariate approach

    NASA Astrophysics Data System (ADS)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick

    2014-08-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.

  20. A multivariate model for predicting segmental body composition.

    PubMed

    Tian, Simiao; Mioche, Laurence; Denis, Jean-Baptiste; Morio, Béatrice

    2013-12-01

    The aims of the present study were to propose a multivariate model for predicting simultaneously body, trunk and appendicular fat and lean masses from easily measured variables and to compare its predictive capacity with that of the available univariate models that predict body fat percentage (BF%). The dual-energy X-ray absorptiometry (DXA) dataset (52% men and 48% women) with White, Black and Hispanic ethnicities (1999-2004, National Health and Nutrition Examination Survey) was randomly divided into three sub-datasets: a training dataset (TRD), a test dataset (TED); a validation dataset (VAD), comprising 3835, 1917 and 1917 subjects. For each sex, several multivariate prediction models were fitted from the TRD using age, weight, height and possibly waist circumference. The most accurate model was selected from the TED and then applied to the VAD and a French DXA dataset (French DB) (526 men and 529 women) to assess the prediction accuracy in comparison with that of five published univariate models, for which adjusted formulas were re-estimated using the TRD. Waist circumference was found to improve the prediction accuracy, especially in men. For BF%, the standard error of prediction (SEP) values were 3.26 (3.75) % for men and 3.47 (3.95)% for women in the VAD (French DB), as good as those of the adjusted univariate models. Moreover, the SEP values for the prediction of body and appendicular lean masses ranged from 1.39 to 2.75 kg for both the sexes. The prediction accuracy was best for age < 65 years, BMI < 30 kg/m2 and the Hispanic ethnicity. The application of our multivariate model to large populations could be useful to address various public health issues.

  1. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree

    NASA Astrophysics Data System (ADS)

    Heddam, Salim; Kisi, Ozgur

    2018-04-01

    In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.

  2. A Study of Effects of MultiCollinearity in the Multivariable Analysis

    PubMed Central

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.

    2015-01-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257

  3. A Study of Effects of MultiCollinearity in the Multivariable Analysis.

    PubMed

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W

    2014-10-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.

  4. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods

    PubMed Central

    Stürmer, Til; Joshi, Manisha; Glynn, Robert J.; Avorn, Jerry; Rothman, Kenneth J.; Schneeweiss, Sebastian

    2006-01-01

    Objective Propensity score analyses attempt to control for confounding in non-experimental studies by adjusting for the likelihood that a given patient is exposed. Such analyses have been proposed to address confounding by indication, but there is little empirical evidence that they achieve better control than conventional multivariate outcome modeling. Study design and methods Using PubMed and Science Citation Index, we assessed the use of propensity scores over time and critically evaluated studies published through 2003. Results Use of propensity scores increased from a total of 8 papers before 1998 to 71 in 2003. Most of the 177 published studies abstracted assessed medications (N=60) or surgical interventions (N=51), mainly in cardiology and cardiac surgery (N=90). Whether PS methods or conventional outcome models were used to control for confounding had little effect on results in those studies in which such comparison was possible. Only 9 out of 69 studies (13%) had an effect estimate that differed by more than 20% from that obtained with a conventional outcome model in all PS analyses presented. Conclusions Publication of results based on propensity score methods has increased dramatically, but there is little evidence that these methods yield substantially different estimates compared with conventional multivariable methods. PMID:16632131

  5. Identifying the most appropriate age threshold for TNM stage grouping of well-differentiated thyroid cancer.

    PubMed

    Hendrickson-Rebizant, J; Sigvaldason, H; Nason, R W; Pathak, K A

    2015-08-01

    Age is integrated in most risk stratification systems for well-differentiated thyroid cancer (WDTC). The most appropriate age threshold for stage grouping of WDTC is debatable. The objective of this study was to evaluate the best age threshold for stage grouping by comparing multivariable models designed to evaluate the independent impact of various prognostic factors, including age based stage grouping, on the disease specific survival (DSS) of our population-based cohort. Data from population-based thyroid cancer cohort of 2125 consecutive WDTC, diagnosed during 1970-2010, with a median follow-up of 11.5 years, was used to calculate DSS using the Kaplan Meier method. Multivariable analysis with Cox proportional hazard model was used to assess independent impact of different prognostic factors on DSS. The Akaike information criterion (AIC), a measure of statistical model fit, was used to identify the most appropriate age threshold model. Delta AIC, Akaike weight, and evidence ratios were calculated to compare the relative strength of different models. The mean age of the patients was 47.3 years. DSS of the cohort was 95.6% and 92.8% at 10 and 20 years respectively. A threshold of 55 years, with the lowest AIC, was identified as the best model. Akaike weight indicated an 85% chance that this age threshold is the best among the compared models, and is 16.8 times more likely to be the best model as compared to a threshold of 45 years. The age threshold of 55 years was found to be the best for TNM stage grouping. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bayesian Treed Multivariate Gaussian Process with Adaptive Design: Application to a Carbon Capture Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Sarkar, Avik

    2014-05-16

    Computer experiments (numerical simulations) are widely used in scientific research to study and predict the behavior of complex systems, which usually have responses consisting of a set of distinct outputs. The computational cost of the simulations at high resolution are often expensive and become impractical for parametric studies at different input values. To overcome these difficulties we develop a Bayesian treed multivariate Gaussian process (BTMGP) as an extension of the Bayesian treed Gaussian process (BTGP) in order to model and evaluate a multivariate process. A suitable choice of covariance function and the prior distributions facilitates the different Markov chain Montemore » Carlo (MCMC) movements. We utilize this model to sequentially sample the input space for the most informative values, taking into account model uncertainty and expertise gained. A simulation study demonstrates the use of the proposed method and compares it with alternative approaches. We apply the sequential sampling technique and BTMGP to model the multiphase flow in a full scale regenerator of a carbon capture unit. The application presented in this paper is an important tool for research into carbon dioxide emissions from thermal power plants.« less

  7. Statistical Evaluation of Time Series Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.

    1973-01-01

    The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.

  8. Differences in passenger car and large truck involved crash frequencies at urban signalized intersections: an exploratory analysis.

    PubMed

    Dong, Chunjiao; Clarke, David B; Richards, Stephen H; Huang, Baoshan

    2014-01-01

    The influence of intersection features on safety has been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes. Although there are distinct differences between passenger cars and large trucks-size, operating characteristics, dimensions, and weight-modeling crash counts across vehicle types is rarely addressed. This paper develops and presents a multivariate regression model of crash frequencies by collision vehicle type using crash data for urban signalized intersections in Tennessee. In addition, the performance of univariate Poisson-lognormal (UVPLN), multivariate Poisson (MVP), and multivariate Poisson-lognormal (MVPLN) regression models in establishing the relationship between crashes, traffic factors, and geometric design of roadway intersections is investigated. Bayesian methods are used to estimate the unknown parameters of these models. The evaluation results suggest that the MVPLN model possesses most of the desirable statistical properties in developing the relationships. Compared to the UVPLN and MVP models, the MVPLN model better identifies significant factors and predicts crash frequencies. The findings suggest that traffic volume, truck percentage, lighting condition, and intersection angle significantly affect intersection safety. Important differences in car, car-truck, and truck crash frequencies with respect to various risk factors were found to exist between models. The paper provides some new or more comprehensive observations that have not been covered in previous studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  10. Use of chemometrics to compare NIR and HPLC for the simultaneous determination of drug levels in fixed-dose combination tablets employed in tuberculosis treatment.

    PubMed

    Teixeira, Kelly Sivocy Sampaio; da Cruz Fonseca, Said Gonçalves; de Moura, Luís Carlos Brigido; de Moura, Mario Luís Ribeiro; Borges, Márcia Herminia Pinheiro; Barbosa, Euzébio Guimaraes; De Lima E Moura, Túlio Flávio Accioly

    2018-02-05

    The World Health Organization recommends that TB treatment be administered using combination therapy. The methodologies for quantifying simultaneously associated drugs are highly complex, being costly, extremely time consuming and producing chemical residues harmful to the environment. The need to seek alternative techniques that minimize these drawbacks is widely discussed in the pharmaceutical industry. Therefore, the objective of this study was to develop and validate a multivariate calibration model in association with the near infrared spectroscopy technique (NIR) for the simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol. These models allow the quality control of these medicines to be optimized using simple, fast, low-cost techniques that produce no chemical waste. In the NIR - PLS method, spectra readings were acquired in the 10,000-4000cm -1 range using an infrared spectrophotometer (IRPrestige - 21 - Shimadzu) with a resolution of 4cm -1 , 20 sweeps, under controlled temperature and humidity. For construction of the model, the central composite experimental design was employed on the program Statistica 13 (StatSoft Inc.). All spectra were treated by computational tools for multivariate analysis using partial least squares regression (PLS) on the software program Pirouette 3.11 (Infometrix, Inc.). Variable selections were performed by the QSAR modeling program. The models developed by NIR in association with multivariate analysis provided good prediction of the APIs for the external samples and were therefore validated. For the tablets, however, the slightly different quantitative compositions of excipients compared to the mixtures prepared for building the models led to results that were not statistically similar, despite having prediction errors considered acceptable in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using Performance Data Gathered at Several Stages of Achievement in Predicting Subsequent Performance.

    ERIC Educational Resources Information Center

    Owen, Steven V.; Feldhusen, John F.

    This study compares the effectiveness of three models of multivariate prediction for academic success in identifying the criterion variance of achievement in nursing education. The first model involves the use of an optimum set of predictors and one equation derived from a regression analysis on first semester grade average in predicting the…

  12. Crane cabins' interior space multivariate anthropometric modeling.

    PubMed

    Essdai, Ahmed; Spasojević Brkić, Vesna K; Golubović, Tamara; Brkić, Aleksandar; Popović, Vladimir

    2018-01-01

    Previous research has shown that today's crane cabins fail to meet the needs of a large proportion of operators. Performance and financial losses and effects on safety should not be overlooked as well. The first aim of this survey is to model the crane cabin interior space using up-to-date crane operator anthropometric data and to compare the multivariate and univariate method anthropometric models. The second aim of the paper is to define the crane cabin interior space dimensions that enable anthropometric convenience. To facilitate the cabin design, the anthropometric dimensions of 64 crane operators in the first sample and 19 more in the second sample were collected in Serbia. The multivariate anthropometric models, spanning 95% of the population on the basis of a set of 8 anthropometric dimensions, have been developed. The percentile method was also used on the same set of data. The dimensions of the interior space, necessary for the accommodation of the crane operator, are 1174×1080×1865 mm. The percentiles results for the 5th and 95th model are within the obtained dimensions. The results of this study may prove useful to crane cabin designers in eliminating anthropometric inconsistencies and improving the health of operators, but can also aid in improving the safety, performance and financial results of the companies where crane cabins operate.

  13. Comparison of Multidimensional Item Response Models: Multivariate Normal Ability Distributions versus Multivariate Polytomous Ability Distributions. Research Report. ETS RR-08-45

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; von Davier, Matthias; Lee, Yi-Hsuan

    2008-01-01

    Multidimensional item response models can be based on multivariate normal ability distributions or on multivariate polytomous ability distributions. For the case of simple structure in which each item corresponds to a unique dimension of the ability vector, some applications of the two-parameter logistic model to empirical data are employed to…

  14. Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.

    PubMed

    Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence

    2012-12-01

    A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.

  15. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    NASA Technical Reports Server (NTRS)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  16. Bayesian Local Contamination Models for Multivariate Outliers

    PubMed Central

    Page, Garritt L.; Dunson, David B.

    2013-01-01

    In studies where data are generated from multiple locations or sources it is common for there to exist observations that are quite unlike the majority. Motivated by the application of establishing a reference value in an inter-laboratory setting when outlying labs are present, we propose a local contamination model that is able to accommodate unusual multivariate realizations in a flexible way. The proposed method models the process level of a hierarchical model using a mixture with a parametric component and a possibly nonparametric contamination. Much of the flexibility in the methodology is achieved by allowing varying random subsets of the elements in the lab-specific mean vectors to be allocated to the contamination component. Computational methods are developed and the methodology is compared to three other possible approaches using a simulation study. We apply the proposed method to a NIST/NOAA sponsored inter-laboratory study which motivated the methodological development. PMID:24363465

  17. Multiple Versus Single Set Validation of Multivariate Models to Avoid Mistakes.

    PubMed

    Harrington, Peter de Boves

    2018-01-02

    Validation of multivariate models is of current importance for a wide range of chemical applications. Although important, it is neglected. The common practice is to use a single external validation set for evaluation. This approach is deficient and may mislead investigators with results that are specific to the single validation set of data. In addition, no statistics are available regarding the precision of a derived figure of merit (FOM). A statistical approach using bootstrapped Latin partitions is advocated. This validation method makes an efficient use of the data because each object is used once for validation. It was reviewed a decade earlier but primarily for the optimization of chemometric models this review presents the reasons it should be used for generalized statistical validation. Average FOMs with confidence intervals are reported and powerful, matched-sample statistics may be applied for comparing models and methods. Examples demonstrate the problems with single validation sets.

  18. Pain, pain intensity and pain disability in high school students are differently associated with physical activity, screening hours and sleep.

    PubMed

    Silva, Anabela G; Sa-Couto, Pedro; Queirós, Alexandra; Neto, Maritza; Rocha, Nelson P

    2017-05-16

    Studies exploring the association between physical activity, screen time and sleep and pain usually focus on a limited number of painful body sites. Nevertheless, pain at different body sites is likely to be of different nature. Therefore, this study aims to explore and compare the association between time spent in self-reported physical activity, in screen based activities and sleeping and i) pain presence in the last 7-days for 9 different body sites; ii) pain intensity at 9 different body sites and iii) global disability. Nine hundred sixty nine students completed a questionnaire on pain, time spent in moderate and vigorous physical activity, screen based time watching TV/DVD, playing, using mobile phones and computers and sleeping hours. Univariate and multivariate associations between pain presence, pain intensity and disability and physical activity, screen based time and sleeping hours were investigated. Pain presence: sleeping remained in the multivariable model for the neck, mid back, wrists, knees and ankles/feet (OR 1.17 to 2.11); moderate physical activity remained in the multivariate model for the neck, shoulders, wrists, hips and ankles/feet (OR 1.06 to 1.08); vigorous physical activity remained in the multivariate model for mid back, knees and ankles/feet (OR 1.05 to 1.09) and screen time remained in the multivariate model for the low back (OR = 2.34. Pain intensity: screen time and moderate physical activity remained in the multivariable model for pain intensity at the neck, mid back, low back, shoulder, knees and ankles/feet (Rp 2 0.02 to 0.04) and at the wrists (Rp 2  = 0.04), respectively. Disability showed no association with sleeping, screen time or physical activity. This study suggests both similarities and differences in the patterns of association between time spent in physical activity, sleeping and in screen based activities and pain presence at 8 different body sites. In addition, they also suggest that the factors associated with the presence of pain, pain intensity and pain associated disability are different.

  19. Ibrutinib versus previous standard of care: an adjusted comparison in patients with relapsed/refractory chronic lymphocytic leukaemia.

    PubMed

    Hansson, Lotta; Asklid, Anna; Diels, Joris; Eketorp-Sylvan, Sandra; Repits, Johanna; Søltoft, Frans; Jäger, Ulrich; Österborg, Anders

    2017-10-01

    This study explored the relative efficacy of ibrutinib versus previous standard-of-care treatments in relapsed/refractory patients with chronic lymphocytic leukaemia (CLL), using multivariate regression modelling to adjust for baseline prognostic factors. Individual patient data were collected from an observational Stockholm cohort of consecutive patients (n = 144) diagnosed with CLL between 2002 and 2013 who had received at least second-line treatment. Data were compared with results of the RESONATE clinical trial. A multivariate Cox proportional hazards regression model was used which estimated the hazard ratio (HR) of ibrutinib versus previous standard of care. The adjusted HR of ibrutinib versus the previous standard-of-care cohort was 0.15 (p < 0.0001) for progression-free survival (PFS) and 0.36 (p < 0.0001) for overall survival (OS). A similar difference was observed also when patients treated late in the period (2012-) were compared separately. Multivariate analysis showed that later line of therapy, male gender, older age and poor performance status were significant independent risk factors for worse PFS and OS. Our results suggest that PFS and OS with ibrutinib in the RESONATE study were significantly longer than with previous standard-of-care regimens used in second or later lines in routine healthcare. The approach used, which must be interpreted with caution, compares patient-level data from a clinical trial with outcomes observed in a daily clinical practice and may complement results from randomised trials or provide preliminary wider comparative information until phase 3 data exist.

  20. Stochastic modelling of temperatures affecting the in situ performance of a solar-assisted heat pump: The multivariate approach and physical interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveday, D.L.; Craggs, C.

    Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less

  1. Comparing and combining biomarkers as principle surrogates for time-to-event clinical endpoints.

    PubMed

    Gabriel, Erin E; Sachs, Michael C; Gilbert, Peter B

    2015-02-10

    Principal surrogate endpoints are useful as targets for phase I and II trials. In many recent trials, multiple post-randomization biomarkers are measured. However, few statistical methods exist for comparison of or combination of biomarkers as principal surrogates, and none of these methods to our knowledge utilize time-to-event clinical endpoint information. We propose a Weibull model extension of the semi-parametric estimated maximum likelihood method that allows for the inclusion of multiple biomarkers in the same risk model as multivariate candidate principal surrogates. We propose several methods for comparing candidate principal surrogates and evaluating multivariate principal surrogates. These include the time-dependent and surrogate-dependent true and false positive fraction, the time-dependent and the integrated standardized total gain, and the cumulative distribution function of the risk difference. We illustrate the operating characteristics of our proposed methods in simulations and outline how these statistics can be used to evaluate and compare candidate principal surrogates. We use these methods to investigate candidate surrogates in the Diabetes Control and Complications Trial. Copyright © 2014 John Wiley & Sons, Ltd.

  2. An anthropometric study of Serbian metal industry workers.

    PubMed

    Omić, S; Brkić, V K Spasojevic; Golubović, T A; Brkić, A D; Klarin, M M

    2017-01-01

    There are recent studies using new industrial workers' anthropometric data in different countries, but for Serbia such data are not available. This study is the first anthropometric study of Serbian metal industry workers in the country, whose labor force is increasingly employed both on local and international markets. The metal industry is one of Serbia's most important economic sectors. To this end, we collected the basic static anthropometric dimensions of 122 industrial workers and used principal components analysis (PCA) to obtain multivariate anthropometric models. To confirm the results, the dimensions of an additional 50 workers were collected. The PCA methodology was also compared with the percentile method. Comparing both data samples, we found that 96% of the participants are within the tolerance ellipsoid. According to this study, multivariate modeling covers a larger extent of the intended population proportion compared to percentiles. The results of this research are useful for the designers of metal industry workstations. This information can be used in dimensioning the workplace, thus increasing job satisfaction, reducing the risk of injuries and fatalities, and consequently increasing productivity and safety.

  3. A retrospective review of fall risk factors in the bone marrow transplant inpatient service.

    PubMed

    Vela, Cory M; Grate, Lisa M; McBride, Ali; Devine, Steven; Andritsos, Leslie A

    2018-06-01

    Purpose The purpose of this study was to compare medications and potential risk factors between patients who experienced a fall during hospitalization compared to those who did not fall while admitted to the Blood and Marrow Transplant inpatient setting at The James Cancer Hospital. Secondary objectives included evaluation of transplant-related disease states and medications in the post-transplant setting that may lead to an increased risk of falls, post-fall variables, and number of tests ordered after a fall. Methods This retrospective, case-control study matched patients in a 2:1 ratio of nonfallers to fallers. Data from The Ohio State University Wexner Medical Center (OSUWMC) reported fall events and patient electronic medical records were utilized. A total of 168 adult Blood and Marrow Transplant inpatients with a hematological malignancy diagnosis were evaluated from 1 January 2010 to 30 September 2012. Results Univariable and multivariable conditional logistic regression models were used to assess the relationship between potential predictor variables of interest and falls. Variables that were found to be significant predictors of falls from the univariable models include age group, incontinence, benzodiazepines, corticosteroids, anticonvulsants and antidepressants, and number of days status-post transplant. When considered for a multivariable model age group, corticosteroids, and a cancer diagnosis of leukemia were significant in the final model. Conclusion Recent medication utilization such as benzodiazepines, anticonvulsants, corticosteroids, and antidepressants placed patients at a higher risk of experiencing a fall. Other significant factors identified from a multivariable analysis found were patients older than age 65, patients with recent corticosteroid administration and a cancer diagnosis of leukemia.

  4. Panic disorder and agoraphobia: A direct comparison of their multivariate comorbidity patterns.

    PubMed

    Greene, Ashley L; Eaton, Nicholas R

    2016-01-15

    Scientific debate has long surrounded whether agoraphobia is a severe consequence of panic disorder or a frequently comorbid diagnosis. Multivariate comorbidity investigations typically treat these diagnoses as fungible in structural models, assuming both are manifestations of the fear-subfactor in the internalizing-externalizing model. No studies have directly compared these disorders' multivariate associations, which could clarify their conceptualization in classification and comorbidity research. In a nationally representative sample (N=43,093), we examined the multivariate comorbidity of panic disorder (1) without agoraphobia, (2) with agoraphobia, and (3) regardless of agoraphobia; and (4) agoraphobia without panic. We conducted exploratory and confirmatory factor analyses of these and 10 other lifetime DSM-IV diagnoses in a nationally representative sample (N=43,093). Differing bivariate and multivariate relations were found. Panic disorder without agoraphobia was largely a distress disorder, related to emotional disorders. Agoraphobia without panic was largely a fear disorder, related to phobias. When considered jointly, concomitant agoraphobia and panic was a fear disorder, and when panic was assessed without regard to agoraphobia (some individuals had agoraphobia while others did not) it was a mixed distress and fear disorder. Diagnoses were obtained from comprehensively trained lay interviewers, not clinicians and analyses used DSM-IV diagnoses (rather than DSM-5). These findings support the conceptualization of agoraphobia as a distinct diagnostic entity and the independent classification of both disorders in DSM-5, suggesting future multivariate comorbidity studies should not assume various panic/agoraphobia diagnoses are invariably fear disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.

    PubMed

    Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin

    2015-04-01

    Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  6. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  7. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance Structure Models to Block-Toeplitz Matrices Representing Single-Subject Multivariate Time-Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    1998-01-01

    Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…

  8. A novel strategy for forensic age prediction by DNA methylation and support vector regression model

    PubMed Central

    Xu, Cheng; Qu, Hongzhu; Wang, Guangyu; Xie, Bingbing; Shi, Yi; Yang, Yaran; Zhao, Zhao; Hu, Lan; Fang, Xiangdong; Yan, Jiangwei; Feng, Lei

    2015-01-01

    High deviations resulting from prediction model, gender and population difference have limited age estimation application of DNA methylation markers. Here we identified 2,957 novel age-associated DNA methylation sites (P < 0.01 and R2 > 0.5) in blood of eight pairs of Chinese Han female monozygotic twins. Among them, nine novel sites (false discovery rate < 0.01), along with three other reported sites, were further validated in 49 unrelated female volunteers with ages of 20–80 years by Sequenom Massarray. A total of 95 CpGs were covered in the PCR products and 11 of them were built the age prediction models. After comparing four different models including, multivariate linear regression, multivariate nonlinear regression, back propagation neural network and support vector regression, SVR was identified as the most robust model with the least mean absolute deviation from real chronological age (2.8 years) and an average accuracy of 4.7 years predicted by only six loci from the 11 loci, as well as an less cross-validated error compared with linear regression model. Our novel strategy provides an accurate measurement that is highly useful in estimating the individual age in forensic practice as well as in tracking the aging process in other related applications. PMID:26635134

  9. The Gendered Monitoring of Juvenile Delinquents: A Test of Power-Control Theory Using a Retrospective Cohort Study

    ERIC Educational Resources Information Center

    Schulze, Corina; Bryan, Valerie

    2017-01-01

    Through the framework of power-control theory (PCT), we provide a model of juvenile offending that places the gendered-raced treatment of juveniles central to the analysis. We test the theory using a unique sample that is predominately African American, poor, and composed entirely of juvenile offenders. Multivariate models compare the predictive…

  10. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors.

    PubMed

    Burgués, Javier; Marco, Santiago

    2018-08-17

    Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Probabilistic, meso-scale flood loss modelling

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  12. Multivariate Longitudinal Analysis with Bivariate Correlation Test.

    PubMed

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

  13. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, L.J.; Keller, P.E.

    1997-10-28

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.

  14. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  15. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    PubMed Central

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  16. Innovation Analysis | Energy Analysis | NREL

    Science.gov Websites

    . New empirical methods for estimating technical and commercial impact (based on patent citations and Commercial Breakthroughs, NREL employed regression models and multivariate simulations to compare social in the marketplace and found that: Web presence may provide a better representation of the commercial

  17. Membrane Introduction Mass Spectrometry Combined with an Orthogonal Partial-Least Squares Calibration Model for Mixture Analysis.

    PubMed

    Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu

    2017-01-01

    The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.

  18. Borrowing of strength and study weights in multivariate and network meta-analysis.

    PubMed

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2017-12-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).

  19. Multivariate longitudinal data analysis with censored and intermittent missing responses.

    PubMed

    Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun

    2018-05-08

    The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Borrowing of strength and study weights in multivariate and network meta-analysis

    PubMed Central

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2016-01-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254

  1. Application of Fluorescence Spectrometry With Multivariate Calibration to the Enantiomeric Recognition of Fluoxetine in Pharmaceutical Preparations.

    PubMed

    Poláček, Roman; Májek, Pavel; Hroboňová, Katarína; Sádecká, Jana

    2016-04-01

    Fluoxetine is the most prescribed antidepressant chiral drug worldwide. Its enantiomers have a different duration of serotonin inhibition. A novel simple and rapid method for determination of the enantiomeric composition of fluoxetine in pharmaceutical pills is presented. Specifically, emission, excitation, and synchronous fluorescence techniques were employed to obtain the spectral data, which with multivariate calibration methods, namely, principal component regression (PCR) and partial least square (PLS), were investigated. The chiral recognition of fluoxetine enantiomers in the presence of β-cyclodextrin was based on diastereomeric complexes. The results of the multivariate calibration modeling indicated good prediction abilities. The obtained results for tablets were compared with those from chiral HPLC and no significant differences are shown by Fisher's (F) test and Student's t-test. The smallest residuals between reference or nominal values and predicted values were achieved by multivariate calibration of synchronous fluorescence spectral data. This conclusion is supported by calculated values of the figure of merit.

  2. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout.

    PubMed

    Tang, Yongqiang

    2018-04-30

    The controlled imputation method refers to a class of pattern mixture models that have been commonly used as sensitivity analyses of longitudinal clinical trials with nonignorable dropout in recent years. These pattern mixture models assume that participants in the experimental arm after dropout have similar response profiles to the control participants or have worse outcomes than otherwise similar participants who remain on the experimental treatment. In spite of its popularity, the controlled imputation has not been formally developed for longitudinal binary and ordinal outcomes partially due to the lack of a natural multivariate distribution for such endpoints. In this paper, we propose 2 approaches for implementing the controlled imputation for binary and ordinal data based respectively on the sequential logistic regression and the multivariate probit model. Efficient Markov chain Monte Carlo algorithms are developed for missing data imputation by using the monotone data augmentation technique for the sequential logistic regression and a parameter-expanded monotone data augmentation scheme for the multivariate probit model. We assess the performance of the proposed procedures by simulation and the analysis of a schizophrenia clinical trial and compare them with the fully conditional specification, last observation carried forward, and baseline observation carried forward imputation methods. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Multivariate Heteroscedasticity Models for Functional Brain Connectivity.

    PubMed

    Seiler, Christof; Holmes, Susan

    2017-01-01

    Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  4. U.S. truck driver anthropometric study and multivariate anthropometric models for cab designs.

    PubMed

    Guan, Jinhua; Hsiao, Hongwei; Bradtmiller, Bruce; Kau, Tsui-Ying; Reed, Matthew R; Jahns, Steven K; Loczi, Josef; Hardee, H Lenora; Piamonte, Dominic Paul T

    2012-10-01

    This study presents data from a large-scale anthropometric study of U.S. truck drivers and the multivariate anthropometric models developed for the design of next-generation truck cabs. Up-to-date anthropometric information of the U.S. truck driver population is needed for the design of safe and ergonomically efficient truck cabs. We collected 35 anthropometric dimensions for 1,950 truck drivers (1,779 males and 171 females) across the continental United States using a sampling plan designed to capture the appropriate ethnic, gender, and age distributions of the truck driver population. Truck drivers are heavier than the U.S.general population, with a difference in mean body weight of 13.5 kg for males and 15.4 kg for females. They are also different in physique from the U.S. general population. In addition, the current truck drivers are heavier and different in physique compared to their counterparts of 25 to 30 years ago. The data obtained in this study provide more accurate anthropometric information for cab designs than do the current U.S. general population data or truck driver data collected 25 to 30 years ago. Multivariate anthropometric models, spanning 95% of the current truck driver population on the basis of a set of 12 anthropometric measurements, have been developed to facilitate future cab designs. The up-to-date truck driver anthropometric data and multivariate anthropometric models will benefit the design of future truck cabs which, in turn, will help promote the safety and health of the U.S. truck drivers.

  5. Breakthrough seizures—Further analysis of the Standard versus New Antiepileptic Drugs (SANAD) study

    PubMed Central

    Powell, Graham A.; Tudur Smith, Catrin; Marson, Anthony G.

    2017-01-01

    Objectives To develop prognostic models for risk of a breakthrough seizure, risk of seizure recurrence after a breakthrough seizure, and likelihood of achieving 12-month remission following a breakthrough seizure. A breakthrough seizure is one that occurs following at least 12 months remission whilst on treatment. Methods We analysed data from the SANAD study. This long-term randomised trial compared treatments for participants with newly diagnosed epilepsy. Multivariable Cox models investigated how clinical factors affect the probability of each outcome. Best fitting multivariable models were produced with variable reduction by Akaike’s Information Criterion. Risks associated with combinations of risk factors were calculated from each multivariable model. Results Significant factors in the multivariable model for risk of a breakthrough seizure following 12-month remission were number of tonic-clonic seizures by achievement of 12-month remission, time taken to achieve 12-month remission, and neurological insult. Significant factors in the model for risk of seizure recurrence following a breakthrough seizure were total number of drugs attempted to achieve 12-month remission, time to achieve 12-month remission prior to breakthrough seizure, and breakthrough seizure treatment decision. Significant factors in the model for likelihood of achieving 12-month remission after a breakthrough seizure were gender, age at breakthrough seizure, time to achieve 12-month remission prior to breakthrough, and breakthrough seizure treatment decision. Conclusions This is the first analysis to consider risk of a breakthrough seizure and subsequent outcomes. The described models can be used to identify people most likely to have a breakthrough seizure, a seizure recurrence following a breakthrough seizure, and to achieve 12-month remission following a breakthrough seizure. The results suggest that focussing on achieving 12-month remission swiftly represents the best therapeutic aim to reduce the risk of a breakthrough seizure and subsequent negative outcomes. This will aid individual patient risk stratification and the design of future epilepsy trials. PMID:29267375

  6. Preliminary Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  7. Evaluation of in-line Raman data for end-point determination of a coating process: Comparison of Science-Based Calibration, PLS-regression and univariate data analysis.

    PubMed

    Barimani, Shirin; Kleinebudde, Peter

    2017-10-01

    A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Empirical study of the dependence of the results of multivariable flexible survival analyses on model selection strategy.

    PubMed

    Binquet, C; Abrahamowicz, M; Mahboubi, A; Jooste, V; Faivre, J; Bonithon-Kopp, C; Quantin, C

    2008-12-30

    Flexible survival models, which avoid assumptions about hazards proportionality (PH) or linearity of continuous covariates effects, bring the issues of model selection to a new level of complexity. Each 'candidate covariate' requires inter-dependent decisions regarding (i) its inclusion in the model, and representation of its effects on the log hazard as (ii) either constant over time or time-dependent (TD) and, for continuous covariates, (iii) either loglinear or non-loglinear (NL). Moreover, 'optimal' decisions for one covariate depend on the decisions regarding others. Thus, some efficient model-building strategy is necessary.We carried out an empirical study of the impact of the model selection strategy on the estimates obtained in flexible multivariable survival analyses of prognostic factors for mortality in 273 gastric cancer patients. We used 10 different strategies to select alternative multivariable parametric as well as spline-based models, allowing flexible modeling of non-parametric (TD and/or NL) effects. We employed 5-fold cross-validation to compare the predictive ability of alternative models.All flexible models indicated significant non-linearity and changes over time in the effect of age at diagnosis. Conventional 'parametric' models suggested the lack of period effect, whereas more flexible strategies indicated a significant NL effect. Cross-validation confirmed that flexible models predicted better mortality. The resulting differences in the 'final model' selected by various strategies had also impact on the risk prediction for individual subjects.Overall, our analyses underline (a) the importance of accounting for significant non-parametric effects of covariates and (b) the need for developing accurate model selection strategies for flexible survival analyses. Copyright 2008 John Wiley & Sons, Ltd.

  9. Improved Accuracy of Automated Estimation of Cardiac Output Using Circulation Time in Patients with Heart Failure.

    PubMed

    Dajani, Hilmi R; Hosokawa, Kazuya; Ando, Shin-Ichi

    2016-11-01

    Lung-to-finger circulation time of oxygenated blood during nocturnal periodic breathing in heart failure patients measured using polysomnography correlates negatively with cardiac function but possesses limited accuracy for cardiac output (CO) estimation. CO was recalculated from lung-to-finger circulation time using a multivariable linear model with information on age and average overnight heart rate in 25 patients who underwent evaluation of heart failure. The multivariable model decreased the percentage error to 22.3% relative to invasive CO measured during cardiac catheterization. This improved automated noninvasive CO estimation using multiple variables meets a recently proposed performance criterion for clinical acceptability of noninvasive CO estimation, and compares very favorably with other available methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A Diagnostic Calculator for Detecting Glaucoma on the Basis of Retinal Nerve Fiber Layer, Optic Disc, and Retinal Ganglion Cell Analysis by Optical Coherence Tomography.

    PubMed

    Larrosa, José Manuel; Moreno-Montañés, Javier; Martinez-de-la-Casa, José María; Polo, Vicente; Velázquez-Villoria, Álvaro; Berrozpe, Clara; García-Granero, Marta

    2015-10-01

    The purpose of this study was to develop and validate a multivariate predictive model to detect glaucoma by using a combination of retinal nerve fiber layer (RNFL), retinal ganglion cell-inner plexiform (GCIPL), and optic disc parameters measured using spectral-domain optical coherence tomography (OCT). Five hundred eyes from 500 participants and 187 eyes of another 187 participants were included in the study and validation groups, respectively. Patients with glaucoma were classified in five groups based on visual field damage. Sensitivity and specificity of all glaucoma OCT parameters were analyzed. Receiver operating characteristic curves (ROC) and areas under the ROC (AUC) were compared. Three predictive multivariate models (quantitative, qualitative, and combined) that used a combination of the best OCT parameters were constructed. A diagnostic calculator was created using the combined multivariate model. The best AUC parameters were: inferior RNFL, average RNFL, vertical cup/disc ratio, minimal GCIPL, and inferior-temporal GCIPL. Comparisons among the parameters did not show that the GCIPL parameters were better than those of the RNFL in early and advanced glaucoma. The highest AUC was in the combined predictive model (0.937; 95% confidence interval, 0.911-0.957) and was significantly (P = 0.0001) higher than the other isolated parameters considered in early and advanced glaucoma. The validation group displayed similar results to those of the study group. Best GCIPL, RNFL, and optic disc parameters showed a similar ability to detect glaucoma. The combined predictive formula improved the glaucoma detection compared to the best isolated parameters evaluated. The diagnostic calculator obtained good classification from participants in both the study and validation groups.

  11. Comparison of sensitivity to artificial spectral errors and multivariate LOD in NIR spectroscopy - Determining the performance of miniaturizations on melamine in milk powder.

    PubMed

    Henn, Raphael; Kirchler, Christian G; Grossgut, Maria-Elisabeth; Huck, Christian W

    2017-05-01

    This study compared three commercially available spectrometers - whereas two of them were miniaturized - in terms of prediction ability of melamine in milk powder (infant formula). Therefore all spectra were split into calibration- and validation-set using Kennard Stone and Duplex algorithm in comparison. For each instrument the three best performing PLSR models were constructed using SNV and Savitzky Golay derivatives. The best RMSEP values were 0.28g/100g, 0.33g/100g and 0.27g/100g for the NIRFlex N-500, the microPHAZIR and the microNIR2200 respectively. Furthermore the multivariate LOD interval [LOD min , LOD max ] was calculated for all the PLSR models unveiling significant differences among the spectrometers showing values of 0.20g/100g - 0.27g/100g, 0.28g/100g - 0.54g/100g and 0.44g/100g - 1.01g/100g for the NIRFlex N-500, the microPHAZIR and the microNIR2200 respectively. To assess the robustness of all models, artificial introduction of white noise, baseline shift, multiplicative effect, spectral shrink and stretch, stray light and spectral shift were applied. Monitoring the RMSEP as function of the perturbation gave indication of robustness of the models and helped to compare the performances of the spectrometers. Not taking the additional information from the LOD calculations into account one could falsely assume that all the spectrometers perform equally well which is not the case when the multivariate evaluation and robustness data were considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multivariate Models of Parent-Late Adolescent Gender Dyads: The Importance of Parenting Processes in Predicting Adjustment

    ERIC Educational Resources Information Center

    McKinney, Cliff; Renk, Kimberly

    2008-01-01

    Although parent-adolescent interactions have been examined, relevant variables have not been integrated into a multivariate model. As a result, this study examined a multivariate model of parent-late adolescent gender dyads in an attempt to capture important predictors in late adolescents' important and unique transition to adulthood. The sample…

  13. A Study of Item Bias for Attitudinal Measurement Using Maximum Likelihood Factor Analysis.

    ERIC Educational Resources Information Center

    Mayberry, Paul W.

    A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…

  14. A multivariate model and statistical method for validating tree grade lumber yield equations

    Treesearch

    Donald W. Seegrist

    1975-01-01

    Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.

  15. Prevalence and predictors of thyroid functional abnormalities in newly diagnosed AL amyloidosis.

    PubMed

    Muchtar, E; Dean, D S; Dispenzieri, A; Dingli, D; Buadi, F K; Lacy, M Q; Hayman, S R; Kapoor, P; Leung, N; Russell, S; Lust, J A; Lin, Yi; Warsame, R; Gonsalves, W; Kourelis, T V; Go, R S; Chakraborty, R; Zeldenrust, S; Kyle, R A; Rajkumar, S Vincent; Kumar, S K; Gertz, M A

    2017-06-01

    Data on the effect of systemic immunoglobulin light chain amyloidosis (AL amyloidosis) on thyroid function are limited. To assess the prevalence of hypothyroidism in AL amyloidosis patients and determine its predictors. 1142 newly diagnosed AL amyloidosis patients were grouped based on the thyroid-stimulating hormone (TSH) measurement at diagnosis: hypothyroid group (TSH above upper normal reference; >5 mIU L -1 ; n = 217, 19% of study participants) and euthyroid group (n = 925, 81%). Predictors for hypothyroidism were assessed in a binary multivariate model. Survival between groups was compared using the log-rank test and a multivariate analysis. Patients with hypothyroidism were older, more likely to present with renal and hepatic involvement and had a higher light chain burden compared to patients in the euthyroid group. Higher proteinuria in patients with renal involvement and lower albumin in patients with hepatic involvement were associated with hypothyroidism. In a binary logistic regression model, age ≥65 years, female sex, renal involvement, hepatic involvement, kappa light chain restriction and amiodarone use were independently associated with hypothyroidism. Ninety-three per cent of patients in the hypothyroid group with free thyroxine measurement had normal values, consistent with subclinical hypothyroidism. Patients in the hypothyroid group had a shorter survival compared to patients in the euthyroid group (4-year survival 36% vs 43%; P = 0.008), a difference that was maintained in a multivariate analysis. A significant proportion of patients with AL amyloidosis present with hypothyroidism, predominantly subclinical, which carries a survival disadvantage. Routine assessment of TSH in these patients is warranted. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  16. Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data

    PubMed Central

    Xiong, Lie; Kuan, Pei-Fen; Tian, Jianan; Keles, Sunduz; Wang, Sijian

    2015-01-01

    In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of high-dimensional genomic data. Particularly, we are interested in two applications: studying the influence of DNA copy number alterations on RNA transcript levels and investigating the association between DNA methylation and gene expression. For this purpose, we model the dependence of the RNA expression levels on DNA copy number alterations and the dependence of gene expression on DNA methylation through multivariate regression models and utilize boosting-type method to handle the high dimensionality as well as model the possible nonlinear associations. The performance of the proposed method is demonstrated through simulation studies. Finally, our multivariate boosting method is applied to two breast cancer studies. PMID:26609213

  17. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men.

    PubMed

    Vedder, Moniek M; de Bekker-Grob, Esther W; Lilja, Hans G; Vickers, Andrew J; van Leenders, Geert J L H; Steyerberg, Ewout W; Roobol, Monique J

    2014-12-01

    Prostate-specific antigen (PSA) testing has limited accuracy for the early detection of prostate cancer (PCa). To assess the value added by percentage of free to total PSA (%fPSA), prostate cancer antigen 3 (PCA3), and a kallikrein panel (4k-panel) to the European Randomised Study of Screening for Prostate Cancer (ERSPC) multivariable prediction models: risk calculator (RC) 4, including transrectal ultrasound, and RC 4 plus digital rectal examination (4+DRE) for prescreened men. Participants were invited for rescreening between October 2007 and February 2009 within the Dutch part of the ERSPC study. Biopsies were taken in men with a PSA level ≥3.0 ng/ml or a PCA3 score ≥10. Additional analyses of the 4k-panel were done on serum samples. Outcome was defined as PCa detectable by sextant biopsy. Receiver operating characteristic curve and decision curve analyses were performed to compare the predictive capabilities of %fPSA, PCA3, 4k-panel, the ERSPC RCs, and their combinations in logistic regression models. PCa was detected in 119 of 708 men. The %fPSA did not perform better univariately or added to the RCs compared with the RCs alone. In 202 men with an elevated PSA, the 4k-panel discriminated better than PCA3 when modelled univariately (area under the curve [AUC]: 0.78 vs. 0.62; p=0.01). The multivariable models with PCA3 or the 4k-panel were equivalent (AUC: 0.80 for RC 4+DRE). In the total population, PCA3 discriminated better than the 4k-panel (univariate AUC: 0.63 vs. 0.56; p=0.05). There was no statistically significant difference between the multivariable model with PCA3 (AUC: 0.73) versus the model with the 4k-panel (AUC: 0.71; p=0.18). The multivariable model with PCA3 performed better than the reference model (0.73 vs. 0.70; p=0.02). Decision curves confirmed these patterns, although numbers were small. Both PCA3 and, to a lesser extent, a 4k-panel have added value to the DRE-based ERSPC RC in detecting PCa in prescreened men. We studied the added value of novel biomarkers to previously developed risk prediction models for prostate cancer. We found that inclusion of these biomarkers resulted in an increase in predictive ability. Copyright © 2014. Published by Elsevier B.V.

  18. Noise source and reactor stability estimation in a boiling water reactor using a multivariate autoregressive model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanemoto, S.; Andoh, Y.; Sandoz, S.A.

    1984-10-01

    A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less

  19. Predictive factors that influence treatment outcomes of innovative single incision sling: comparing TVT-Secur to an established transobturator sling for female stress urinary incontinence.

    PubMed

    Hwang, Eugene; Shin, Ju Hyun; Lim, Jae Sung; Song, Ki Hak; Sul, Chong Koo; Na, Yong Gil

    2012-07-01

    This study aims to identify independent risk factors for treatment failure of tension-free vaginal tape TVT-Secur (TVT-S) compared to that of the well-established transobturator tape. Of a total of 175 consecutive patients with urodynamically confirmed stress urinary incontinence (SUI) identified between July 2007 and March 2010, 89 patients underwent TVT-S, and 86 underwent TOT. Cure was defined using the Urogenital Distress Inventory as no urinary leakage during physical activity, coughing, or sneezing as reported by patients during a telephone survey. To identify predictors of treatment failure, multivariable logistic regression models were used, and odds ratios (ORs) were calculated using variables identified during univariate analysis. There were more patients with cystocele ≥ grade 2 in the TVT-S group (p = 0.031); otherwise the groups were well matched. After a median follow-up of 32 months (range, 12-44 months), the overall cure rate was 80.6%; it was 70.8% for those treated with TVT-S and 90.7% for those treated with TOT (p = 0.001). In a multivariate model, previous incontinence surgery (OR 27.1, p = 0.005) and a cystocele ≥ grade 2 (OR 3.0, p = 0.020) were independent risk factors influencing the outcome of TVT-S procedures. For the TOT procedures, detrusor overactivity was an independent risk factor in a multivariate model (OR 8.6, p = 0.033). TVT-S could be performed for selected patients, but conventional TOT procedures are still superior to the novel TVT-S device.

  20. Dietary Fiber Intake Is Inversely Associated with Periodontal Disease among US Adults.

    PubMed

    Nielsen, Samara Joy; Trak-Fellermeier, Maria Angelica; Joshipura, Kaumudi; Dye, Bruce A

    2016-12-01

    Approximately 47% of adults in the United States have periodontal disease. Dietary guidelines recommend a diet providing adequate fiber. Healthier dietary habits, particularly an increased fiber intake, may contribute to periodontal disease prevention. Our objective was to evaluate the relation of dietary fiber intake and its sources with periodontal disease in the US adult population (≥30 y of age). Data from 6052 adults participating in NHANES 2009-2012 were used. Periodontal disease was defined (according to the CDC/American Academy of Periodontology) as severe, moderate, mild, and none. Intake was assessed by 24-h dietary recalls. The relation between periodontal disease and dietary fiber, whole-grain, and fruit and vegetable intakes were evaluated by using multivariate models, adjusting for sociodemographic characteristics and dentition status. In the multivariate logistic model, the lowest quartile of dietary fiber was associated with moderate-severe periodontitis (compared with mild-none) compared with the highest dietary fiber intake quartile (OR: 1.30; 95% CI: 1.00, 1.69). In the multivariate multinomial logistic model, intake in the lowest quartile of dietary fiber was associated with higher severity of periodontitis than dietary fiber intake in the highest quartile (OR: 1.27; 95% CI: 1.00, 1.62). In the adjusted logistic model, whole-grain intake was not associated with moderate-severe periodontitis. However, in the adjusted multinomial logistic model, adults consuming whole grains in the lowest quartile were more likely to have more severe periodontal disease than were adults consuming whole grains in the highest quartile (OR: 1.32; 95% CI: 1.08, 1.62). In fully adjusted logistic and multinomial logistic models, fruit and vegetable intake was not significantly associated with periodontitis. We found an inverse relation between dietary fiber intake and periodontal disease among US adults ≥30 y old. Periodontal disease was associated with low whole-grain intake but not with low fruit and vegetable intake. © 2016 American Society for Nutrition.

  1. Combined Prediction Model of Death Toll for Road Traffic Accidents Based on Independent and Dependent Variables

    PubMed Central

    Zhong-xiang, Feng; Shi-sheng, Lu; Wei-hua, Zhang; Nan-nan, Zhang

    2014-01-01

    In order to build a combined model which can meet the variation rule of death toll data for road traffic accidents and can reflect the influence of multiple factors on traffic accidents and improve prediction accuracy for accidents, the Verhulst model was built based on the number of death tolls for road traffic accidents in China from 2002 to 2011; and car ownership, population, GDP, highway freight volume, highway passenger transportation volume, and highway mileage were chosen as the factors to build the death toll multivariate linear regression model. Then the two models were combined to be a combined prediction model which has weight coefficient. Shapley value method was applied to calculate the weight coefficient by assessing contributions. Finally, the combined model was used to recalculate the number of death tolls from 2002 to 2011, and the combined model was compared with the Verhulst and multivariate linear regression models. The results showed that the new model could not only characterize the death toll data characteristics but also quantify the degree of influence to the death toll by each influencing factor and had high accuracy as well as strong practicability. PMID:25610454

  2. Combined prediction model of death toll for road traffic accidents based on independent and dependent variables.

    PubMed

    Feng, Zhong-xiang; Lu, Shi-sheng; Zhang, Wei-hua; Zhang, Nan-nan

    2014-01-01

    In order to build a combined model which can meet the variation rule of death toll data for road traffic accidents and can reflect the influence of multiple factors on traffic accidents and improve prediction accuracy for accidents, the Verhulst model was built based on the number of death tolls for road traffic accidents in China from 2002 to 2011; and car ownership, population, GDP, highway freight volume, highway passenger transportation volume, and highway mileage were chosen as the factors to build the death toll multivariate linear regression model. Then the two models were combined to be a combined prediction model which has weight coefficient. Shapley value method was applied to calculate the weight coefficient by assessing contributions. Finally, the combined model was used to recalculate the number of death tolls from 2002 to 2011, and the combined model was compared with the Verhulst and multivariate linear regression models. The results showed that the new model could not only characterize the death toll data characteristics but also quantify the degree of influence to the death toll by each influencing factor and had high accuracy as well as strong practicability.

  3. A review of multivariate methods in brain imaging data fusion

    NASA Astrophysics Data System (ADS)

    Sui, Jing; Adali, Tülay; Li, Yi-Ou; Yang, Honghui; Calhoun, Vince D.

    2010-03-01

    On joint analysis of multi-task brain imaging data sets, a variety of multivariate methods have shown their strengths and been applied to achieve different purposes based on their respective assumptions. In this paper, we provide a comprehensive review on optimization assumptions of six data fusion models, including 1) four blind methods: joint independent component analysis (jICA), multimodal canonical correlation analysis (mCCA), CCA on blind source separation (sCCA) and partial least squares (PLS); 2) two semi-blind methods: parallel ICA and coefficient-constrained ICA (CC-ICA). We also propose a novel model for joint blind source separation (BSS) of two datasets using a combination of sCCA and jICA, i.e., 'CCA+ICA', which, compared with other joint BSS methods, can achieve higher decomposition accuracy as well as the correct automatic source link. Applications of the proposed model to real multitask fMRI data are compared to joint ICA and mCCA; CCA+ICA further shows its advantages in capturing both shared and distinct information, differentiating groups, and interpreting duration of illness in schizophrenia patients, hence promising applicability to a wide variety of medical imaging problems.

  4. Preliminary Multi-Variable Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years.

  5. Multivariate Longitudinal Analysis with Bivariate Correlation Test

    PubMed Central

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692

  6. Perceived Risks and Normative Beliefs as Explanatory Models for College Student Alcohol Involvement: An Assessment of a Campus with Conventional Alcohol Control Policies and Enforcement Practices

    ERIC Educational Resources Information Center

    Lewis, Todd F.; Thombs, Dennis L.

    2005-01-01

    The aim of this study was to conduct a multivariate assessment of college student drinking motivations at a campus with conventional alcohol control policies and enforcement practices, including the establishment and dissemination of alcohol policies and the use of warnings to arouse fear of sanctions. Two explanatory models were compared:…

  7. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  8. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis.

    PubMed

    Nespeca, Maurilio Gustavo; Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2018-01-01

    Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000-650 cm -1 . The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time.

  9. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis

    PubMed Central

    Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2018-01-01

    Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000–650 cm−1. The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time. PMID:29629209

  10. Predicting the multi-domain progression of Parkinson's disease: a Bayesian multivariate generalized linear mixed-effect model.

    PubMed

    Wang, Ming; Li, Zheng; Lee, Eun Young; Lewis, Mechelle M; Zhang, Lijun; Sterling, Nicholas W; Wagner, Daymond; Eslinger, Paul; Du, Guangwei; Huang, Xuemei

    2017-09-25

    It is challenging for current statistical models to predict clinical progression of Parkinson's disease (PD) because of the involvement of multi-domains and longitudinal data. Past univariate longitudinal or multivariate analyses from cross-sectional trials have limited power to predict individual outcomes or a single moment. The multivariate generalized linear mixed-effect model (GLMM) under the Bayesian framework was proposed to study multi-domain longitudinal outcomes obtained at baseline, 18-, and 36-month. The outcomes included motor, non-motor, and postural instability scores from the MDS-UPDRS, and demographic and standardized clinical data were utilized as covariates. The dynamic prediction was performed for both internal and external subjects using the samples from the posterior distributions of the parameter estimates and random effects, and also the predictive accuracy was evaluated based on the root of mean square error (RMSE), absolute bias (AB) and the area under the receiver operating characteristic (ROC) curve. First, our prediction model identified clinical data that were differentially associated with motor, non-motor, and postural stability scores. Second, the predictive accuracy of our model for the training data was assessed, and improved prediction was gained in particularly for non-motor (RMSE and AB: 2.89 and 2.20) compared to univariate analysis (RMSE and AB: 3.04 and 2.35). Third, the individual-level predictions of longitudinal trajectories for the testing data were performed, with ~80% observed values falling within the 95% credible intervals. Multivariate general mixed models hold promise to predict clinical progression of individual outcomes in PD. The data was obtained from Dr. Xuemei Huang's NIH grant R01 NS060722 , part of NINDS PD Biomarker Program (PDBP). All data was entered within 24 h of collection to the Data Management Repository (DMR), which is publically available ( https://pdbp.ninds.nih.gov/data-management ).

  11. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  12. Generating functions and stability study of multivariate self-excited epidemic processes

    NASA Astrophysics Data System (ADS)

    Saichev, A. I.; Sornette, D.

    2011-09-01

    We present a stability study of the class of multivariate self-excited Hawkes point processes, that can model natural and social systems, including earthquakes, epileptic seizures and the dynamics of neuron assemblies, bursts of exchanges in social communities, interactions between Internet bloggers, bank network fragility and cascading of failures, national sovereign default contagion, and so on. We present the general theory of multivariate generating functions to derive the number of events over all generations of various types that are triggered by a mother event of a given type. We obtain the stability domains of various systems, as a function of the topological structure of the mutual excitations across different event types. We find that mutual triggering tends to provide a significant extension of the stability (or subcritical) domain compared with the case where event types are decoupled, that is, when an event of a given type can only trigger events of the same type.

  13. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  14. Inference for multivariate regression model based on multiply imputed synthetic data generated via posterior predictive sampling

    NASA Astrophysics Data System (ADS)

    Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.

    2017-06-01

    The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.

  15. [Academic performance in first year medical students: an explanatory multivariate model].

    PubMed

    Urrutia Aguilar, María Esther; Ortiz León, Silvia; Fouilloux Morales, Claudia; Ponce Rosas, Efrén Raúl; Guevara Guzmán, Rosalinda

    2014-12-01

    Current education is focused in intellectual, affective, and ethical aspects, thus acknowledging their significance in students´ metacognition. Nowadays, it is known that an adequate and motivating environment together with a positive attitude towards studies is fundamental to induce learning. Medical students are under multiple stressful, academic, personal, and vocational situations. To identify psychosocial, vocational, and academic variables of 2010-2011 first year medical students at UNAM that may help predict their academic performance. Academic surveys of psychological and vocational factors were applied; an academic follow-up was carried out to obtain a multivariate model. The data were analyzed considering descriptive, comparative, correlative, and predictive statistics. The main variables that affect students´ academic performance are related to previous knowledge and to psychological variables. The results show the significance of implementing institutional programs to support students throughout their college adaptation.

  16. Real-World Vision in Age-Related Macular Degeneration Patients Treated with Single Anti-VEGF Drug Type for 1 Year in the IRIS Registry.

    PubMed

    Rao, Prethy; Lum, Flora; Wood, Kevin; Salman, Craig; Burugapalli, Bhavya; Hall, Rebecca; Singh, Sukhminder; Parke, David W; Williams, George A

    2018-04-01

    The purpose of this study is to compare real-world visual acuity (VA) in patients with neovascular age-related macular degeneration (nAMD) treated with a single anti-vascular endothelial growth factor (VEGF) drug monotherapy for 1 year from the American Academy of Ophthalmology (AAO) Intelligent Research in Sight (IRIS) Registry. Retrospective, nonrandomized, comparative study. IRIS Registry patients with nAMD who received bevacizumab, ranibizumab, or aflibercept only for 1 year between 2013-2016. Participants were divided into 3 groups based on monotherapy type. Multivariate analysis of covariance models (ANCOVA) was constructed in a stepwise fashion. The logarithm of the minimum angle of resolution (logMAR) VA at 1 year and mean change in logMAR VA between baseline and 1 year were compared between drug types. Of 13 859 patients, 6723 received bevacizumab, 2749 received ranibizumab, and 4387 received aflibercept only for 1 year. A total of 84 828 injections were performed. The mean number of injections (standard deviation) at 1 year was higher in the ranibizumab (6.4 [±2.4]) and aflibercept groups (6.2 [±2.4]) compared to bevacizumab group (5.9 [±2.4]; P < 0.0001). In the age-adjusted model, both ranibizumab and aflibercept achieved better logMAR VA at 1 year compared with bevacizumab (0.50 [±0.49], 0.49 [±0.44], 0.55 [±0.57]; P < 0.0001). However, this difference was not significant after multivariate adjustment (age, baseline VA, diabetes, posterior vitreous detachment, number of injections, race, insurance). There was no statistical difference in the age-adjusted or multivariate-adjusted mean logMAR VA change (standard deviation) at 1 year among treatment groups (-0.048 [0.44] bevacizumab, -0.053 [0.46] ranibizumab, -0.040 [0.39] aflibercept; P = 0.46). A higher percentage of patients achieved a ≥3-line VA improvement at 1 year in the bevacizumab group (22.7%) compared with ranibizumab (20.1%; P = 0.0093) and aflibercept (17.8%; P < 0.0001). However, after multivariate adjustment, aflibercept exhibited a greater log odds of a ≥3-line VA loss compared with bevacizumab only (1.25 log odds ratio; P < 0.0016). This study suggests that all 3 drugs improve VA similarly over 1 year of monotherapy. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  17. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification

    NASA Astrophysics Data System (ADS)

    Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng

    2013-10-01

    Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.

  18. Multivariate Latent Change Modeling of Developmental Decline in Academic Intrinsic Math Motivation and Achievement: Childhood through Adolescence

    ERIC Educational Resources Information Center

    Gottfried, Adele Eskeles; Marcoulides, George A.; Gottfried, Allen W.; Oliver, Pamella H.; Guerin, Diana Wright

    2007-01-01

    Research has established that academic intrinsic motivation, enjoyment of school learning without receipt of external rewards, significantly declines across childhood through adolescence. Math intrinsic motivation evidences the most severe decline compared with other subject areas. This study addresses this developmental decline in math intrinsic…

  19. Comparison of Two Procedures for Analyzing Small Sets of Repeated Measures Data

    ERIC Educational Resources Information Center

    Vallejo, Guillermo; Livacic-Rojas, Pablo

    2005-01-01

    This article compares two methods for analyzing small sets of repeated measures data under normal and non-normal heteroscedastic conditions: a mixed model approach with the Kenward-Roger correction and a multivariate extension of the modified Brown-Forsythe (BF) test. These procedures differ in their assumptions about the covariance structure of…

  20. ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.

    ERIC Educational Resources Information Center

    Vale, C. David; Gialluca, Kathleen A.

    ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…

  1. Alignment-Independent Comparisons of Human Gastrointestinal Tract Microbial Communities in a Multidimensional 16S rRNA Gene Evolutionary Space▿

    PubMed Central

    Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete

    2007-01-01

    We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554

  2. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  3. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    PubMed

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  4. A Comparison of Three Multivariate Models for Estimating Test Battery Reliability.

    ERIC Educational Resources Information Center

    Wood, Terry M.; Safrit, Margaret J.

    1987-01-01

    A comparison of three multivariate models (canonical reliability model, maximum generalizability model, canonical correlation model) for estimating test battery reliability indicated that the maximum generalizability model showed the least degree of bias, smallest errors in estimation, and the greatest relative efficiency across all experimental…

  5. Application of multivariate Gaussian detection theory to known non-Gaussian probability density functions

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.

    1995-06-01

    A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.

  6. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol lowering drugs

    PubMed Central

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin

    2013-01-01

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436

  7. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs.

    PubMed

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin

    2013-10-15

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Association of Discharge Home with Home Health Care and 30-day Readmission after Pancreatectomy

    PubMed Central

    Sanford, Dominic E; Olsen, Margaret A; Bommarito, Kerry M; Shah, Manish; Fields, Ryan C; Hawkins, William G; Jaques, David P; Linehan, David C

    2014-01-01

    Background We sought to determine if discharge home with home health care (HHC) is an independent predictor of increased readmission following pancreatectomy. Study Design We examined 30-day readmissions in patients undergoing pancreatectomy using the Healthcare Cost and Utilization Project State Inpatient Database for California from 2009 to 2011. Readmissions were categorized as severe or non-severe using the Modified Accordion Severity Grading System. Multivariable logistic regression models were used to examine the association of discharge home with HHC and 30-day readmission using discharge home without HHC as the reference group. Propensity score matching was used as an additional analysis to compare the rate of 30-day readmission between patients discharged home with HHC to patients discharged home without HHC. Results 3,573 patients underwent pancreatectomy and 752 (21.0%) were readmitted within 30 days of discharge. In a multivariable logistic regression model, discharge home with HHC was an independent predictor of increased 30-day readmission (OR=1.37; 95%CI=1.11-1.69, p=0.004). Using propensity score matching, patients who received HHC had a significantly increased rate of 30-day readmission compared to patients discharged home without HHC (24.3% vs 19.8%, p<0.001). Patients discharged home with HHC had a significantly increased rate of non-severe readmission compared to those discharged home without HHC by univariate comparison (19.2% vs 13.9%, p<0.001), but not severe readmission (6.4% vs 4.7%, p= 0.08). In multivariable logistic regression models, excluding patients discharged to facilities, discharge home with HHC was an independent predictor of increased non-severe readmissions (OR=1.41; 95%CI=1.11-1.79, p=0.005), but not severe readmissions (OR=1.31; 95%CI=0.88-1.93, p=0.18). Conclusions Discharge home with HHC following pancreatectomy is an independent predictor of increased 30-day readmission; specifically, these services are associated with increased non-severe readmissions, but not severe readmissions. PMID:25440026

  9. Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis

    ERIC Educational Resources Information Center

    Ansari, Asim; Iyengar, Raghuram

    2006-01-01

    We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…

  10. Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments.

    PubMed

    Pedersen, Kristine Bondo; Kirkelund, Gunvor M; Ottosen, Lisbeth M; Jensen, Pernille E; Lejon, Tore

    2015-01-01

    Chemometrics was used to develop a multivariate model based on 46 previously reported electrodialytic remediation experiments (EDR) of five different harbour sediments. The model predicted final concentrations of Cd, Cu, Pb and Zn as a function of current density, remediation time, stirring rate, dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating that the targeted heavy metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean-up levels were met in four out of five experiments. The clean-up levels were better than predicted by the model, which could hence be used for predicting an approximate remediation strategy; the modelling power will however improve with more data included. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Comparing of Cox model and parametric models in analysis of effective factors on event time of neuropathy in patients with type 2 diabetes.

    PubMed

    Kargarian-Marvasti, Sadegh; Rimaz, Shahnaz; Abolghasemi, Jamileh; Heydari, Iraj

    2017-01-01

    Cox proportional hazard model is the most common method for analyzing the effects of several variables on survival time. However, under certain circumstances, parametric models give more precise estimates to analyze survival data than Cox. The purpose of this study was to investigate the comparative performance of Cox and parametric models in a survival analysis of factors affecting the event time of neuropathy in patients with type 2 diabetes. This study included 371 patients with type 2 diabetes without neuropathy who were registered at Fereydunshahr diabetes clinic. Subjects were followed up for the development of neuropathy between 2006 to March 2016. To investigate the factors influencing the event time of neuropathy, significant variables in univariate model ( P < 0.20) were entered into the multivariate Cox and parametric models ( P < 0.05). In addition, Akaike information criterion (AIC) and area under ROC curves were used to evaluate the relative goodness of fitted model and the efficiency of each procedure, respectively. Statistical computing was performed using R software version 3.2.3 (UNIX platforms, Windows and MacOS). Using Kaplan-Meier, survival time of neuropathy was computed 76.6 ± 5 months after initial diagnosis of diabetes. After multivariate analysis of Cox and parametric models, ethnicity, high-density lipoprotein and family history of diabetes were identified as predictors of event time of neuropathy ( P < 0.05). According to AIC, "log-normal" model with the lowest Akaike's was the best-fitted model among Cox and parametric models. According to the results of comparison of survival receiver operating characteristics curves, log-normal model was considered as the most efficient and fitted model.

  12. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes.

    PubMed

    Achana, Felix A; Cooper, Nicola J; Bujkiewicz, Sylwia; Hubbard, Stephanie J; Kendrick, Denise; Jones, David R; Sutton, Alex J

    2014-07-21

    Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.

  13. Effects of Covariance Heterogeneity on Three Procedures for Analyzing Multivariate Repeated Measures Designs.

    ERIC Educational Resources Information Center

    Vallejo, Guillermo; Fidalgo, Angel; Fernandez, Paula

    2001-01-01

    Estimated empirical Type I error rate and power rate for three procedures for analyzing multivariate repeated measures designs: (1) the doubly multivariate model; (2) the Welch-James multivariate solution (H. Keselman, M. Carriere, a nd L. Lix, 1993); and (3) the multivariate version of the modified Brown-Forsythe procedure (M. Brown and A.…

  14. Full Bayesian evaluation of the safety effects of reducing the posted speed limit in urban residential area.

    PubMed

    Islam, Md Tazul; El-Basyouny, Karim

    2015-07-01

    Full Bayesian (FB) before-after evaluation is a newer approach than the empirical Bayesian (EB) evaluation in traffic safety research. While a number of earlier studies have conducted univariate and multivariate FB before-after safety evaluations and compared the results with the EB method, often contradictory conclusions have been drawn. To this end, the objectives of the current study were to (i) perform a before-after safety evaluation using both the univariate and multivariate FB methods in order to enhance our understanding of these methodologies, (ii) perform the EB evaluation and compare the results with those of the FB methods and (iii) apply the FB and EB methods to evaluate the safety effects of reducing the urban residential posted speed limit (PSL) for policy recommendation. In addition to three years of crash data for both the before and after periods, traffic volume, road geometry and other relevant data for both the treated and reference sites were collected and used. According to the model goodness-of-fit criteria, the current study found that the multivariate FB model for crash severities outperformed the univariate FB models. Moreover, in terms of statistical significance of the safety effects, the EB and FB methods led to opposite conclusions when the safety effects were relatively small with high standard deviation. Therefore, caution should be taken in drawing conclusions from the EB method. Based on the FB method, the PSL reduction was found effective in reducing crashes of all severities and thus is recommended for improving safety on urban residential collector roads. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Estimating the ratio of multivariate recurrent event rates with application to a blood transfusion study.

    PubMed

    Ning, Jing; Rahbar, Mohammad H; Choi, Sangbum; Piao, Jin; Hong, Chuan; Del Junco, Deborah J; Rahbar, Elaheh; Fox, Erin E; Holcomb, John B; Wang, Mei-Cheng

    2017-08-01

    In comparative effectiveness studies of multicomponent, sequential interventions like blood product transfusion (plasma, platelets, red blood cells) for trauma and critical care patients, the timing and dynamics of treatment relative to the fragility of a patient's condition is often overlooked and underappreciated. While many hospitals have established massive transfusion protocols to ensure that physiologically optimal combinations of blood products are rapidly available, the period of time required to achieve a specified massive transfusion standard (e.g. a 1:1 or 1:2 ratio of plasma or platelets:red blood cells) has been ignored. To account for the time-varying characteristics of transfusions, we use semiparametric rate models for multivariate recurrent events to estimate blood product ratios. We use latent variables to account for multiple sources of informative censoring (early surgical or endovascular hemorrhage control procedures or death). The major advantage is that the distributions of latent variables and the dependence structure between the multivariate recurrent events and informative censoring need not be specified. Thus, our approach is robust to complex model assumptions. We establish asymptotic properties and evaluate finite sample performance through simulations, and apply the method to data from the PRospective Observational Multicenter Major Trauma Transfusion study.

  16. [Analysis of variance of repeated data measured by water maze with SPSS].

    PubMed

    Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang

    2007-01-01

    To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P

  17. Phylogenetic Factor Analysis.

    PubMed

    Tolkoff, Max R; Alfaro, Michael E; Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2018-05-01

    Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

  18. Multivariate statistical model for 3D image segmentation with application to medical images.

    PubMed

    John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O

    2003-12-01

    In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).

  19. Opportunities of probabilistic flood loss models

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Lüdtke, Stefan; Vogel, Kristin; Merz, Bruno

    2016-04-01

    Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. However, reliable flood damage models are a prerequisite for the practical usefulness of the model results. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks and traditional stage damage functions. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005, 2006 and 2013 in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of sharpness of the predictions the reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The comparison of the uni-variable Stage damage function and the multivariable model approach emphasises the importance to quantify predictive uncertainty. With each explanatory variable, the multi-variable model reveals an additional source of uncertainty. However, the predictive performance in terms of precision (mbe), accuracy (mae) and reliability (HR) is clearly improved in comparison to uni-variable Stage damage function. Overall, Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.

    In far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this paper is to study effects of these variables on three model waste glasses (SON68, ISG, AFCI). To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH(RT) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. The results from these tests were then used to parameterize a kinetic rate model based on transition state theory. Both the absolute dissolution rates andmore » the rate model parameters are compared with previous results. Discrepancies in the absolute dissolution rates as compared to those obtained using other test methods are discussed. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies. The results were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), which is capable of providing a robust uncertainty analysis. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, the effect of glass composition on the rate parameter values could possibly be obtained. This would allow for the possibility of predicting the forward dissolution rate of glass based solely on composition« less

  1. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  2. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  3. MULTIVARIATE RECEPTOR MODELS AND MODEL UNCERTAINTY. (R825173)

    EPA Science Inventory

    Abstract

    Estimation of the number of major pollution sources, the source composition profiles, and the source contributions are the main interests in multivariate receptor modeling. Due to lack of identifiability of the receptor model, however, the estimation cannot be...

  4. Influence of stroke subtype on quality of care in the Get With The Guidelines-Stroke Program.

    PubMed

    Smith, E E; Liang, L; Hernandez, A; Reeves, M J; Cannon, C P; Fonarow, G C; Schwamm, L H

    2009-09-01

    Little is known about in-hospital care for hemorrhagic stroke. We examined quality of care in intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) admissions in the national Get With The Guidelines-Stroke (GWTG-Stroke) database, and compared them to ischemic stroke (IS) or TIA admissions. Between April 1, 2003, and December 30, 2007, 905 hospitals contributed 479,284 consecutive stroke and TIA admissions. The proportions receiving each quality of care measure were calculated by dividing the total number of patients receiving the intervention by the total number of patients eligible for the intervention, excluding ineligible patients or those with contraindications to treatment. Logistic regression models were used to determine associations between measure compliance and stroke subtype, controlling for patient and hospital characteristics. Stroke subtypes were 61.7% IS, 23.8% TIA, 11.1% ICH, and 3.5% SAH. Performance on care measures was generally lower in ICH and SAH compared to IS/TIA, including guideline-recommended measures for deep venous thrombosis (DVT) prevention (for ICH) and smoking cessation (for SAH) (multivariable-adjusted p < 0.001 for all comparisons). Exceptions were that ICH patients were more likely than IS/TIA to have door-to-CT times <25 minutes (multivariable-adjusted p < 0.001) and to undergo dysphagia screening (multivariable-adjusted p < 0.001). Time spent in the GWTG-Stroke program was associated with improvements in many measures of care for ICH and SAH patients, including DVT prevention and smoking cessation therapy (multivariable-adjusted p < 0.001). Many hospital-based acute care and prevention measures are underutilized in intracerebral hemorrhage and subarachnoid hemorrhage compared to ischemic stroke /TIA. Duration of Get With The Guidelines-Stroke participation is associated with improving quality of care for hemorrhagic stroke.

  5. SMA texture and reorientation: simulations and neutron diffraction studies

    NASA Astrophysics Data System (ADS)

    Gao, Xiujie; Brown, Donald W.; Brinson, L. Catherine

    2005-05-01

    With increased usage of shape memory alloys (SMA) for applications in various fields, it is important to understand how the material behavior is affected by factors such as texture, stress state and loading history, especially for complex multiaxial loading states. Using the in-situ neutron diffraction loading facility (SMARTS diffractometer) and ex situ inverse pole figure measurement facility (HIPPO diffractometer) at the Los Alamos Neutron Science Center (LANCE), the macroscopic mechanical behavior and texture evolution of Nickel-Titanium (Nitinol) SMAs under sequential compression in alternating directions were studied. The simplified multivariant model developed at Northwestern University was then used to simulate the macroscopic behavior and the microstructural change of Nitinol under this sequential loading. Pole figures were obtained via post-processing of the multivariant results for volume fraction evolution and compared quantitatively well to the experimental results. The experimental results can also be used to test or verify other SMA constitutive models.

  6. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach

    NASA Astrophysics Data System (ADS)

    Gu, Huaying; Liu, Zhixue; Weng, Yingliang

    2017-04-01

    The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.

  7. Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations

    ERIC Educational Resources Information Center

    Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie

    2015-01-01

    The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…

  8. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  9. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Schröter, Kai; Merz, Bruno

    2016-05-01

    Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  10. A comparative study of multivariable robustness analysis methods as applied to integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schierman, John D.; Lovell, T. A.; Schmidt, David K.

    1993-01-01

    Three multivariable robustness analysis methods are compared and contrasted. The focus of the analysis is on system stability and performance robustness to uncertainty in the coupling dynamics between two interacting subsystems. Of particular interest is interacting airframe and engine subsystems, and an example airframe/engine vehicle configuration is utilized in the demonstration of these approaches. The singular value (SV) and structured singular value (SSV) analysis methods are compared to a method especially well suited for analysis of robustness to uncertainties in subsystem interactions. This approach is referred to here as the interacting subsystem (IS) analysis method. This method has been used previously to analyze airframe/engine systems, emphasizing the study of stability robustness. However, performance robustness is also investigated here, and a new measure of allowable uncertainty for acceptable performance robustness is introduced. The IS methodology does not require plant uncertainty models to measure the robustness of the system, and is shown to yield valuable information regarding the effects of subsystem interactions. In contrast, the SV and SSV methods allow for the evaluation of the robustness of the system to particular models of uncertainty, and do not directly indicate how the airframe (engine) subsystem interacts with the engine (airframe) subsystem.

  11. An error bound for a discrete reduced order model of a linear multivariable system

    NASA Technical Reports Server (NTRS)

    Al-Saggaf, Ubaid M.; Franklin, Gene F.

    1987-01-01

    The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.

  12. Psychosocial Characteristics and Social Networks of Suicidal Prisoners: Towards a Model of Suicidal Behaviour in Detention

    PubMed Central

    Rivlin, Adrienne; Hawton, Keith; Marzano, Lisa; Fazel, Seena

    2013-01-01

    Prisoners are at increased risk of suicide. Investigation of both individual and environmental risk factors may assist in developing suicide prevention policies for prisoners and other high-risk populations. We conducted a matched case-control interview study with 60 male prisoners who had made near-lethal suicide attempts in prison (cases) and 60 male prisoners who had not (controls). We compared levels of depression, hopelessness, self-esteem, impulsivity, aggression, hostility, childhood abuse, life events (including events occurring in prison), social support, and social networks in univariate and multivariate models. A range of psychosocial factors was associated with near-lethal self-harm in prisoners. Compared with controls, cases reported higher levels of depression, hopelessness, impulsivity, and aggression, and lower levels of self-esteem and social support (all p values <0.001). Adverse life events and criminal history factors were also associated with near-lethal self-harm, especially having a prior prison spell and having been bullied in prison, both of which remained significant in multivariate analyses. The findings support a model of suicidal behaviour in prisoners that incorporates imported vulnerability factors, clinical factors, and prison experiences, and underscores their interaction. Strategies to reduce self-harm and suicide in prisoners should include attention to such factors. PMID:23922671

  13. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI

    PubMed Central

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-01-01

    In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490

  14. Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Mfumu Kihumba, Antoine; Ndembo Longo, Jean; Vanclooster, Marnik

    2016-03-01

    A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.

  15. Preliminary Multi-Variable Parametric Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.

  16. A Comparative Study of Glasgow Coma Scale and Full Outline of Unresponsiveness Scores for Predicting Long-Term Outcome After Brain Injury.

    PubMed

    McNett, Molly M; Amato, Shelly; Philippbar, Sue Ann

    2016-01-01

    The aim of this study was to compare predictive ability of hospital Glasgow Coma Scale (GCS) scores and scores obtained using a novel coma scoring tool (the Full Outline of Unresponsiveness [FOUR] scale) on long-term outcomes among patients with traumatic brain injury. Preliminary research of the FOUR scale suggests that it is comparable with GCS for predicting mortality and functional outcome at hospital discharge. No research has investigated relationships between coma scores and outcome 12 months postinjury. This is a prospective cohort study. Data were gathered on adult patients with traumatic brain injury admitted to urban level I trauma center. GCS and FOUR scores were assigned at 24 and 72 hours and at hospital discharge. Glasgow Outcome Scale scores were assigned at 6 and 12 months. The sample size was n = 107. Mean age was 53.5 (SD = ±21, range = 18-91) years. Spearman correlations were comparable and strongest among discharge GCS and FOUR scores and 12-month outcome (r = .73, p < .000; r = .72, p < .000). Multivariate regression models indicate that age and discharge GCS were the strongest predictors of outcome. Areas under the curve were similar for GCS and FOUR scores, with discharge scores occupying the largest areas. GCS and FOUR scores were comparable in bivariate associations with long-term outcome. Discharge coma scores performed best for both tools, with GCS discharge scores predictive in multivariate models.

  17. Factors Associated with Sexual Violence against Men Who Have Sex with Men and Transgendered Individuals in Karnataka, India

    PubMed Central

    Shaw, Souradet Y.; Lorway, Robert R.; Deering, Kathleen N.; Avery, Lisa; Mohan, H. L.; Bhattacharjee, Parinita; Reza-Paul, Sushena; Isac, Shajy; Ramesh, Banadakoppa M.; Washington, Reynold; Moses, Stephen; Blanchard, James F.

    2012-01-01

    Objectives There is a lack of information on sexual violence (SV) among men who have sex with men and transgendered individuals (MSM-T) in southern India. As SV has been associated with HIV vulnerability, this study examined health related behaviours and practices associated with SV among MSM-T. Design Data were from cross-sectional surveys from four districts in Karnataka, India. Methods Multivariable logistic regression models were constructed to examine factors related to SV. Multivariable negative binomial regression models examined the association between physician visits and SV. Results A total of 543 MSM-T were included in the study. Prevalence of SV was 18% in the past year. HIV prevalence among those reporting SV was 20%, compared to 12% among those not reporting SV (p = .104). In multivariable models, and among sex workers, those reporting SV were more likely to report anal sex with 5+ casual sex partners in the past week (AOR: 4.1; 95%CI: 1.2–14.3, p = .029). Increased physician visits among those reporting SV was reported only for those involved in sex work (ARR: 1.7; 95%CI: 1.1–2.7, p = .012). Conclusions These results demonstrate high levels of SV among MSM-T populations, highlighting the importance of integrating interventions to reduce violence as part of HIV prevention programs and health services. PMID:22448214

  18. Risk prediction for myocardial infarction via generalized functional regression models.

    PubMed

    Ieva, Francesca; Paganoni, Anna M

    2016-08-01

    In this paper, we propose a generalized functional linear regression model for a binary outcome indicating the presence/absence of a cardiac disease with multivariate functional data among the relevant predictors. In particular, the motivating aim is the analysis of electrocardiographic traces of patients whose pre-hospital electrocardiogram (ECG) has been sent to 118 Dispatch Center of Milan (the Italian free-toll number for emergencies) by life support personnel of the basic rescue units. The statistical analysis starts with a preprocessing of ECGs treated as multivariate functional data. The signals are reconstructed from noisy observations. The biological variability is then removed by a nonlinear registration procedure based on landmarks. Thus, in order to perform a data-driven dimensional reduction, a multivariate functional principal component analysis is carried out on the variance-covariance matrix of the reconstructed and registered ECGs and their first derivatives. We use the scores of the Principal Components decomposition as covariates in a generalized linear model to predict the presence of the disease in a new patient. Hence, a new semi-automatic diagnostic procedure is proposed to estimate the risk of infarction (in the case of interest, the probability of being affected by Left Bundle Brunch Block). The performance of this classification method is evaluated and compared with other methods proposed in literature. Finally, the robustness of the procedure is checked via leave-j-out techniques. © The Author(s) 2013.

  19. Multivariate Models for Normal and Binary Responses in Intervention Studies

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen

    2016-01-01

    Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…

  20. A comparison of the Full Outline of UnResponsiveness (FOUR) score and Glasgow Coma Score (GCS) in predictive modelling in traumatic brain injury.

    PubMed

    Kasprowicz, Magdalena; Burzynska, Malgorzata; Melcer, Tomasz; Kübler, Andrzej

    2016-01-01

    To compare the performance of multivariate predictive models incorporating either the Full Outline of UnResponsiveness (FOUR) score or Glasgow Coma Score (GCS) in order to test whether substituting GCS with the FOUR score in predictive models for outcome in patients after TBI is beneficial. A total of 162 TBI patients were prospectively enrolled in the study. Stepwise logistic regression analysis was conducted to compare the prediction of (1) in-ICU mortality and (2) unfavourable outcome at 3 months post-injury using as predictors either the FOUR score or GCS along with other factors that may affect patient outcome. The areas under the ROC curves (AUCs) were used to compare the discriminant ability and predictive power of the models. The internal validation was performed with bootstrap technique and expressed as accuracy rate (AcR). The FOUR score, age, the CT Rotterdam score, systolic ABP and being placed on ventilator within day one (model 1: AUC: 0.906 ± 0.024; AcR: 80.3 ± 4.8%) performed equally well in predicting in-ICU mortality as the combination of GCS with the same set of predictors plus pupil reactivity (model 2: AUC: 0.913 ± 0.022; AcR: 81.1 ± 4.8%). The CT Rotterdam score, age and either the FOUR score (model 3) or GCS (model 4) equally well predicted unfavourable outcome at 3 months post-injury (AUC: 0.852 ± 0.037 vs. 0.866 ± 0.034; AcR: 72.3 ± 6.6% vs. 71.9%±6.6%, respectively). Adding the FOUR score or GCS at discharge from ICU to predictive models for unfavourable outcome increased significantly their performances (AUC: 0.895 ± 0.029, p = 0.05; AcR: 76.1 ± 6.5%; p < 0.004 when compared with model 3; and AUC: 0.918 ± 0.025, p < 0.05; AcR: 79.6 ± 7.2%, p < 0.009 when compared with model 4), but there was no benefit from substituting GCS with the FOUR score. Results showed that FOUR score and GCS perform equally well in multivariate predictive modelling in TBI.

  1. A Comparison Study of Multivariate Fixed Models and Gene Association with Multiple Traits (GAMuT) for Next-Generation Sequencing

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Wang, Yifan; Weeks, Daniel E.; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Amos, Christopher I.; Mills, James L.; Boehnke, Michael; Xiong, Momiao; Fan, Ruzong

    2016-01-01

    In this paper, extensive simulations are performed to compare two statistical methods to analyze multiple correlated quantitative phenotypes: (1) approximate F-distributed tests of multivariate functional linear models (MFLM) and additive models of multivariate analysis of variance (MANOVA), and (2) Gene Association with Multiple Traits (GAMuT) for association testing of high-dimensional genotype data. It is shown that approximate F-distributed tests of MFLM and MANOVA have higher power and are more appropriate for major gene association analysis (i.e., scenarios in which some genetic variants have relatively large effects on the phenotypes); GAMuT has higher power and is more appropriate for analyzing polygenic effects (i.e., effects from a large number of genetic variants each of which contributes a small amount to the phenotypes). MFLM and MANOVA are very flexible and can be used to perform association analysis for: (i) rare variants, (ii) common variants, and (iii) a combination of rare and common variants. Although GAMuT was designed to analyze rare variants, it can be applied to analyze a combination of rare and common variants and it performs well when (1) the number of genetic variants is large and (2) each variant contributes a small amount to the phenotypes (i.e., polygenes). MFLM and MANOVA are fixed effect models which perform well for major gene association analysis. GAMuT can be viewed as an extension of sequence kernel association tests (SKAT). Both GAMuT and SKAT are more appropriate for analyzing polygenic effects and they perform well not only in the rare variant case, but also in the case of a combination of rare and common variants. Data analyses of European cohorts and the Trinity Students Study are presented to compare the performance of the two methods. PMID:27917525

  2. Multivariate generalized hidden Markov regression models with random covariates: Physical exercise in an elderly population.

    PubMed

    Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello

    2018-04-22

    A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Multivariable normal tissue complication probability model-based treatment plan optimization for grade 2-4 dysphagia and tube feeding dependence in head and neck radiotherapy.

    PubMed

    Kierkels, Roel G J; Wopken, Kim; Visser, Ruurd; Korevaar, Erik W; van der Schaaf, Arjen; Bijl, Hendrik P; Langendijk, Johannes A

    2016-12-01

    Radiotherapy of the head and neck is challenged by the relatively large number of organs-at-risk close to the tumor. Biologically-oriented objective functions (OF) could optimally distribute the dose among the organs-at-risk. We aimed to explore OFs based on multivariable normal tissue complication probability (NTCP) models for grade 2-4 dysphagia (DYS) and tube feeding dependence (TFD). One hundred head and neck cancer patients were studied. Additional to the clinical plan, two more plans (an OF DYS and OF TFD -plan) were optimized per patient. The NTCP models included up to four dose-volume parameters and other non-dosimetric factors. A fully automatic plan optimization framework was used to optimize the OF NTCP -based plans. All OF NTCP -based plans were reviewed and classified as clinically acceptable. On average, the Δdose and ΔNTCP were small comparing the OF DYS -plan, OF TFD -plan, and clinical plan. For 5% of patients NTCP TFD reduced >5% using OF TFD -based planning compared to the OF DYS -plans. Plan optimization using NTCP DYS - and NTCP TFD -based objective functions resulted in clinically acceptable plans. For patients with considerable risk factors of TFD, the OF TFD steered the optimizer to dose distributions which directly led to slightly lower predicted NTCP TFD values as compared to the other studied plans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. A Novel MiRNA-Based Predictive Model for Biochemical Failure Following Post-Prostatectomy Salvage Radiation Therapy

    PubMed Central

    Stegmaier, Petra; Drendel, Vanessa; Mo, Xiaokui; Ling, Stella; Fabian, Denise; Manring, Isabel; Jilg, Cordula A.; Schultze-Seemann, Wolfgang; McNulty, Maureen; Zynger, Debra L.; Martin, Douglas; White, Julia; Werner, Martin; Grosu, Anca L.; Chakravarti, Arnab

    2015-01-01

    Purpose To develop a microRNA (miRNA)-based predictive model for prostate cancer patients of 1) time to biochemical recurrence after radical prostatectomy and 2) biochemical recurrence after salvage radiation therapy following documented biochemical disease progression post-radical prostatectomy. Methods Forty three patients who had undergone salvage radiation therapy following biochemical failure after radical prostatectomy with greater than 4 years of follow-up data were identified. Formalin-fixed, paraffin-embedded tissue blocks were collected for all patients and total RNA was isolated from 1mm cores enriched for tumor (>70%). Eight hundred miRNAs were analyzed simultaneously using the nCounter human miRNA v2 assay (NanoString Technologies; Seattle, WA). Univariate and multivariate Cox proportion hazards regression models as well as receiver operating characteristics were used to identify statistically significant miRNAs that were predictive of biochemical recurrence. Results Eighty eight miRNAs were identified to be significantly (p<0.05) associated with biochemical failure post-prostatectomy by multivariate analysis and clustered into two groups that correlated with early (≤ 36 months) versus late recurrence (>36 months). Nine miRNAs were identified to be significantly (p<0.05) associated by multivariate analysis with biochemical failure after salvage radiation therapy. A new predictive model for biochemical recurrence after salvage radiation therapy was developed; this model consisted of miR-4516 and miR-601 together with, Gleason score, and lymph node status. The area under the ROC curve (AUC) was improved to 0.83 compared to that of 0.66 for Gleason score and lymph node status alone. Conclusion miRNA signatures can distinguish patients who fail soon after radical prostatectomy versus late failures, giving insight into which patients may need adjuvant therapy. Notably, two novel miRNAs (miR-4516 and miR-601) were identified that significantly improve prediction of biochemical failure post-salvage radiation therapy compared to clinico-histopathological factors, supporting the use of miRNAs within clinically used predictive models. Both findings warrant further validation studies. PMID:25760964

  5. Multiple imputation for handling missing outcome data when estimating the relative risk.

    PubMed

    Sullivan, Thomas R; Lee, Katherine J; Ryan, Philip; Salter, Amy B

    2017-09-06

    Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically estimated using log binomial models. It is unclear whether misspecification of the imputation model in this setting could lead to biased parameter estimates. Using simulated data, we evaluated the performance of multiple imputation for handling missing data prior to estimating adjusted relative risks from a correctly specified multivariable log binomial model. We considered an arbitrary pattern of missing data in both outcome and exposure variables, with missing data induced under missing at random mechanisms. Focusing on standard model-based methods of multiple imputation, missing data were imputed using multivariate normal imputation or fully conditional specification with a logistic imputation model for the outcome. Multivariate normal imputation performed poorly in the simulation study, consistently producing estimates of the relative risk that were biased towards the null. Despite outperforming multivariate normal imputation, fully conditional specification also produced somewhat biased estimates, with greater bias observed for higher outcome prevalences and larger relative risks. Deleting imputed outcomes from analysis datasets did not improve the performance of fully conditional specification. Both multivariate normal imputation and fully conditional specification produced biased estimates of the relative risk, presumably since both use a misspecified imputation model. Based on simulation results, we recommend researchers use fully conditional specification rather than multivariate normal imputation and retain imputed outcomes in the analysis when estimating relative risks. However fully conditional specification is not without its shortcomings, and so further research is needed to identify optimal approaches for relative risk estimation within the multiple imputation framework.

  6. A simplified parsimonious higher order multivariate Markov chain model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.

  7. Decision-support models for empiric antibiotic selection in Gram-negative bloodstream infections.

    PubMed

    MacFadden, D R; Coburn, B; Shah, N; Robicsek, A; Savage, R; Elligsen, M; Daneman, N

    2018-04-25

    Early empiric antibiotic therapy in patients can improve clinical outcomes in Gram-negative bacteraemia. However, the widespread prevalence of antibiotic-resistant pathogens compromises our ability to provide adequate therapy while minimizing use of broad antibiotics. We sought to determine whether readily available electronic medical record data could be used to develop predictive models for decision support in Gram-negative bacteraemia. We performed a multi-centre cohort study, in Canada and the USA, of hospitalized patients with Gram-negative bloodstream infection from April 2010 to March 2015. We analysed multivariable models for prediction of antibiotic susceptibility at two empiric windows: Gram-stain-guided and pathogen-guided treatment. Decision-support models for empiric antibiotic selection were developed based on three clinical decision thresholds of acceptable adequate coverage (80%, 90% and 95%). A total of 1832 patients with Gram-negative bacteraemia were evaluated. Multivariable models showed good discrimination across countries and at both Gram-stain-guided (12 models, areas under the curve (AUCs) 0.68-0.89, optimism-corrected AUCs 0.63-0.85) and pathogen-guided (12 models, AUCs 0.75-0.98, optimism-corrected AUCs 0.64-0.95) windows. Compared to antibiogram-guided therapy, decision-support models of antibiotic selection incorporating individual patient characteristics and prior culture results have the potential to increase use of narrower-spectrum antibiotics (in up to 78% of patients) while reducing inadequate therapy. Multivariable models using readily available epidemiologic factors can be used to predict antimicrobial susceptibility in infecting pathogens with reasonable discriminatory ability. Implementation of sequential predictive models for real-time individualized empiric antibiotic decision-making has the potential to both optimize adequate coverage for patients while minimizing overuse of broad-spectrum antibiotics, and therefore requires further prospective evaluation. Readily available epidemiologic risk factors can be used to predict susceptibility of Gram-negative organisms among patients with bacteraemia, using automated decision-making models. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Piecewise multivariate modelling of sequential metabolic profiling data.

    PubMed

    Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan

    2008-02-19

    Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.

  9. Uni- and multi-variable modelling of flood losses: experiences gained from the Secchia river inundation event.

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Kreibich, Heidi; Schröter, Kai; Castellarin, Attilio

    2017-04-01

    Flood risk is function of flood hazard and vulnerability, therefore its accurate assessment depends on a reliable quantification of both factors. The scientific literature proposes a number of objective and reliable methods for assessing flood hazard, yet it highlights a limited understanding of the fundamental damage processes. Loss modelling is associated with large uncertainty which is, among other factors, due to a lack of standard procedures; for instance, flood losses are often estimated based on damage models derived in completely different contexts (i.e. different countries or geographical regions) without checking its applicability, or by considering only one explanatory variable (i.e. typically water depth). We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused the inundation of nearly 200 km2 in Northern Italy. In the aftermath of this event, local authorities collected flood loss data, together with additional information on affected private households and industrial activities (e.g. buildings surface and economic value, number of company's employees and others). Based on these data we implemented and compared a quadratic-regression damage function, with water depth as the only explanatory variable, and a multi-variable model that combines multiple regression trees and considers several explanatory variables (i.e. bagging decision trees). Our results show the importance of data collection revealing that (1) a simple quadratic regression damage function based on empirical data from the study area can be significantly more accurate than literature damage-models derived for a different context and (2) multi-variable modelling may outperform the uni-variable approach, yet it is more difficult to develop and apply due to a much higher demand of detailed data.

  10. Supporting inquiry learning by promoting normative understanding of multivariable causality

    NASA Astrophysics Data System (ADS)

    Keselman, Alla

    2003-11-01

    Early adolescents may lack the cognitive and metacognitive skills necessary for effective inquiry learning. In particular, they are likely to have a nonnormative mental model of multivariable causality in which effects of individual variables are neither additive nor consistent. Described here is a software-based intervention designed to facilitate students' metalevel and performance-level inquiry skills by enhancing their understanding of multivariable causality. Relative to an exploration-only group, sixth graders who practiced predicting an outcome (earthquake risk) based on multiple factors demonstrated increased attention to evidence, improved metalevel appreciation of effective strategies, and a trend toward consistent use of a controlled comparison strategy. Sixth graders who also received explicit instruction in making predictions based on multiple factors showed additional improvement in their ability to compare multiple instances as a basis for inferences and constructed the most accurate knowledge of the system. Gains were maintained in transfer tasks. The cognitive skills and metalevel understanding examined here are essential to inquiry learning.

  11. Epidemiological characteristics of reported sporadic and outbreak cases of E. coli O157 in people from Alberta, Canada (2000-2002): methodological challenges of comparing clustered to unclustered data.

    PubMed

    Pearl, D L; Louie, M; Chui, L; Doré, K; Grimsrud, K M; Martin, S W; Michel, P; Svenson, L W; McEwen, S A

    2008-04-01

    Using multivariable models, we compared whether there were significant differences between reported outbreak and sporadic cases in terms of their sex, age, and mode and site of disease transmission. We also determined the potential role of administrative, temporal, and spatial factors within these models. We compared a variety of approaches to account for clustering of cases in outbreaks including weighted logistic regression, random effects models, general estimating equations, robust variance estimates, and the random selection of one case from each outbreak. Age and mode of transmission were the only epidemiologically and statistically significant covariates in our final models using the above approaches. Weighing observations in a logistic regression model by the inverse of their outbreak size appeared to be a relatively robust and valid means for modelling these data. Some analytical techniques, designed to account for clustering, had difficulty converging or producing realistic measures of association.

  12. Joint modeling and registration of cell populations in cohorts of high-dimensional flow cytometric data.

    PubMed

    Pyne, Saumyadipta; Lee, Sharon X; Wang, Kui; Irish, Jonathan; Tamayo, Pablo; Nazaire, Marc-Danie; Duong, Tarn; Ng, Shu-Kay; Hafler, David; Levy, Ronald; Nolan, Garry P; Mesirov, Jill; McLachlan, Geoffrey J

    2014-01-01

    In biomedical applications, an experimenter encounters different potential sources of variation in data such as individual samples, multiple experimental conditions, and multivariate responses of a panel of markers such as from a signaling network. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While computational methods can identify cell populations in individual samples, without the ability to automatically match them across samples, it is difficult to compare and characterize the populations in typical experiments, such as those responding to various stimulations or distinctive of particular patients or time-points, especially when there are many samples. Joint Clustering and Matching (JCM) is a multi-level framework for simultaneous modeling and registration of populations across a cohort. JCM models every population with a robust multivariate probability distribution. Simultaneously, JCM fits a random-effects model to construct an overall batch template--used for registering populations across samples, and classifying new samples. By tackling systems-level variation, JCM supports practical biomedical applications involving large cohorts. Software for fitting the JCM models have been implemented in an R package EMMIX-JCM, available from http://www.maths.uq.edu.au/~gjm/mix_soft/EMMIX-JCM/.

  13. A tridiagonal parsimonious higher order multivariate Markov chain model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.

  14. MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)

    EPA Science Inventory

    We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...

  15. Risk of hemorrhagic transformation after ischemic stroke in patients with antiphospholipid antibody syndrome.

    PubMed

    Mehta, Tapan; Hussain, Mohammed; Sheth, Khushboo; Ding, Yuchuan; McCullough, Louise D

    2017-06-01

    Several rheumatologic conditions including systemic lupus erythematosus, antiphospholipid antibody (APS) syndrome, rheumatoid arthritis, and scleroderma are known risk factors for stroke. The risk of hemorrhagic transformation after an acute ischemic stroke (AIS) in these patients is not known. We queried the Nationwide Inpatient Sample (NIS) data between 2010 and 2012 with ICD 9 diagnostic codes for AIS. The primary outcome was the development of hemorrhagic transformation. Multivariate predictors for hemorrhagic transformation were identified with a logistic regression model. Using SAS 9.2, Survey procedures were used to accommodate for hierarchical two stage cluster design of NIS. APS (OR 2.57, 95% CI 1.14-5.81, p = 0.0228) independently predicted risk of hemorrhagic transformation in multivariate regression analysis. Similarly, in multivariate regression models for the outcome variables of total charges of the hospitalization and length of stay (LOS), patients with APS had the highest charges ($56,286, p = 0.0228) and LOS (3.87 days, p = 0.0164) compared to other co-variates. Univariate analysis showed increased mortality in the APS compared to the non-APS group (11.68% vs. 7.16%, p = 0.0024). APS is an independent risk factor for hemorrhagic transformation in both thrombolytic and non-thrombolytic treated patients. APS is also associated with longer length and cost of hospital stay. Further research is warranted to identify the unique risk factors in these patients to identify strategies to reduce the risk of hemorrhagic transformation in this subgroup of the population.

  16. Brain natriuretic peptide predicts functional outcome in ischemic stroke

    PubMed Central

    Rost, Natalia S; Biffi, Alessandro; Cloonan, Lisa; Chorba, John; Kelly, Peter; Greer, David; Ellinor, Patrick; Furie, Karen L

    2011-01-01

    Background Elevated serum levels of brain natriuretic peptide (BNP) have been associated with cardioembolic (CE) stroke and increased post-stroke mortality. We sought to determine whether BNP levels were associated with functional outcome after ischemic stroke. Methods We measured BNP in consecutive patients aged ≥18 years admitted to our Stroke Unit between 2002–2005. BNP quintiles were used for analysis. Stroke subtypes were assigned using TOAST criteria. Outcomes were measured as 6-month modified Rankin Scale score (“good outcome” = 0–2 vs. “poor”) as well as mortality. Multivariate logistic regression was used to assess association between the quintiles of BNP and outcomes. Predictive performance of BNP as compared to clinical model alone was assessed by comparing ROC curves. Results Of 569 ischemic stroke patients, 46% were female; mean age was 67.9 ± 15 years. In age- and gender-adjusted analysis, elevated BNP was associated with lower ejection fraction (p<0.0001) and left atrial dilatation (p<0.001). In multivariate analysis, elevated BNP decreased the odds of good functional outcome (OR 0.64, 95%CI 0.41–0.98) and increased the odds of death (OR 1.75, 95%CI 1.36–2.24) in these patients. Addition of BNP to multivariate models increased their predictive performance for functional outcome (p=0.013) and mortality (p<0.03) after CE stroke. Conclusions Serum BNP levels are strongly associated with CE stroke and functional outcome at 6 months after ischemic stroke. Inclusion of BNP improved prediction of mortality in patients with CE stroke. PMID:22116811

  17. Applying the multivariate time-rescaling theorem to neural population models

    PubMed Central

    Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon

    2011-01-01

    Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436

  18. Multivariate prediction of upper limb prosthesis acceptance or rejection.

    PubMed

    Biddiss, Elaine A; Chau, Tom T

    2008-07-01

    To develop a model for prediction of upper limb prosthesis use or rejection. A questionnaire exploring factors in prosthesis acceptance was distributed internationally to individuals with upper limb absence through community-based support groups and rehabilitation hospitals. A total of 191 participants (59 prosthesis rejecters and 132 prosthesis wearers) were included in this study. A logistic regression model, a C5.0 decision tree, and a radial basis function neural network were developed and compared in terms of sensitivity (prediction of prosthesis rejecters), specificity (prediction of prosthesis wearers), and overall cross-validation accuracy. The logistic regression and neural network provided comparable overall accuracies of approximately 84 +/- 3%, specificity of 93%, and sensitivity of 61%. Fitting time-frame emerged as the predominant predictor. Individuals fitted within two years of birth (congenital) or six months of amputation (acquired) were 16 times more likely to continue prosthesis use. To increase rates of prosthesis acceptance, clinical directives should focus on timely, client-centred fitting strategies and the development of improved prostheses and healthcare for individuals with high-level or bilateral limb absence. Multivariate analyses are useful in determining the relative importance of the many factors involved in prosthesis acceptance and rejection.

  19. Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran

    NASA Astrophysics Data System (ADS)

    Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran

    2018-03-01

    This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).

  20. Meta-Analytic Structural Equation Modeling (MASEM): Comparison of the Multivariate Methods

    ERIC Educational Resources Information Center

    Zhang, Ying

    2011-01-01

    Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices across studies using meta-analysis techniques and then analyze the pooled correlation matrix using structural equation modeling techniques. Several multivariate methods of…

  1. MULTIVARIATE RECEPTOR MODELS-CURRENT PRACTICE AND FUTURE TRENDS. (R826238)

    EPA Science Inventory

    Multivariate receptor models have been applied to the analysis of air quality data for sometime. However, solving the general mixture problem is important in several other fields. This paper looks at the panoply of these models with a view of identifying common challenges and ...

  2. A CCA+ICA based model for multi-task brain imaging data fusion and its application to schizophrenia.

    PubMed

    Sui, Jing; Adali, Tülay; Pearlson, Godfrey; Yang, Honghui; Sponheim, Scott R; White, Tonya; Calhoun, Vince D

    2010-05-15

    Collection of multiple-task brain imaging data from the same subject has now become common practice in medical imaging studies. In this paper, we propose a simple yet effective model, "CCA+ICA", as a powerful tool for multi-task data fusion. This joint blind source separation (BSS) model takes advantage of two multivariate methods: canonical correlation analysis and independent component analysis, to achieve both high estimation accuracy and to provide the correct connection between two datasets in which sources can have either common or distinct between-dataset correlation. In both simulated and real fMRI applications, we compare the proposed scheme with other joint BSS models and examine the different modeling assumptions. The contrast images of two tasks: sensorimotor (SM) and Sternberg working memory (SB), derived from a general linear model (GLM), were chosen to contribute real multi-task fMRI data, both of which were collected from 50 schizophrenia patients and 50 healthy controls. When examining the relationship with duration of illness, CCA+ICA revealed a significant negative correlation with temporal lobe activation. Furthermore, CCA+ICA located sensorimotor cortex as the group-discriminative regions for both tasks and identified the superior temporal gyrus in SM and prefrontal cortex in SB as task-specific group-discriminative brain networks. In summary, we compared the new approach to some competitive methods with different assumptions, and found consistent results regarding each of their hypotheses on connecting the two tasks. Such an approach fills a gap in existing multivariate methods for identifying biomarkers from brain imaging data.

  3. Salicylic acid deposition from wash-off products: comparison of in vivo and porcine deposition models.

    PubMed

    Davies, M A

    2015-10-01

    Salicylic acid (SA) is a widely used active in anti-acne face wash products. Only about 1-2% of the total dose is actually deposited on skin during washing, and more efficient deposition systems are sought. The objective of this work was to develop an improved method, including data analysis, to measure deposition of SA from wash-off formulae. Full fluorescence excitation-emission matrices (EEMs) were acquired for non-invasive measurement of deposition of SA from wash-off products. Multivariate data analysis methods - parallel factor analysis and N-way partial least-squares regression - were used to develop and compare deposition models on human volunteers and porcine skin. Although both models are useful, there are differences between them. First, the range of linear response to dosages of SA was 60 μg cm(-2) in vivo compared to 25 μg cm(-2) on porcine skin. Second, the actual shape of the SA band was different between substrates. The methods employed in this work highlight the utility of the use of EEMs, in conjunction with multivariate analysis tools such as parallel factor analysis and multiway partial least-squares calibration, in determining sources of spectral variability in skin and quantification of exogenous species deposited on skin. The human model exhibited the widest range of linearity, but porcine model is still useful up to deposition levels of 25 μg cm(-2) or used with nonlinear calibration models. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Comparisons of sleep apnoea rate and outcomes among patients with resistant and non-resistant hypertension.

    PubMed

    Bhandari, Simran K; Shi, Jiaxiao; Molnar, Miklos Z; Rasgon, Scott A; Derose, Stephen F; Kovesdy, Csaba P; Calhoun, David A; Kalantar-Zadeh, Kamyar; Jacobsen, Steven J; Sim, John J

    2016-11-01

    We directly compared sleep apnoea (SA) rates and risk of cardiovascular and mortality outcomes among SA patients with resistant hypertension (RH) and non-RH within a large diverse hypertension population. A retrospective cohort study between 1 January 2006 and 31 December 2010 among hypertensive adults (age ≥ 18 years) was performed within an integrated health system. Rates of SA in RH and non-RH were determined. Multivariable logistic regression analyses were used to calculate OR for SA. Cox proportional hazard modelling was used to estimate hazard ratios (HRs) for cardiovascular and mortality outcomes between SA in RH versus SA in non-RH adjusting for age, gender, race, BMI, chronic kidney disease and other comorbidities. SA was identified in 33 682 (7.2%) from 470 386 hypertensive individuals. SA in RH accounted for 5806 (9.6%) compared to SA in non-RH 27 876 individuals (6.8%). Multivariable OR (95% CI) for SA was 1.16 (1.12, 1.19), 3.57 (3.47, 3.66) and 2.20 (2.15, 2.25) for RH versus non-RH, BMI ≥ 30, and males, respectively. Compared to SA in non-RH individuals, SA in RH had a multivariable adjusted HR (95% CI) of 1.24 (1.13, 1.36), 1.43 (1.28, 1.61), 0.98 (0.85, 1.12) and 1.04 (0.95, 1.14) for ischaemic heart event (IHE), congestive heart failure (CHF), stroke and mortality, respectively. We observed a modest increase in likelihood for SA among RH compared to non-RH patients. Risks for IHE and CHF were higher for SA in RH compared to SA in non-RH patients; however, there were no differences in risk for stroke and mortality. © 2016 Asian Pacific Society of Respirology.

  5. Calibration transfer of a Raman spectroscopic quantification method for the assessment of liquid detergent compositions from at-line laboratory to in-line industrial scale.

    PubMed

    Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T

    2018-03-01

    Calibration transfer or standardisation aims at creating a uniform spectral response on different spectroscopic instruments or under varying conditions, without requiring a full recalibration for each situation. In the current study, this strategy is applied to construct at-line multivariate calibration models and consequently employ them in-line in a continuous industrial production line, using the same spectrometer. Firstly, quantitative multivariate models are constructed at-line at laboratory scale for predicting the concentration of two main ingredients in hard surface cleaners. By regressing the Raman spectra of a set of small-scale calibration samples against their reference concentration values, partial least squares (PLS) models are developed to quantify the surfactant levels in the liquid detergent compositions under investigation. After evaluating the models performance with a set of independent validation samples, a univariate slope/bias correction is applied in view of transporting these at-line calibration models to an in-line manufacturing set-up. This standardisation technique allows a fast and easy transfer of the PLS regression models, by simply correcting the model predictions on the in-line set-up, without adjusting anything to the original multivariate calibration models. An extensive statistical analysis is performed in order to assess the predictive quality of the transferred regression models. Before and after transfer, the R 2 and RMSEP of both models is compared for evaluating if their magnitude is similar. T-tests are then performed to investigate whether the slope and intercept of the transferred regression line are not statistically different from 1 and 0, respectively. Furthermore, it is inspected whether no significant bias can be noted. F-tests are executed as well, for assessing the linearity of the transfer regression line and for investigating the statistical coincidence of the transfer and validation regression line. Finally, a paired t-test is performed to compare the original at-line model to the slope/bias corrected in-line model, using interval hypotheses. It is shown that the calibration models of Surfactant 1 and Surfactant 2 yield satisfactory in-line predictions after slope/bias correction. While Surfactant 1 passes seven out of eight statistical tests, the recommended validation parameters are 100% successful for Surfactant 2. It is hence concluded that the proposed strategy for transferring at-line calibration models to an in-line industrial environment via a univariate slope/bias correction of the predicted values offers a successful standardisation approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A "Model" Multivariable Calculus Course.

    ERIC Educational Resources Information Center

    Beckmann, Charlene E.; Schlicker, Steven J.

    1999-01-01

    Describes a rich, investigative approach to multivariable calculus. Introduces a project in which students construct physical models of surfaces that represent real-life applications of their choice. The models, along with student-selected datasets, serve as vehicles to study most of the concepts of the course from both continuous and discrete…

  7. Bayesian Estimation of Multivariate Latent Regression Models: Gauss versus Laplace

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew; Park, Trevor

    2017-01-01

    A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…

  8. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  9. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  10. A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.

    PubMed

    Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E

    2017-11-10

    A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Load compensation in a lean burn natural gas vehicle

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Anupam

    A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.

  12. An Incident Cohort Study Comparing Survival on Home Hemodialysis and Peritoneal Dialysis (Australia and New Zealand Dialysis and Transplantation Registry)

    PubMed Central

    Nadeau-Fredette, Annie-Claire; Hawley, Carmel M.; Pascoe, Elaine M.; Chan, Christopher T.; Clayton, Philip A.; Polkinghorne, Kevan R.; Boudville, Neil; Leblanc, Martine

    2015-01-01

    Background and objectives Home dialysis is often recognized as a first-choice therapy for patients initiating dialysis. However, studies comparing clinical outcomes between peritoneal dialysis and home hemodialysis have been very limited. Design, setting, participants, & measurements This Australia and New Zealand Dialysis and Transplantation Registry study assessed all Australian and New Zealand adult patients receiving home dialysis on day 90 after initiation of RRT between 2000 and 2012. The primary outcome was overall survival. The secondary outcomes were on-treatment survival, patient and technique survival, and death-censored technique survival. All results were adjusted with three prespecified models: multivariable Cox proportional hazards model (main model), propensity score quintile–stratified model, and propensity score–matched model. Results The study included 10,710 patients on incident peritoneal dialysis and 706 patients on incident home hemodialysis. Treatment with home hemodialysis was associated with better patient survival than treatment with peritoneal dialysis (5-year survival: 85% versus 44%, respectively; log-rank P<0.001). Using multivariable Cox proportional hazards analysis, home hemodialysis was associated with superior patient survival (hazard ratio for overall death, 0.47; 95% confidence interval, 0.38 to 0.59) as well as better on-treatment survival (hazard ratio for on-treatment death, 0.34; 95% confidence interval, 0.26 to 0.45), composite patient and technique survival (hazard ratio for death or technique failure, 0.34; 95% confidence interval, 0.29 to 0.40), and death-censored technique survival (hazard ratio for technique failure, 0.34; 95% confidence interval, 0.28 to 0.41). Similar results were obtained with the propensity score models as well as sensitivity analyses using competing risks models and different definitions for technique failure and lag period after modality switch, during which events were attributed to the initial modality. Conclusions Home hemodialysis was associated with superior patient and technique survival compared with peritoneal dialysis. PMID:26068181

  13. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    PubMed

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  14. Mapping information exposure on social media to explain differences in HPV vaccine coverage in the United States.

    PubMed

    Dunn, Adam G; Surian, Didi; Leask, Julie; Dey, Aditi; Mandl, Kenneth D; Coiera, Enrico

    2017-05-25

    Together with access, acceptance of vaccines affects human papillomavirus (HPV) vaccine coverage, yet little is known about media's role. Our aim was to determine whether measures of information exposure derived from Twitter could be used to explain differences in coverage in the United States. We conducted an analysis of exposure to information about HPV vaccines on Twitter, derived from 273.8 million exposures to 258,418 tweets posted between 1 October 2013 and 30 October 2015. Tweets were classified by topic using machine learning methods. Proportional exposure to each topic was used to construct multivariable models for predicting state-level HPV vaccine coverage, and compared to multivariable models constructed using socioeconomic factors: poverty, education, and insurance. Outcome measures included correlations between coverage and the individual topics and socioeconomic factors; and differences in the predictive performance of the multivariable models. Topics corresponding to media controversies were most closely correlated with coverage (both positively and negatively); education and insurance were highest among socioeconomic indicators. Measures of information exposure explained 68% of the variance in one dose 2015 HPV vaccine coverage in females (males: 63%). In comparison, models based on socioeconomic factors explained 42% of the variance in females (males: 40%). Measures of information exposure derived from Twitter explained differences in coverage that were not explained by socioeconomic factors. Vaccine coverage was lower in states where safety concerns, misinformation, and conspiracies made up higher proportions of exposures, suggesting that negative representations of vaccines in the media may reflect or influence vaccine acceptance. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Practical robustness measures in multivariable control system analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.

    1981-01-01

    The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.

  16. Comparative artificial neural network and partial least squares models for analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in pharmaceutical preparations.

    PubMed

    Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M

    2014-09-15

    Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components' mixtures using easy and widely used UV spectrophotometer. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Comparative artificial neural network and partial least squares models for analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.

    2014-09-01

    Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.

  18. Hybrid approach combining chemometrics and likelihood ratio framework for reporting the evidential value of spectra.

    PubMed

    Martyna, Agnieszka; Zadora, Grzegorz; Neocleous, Tereza; Michalska, Aleksandra; Dean, Nema

    2016-08-10

    Many chemometric tools are invaluable and have proven effective in data mining and substantial dimensionality reduction of highly multivariate data. This becomes vital for interpreting various physicochemical data due to rapid development of advanced analytical techniques, delivering much information in a single measurement run. This concerns especially spectra, which are frequently used as the subject of comparative analysis in e.g. forensic sciences. In the presented study the microtraces collected from the scenarios of hit-and-run accidents were analysed. Plastic containers and automotive plastics (e.g. bumpers, headlamp lenses) were subjected to Fourier transform infrared spectrometry and car paints were analysed using Raman spectroscopy. In the forensic context analytical results must be interpreted and reported according to the standards of the interpretation schemes acknowledged in forensic sciences using the likelihood ratio approach. However, for proper construction of LR models for highly multivariate data, such as spectra, chemometric tools must be employed for substantial data compression. Conversion from classical feature representation to distance representation was proposed for revealing hidden data peculiarities and linear discriminant analysis was further applied for minimising the within-sample variability while maximising the between-sample variability. Both techniques enabled substantial reduction of data dimensionality. Univariate and multivariate likelihood ratio models were proposed for such data. It was shown that the combination of chemometric tools and the likelihood ratio approach is capable of solving the comparison problem of highly multivariate and correlated data after proper extraction of the most relevant features and variance information hidden in the data structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Functional inverted Wishart for Bayesian multivariate spatial modeling with application to regional climatology model data.

    PubMed

    Duan, L L; Szczesniak, R D; Wang, X

    2017-11-01

    Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization.

  20. Functional inverted Wishart for Bayesian multivariate spatial modeling with application to regional climatology model data

    PubMed Central

    Duan, L. L.; Szczesniak, R. D.; Wang, X.

    2018-01-01

    Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization. PMID:29576735

  1. Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.

    PubMed

    Chai, Tianyou; Zhang, Yajun; Wang, Hong; Su, Chun-Yi; Sun, Jing

    2011-12-01

    For a complex industrial system, its multivariable and nonlinear nature generally make it very difficult, if not impossible, to obtain an accurate model, especially when the model structure is unknown. The control of this class of complex systems is difficult to handle by the traditional controller designs around their operating points. This paper, however, explores the concepts of controller-driven model and virtual unmodeled dynamics to propose a new design framework. The design consists of two controllers with distinct functions. First, using input and output data, a self-tuning controller is constructed based on a linear controller-driven model. Then the output signals of the controller-driven model are compared with the true outputs of the system to produce so-called virtual unmodeled dynamics. Based on the compensator of the virtual unmodeled dynamics, the second controller based on a nonlinear controller-driven model is proposed. Those two controllers are integrated by an adaptive switching control algorithm to take advantage of their complementary features: one offers stabilization function and another provides improved performance. The conditions on the stability and convergence of the closed-loop system are analyzed. Both simulation and experimental tests on a heavily coupled nonlinear twin-tank system are carried out to confirm the effectiveness of the proposed method.

  2. Comprehensive ripeness-index for prediction of ripening level in mangoes by multivariate modelling of ripening behaviour

    NASA Astrophysics Data System (ADS)

    Eyarkai Nambi, Vijayaram; Thangavel, Kuladaisamy; Manickavasagan, Annamalai; Shahir, Sultan

    2017-01-01

    Prediction of ripeness level in climacteric fruits is essential for post-harvest handling. An index capable of predicting ripening level with minimum inputs would be highly beneficial to the handlers, processors and researchers in fruit industry. A study was conducted with Indian mango cultivars to develop a ripeness index and associated model. Changes in physicochemical, colour and textural properties were measured throughout the ripening period and the period was classified into five stages (unripe, early ripe, partially ripe, ripe and over ripe). Multivariate regression techniques like partial least square regression, principal component regression and multi linear regression were compared and evaluated for its prediction. Multi linear regression model with 12 parameters was found more suitable in ripening prediction. Scientific variable reduction method was adopted to simplify the developed model. Better prediction was achieved with either 2 or 3 variables (total soluble solids, colour and acidity). Cross validation was done to increase the robustness and it was found that proposed ripening index was more effective in prediction of ripening stages. Three-variable model would be suitable for commercial applications where reasonable accuracies are sufficient. However, 12-variable model can be used to obtain more precise results in research and development applications.

  3. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  4. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  5. Quality control for quantitative PCR based on amplification compatibility test.

    PubMed

    Tichopad, Ales; Bar, Tzachi; Pecen, Ladislav; Kitchen, Robert R; Kubista, Mikael; Pfaffl, Michael W

    2010-04-01

    Quantitative qPCR is a routinely used method for the accurate quantification of nucleic acids. Yet it may generate erroneous results if the amplification process is obscured by inhibition or generation of aberrant side-products such as primer dimers. Several methods have been established to control for pre-processing performance that rely on the introduction of a co-amplified reference sequence, however there is currently no method to allow for reliable control of the amplification process without directly modifying the sample mix. Herein we present a statistical approach based on multivariate analysis of the amplification response data generated in real-time. The amplification trajectory in its most resolved and dynamic phase is fitted with a suitable model. Two parameters of this model, related to amplification efficiency, are then used for calculation of the Z-score statistics. Each studied sample is compared to a predefined reference set of reactions, typically calibration reactions. A probabilistic decision for each individual Z-score is then used to identify the majority of inhibited reactions in our experiments. We compare this approach to univariate methods using only the sample specific amplification efficiency as reporter of the compatibility. We demonstrate improved identification performance using the multivariate approach compared to the univariate approach. Finally we stress that the performance of the amplification compatibility test as a quality control procedure depends on the quality of the reference set. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Describing the Elephant: Structure and Function in Multivariate Data.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    1986-01-01

    There is a unity underlying the diversity of models for the analysis of multivariate data. Essentially, they constitute a family of models, most generally nonlinear, for structural/functional relations between variables drawn from a behavior domain. (Author)

  7. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    NASA Astrophysics Data System (ADS)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  8. A generalized multivariate regression model for modelling ocean wave heights

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  9. Multivariate normative comparisons using an aggregated database

    PubMed Central

    Murre, Jaap M. J.; Huizenga, Hilde M.

    2017-01-01

    In multivariate normative comparisons, a patient’s profile of test scores is compared to those in a normative sample. Recently, it has been shown that these multivariate normative comparisons enhance the sensitivity of neuropsychological assessment. However, multivariate normative comparisons require multivariate normative data, which are often unavailable. In this paper, we show how a multivariate normative database can be constructed by combining healthy control group data from published neuropsychological studies. We show that three issues should be addressed to construct a multivariate normative database. First, the database may have a multilevel structure, with participants nested within studies. Second, not all tests are administered in every study, so many data may be missing. Third, a patient should be compared to controls of similar age, gender and educational background rather than to the entire normative sample. To address these issues, we propose a multilevel approach for multivariate normative comparisons that accounts for missing data and includes covariates for age, gender and educational background. Simulations show that this approach controls the number of false positives and has high sensitivity to detect genuine deviations from the norm. An empirical example is provided. Implications for other domains than neuropsychology are also discussed. To facilitate broader adoption of these methods, we provide code implementing the entire analysis in the open source software package R. PMID:28267796

  10. Coffee consumption modifies risk of estrogen-receptor negative breast cancer

    PubMed Central

    2011-01-01

    Introduction Breast cancer is a complex disease and may be sub-divided into hormone-responsive (estrogen receptor (ER) positive) and non-hormone-responsive subtypes (ER-negative). Some evidence suggests that heterogeneity exists in the associations between coffee consumption and breast cancer risk, according to different estrogen receptor subtypes. We assessed the association between coffee consumption and postmenopausal breast cancer risk in a large population-based study (2,818 cases and 3,111 controls), overall, and stratified by ER tumour subtypes. Methods Odds ratios (OR) and corresponding 95% confidence intervals (CI) were estimated using the multivariate logistic regression models fitted to examine breast cancer risk in a stratified case-control analysis. Heterogeneity among ER subtypes was evaluated in a case-only analysis, by fitting binary logistic regression models, treating ER status as a dependent variable, with coffee consumption included as a covariate. Results In the Swedish study, coffee consumption was associated with a modest decrease in overall breast cancer risk in the age-adjusted model (OR> 5 cups/day compared to OR≤ 1 cup/day: 0.80, 95% CI: 0.64, 0.99, P trend = 0.028). In the stratified case-control analyses, a significant reduction in the risk of ER-negative breast cancer was observed in heavy coffee drinkers (OR> 5 cups/day compared to OR≤ 1 cup/day : 0.43, 95% CI: 0.25, 0.72, P trend = 0.0003) in a multivariate-adjusted model. The breast cancer risk reduction associated with higher coffee consumption was significantly higher for ER-negative compared to ER-positive tumours (P heterogeneity (age-adjusted) = 0.004). Conclusions A high daily intake of coffee was found to be associated with a statistically significant decrease in ER-negative breast cancer among postmenopausal women. PMID:21569535

  11. Robust detection, isolation and accommodation for sensor failures

    NASA Technical Reports Server (NTRS)

    Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.

    1986-01-01

    The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques

  12. Statistical methods and neural network approaches for classification of data from multiple sources

    NASA Technical Reports Server (NTRS)

    Benediktsson, Jon Atli; Swain, Philip H.

    1990-01-01

    Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.

  13. Phobic Anxiety and Plasma Levels of Global Oxidative Stress in Women.

    PubMed

    Hagan, Kaitlin A; Wu, Tianying; Rimm, Eric B; Eliassen, A Heather; Okereke, Olivia I

    2015-01-01

    Psychological distress has been hypothesized to be associated with adverse biologic states such as higher oxidative stress and inflammation. Yet, little is known about associations between a common form of distress - phobic anxiety - and global oxidative stress. Thus, we related phobic anxiety to plasma fluorescent oxidation products (FlOPs), a global oxidative stress marker. We conducted a cross-sectional analysis among 1,325 women (aged 43-70 years) from the Nurses' Health Study. Phobic anxiety was measured using the Crown-Crisp Index (CCI). Adjusted least-squares mean log-transformed FlOPs were calculated across phobic categories. Logistic regression models were used to calculate odds ratios (OR) comparing the highest CCI category (≥6 points) vs. lower scores, across FlOPs quartiles. No association was found between phobic anxiety categories and mean FlOP levels in multivariable adjusted linear models. Similarly, in multivariable logistic regression models there were no associations between FlOPs quartiles and likelihood of being in the highest phobic category. Comparing women in the highest vs. lowest FlOPs quartiles: FlOP_360: OR=0.68 (95% CI: 0.40-1.15); FlOP_320: OR=0.99 (95% CI: 0.61-1.61); FlOP_400: OR=0.92 (95% CI: 0.52, 1.63). No cross-sectional association was found between phobic anxiety and a plasma measure of global oxidative stress in this sample of middle-aged and older women.

  14. Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models.

    PubMed

    Chen, Zewei; Zhang, Xin; Zhang, Zhuoyong

    2016-12-01

    Timely risk assessment of chronic kidney disease (CKD) and proper community-based CKD monitoring are important to prevent patients with potential risk from further kidney injuries. As many symptoms are associated with the progressive development of CKD, evaluating risk of CKD through a set of clinical data of symptoms coupled with multivariate models can be considered as an available method for prevention of CKD and would be useful for community-based CKD monitoring. Three common used multivariate models, i.e., K-nearest neighbor (KNN), support vector machine (SVM), and soft independent modeling of class analogy (SIMCA), were used to evaluate risk of 386 patients based on a series of clinical data taken from UCI machine learning repository. Different types of composite data, in which proportional disturbances were added to simulate measurement deviations caused by environment and instrument noises, were also utilized to evaluate the feasibility and robustness of these models in risk assessment of CKD. For the original data set, three mentioned multivariate models can differentiate patients with CKD and non-CKD with the overall accuracies over 93 %. KNN and SVM have better performances than SIMCA has in this study. For the composite data set, SVM model has the best ability to tolerate noise disturbance and thus are more robust than the other two models. Using clinical data set on symptoms coupled with multivariate models has been proved to be feasible approach for assessment of patient with potential CKD risk. SVM model can be used as useful and robust tool in this study.

  15. Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.

    PubMed

    Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs

    2009-02-01

    This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.

  16. Influence of professional preparation and class structure on sexuality topics taught in middle and high schools.

    PubMed

    Rhodes, Darson L; Kirchofer, Gregg; Hammig, Bart J; Ogletree, Roberta J

    2013-05-01

    This study examined the impact of professional preparation and class structure on sexuality topics taught and use of practice-based instructional strategies in US middle and high school health classes. Data from the classroom-level file of the 2006 School Health Policies and Programs were used. A series of multivariable logistic regression models were employed to determine if sexuality content taught was dependent on professional preparation and /or class structure (HE only versus HE/another subject combined). Additional multivariable logistic regression models were employed to determine if use of practice-based instructional strategies was dependent upon professional preparation and/or class structure. Years of teaching health topics and size of the school district were included as covariates in the multivariable logistic regression models. Findings indicated professionally prepared health educators were significantly more likely to teach 7 of the 13 sexuality topics as compared to nonprofessionally prepared health educators. There was no statistically significant difference in the instructional strategies used by professionally prepared and nonprofessionally prepared health educators. Exclusively health education classes versus combined classes were significantly more likely to have included 6 of the 13 topics and to have incorporated practice-based instructional strategies in the curricula. This study indicated professional preparation and class structure impacted sexuality content taught. Class structure also impacted whether opportunities for students to practice skills were made available. Results support the need for continued advocacy for professionally prepared health educators and health only courses. © 2013, American School Health Association.

  17. Factorial Design Based Multivariate Modeling and Optimization of Tunable Bioresponsive Arginine Grafted Poly(cystaminebis(acrylamide)-diaminohexane) Polymeric Matrix Based Nanocarriers.

    PubMed

    Yang, Rongbing; Nam, Kihoon; Kim, Sung Wan; Turkson, James; Zou, Ye; Zuo, Yi Y; Haware, Rahul V; Chougule, Mahavir B

    2017-01-03

    Desired characteristics of nanocarriers are crucial to explore its therapeutic potential. This investigation aimed to develop tunable bioresponsive newly synthesized unique arginine grafted poly(cystaminebis(acrylamide)-diaminohexane) [ABP] polymeric matrix based nanocarriers by using L9 Taguchi factorial design, desirability function, and multivariate method. The selected formulation and process parameters were ABP concentration, acetone concentration, the volume ratio of acetone to ABP solution, and drug concentration. The measured nanocarrier characteristics were particle size, polydispersity index, zeta potential, and percentage drug loading. Experimental validation of nanocarrier characteristics computed from initially developed predictive model showed nonsignificant differences (p > 0.05). The multivariate modeling based optimized cationic nanocarrier formulation of <100 nm loaded with hydrophilic acetaminophen was readapted for a hydrophobic etoposide loading without significant changes (p > 0.05) except for improved loading percentage. This is the first study focusing on ABP polymeric matrix based nanocarrier development. Nanocarrier particle size was stable in PBS 7.4 for 48 h. The increase of zeta potential at lower pH 6.4, compared to the physiological pH, showed possible endosomal escape capability. The glutathione triggered release at the physiological conditions indicated the competence of cytosolic targeting delivery of the loaded drug from bioresponsive nanocarriers. In conclusion, this unique systematic approach provides rational evaluation and prediction of a tunable bioresponsive ABP based matrix nanocarrier, which was built on selected limited number of smart experimentation.

  18. Enhancing e-waste estimates: improving data quality by multivariate Input-Output Analysis.

    PubMed

    Wang, Feng; Huisman, Jaco; Stevels, Ab; Baldé, Cornelis Peter

    2013-11-01

    Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input-Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes

    PubMed Central

    2014-01-01

    Background Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. Methods The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Results Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Conclusions Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately. PMID:25047164

  20. The Etiology of Variation in Language Skills Changes with Development: A Longitudinal Twin Study of Language from 2 to 12 Years

    ERIC Educational Resources Information Center

    Hayiou-Thomas, Marianna E.; Dale, Philip S.; Plomin, Robert

    2012-01-01

    The present study is the first long-term longitudinal examination of the etiology of individual differences in language from early childhood through to adolescence. We applied a multivariate latent factor genetic model to longitudinal data from the Twins Early Development Study in order to (a) compare the magnitude of genetic and environmental…

  1. The Effect of Visual Information on the Manual Approach and Landing

    NASA Technical Reports Server (NTRS)

    Wewerinke, P. H.

    1982-01-01

    The effect of visual information in combination with basic display information on the approach performance. A pre-experimental model analysis was performed in terms of the optimal control model. The resulting aircraft approach performance predictions were compared with the results of a moving base simulator program. The results illustrate that the model provides a meaningful description of the visual (scene) perception process involved in the complex (multi-variable, time varying) manual approach task with a useful predictive capability. The theoretical framework was shown to allow a straight-forward investigation of the complex interaction of a variety of task variables.

  2. Docking and multivariate methods to explore HIV-1 drug-resistance: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Almerico, Anna Maria; Tutone, Marco; Lauria, Antonino

    2008-05-01

    In this paper we describe a comparative analysis between multivariate and docking methods in the study of the drug resistance to the reverse transcriptase and the protease inhibitors. In our early papers we developed a simple but efficient method to evaluate the features of compounds that are less likely to trigger resistance or are effective against mutant HIV strains, using the multivariate statistical procedures PCA and DA. In the attempt to create a more solid background for the prediction of susceptibility or resistance, we carried out a comparative analysis between our previous multivariate approach and molecular docking study. The intent of this paper is not only to find further support to the results obtained by the combined use of PCA and DA, but also to evidence the structural features, in terms of molecular descriptors, similarity, and energetic contributions, derived from docking, which can account for the arising of drug-resistance against mutant strains.

  3. Sexual Minority Disparities in Substance Use Willingness Among Youth.

    PubMed

    Gamarel, Kristi E; Mereish, Ethan H; Colby, Suzanne M; Barnett, Nancy P; Hayes, Kerri; Jackson, Kristina M

    2018-01-02

    Disparities in substance use have been observed in sexual minority youth, but less is known about willingness to use substances, an important precursor to actual use. The goal of this study was to examine willingness to use cigarettes, alcohol, and marijuana among sexual minority youth compared to their non-sexual minority counterparts using both cross-sectional and longitudinal data. The present study drew on two waves (Times 1 and 2; 6 months apart) of data collected during high school as part of a prospective study of substance use initiation and progression in Rhode Island. At Time 1, participants (N = 443) ranged in age from 15 to 20 years (M age = 16.7 years, 26.6% sexual minority, 59.5% female, 72.0% White). Participants self-reported their sexual identity and attraction, lifetime use of alcohol, cigarettes and marijuana, and cigarette, alcohol, and marijuana use willingness (i.e., if offered by a best friend or group of friends). In cross-sectional multivariate regression models, sexual minority youth were more likely to report willingness to use cigarettes (p <.05) and marijuana (p <.01) compared to their non-sexual minority counterparts. Longitudinal multivariate regression models revealed that sexual minorities were only significantly more likely to report cigarette willingness at Time 2 compared to their non-sexual minority counterparts (p <.01). There were no significant differences in alcohol use willingness in multivariable cross-sectional or longitudinal models by sexual minority status. Sexual minority youth reported more willingness than non-sexual minority youth to use substances offered by peers; however, longitudinal analyses revealed that peers appear to play a role only in willingness to smoke cigarettes for these youth, and thus peer influence may be a contributing factor in explaining tobacco-related disparities among sexual minority youth. Given that stigma and peer groups may a particular risk factor for tobacco among sexual minority youth, our findings highlight the importance of prevention programs such as social marketing approaches that correct social norms, reduce stigma, and provide refusal-skills training to reduce tobacco-related disparities among sexual minorities.

  4. Hypothyroidism among SLE patients: Case-control study.

    PubMed

    Watad, Abdulla; Mahroum, Naim; Whitby, Aaron; Gertel, Smadar; Comaneshter, Doron; Cohen, Arnon D; Amital, Howard

    2016-05-01

    The prevalence of hypothyroidism in SLE patients varies considerably and early reports were mainly based on small cohorts. To investigate the association between SLE and hypothyroidism. Patients with SLE were compared with age and sex-matched controls regarding the proportion of hypothyroidism in a case-control study. Chi-square and t-tests were used for univariate analysis and a logistic regression model was used for multivariate analysis. The study was performed utilizing the medical database of Clalit Health Services. The study included 5018 patients with SLE and 25,090 age and sex-matched controls. The proportion of hypothyroidism in patients with SLE was increased compared with the prevalence in controls (15.58% and 5.75%, respectively, P<0.001). In a multivariate analysis, SLE was associated with hypothyroidism (odds ratio 2.644, 95% confidence interval 2.405-2.908). Patients with SLE have a greater proportion of hypothyroidism than matched controls. Therefore, physicians treating patients with SLE should be aware of the possibility of thyroid dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Multivariate regression model for predicting lumber grade volumes of northern red oak sawlogs

    Treesearch

    Daniel A. Yaussy; Robert L. Brisbin

    1983-01-01

    A multivariate regression model was developed to predict green board-foot yields for the seven common factory lumber grades processed from northern red oak (Quercus rubra L.) factory grade logs. The model uses the standard log measurements of grade, scaling diameter, length, and percent defect. It was validated with an independent data set. The model...

  6. A Hierarchical Multivariate Bayesian Approach to Ensemble Model output Statistics in Atmospheric Prediction

    DTIC Science & Technology

    2017-09-01

    efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components

  7. Predictive and mechanistic multivariate linear regression models for reaction development

    PubMed Central

    Santiago, Celine B.; Guo, Jing-Yao

    2018-01-01

    Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711

  8. Power of Models in Longitudinal Study: Findings from a Full-Crossed Simulation Design

    ERIC Educational Resources Information Center

    Fang, Hua; Brooks, Gordon P.; Rizzo, Maria L.; Espy, Kimberly Andrews; Barcikowski, Robert S.

    2009-01-01

    Because the power properties of traditional repeated measures and hierarchical multivariate linear models have not been clearly determined in the balanced design for longitudinal studies in the literature, the authors present a power comparison study of traditional repeated measures and hierarchical multivariate linear models under 3…

  9. IRT-ZIP Modeling for Multivariate Zero-Inflated Count Data

    ERIC Educational Resources Information Center

    Wang, Lijuan

    2010-01-01

    This study introduces an item response theory-zero-inflated Poisson (IRT-ZIP) model to investigate psychometric properties of multiple items and predict individuals' latent trait scores for multivariate zero-inflated count data. In the model, two link functions are used to capture two processes of the zero-inflated count data. Item parameters are…

  10. A flexible model for multivariate interval-censored survival times with complex correlation structure.

    PubMed

    Falcaro, Milena; Pickles, Andrew

    2007-02-10

    We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.

  11. Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative

    NASA Astrophysics Data System (ADS)

    Luna-Gómez, Carlos D.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Galván-Tejada, Carlos E.; Celaya-Padilla, José M.

    2017-03-01

    Osteoarthritis is the most common rheumatic disease in the world. Knee pain is the most disabling symptom in the disease, the prediction of pain is one of the targets in preventive medicine, this can be applied to new therapies or treatments. Using the magnetic resonance imaging and the grading scales, a multivariate model based on genetic algorithms is presented. Using a predictive model can be useful to associate minor structure changes in the joint with the future knee pain. Results suggest that multivariate models can be predictive with future knee chronic pain. All models; T0, T1 and T2, were statistically significant, all p values were < 0.05 and all AUC > 0.60.

  12. MR- versus CT-based high-dose-rate interstitial brachytherapy for vaginal recurrence of endometrial cancer.

    PubMed

    Kamran, Sophia C; Manuel, Matthias M; Catalano, Paul; Cho, Linda; Damato, Antonio L; Lee, Larissa J; Schmidt, Ehud J; Viswanathan, Akila N

    To compare clinical outcomes of MR-based versus CT-based high-dose-rate interstitial brachytherapy (ISBT) for vaginal recurrence of endometrioid endometrial cancer (EC). We reviewed 66 patients with vaginal recurrent EC; 18 had MR-based ISBT on a prospective clinical trial and 48 had CT-based treatment. Kaplan-Meier survival modeling was used to generate estimates for local control (LC), disease-free interval (DFI), and overall survival (OS), and multivariate Cox modeling was used to assess prognostic factors. Toxicities were evaluated and compared. Median followup was 33 months (CT 30 months, MR 35 months). Median cumulative equivalent dose in 2-Gy fractions was 75.5 Gy for MR-ISBT and 73.8 Gy for CT-ISBT (p = 0.58). MR patients were older (p = 0.03) and had larger tumor size (>4 cm vs. ≤ 4 cm) compared to CT patients (p = 0.04). For MR-based versus CT-based ISBT, 3-year KM rate for local control was 100% versus 78% (p = 0.04), DFI was 69% versus 55% (p = 0.1), and OS was 63% versus 75% (p = 0.81), respectively. On multivariate analysis, tumor Grade 3 was associated with worse OS (HR 3.57, 95% CI 1.25, 11.36) in a model with MR-ISBT (HR 0.56, 95% CI 0.16, 1.89). Toxicities were not significantly different between the two modalities. Despite worse patient prognostic features, MR-ISBT was associated with a significantly better (100%) 3-year local control, comparable survival, and improved DFI rates compared to CT. Toxicities did not differ compared to CT-ISBT patients. Tumor grade contributed as the most significant predictor for survival. Larger prospective studies are needed to assess the impact of MR-ISBT on survival outcomes. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. Business closure and relocation: a comparative analysis of the Loma Prieta earthquake and Hurricane Andrew.

    PubMed

    Wasileski, Gabriela; Rodríguez, Havidán; Diaz, Walter

    2011-01-01

    The occurrence of a number of large-scale disasters or catastrophes in recent years, including the Indian Ocean tsunami (2004), the Kashmir earthquake (2005), Hurricane Katrina (2005) and Hurricane Ike (2008), have raised our awareness regarding the devastating effects of disasters on human populations and the importance of developing mitigation and preparedness strategies to limit the consequences of such events. However, there is still a dearth of social science research focusing on the socio-economic impact of disasters on businesses in the United States. This paper contributes to this research literature by focusing on the impact of disasters on business closure and relocation through the use of multivariate logistic regression models, specifically focusing on the Loma Prieta earthquake (1989) and Hurricane Andrew (1992). Using a multivariate model, we examine how physical damage to the infrastructure, lifeline disruption and business characteristics, among others, impact business closure and relocation following major disasters. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.

  14. Robust tests for multivariate factorial designs under heteroscedasticity.

    PubMed

    Vallejo, Guillermo; Ato, Manuel

    2012-06-01

    The question of how to analyze several multivariate normal mean vectors when normality and covariance homogeneity assumptions are violated is considered in this article. For the two-way MANOVA layout, we address this problem adapting results presented by Brunner, Dette, and Munk (BDM; 1997) and Vallejo and Ato (modified Brown-Forsythe [MBF]; 2006) in the context of univariate factorial and split-plot designs and a multivariate version of the linear model (MLM) to accommodate heterogeneous data. Furthermore, we compare these procedures with the Welch-James (WJ) approximate degrees of freedom multivariate statistics based on ordinary least squares via Monte Carlo simulation. Our numerical studies show that of the methods evaluated, only the modified versions of the BDM and MBF procedures were robust to violations of underlying assumptions. The MLM approach was only occasionally liberal, and then by only a small amount, whereas the WJ procedure was often liberal if the interactive effects were involved in the design, particularly when the number of dependent variables increased and total sample size was small. On the other hand, it was also found that the MLM procedure was uniformly more powerful than its most direct competitors. The overall success rate was 22.4% for the BDM, 36.3% for the MBF, and 45.0% for the MLM.

  15. Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration.

    PubMed

    Inácio, Maria Raquel Cavalcanti; de Lima, Kássio Michell Gomes; Lopes, Valquiria Garcia; Pessoa, José Dalton Cruz; de Almeida Teixeira, Gustavo Henrique

    2013-02-15

    The aim of this study was to evaluate near-infrared reflectance spectroscopy (NIR), and multivariate calibration potential as a rapid method to determinate anthocyanin content in intact fruit (açaí and palmitero-juçara). Several multivariate calibration techniques, including partial least squares (PLS), interval partial least squares, genetic algorithm, successive projections algorithm, and net analyte signal were compared and validated by establishing figures of merit. Suitable results were obtained with the PLS model (four latent variables and 5-point smoothing) with a detection limit of 6.2 g kg(-1), limit of quantification of 20.7 g kg(-1), accuracy estimated as root mean square error of prediction of 4.8 g kg(-1), mean selectivity of 0.79 g kg(-1), sensitivity of 5.04×10(-3) g kg(-1), precision of 27.8 g kg(-1), and signal-to-noise ratio of 1.04×10(-3) g kg(-1). These results suggest NIR spectroscopy and multivariate calibration can be effectively used to determine anthocyanin content in intact açaí and palmitero-juçara fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Third molar development: measurements versus scores as age predictor.

    PubMed

    Thevissen, P W; Fieuws, S; Willems, G

    2011-10-01

    Human third molar development is widely used to predict chronological age of sub adult individuals with unknown or doubted age. For these predictions, classically, the radiologically observed third molar growth and maturation is registered using a staging and related scoring technique. Measures of lengths and widths of the developing wisdom tooth and its adjacent second molar can be considered as an alternative registration. The aim of this study was to verify relations between mandibular third molar developmental stages or measurements of mandibular second molar and third molars and age. Age related performance of stages and measurements were compared to assess if measurements added information to age predictions from third molar formation stage. The sample was 340 orthopantomograms (170 females, 170 males) of individuals homogenously distributed in age between 7 and 24 years. Mandibular lower right, third and second molars, were staged following Gleiser and Hunt, length and width measurements were registered, and various ratios of these measurements were calculated. Univariable regression models with age as response and third molar stage, measurements and ratios of second and third molars as predictors, were considered. Multivariable regression models assessed if measurements or ratios added information to age prediction from third molar stage. Coefficients of determination (R(2)) and root mean squared errors (RMSE) obtained from all regression models were compared. The univariable regression model using stages as predictor yielded most accurate age predictions (males: R(2) 0.85, RMSE between 0.85 and 1.22 year; females: R(2) 0.77, RMSE between 1.19 and 2.11 year) compared to all models including measurements and ratios. The multivariable regression models indicated that measurements and ratios added no clinical relevant information to the age prediction from third molar stage. Ratios and measurements of second and third molars are less accurate age predictors than stages of developing third molars. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. DUALITY IN MULTIVARIATE RECEPTOR MODEL. (R831078)

    EPA Science Inventory

    Multivariate receptor models are used for source apportionment of multiple observations of compositional data of air pollutants that obey mass conservation. Singular value decomposition of the data leads to two sets of eigenvectors. One set of eigenvectors spans a space in whi...

  18. Role of PI-RADS Version 2 for Prediction of Upgrading in Biopsy-Proven Prostate Cancer With Gleason Score 6.

    PubMed

    Song, Wan; Bang, Seok Hwan; Jeon, Hwang Gyun; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Choi, Han Yong; Kim, Chan Kyo; Lee, Hyun Moo

    2018-02-23

    The objective of this study was to investigate the effect of Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) on prediction of postoperative Gleason score (GS) upgrading for patients with biopsy GS 6 prostate cancer. We retrospectively reviewed 443 patients who underwent magnetic resonance imaging (MRI) and radical prostatectomy for biopsy-proven GS 6 prostate cancer between January 2011 and December 2013. Preoperative clinical variables and pathologic GS were examined, and all MRI findings were assessed with PI-RADSv2. Receiver operating characteristic curves were used to compare predictive accuracies of multivariate logistic regression models with or without PI-RADSv2. Of the total 443 patients, 297 (67.0%) experienced GS upgrading postoperatively. PI-RADSv2 scores 1 to 3 and 4 to 5 were identified in 157 (25.4%) and 286 (64.6%) patients, respectively, and the rate of GS upgrading was 54.1% and 74.1%, respectively (P < .001). In multivariate analysis, prostate-specific antigen density > 0.16 ng/mL 2 , number of positive cores ≥ 2, maximum percentage of cancer per core > 20, and PI-RADSv2 score 4 to 5 were independent predictors influencing GS upgrading (each P < .05). When predictive accuracies of multivariate models with or without PI-RADSv2 were compared, the model including PI-RADSv2 was shown to have significantly higher accuracy (area under the curve, 0.729 vs. 0.703; P = .041). Use of PI-RADSv2 is an independent predictor of postoperative GS upgrading and increases the predictive accuracy of GS upgrading. PI-RADSv2 might be used as a preoperative imaging tool to determine risk classification and to help counsel patients with regard to treatment decision and prognosis of disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry

    NASA Astrophysics Data System (ADS)

    Braga, Jez Willian Batista; Trevizan, Lilian Cristina; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Santos, Dário, Jr.; Krug, Francisco José

    2010-01-01

    The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance, but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation.

  20. Survival advantage in black versus white men with CKD: effect of estimated GFR and case mix.

    PubMed

    Kovesdy, Csaba P; Quarles, L Darryl; Lott, Evan H; Lu, Jun Ling; Ma, Jennie Z; Molnar, Miklos Z; Kalantar-Zadeh, Kamyar

    2013-08-01

    Black dialysis patients have significantly lower mortality compared with white patients, in contradistinction to the higher mortality seen in blacks in the general population. It is unclear whether a similar paradox exists in patients with non-dialysis-dependent chronic kidney disease (CKD), and if it does, what its underlying reasons are. Historical cohort. 518,406 white and 52,402 black male US veterans with non-dialysis-dependent CKD stages 3-5. Black race. We examined overall and CKD stage-specific all-cause mortality using parametric survival models. The effect of sociodemographic characteristics, comorbid conditions, and laboratory characteristics on the observed differences was explored in multivariable models. During a median follow-up of 4.7 years, 172,093 patients died (mortality rate, 71.0 [95% CI, 70.6-71.3] per 1,000 patient-years). Black race was associated with significantly lower crude mortality (HR, 0.95; 95% CI, 0.94-0.97; P < 0.001). The survival advantage was attenuated after adjustment for age (HR, 1.14; 95% CI, 1.12-1.16), but was magnified after full multivariable adjustment (HR, 0.72; 95% CI, 0.70-0.73; P < 0.001). The unadjusted survival advantage of blacks was more prominent in those with more advanced stages of CKD, but CKD stage-specific differences were attenuated by multivariable adjustment. Exclusively male patients. Black patients with CKD have lower mortality compared with white patients. The survival advantage seen in blacks is accentuated in patients with more advanced stages of CKD, which may be explained by changes in case-mix and laboratory characteristics occurring during the course of kidney disease. Published by Elsevier Inc. on behalf of the National Kidney Foundation, Inc.

  1. Comparison of the prognostic value of pretreatment measurements of systemic inflammatory response in patients undergoing curative resection of clear cell renal cell carcinoma.

    PubMed

    Lucca, Ilaria; de Martino, Michela; Hofbauer, Sebastian L; Zamani, Nura; Shariat, Shahrokh F; Klatte, Tobias

    2015-12-01

    Pretreatment measurements of systemic inflammatory response, including the Glasgow prognostic score (GPS), the neutrophil-to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR), the platelet-to-lymphocyte ratio (PLR) and the prognostic nutritional index (PNI) have been recognized as prognostic factors in clear cell renal cell carcinoma (CCRCC), but there is at present no study that compared these markers. We evaluated the pretreatment GPS, NLR, MLR, PLR and PNI in 430 patients, who underwent surgery for clinically localized CCRCC (pT1-3N0M0). Associations with disease-free survival were assessed with Cox models. Discrimination was measured with the C-index, and a decision curve analysis was used to evaluate the clinical net benefit. On multivariable analyses, all measures of systemic inflammatory response were significant prognostic factors. The increase in discrimination compared with the stage, size, grade and necrosis (SSIGN) score alone was 5.8 % for the GPS, 1.1-1.4 % for the NLR, 2.9-3.4 % for the MLR, 2.0-3.3 % for the PLR and 1.4-3.0 % for the PNI. On the simultaneous multivariable analysis of all candidate measures, the final multivariable model contained the SSIGN score (HR 1.40, P < 0.001), the GPS (HR 2.32, P < 0.001) and the MLR (HR 5.78, P = 0.003) as significant variables. Adding both the GPS and the MLR increased the discrimination of the SSIGN score by 6.2 % and improved the clinical net benefit. In patients with clinically localized CCRCC, the GPS and the MLR appear to be the most relevant prognostic measures of systemic inflammatory response. They may be used as an adjunct for patient counseling, tailoring management and clinical trial design.

  2. Survival Advantage in Black Versus White Men With CKD: Effect of Estimated GFR and Case Mix

    PubMed Central

    Kovesdy, Csaba P.; Quarles, L. Darryl; Lott, Evan H.; Lu, Jun Ling; Ma, Jennie Z.; Molnar, Miklos Z.; Kalantar-Zadeh, Kamyar

    2013-01-01

    Background Black dialysis patients have significantly lower mortality compared to white patients, in contradistinction to the higher mortality seen in blacks in the general population. It is unclear if a similar paradox exists in non–dialysis-dependent CKD, and if it does, what its underlying reasons are. Study Design Historical cohort. Setting & Participants 518,406 white and 52,402 black male US veterans with non-dialysis dependent CKD stages 3–5. Predictor Black race. Outcomes & Measurements We examined overall and CKD stage-specific all-cause mortality using parametric survival models. The effect of sociodemographic characteristics, comorbidities and laboratory characteristics on the observed differences was explored in multivariable models. Results Over a median follow-up of 4.7 years 172,093 patients died (mortality rate, 71.0 [95% CI, 70.6–71.3] per 1000 patient-years). Black race was associated with significantly lower crude mortality (HR, 0.95; 95% CI, 0.94–0.97; p<0.001). The survival advantage was attenuated after adjustment for age (HR, 1.14; 95% CI, 1.12–1.16), but was even magnified after full multivariable adjustment (HR, 0.72; 95% CI, 0.70–0.73; p<0.001). The unadjusted survival advantage of blacks was more prominent in those with more advanced stages of CKD, but CKD stage-specific differences were attenuated by multivariable adjustment. Limitations Exclusively male patients. Conclusions Black patients with CKD have lower mortality compared to white patients. The survival advantage seen in blacks is accentuated in patients with more advanced stages of CKD, which may be explained by changes in case mix and laboratory characteristics occurring during the course of kidney disease. PMID:23369826

  3. Single Marital Status and Infectious Mortality in Women With Cervical Cancer in the United States.

    PubMed

    Machida, Hiroko; Eckhardt, Sarah E; Castaneda, Antonio V; Blake, Erin A; Pham, Huyen Q; Roman, Lynda D; Matsuo, Koji

    2017-10-01

    Unmarried status including single marital status is associated with increased mortality in women bearing malignancy. Infectious disease weights a significant proportion of mortality in patients with malignancy. Here, we examined an association of single marital status and infectious mortality in cervical cancer. This is a retrospective observational study examining 86,555 women with invasive cervical cancer identified in the Surveillance, Epidemiology, and End Results Program between 1973 and 2013. Characteristics of 18,324 single women were compared with 38,713 married women in multivariable binary logistic regression models. Propensity score matching was performed to examine cumulative risk of all-cause and infectious mortality between the 2 groups. Single marital status was significantly associated with young age, black/Hispanic ethnicity, Western US residents, uninsured status, high-grade tumor, squamous histology, and advanced-stage disease on multivariable analysis (all, P < 0.05). In a prematched model, single marital status was significantly associated with increased cumulative risk of all-cause mortality (5-year rate: 32.9% vs 29.7%, P < 0.001) and infectious mortality (0.5% vs 0.3%, P < 0.001) compared with the married status. After propensity score matching, single marital status remained an independent prognostic factor for increased cumulative risk of all-cause mortality (adjusted hazards ratio [HR], 1.15; 95% confidence interval [CI], 1.11-1.20; P < 0.001) and those of infectious mortality on multivariable analysis (adjusted HR, 1.71; 95% CI, 1.27-2.32; P < 0.001). In a sensitivity analysis for stage I disease, single marital status remained significantly increased risk of infectious mortality after propensity score matching (adjusted HR, 2.24; 95% CI, 1.34-3.73; P = 0.002). Single marital status was associated with increased infectious mortality in women with invasive cervical cancer.

  4. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  5. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    PubMed Central

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  6. Prediction of UT1-UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Kosek, Wiesław

    2008-02-01

    This article presents the application of a multivariate prediction technique for predicting universal time (UT1-UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1-UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1-UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1-UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1-UTC based on LS extrapolation or on LS + AR. In particular, the UT1-UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.

  7. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy.

    PubMed

    Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L

    2017-05-07

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  8. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy

    NASA Astrophysics Data System (ADS)

    Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.

    2017-05-01

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  9. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  11. Stress and Personal Resource as Predictors of the Adjustment of Parents to Autistic Children: A Multivariate Model

    ERIC Educational Resources Information Center

    Siman-Tov, Ayelet; Kaniel, Shlomo

    2011-01-01

    The research validates a multivariate model that predicts parental adjustment to coping successfully with an autistic child. The model comprises four elements: parental stress, parental resources, parental adjustment and the child's autism symptoms. 176 parents of children aged between 6 to 16 diagnosed with PDD answered several questionnaires…

  12. Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing disease resistance data

    USDA-ARS?s Scientific Manuscript database

    The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...

  13. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

    Treesearch

    Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave

    2014-01-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...

  14. Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)

    ERIC Educational Resources Information Center

    Steyn, H. S., Jr.; Ellis, S. M.

    2009-01-01

    When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…

  15. Menopause and Risk of Kidney Stones.

    PubMed

    Prochaska, Megan; Taylor, Eric N; Curhan, Gary

    2018-05-03

    Metabolic changes due to menopause may alter urine composition and kidney stone risk but results from prior work on this association have been mixed. We examined menopause and risk of incident kidney stones and changes in 24-hour urine composition in the Nurses' Health Study II. We conducted a prospective analysis of 108,639 Nurses' Health Study II participants who provided information on menopause and kidney stones. We used multivariate adjusted Cox proportional hazards models. We also analyzed 24-hour urine collections from 658 participants who performed a collection while pre-menopausal and a repeat collection after menopause. During 22 years of follow-up, there were 3,456 incident kidney stones. The multivariate adjusted relative risk for an incident kidney stone for post-menopausal participants compared with pre-menopause was 1.27 (95% CI 1.08 to 1.46). In a stratified analysis, compared with pre-menopause, the multivariate adjusted relative risk of natural menopause was 1.27 (95% CI 1.09 to 1.48) and surgically induced menopause was 1.43 (95% CI 1.19 to 1.73). Among 74,505 post-menopausal participants, there were 1,041 incident stone events. Compared with no hormone therapy use, neither current nor past use was significantly associated with kidney stone risk. Compared with pre-menopause, the post-menopausal urine collections had lower mean calcium, citrate, phosphorus, and uric acid, and higher mean volume. Post-menopausal status is associated with higher risk of incident kidney stone. Natural and surgical menopause are each independently associated with higher risk. There are small but significant differences in urine composition between pre- and post-menopausal urine collections. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  17. A New Approach in Generating Meteorological Forecasts for Ensemble Streamflow Forecasting using Multivariate Functions

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Madadgar, S.; Moradkhani, H.

    2014-12-01

    The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).

  18. How quantitative measures unravel design principles in multi-stage phosphorylation cascades.

    PubMed

    Frey, Simone; Millat, Thomas; Hohmann, Stefan; Wolkenhauer, Olaf

    2008-09-07

    We investigate design principles of linear multi-stage phosphorylation cascades by using quantitative measures for signaling time, signal duration and signal amplitude. We compare alternative pathway structures by varying the number of phosphorylations and the length of the cascade. We show that a model for a weakly activated pathway does not reflect the biological context well, unless it is restricted to certain parameter combinations. Focusing therefore on a more general model, we compare alternative structures with respect to a multivariate optimization criterion. We test the hypothesis that the structure of a linear multi-stage phosphorylation cascade is the result of an optimization process aiming for a fast response, defined by the minimum of the product of signaling time and signal duration. It is then shown that certain pathway structures minimize this criterion. Several popular models of MAPK cascades form the basis of our study. These models represent different levels of approximation, which we compare and discuss with respect to the quantitative measures.

  19. Validation of the IHC4 Breast Cancer Prognostic Algorithm Using Multiple Approaches on the Multinational TEAM Clinical Trial.

    PubMed

    Bartlett, John M S; Christiansen, Jason; Gustavson, Mark; Rimm, David L; Piper, Tammy; van de Velde, Cornelis J H; Hasenburg, Annette; Kieback, Dirk G; Putter, Hein; Markopoulos, Christos J; Dirix, Luc Y; Seynaeve, Caroline; Rea, Daniel W

    2016-01-01

    Hormone receptors HER2/neu and Ki-67 are markers of residual risk in early breast cancer. An algorithm (IHC4) combining these markers may provide additional information on residual risk of recurrence in patients treated with hormone therapy. To independently validate the IHC4 algorithm in the multinational Tamoxifen Versus Exemestane Adjuvant Multicenter Trial (TEAM) cohort, originally developed on the trans-ATAC (Arimidex, Tamoxifen, Alone or in Combination Trial) cohort, by comparing 2 methodologies. The IHC4 biomarker expression was quantified on TEAM cohort samples (n = 2919) by using 2 independent methodologies (conventional 3,3'-diaminobezidine [DAB] immunohistochemistry with image analysis and standardized quantitative immunofluorescence [QIF] by AQUA technology). The IHC4 scores were calculated by using the same previously established coefficients and then compared with recurrence-free and distant recurrence-free survival, using multivariate Cox proportional hazards modeling. The QIF model was highly significant for prediction of residual risk (P < .001), with continuous model scores showing a hazard ratio (HR) of 1.012 (95% confidence interval [95% CI]: 1.010-1.014), which was significantly higher than that for the DAB model (HR: 1.008, 95% CI: 1.006-1.009); P < .001). Each model added significant prognostic value in addition to recognized clinical prognostic factors, including nodal status, in multivariate analyses. Quantitative immunofluorescence, however, showed more accuracy with respect to overall residual risk assessment than the DAB model. The use of the IHC4 algorithm was validated on the TEAM trial for predicting residual risk in patients with breast cancer. These data support the use of the IHC4 algorithm clinically, but quantitative and standardized approaches need to be used.

  20. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  1. A simplified parsimonious higher order multivariate Markov chain model with new convergence condition

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.

  2. Various forms of indexing HDMR for modelling multivariate classification problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Çağrı; Tunga, M. Alper

    2014-12-10

    The Indexing HDMR method was recently developed for modelling multivariate interpolation problems. The method uses the Plain HDMR philosophy in partitioning the given multivariate data set into less variate data sets and then constructing an analytical structure through these partitioned data sets to represent the given multidimensional problem. Indexing HDMR makes HDMR be applicable to classification problems having real world data. Mostly, we do not know all possible class values in the domain of the given problem, that is, we have a non-orthogonal data structure. However, Plain HDMR needs an orthogonal data structure in the given problem to be modelled.more » In this sense, the main idea of this work is to offer various forms of Indexing HDMR to successfully model these real life classification problems. To test these different forms, several well-known multivariate classification problems given in UCI Machine Learning Repository were used and it was observed that the accuracy results lie between 80% and 95% which are very satisfactory.« less

  3. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters

    PubMed Central

    2014-01-01

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676

  4. Models and analysis for multivariate failure time data

    NASA Astrophysics Data System (ADS)

    Shih, Joanna Huang

    The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the performance of these two methods using actual and computer generated data.

  5. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  6. Breast feeding in infancy and arterial endothelial function later in life. The Cardiovascular Risk in Young Finns Study.

    PubMed

    Järvisalo, M J; Hutri-Kähönen, N; Juonala, M; Mikkilä, V; Räsänen, L; Lehtimäki, T; Viikari, J; Raitakari, O T

    2009-05-01

    Breast feeding in infancy may be associated with reduced cardiovascular morbidity in adulthood. We examined the association between breast feeding in infancy and arterial function and structure in adulthood in a population-based cohort of Finnish adults. Noninvasive ultrasound was used to measure brachial artery flow-mediated dilatation (FMD), carotid artery intima-media thickness (IMT) and carotid artery compliance (CAC) in 1667 young adults participating in the Cardiovascular Risk in Young Finns Study with data on early nutrition. Maximal FMD was higher in breast-fed men compared to formula-fed men (7.2+/-4.0 vs 5.9+/-3.4%, P=0.029) while no differences were seen between breast-fed and formula-fed women (8.9+/-4.5 vs 8.8+/-5.0%, P=0.84). In men, the multivariable correlates of FMD included the group variable for breast feeding (P=0.014), birth weight (P=0.043), waist circumference (P<0.001) and baseline brachial artery diameter (P<0.001). In women, the multivariable correlates of FMD were birth weight (P=0.02), waist circumference (P<0.001) and brachial artery baseline diameter (P<0.001). Breast feeding was not significantly associated with IMT or CAC in multivariable models. Adult men who have been breast fed have better brachial endothelial function compared to men who have been formula fed.

  7. Maternal Language and Adverse Birth Outcomes in a Statewide Analysis

    PubMed Central

    Sentell, Tetine; Chang, Ann; Jun Ahn, Hyeong; Miyamura, Jill

    2016-01-01

    Background Limited English proficiency is associated with disparities across diverse health outcomes. However, evidence regarding adverse birth outcomes across languages is limited, particularly among US Asian and Pacific Islander populations. The study goal was to consider the relationship of maternal language to birth outcomes using statewide hospitalization data. Methods Detailed discharge data from Hawai‘i childbirth hospitalizations from 2012 (n=11,419) were compared by maternal language (English language or not) for adverse outcomes using descriptive and multivariable log-binomial regression models, controlling for race/ethnicity, age group, and payer. Results Ten percent of mothers spoke a language other than English; 93% of these spoke an Asian or Pacific Islander language. In multivariable models, compared to English speakers non-English speakers had significantly higher risk (adjusted relative risk [ARR]: 2.02; 95% Confidence Interval [CI]: 1.34–3.04) of obstetric trauma in vaginal deliveries without instrumentation. Some significant variation was seen by language for other birth outcomes, including an increased rate of primary Caesarean sections and vaginal births after Caesarean among non-English speakers. Conclusions Non-English speakers had approximately two times higher risk of having an obstetric trauma during a vaginal birth when other factors, including race/ethnicity, were controlled. Non-English speakers also had higher rates of potentially high-risk deliveries. PMID:26361937

  8. Maternal language and adverse birth outcomes in a statewide analysis.

    PubMed

    Sentell, Tetine; Chang, Ann; Ahn, Hyeong Jun; Miyamura, Jill

    2016-01-01

    Limited English proficiency is associated with disparities across diverse health outcomes. However, evidence regarding adverse birth outcomes across languages is limited, particularly among U.S. Asian and Pacific Islander populations. The study goal was to consider the relationship of maternal language to birth outcomes using statewide hospitalization data. Detailed discharge data from Hawaii childbirth hospitalizations from 2012 (n = 11,419) were compared by maternal language (English language or not) for adverse outcomes using descriptive and multivariable log-binomial regression models, controlling for race/ethnicity, age group, and payer. Ten percent of mothers spoke a language other than English; 93% of these spoke an Asian or Pacific Islander language. In multivariable models, compared to English speakers, non-English speakers had significantly higher risk (adjusted relative risk [ARR]: 2.02; 95% confidence interval [CI]: 1.34-3.04) of obstetric trauma in vaginal deliveries without instrumentation. Some significant variation was seen by language for other birth outcomes, including an increased rate of primary Caesarean sections and vaginal births after Caesarean, among non-English speakers. Non-English speakers had approximately two times higher risk of having an obstetric trauma during a vaginal birth when other factors, including race/ethnicity, were controlled. Non-English speakers also had higher rates of potentially high-risk deliveries.

  9. Multivariate Modeling of Proteins Related to Trapezius Myalgia, a Comparative Study of Female Cleaners with or without Pain

    PubMed Central

    Hadrevi, Jenny; Ghafouri, Bijar; Larsson, Britt; Gerdle, Björn; Hellström, Fredrik

    2013-01-01

    The prevalence of chronic trapezius myalgia is high in women with high exposure to awkward working positions, repetitive movements and movements with high precision demands. The mechanisms behind chronic trapezius myalgia are not fully understood. The purpose of this study was to explore the differences in protein content between healthy and myalgic trapezius muscle using proteomics. Muscle biopsies from 12 female cleaners with work-related trapezius myalgia and 12 pain free female cleaners were obtained from the descending part of the trapezius. Proteins were separated with two-dimensional differential gel electrophoresis (2D-DIGE) and selected proteins were identified with mass spectrometry. In order to discriminate the two groups, quantified proteins were fitted to a multivariate analysis: partial least square discriminate analysis. The model separated 28 unique proteins which were related to glycolysis, the tricaboxylic acid cycle, to the contractile apparatus, the cytoskeleton and to acute response proteins. The results suggest altered metabolism, a higher abundance of proteins related to inflammation in myalgic cleaners compared to healthy, and a possible alteration of the contractile apparatus. This explorative proteomic screening of proteins related to chronic pain in the trapezius muscle provides new important aspects of the pathophysiology behind chronic trapezius myalgia. PMID:24023854

  10. Multivariate modeling of proteins related to trapezius myalgia, a comparative study of female cleaners with or without pain.

    PubMed

    Hadrevi, Jenny; Ghafouri, Bijar; Larsson, Britt; Gerdle, Björn; Hellström, Fredrik

    2013-01-01

    The prevalence of chronic trapezius myalgia is high in women with high exposure to awkward working positions, repetitive movements and movements with high precision demands. The mechanisms behind chronic trapezius myalgia are not fully understood. The purpose of this study was to explore the differences in protein content between healthy and myalgic trapezius muscle using proteomics. Muscle biopsies from 12 female cleaners with work-related trapezius myalgia and 12 pain free female cleaners were obtained from the descending part of the trapezius. Proteins were separated with two-dimensional differential gel electrophoresis (2D-DIGE) and selected proteins were identified with mass spectrometry. In order to discriminate the two groups, quantified proteins were fitted to a multivariate analysis: partial least square discriminate analysis. The model separated 28 unique proteins which were related to glycolysis, the tricaboxylic acid cycle, to the contractile apparatus, the cytoskeleton and to acute response proteins. The results suggest altered metabolism, a higher abundance of proteins related to inflammation in myalgic cleaners compared to healthy, and a possible alteration of the contractile apparatus. This explorative proteomic screening of proteins related to chronic pain in the trapezius muscle provides new important aspects of the pathophysiology behind chronic trapezius myalgia.

  11. Association between Dietary Patterns during Pregnancy and Birth Size Measures in a Diverse Population in Southern US

    PubMed Central

    Colón-Ramos, Uriyoán; Racette, Susan B.; Ganiban, Jody; Nguyen, Thuy G.; Kocak, Mehmet; Carroll, Kecia N.; Völgyi, Eszter; Tylavsky, Frances A.

    2015-01-01

    Despite increased interest in promoting nutrition during pregnancy, the association between maternal dietary patterns and birth outcomes has been equivocal. We examined maternal dietary patterns during pregnancy as a determinant of offspring’s birth weight-for-length (WLZ), weight-for-age (WAZ), length-for-age (LAZ), and head circumference (HCZ) Z-scores in Southern United States (n = 1151). Maternal diet during pregnancy was assessed by seven dietary patterns. Multivariable linear regression models described the association of WLZ, WAZ, LAZ, and HCZ with diet patterns controlling for other maternal and child characteristics. In bivariate analyses, WAZ and HCZ were significantly lower for processed and processed-Southern compared to healthy dietary patterns, whereas LAZ was significantly higher for these patterns. In the multivariate models, mothers who consumed a healthy-processed dietary pattern had children with significantly higher HCZ compared to the ones who consumed a healthy dietary pattern (HCZ β: 0.36; p = 0.019). No other dietary pattern was significantly associated with any of the birth outcomes. Instead, the major outcome determinants were: African American race, pre-pregnancy BMI, and gestational weight gain. These findings justify further investigation about socio-environmental and genetic factors related to race and birth outcomes in this population. PMID:25690420

  12. Usual Dietary Intakes: SAS Macros for Fitting Multivariate Measurement Error Models & Estimating Multivariate Usual Intake Distributions

    Cancer.gov

    The following SAS macros can be used to create a multivariate usual intake distribution for multiple dietary components that are consumed nearly every day or episodically. A SAS macro for performing balanced repeated replication (BRR) variance estimation is also included.

  13. Racial Differences in Circulating Natriuretic Peptide Levels: The Atherosclerosis Risk in Communities Study

    PubMed Central

    Gupta, Deepak K; Claggett, Brian; Wells, Quinn; Cheng, Susan; Li, Man; Maruthur, Nisa; Selvin, Elizabeth; Coresh, Josef; Konety, Suma; Butler, Kenneth R; Mosley, Thomas; Boerwinkle, Eric; Hoogeveen, Ron; Ballantyne, Christie M; Solomon, Scott D

    2015-01-01

    Background Natriuretic peptides promote natriuresis, diuresis, and vasodilation. Experimental deficiency of natriuretic peptides leads to hypertension (HTN) and cardiac hypertrophy, conditions more common among African Americans. Hospital-based studies suggest that African Americans may have reduced circulating natriuretic peptides, as compared to Caucasians, but definitive data from community-based cohorts are lacking. Methods and Results We examined plasma N-terminal pro B-type natriuretic peptide (NTproBNP) levels according to race in 9137 Atherosclerosis Risk in Communities (ARIC) Study participants (22% African American) without prevalent cardiovascular disease at visit 4 (1996–1998). Multivariable linear and logistic regression analyses were performed adjusting for clinical covariates. Among African Americans, percent European ancestry was determined from genetic ancestry informative markers and then examined in relation to NTproBNP levels in multivariable linear regression analysis. NTproBNP levels were significantly lower in African Americans (median, 43 pg/mL; interquartile range [IQR], 18, 88) than Caucasians (median, 68 pg/mL; IQR, 36, 124; P<0.0001). In multivariable models, adjusted log NTproBNP levels were 40% lower (95% confidence interval [CI], −43, −36) in African Americans, compared to Caucasians, which was consistent across subgroups of age, gender, HTN, diabetes, insulin resistance, and obesity. African-American race was also significantly associated with having nondetectable NTproBNP (adjusted OR, 5.74; 95% CI, 4.22, 7.80). In multivariable analyses in African Americans, a 10% increase in genetic European ancestry was associated with a 7% (95% CI, 1, 13) increase in adjusted log NTproBNP. Conclusions African Americans have lower levels of plasma NTproBNP than Caucasians, which may be partially owing to genetic variation. Low natriuretic peptide levels in African Americans may contribute to the greater risk for HTN and its sequalae in this population. PMID:25999400

  14. Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Jintao, Xue; Liming, Ye; Yufei, Liu; Chunyan, Li; Han, Chen

    2017-05-01

    This research was to develop a method for noninvasive and fast blood glucose assay in vivo. Near-infrared (NIR) spectroscopy, a more promising technique compared to other methods, was investigated in rats with diabetes and normal rats. Calibration models are generated by two different multivariate strategies: partial least squares (PLS) as linear regression method and artificial neural networks (ANN) as non-linear regression method. The PLS model was optimized individually by considering spectral range, spectral pretreatment methods and number of model factors, while the ANN model was studied individually by selecting spectral pretreatment methods, parameters of network topology, number of hidden neurons, and times of epoch. The results of the validation showed the two models were robust, accurate and repeatable. Compared to the ANN model, the performance of the PLS model was much better, with lower root mean square error of validation (RMSEP) of 0.419 and higher correlation coefficients (R) of 96.22%.

  15. Critical elements on fitting the Bayesian multivariate Poisson Lognormal model

    NASA Astrophysics Data System (ADS)

    Zamzuri, Zamira Hasanah binti

    2015-10-01

    Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.

  16. Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.

  17. Multivariate Bayesian modeling of known and unknown causes of events--an application to biosurveillance.

    PubMed

    Shen, Yanna; Cooper, Gregory F

    2012-09-01

    This paper investigates Bayesian modeling of known and unknown causes of events in the context of disease-outbreak detection. We introduce a multivariate Bayesian approach that models multiple evidential features of every person in the population. This approach models and detects (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities and (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities. We report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A contribution of this paper is that it introduces a multivariate Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has general applicability in domains where the space of known causes is incomplete. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. FACTOR ANALYTIC MODELS OF CLUSTERED MULTIVARIATE DATA WITH INFORMATIVE CENSORING

    EPA Science Inventory

    This paper describes a general class of factor analytic models for the analysis of clustered multivariate data in the presence of informative missingness. We assume that there are distinct sets of cluster-level latent variables related to the primary outcomes and to the censorin...

  19. An Examination of the Domain of Multivariable Functions Using the Pirie-Kieren Model

    ERIC Educational Resources Information Center

    Sengul, Sare; Yildiz, Sevda Goktepe

    2016-01-01

    The aim of this study is to employ the Pirie-Kieren model so as to examine the understandings relating to the domain of multivariable functions held by primary school mathematics preservice teachers. The data obtained was categorized according to Pirie-Kieren model and demonstrated visually in tables and bar charts. The study group consisted of…

  20. Multivariate regression model for predicting yields of grade lumber from yellow birch sawlogs

    Treesearch

    Andrew F. Howard; Daniel A. Yaussy

    1986-01-01

    A multivariate regression model was developed to predict green board-foot yields for the common grades of factory lumber processed from yellow birch factory-grade logs. The model incorporates the standard log measurements of scaling diameter, length, proportion of scalable defects, and the assigned USDA Forest Service log grade. Differences in yields between band and...

  1. A Multivariate Model for the Meta-Analysis of Study Level Survival Data at Multiple Times

    ERIC Educational Resources Information Center

    Jackson, Dan; Rollins, Katie; Coughlin, Patrick

    2014-01-01

    Motivated by our meta-analytic dataset involving survival rates after treatment for critical leg ischemia, we develop and apply a new multivariate model for the meta-analysis of study level survival data at multiple times. Our data set involves 50 studies that provide mortality rates at up to seven time points, which we model simultaneously, and…

  2. Coffee, caffeine, and risk of completed suicide: results from three prospective cohorts of American adults.

    PubMed

    Lucas, Michel; O'Reilly, Eilis J; Pan, An; Mirzaei, Fariba; Willett, Walter C; Okereke, Olivia I; Ascherio, Alberto

    2014-07-01

    To evaluate the association between coffee and caffeine consumption and suicide risk in three large-scale cohorts of US men and women. We accessed data of 43,599 men enrolled in the Health Professionals Follow-up Study (HPFS, 1988-2008), 73,820 women in the Nurses' Health Study (NHS, 1992-2008), and 91,005 women in the NHS II (1993-2007). Consumption of caffeine, coffee, and decaffeinated coffee, was assessed every 4 years by validated food-frequency questionnaires. Deaths from suicide were determined by physician review of death certificates. Multivariate adjusted relative risks (RRs) were estimated with Cox proportional hazard models. Cohort specific RRs were pooled using random-effect models. We documented 277 deaths from suicide. Compared to those consuming ≤ 1 cup/week of caffeinated coffee (< 8 oz/237 ml), the pooled multivariate RR (95% confidence interval [CI]) of suicide was 0.55 (0.38-0.78) for those consuming 2-3 cups/day and 0.47 (0.27-0.81) for those consuming ≥ 4 cups/day (P trend < 0.001). The pooled multivariate RR (95% CI) for suicide was 0.75 (0.63-0.90) for each increment of 2 cups/day of caffeinated coffee and 0.77 (0.63-0.93) for each increment of 300 mg/day of caffeine. These results from three large cohorts support an association between caffeine consumption and lower risk of suicide.

  3. Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure.

    PubMed

    Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C

    2015-01-01

    We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1979-01-01

    The research is classified in two categories: (1) the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a set-point, and (2) the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. Progress in the first category included the extension of CARDIAD (Complex Acceptability Region for Diagonal Dominance) methods developed with the help of the grant to the case of engine models with four inputs and four outputs. A suitable bounding procedure for the dominance function was determined. Progress in the second category had its principal focus on automatic nonlinear model generation. Simulations of models produced satisfactory results where compared with the NASA DYNGEN digital engine deck.

  5. The development of comparative bias index

    NASA Astrophysics Data System (ADS)

    Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin

    2017-08-01

    Structural Equation Modeling (SEM) is a second generation statistical analysis techniques developed for analyzing the inter-relationships among multiple variables in a model simultaneously. There are two most common used methods in SEM namely Covariance-Based Structural Equation Modeling (CB-SEM) and Partial Least Square Path Modeling (PLS-PM). There have been continuous debates among researchers in the use of PLS-PM over CB-SEM. While there is few studies were conducted to test the performance of CB-SEM and PLS-PM bias in estimating simulation data. This study intends to patch this problem by a) developing the Comparative Bias Index and b) testing the performance of CB-SEM and PLS-PM using developed index. Based on balanced experimental design, two multivariate normal simulation data with of distinct specifications of size 50, 100, 200 and 500 are generated and analyzed using CB-SEM and PLS-PM.

  6. Utilization and Outcomes of Sentinel Lymph Node Biopsy for Vulvar Cancer.

    PubMed

    Cham, Stephanie; Chen, Ling; Burke, William M; Hou, June Y; Tergas, Ana I; Hu, Jim C; Ananth, Cande V; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2016-10-01

    To examine the use and predictors of sentinel node biopsy in women with vulvar cancer. The Perspective database, an all-payer database that collects data from more than 500 hospitals, was used to perform a retrospective cohort study of women with vulvar cancer who underwent vulvectomy and lymph node assessment from 2006 to 2015. Multivariable models were used to determine factors associated with sentinel node biopsy. Length of stay and cost were compared between women who underwent sentinel node biopsy and lymphadenectomy. Among 2,273 women, sentinel node biopsy was utilized in 618 (27.2%) and 1,655 (72.8%) underwent inguinofemoral lymphadenectomy. Performance of sentinel node biopsy increased from 17.0% (95% confidence interval [CI] 12.0-22.0%) in 2006 to 39.1% (95% CI 27.1-51.0%) in 2015. In a multivariable model, women treated more recently were more likely to have undergone sentinel node biopsy, whereas women with more comorbidities and those treated at rural hospitals were less likely to have undergone the procedure. The median length of stay was shorter for those undergoing sentinel node biopsy (median 2 days, interquartile range 1-3) compared with women who underwent inguinofemoral lymphadenectomy (median 3 days, interquartile range 2-4). The cost of sentinel node biopsy was $7,599 (interquartile range $5,739-9,922) compared with $8,095 (interquartile range $5,917-11,281) for lymphadenectomy. The use of sentinel node biopsy for vulvar cancer has more than doubled since 2006. Sentinel lymph node biopsy is associated with a shorter hospital stay and decreased cost compared with inguinofemoral lymphadenectomy.

  7. An Exploratory Study of Fatigue and Physical Activity in Canadian Thyroid Cancer Patients.

    PubMed

    Alhashemi, Ahmad; Jones, Jennifer M; Goldstein, David P; Mina, Daniel Santa; Thabane, Lehana; Sabiston, Catherine M; Chang, Eugene K; Brierley, James D; Sawka, Anna M

    2017-09-01

    Fatigue is common among cancer survivors, but fatigue in thyroid cancer (TC) survivors may be under-appreciated. This study investigated the severity and prevalence of moderate and severe fatigue in TC survivors. Potential predictive factors, including physical activity, were explored. A cross-sectional, written, self-administered TC patient survey and retrospective chart review were performed in an outpatient academic Endocrinology clinic in Toronto, Canada. The primary outcome measure was the global fatigue score measured by the Brief Fatigue Inventory (BFI). Physical activity was evaluated using the International Physical Activity Questionnaire-7 day (IPAQ-7). Predictors of BFI global fatigue score were explored in univariate analyses and a multivariable linear regression model. The response rate was 63.1% (205/325). Three-quarters of the respondents were women (152/205). The mean age was 52.5 years, and the mean time since first TC surgery was 6.8 years. The mean global BFI score was 3.5 (standard deviation 2.4) out of 10 (10 is worst). The prevalence of moderate-severe fatigue (global BFI score 4.1-10 out of 10) was 41.4% (84/203). Individuals who were unemployed or unable to work due to disability reported significantly higher levels of fatigue compared to the rest of the study population, in uni-and multivariable analyses. Furthermore, increased physical activity was associated with reduced fatigue in uni- and multivariable analyses. Other socio-demographic, disease, or biochemical variables were not significantly associated with fatigue in the multivariable model. Moderate or severe fatigue was reported in about 4/10 TC survivors. Independent predictors of worse fatigue included unemployment and reduced physical activity.

  8. The role of area-level deprivation and gender in participation in population-based faecal immunochemical test (FIT) colorectal cancer screening.

    PubMed

    Clarke, Nicholas; McNamara, Deirdre; Kearney, Patricia M; O'Morain, Colm A; Shearer, Nikki; Sharp, Linda

    2016-12-01

    This study aimed to investigate the effects of sex and deprivation on participation in a population-based faecal immunochemical test (FIT) colorectal cancer screening programme. The study population included 9785 individuals invited to participate in two rounds of a population-based biennial FIT-based screening programme, in a relatively deprived area of Dublin, Ireland. Explanatory variables included in the analysis were sex, deprivation category of area of residence and age (at end of screening). The primary outcome variable modelled was participation status in both rounds combined (with "participation" defined as having taken part in either or both rounds of screening). Poisson regression with a log link and robust error variance was used to estimate relative risks (RR) for participation. As a sensitivity analysis, data were stratified by screening round. In both the univariable and multivariable models deprivation was strongly associated with participation. Increasing affluence was associated with higher participation; participation was 26% higher in people resident in the most affluent compared to the most deprived areas (multivariable RR=1.26: 95% CI 1.21-1.30). Participation was significantly lower in males (multivariable RR=0.96: 95%CI 0.95-0.97) and generally increased with increasing age (trend per age group, multivariable RR=1.02: 95%CI, 1.01-1.02). No significant interactions between the explanatory variables were found. The effects of deprivation and sex were similar by screening round. Deprivation and male gender are independently associated with lower uptake of population-based FIT colorectal cancer screening, even in a relatively deprived setting. Development of evidence-based interventions to increase uptake in these disadvantaged groups is urgently required. Copyright © 2016. Published by Elsevier Inc.

  9. Testing the performance of pure spectrum resolution from Raman hyperspectral images of differently manufactured pharmaceutical tablets.

    PubMed

    Vajna, Balázs; Farkas, Attila; Pataki, Hajnalka; Zsigmond, Zsolt; Igricz, Tamás; Marosi, György

    2012-01-27

    Chemical imaging is a rapidly emerging analytical method in pharmaceutical technology. Due to the numerous chemometric solutions available, characterization of pharmaceutical samples with unknown components present has also become possible. This study compares the performance of current state-of-the-art curve resolution methods (multivariate curve resolution-alternating least squares, positive matrix factorization, simplex identification via split augmented Lagrangian and self-modelling mixture analysis) in the estimation of pure component spectra from Raman maps of differently manufactured pharmaceutical tablets. The batches of different technologies differ in the homogeneity level of the active ingredient, thus, the curve resolution methods are tested under different conditions. An empirical approach is shown to determine the number of components present in a sample. The chemometric algorithms are compared regarding the number of detected components, the quality of the resolved spectra and the accuracy of scores (spectral concentrations) compared to those calculated with classical least squares, using the true pure component (reference) spectra. It is demonstrated that using appropriate multivariate methods, Raman chemical imaging can be a useful tool in the non-invasive characterization of unknown (e.g. illegal or counterfeit) pharmaceutical products. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A Multivariate Descriptive Model of Motivation for Orthodontic Treatment.

    ERIC Educational Resources Information Center

    Hackett, Paul M. W.; And Others

    1993-01-01

    Motivation for receiving orthodontic treatment was studied among 109 young adults, and a multivariate model of the process is proposed. The combination of smallest scale analysis and Partial Order Scalogram Analysis by base Coordinates (POSAC) illustrates an interesting methodology for health treatment studies and explores motivation for dental…

  11. A Multivariate Model of Parent-Adolescent Relationship Variables in Early Adolescence

    ERIC Educational Resources Information Center

    McKinney, Cliff; Renk, Kimberly

    2011-01-01

    Given the importance of predicting outcomes for early adolescents, this study examines a multivariate model of parent-adolescent relationship variables, including parenting, family environment, and conflict. Participants, who completed measures assessing these variables, included 710 culturally diverse 11-14-year-olds who were attending a middle…

  12. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  13. Dyspnea predicts mortality among patients undergoing coronary computed tomographic angiography.

    PubMed

    Nakanishi, Rine; Gransar, Heidi; Rozanski, Alan; Rana, Jamal S; Cheng, Victor Y; Thomson, Louise E J; Miranda-Peats, Romalisa; Dey, Damini; Hayes, Sean W; Friedman, John D; Min, James K; Berman, Daniel S

    2016-02-01

    The prognostic implications of dyspnea and typical angina in patients referred for coronary CT angiography have not been examined. We examined features associated with incident mortality risk among individuals undergoing coronary computed tomographic angiography (CCTA) presenting with dyspnea, typical angina, and neither of these symptoms. 1147 consecutive individuals without known CAD (mean 61 years, 61.6 %men) undergoing CCTA comprised the study population 132 with dyspnea, 218 with typical angina, and 797 without dyspnea or typical angina (reference group). Mortality risk in relation to dyspnea or typical angina was evaluated with multivariable Cox proportional hazards models compared to reference. In addition, the prognosis associated with dyspnea or typical angina was assessed among age matched subgroups. Patients with dyspnea had a greater prevalence of C70 % stenosis (p\\0.001) and coronary segments with plaque (p = 0.02) compared to the other two groups. During a follow-up of 3.1 years, 52 individuals died. By multivariable Cox models, compared to patients in reference group, dyspnea patients experienced higher mortality (HR 2.0, 95 % CI 1.0–4.0, p = 0.049) while typical angina patients did not (HR 1.1, 95 % CI 0.6–2.3, p = 0.76). In the matched group, the patients with dyspnea (HR 2.2, 95 % CI 1.1–4.3, p = 0.03) still had significantly reduced survival compared to the other two groups, while those with typical angina did not (HR 1.2, 95 % CI 0.6–2.6,p = 0.62). Dyspnea is associated with increased mortality ate compared to patients with typical angina and those with neither of these symptoms among patients undergoing CCTA.

  14. Is laparoscopic sleeve gastrectomy safer than laparoscopic gastric bypass? a comparison of 30-day complications using the MBSAQIP data registry.

    PubMed

    Kumar, Sandhya B; Hamilton, Barbara C; Wood, Stephanie G; Rogers, Stanley J; Carter, Jonathan T; Lin, Matthew Y

    2018-03-01

    Laparoscopic sleeve gastrectomy (LSG) has become popular due to its technical ease and excellent short-term results. Understanding the risk profile of LSG compared with the gold standard laparoscopic Roux-en-Y gastric bypass (LRYGB) is critical for patient selection. To use traditional regression techniques and random forest classification algorithms to compare LSG with LRYGB using the 2015 Metabolic and Bariatric Surgery Accreditation and Quality Improvement Data Registry. United States. Outcomes were leak, morbidity, and mortality within 30 days. Variable importance was assessed using random forest algorithms. Multivariate models were created in a training set and evaluated on the testing set with receiver operating characteristic curves. The adjusted odds of each outcome were compared. Of 134,142 patients, 93,062 (69%) underwent LSG and 41,080 (31%) underwent LRYGB. One hundred seventy-eight deaths occurred in 96 (.1%) of LSG patients compared with 82 (.2%) of LRYGB patients (P<.001). Morbidity occurred in 8% (5.8% in LSG versus 11.7% in LRYGB, P<.001). Leaks occurred in 1% (.8% in LSG versus 1.6% in LRYGB, P<.001). The most important predictors of all outcomes were body mass index, albumin, and age. In the adjusted multivariate models, LRYGB had higher odds of all complications (leak: odds ratio 2.10, P<.001; morbidity: odds ratio 2.02, P<.001; death: odds ratio 1.64, P<.01). In the Metabolic and Bariatric Surgery Accreditation and Quality Improvements data registry for 2015, LSG had half the risk-adjusted odds of death, serious morbidity, and leak in the first 30 days compared with LRYGB. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  15. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response.

    PubMed

    Binder, Harald; Sauerbrei, Willi; Royston, Patrick

    2013-06-15

    In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2)  = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  17. A proposed case-control framework to probabilistically classify individual deaths as expected or excess during extreme hot weather events.

    PubMed

    Henderson, Sarah B; Gauld, Jillian S; Rauch, Stephen A; McLean, Kathleen E; Krstic, Nikolas; Hondula, David M; Kosatsky, Tom

    2016-11-15

    Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number of deaths was repeatedly sampled from all deaths that occurred during a hot weather event, and compared with deaths during a control period. The deaths were compared with respect to five factors known to be associated with hot weather mortality. Individuals were ranked by their presence in significant models over 100 trials of 10,000 repetitions. Those with the highest rankings were identified as probable excess deaths. Sensitivity analyses were performed on a range of model combinations. These methods were applied to a 2009 hot weather event in greater Vancouver, Canada. The excess deaths identified were sensitive to differences in model combinations, particularly between univariate and multivariate approaches. One multivariate and one univariate combination were chosen as the best models for further analyses. The individuals identified by multiple combinations suggest that marginalized populations in greater Vancouver are at higher risk of death during hot weather. This study proposes novel methods for classifying specific deaths as expected or excess during a hot weather event. Further work is needed to evaluate performance of the methods in simulation studies and against clinically identified cases. If confirmed, these methods could be applied to a wide range of populations and events of interest.

  18. Risk factors, sequential organ failure assessment and model for end-stage liver disease scores for predicting short term mortality in cirrhotic patients admitted to intensive care unit.

    PubMed

    Cholongitas, E; Senzolo, M; Patch, D; Kwong, K; Nikolopoulou, V; Leandro, G; Shaw, S; Burroughs, A K

    2006-04-01

    Prognostic scores in an intensive care unit (ICU) evaluate outcomes, but derive from cohorts containing few cirrhotic patients. To evaluate 6-week mortality in cirrhotic patients admitted to an ICU, and to compare general and liver-specific prognostic scores. A total of 312 consecutive cirrhotic patients (65% alcoholic; mean age 49.6 years). Multivariable logistic regression to evaluate admission factors associated with survival. Child-Pugh, Model for End-stage Liver Disease (MELD), Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential Organ Failure Assessment (SOFA) scores were compared by receiver operating characteristic curves. Major indication for admission was respiratory failure (35.6%). Median (range) Child-Pugh, APACHE II, MELD and SOFA scores were 11 (5-15), 18 (0-44), 24 (6-40) and 11 (0-21), respectively; 65% (n = 203) died. Survival improved over time (P = 0.005). Multivariate model factors: more organs failing (FOS) (<3 = 49.5%, > or =3 = 90%), higher FiO(2), lactate, urea and bilirubin; resulting in good discrimination [area under receiver operating characteristic curve (AUC) = 0.83], similar to SOFA and MELD (AUC = 0.83 and 0.81, respectively) and superior to APACHE II and Child-Pugh (AUC = 0.78 and 0.72, respectively). Cirrhotics admitted to ICU with > or =3 failing organ systems have 90% mortality. The Royal Free model discriminated well and contained key variables of organ function. SOFA and MELD were better predictors than APACHE II or Child-Pugh scores.

  19. MANOVA vs nonlinear mixed effects modeling: The comparison of growth patterns of female and male quail

    NASA Astrophysics Data System (ADS)

    Gürcan, Eser Kemal

    2017-04-01

    The most commonly used methods for analyzing time-dependent data are multivariate analysis of variance (MANOVA) and nonlinear regression models. The aim of this study was to compare some MANOVA techniques and nonlinear mixed modeling approach for investigation of growth differentiation in female and male Japanese quail. Weekly individual body weight data of 352 male and 335 female quail from hatch to 8 weeks of age were used to perform analyses. It is possible to say that when all the analyses are evaluated, the nonlinear mixed modeling is superior to the other techniques because it also reveals the individual variation. In addition, the profile analysis also provides important information.

  20. Missing Data and Multiple Imputation in the Context of Multivariate Analysis of Variance

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2016-01-01

    Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…

  1. Investigation of an artificial intelligence technology--Model trees. Novel applications for an immediate release tablet formulation database.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.

  2. Diagnosis of rheumatoid arthritis: multivariate analysis of biomarkers.

    PubMed

    Wild, Norbert; Karl, Johann; Grunert, Veit P; Schmitt, Raluca I; Garczarek, Ursula; Krause, Friedemann; Hasler, Fritz; van Riel, Piet L C M; Bayer, Peter M; Thun, Matthias; Mattey, Derek L; Sharif, Mohammed; Zolg, Werner

    2008-02-01

    To test if a combination of biomarkers can increase the classification power of autoantibodies to cyclic citrullinated peptides (anti-CCP) in the diagnosis of rheumatoid arthritis (RA) depending on the diagnostic situation. Biomarkers were subject to three inclusion/exclusion criteria (discrimination between RA patients and healthy blood donors, ability to identify anti-CCP-negative RA patients, specificity in a panel with major non-rheumatological diseases) before univariate ranking and multivariate analysis was carried out using a modelling panel (n = 906). To enable the evaluation of the classification power in different diagnostic settings the disease controls (n = 542) were weighted according to the admission rates in rheumatology clinics modelling a clinic panel or according to the relative prevalences of musculoskeletal disorders in the general population seen by general practitioners modelling a GP panel. Out of 131 biomarkers considered originally, we evaluated 32 biomarkers in this study, of which only seven passed the three inclusion/exclusion criteria and were combined by multivariate analysis using four different mathematical models. In the modelled clinic panel, anti-CCP was the lead marker with a sensitivity of 75.8% and a specificity of 94.0%. Due to the lack in specificity of the markers other than anti-CCP in this diagnostic setting, any gain in sensitivity by any marker combination is off-set by a corresponding loss in specificity. In the modelled GP panel, the best marker combination of anti-CCP and interleukin (IL)-6 resulted in a sensitivity gain of 7.6% (85.9% vs. 78.3%) at a minor loss in specificity of 1.6% (90.3% vs. 91.9%) compared with anti-CCP as the best single marker. Depending on the composition of the sample panel, anti-CCP alone or anti-CCP in combination with IL-6 has the highest classification power for the diagnosis of established RA.

  3. Modeling and Control for Microgrids

    NASA Astrophysics Data System (ADS)

    Steenis, Joel

    Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.

  4. The Association Between Internet Use and Ambulatory Care-Seeking Behaviors in Taiwan: A Cross-Sectional Study

    PubMed Central

    Chen, Tsung-Fu; Liang, Jyh-Chong; Lin, Tzu-Bin; Tsai, Chin-Chung

    2016-01-01

    Background Compared with the traditional ways of gaining health-related information from newspapers, magazines, radio, and television, the Internet is inexpensive, accessible, and conveys diverse opinions. Several studies on how increasing Internet use affected outpatient clinic visits were inconclusive. Objective The objective of this study was to examine the role of Internet use on ambulatory care-seeking behaviors as indicated by the number of outpatient clinic visits after adjusting for confounding variables. Methods We conducted this study using a sample randomly selected from the general population in Taiwan. To handle the missing data, we built a multivariate logistic regression model for propensity score matching using age and sex as the independent variables. The questionnaires with no missing data were then included in a multivariate linear regression model for examining the association between Internet use and outpatient clinic visits. Results We included a sample of 293 participants who answered the questionnaire with no missing data in the multivariate linear regression model. We found that Internet use was significantly associated with more outpatient clinic visits (P=.04). The participants with chronic diseases tended to make more outpatient clinic visits (P<.01). Conclusions The inconsistent quality of health-related information obtained from the Internet may be associated with patients’ increasing need for interpreting and discussing the information with health care professionals, thus resulting in an increasing number of outpatient clinic visits. In addition, the media literacy of Web-based health-related information seekers may also affect their ambulatory care-seeking behaviors, such as outpatient clinic visits. PMID:27927606

  5. The EXCITE Trial: Predicting a Clinically Meaningful Motor Activity Log Outcome

    PubMed Central

    Park, Si-Woon; Wolf, Steven L.; Blanton, Sarah; Winstein, Carolee; Nichols-Larsen, Deborah S.

    2013-01-01

    Background and Objective This study determined which baseline clinical measurements best predicted a predefined clinically meaningful outcome on the Motor Activity Log (MAL) and developed a predictive multivariate model to determine outcome after 2 weeks of constraint-induced movement therapy (CIMT) and 12 months later using the database from participants in the Extremity Constraint Induced Therapy Evaluation (EXCITE) Trial. Methods A clinically meaningful CIMT outcome was defined as achieving higher than 3 on the MAL Quality of Movement (QOM) scale. Predictive variables included baseline MAL, Wolf Motor Function Test (WMFT), the sensory and motor portion of the Fugl-Meyer Assessment (FMA), spasticity, visual perception, age, gender, type of stroke, concordance, and time after stroke. Significant predictors identified by univariate analysis were used to develop the multivariate model. Predictive equations were generated and odds ratios for predictors were calculated from the multivariate model. Results Pretreatment motor function measured by MAL QOM, WMFT, and FMA were significantly associated with outcome immediately after CIMT. Pretreatment MAL QOM, WMFT, proprioception, and age were significantly associated with outcome after 12 months. Each unit of higher pretreatment MAL QOM score and each unit of faster pretreatment WMFT log mean time improved the probability of achieving a clinically meaningful outcome by 7 and 3 times at posttreatment, and 5 and 2 times after 12 months, respectively. Patients with impaired proprioception had a 20% probability of achieving a clinically meaningful outcome compared with those with intact proprioception. Conclusions Baseline clinical measures of motor and sensory function can be used to predict a clinically meaningful outcome after CIMT. PMID:18780883

  6. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  7. The EXCITE Trial: Predicting a clinically meaningful motor activity log outcome.

    PubMed

    Park, Si-Woon; Wolf, Steven L; Blanton, Sarah; Winstein, Carolee; Nichols-Larsen, Deborah S

    2008-01-01

    This study determined which baseline clinical measurements best predicted a predefined clinically meaningful outcome on the Motor Activity Log (MAL) and developed a predictive multivariate model to determine outcome after 2 weeks of constraint-induced movement therapy (CIMT) and 12 months later using the database from participants in the Extremity Constraint Induced Therapy Evaluation (EXCITE) Trial. A clinically meaningful CIMT outcome was defined as achieving higher than 3 on the MAL Quality of Movement (QOM) scale. Predictive variables included baseline MAL, Wolf Motor Function Test (WMFT), the sensory and motor portion of the Fugl-Meyer Assessment (FMA), spasticity, visual perception, age, gender, type of stroke, concordance, and time after stroke. Significant predictors identified by univariate analysis were used to develop the multivariate model. Predictive equations were generated and odds ratios for predictors were calculated from the multivariate model. Pretreatment motor function measured by MAL QOM, WMFT, and FMA were significantly associated with outcome immediately after CIMT. Pretreatment MAL QOM, WMFT, proprioception, and age were significantly associated with outcome after 12 months. Each unit of higher pretreatment MAL QOM score and each unit of faster pretreatment WMFT log mean time improved the probability of achieving a clinically meaningful outcome by 7 and 3 times at posttreatment, and 5 and 2 times after 12 months, respectively. Patients with impaired proprioception had a 20% probability of achieving a clinically meaningful outcome compared with those with intact proprioception. Baseline clinical measures of motor and sensory function can be used to predict a clinically meaningful outcome after CIMT.

  8. Factors Associated with the Emergence of Highly Pathogenic Avian Influenza A (H5N1) Poultry Outbreaks in China: Evidence from an Epidemiological Investigation in Ningxia, 2012.

    PubMed

    Liu, H; Zhou, X; Zhao, Y; Zheng, D; Wang, J; Wang, X; Castellan, D; Huang, B; Wang, Z; Soares Magalhães, R J

    2017-06-01

    In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case-control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1-infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12-0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97-15.64] compared to H5N1-non-infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio-exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m. © 2015 Blackwell Verlag GmbH.

  9. A mixed-effects regression model for longitudinal multivariate ordinal data.

    PubMed

    Liu, Li C; Hedeker, Donald

    2006-03-01

    A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model.

  10. A multivariate spatial mixture model for areal data: examining regional differences in standardized test scores

    PubMed Central

    Neelon, Brian; Gelfand, Alan E.; Miranda, Marie Lynn

    2013-01-01

    Summary Researchers in the health and social sciences often wish to examine joint spatial patterns for two or more related outcomes. Examples include infant birth weight and gestational length, psychosocial and behavioral indices, and educational test scores from different cognitive domains. We propose a multivariate spatial mixture model for the joint analysis of continuous individual-level outcomes that are referenced to areal units. The responses are modeled as a finite mixture of multivariate normals, which accommodates a wide range of marginal response distributions and allows investigators to examine covariate effects within subpopulations of interest. The model has a hierarchical structure built at the individual level (i.e., individuals are nested within areal units), and thus incorporates both individual- and areal-level predictors as well as spatial random effects for each mixture component. Conditional autoregressive (CAR) priors on the random effects provide spatial smoothing and allow the shape of the multivariate distribution to vary flexibly across geographic regions. We adopt a Bayesian modeling approach and develop an efficient Markov chain Monte Carlo model fitting algorithm that relies primarily on closed-form full conditionals. We use the model to explore geographic patterns in end-of-grade math and reading test scores among school-age children in North Carolina. PMID:26401059

  11. Data driven discrete-time parsimonious identification of a nonlinear state-space model for a weakly nonlinear system with short data record

    NASA Astrophysics Data System (ADS)

    Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan

    2018-05-01

    Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.

  12. Phobic Anxiety and Plasma Levels of Global Oxidative Stress in Women

    PubMed Central

    Hagan, Kaitlin A.; Wu, Tianying; Rimm, Eric B.; Eliassen, A. Heather; Okereke, Olivia I.

    2015-01-01

    Background and Objectives Psychological distress has been hypothesized to be associated with adverse biologic states such as higher oxidative stress and inflammation. Yet, little is known about associations between a common form of distress – phobic anxiety – and global oxidative stress. Thus, we related phobic anxiety to plasma fluorescent oxidation products (FlOPs), a global oxidative stress marker. Methods We conducted a cross-sectional analysis among 1,325 women (aged 43-70 years) from the Nurses’ Health Study. Phobic anxiety was measured using the Crown-Crisp Index (CCI). Adjusted least-squares mean log-transformed FlOPs were calculated across phobic categories. Logistic regression models were used to calculate odds ratios (OR) comparing the highest CCI category (≥6 points) vs. lower scores, across FlOPs quartiles. Results No association was found between phobic anxiety categories and mean FlOP levels in multivariable adjusted linear models. Similarly, in multivariable logistic regression models there were no associations between FlOPs quartiles and likelihood of being in the highest phobic category. Comparing women in the highest vs. lowest FlOPs quartiles: FlOP_360: OR=0.68 (95% CI: 0.40-1.15); FlOP_320: OR=0.99 (95% CI: 0.61-1.61); FlOP_400: OR=0.92 (95% CI: 0.52, 1.63). Conclusions No cross-sectional association was found between phobic anxiety and a plasma measure of global oxidative stress in this sample of middle-aged and older women. PMID:26635425

  13. Association of educational attainment with chronic disease and mortality: the Kidney Early Evaluation Program (KEEP).

    PubMed

    Choi, Andy I; Weekley, Cristin C; Chen, Shu-Cheng; Li, Suying; Tamura, Manjula Kurella; Norris, Keith C; Shlipak, Michael G

    2011-08-01

    Recent reports have suggested a close relationship between education and health, including mortality, in the United States. Observational cohort. We studied 61,457 participants enrolled in a national health screening initiative, the National Kidney Foundation's Kidney Early Evaluation Program (KEEP). Self-reported educational attainment. Chronic diseases (hypertension, diabetes, cardiovascular disease, reduced kidney function, and albuminuria) and mortality. We evaluated cross-sectional associations between self-reported educational attainment with the chronic diseases listed using logistic regression models adjusted for demographics, access to care, behaviors, and comorbid conditions. The association of educational attainment with survival was determined using multivariable Cox proportional hazards regression. Higher educational attainment was associated with a lower prevalence of each of the chronic conditions listed. In multivariable models, compared with persons not completing high school, college graduates had a lower risk of each chronic condition, ranging from 11% lower odds of decreased kidney function to 37% lower odds of cardiovascular disease. During a mean follow-up of 3.9 (median, 3.7) years, 2,384 (4%) deaths occurred. In the fully adjusted Cox model, those who had completed college had 24% lower mortality compared with participants who had completed at least some high school. Lack of income data does not allow us to disentangle the independent effects of education from income. In this diverse contemporary cohort, higher educational attainment was associated independently with a lower prevalence of chronic diseases and short-term mortality in all age and race/ethnicity groups. Published by Elsevier Inc.

  14. Cystic Fibrosis Associated with Worse Survival After Liver Transplantation.

    PubMed

    Black, Sylvester M; Woodley, Frederick W; Tumin, Dmitry; Mumtaz, Khalid; Whitson, Bryan A; Tobias, Joseph D; Hayes, Don

    2016-04-01

    Survival in cystic fibrosis patients after liver transplantation and liver-lung transplantation is not well studied. To discern survival rates after liver transplantation and liver-lung transplantation in patients with and without cystic fibrosis. The United Network for Organ Sharing database was queried from 1987 to 2013. Univariate Cox proportional hazards, multivariate Cox models, and propensity score matching were performed. Liver transplant and liver-lung transplant were performed in 212 and 53 patients with cystic fibrosis, respectively. Univariate Cox proportional hazards regression identified lower survival in cystic fibrosis after liver transplant compared to a reference non-cystic fibrosis liver transplant cohort (HR 1.248; 95 % CI 1.012, 1.541; p = 0.039). Supplementary analysis found graft survival was similar across the 3 recipient categories (log-rank test: χ(2) 2.68; p = 0.262). Multivariate Cox models identified increased mortality hazard among cystic fibrosis patients undergoing liver transplantation (HR 2.439; 95 % CI 1.709, 3.482; p < 0.001) and liver-lung transplantation (HR 2.753; 95 % CI 1.560, 4.861; p < 0.001). Propensity score matching of cystic fibrosis patients undergoing liver transplantation to non-cystic fibrosis controls identified a greater mortality hazard in the cystic fibrosis cohort using a Cox proportional hazards model stratified on matched pairs (HR 3.167; 95 % CI 1.265, 7.929, p = 0.014). Liver transplantation in cystic fibrosis is associated with poorer long-term patient survival compared to non-cystic fibrosis patients, although the difference is not due to graft survival.

  15. Multivariate Formation Pressure Prediction with Seismic-derived Petrophysical Properties from Prestack AVO inversion and Poststack Seismic Motion Inversion

    NASA Astrophysics Data System (ADS)

    Yu, H.; Gu, H.

    2017-12-01

    A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.

  16. Determinants of Viraemia Copy-Years in People with HIV/AIDS Following Initiation of Antiretroviral Therapy

    PubMed Central

    Wright, Stephen T; Hoy, Jennifer; Mulhall, Brian; O’Connor, Catherine C; Petoumenos, Kathy; Read, Timothy; Smith, Don; Woolley, Ian; Boyd, Mark A

    2014-01-01

    Background Recent studies suggest higher cumulative HIV viraemia exposure measured as viraemia copy-years (VCY) is associated with increased all-cause mortality. The objectives of this study are (a) report the association between VCY and all-cause mortality, and (b) assess associations between common patient characteristics and VCY. Methods Analyses were based on patients recruited to the Australian HIV Observational Database (AHOD) who had received ≥ 24 weeks of antiretroviral therapy (ART). We established VCY after 1, 3, 5 and 10 years of ART by calculating the area under the plasma viral load time-series. We used survival methods to determine the association between high VCY and all-cause mortality. We used multivariable mixed-effect models to determine predictors of VCY. We compared a baseline information model with a time-updated model to evaluate discrimination of patients with high VCY. Results Of the 3021 AHOD participants that initiated ART, 2073(69%), 1667(55%), 1267(42%) and 638(21%) were eligible for analysis at 1, 3, 5, 10 years of ART respectively. Multivariable adjusted hazard ratio (HR) association between all-cause mortality and high VCY was statistically significant, HR 1.52(1.09, 2.13), p-value=0.01. Predicting high VCY after one-year of ART for a time-updated model compared to a baseline information only model, the area under the sensitivity/specificity curve (AUC) was 0.92 vs. 0.84; and at 10 years of ART, AUC: 0.87 vs. 0.61 respectively. Conclusion A high cumulative measure of viral load after initiating ART is associated with increased risk of all-cause mortality. Identifying patients with high VCY is improved by incorporating time-updated information. PMID:24463783

  17. Mining Input Data for Multivariate Probabilistic Modeling of Rainfall-Induced Landslide Hazard in the Lake ATITLÁN Watershed in Guatemala

    NASA Astrophysics Data System (ADS)

    Cobin, P. F.; Oommen, T.; Gierke, J. S.

    2013-12-01

    The Lake Atitlán watershed is home to approximately 200,000 people and is located in the western highlands of Guatemala. Steep slopes, highly susceptible to landslides during the rainy season, characterize the region. Typically these landslides occur during high-intensity precipitation events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. Different datasets of landslide and non-landslide points across the watershed were used to compare model success at a small scale and regional scale. This study used data from multiple attributes: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The open source software Weka was used for the data mining. Several attribute selection methods were applied to the data to predetermine the potential landslide causative influence. Different multivariate algorithms were then evaluated for their ability to predict landslide occurrence. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The attribute combinations of the most successful models were compared to the attribute evaluator results. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points for the regions selected in the watershed. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.

  18. Multivariate Cholesky models of human female fertility patterns in the NLSY.

    PubMed

    Rodgers, Joseph Lee; Bard, David E; Miller, Warren B

    2007-03-01

    Substantial evidence now exists that variables measuring or correlated with human fertility outcomes have a heritable component. In this study, we define a series of age-sequenced fertility variables, and fit multivariate models to account for underlying shared genetic and environmental sources of variance. We make predictions based on a theory developed by Udry [(1996) Biosocial models of low-fertility societies. In: Casterline, JB, Lee RD, Foote KA (eds) Fertility in the United States: new patterns, new theories. The Population Council, New York] suggesting that biological/genetic motivations can be more easily realized and measured in settings in which fertility choices are available. Udry's theory, along with principles from molecular genetics and certain tenets of life history theory, allow us to make specific predictions about biometrical patterns across age. Consistent with predictions, our results suggest that there are different sources of genetic influence on fertility variance at early compared to later ages, but that there is only one source of shared environmental influence that occurs at early ages. These patterns are suggestive of the types of gene-gene and gene-environment interactions for which we must account to better understand individual differences in fertility outcomes.

  19. The study of combining Latin Hypercube Sampling method and LU decomposition method (LULHS method) for constructing spatial random field

    NASA Astrophysics Data System (ADS)

    WANG, P. T.

    2015-12-01

    Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.

  20. Time Series Model Identification by Estimating Information.

    DTIC Science & Technology

    1982-11-01

    principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R

  1. Determining the Relationship Between Moral Waivers and Marine Corps Unsuitability Attrition

    DTIC Science & Technology

    2008-03-01

    observed characteristics. However, econometric research indicates that the magnitude of interaction effects estimated via probit or logit models may...1997 to 2005. Multivariate probit models were used to analyze the effects of moral waivers on unsatisfactory service separations. 15. NUMBER OF...files from fiscal years 1997 to 2005. Multivariate probit models were used to analyze the effects of moral waivers on unsatisfactory service

  2. Multivariate test power approximations for balanced linear mixed models in studies with missing data.

    PubMed

    Ringham, Brandy M; Kreidler, Sarah M; Muller, Keith E; Glueck, Deborah H

    2016-07-30

    Multilevel and longitudinal studies are frequently subject to missing data. For example, biomarker studies for oral cancer may involve multiple assays for each participant. Assays may fail, resulting in missing data values that can be assumed to be missing completely at random. Catellier and Muller proposed a data analytic technique to account for data missing at random in multilevel and longitudinal studies. They suggested modifying the degrees of freedom for both the Hotelling-Lawley trace F statistic and its null case reference distribution. We propose parallel adjustments to approximate power for this multivariate test in studies with missing data. The power approximations use a modified non-central F statistic, which is a function of (i) the expected number of complete cases, (ii) the expected number of non-missing pairs of responses, or (iii) the trimmed sample size, which is the planned sample size reduced by the anticipated proportion of missing data. The accuracy of the method is assessed by comparing the theoretical results to the Monte Carlo simulated power for the Catellier and Muller multivariate test. Over all experimental conditions, the closest approximation to the empirical power of the Catellier and Muller multivariate test is obtained by adjusting power calculations with the expected number of complete cases. The utility of the method is demonstrated with a multivariate power analysis for a hypothetical oral cancer biomarkers study. We describe how to implement the method using standard, commercially available software products and give example code. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Characteristics and Outcomes of Patients with Ewing Sarcoma Over 40 Years of Age at Diagnosis

    PubMed Central

    Karski, Erin E.; Matthay, Katherine K.; Neuhaus, John M.; Goldsby, Robert E.; DuBois, Steven G.

    2012-01-01

    Background The peak incidence of Ewing sarcoma (EWS) is in adolescence, with little known about patients who are ≥ 40 years at diagnosis. We describe the clinical characteristics and survival of this rare group. Methods This retrospective cohort study utilized the Surveillance Epidemiology and End Results database. 2780 patients were identified; including 383 patients diagnosed ≥ 40 years. Patient characteristics between age groups were compared using chi-squared tests. Survival from diagnosis to death was estimated via Kaplan-Meier methods, compared with log-rank tests, and modeled using multivariable Cox methods. A competing risks analysis was performed to evaluate death due to cancer. Results Patients ≥ 40 years of age were more likely to have extra-skeletal tumors (66.1% v 31.7%; p<0.001), axial tumors (64.0% v 57.2%; p=0.01), and metastatic disease at diagnosis (35.5% v 30.0%; p=0.04) compared to younger patients. Five-year survival for those age ≥ 40 and age < 40 were 40.6% and 54.3%, respectively (p<0.0001). A Cox multivariable model controlling for differences between groups confirmed inferior survival for older patients (hazard ratio for death of 2.04; 95% CI 1.63 - 2.54; p < 0.0001); though treatment data were unavailable and not controlled for in the model. A competing risks analysis confirmed increased risk of cancer-related death in older patients. Conclusion Patients ≥ 40 years at diagnosis with EWS are more likely to have extra-skeletal tumors, metastatic disease, and axial primary tumors suggesting a difference in tumor biology. Independent of differences in these characteristics, older patients also have a lower survival rate. PMID:22959474

  4. Characteristics and outcomes of patients with Ewing sarcoma over 40 years of age at diagnosis.

    PubMed

    Karski, Erin E; Matthay, Katherine K; Neuhaus, John M; Goldsby, Robert E; Dubois, Steven G

    2013-02-01

    The peak incidence of Ewing sarcoma (EWS) is in adolescence, with little known about patients who are ≥40 years at diagnosis. We describe the clinical characteristics and survival of this rare group. This retrospective cohort study utilized the Surveillance Epidemiology and End Results database. 2780 patients were identified; including 383 patients diagnosed ≥40 years. Patient characteristics between age groups were compared using chi-squared tests. Survival from diagnosis to death was estimated via Kaplan-Meier methods, compared with log-rank tests, and modeled using multivariable Cox methods. A competing risks analysis was performed to evaluate death due to cancer. Patients ≥40 years of age were more likely to have extra-skeletal tumors (66.1% vs. 31.7%; p < 0.001), axial tumors (64.0% vs. 57.2%; p = 0.01), and metastatic disease at diagnosis (35.5% vs. 30.0%; p = 0.04) compared to younger patients. Five-year survival for those age ≥40 and age <40 were 40.6% and 54.3%, respectively (p < 0.0001). A Cox multivariable model controlling for differences between groups confirmed inferior survival for older patients (hazard ratio for death of 2.04; 95% CI 1.63-2.54; p < 0.0001); though treatment data were unavailable and not controlled for in the model. A competing risks analysis confirmed increased risk of cancer-related death in older patients. Patients ≥40 years at diagnosis with EWS are more likely to have extra-skeletal tumors, metastatic disease, and axial primary tumors suggesting a difference in tumor biology. Independent of differences in these characteristics, older patients also have a lower survival rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering.

    PubMed

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2015-12-01

    Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.

  6. A comparison of risk assessment models for term and preterm low birthweight.

    PubMed

    Michielutte, R; Ernest, J M; Moore, M L; Meis, P J; Sharp, P C; Wells, H B; Buescher, P A

    1992-01-01

    Most epidemiological research dealing with the assessment of risk for low birthweight has focused on all low birthweight births. Studies that have attempted to distinguish between term and preterm low birthweights have tended to examine preterm low birthweight, since the risk of perinatal mortality and morbidity is greatest for this group of infants. This study uses data from 25,408 singleton births in a 20-county region in North Carolina to identify and compare risk factors for term and preterm low birthweights, and also examines the usefulness of separate multivariate risk assessment systems for term and preterm low birthweights that could be used in the clinical setting. Risk factors that overlap as significant predictors of both types of low birthweight include race, no previous live births, smoking, weight under 100 lb, and previous preterm or low birthweight birth. Age also is a significant predictor of both types of low birthweight, but in opposite directions. Younger age is associated with reduced risk of term low birthweight and increased risk of pattern low birthweight. Comparison of all risk factors indicates that different multivariate models are needed to understand the epidemiology of preterm and term low birthweights. In terms of clinical value, a general risk assessment model that combines all low birthweight births is as effective as the separate models.

  7. Non-targeted 1H NMR fingerprinting and multivariate statistical analyses for the characterisation of the geographical origin of Italian sweet cherries.

    PubMed

    Longobardi, F; Ventrella, A; Bianco, A; Catucci, L; Cafagna, I; Gallo, V; Mastrorilli, P; Agostiano, A

    2013-12-01

    In this study, non-targeted (1)H NMR fingerprinting was used in combination with multivariate statistical techniques for the classification of Italian sweet cherries based on their different geographical origins (Emilia Romagna and Puglia). As classification techniques, Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Linear Discriminant Analysis (LDA) were carried out and the results were compared. For LDA, before performing a refined selection of the number/combination of variables, two different strategies for a preliminary reduction of the variable number were tested. The best average recognition and CV prediction abilities (both 100.0%) were obtained for all the LDA models, although PLS-DA also showed remarkable performances (94.6%). All the statistical models were validated by observing the prediction abilities with respect to an external set of cherry samples. The best result (94.9%) was obtained with LDA by performing a best subset selection procedure on a set of 30 principal components previously selected by a stepwise decorrelation. The metabolites that mostly contributed to the classification performances of such LDA model, were found to be malate, glucose, fructose, glutamine and succinate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models.

    PubMed

    Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat

    2018-05-23

    The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification

    PubMed Central

    Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen

    2014-01-01

    Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922

  10. A General Multivariate Latent Growth Model with Applications to Student Achievement

    ERIC Educational Resources Information Center

    Bianconcini, Silvia; Cagnone, Silvia

    2012-01-01

    The evaluation of the formative process in the University system has been assuming an ever increasing importance in the European countries. Within this context, the analysis of student performance and capabilities plays a fundamental role. In this work, the authors propose a multivariate latent growth model for studying the performances of a…

  11. Bayesian Estimation of Random Coefficient Dynamic Factor Models

    ERIC Educational Resources Information Center

    Song, Hairong; Ferrer, Emilio

    2012-01-01

    Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…

  12. Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    2001-01-01

    Proposes a special rotation procedure for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average.…

  13. Modeling Associations among Multivariate Longitudinal Categorical Variables in Survey Data: A Semiparametric Bayesian Approach

    ERIC Educational Resources Information Center

    Tchumtchoua, Sylvie; Dey, Dipak K.

    2012-01-01

    This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…

  14. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  15. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments

    PubMed Central

    Avalappampatty Sivasamy, Aneetha; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668

  16. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments.

    PubMed

    Sivasamy, Aneetha Avalappampatty; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.

  17. Predictive model for falling in Parkinson disease patients.

    PubMed

    Custodio, Nilton; Lira, David; Herrera-Perez, Eder; Montesinos, Rosa; Castro-Suarez, Sheila; Cuenca-Alfaro, Jose; Cortijo, Patricia

    2016-12-01

    Falls are a common complication of advancing Parkinson's disease (PD). Although numerous risk factors are known, reliable predictors of future falls are still lacking. The aim of this study was to develop a multivariate model to predict falling in PD patients. Prospective cohort with forty-nine PD patients. The area under the receiver-operating characteristic curve (AUC) was calculated to evaluate predictive performance of the purposed multivariate model. The median of PD duration and UPDRS-III score in the cohort was 6 years and 24 points, respectively. Falls occurred in 18 PD patients (30%). Predictive factors for falling identified by univariate analysis were age, PD duration, physical activity, and scores of UPDRS motor, FOG, ACE, IFS, PFAQ and GDS ( p -value < 0.001), as well as fear of falling score ( p -value = 0.04). The final multivariate model (PD duration, FOG, ACE, and physical activity) showed an AUC = 0.9282 (correctly classified = 89.83%; sensitivity = 92.68%; specificity = 83.33%). This study showed that our multivariate model have a high performance to predict falling in a sample of PD patients.

  18. The choice of prior distribution for a covariance matrix in multivariate meta-analysis: a simulation study.

    PubMed

    Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L

    2015-12-30

    Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  20. Order-restricted inference for multivariate longitudinal data with applications to the natural history of hearing loss.

    PubMed

    Rosen, Sophia; Davidov, Ori

    2012-07-20

    Multivariate outcomes are often measured longitudinally. For example, in hearing loss studies, hearing thresholds for each subject are measured repeatedly over time at several frequencies. Thus, each patient is associated with a multivariate longitudinal outcome. The multivariate mixed-effects model is a useful tool for the analysis of such data. There are situations in which the parameters of the model are subject to some restrictions or constraints. For example, it is known that hearing thresholds, at every frequency, increase with age. Moreover, this age-related threshold elevation is monotone in frequency, that is, the higher the frequency, the higher, on average, is the rate of threshold elevation. This means that there is a natural ordering among the different frequencies in the rate of hearing loss. In practice, this amounts to imposing a set of constraints on the different frequencies' regression coefficients modeling the mean effect of time and age at entry to the study on hearing thresholds. The aforementioned constraints should be accounted for in the analysis. The result is a multivariate longitudinal model with restricted parameters. We propose estimation and testing procedures for such models. We show that ignoring the constraints may lead to misleading inferences regarding the direction and the magnitude of various effects. Moreover, simulations show that incorporating the constraints substantially improves the mean squared error of the estimates and the power of the tests. We used this methodology to analyze a real hearing loss study. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Source apportionments of PM2.5 organic carbon using molecular marker Positive Matrix Factorization and comparison of results from different receptor models

    NASA Astrophysics Data System (ADS)

    Heo, Jongbae; Dulger, Muaz; Olson, Michael R.; McGinnis, Jerome E.; Shelton, Brandon R.; Matsunaga, Aiko; Sioutas, Constantinos; Schauer, James J.

    2013-07-01

    Four hundred fine particulate matter (PM2.5) samples collected over a 1-year period at two sites in the Los Angeles Basin were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and organic molecular markers. The results were used in a Positive Matrix Factorization (PMF) receptor model to obtain daily, monthly and annual average source contributions to PM2.5 OC. Results of the PMF model showed similar source categories with comparable year-long contributions to PM2.5 OC across the sites. Five source categories providing reasonably stable profiles were identified: mobile, wood smoke, primary biogenic, and two types of secondary organic carbon (SOC) (i.e., anthropogenic and biogenic emissions). Total primary emission factors and total SOC factors contributed approximately 60% and 40%, respectively, to the annual-average OC concentrations. Primary sources showed strong seasonal patterns with high winter peaks and low summer peaks, while SOC showed a reverse pattern with highs in the spring and summer in the region. Interestingly, smoke from forest fires which occurred episodically in California during the summer and fall of 2009 was identified and combined with the primary biogenic source as one distinct factor to the OC budget. The PMF resolved factors were further investigated and compared to a chemical mass balance (CMB) model and a second multi-variant receptor model (UNMIX) using molecular markers considered in the PMF. Good agreement between the source contribution from mobile sources and biomass burning for three models were obtained, providing additional weight of evidence that these source apportionment techniques are sufficiently accurate for policy development. However, the CMB model did not quantify primary biogenic emissions, which were included in other sources with the SOC. Both multivariate receptor models, the PMF and the UNMIX, were unable to separate source contributions from diesel and gasoline engines.

  2. Drought forecasting in Luanhe River basin involving climatic indices

    NASA Astrophysics Data System (ADS)

    Ren, Weinan; Wang, Yixuan; Li, Jianzhu; Feng, Ping; Smith, Ronald J.

    2017-11-01

    Drought is regarded as one of the most severe natural disasters globally. This is especially the case in Tianjin City, Northern China, where drought can affect economic development and people's livelihoods. Drought forecasting, the basis of drought management, is an important mitigation strategy. In this paper, we evolve a probabilistic forecasting model, which forecasts transition probabilities from a current Standardized Precipitation Index (SPI) value to a future SPI class, based on conditional distribution of multivariate normal distribution to involve two large-scale climatic indices at the same time, and apply the forecasting model to 26 rain gauges in the Luanhe River basin in North China. The establishment of the model and the derivation of the SPI are based on the hypothesis of aggregated monthly precipitation that is normally distributed. Pearson correlation and Shapiro-Wilk normality tests are used to select appropriate SPI time scale and large-scale climatic indices. Findings indicated that longer-term aggregated monthly precipitation, in general, was more likely to be considered normally distributed and forecasting models should be applied to each gauge, respectively, rather than to the whole basin. Taking Liying Gauge as an example, we illustrate the impact of the SPI time scale and lead time on transition probabilities. Then, the controlled climatic indices of every gauge are selected by Pearson correlation test and the multivariate normality of SPI, corresponding climatic indices for current month and SPI 1, 2, and 3 months later are demonstrated using Shapiro-Wilk normality test. Subsequently, we illustrate the impact of large-scale oceanic-atmospheric circulation patterns on transition probabilities. Finally, we use a score method to evaluate and compare the performance of the three forecasting models and compare them with two traditional models which forecast transition probabilities from a current to a future SPI class. The results show that the three proposed models outperform the two traditional models and involving large-scale climatic indices can improve the forecasting accuracy.

  3. Direct calculation of modal parameters from matrix orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Guillaume, Patrick

    2011-10-01

    The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.

  4. Predicting Survival From Large Echocardiography and Electronic Health Record Datasets: Optimization With Machine Learning.

    PubMed

    Samad, Manar D; Ulloa, Alvaro; Wehner, Gregory J; Jing, Linyuan; Hartzel, Dustin; Good, Christopher W; Williams, Brent A; Haggerty, Christopher M; Fornwalt, Brandon K

    2018-06-09

    The goal of this study was to use machine learning to more accurately predict survival after echocardiography. Predicting patient outcomes (e.g., survival) following echocardiography is primarily based on ejection fraction (EF) and comorbidities. However, there may be significant predictive information within additional echocardiography-derived measurements combined with clinical electronic health record data. Mortality was studied in 171,510 unselected patients who underwent 331,317 echocardiograms in a large regional health system. We investigated the predictive performance of nonlinear machine learning models compared with that of linear logistic regression models using 3 different inputs: 1) clinical variables, including 90 cardiovascular-relevant International Classification of Diseases, Tenth Revision, codes, and age, sex, height, weight, heart rate, blood pressures, low-density lipoprotein, high-density lipoprotein, and smoking; 2) clinical variables plus physician-reported EF; and 3) clinical variables and EF, plus 57 additional echocardiographic measurements. Missing data were imputed with a multivariate imputation by using a chained equations algorithm (MICE). We compared models versus each other and baseline clinical scoring systems by using a mean area under the curve (AUC) over 10 cross-validation folds and across 10 survival durations (6 to 60 months). Machine learning models achieved significantly higher prediction accuracy (all AUC >0.82) over common clinical risk scores (AUC = 0.61 to 0.79), with the nonlinear random forest models outperforming logistic regression (p < 0.01). The random forest model including all echocardiographic measurements yielded the highest prediction accuracy (p < 0.01 across all models and survival durations). Only 10 variables were needed to achieve 96% of the maximum prediction accuracy, with 6 of these variables being derived from echocardiography. Tricuspid regurgitation velocity was more predictive of survival than LVEF. In a subset of studies with complete data for the top 10 variables, multivariate imputation by chained equations yielded slightly reduced predictive accuracies (difference in AUC of 0.003) compared with the original data. Machine learning can fully utilize large combinations of disparate input variables to predict survival after echocardiography with superior accuracy. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Comparison of connectivity analyses for resting state EEG data

    NASA Astrophysics Data System (ADS)

    Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo

    2017-06-01

    Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.

  6. Sampling effort affects multivariate comparisons of stream assemblages

    USGS Publications Warehouse

    Cao, Y.; Larsen, D.P.; Hughes, R.M.; Angermeier, P.L.; Patton, T.M.

    2002-01-01

    Multivariate analyses are used widely for determining patterns of assemblage structure, inferring species-environment relationships and assessing human impacts on ecosystems. The estimation of ecological patterns often depends on sampling effort, so the degree to which sampling effort affects the outcome of multivariate analyses is a concern. We examined the effect of sampling effort on site and group separation, which was measured using a mean similarity method. Two similarity measures, the Jaccard Coefficient and Bray-Curtis Index were investigated with 1 benthic macroinvertebrate and 2 fish data sets. Site separation was significantly improved with increased sampling effort because the similarity between replicate samples of a site increased more rapidly than between sites. Similarly, the faster increase in similarity between sites of the same group than between sites of different groups caused clearer separation between groups. The strength of site and group separation completely stabilized only when the mean similarity between replicates reached 1. These results are applicable to commonly used multivariate techniques such as cluster analysis and ordination because these multivariate techniques start with a similarity matrix. Completely stable outcomes of multivariate analyses are not feasible. Instead, we suggest 2 criteria for estimating the stability of multivariate analyses of assemblage data: 1) mean within-site similarity across all sites compared, indicating sample representativeness, and 2) the SD of within-site similarity across sites, measuring sample comparability.

  7. Vector space methods of photometric analysis - Applications to O stars and interstellar reddening

    NASA Technical Reports Server (NTRS)

    Massa, D.; Lillie, C. F.

    1978-01-01

    A multivariate vector-space formulation of photometry is developed which accounts for error propagation. An analysis of uvby and H-beta photometry of O stars is presented, with attention given to observational errors, reddening, general uvby photometry, early stars, and models of O stars. The number of observable parameters in O-star continua is investigated, the way these quantities compare with model-atmosphere predictions is considered, and an interstellar reddening law is derived. It is suggested that photospheric expansion affects the formation of the continuum in at least some O stars.

  8. Causal diagrams and multivariate analysis II: precision work.

    PubMed

    Jupiter, Daniel C

    2014-01-01

    In this Investigators' Corner, I continue my discussion of when and why we researchers should include variables in multivariate regression. My examination focuses on studies comparing treatment groups and situations for which we can either exclude variables from multivariate analyses or include them for reasons of precision. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Space-time variation of respiratory cancers in South Carolina: a flexible multivariate mixture modeling approach to risk estimation.

    PubMed

    Carroll, Rachel; Lawson, Andrew B; Kirby, Russell S; Faes, Christel; Aregay, Mehreteab; Watjou, Kevin

    2017-01-01

    Many types of cancer have an underlying spatiotemporal distribution. Spatiotemporal mixture modeling can offer a flexible approach to risk estimation via the inclusion of latent variables. In this article, we examine the application and benefits of using four different spatiotemporal mixture modeling methods in the modeling of cancer of the lung and bronchus as well as "other" respiratory cancer incidences in the state of South Carolina. Of the methods tested, no single method outperforms the other methods; which method is best depends on the cancer under consideration. The lung and bronchus cancer incidence outcome is best described by the univariate modeling formulation, whereas the "other" respiratory cancer incidence outcome is best described by the multivariate modeling formulation. Spatiotemporal multivariate mixture methods can aid in the modeling of cancers with small and sparse incidences when including information from a related, more common type of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  11. Multivariate meta-analysis using individual participant data

    PubMed Central

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2016-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484

  12. The genetic basis for cognitive ability, memory, and depression symptomatology in middle-aged and elderly chinese twins.

    PubMed

    Xu, Chunsheng; Sun, Jianping; Ji, Fuling; Tian, Xiaocao; Duan, Haiping; Zhai, Yaoming; Wang, Shaojie; Pang, Zengchang; Zhang, Dongfeng; Zhao, Zhongtang; Li, Shuxia; Hjelmborg, Jacob V B; Christensen, Kaare; Tan, Qihua

    2015-02-01

    The genetic influences on aging-related phenotypes, including cognition and depression, have been well confirmed in the Western populations. We performed the first twin-based analysis on cognitive performance, memory and depression status in middle-aged and elderly Chinese twins, representing the world's largest and most rapidly aging population. The sample consisted of 384 twin pairs with a median age of 50 years. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) scale; memory was assessed using the revised Wechsler Adult Intelligence scale; depression symptomatology was evaluated by the self-reported 30-item Geriatric Depression (GDS-30)scale. Both univariate and multivariate twin models were fitted to the three phenotypes with full and nested models and compared to select the best fitting models. Univariate analysis showed moderate-to-high genetic influences with heritability 0.44 for cognition and 0.56 for memory. Multivariate analysis by the reduced Cholesky model estimated significant genetic (rG = 0.69) and unique environmental (rE = 0.25) correlation between cognitive ability and memory. The model also estimated weak but significant inverse genetic correlation for depression with cognition (-0.31) and memory (-0.28). No significant unique environmental correlation was found for depression with other two phenotypes. In conclusion, there can be a common genetic architecture for cognitive ability and memory that weakly correlates with depression symptomatology, but in the opposite direction.

  13. A New Approach to Identifying the Drivers of Regulation Compliance Using Multivariate Behavioural Models

    PubMed Central

    Thomas, Alyssa S.; Milfont, Taciano L.; Gavin, Michael C.

    2016-01-01

    Non-compliance with fishing regulations can undermine management effectiveness. Previous bivariate approaches were unable to untangle the complex mix of factors that may influence fishers’ compliance decisions, including enforcement, moral norms, perceived legitimacy of regulations and the behaviour of others. We compared seven multivariate behavioural models of fisher compliance decisions using structural equation modeling. An online survey of over 300 recreational fishers tested the ability of each model to best predict their compliance with two fishing regulations (daily and size limits). The best fitting model for both regulations was composed solely of psycho-social factors, with social norms having the greatest influence on fishers’ compliance behaviour. Fishers’ attitude also directly affected compliance with size limit, but to a lesser extent. On the basis of these findings, we suggest behavioural interventions to target social norms instead of increasing enforcement for the focal regulations in the recreational blue cod fishery in the Marlborough Sounds, New Zealand. These interventions could include articles in local newspapers and fishing magazines highlighting the extent of regulation compliance as well as using respected local fishers to emphasize the benefits of compliance through public meetings or letters to the editor. Our methodological approach can be broadly applied by natural resource managers as an effective tool to identify drivers of compliance that can then guide the design of interventions to decrease illegal resource use. PMID:27727292

  14. Risk models for post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP): smoking and chronic liver disease are predictors of protection against PEP.

    PubMed

    DiMagno, Matthew J; Spaete, Joshua P; Ballard, Darren D; Wamsteker, Erik-Jan; Saini, Sameer D

    2013-08-01

    We investigated which variables independently associated with protection against or development of postendoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) and severity of PEP. Subsequently, we derived predictive risk models for PEP. In a case-control design, 6505 patients had 8264 ERCPs, 211 patients had PEP, and 22 patients had severe PEP. We randomly selected 348 non-PEP controls. We examined 7 established- and 9 investigational variables. In univariate analysis, 7 variables predicted PEP: younger age, female sex, suspected sphincter of Oddi dysfunction (SOD), pancreatic sphincterotomy, moderate-difficult cannulation (MDC), pancreatic stent placement, and lower Charlson score. Protective variables were current smoking, former drinking, diabetes, and chronic liver disease (CLD, biliary/transplant complications). Multivariate analysis identified seven independent variables for PEP, three protective (current smoking, CLD-biliary, CLD-transplant/hepatectomy complications) and 4 predictive (younger age, suspected SOD, pancreatic sphincterotomy, MDC). Pre- and post-ERCP risk models of 7 variables have a C-statistic of 0.74. Removing age (seventh variable) did not significantly affect the predictive value (C-statistic of 0.73) and reduced model complexity. Severity of PEP did not associate with any variables by multivariate analysis. By using the newly identified protective variables with 3 predictive variables, we derived 2 risk models with a higher predictive value for PEP compared to prior studies.

  15. A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2015-01-01

    Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS's hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs' spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets.

  16. The effect of physician and health plan market concentration on prices in commercial health insurance markets.

    PubMed

    Schneider, John E; Li, Pengxiang; Klepser, Donald G; Peterson, N Andrew; Brown, Timothy T; Scheffler, Richard M

    2008-03-01

    The objective of this paper is to describe the market structure of health plans (HPs) and physician organizations (POs) in California, a state with high levels of managed care penetration and selective contracting. First we calculate Herfindahl-Hirschman (HHI) concentration indices for HPs and POs in 42 California counties. We then estimate a multivariable regression model to examine the relationship between concentration measures and the prices paid by HPs to POs. Price data is from Medstat MarketScan databases. The findings show that any California counties exhibit what the Department of Justice would consider high HHI concentration measures, in excess of 1,800. More than three quarters of California counties exhibit HP concentration indices over 1,800, and 83% of counties have PO concentration levels in excess of 1,800. Half of the study counties exhibited PO concentration levels in excess of 3,600, compared to only 24% for plans. Multivariate price models suggest that PO concentration is associated with higher physician prices (p < or = 0.05), whereas HP concentration does not appear to be significantly associated with higher outpatient commercial payer prices.

  17. Low health literacy and poor health status in Asian Americans and Pacific Islanders in Hawai'i.

    PubMed

    Sentell, Tetine; Baker, Kay Kromer; Onaka, Alvin; Braun, Kathryn

    2011-01-01

    Health literacy is understudied in Asian Americans/Pacific Islanders (AA/PI). We used a population-based sample in Hawai'i to consider if low health literacy is associated with poor health outcomes in Japanese, Filipino, Native Hawaiians, and other AA/PI groups compared with Whites. In data weighted and adjusted for population undercounts and complex survey design, low health literacy varied significantly by group, from 23.9% among Filipinos, 20.6% in Other AA/PI, 16.0% in Japanese, 15.9% in Native Hawaiians, and 13.2% in Whites (χ(2) (4) = 52.22; p < .001). In multivariate models, low health literacy was significantly associated with (a) poor self-reported health in Japanese, Filipinos, Other AA/PI, and Whites; (b) diabetes in Hawaiians and Japanese; and (c) depression for Hawaiians. Low health literacy did not significantly predict overweight/obesity in any ethnic grouping in multivariate models. The design and relevance of health literacy interventions, as well as the pathways that link health literacy to health status, may vary by race/ethnicity, culture, and health outcomes.

  18. Predictors of effects of lifestyle intervention on diabetes mellitus type 2 patients.

    PubMed

    Jacobsen, Ramune; Vadstrup, Eva; Røder, Michael; Frølich, Anne

    2012-01-01

    The main aim of the study was to identify predictors of the effects of lifestyle intervention on diabetes mellitus type 2 patients by means of multivariate analysis. Data from a previously published randomised clinical trial, which compared the effects of a rehabilitation programme including standardised education and physical training sessions in the municipality's health care centre with the same duration of individual counseling in the diabetes outpatient clinic, were used. Data from 143 diabetes patients were analysed. The merged lifestyle intervention resulted in statistically significant improvements in patients' systolic blood pressure, waist circumference, exercise capacity, glycaemic control, and some aspects of general health-related quality of life. The linear multivariate regression models explained 45% to 80% of the variance in these improvements. The baseline outcomes in accordance to the logic of the regression to the mean phenomenon were the only statistically significant and robust predictors in all regression models. These results are important from a clinical point of view as they highlight the more urgent need for and better outcomes following lifestyle intervention for those patients who have worse general and disease-specific health.

  19. Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood

    NASA Astrophysics Data System (ADS)

    Simhi, Ronit; Gotshal, Yaron; Bunimovich, David; Katzir, Abraham; Sela, Ben-Ami

    1996-07-01

    A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid. spectroscopy, fiber-optic evanescent-wave spectroscopy, Fourier-transform infrared spectrometer, blood, multivariate calibration, neural networks.

  20. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  1. Comparative effectiveness research in cancer with observational data.

    PubMed

    Giordano, Sharon H

    2015-01-01

    Observational studies are increasingly being used for comparative effectiveness research. These studies can have the greatest impact when randomized trials are not feasible or when randomized studies have not included the population or outcomes of interest. However, careful attention must be paid to study design to minimize the likelihood of selection biases. Analytic techniques, such as multivariable regression modeling, propensity score analysis, and instrumental variable analysis, also can also be used to help address confounding. Oncology has many existing large and clinically rich observational databases that can be used for comparative effectiveness research. With careful study design, observational studies can produce valid results to assess the benefits and harms of a treatment or intervention in representative real-world populations.

  2. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    PubMed

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate statistical modeling techniques, demonstrated advantages for estimating the TP concentration in a large lake and had a strong potential for universal application for the TP concentration estimation in large lake waters worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Creation of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure: 2- and 5-year risk models.

    PubMed

    Nakajima, Kenichi; Nakata, Tomoaki; Matsuo, Shinro; Jacobson, Arnold F

    2016-10-01

    (123)I meta-iodobenzylguanidine (MIBG) imaging has been extensively used for prognostication in patients with chronic heart failure (CHF). The purpose of this study was to create mortality risk charts for short-term (2 years) and long-term (5 years) prediction of cardiac mortality. Using a pooled database of 1322 CHF patients, multivariate analysis, including (123)I-MIBG late heart-to-mediastinum ratio (HMR), left ventricular ejection fraction (LVEF), and clinical factors, was performed to determine optimal variables for the prediction of 2- and 5-year mortality risk using subsets of the patients (n = 1280 and 933, respectively). Multivariate logistic regression analysis was performed to create risk charts. Cardiac mortality was 10 and 22% for the sub-population of 2- and 5-year analyses. A four-parameter multivariate logistic regression model including age, New York Heart Association (NYHA) functional class, LVEF, and HMR was used. Annualized mortality rate was <1% in patients with NYHA Class I-II and HMR ≥ 2.0, irrespective of age and LVEF. In patients with NYHA Class III-IV, mortality rate was 4-6 times higher for HMR < 1.40 compared with HMR ≥ 2.0 in all LVEF classes. Among the subset of patients with b-type natriuretic peptide (BNP) results (n = 491 and 359 for 2- and 5-year models, respectively), the 5-year model showed incremental value of HMR in addition to BNP. Both 2- and 5-year risk prediction models with (123)I-MIBG HMR can be used to identify low-risk as well as high-risk patients, which can be effective for further risk stratification of CHF patients even when BNP is available. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  4. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.

  5. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  6. A Multivariate Multilevel Approach to the Modeling of Accuracy and Speed of Test Takers

    ERIC Educational Resources Information Center

    Klein Entink, R. H.; Fox, J. P.; van der Linden, W. J.

    2009-01-01

    Response times on test items are easily collected in modern computerized testing. When collecting both (binary) responses and (continuous) response times on test items, it is possible to measure the accuracy and speed of test takers. To study the relationships between these two constructs, the model is extended with a multivariate multilevel…

  7. Multivariate regression model for partitioning tree volume of white oak into round-product classes

    Treesearch

    Daniel A. Yaussy; David L. Sonderman

    1984-01-01

    Describes the development of multivariate equations that predict the expected cubic volume of four round-product classes from independent variables composed of individual tree-quality characteristics. Although the model has limited application at this time, it does demonstrate the feasibility of partitioning total tree cubic volume into round-product classes based on...

  8. The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples

    ERIC Educational Resources Information Center

    Avetisyan, Marianna; Fox, Jean-Paul

    2012-01-01

    In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…

  9. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    ERIC Educational Resources Information Center

    Anderson, John R.

    2012-01-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…

  10. Four Families of Multi-Variant Issues in Graduate-Level Asynchronous Online Courses

    ERIC Educational Resources Information Center

    Gisburne, Jaclyn M.; Fairchild, Patricia J.

    2004-01-01

    This is the first of several papers developed from a faculty and student perspective describing a new distance learning (DL) model. Integral to the model are four interrelated families of multi-variant issues, referred to here as (a) the academic divide, (b) student misalignment, (c) administrative influences, and (d) the use of student…

  11. Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicolas

    2011-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…

  12. Bias and Precision of Measures of Association for a Fixed-Effect Multivariate Analysis of Variance Model

    ERIC Educational Resources Information Center

    Kim, Soyoung; Olejnik, Stephen

    2005-01-01

    The sampling distributions of five popular measures of association with and without two bias adjusting methods were examined for the single factor fixed-effects multivariate analysis of variance model. The number of groups, sample sizes, number of outcomes, and the strength of association were manipulated. The results indicate that all five…

  13. Least-Squares Regression and Spectral Residual Augmented Classical Least-Squares Chemometric Models for Stability-Indicating Analysis of Agomelatine and Its Degradation Products: A Comparative Study.

    PubMed

    Naguib, Ibrahim A; Abdelrahman, Maha M; El Ghobashy, Mohamed R; Ali, Nesma A

    2016-01-01

    Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215-350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components.

  14. Is there a relationship between periodontal conditions and number of medications among the elderly?

    PubMed

    Natto, Zuhair S; Aladmawy, Majdi; Alshaeri, Heba K; Alasqah, Mohammed; Papas, Athena

    2016-03-01

    To investigate possible correlations of clinical attachment level and pocket depth with number of medications in elderly individuals. Intra-oral examinations for 139 patients visiting Tufts dental clinic were done. Periodontal assessments were performed with a manual UNC-15 periodontal probe to measure probing depth (PD) and clinical attachment level (CAL) at 6 sites. Complete lists of patients' medications were obtained during the examinations. Statistical analysis involved Kruskal-Wallis, chi square and multivariate logistic regression analyses. Age and health status attained statistical significance (p< 0.05), in contingency table analysis with number of medications. Number of medications had an effect on CAL: increased attachment loss was observed when 4 or more medications were being taken by the patient. Number of medications did not have any effect on periodontal PD. In multivariate logistic regression analysis, 6 or more medications had a higher risk of attachment loss (>3mm) when compared to the no-medication group, in crude OR (1.20, 95% CI:0.22-6.64), and age adjusted (OR=1.16, 95% CI:0.21-6.45), but not with the multivariate model (OR=0.71, 95% CI:0.11-4.39). CAL seems to be more sensitive to the number of medications taken, when compared to PD. However, it is not possible to discriminate at exactly what number of drug combinations the breakdown in CAL will happen. We need to do further analysis, including more subjects, to understand the possible synergistic mechanisms for different drug and periodontal responses.

  15. Analysis of risk factors for central venous port failure in cancer patients

    PubMed Central

    Hsieh, Ching-Chuan; Weng, Hsu-Huei; Huang, Wen-Shih; Wang, Wen-Ke; Kao, Chiung-Lun; Lu, Ming-Shian; Wang, Chia-Siu

    2009-01-01

    AIM: To analyze the risk factors for central port failure in cancer patients administered chemotherapy, using univariate and multivariate analyses. METHODS: A total of 1348 totally implantable venous access devices (TIVADs) were implanted into 1280 cancer patients in this cohort study. A Cox proportional hazard model was applied to analyze risk factors for failure of TIVADs. Log-rank test was used to compare actuarial survival rates. Infection, thrombosis, and surgical complication rates (χ2 test or Fisher’s exact test) were compared in relation to the risk factors. RESULTS: Increasing age, male gender and open-ended catheter use were significant risk factors reducing survival of TIVADs as determined by univariate and multivariate analyses. Hematogenous malignancy decreased the survival time of TIVADs; this reduction was not statistically significant by univariate analysis [hazard ratio (HR) = 1.336, 95% CI: 0.966-1.849, P = 0.080)]. However, it became a significant risk factor by multivariate analysis (HR = 1.499, 95% CI: 1.079-2.083, P = 0.016) when correlated with variables of age, sex and catheter type. Close-ended (Groshong) catheters had a lower thrombosis rate than open-ended catheters (2.5% vs 5%, P = 0.015). Hematogenous malignancy had higher infection rates than solid malignancy (10.5% vs 2.5%, P < 0.001). CONCLUSION: Increasing age, male gender, open-ended catheters and hematogenous malignancy were risk factors for TIVAD failure. Close-ended catheters had lower thrombosis rates and hematogenous malignancy had higher infection rates. PMID:19787834

  16. Body composition status and the risk of migraine: A meta-analysis.

    PubMed

    Gelaye, Bizu; Sacco, Simona; Brown, Wendy J; Nitchie, Haley L; Ornello, Raffaele; Peterlin, B Lee

    2017-05-09

    To evaluate the association between migraine and body composition status as estimated based on body mass index and WHO physical status categories. Systematic electronic database searches were conducted for relevant studies. Two independent reviewers performed data extraction and quality appraisal. Odds ratios (OR) and confidence intervals (CI) were pooled using a random effects model. Significant values, weighted effect sizes, and tests of homogeneity of variance were calculated. A total of 12 studies, encompassing data from 288,981 unique participants, were included. The age- and sex-adjusted pooled risk of migraine in those with obesity was increased by 27% compared with those of normal weight (odds ratio [OR] 1.27; 95% confidence interval [CI] 1.16-1.37, p < 0.001) and remained increased after multivariate adjustments. Although the age- and sex-adjusted pooled migraine risk was increased in overweight individuals (OR 1.08; 95% CI 1.04, 1.12, p < 0.001), significance was lost after multivariate adjustments. The age- and sex-adjusted pooled risk of migraine in underweight individuals was marginally increased by 13% compared with those of normal weight (OR 1.13; 95% CI 1.02, 1.24, p < 0.001) and remained increased after multivariate adjustments. The current body of evidence shows that the risk of migraine is increased in obese and underweight individuals. Studies are needed to confirm whether interventions that modify obesity status decrease the risk of migraine. © 2017 American Academy of Neurology.

  17. Adjuvant chemotherapy and overall survival in adult medulloblastoma.

    PubMed

    Kann, Benjamin H; Lester-Coll, Nataniel H; Park, Henry S; Yeboa, Debra N; Kelly, Jacqueline R; Baehring, Joachim M; Becker, Kevin P; Yu, James B; Bindra, Ranjit S; Roberts, Kenneth B

    2017-02-01

    Although chemotherapy is used routinely in pediatric medulloblastoma (MB) patients, its benefit for adult MB is unclear. We evaluated the survival impact of adjuvant chemotherapy in adult MB. Using the National Cancer Data Base, we identified patients aged 18 years and older who were diagnosed with MB in 2004-2012 and underwent surgical resection and adjuvant craniospinal irradiation (CSI). Patients were divided into those who received adjuvant CSI and chemotherapy (CRT) or CSI alone (RT). Predictors of CRT compared with RT were evaluated with univariable and multivariable logistic regression. Survival analysis was limited to patients receiving CSI doses between 23 and 36 Gy. Overall survival (OS) was evaluated using the Kaplan-Meier estimator, log-rank test, multivariable Cox proportional hazards modeling, and propensity score matching. Of the 751 patients included, 520 (69.2%) received CRT, and 231 (30.8%) received RT. With median follow-up of 5.0 years, estimated 5-year OS was superior in patients receiving CRT versus RT (86.1% vs 71.6%, P < .0001). On multivariable analysis, after controlling for risk factors, CRT was associated with superior OS compared with RT (HR: 0.53; 95%CI: 0.32-0.88, P = .01). On planned subgroup analyses, the 5 year OS of patients receiving CRT versus RT was improved for M0 patients (P < .0001), for patients receiving 36 Gy CSI (P = .0007), and for M0 patients receiving 36 Gy CSI (P = .0008). This national database analysis demonstrates that combined postoperative chemotherapy and radiotherapy are associated with superior survival for adult MB compared with radiotherapy alone, even for M0 patients who receive high-dose CSI. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. MULTIVARIATE ANALYSES (CONONICAL CORRELATION AND PARTIAL LEAST SQUARE, PLS) TO MODEL AND ASSESS THE ASSOCIATION OF LANDSCAPE METRICS TO SURFACE WATER CHEMICAL AND BIOLOGICAL PROPERTIES USING SAVANNAH RIVER BASIN DATA.

    EPA Science Inventory

    Many multivariate methods are used in describing and predicting relation; each has its unique usage of categorical and non-categorical data. In multivariate analysis of variance (MANOVA), many response variables (y's) are related to many independent variables that are categorical...

  19. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    PubMed

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability.

  20. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes

    PubMed Central

    Yates, Katherine L.; Mellin, Camille; Caley, M. Julian; Radford, Ben T.; Meeuwig, Jessica J.

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability. PMID:27333202

  1. Establishment of a mathematic model for predicting malignancy in solitary pulmonary nodules.

    PubMed

    Zhang, Man; Zhuo, Na; Guo, Zhanlin; Zhang, Xingguang; Liang, Wenhua; Zhao, Sheng; He, Jianxing

    2015-10-01

    The aim of this study was to establish a model for predicting the probability of malignancy in solitary pulmonary nodules (SPNs) and provide guidance for the diagnosis and follow-up intervention of SPNs. We retrospectively analyzed the clinical data and computed tomography (CT) images of 294 patients with a clear pathological diagnosis of SPN. Multivariate logistic regression analysis was used to screen independent predictors of the probability of malignancy in the SPN and to establish a model for predicting malignancy in SPNs. Then, another 120 SPN patients who did not participate in the model establishment were chosen as group B and used to verify the accuracy of the prediction model. Multivariate logistic regression analysis showed that there were significant differences in age, smoking history, maximum diameter of nodules, spiculation, clear borders, and Cyfra21-1 levels between subgroups with benign and malignant SPNs (P<0.05). These factors were identified as independent predictors of malignancy in SPNs. The area under the curve (AUC) was 0.910 [95% confidence interval (CI), 0.857-0.963] in model with Cyfra21-1 significantly better than 0.812 (95% CI, 0.763-0.861) in model without Cyfra21-1 (P=0.008). The area under receiver operating characteristic (ROC) curve of our model is significantly higher than the Mayo model, VA model and Peking University People's (PKUPH) model. Our model (AUC =0.910) compared with Brock model (AUC =0.878, P=0.350), the difference was not statistically significant. The model added Cyfra21-1 could improve prediction. The prediction model established in this study can be used to assess the probability of malignancy in SPNs, thereby providing help for the diagnosis of SPNs and the selection of follow-up interventions.

  2. Impact of variational assimilation using multivariate background error covariances on the simulation of monsoon depressions over India

    NASA Astrophysics Data System (ADS)

    Dhanya, M.; Chandrasekar, A.

    2016-02-01

    The background error covariance structure influences a variational data assimilation system immensely. The simulation of a weather phenomenon like monsoon depression can hence be influenced by the background correlation information used in the analysis formulation. The Weather Research and Forecasting Model Data assimilation (WRFDA) system includes an option for formulating multivariate background correlations for its three-dimensional variational (3DVar) system (cv6 option). The impact of using such a formulation in the simulation of three monsoon depressions over India is investigated in this study. Analysis and forecast fields generated using this option are compared with those obtained using the default formulation for regional background error correlations (cv5) in WRFDA and with a base run without any assimilation. The model rainfall forecasts are compared with rainfall observations from the Tropical Rainfall Measurement Mission (TRMM) and the other model forecast fields are compared with a high-resolution analysis as well as with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The results of the study indicate that inclusion of additional correlation information in background error statistics has a moderate impact on the vertical profiles of relative humidity, moisture convergence, horizontal divergence and the temperature structure at the depression centre at the analysis time of the cv5/cv6 sensitivity experiments. Moderate improvements are seen in two of the three depressions investigated in this study. An improved thermodynamic and moisture structure at the initial time is expected to provide for improved rainfall simulation. The results of the study indicate that the skill scores of accumulated rainfall are somewhat better for the cv6 option as compared to the cv5 option for at least two of the three depression cases studied, especially at the higher threshold levels. Considering the importance of utilising improved flow-dependent correlation structures for efficient data assimilation, the need for more studies on the impact of background error covariances is obvious.

  3. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study.

    PubMed

    Divya, O; Mishra, Ashok K

    2007-05-29

    Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.

  4. Basin Characterisation by Means of Joint Inversion of Electromagnetic Geophysical Data, Borehole Data and Multivariate Statistical Methods: The Loop Head Peninsula, Western Ireland, Case Study

    NASA Astrophysics Data System (ADS)

    Campanya, J. L.; Ogaya, X.; Jones, A. G.; Rath, V.; McConnell, B.; Haughton, P.; Prada, M.

    2016-12-01

    The Science Foundation Ireland funded project IRECCSEM project (www.ireccsem.ie) aims to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic geophysical data with existing geophysical and geological data. One of the objectives of this component of IRECCSEM is to characterise the subsurface beneath the Loop Head Peninsula (part of Clare Basin, Co. Clare, Ireland), and identify major electrical resistivity structures that can guide an interpretation of the carbon sequestration potential of this area. During the summer of 2014, a magnetotelluric (MT) survey was carried out on the Loop Head Peninsula, and data from a total of 140 sites were acquired, including audio-magnetotelluric (AMT), and broadband magnetotelluric (BBMT). The dataset was used to generate shallow three-dimensional (3-D) electrical resistivity models constraining the subsurface to depths of up to 3.5 km. The three-dimensional (3-D) joint inversions were performed using three different types of electromagnetic data: MT impedance tensor (Z), geomagnetic transfer functions (T), and inter-station horizontal magnetic transfer-functions (H). The interpretation of the results was complemented with second-derivative models of the resulting electrical resistivity models, and a quantitative comparison with borehole data using multivariate statistical methods. Second-derivative models were used to define the main interfaces between the geoelectrical structures, facilitating superior comparison with geological and seismic results, and also reducing the influence of the colour scale when interpreting the results. Specific analysis was performed to compare the extant borehole data with the electrical resistivity model, identifying those structures that are better characterised by the resistivity model. Finally, the electrical resistivity model was also used to propagate some of the physical properties measured in the borehole, when a good relation was possible between the different types of data. The final results were compared with independent geological and geophysical data for a high-quality interpretation.

  5. Risk perception and sexual behavior in HPV-vaccinated and unvaccinated young Colombian women.

    PubMed

    Ruiz-Sternberg, Angela M; Pinzón-Rondón, Ángela M

    2014-09-01

    To compare sexual behaviors and risk perception between young women vaccinated for HPV and unvaccinated Colombian women. In a cross-sectional design study, 1436 women (231 adolescents, <18 years; 1205 young women, 18-26 years) completed a self-administered questionnaire between May 2011 and March 2012 in Bogotá, Colombia. Data from vaccinated and unvaccinated women were compared by descriptive statistics and multivariate models. Sexual risk behaviors were not associated with vaccination after adjustment for risk perception, age, educational level, and HPV knowledge. By contrast, vaccination was associated with higher routine Pap smear screening (odds ratio [OR], 2.35; 95% confidence interval [CI], 1.69-3.28), use of modern contraceptives (OR, 2.02; 95% CI, 1.26-3.22), and consistent use of condoms (OR, 1.49; 95% CI, 1.11-2.01). Vaccinated young women were more likely to have had sex (OR, 2.08; 95% CI, 1.56-2.78), but sexual debut among adolescents was not associated with vaccination. In bivariate and multivariate analyses, vaccination status was negatively associated with perceived risk of HPV infection, warts, and cervical cancer. There was no association between vaccination and perceived risk of sexually transmitted infections in any model. No association was found between changes in risk perception after HPV vaccination and sexual risk behaviors. Copyright © 2014 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Comparing a medical records-based and a claims-based index for measuring comorbidity in patients with lung or colon cancer.

    PubMed

    Kehl, Kenneth L; Lamont, Elizabeth B; McNeil, Barbara J; Bozeman, Samuel R; Kelley, Michael J; Keating, Nancy L

    2015-05-01

    Ascertaining comorbid conditions in cancer patients is important for research and clinical quality measurement, and is particularly important for understanding care and outcomes for older patients and those with multi-morbidity. We compared the medical records-based ACE-27 index and the claims-based Charlson index in predicting receipt of therapy and survival for lung and colon cancer patients. We calculated the Charlson index using administrative data and the ACE-27 score using medical records for Veterans Affairs patients diagnosed with stage I/II non-small cell lung or stage III colon cancer from January 2003 to December 2004. We compared the proportion of patients identified by each index as having any comorbidity. We used multivariable logistic regression to ascertain the predictive power of each index regarding delivery of guideline-recommended therapies and two-year survival, comparing the c-statistic and the Akaike information criterion (AIC). Overall, 97.2% of lung and 90.9% of colon cancer patients had any comorbidity according to the ACE-27 index, versus 59.5% and 49.7%, respectively, according to the Charlson. Multivariable models including the ACE-27 index outperformed Charlson-based models when assessing receipt of guideline-recommended therapies, with higher c-statistics and lower AICs. Neither index was clearly superior in prediction of two-year survival. The ACE-27 index measured using medical records captured more comorbidity and outperformed the Charlson index measured using administrative data for predicting receipt of guideline-recommended therapies, demonstrating the potential value of more detailed comorbidity data. However, the two indices had relatively similar performance when predicting survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Premature Cardiac Aging in South Asian Compared to Afro-Caribbean Subjects in a Community-Based Screening Study.

    PubMed

    Shantsila, Eduard; Shantsila, Alena; Gill, Paramjit S; Lip, Gregory Y H

    2016-11-10

    People of South Asian (SAs) and African Caribbean (AC) origin have increased cardiovascular morbidity, but underlying mechanisms are poorly understood. Aging is the key predictor of deterioration in diastolic function, which can be assessed by echocardiography using E/e' ratio as a surrogate of left ventricular (LV) filling pressure. The study aimed to assess a possibility of premature cardiac aging in SA and AC subjects. We studied 4540 subjects: 2880 SA and 1660 AC subjects. All participants underwent detailed echocardiography, including LV ejection fraction, average septal-lateral E/e', and LV mass index (LVMI). When compared to ACs, SAs were younger, with lower mean LVMI, systolic blood pressure (BP), diastolic BP, and body mass index (BMI), as well as a lower prevalence of hypertension and smoking (P≤0.001 for all). In a multivariate linear regression model including age, sex, ethnicity, BP, heart rate, BMI, waist circumference, LVMI, history of smoking, hypertension, coronary artery disease, diabetes mellitus, medications, SA origin was independently associated with higher E/e' (regression coefficient±standard error, -0.66±0.10; P<0.001, adjusted R 2 for the model 0.21; P<0.001). Furthermore, SAs had significantly accelerated age-dependent increase in E/e' compared to ACs. On multivariable Cox regression analysis without adjustment for E/e', SA ethnicity was independently predictive of mortality (P=0.04). After additional adjustment for E/e', the ethnicity lost its significance value, whereas E/e' was independently predictive of higher risk of death (P=0.008). Premature cardiac aging is evident in SAs and may contribute to high cardiovascular morbidity in this ethnic group, compared to ACs. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  8. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage

    PubMed Central

    Pearman, Peter B; Lavergne, Sébastien; Roquet, Cristina; Wüest, Rafael; Zimmermann, Niklaus E; Thuiller, Wilfried

    2014-01-01

    Aim The origins of ecological diversity in continental species assemblages have long intrigued biogeographers. We apply phylogenetic comparative analyses to disentangle the evolutionary patterns of ecological niches in an assemblage of European birds. We compare phylogenetic patterns in trophic, habitat and climatic niche components. Location Europe. Methods From polygon range maps and handbook data we inferred the realized climatic, habitat and trophic niches of 405 species of breeding birds in Europe. We fitted Pagel's lambda and kappa statistics, and conducted analyses of disparity through time to compare temporal patterns of ecological diversification on all niche axes together. All observed patterns were compared with expectations based on neutral (Brownian) models of niche divergence. Results In this assemblage, patterns of phylogenetic signal (lambda) suggest that related species resemble each other less in regard to their climatic and habitat niches than they do in their trophic niche. Kappa estimates show that ecological divergence does not gradually increase with divergence time, and that this punctualism is stronger in climatic niches than in habitat and trophic niches. Observed niche disparity markedly exceeds levels expected from a Brownian model of ecological diversification, thus providing no evidence for past phylogenetic niche conservatism in these multivariate niches. Levels of multivariate disparity are greatest for the climatic niche, followed by disparity of the habitat and the trophic niches. Main conclusions Phylogenetic patterns in the three niche components differ within this avian assemblage. Variation in evolutionary rates (degree of gradualism, constancy through the tree) and/or non-random macroecological sampling probably lead here to differences in the phylogenetic structure of niche components. Testing hypotheses on the origin of these patterns requires more complete phylogenetic trees of the birds, and extended ecological data on different niche components for all bird species. PMID:24790525

  9. Ethnicity and health care in cervical cancer survival: comparisons between a Filipino resident population, Filipino-Americans, and Caucasians.

    PubMed

    Redaniel, Maria Theresa; Laudico, Adriano; Mirasol-Lumague, Maria Rica; Gondos, Adam; Uy, Gemma Leonora; Toral, Jean Ann; Benavides, Doris; Brenner, Hermann

    2009-08-01

    Few studies have assessed and compared cervical cancer survival between developed and developing countries, or between ethnic groups within a country. Fewer still have addressed how much of the international or interracial survival differences can be attributed to ethnicity or health care. To determine the role of ethnicity and health care, 5-year survival of patients with cervical cancer was compared between patients in the Philippines and Filipino-Americans, who have the same ethnicity, and between Filipino-Americans and Caucasians, who have the same health care system. Cervical cancer databases from the Manila and Rizal Cancer Registries and Surveillance, Epidemiology, and End Results 13 were used. Age-adjusted 5-year survival estimates were computed and compared between the three patient groups. Using Cox proportional hazards modeling, potential determinants of survival differences were examined. Overall 5-year relative survival was similar in Filipino-Americans (68.8%) and Caucasians (66.6%), but was lower for Philippine residents (42.9%). Although late stage at diagnosis explained a large proportion of the survival differences between Philippine residents and Filipino-Americans, excess mortality prevailed after adjustment for stage, age, and morphology in multivariate analysis [relative risk (RR), 2.07; 95% confidence interval (CI), 1.68-2.55]. Excess mortality decreased, but persisted, when treatments were included in the multivariate models (RR, 1.78; 95% CI, 1.41-2.23). A moderate, marginally significant excess mortality was found among Caucasians compared with Filipino-Americans (adjusted RR, 1.22; 95% CI, 1.01-1.47). The differences in cervical cancer survival between patients in the Philippines and in the United States highlight the importance of enhanced health care and access to diagnostic and treatment facilities in the Philippines.

  10. Ethnic comparison of 30-day potentially preventable readmissions after stroke in Hawaii

    PubMed Central

    Nakagawa, Kazuma; Ahn, Hyeong Jun; Taira ScD, Deborah A.; Miyamura, Jill; Sentell, Tetine L.

    2016-01-01

    Background and Purpose Ethnic disparities in readmission after stroke have been inadequately studied. We sought to compare potentially preventable readmissions (PPR) among a multiethnic population in Hawaii. Methods Hospitalization data in Hawaii from 2007-2012 were assessed to compare ethnic differences in 30-day PPR following stroke-related hospitalizations. Multivariable models using logistic regression were performed to assess the impact of ethnicity on 30-day PPR after controlling for age group (<65, ≥65 years), sex, insurance, county of residence, substance use, history of mental illness and Charlson Comorbidity Index (CCI). Results Thirty-day PPR was seen in 840 (8.4%) of 10,050 any stroke-related hospitalizations, 712 (8.7%) of 8,161 ischemic stroke hospitalizations, and 128 (6.8%) of 1,889 hemorrhagic stroke hospitalizations. In the multivariable models, only the Chinese ethnicity, compared to whites, was associated with 30-day PPR after any stroke hospitalizations (OR [95% CI]: 1.40 [1.05, 1.88]) and ischemic stroke hospitalizations (1.42 [1.04, 1.96]). When considering only one hospitalization per individual, the impact of Chinese ethnicity on PPR after any stroke hospitalization (1.22 [0.89, 1.68]) and ischemic stroke hospitalization (1.21 [0.86, 1.71]) were attenuated. Other factors associated with 30-day PPR after any stroke hospitalizations were CCI [per unit increase] (1.21 [1.18, 1.24]), Medicaid (1.42 [1.07, 1.88]), Hawaii county (0.78 [0.62, 0.97]), and mental illness (1.37 [1.10, 1.70]). Conclusion In Hawaii, Chinese may have a higher risk of 30-day PPR after stroke compared to whites. However, this appears to be driven by the high number of repeated PPR within the Chinese ethnic group. PMID:27608816

  11. Metastatic Colorectal Cancer in Young Adults: A Study From the South Australian Population-Based Registry.

    PubMed

    Vatandoust, Sina; Price, Timothy J; Ullah, Shahid; Roy, Amitesh C; Beeke, Carole; Young, Joanne P; Townsend, Amanda; Padbury, Robert; Roder, David; Karapetis, Christos S

    2016-03-01

    Colorectal cancer (CRC) is a common malignancy. There is growing evidence that CRC incidence is increasing in the younger population. There is controversy surrounding the prognosis of young patients with CRC. In this study we reviewed Australian patients with metastatic CRC (mCRC) who were younger than 40 years of age at the time of diagnosis of metastatic disease. To our knowledge this is the first study to focus on this age group with mCRC. This was a retrospective study using data from the South Australian Metastatic Colorectal Cancer database. We compared patient and disease characteristics, management approaches, and outcomes for age groups < 40 and ≥ 40. A multivariate Cox proportional hazards model was fitted to compare the survival outcomes (death from all causes) between the 2 groups. From 3318 patients, 46 (1.4%) were younger than 40 years of age. In a comparison of patients in the younger than 40-year-old group with the older group, a greater proportion had synchronous metastatic disease (80.4% vs. 64.4%, respectively; P = .04) and disease originating from the left colon (71.7% vs. 61.7%, respectively; P = .035); also a larger proportion in the younger than 40-year-old group received chemotherapy compared with the older group (82.6% vs. 58.7%, respectively; P < .01). In the adjusted multivariate model, survival was not significantly different between the 2 groups (hazard ratio, 0.81; 95% confidence interval, 0.56-1.16; log rank P = .25). Young-onset mCRC patients, when defined as aged younger than 40 years, have equivalent survival compared with their older counterparts. This is despite differences in disease characteristics and management approach between the 2 groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  13. Advanced multivariable control of a turboexpander plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altena, D.; Howard, M.; Bullin, K.

    1998-12-31

    This paper describes an application of advanced multivariable control on a natural gas plant and compares its performance to the previous conventional feed-back control. This control algorithm utilizes simple models from existing plant data and/or plant tests to hold the process at the desired operating point in the presence of disturbances and changes in operating conditions. The control software is able to accomplish this due to effective handling of process variable interaction, constraint avoidance and feed-forward of measured disturbances. The economic benefit of improved control lies in operating closer to the process constraints while avoiding significant violations. The South Texasmore » facility where this controller was implemented experienced reduced variability in process conditions which increased liquids recovery because the plant was able to operate much closer to the customer specified impurity constraint. An additional benefit of this implementation of multivariable control is the ability to set performance criteria beyond simple setpoints, including process variable constraints, relative variable merit and optimizing use of manipulated variables. The paper also details the control scheme applied to the complex turboexpander process and some of the safety features included to improve reliability.« less

  14. At-line determination of pharmaceuticals small molecule's blending end point using chemometric modeling combined with Fourier transform near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tewari, Jagdish; Strong, Richard; Boulas, Pierre

    2017-02-01

    This article summarizes the development and validation of a Fourier transform near infrared spectroscopy (FT-NIR) method for the rapid at-line prediction of active pharmaceutical ingredient (API) in a powder blend to optimize small molecule formulations. The method was used to determine the blend uniformity end-point for a pharmaceutical solid dosage formulation containing a range of API concentrations. A set of calibration spectra from samples with concentrations ranging from 1% to 15% of API (w/w) were collected at-line from 4000 to 12,500 cm- 1. The ability of the FT-NIR method to predict API concentration in the blend samples was validated against a reference high performance liquid chromatography (HPLC) method. The prediction efficiency of four different types of multivariate data modeling methods such as partial least-squares 1 (PLS1), partial least-squares 2 (PLS2), principal component regression (PCR) and artificial neural network (ANN), were compared using relevant multivariate figures of merit. The prediction ability of the regression models were cross validated against results generated with the reference HPLC method. PLS1 and ANN showed excellent and superior prediction abilities when compared to PLS2 and PCR. Based upon these results and because of its decreased complexity compared to ANN, PLS1 was selected as the best chemometric method to predict blend uniformity at-line. The FT-NIR measurement and the associated chemometric analysis were implemented in the production environment for rapid at-line determination of the end-point of the small molecule blending operation. FIGURE 1: Correlation coefficient vs Rank plot FIGURE 2: FT-NIR spectra of different steps of Blend and final blend FIGURE 3: Predictions ability of PCR FIGURE 4: Blend uniformity predication ability of PLS2 FIGURE 5: Prediction efficiency of blend uniformity using ANN FIGURE 6: Comparison of prediction efficiency of chemometric models TABLE 1: Order of Addition for Blending Steps

  15. Cycling Empirical Antibiotic Therapy in Hospitals: Meta-Analysis and Models

    PubMed Central

    Abel, Sören; Viechtbauer, Wolfgang; Bonhoeffer, Sebastian

    2014-01-01

    The rise of resistance together with the shortage of new broad-spectrum antibiotics underlines the urgency of optimizing the use of available drugs to minimize disease burden. Theoretical studies suggest that coordinating empirical usage of antibiotics in a hospital ward can contain the spread of resistance. However, theoretical and clinical studies came to different conclusions regarding the usefulness of rotating first-line therapy (cycling). Here, we performed a quantitative pathogen-specific meta-analysis of clinical studies comparing cycling to standard practice. We searched PubMed and Google Scholar and identified 46 clinical studies addressing the effect of cycling on nosocomial infections, of which 11 met our selection criteria. We employed a method for multivariate meta-analysis using incidence rates as endpoints and find that cycling reduced the incidence rate/1000 patient days of both total infections by 4.95 [9.43–0.48] and resistant infections by 7.2 [14.00–0.44]. This positive effect was observed in most pathogens despite a large variance between individual species. Our findings remain robust in uni- and multivariate metaregressions. We used theoretical models that reflect various infections and hospital settings to compare cycling to random assignment to different drugs (mixing). We make the realistic assumption that therapy is changed when first line treatment is ineffective, which we call “adjustable cycling/mixing”. In concordance with earlier theoretical studies, we find that in strict regimens, cycling is detrimental. However, in adjustable regimens single resistance is suppressed and cycling is successful in most settings. Both a meta-regression and our theoretical model indicate that “adjustable cycling” is especially useful to suppress emergence of multiple resistance. While our model predicts that cycling periods of one month perform well, we expect that too long cycling periods are detrimental. Our results suggest that “adjustable cycling” suppresses multiple resistance and warrants further investigations that allow comparing various diseases and hospital settings. PMID:24968123

  16. Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners

    PubMed Central

    Feinauer, Christoph; Procaccini, Andrea; Zecchina, Riccardo; Weigt, Martin; Pagnani, Andrea

    2014-01-01

    In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code. PMID:24663061

  17. Coffee, caffeine, and risk of completed suicide: results from 3 prospective cohorts of American adults

    PubMed Central

    Lucas, Michel; O’Reilly, Eilis J.; Pan, An; Mirzaei, Fariba; Willett, Walter C.; Okereke, Olivia I.; Ascherio, Alberto

    2014-01-01

    Objective To evaluate the association between coffee and caffeine consumption and suicide risk in three large-scale cohorts of U.S. men and women. Methods We accessed data of 43,599 men enrolled in the Health Professionals Follow-up Study (HPFS, 1988–2008), 73,820 women in the Nurses’ Health Study (NHS, 1992–2008), and 91,005 women in the NHS II (1993–2007). Consumption of caffeine, coffee, and decaffeinated coffee, was assessed every four years by validated food-frequency questionnaires. Deaths from suicide were determined by physician review of death certificates. Multivariate adjusted relative risks (RRs) were estimated with Cox proportional hazard models. Cohort specific RRs were pooled using random-effect models. Results We documented 277 deaths from suicide. Compared to those consuming ≤1 cup/week of caffeinated coffee (≤8 oz/237 ml), the pooled multivariate RR (95% confidence interval [CI]) of suicide was 0.55 (0.38–0.78) for those consuming 2–3 cups/day and 0.47 (0.27–0.81) for those consuming ≥4 cups/day (P trend <0.001). The pooled multivariate RR (95% CI) for suicide was 0.75 (0.63–0.90) for each increment of 2 cups/day of caffeinated coffee and 0.77 (0.63–0.93) for each increment of 300 mg/day of caffeine. Conclusions These results from three large cohorts support an association between caffeine consumption and lower risk of suicide. PMID:23819683

  18. Toward the Multivariate Modeling of Achievement, Aptitude, and Personality.

    ERIC Educational Resources Information Center

    Foshay, Wellesley R.; Misanchuk, Earl R.

    1981-01-01

    A multivariate investigation of the dynamics of cumulative achievement studied the influence of course grades, personality traits, environmental variables, and previous performance. The latter was the best single predictor of performance. (CJ)

  19. A comparison of portfolio selection models via application on ISE 100 index data

    NASA Astrophysics Data System (ADS)

    Altun, Emrah; Tatlidil, Hüseyin

    2013-10-01

    Markowitz Model, a classical approach to portfolio optimization problem, relies on two important assumptions: the expected return is multivariate normally distributed and the investor is risk averter. But this model has not been extensively used in finance. Empirical results show that it is very hard to solve large scale portfolio optimization problems with Mean-Variance (M-V)model. Alternative model, Mean Absolute Deviation (MAD) model which is proposed by Konno and Yamazaki [7] has been used to remove most of difficulties of Markowitz Mean-Variance model. MAD model don't need to assume that the probability of the rates of return is normally distributed and based on Linear Programming. Another alternative portfolio model is Mean-Lower Semi Absolute Deviation (M-LSAD), which is proposed by Speranza [3]. We will compare these models to determine which model gives more appropriate solution to investors.

  20. Bayesian transformation cure frailty models with multivariate failure time data.

    PubMed

    Yin, Guosheng

    2008-12-10

    We propose a class of transformation cure frailty models to accommodate a survival fraction in multivariate failure time data. Established through a general power transformation, this family of cure frailty models includes the proportional hazards and the proportional odds modeling structures as two special cases. Within the Bayesian paradigm, we obtain the joint posterior distribution and the corresponding full conditional distributions of the model parameters for the implementation of Gibbs sampling. Model selection is based on the conditional predictive ordinate statistic and deviance information criterion. As an illustration, we apply the proposed method to a real data set from dentistry.

  1. Comparative incidence and health care costs of medically attended adverse effects among U.S. Medicaid HIV patients on atazanavir- or darunavir-based antiretroviral therapy.

    PubMed

    Johnston, Stephen S; Juday, Timothy; Esker, Stephen; Espindle, Derek; Chu, Bong-Chul; Hebden, Tony; Uy, Jonathan

    2013-01-01

    This is the first study to compare the incidence and health care costs of medically attended adverse effects in atazanavir- and darunavir-based antiretroviral therapy (ART) among U.S. Medicaid patients receiving routine HIV care. This was a retrospective study using Medicaid administrative health care claims from 15 states. Subjects were HIV patients aged 18 to 64 years initiating atazanavir- or darunavir-based ART from January 1, 2003, to July 1, 2010, with continuous enrollment for 6 months before (baseline) and 6 months after (evaluation period) ART initiation and 1 or more evaluation period medical claim. Outcomes were incidence and health care costs of the following medically attended (International Classification of Diseases, Ninth Revision, Clinical Modification-coded or treated) adverse effects during the evaluation period: gastrointestinal, lipid abnormalities, diabetes/hyperglycemia, rash, and jaundice. All-cause health care costs were also determined. Patients treated with atazanavir and darunavir were propensity score matched (ratio = 3:1) by using demographic and clinical covariates. Multivariable models adjusted for covariates lacking postmatch statistical balance. Propensity-matched study sample included 1848 atazanavir- and 616 darunavir-treated patients (mean age 41 years, 50% women, 69% black). Multivariable-adjusted hazard ratios (HRs) (for darunavir, reference = atazanavir) and per-patient-per-month health care cost differences (darunavir minus atazanavir) were as follows: gastrointestinal, HR = 1.25 (P = 0.04), $43 (P = 0.13); lipid abnormalities, HR = 1.38 (P = 0.07), $3 (P = 0.88); diabetes/hyperglycemia, HR = 0.84 (P = 0.55), $13 (P = 0.69); and rash, HR = 1.11 (P = 0.23), $0 (P = 0.76); all-cause health care costs were $1086 (P<0.001). Too few instances of jaundice (11 in atazanavir and 1 in darunavir) occurred to support multivariable modeling. Medication tolerability can be critical to the success or failure of ART. Compared with darunavir-treated patients, atazanavir-treated patients had significantly fewer instances of medically attended gastrointestinal issues and more instances of jaundice and incurred significantly lower health care costs. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Occupational outcomes of adult childhood cancer survivors: A report from the childhood cancer survivor study.

    PubMed

    Kirchhoff, Anne C; Krull, Kevin R; Ness, Kirsten K; Park, Elyse R; Oeffinger, Kevin C; Hudson, Melissa M; Stovall, Marilyn; Robison, Leslie L; Wickizer, Thomas; Leisenring, Wendy

    2011-07-01

    The authors examined whether survivors from the Childhood Cancer Survivor Study were less likely to be in higher-skill occupations than a sibling comparison and whether certain survivors were at higher risk for lower-skill jobs. The authors created 3 mutually exclusive occupational categories for participants aged ≥ 25 years: Managerial/Professional, Nonphysical Service/Blue Collar, and Physical Service/Blue Collar. The authors examined currently employed survivors (4845) and their siblings (1727) in multivariable generalized linear models to evaluate the likelihood of being in 1 of the 3 occupational categories. Multinomial logistic regression was used among all participants to examine the likelihood of these outcomes compared to being unemployed (survivors, 6671; siblings, 2129). Multivariable linear models were used to assess survivor occupational differences by cancer-  and treatment-related variables. Personal income was compared by occupation. Employed survivors were less often in higher-skilled Managerial/Professional occupations (relative risk, 0.93; 95% confidence interval 0.89-0.98) than their siblings. Survivors who were black, were diagnosed at a younger age, or had high-dose cranial radiation were less likely to hold Managerial/Professional occupations than other survivors. In multinomial models, female survivors' likelihood of being in full-time Managerial/Professional occupations (27%) was lower than male survivors (42%) and female (41%) and male (50%) siblings. Survivors' personal income was lower than siblings within each of the 3 occupational categories in models adjusted for sociodemographic variables. Adult childhood cancer survivors are employed in lower-skill jobs than siblings. Survivors with certain treatment histories are at higher risk for lower-skill jobs and may require vocational assistance throughout adulthood. Copyright © 2011 American Cancer Society.

  3. Stochastic univariate and multivariate time series analysis of PM2.5 and PM10 air pollution: A comparative case study for Plovdiv and Asenovgrad, Bulgaria

    NASA Astrophysics Data System (ADS)

    Gocheva-Ilieva, S.; Stoimenova, M.; Ivanov, A.; Voynikova, D.; Iliev, I.

    2016-10-01

    Fine particulate matter PM2.5 and PM10 air pollutants are a serious problem in many urban areas affecting both the health of the population and the environment as a whole. The availability of large data arrays for the levels of these pollutants makes it possible to perform statistical analysis, to obtain relevant information, and to find patterns within the data. Research in this field is particularly topical for a number of Bulgarian cities, European country, where in recent years regulatory air pollution health limits are constantly being exceeded. This paper examines average daily data for air pollution with PM2.5 and PM10, collected by 3 monitoring stations in the cities of Plovdiv and Asenovgrad between 2011 and 2016. The goal is to find and analyze actual relationships in data time series, to build adequate mathematical models, and to develop short-term forecasts. Modeling is carried out by stochastic univariate and multivariate time series analysis, based on Box-Jenkins methodology. The best models are selected following initial transformation of the data and using a set of standard and robust statistical criteria. The Mathematica and SPSS software were used to perform calculations. This examination showed measured concentrations of PM2.5 and PM10 in the region of Plovdiv and Asenovgrad regularly exceed permissible European and national health and safety thresholds. We obtained adequate stochastic models with high statistical fit with the data and good quality forecasting when compared against actual measurements. The mathematical approach applied provides an independent alternative to standard official monitoring and control means for air pollution in urban areas.

  4. Association of regional body composition with bone mineral density in HIV-infected and HIV-uninfected women: women's interagency HIV study.

    PubMed

    Sharma, Anjali; Tian, Fang; Yin, Michael T; Keller, Marla J; Cohen, Mardge; Tien, Phyllis C

    2012-12-01

    To understand how regional body composition affects bone mineral density (BMD) in HIV-infected and HIV-uninfected women. Dual energy x-ray absorptiometry was used to measure regional lean and fat mass and BMD at lumbar spine (LS), total hip (TH), and femoral neck (FN) in 318 HIV-infected and 122 HIV-uninfected Women's Interagency HIV Study participants at baseline and 2 and 5 years later. Total lean and fat mass were measured using bioimpedance analysis. Multivariate marginal linear regression models assessed the association of HIV status and body composition on BMD change. Compared with HIV-uninfected women, HIV-infected women were older (44 vs. 37 years), more likely to be Hepatitis C virus-infected (32% vs. 14%), and postmenopausal (26% vs. 3%) and had lower baseline total fat mass, trunk fat, and leg fat. In multivariate models, increased total lean mass was independently associated with increased BMD at LS, TH, and FN, and total fat mass was associated with increased BMD at TH and FN (all P < 0.05). When total fat was replaced in multivariate models with trunk fat and leg fat, increased trunk fat (and not leg fat) was associated with increased TH and FN BMD (P < 0.001). Total fat and lean mass are strong independent predictors of TH and FN BMD, and lean mass was associated with greater LS BMD. Regardless of HIV status, greater trunk fat (and not leg fat) was associated with increased TH and FN BMD, suggesting that weight-bearing fat may be a more important predictor of BMD in the hip.

  5. Disease Characteristics, Patterns of Care, and Survival in Very Elderly Patients with Diffuse Large B-Cell Lymphoma

    PubMed Central

    Williams, Jessica N.; Rai, Ashish; Lipscomb, Joseph; Koff, Jean L.; Nastoupil, Loretta J.; Flowers, Christopher R.

    2015-01-01

    Background Although rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) is considered standard therapy for diffuse large B-cell lymphoma (DLBCL), patterns of use and the impact of R-CHOP on survival in patients >80 years are less clear. Methods We used the Surveillance, Epidemiology, and End Results (SEER)-Medicare database to characterize presentation, treatment, and survival patterns in DLBCL patients diagnosed from 2002–2009. Chi-squared tests compared characteristics and initial treatments of DLBCL patients >80 years and ≤80 years. Multivariable logistic regression models examined factors associated with treatment selection in patients >80 years; standard and propensity score-adjusted multivariable Cox proportional hazards models examined relationships between treatment regimen, treatment duration, and survival. Results Among 4,635 patients with DLBCL, 1,156 (25%) were >80 years. Patients >80 were less likely to receive R-CHOP and more likely to be observed or receive rituximab, cyclophosphamide, vincristine, and prednisone (R-CVP); both p<0.0001. Marital status, stage, disease site, performance status, radiation therapy, and growth factor support were associated with initial R-CHOP in patients >80. In propensity score-matched multivariable Cox proportional hazards models examining relationships between treatment regimen and survival, R-CHOP was the only regimen associated with improved OS (hazard ratio (HR) = 0.45, 95% confidence interval (CI) = 0.33–0.62) and LRS (HR=0.58, 95% CI 0.38–0.88). Conclusions Although DLBCL patients >80 years were less likely to receive R-CHOP, this regimen conferred the longest survival and should be considered for this population. Further studies are needed to characterize the impact of DLBCL treatment on quality of life in this age group. PMID:25675909

  6. Preventing Unintended Pregnancy Among Young Sexually Active Women: Recognizing the Role of Violence, Self-Esteem, and Depressive Symptoms on Use of Contraception.

    PubMed

    Nelson, Deborah B; Zhao, Huaqing; Corrado, Rachel; Mastrogiannnis, Dimitrios M; Lepore, Stephen J

    2017-04-01

    Ineffective contraceptive use among young sexually active women is extremely prevalent and poses a significant risk for unintended pregnancy (UP). Ineffective contraception involves the use of the withdrawal method or the inconsistent use of other types of contraception (i.e., condoms and birth control pills). This investigation examined violence exposure and psychological factors related to ineffective contraceptive use among young sexually active women. Young, nonpregnant sexually active women (n = 315) were recruited from an urban family planning clinic in 2013 to participate in a longitudinal study. Tablet-based surveys measured childhood violence, community-level violence, intimate partner violence, depressive symptoms, and self-esteem. Follow-up surveys measured type and consistency of contraception used 9 months later. Multivariate logistic regression models assessed violence and psychological risk factors as main effects and moderators related to ineffective compared with effective use of contraception. The multivariate logistic regression model showed that childhood sexual violence and low self-esteem were significantly related to ineffective use of contraception (adjusted odds ratio [aOR] = 2.69, confidence interval [95% CI]: 1.18-6.17, and aOR = 0.51, 95% CI: 0.28-0.93; respectively), although self-esteem did not moderate the relationship between childhood sexual violence and ineffective use of contraception (aOR = 0.38, 95% CI: 0.08-1.84). Depressive symptoms were not related to ineffective use of contraception in the multivariate model. Interventions to reduce UP should recognize the long-term effects of childhood sexual violence and address the role of low self-esteem on the ability of young sexually active women to effectively and consistently use contraception to prevent UP.

  7. PTEN Loss as Determined by Clinical-grade Immunohistochemistry Assay Is Associated with Worse Recurrence-free Survival in Prostate Cancer.

    PubMed

    Lotan, Tamara L; Wei, Wei; Morais, Carlos L; Hawley, Sarah T; Fazli, Ladan; Hurtado-Coll, Antonio; Troyer, Dean; McKenney, Jesse K; Simko, Jeffrey; Carroll, Peter R; Gleave, Martin; Lance, Raymond; Lin, Daniel W; Nelson, Peter S; Thompson, Ian M; True, Lawrence D; Feng, Ziding; Brooks, James D

    2016-06-01

    PTEN is the most commonly deleted tumor suppressor gene in primary prostate cancer (PCa) and its loss is associated with poor clinical outcomes and ERG gene rearrangement. We tested whether PTEN loss is associated with shorter recurrence-free survival (RFS) in surgically treated PCa patients with known ERG status. A genetically validated, automated PTEN immunohistochemistry (IHC) protocol was used for 1275 primary prostate tumors from the Canary Foundation retrospective PCa tissue microarray cohort to assess homogeneous (in all tumor tissue sampled) or heterogeneous (in a subset of tumor tissue sampled) PTEN loss. ERG status as determined by a genetically validated IHC assay was available for a subset of 938 tumors. Associations between PTEN and ERG status were assessed using Fisher's exact test. Kaplan-Meier and multivariate weighted Cox proportional models for RFS were constructed. When compared to intact PTEN, homogeneous (hazard ratio [HR] 1.66, p = 0.001) but not heterogeneous (HR 1.24, p = 0.14) PTEN loss was significantly associated with shorter RFS in multivariate models. Among ERG-positive tumors, homogeneous (HR 3.07, p < 0.0001) but not heterogeneous (HR 1.46, p = 0.10) PTEN loss was significantly associated with shorter RFS. Among ERG-negative tumors, PTEN did not reach significance for inclusion in the final multivariate models. The interaction term for PTEN and ERG status with respect to RFS did not reach statistical significance ( p = 0.11) for the current sample size. These data suggest that PTEN is a useful prognostic biomarker and that there is no statistically significant interaction between PTEN and ERG status for RFS. We found that loss of the PTEN tumor suppressor gene in prostate tumors as assessed by tissue staining is correlated with shorter time to prostate cancer recurrence after radical prostatectomy.

  8. Preventing Unintended Pregnancy Among Young Sexually Active Women: Recognizing the Role of Violence, Self-Esteem, and Depressive Symptoms on Use of Contraception

    PubMed Central

    Zhao, Huaqing; Corrado, Rachel; Mastrogiannnis, Dimitrios M.; Lepore, Stephen J.

    2017-01-01

    Abstract Objectives: Ineffective contraceptive use among young sexually active women is extremely prevalent and poses a significant risk for unintended pregnancy (UP). Ineffective contraception involves the use of the withdrawal method or the inconsistent use of other types of contraception (i.e., condoms and birth control pills). This investigation examined violence exposure and psychological factors related to ineffective contraceptive use among young sexually active women. Materials and Methods: Young, nonpregnant sexually active women (n = 315) were recruited from an urban family planning clinic in 2013 to participate in a longitudinal study. Tablet-based surveys measured childhood violence, community-level violence, intimate partner violence, depressive symptoms, and self-esteem. Follow-up surveys measured type and consistency of contraception used 9 months later. Multivariate logistic regression models assessed violence and psychological risk factors as main effects and moderators related to ineffective compared with effective use of contraception. Results: The multivariate logistic regression model showed that childhood sexual violence and low self-esteem were significantly related to ineffective use of contraception (adjusted odds ratio [aOR] = 2.69, confidence interval [95% CI]: 1.18–6.17, and aOR = 0.51, 95% CI: 0.28–0.93; respectively), although self-esteem did not moderate the relationship between childhood sexual violence and ineffective use of contraception (aOR = 0.38, 95% CI: 0.08–1.84). Depressive symptoms were not related to ineffective use of contraception in the multivariate model. Conclusions: Interventions to reduce UP should recognize the long-term effects of childhood sexual violence and address the role of low self-esteem on the ability of young sexually active women to effectively and consistently use contraception to prevent UP. PMID:28045570

  9. The Association Between Internet Use and Ambulatory Care-Seeking Behaviors in Taiwan: A Cross-Sectional Study.

    PubMed

    Hsieh, Ronan Wenhan; Chen, Likwang; Chen, Tsung-Fu; Liang, Jyh-Chong; Lin, Tzu-Bin; Chen, Yen-Yuan; Tsai, Chin-Chung

    2016-12-07

    Compared with the traditional ways of gaining health-related information from newspapers, magazines, radio, and television, the Internet is inexpensive, accessible, and conveys diverse opinions. Several studies on how increasing Internet use affected outpatient clinic visits were inconclusive. The objective of this study was to examine the role of Internet use on ambulatory care-seeking behaviors as indicated by the number of outpatient clinic visits after adjusting for confounding variables. We conducted this study using a sample randomly selected from the general population in Taiwan. To handle the missing data, we built a multivariate logistic regression model for propensity score matching using age and sex as the independent variables. The questionnaires with no missing data were then included in a multivariate linear regression model for examining the association between Internet use and outpatient clinic visits. We included a sample of 293 participants who answered the questionnaire with no missing data in the multivariate linear regression model. We found that Internet use was significantly associated with more outpatient clinic visits (P=.04). The participants with chronic diseases tended to make more outpatient clinic visits (P<.01). The inconsistent quality of health-related information obtained from the Internet may be associated with patients' increasing need for interpreting and discussing the information with health care professionals, thus resulting in an increasing number of outpatient clinic visits. In addition, the media literacy of Web-based health-related information seekers may also affect their ambulatory care-seeking behaviors, such as outpatient clinic visits. ©Ronan Wenhan Hsieh, Likwang Chen, Tsung-Fu Chen, Jyh-Chong Liang, Tzu-Bin Lin, Yen-Yuan Chen, Chin-Chung Tsai. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 07.12.2016.

  10. ADHD and mental health status in Brazilian school-age children.

    PubMed

    Arruda, Marco A; Querido, Cícero Nardini; Bigal, Marcelo E; Polanczyk, Guilherme V

    2015-01-01

    To assess the prevalence of ADHD, mental health status, and risk factors in a sample of Brazilian children. Target sample consisted of all children from 5 to 13 years registered in the public elementary school. Children with ADHD were compared with those without ADHD for sociodemographic, risk factors, and Child Behavior Checklist (CBCL) symptom dimensions. Multivariate models estimated determinants of ADHD diagnosis. Of the target sample, consents and complete information were obtained from 1,830 children (91.8%). The prevalence rate of ADHD was 5.1% (95% confidence interval [CI] = [4.2, 6.2]). In contrast to controls, children with ADHD presented higher levels of symptoms in the CBCL dimensions. In multivariate analyses, the diagnosis of ADHD was significantly influenced by maternal educational status (p = .019), income class (p = .012), and prenatal exposure to tobacco (p = .032). Prevalence and demographic features of ADHD in Brazil are similar to what has been reported worldwide. © 2012 SAGE Publications.

  11. Managing for resilience: an information theory-based ...

    EPA Pesticide Factsheets

    Ecosystems are complex and multivariate; hence, methods to assess the dynamics of ecosystems should have the capacity to evaluate multiple indicators simultaneously. Most research on identifying leading indicators of regime shifts has focused on univariate methods and simple models which have limited utility when evaluating real ecosystems, particularly because drivers are often unknown. We discuss some common univariate and multivariate approaches for detecting critical transitions in ecosystems and demonstrate their capabilities via case studies. Synthesis and applications. We illustrate the utility of an information theory-based index for assessing ecosystem dynamics. Trends in this index also provide a sentinel of both abrupt and gradual transitions in ecosystems. In response to the need to identify leading indicators of regime shifts in ecosystems, our research compares traditional indicators and Fisher information, an information theory based method, by examining four case study systems. Results demonstrate the utility of methods and offers great promise for quantifying and managing for resilience.

  12. Dissolution comparisons using a Multivariate Statistical Distance (MSD) test and a comparison of various approaches for calculating the measurements of dissolution profile comparison.

    PubMed

    Cardot, J-M; Roudier, B; Schütz, H

    2017-07-01

    The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited-as in the case of the f 2 test-to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable-without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.

  13. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    DOE PAGES

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong; ...

    2017-12-18

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less

  14. A simple prognostic model for overall survival in metastatic renal cell carcinoma.

    PubMed

    Assi, Hazem I; Patenaude, Francois; Toumishey, Ethan; Ross, Laura; Abdelsalam, Mahmoud; Reiman, Tony

    2016-01-01

    The primary purpose of this study was to develop a simpler prognostic model to predict overall survival for patients treated for metastatic renal cell carcinoma (mRCC) by examining variables shown in the literature to be associated with survival. We conducted a retrospective analysis of patients treated for mRCC at two Canadian centres. All patients who started first-line treatment were included in the analysis. A multivariate Cox proportional hazards regression model was constructed using a stepwise procedure. Patients were assigned to risk groups depending on how many of the three risk factors from the final multivariate model they had. There were three risk factors in the final multivariate model: hemoglobin, prior nephrectomy, and time from diagnosis to treatment. Patients in the high-risk group (two or three risk factors) had a median survival of 5.9 months, while those in the intermediate-risk group (one risk factor) had a median survival of 16.2 months, and those in the low-risk group (no risk factors) had a median survival of 50.6 months. In multivariate analysis, shorter survival times were associated with hemoglobin below the lower limit of normal, absence of prior nephrectomy, and initiation of treatment within one year of diagnosis.

  15. A simple prognostic model for overall survival in metastatic renal cell carcinoma

    PubMed Central

    Assi, Hazem I.; Patenaude, Francois; Toumishey, Ethan; Ross, Laura; Abdelsalam, Mahmoud; Reiman, Tony

    2016-01-01

    Introduction: The primary purpose of this study was to develop a simpler prognostic model to predict overall survival for patients treated for metastatic renal cell carcinoma (mRCC) by examining variables shown in the literature to be associated with survival. Methods: We conducted a retrospective analysis of patients treated for mRCC at two Canadian centres. All patients who started first-line treatment were included in the analysis. A multivariate Cox proportional hazards regression model was constructed using a stepwise procedure. Patients were assigned to risk groups depending on how many of the three risk factors from the final multivariate model they had. Results: There were three risk factors in the final multivariate model: hemoglobin, prior nephrectomy, and time from diagnosis to treatment. Patients in the high-risk group (two or three risk factors) had a median survival of 5.9 months, while those in the intermediate-risk group (one risk factor) had a median survival of 16.2 months, and those in the low-risk group (no risk factors) had a median survival of 50.6 months. Conclusions: In multivariate analysis, shorter survival times were associated with hemoglobin below the lower limit of normal, absence of prior nephrectomy, and initiation of treatment within one year of diagnosis. PMID:27217858

  16. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less

  17. Glioblastoma multiforme (GBM) in the elderly: initial treatment strategy and overall survival.

    PubMed

    Glaser, Scott M; Dohopolski, Michael J; Balasubramani, Goundappa K; Flickinger, John C; Beriwal, Sushil

    2017-08-01

    The EORTC trial which solidified the role of external beam radiotherapy (EBRT) plus temozolomide (TMZ) in the management of GBM excluded patients over age 70. Randomized studies of elderly patients showed that hypofractionated EBRT (HFRT) alone or TMZ alone was at least equivalent to conventionally fractionated EBRT (CFRT) alone. We sought to investigate the practice patterns and survival in elderly patients with GBM. We identified patients age 65-90 in the National Cancer Data Base (NCDB) with histologically confirmed GBM from 1998 to 2012 and known chemotherapy and radiotherapy status. We analyzed factors predicting treatment with EBRT alone vs. EBRT plus concurrent single-agent chemotherapy (CRT) using multivariable logistic regression. Similarly, within the EBRT alone cohort we compared CFRT (54-65 Gy at 1.7-2.1 Gy/fraction) to HFRT (34-60 Gy at 2.5-5 Gy/fraction). Multivariable Cox proportional hazards model (MVA) with propensity score adjustment was used to compare survival. A total of 38,862 patients were included. Initial treatments for 1998 versus 2012 were: EBRT alone = 50 versus 10%; CRT = 6 versus 50%; chemo alone = 1.6% (70% single-agent) versus 3.2% (94% single-agent). Among EBRT alone patients, use of HFRT (compared to CFRT) increased from 13 to 41%. Numerous factors predictive for utilization of CRT over EBRT alone and for HFRT over CFRT were identified. Median survival and 1-year overall survival were higher in the CRT versus EBRT alone group at 8.6 months vs. 5.1 months and 36.0 versus 15.7% (p < 0.0005 by log-rank, multivariable HR 0.65 [95% CI = 0.61-0.68, p < 0.0005], multivariable HR with propensity adjustment 0.66 [95% CI = 0.63-0.70, p < 0.0005]). For elderly GBM patients in the United States, CRT is the most common initial treatment and appears to offer a survival advantage over EBRT alone. Adoption of hypofractionation has increased over time but continues to be low.

  18. Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies

    PubMed Central

    Teplitsky, Celine; Tarka, Maja; Møller, Anders P.; Nakagawa, Shinichi; Balbontín, Javier; Burke, Terry A.; Doutrelant, Claire; Gregoire, Arnaud; Hansson, Bengt; Hasselquist, Dennis; Gustafsson, Lars; de Lope, Florentino; Marzal, Alfonso; Mills, James A.; Wheelwright, Nathaniel T.; Yarrall, John W.; Charmantier, Anne

    2014-01-01

    Background In a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available. Methodology/Principal Findings We investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found. Conclusions These results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary dynamics and hence population persistence in the face of rapid environmental change. PMID:24608111

  19. A High-Dimensional, Multivariate Copula Approach to Modeling Multivariate Agricultural Price Relationships and Tail Dependencies

    Treesearch

    Xuan Chi; Barry Goodwin

    2012-01-01

    Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...

  20. Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water

    USDA-ARS?s Scientific Manuscript database

    Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant cha...

Top