ERIC Educational Resources Information Center
Martin, James L.
This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…
ERIC Educational Resources Information Center
Grimes, Walter F.
In response to the current shortage of rural physicians and the difficulties encountered in studying this problem, this paper attempts to apply a specific multivariate technique (path analysis) and the socioeconomic careers model of Featherman and others to the study of the physician's choice of practice location. The socioeconomic careers model…
Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals
NASA Astrophysics Data System (ADS)
Jiang, P.; Kumar, P.
2017-12-01
Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.
van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge
2018-04-26
We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.
ERIC Educational Resources Information Center
Kieffer, Michael J.; Biancarosa, Gina; Mancilla-Martinez, Jeannette
2013-01-01
This study investigated the direct and indirect roles of morphological awareness reading comprehension for Spanish-speaking language minority learners reading in English. Multivariate path analysis was used to investigate the unique contribution of derivational morphological awareness to reading comprehension as well as its indirect contributions…
Li, Jian; Ma, Guowei; Ma, Lin; Bao, Xiaolin; Li, Liping; Zhao, Qian
2018-01-01
Effects of 1-methylcyclopropene (1-MCP) and vacuum precooling on quality and antioxidant properties of blackberries (Rubus spp.) were evaluated using one-way analysis of variance, principal component analysis (PCA), partial least squares (PLS), and path analysis. Results showed that the activities of antioxidant enzymes were enhanced by both 1-MCP treatment and vacuum precooling. PCA could discriminate 1-MCP treated fruit and the vacuum precooled fruit and showed that the radical-scavenging activities in vacuum precooled fruit were higher than those in 1-MCP treated fruit. The scores of PCA showed that H2O2 content was the most important variables of blackberry fruit. PLSR results showed that peroxidase (POD) activity negatively correlated with H2O2 content. The results of path coefficient analysis indicated that glutathione (GSH) also had an indirect effect on H2O2 content. PMID:29487622
Attitudes and exercise adherence: test of the Theories of Reasoned Action and Planned Behaviour.
Smith, R A; Biddle, S J
1999-04-01
Three studies of exercise adherence and attitudes are reported that tested the Theory of Reasoned Action and the Theory of Planned Behaviour. In a prospective study of adherence to a private fitness club, structural equation modelling path analysis showed that attitudinal and social normative components of the Theory of Reasoned Action accounted for 13.1% of the variance in adherence 4 months later, although only social norm significantly predicted intention. In a second study, the Theory of Planned Behaviour was used to predict both physical activity and sedentary behaviour. Path analyses showed that attitude and perceived control, but not social norm, predicted total physical activity. Physical activity was predicted from intentions and control over sedentary behaviour. Finally, an intervention study with previously sedentary adults showed that intentions to be active measured at the start and end of a 10-week intervention were associated with the planned behaviour variables. A multivariate analysis of variance revealed no significant multivariate effects for time on the planned behaviour variables measured before and after intervention. Qualitative data provided evidence that participants had a positive experience on the intervention programme and supported the role of social normative factors in the adherence process.
Morphological Awareness in Literacy Acquisition of Chinese Second Graders: A Path Analysis.
Zhang, Haomin
2016-02-01
The present study tested a path diagram regarding the contribution of morphological awareness (MA) to early literacy acquisition among Chinese-speaking second graders ([Formula: see text]). Three facets of MA were addressed, namely derivational awareness, compound awareness and compound structure awareness. The model aimed to test a theory of causal order among measures of MA and literacy outcomes. Drawing upon multivariate path analysis, direct and indirect effects of MA were analyzed to identify their role in literacy performance among young children. Results revealed that all three facets of MA made significant contributions to lexical inference ability. In addition, compound awareness showed a unique and significant contribution to vocabulary knowledge. It was also observed that lexical inference ability had a mediating effect predictive of both vocabulary knowledge and reading comprehension. Moreover, vocabulary knowledge mediated the effect of MA on reading comprehension. However, no significant contribution of MA to reading comprehension was found after controlling for lexical inference ability and vocabulary knowledge.
Morphological awareness and reading comprehension: Examining mediating factors.
Levesque, Kyle C; Kieffer, Michael J; Deacon, S Hélène
2017-08-01
The relation between morphological awareness-defined as the awareness of and ability to manipulate the smallest units of meaning in language-and reading comprehension remains in need of specification. In this study, we evaluated four potential intervening variables through which morphological awareness may contribute indirectly to reading comprehension. We assessed word reading and vocabulary as well as children's ability to read and analyze the meaning of morphologically complex words (morphological decoding and morphological analysis, respectively). Controls of phonological awareness and nonverbal ability were included in the model. Participants were 221 English-speaking children in Grade 3. Multivariate path analyses revealed evidence of two indirect relations and one direct relation between morphological awareness and reading comprehension. In the first indirect path, morphological awareness contributed to morphological decoding, which then influenced word reading and finally reading comprehension. In a second indirect path, morphological awareness contributed to morphological analysis, which contributed to reading comprehension. Finally, in a direct path, morphological awareness contributed to reading comprehension beyond all other variables. These findings inform as to the potential mechanisms underlying the relation between morphological awareness and reading comprehension in children. Copyright © 2017 Elsevier Inc. All rights reserved.
Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E
2015-03-01
The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls. Copyright © 2014 Elsevier B.V. All rights reserved.
Vasconcelos, A G; Almeida, R M; Nobre, F F
2001-08-01
This paper introduces an approach that includes non-quantitative factors for the selection and assessment of multivariate complex models in health. A goodness-of-fit based methodology combined with fuzzy multi-criteria decision-making approach is proposed for model selection. Models were obtained using the Path Analysis (PA) methodology in order to explain the interrelationship between health determinants and the post-neonatal component of infant mortality in 59 municipalities of Brazil in the year 1991. Socioeconomic and demographic factors were used as exogenous variables, and environmental, health service and agglomeration as endogenous variables. Five PA models were developed and accepted by statistical criteria of goodness-of fit. These models were then submitted to a group of experts, seeking to characterize their preferences, according to predefined criteria that tried to evaluate model relevance and plausibility. Fuzzy set techniques were used to rank the alternative models according to the number of times a model was superior to ("dominated") the others. The best-ranked model explained above 90% of the endogenous variables variation, and showed the favorable influences of income and education levels on post-neonatal mortality. It also showed the unfavorable effect on mortality of fast population growth, through precarious dwelling conditions and decreased access to sanitation. It was possible to aggregate expert opinions in model evaluation. The proposed procedure for model selection allowed the inclusion of subjective information in a clear and systematic manner.
Evaluation of the path integral for flow through random porous media
NASA Astrophysics Data System (ADS)
Westbroek, Marise J. E.; Coche, Gil-Arnaud; King, Peter R.; Vvedensky, Dimitri D.
2018-04-01
We present a path integral formulation of Darcy's equation in one dimension with random permeability described by a correlated multivariate lognormal distribution. This path integral is evaluated with the Markov chain Monte Carlo method to obtain pressure distributions, which are shown to agree with the solutions of the corresponding stochastic differential equation for Dirichlet and Neumann boundary conditions. The extension of our approach to flow through random media in two and three dimensions is discussed.
The impact of environmental factors on cycling speed on shared paths.
Boufous, Soufiane; Hatfield, Julie; Grzebieta, Raphael
2018-01-01
Despite the importance of cycling speed on shared paths to the amenity and safety of users, few studies have systematically measured it, nor examined circumstances surrounding it. Speed was measured for 5421 riders who were observed cycling on shared paths across 12 metropolitan and regional locations in Sydney, Australia. Multivariate regression analysis was carried out to examine rider and environmental factors that contribute to riders cycling above the median speed. The study found that observed riders travelled at a median speed of 16km/h (mean 18.4km/h). Nearly 80% of riders travelled at 20km/h or less and 7.8% at speeds of more than 30km/h. Riders were significantly less likely to cycle above the median speed on shared paths that had an average volume of over 20 pedestrians/hour. Riders were significantly more likely to travel above the median speed on paths that had a centreline (OR: 1.71, 95% CI: 1.41-2.07), on wider paths (over 3.5m) (OR: 1.34, 95% CI: 1.12-1.59) and on paths with visual segregation between cyclists and pedestrians. Visual segregation, where cycling and walking areas are differentiated by the type of material or by paint colour used, was the strongest predictor of travelling above median speed on shared paths (OR: 3.9, 95% CI: 3.1-4.8). The findings suggest that riders adjust their speeds to accommodate pedestrians and path conditions. Path characteristics that support separation from pedestrians may allow relatively higher speeds, and associated amenity, without substantial loss of safety. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Slama, Fairouz; Bouhlila, Rachida
2017-11-01
Groundwater sampling and piezometric measurements were carried out along two flow paths (corresponding to two transects) in Korba coastal plain (Northeast of Tunisia). The study aims to identify hydrochemical processes occurring when seawater and freshwater mix. Those processes can be used as indicators of seawater intrusion progression and freshwater flushing into seawater accompanying Submarine Groundwater Discharge (SGD). Seawater fractions in the groundwater were calculated using the chloride concentration. Hierarchical cluster analysis (HCA) was applied to isolate wells potentially affected by seawater. In addition, PHREEQC was used to simulate the theoretical mixing between two end members: seawater and a fresh-brackish groundwater sample. Geochemical conventional diagrams showed that the groundwater chemistry is explained by a mixing process between two end members. Results also revealed the presence of other geochemical processes, correlated to the hydrodynamic flow paths. Direct cation exchange was linked to seawater intrusion, and reverse cation exchange was associated to the freshwater flushing into seawater. The presence of these processes indicated that seawater intrusion was in progress. An excess of Ca, that could not be explained by only cation exchange processes, was observed in both transects. Dedolomitization combined to gypsum leaching is the possible explanation of the groundwater Ca enrichment. Finally, redox processes were also found to contribute to the groundwater composition along flow paths.
Banford, Alyssa; Ivey, David C; Wickrama, Thulitha; Fischer, Judith; Prouty, Anne; Smith, Douglas
2016-01-01
The purpose of this study is to examine the associations between maternal mental health distress symptoms, including depression and post-traumatic stress disorder, the extent to which the presence of a child's disaster-related physical health problem(s) have interfered with daily functioning, and family cohesion over time among Sri Lankan mothers who survived the tsunami on 26 December 2004. Study variables were measured using a self-report questionnaire administered approximately four months after the event and three years later in summer 2008. Univariate, bivariate, and multivariate analyses were conducted. Path analysis was employed to assess the relationships between the key variables over time and the correlations in the study variables at each time point. Among other findings, the results of the path analysis indicated that post-traumatic stress symptom distress four months after the disaster significantly predicted variance in family cohesion three years later. Clinical and empirical research implications are presented and discussed. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
Rogers, Laura Q; Courneya, Kerry S; Anton, Phillip M; Hopkins-Price, Patricia; Verhulst, Steven; Robbs, Randall S; Vicari, Sandra K; McAuley, Edward
2017-04-01
Most breast cancer survivors do not meet physical activity recommendations. Understanding mediators of physical activity behavior change can improve interventions designed to increase physical activity in this at-risk population. Study aims were to determine the 3-month Better Exercise Adherence after Treatment for Cancer (BEAT Cancer) behavior change intervention effects on social cognitive theory constructs and the mediating role of any changes on the increase in accelerometer-measured physical activity previously reported. Post-treatment breast cancer survivors (N = 222) were randomized to BEAT Cancer or usual care. Assessments occurred at baseline, 3 months (M3), and 6 months (M6). Adjusted linear mixed model analysis of variance determined intervention effects on walking self-efficacy, outcome expectations, goal setting, and perceived barrier interference at M3. Path analysis determined mediation of intervention effects on physical activity at M6 by changes in social cognitive constructs during the intervention (i.e., baseline to M3). BEAT Cancer significantly improved self-efficacy, goals, negative outcome expectations, and barriers. Total path analysis model explained 24 % of the variance in M6 physical activity. There were significant paths from randomized intervention group to self-efficacy (β = 0.15, p < .05) and barriers (β = -0.22, p < .01). Barriers demonstrated a borderline significant association with M6 physical activity (β = -0.24, p = .05). No statistically significant indirect effects were found. Although BEAT Cancer significantly improved social cognitive constructs, no significant indirect effects on physical activity improvements 3 months post-intervention were observed (NCT00929617).
Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences
NASA Astrophysics Data System (ADS)
Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel
2015-09-01
Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.
NASA Astrophysics Data System (ADS)
Hart, Brian K.; Griffiths, Peter R.
1998-06-01
Partial least squares (PLS) regression has been evaluated as a robust calibration technique for over 100 hazardous air pollutants (HAPs) measured by open path Fourier transform infrared (OP/FT-IR) spectrometry. PLS has the advantage over the current recommended calibration method of classical least squares (CLS), in that it can look at the whole useable spectrum (700-1300 cm-1, 2000-2150 cm-1, and 2400-3000 cm-1), and detect several analytes simultaneously. Up to one hundred HAPs synthetically added to OP/FT-IR backgrounds have been simultaneously calibrated and detected using PLS. PLS also has the advantage in requiring less preprocessing of spectra than that which is required in CLS calibration schemes, allowing PLS to provide user independent real-time analysis of OP/FT-IR spectra.
Karriker-Jaffe, Katherine J; Liu, HuiGuo; Kaplan, Lauren M
2016-05-01
We explored how neighborhood socioeconomic status (SES) is related to negative consequences of drinking to explain why racial/ethnic minority group members are more at risk than Whites for adverse alcohol outcomes. We tested direct and indirect effects of neighborhood SES on alcohol problems and examined differences by gender and race. We used data from the 2000 and 2005 National Alcohol Surveys (N = 7912 drinkers aged 18 and older; 49 % female) linked with data from the 2000 Decennial Census in multivariate path models adjusting for individual demographics. In the full sample, neighborhood disadvantage had a significant direct path to increased negative consequences, with no indirect paths through depression, positive affect or pro-drinking attitudes. Neighborhood affluence had significant indirect paths to increased negative consequences through greater pro-drinking attitudes and increased heavy drinking. Subgroup analyses showed the indirect path from affluence to consequences held for White men, with no effects of neighborhood disadvantage. For racial/ethnic minority men, significant indirect paths emerged from both neighborhood disadvantage and affluence to increased consequences through greater pro-drinking attitudes and more heavy drinking. For minority women, there was an indirect effect of neighborhood affluence through reduced depression to fewer drinking consequences. There were limited neighborhood effects on alcohol outcomes for White women. Interventions targeting pro-drinking attitudes in both affluent and disadvantaged areas may help reduce alcohol-related problems among men. Initiatives to improve neighborhood conditions could enhance mental health of minority women and reduce alcohol-related health disparities.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.
1974-01-01
The MIDAS System is described as a third-generation fast multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turnaround time and significant gains in throughput. The hardware and software are described. The system contains a mini-computer to control the various high-speed processing elements in the data path, and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 200,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation.
Career paths in physicians' postgraduate training - an eight-year follow-up study.
Buddeberg-Fischer, Barbara; Stamm, Martina; Klaghofer, Richard
2010-10-06
To date, there are hardly any studies on the choice of career path in medical school graduates. The present study aimed to investigate what career paths can be identified in the course of postgraduate training of physicians; what factors have an influence on the choice of a career path; and in what way the career paths are correlated with career-related factors as well as with work-life balance aspirations. The data reported originates from five questionnaire surveys of the prospective SwissMedCareer Study, beginning in 2001 (T1, last year of medical school). The study sample consisted of 358 physicians (197 females, 55%; 161 males, 45%) participating at each assessment from T2 (2003, first year of residency) to T5 (2009, seventh year of residency), answering the question: What career do you aspire to have? Furthermore, personal characteristics, chosen specialty, career motivation, mentoring experience, work-life balance as well as workload, career success and career satisfaction were assessed. Career paths were analysed with cluster analysis, and differences between clusters analysed with multivariate methods. The cluster analysis revealed four career clusters which discriminated distinctly between each other: (1) career in practice, (2) hospital career, (3) academic career, and (4) changing career goal. From T3 (third year of residency) to T5, respondents in Cluster 1-3 were rather stable in terms of their career path aspirations, while those assigned to Cluster 4 showed a high fluctuation in their career plans. Physicians in Cluster 1 showed high values in extraprofessional concerns and often consider part-time work. Cluster 2 and 3 were characterised by high instrumentality, intrinsic and extrinsic career motivation, career orientation and high career success. No cluster differences were seen in career satisfaction. In Cluster 1 and 4, females were overrepresented. Trainees should be supported to stay on the career path that best suits his/her personal and professional profile. Attention should be paid to the subgroup of physicians in Cluster 4 switching from one to another career goal in the course of their postgraduate training.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The Midas System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in Phase I of the overall program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 2 x 100,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. The MIDAS construction and wiring diagrams are given.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.
Karriker-Jaffe, Katherine J.; Liu, HuiGuo; Kaplan, Lauren M.
2016-01-01
Aims We explored how neighborhood socioeconomic status (SES) is related to negative consequences of drinking to explain why racial/ethnic minority group members are more at risk than Whites for adverse alcohol outcomes. We tested direct and indirect effects of neighborhood SES on alcohol problems and examined differences by gender and race. Methods We used data from the 2000 and 2005 National Alcohol Surveys (N=7,912 drinkers aged 18 and older; 49% female) linked with data from the 2000 Decennial Census in multivariate path models adjusting for individual demographics. Results In the full sample, neighborhood disadvantage had a significant direct path to increased negative consequences, with no indirect paths through depression, positive affect or pro-drinking attitudes. Neighborhood affluence had significant indirect paths to increased negative consequences through greater pro-drinking attitudes and increased heavy drinking. Sub-group analyses showed the indirect path from affluence to consequences held for White men, with no effects of neighborhood disadvantage. For racial/ethnic minority men, significant indirect paths emerged from both neighborhood disadvantage and affluence to increased consequences through greater pro-drinking attitudes and more heavy drinking. For minority women, there was an indirect effect of neighborhood affluence through reduced depression to fewer drinking consequences. There were limited neighborhood effects on alcohol outcomes for White women. Conclusions Interventions targeting pro-drinking attitudes in both affluent and disadvantaged areas may help reduce alcohol-related problems among men. Initiatives to improve neighborhood conditions could enhance mental health of minority women and reduce alcohol-related health disparities. PMID:26898509
Han, Lu; Benseler, Susanne M; Tyrrell, Pascal N
2018-05-01
Rheumatic diseases encompass a wide range of conditions caused by inflammation and dysregulation of the immune system resulting in organ damage. Research in these heterogeneous diseases benefits from multivariate methods. The aim of this review was to describe and evaluate current literature in rheumatology regarding cluster analysis and correspondence analysis. A systematic review showed an increase in studies making use of these 2 methods. However, standardization in how these methods are applied and reported is needed. Researcher expertise was determined to be the main barrier to considering these approaches, whereas education and collaborating with a biostatistician were suggested ways forward. Copyright © 2018 Elsevier Inc. All rights reserved.
Kinematic analysis of total knee prosthesis designed for Asian population.
Low, F H; Khoo, L P; Chua, C K; Lo, N N
2000-01-01
In designing a total knee replacement (TKR) prosthesis catering for the Asian population, 62 sets of femur were harvested and analyzed. The morphometrical data obtained were found to be in good agreement with dimensions typical of the Asian knee and has reaffirmed the fact that Caucasian knees are generally larger than Asian knees. Subsequently, these data when treated using a multivariate statistical technique resulted in the establishment of major design parameters for six different sizes of femoral implants. An extra-small implant size with established dimensions and geometrical shape has surfaced from the study. The differences between the Asian knees and the Caucasian knees are discussed. Employing the established femoral dimensions and motion path of the knee joint, the articulating tibia profile was generated. All the sizes of implants were modeled using a computer-aided software package. Thereupon, these models that accurately fits the local Asian knee were transported into a dynamic and kinematic analysis software package. The tibiofemoral joint was modeled successfully as a slide curve joint to study intuitively the motion of the femur when articulating on the tibia surface. An optimal tibia profile could be synthesized to mimic the natural knee path motion. Details of the analysis are presented and discussed.
Garland, Eric L.; Thielking, Paul; Thomas, Elizabeth A.; Coombs, Mary; White, Shelley; Lombardi, Joy; Beck, Anna
2016-01-01
Background Research indicates that dispositional mindfulness is associated with positive psychological functioning. Although this disposition has been linked with beneficial outcomes in the broader mental health literature, less is known about dispositional mindfulness in cancer survivors and how it may be linked with indices of psychological and physical health relevant to cancer survivorship. Methods We conducted a multivariate path analysis of data from a heterogeneous sample of cancer patients (N = 97) to test the Mindfulness-to-Meaning Theory, an extended process model of emotion regulation linking dispositional mindfulness with cancer-related quality of life via positive psychological processes. Results We found that patients endorsing higher levels of dispositional mindfulness were more likely to pay attention to positive experiences (β = .56), a tendency which was associated with positive reappraisal of stressful life events (β = .51). Patients who engaged in more frequent positive reappraisal had a greater sense of meaning in life (β = .43) and tended to savor rewarding or life affirming events (β = .50). In turn, those who engaged in high levels of savoring had better quality of life (β = .33) and suffered less from emotional distress (β = −.54). Conclusions Findings provide support for the Mindfulness-to-Meaning Theory, and help explicate the processes by which mindfulness promotes psychological flourishing in the face of cancer. PMID:26799620
Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China
NASA Astrophysics Data System (ADS)
Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin
2018-05-01
Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.
NASA Astrophysics Data System (ADS)
Bril, A.; Oshchepkov, S.; Yokota, T.; Yoshida, Y.; Morino, I.; Uchino, O.; Belikov, D. A.; Maksyutov, S. S.
2014-12-01
We retrieved the column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) and methane (XCH4) from the radiance spectra measured by Greenhouse gases Observing SATellite (GOSAT) for 48 months of the satellite operation from June 2009. Recent version of the Photon path-length Probability Density Function (PPDF)-based algorithm was used to estimate XCO2 and optical path modifications in terms of PPDF parameters. We also present results of numerical simulations for over-land observations and "sharp edge" tests for sun-glint mode to discuss the algorithm accuracy under conditions of strong optical path modification. For the methane abundance retrieved from 1.67-µm-absorption band we applied optical path correction based on PPDF parameters from 1.6-µm carbon dioxide (CO2) absorption band. Similarly to CO2-proxy technique, this correction assumes identical light path modifications in 1.67-µm and 1.6-µm bands. However, proxy approach needs pre-defined XCO2 values to compute XCH4, whilst the PPDF-based approach does not use prior assumptions on CO2 concentrations.Post-processing data correction for XCO2 and XCH4 over land observations was performed using regression matrix based on multivariate analysis of variance (MANOVA). The MANOVA statistics was applied to the GOSAT retrievals using reference collocated measurements of Total Carbon Column Observing Network (TCCON). The regression matrix was constructed using the parameters that were found to correlate with GOSAT-TCCON discrepancies: PPDF parameters α and ρ, that are mainly responsible for shortening and lengthening of the optical path due to atmospheric light scattering; solar and satellite zenith angles; surface pressure; surface albedo in three GOSAT short wave infrared (SWIR) bands. Application of the post-correction generally improves statistical characteristics of the GOSAT-TCCON correlation diagrams for individual stations as well as for aggregated data.In addition to the analysis of the observations over 12 TCCON stations we estimated temporal and spatial trends (interannual XCO2 and XCH4 variations, seasonal cycles, latitudinal gradients) and compared them with modeled results as well as with similar estimates from other GOSAT retrievals.
Holden, Richard J.; Scanlon, Matthew C.; Patel, Neal R.; Kaushal, Rainu; Escoto, Kamisha Hamilton; Brown, Roger L.; Alper, Samuel J.; Arnold, Judi M.; Shalaby, Theresa M.; Murkowski, Kathleen; Karsh, Ben-Tzion
2010-01-01
Backgrounds Nursing workload is increasingly thought to contribute to both nurses’ quality of working life and quality/safety of care. Prior studies lack a coherent model for conceptualizing and measuring the effects of workload in health care. In contrast, we conceptualized a human factors model for workload specifying workload at three distinct levels of analysis and having multiple nurse and patient outcomes. Methods To test this model, we analyzed results from a cross-sectional survey of a volunteer sample of nurses in six units of two academic tertiary care pediatric hospitals. Results Workload measures were generally correlated with outcomes of interest. A multivariate structural model revealed that: the unit-level measure of staffing adequacy was significantly related to job dissatisfaction (path loading = .31) and burnout (path loading = .45); the task-level measure of mental workload related to interruptions, divided attention, and being rushed was associated with burnout (path loading = .25) and medication error likelihood (path loading = 1.04). Job-level workload was not uniquely and significantly associated with any outcomes. Discussion The human factors engineering model of nursing workload was supported by data from two pediatric hospitals. The findings provided a novel insight into specific ways that different types of workload could affect nurse and patient outcomes. These findings suggest further research and yield a number of human factors design suggestions. PMID:21228071
Holden, Richard J; Scanlon, Matthew C; Patel, Neal R; Kaushal, Rainu; Escoto, Kamisha Hamilton; Brown, Roger L; Alper, Samuel J; Arnold, Judi M; Shalaby, Theresa M; Murkowski, Kathleen; Karsh, Ben-Tzion
2011-01-01
Nursing workload is increasingly thought to contribute to both nurses' quality of working life and quality/safety of care. Prior studies lack a coherent model for conceptualising and measuring the effects of workload in healthcare. In contrast, we conceptualised a human factors model for workload specifying workload at three distinct levels of analysis and having multiple nurse and patient outcomes. To test this model, we analysed results from a cross-sectional survey of a volunteer sample of nurses in six units of two academic tertiary care paediatric hospitals. Workload measures were generally correlated with outcomes of interest. A multivariate structural model revealed that: the unit-level measure of staffing adequacy was significantly related to job dissatisfaction (path loading=0.31) and burnout (path loading=0.45); the task-level measure of mental workload related to interruptions, divided attention, and being rushed was associated with burnout (path loading=0.25) and medication error likelihood (path loading=1.04). Job-level workload was not uniquely and significantly associated with any outcomes. The human factors engineering model of nursing workload was supported by data from two paediatric hospitals. The findings provided a novel insight into specific ways that different types of workload could affect nurse and patient outcomes. These findings suggest further research and yield a number of human factors design suggestions.
Zahtz, Gerald; Vambutas, Andrea; Hussey, Heather M; Rosen, Lisa
2014-07-01
To determine whether the research rotation experience affects the career path of otolaryngology residents. Two web-based surveys were disseminated by the AAO-HNS; one to current and former resident trainees and the other to current residency program directors. A web-based survey was disseminated to all AAO-HNS members classified as otolaryngology residents or residency graduates within the last 6 years, regarding their research rotation and its potential influence on their career path. A second web-based survey was delivered simultaneously to program directors to evaluate their perception of the need for research in a training program and their role in the rotation. Chi-square tests for independence as well as multivariate analyses were conducted to determine whether aspects of the resident research rotation related to career path. The resident survey was completed by 350 respondents (25% response rate), and 39 program directors completed the second survey (37% response rate). Multiple factors were examined, including federal funding of faculty, mentorship, publications prior to residency, success of research project measured by publication or grant submission, and type of research. Multivariate analyses revealed that factors most predictive of academic career path were intellectual satisfaction and presence of a T32 training grant within the program (P < .05). The composition and quality of the residency research rotation vary across institutions. Factors that enhance stronger intellectual satisfaction and the presence of T32 grant, which demonstrates an institution's commitment to research training, may promote pursuit of a career in academia versus private practice. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
Attitudes and intentions to smoke: a study of young Brazilian children.
Pires, P P; Ribas, R C; Borzekowski, D L G
2015-11-01
Children at earlier stages tend to be more susceptible towards different types of tobacco messages. These are able to influence attitudes and behaviours around smoking. This study examined how these messages are able to influence 5- and 6-year olds' attitudes about smokers and their smoking intentions. Researchers worked one-on-one with 5- and 6-year olds (n = 398) in Brazil. Children could attribute positive and negative characteristics to two different persons in photos as smoker/non-smoker. Children could indicate the attribute as of a smoker, a non-smoker, both or none. Children were asked also about their smoking intentions. Analysis considered parental smoking, sex, age, cigarette and alcohol brand logos, children's location and media characters from cartoons. We conducted a path analysis for a multivariate model of children's attitudes and intentions about smoking. Overall, children had negative attitudes about smokers (M = -4.58, SD = 4.08) and a total of 32 (8.0%) of them reported intentions to smoke. The resulting multivariate model indicates that parental smoking is a source for a positive image of smokers, while being 6 years old, living in rural areas, being aware of alcohol brands and recognizing educational cartoons tended to be negatively correlated to children's attitudes. Further, 6 year olds were found to be less likely to have smoking intentions, while attitude about smokers was positively related with intentions. One's attitudes served as a mediator for all of the variables in the model towards smoking intentions. The path models differed for each sex. Shaped by social and environmental influences, very young children have opinions about smokers. In turn, these attitudes significantly predict children's smoking intentions. To corroborate this research, we recommend that longitudinal designs be employed to help model why Brazilian children become smokers. © 2015 John Wiley & Sons Ltd.
Nespolo, Roberto F; Castañeda, Luis E; Roff, Derek A
2005-08-01
Energy metabolism in animals has been largely studied in relation to exogenous sources of variation. However, because they give insight into the relationship between whole metabolism and lower organizational levels such as organs and tissues, examination of endogenous determinants of metabolism other than body mass is itself very important. We studied the multivariate association of body parts and several aspects of energy metabolism in an insect, the nymphs of the sand cricket, Gryllus firmus. By using a variety of both univariate and multivariate techniques, we explored the resultant variance-covariance matrix to build a path diagram with latent variables. After controlling for body mass, we found a significant canonical correlation between metabolism and morphology. According to the factor loadings and path coefficients, the most important contributions of morphology to the correlation were thorax and abdomen size measures, whereas the most important metabolic contribution was resting metabolism. Activity metabolism was mostly explained by body mass rather than body parts, which could be a result of resting rates being chronic consequences of the functioning of the metabolic machinery that the insect must maintain.
Wang, Xiuquan; Huang, Guohe; Zhao, Shan; Guo, Junhong
2015-09-01
This paper presents an open-source software package, rSCA, which is developed based upon a stepwise cluster analysis method and serves as a statistical tool for modeling the relationships between multiple dependent and independent variables. The rSCA package is efficient in dealing with both continuous and discrete variables, as well as nonlinear relationships between the variables. It divides the sample sets of dependent variables into different subsets (or subclusters) through a series of cutting and merging operations based upon the theory of multivariate analysis of variance (MANOVA). The modeling results are given by a cluster tree, which includes both intermediate and leaf subclusters as well as the flow paths from the root of the tree to each leaf subcluster specified by a series of cutting and merging actions. The rSCA package is a handy and easy-to-use tool and is freely available at http://cran.r-project.org/package=rSCA . By applying the developed package to air quality management in an urban environment, we demonstrate its effectiveness in dealing with the complicated relationships among multiple variables in real-world problems.
Path Models of Vocal Emotion Communication
Bänziger, Tanja; Hosoya, Georg; Scherer, Klaus R.
2015-01-01
We propose to use a comprehensive path model of vocal emotion communication, encompassing encoding, transmission, and decoding processes, to empirically model data sets on emotion expression and recognition. The utility of the approach is demonstrated for two data sets from two different cultures and languages, based on corpora of vocal emotion enactment by professional actors and emotion inference by naïve listeners. Lens model equations, hierarchical regression, and multivariate path analysis are used to compare the relative contributions of objectively measured acoustic cues in the enacted expressions and subjective voice cues as perceived by listeners to the variance in emotion inference from vocal expressions for four emotion families (fear, anger, happiness, and sadness). While the results confirm the central role of arousal in vocal emotion communication, the utility of applying an extended path modeling framework is demonstrated by the identification of unique combinations of distal cues and proximal percepts carrying information about specific emotion families, independent of arousal. The statistical models generated show that more sophisticated acoustic parameters need to be developed to explain the distal underpinnings of subjective voice quality percepts that account for much of the variance in emotion inference, in particular voice instability and roughness. The general approach advocated here, as well as the specific results, open up new research strategies for work in psychology (specifically emotion and social perception research) and engineering and computer science (specifically research and development in the domain of affective computing, particularly on automatic emotion detection and synthetic emotion expression in avatars). PMID:26325076
van Rossum, Peter S N; Fried, David V; Zhang, Lifei; Hofstetter, Wayne L; van Vulpen, Marco; Meijer, Gert J; Court, Laurence E; Lin, Steven H
2016-05-01
A reliable prediction of a pathologic complete response (pathCR) to chemoradiotherapy before surgery for esophageal cancer would enable investigators to study the feasibility and outcome of an organ-preserving strategy after chemoradiotherapy. So far no clinical parameters or diagnostic studies are able to accurately predict which patients will achieve a pathCR. The aim of this study was to determine whether subjective and quantitative assessment of baseline and postchemoradiation (18)F-FDG PET can improve the accuracy of predicting pathCR to preoperative chemoradiotherapy in esophageal cancer beyond clinical predictors. This retrospective study was approved by the institutional review board, and the need for written informed consent was waived. Clinical parameters along with subjective and quantitative parameters from baseline and postchemoradiation (18)F-FDG PET were derived from 217 esophageal adenocarcinoma patients who underwent chemoradiotherapy followed by surgery. The associations between these parameters and pathCR were studied in univariable and multivariable logistic regression analysis. Four prediction models were constructed and internally validated using bootstrapping to study the incremental predictive values of subjective assessment of (18)F-FDG PET, conventional quantitative metabolic features, and comprehensive (18)F-FDG PET texture/geometry features, respectively. The clinical benefit of (18)F-FDG PET was determined using decision-curve analysis. A pathCR was found in 59 (27%) patients. A clinical prediction model (corrected c-index, 0.67) was improved by adding (18)F-FDG PET-based subjective assessment of response (corrected c-index, 0.72). This latter model was slightly improved by the addition of 1 conventional quantitative metabolic feature only (i.e., postchemoradiation total lesion glycolysis; corrected c-index, 0.73), and even more by subsequently adding 4 comprehensive (18)F-FDG PET texture/geometry features (corrected c-index, 0.77). However, at a decision threshold of 0.9 or higher, representing a clinically relevant predictive value for pathCR at which one may be willing to omit surgery, there was no clear incremental value. Subjective and quantitative assessment of (18)F-FDG PET provides statistical incremental value for predicting pathCR after preoperative chemoradiotherapy in esophageal cancer. However, the discriminatory improvement beyond clinical predictors does not translate into a clinically relevant benefit that could change decision making. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Garland, Eric L; Thielking, Paul; Thomas, Elizabeth A; Coombs, Mary; White, Shelley; Lombardi, Joy; Beck, Anna
2017-05-01
Research indicates that dispositional mindfulness is associated with positive psychological functioning. Although this disposition has been linked with beneficial outcomes in the broader mental health literature, less is known about dispositional mindfulness in cancer survivors and how it may be linked with indices of psychological and physical health relevant to cancer survivorship. We conducted a multivariate path analysis of data from a heterogeneous sample of cancer patients (N = 97) to test the Mindfulness-to-Meaning Theory, an extended process model of emotion regulation linking dispositional mindfulness with cancer-related quality of life via positive psychological processes. We found that patients endorsing higher levels of dispositional mindfulness were more likely to pay attention to positive experiences (β = .56), a tendency which was associated with positive reappraisal of stressful life events (β = .51). Patients who engaged in more frequent positive reappraisal had a greater sense of meaning in life (β = .43) and tended to savor rewarding or life affirming events (β = .50). In turn, those who engaged in high levels of savoring had better quality of life (β = .33) and suffered less from emotional distress (β = -.54). Findings provide support for the Mindfulness-to-Meaning Theory and help explicate the processes by which mindfulness promotes psychological flourishing in the face of cancer. Cancer survivors may benefit from enhancing mindfulness, reappraisal, and savoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Overlap in the functional neural systems involved in semantic and episodic memory retrieval.
Rajah, M N; McIntosh, A R
2005-03-01
Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.
Identification of literary movements using complex networks to represent texts
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael; Oliveira, Osvaldo N., Jr.; da Fontoura Costa, Luciano
2012-04-01
The use of statistical methods to analyze large databases of text has been useful in unveiling patterns of human behavior and establishing historical links between cultures and languages. In this study, we identified literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to generate six clusters of books. The latter correspond to time periods coinciding with relevant literary movements over the last five centuries. The most important factor contributing to the distinctions between different literary styles was the average shortest path length, in particular the asymmetry of its distribution. Furthermore, over time there has emerged a trend toward larger average shortest path lengths, which is correlated with increased syntactic complexity, and a more uniform use of the words reflected in a smaller power-law coefficient for the distribution of word frequency. Changes in literary style were also found to be driven by opposition to earlier writing styles, as revealed by the analysis performed with geometrical concepts. The approaches adopted here are generic and may be extended to analyze a number of features of languages and cultures.
Fukumoto, Risa; Kawai, Makoto; Minai, Kosuke; Ogawa, Kazuo; Yoshida, Jun; Inoue, Yasunori; Morimoto, Satoshi; Tanaka, Toshikazu; Nagoshi, Tomohisa; Ogawa, Takayuki; Yoshimura, Michihiro
2017-01-01
It is conceivable that contemporary valvular heart disease (VHD) is affected largely by an age-dependent atherosclerotic process, which is similar to that observed in coronary artery disease (CAD). However, a comorbid condition of VHD and CAD has not been precisely examined. The first objective of this study was to examine a possible comorbid condition. Provided that there is no comorbidity, the second objective was to search for the possible reasons by using conventional risk factors and plasma B-type natriuretic peptide (BNP) because BNP has a potentiality to suppress atherosclerotic development. The study population consisted of 3,457 patients consecutively admitted to our institution. The possible comorbid condition of VHD and CAD and the factors that influence the comorbidity were examined by covariance structure analysis and multivariate analysis. The distribution of the patients with VHD and those with CAD in the histograms showed that the incidence of VHD and the severity of CAD rose with seniority in appearance. The real statistical analysis was planned by covariance structure analysis. The current path model revealed that aging was associated with VHD and CAD severity (P < 0.001 for each); however, as a notable result, there was an inverse association regarding the comorbid condition between VHD and CAD (Correlation coefficient [β]: -0.121, P < 0.001). As the second objective, to clarify the factors leading to this inverse association, the contribution of conventional risk factors, such as age, gender, hypertension, smoking, diabetes, obesity and dyslipidemia, to VHD and CAD were examined by multivariate analysis. However, these factors did not exert an opposing effect on VHD and CAD, and the inverse association defied explanation. Since different pathological mechanisms may contribute to the formation of VHD and CAD, a differentially proposed path model using plasma BNP revealed that an increase in plasma BNP being drawn by VHD suppressed the progression of CAD (β: -0.465, P < 0.001). The incidence of VHD and CAD showed a significant conflicting relationship. This result supported the likely presence of unknown diverse mechanisms on top of the common cascade of atherosclerosis. Among them, the continuous elevation of plasma BNP due to VHD might be one of the explicable factors suppressing the progression of CAD.
Patterns and Sequences: Interactive Exploration of Clickstreams to Understand Common Visitor Paths.
Liu, Zhicheng; Wang, Yang; Dontcheva, Mira; Hoffman, Matthew; Walker, Seth; Wilson, Alan
2017-01-01
Modern web clickstream data consists of long, high-dimensional sequences of multivariate events, making it difficult to analyze. Following the overarching principle that the visual interface should provide information about the dataset at multiple levels of granularity and allow users to easily navigate across these levels, we identify four levels of granularity in clickstream analysis: patterns, segments, sequences and events. We present an analytic pipeline consisting of three stages: pattern mining, pattern pruning and coordinated exploration between patterns and sequences. Based on this approach, we discuss properties of maximal sequential patterns, propose methods to reduce the number of patterns and describe design considerations for visualizing the extracted sequential patterns and the corresponding raw sequences. We demonstrate the viability of our approach through an analysis scenario and discuss the strengths and limitations of the methods based on user feedback.
ERIC Educational Resources Information Center
Honea, Katherine
2012-01-01
Research that examines diachronic change and modality posit that modal verbs follow certain universal paths of development (e.g. Cornillie, 2007; Bybee & Fleischman, 1995; Bybee, Perkins & Pagliuca, 1994). The present study examines the development of Spanish modality in Mexico through the use of multivariate analyses, relative…
Early Vector Calculus: A Path through Multivariable Calculus
ERIC Educational Resources Information Center
Robertson, Robert L.
2013-01-01
The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)
NASA Technical Reports Server (NTRS)
Christenson, D.; Gordon, M.; Kistler, R.; Kriegler, F.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1977-01-01
A third-generation, fast, low cost, multispectral recognition system (MIDAS) able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensots is described. The program can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principle objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in the overall program is described. The system contains a midi-computer to control the various high speed processing elements in the data path, a preprocessor to condition data, and a classifier which implements an all digital prototype multivariate Gaussian maximum likelihood or a Bayesian decision algorithm. Sufficient software was developed to perform signature extraction, control the preprocessor, compute classifier coefficients, control the classifier operation, operate the color display and printer, and diagnose operation.
Thrasher, James F; Besley, John C; González, Wendy
2010-03-01
The World Health Organization's Framework Convention on Tobacco Control promotes comprehensive smoke-free laws. The effective implementation of these laws requires citizen participation and support. Risk communication research suggests that citizens' perceptions of the fairness of smoke-free laws would help explain their support for the law. This study aimed to assess the factors that correlate with citizens' perceptions of the distributive, procedural and interpersonal justice of smoke-free laws, as well as how these perceptions are related to support for and intention to help enforce these laws. Study data came from a cross-sectional, population-based survey of 800 Mexico City inhabitants before a comprehensive smoke-free policy was implemented there in 2008. Structural equation modeling was used to estimate the bivariate and multivariate adjusted paths relating study variables. In the final multivariate model, the three justice concepts mediated the influence of smoking status, perceived dangers of secondhand smoke exposure, strength of home smoking ban, and perceived rights of smokers on the two distal constructs of support for smoke-free policy and intention to help enforce it. Statistically significant paths were estimated from distributive and procedural justice to support for the law and intention help enforce it. The path from interpersonal justice to support for the law was not significant, but the path to intention to help enforce the law was. Finally, the path from support for the law to the intention to enforce it was statistically significant. These results suggest that three distinct dimensions of perceived justice help explain citizen support for smoke-free policies. These dimensions of perceived justice may explain the conditions under which smoke-free policies are effectively implemented and could help shape the focus for communication strategies that aim to ensure effective implementation of this and other public health policies. 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Fiedler, James; Lee, Stuart M. M.; Westby, Christian M.; Stenger, Michael B.; Platts, Steven H.
2014-01-01
Orthostatic Intolerance (OI) is the propensity to develop symptoms of fainting during upright standing. OI is associated with changes in heart rate, blood pressure and other measures of cardiac function. Problem: NASA astronauts have shown increased susceptibility to OI on return from space missions. Current methods for counteracting OI in astronauts include fluid loading and the use of compression garments. Multivariate trajectory spread is greater as OI increases. Pairwise comparisons at the same time within subjects allows incorporation of pass/fail outcomes. Path length, convex hull area, and covariance matrix determinant do well as statistics to summarize this spread Missing data problems Time series analysis need many more time points per OTT session treatment of trend? how incorporate survival information?
Verkest, K R; Fleeman, L M; Morton, J M; Ishioka, K; Rand, J S
2011-07-01
The hormonal mediators of obesity-induced insulin resistance and compensatory hyperinsulinemia in dogs have not been identified. Plasma samples were obtained after a 24-h fast from 104 client-owned lean, overweight, and obese dogs. Plasma glucose and insulin concentrations were used to calculate insulin sensitivity and β-cell function with the use of the homeostasis model assessment (HOMA(insulin sensitivity) and HOMA(β-cell function), respectively). Path analysis with multivariable linear regression was used to identify whether fasting plasma leptin, adiponectin, or glucagon-like peptide-1 concentrations were associated with adiposity, insulin sensitivity, and basal insulin secretion. None of the dogs were hyperglycemic. In the final path model, adiposity was positively associated with leptin (P < 0.01) and glucagon-like peptide-1 (P = 0.04) concentrations. No significant total effect of adiposity on adiponectin in dogs (P = 0.24) was observed. If there is a direct effect of leptin on adiponectin, then our results indicate that this is a positive relationship, which at least partly counters a negative direct relationship between adiposity and adiponectin. Fasting plasma leptin concentration was directly negatively associated with fasting insulin sensitivity (P = 0.01) and positively associated with β-cell function (P < 0.01), but no direct association was observed between adiponectin concentration and either insulin sensitivity or β-cell function (P = 0.42 and 0.11, respectively). We conclude that dogs compensate effectively for obesity-induced insulin resistance. Fasting plasma leptin concentrations appear to be associated with obesity-associated changes in insulin sensitivity and compensatory hyperinsulinemia in naturally occurring obese dogs. Adiponectin does not appear to be involved in the pathophysiology of obesity-associated changes in insulin sensitivity. Copyright © 2011 Elsevier Inc. All rights reserved.
Ho, Robert; Chantagul, Natalie
2015-01-01
This study investigated the level of support for voluntary and nonvoluntary euthanasia under three conditions of suffering (pain; debilitated nature of the body; burden on the family) experienced by oneself, a significant other, and a person in general. The sample consisted of 1,897 Thai adults (719 males, 1,178 females) who voluntarily filled in the study's questionnaire. Initial multivariate analysis of variance indicated significant group (oneself, significant other, person in general) differences in level of support for voluntary and nonvoluntary euthanasia and under the three conditions of suffering. Multigroup path analysis conducted on the posited euthanasia model showed that the three conditions of suffering exerted differential direct and indirect influences on the support of voluntary and nonvoluntary euthanasia as a function of the identity of the person for whom euthanasia was being considered. The implications of these findings are discussed.
Multivariate statistical analysis of wildfires in Portugal
NASA Astrophysics Data System (ADS)
Costa, Ricardo; Caramelo, Liliana; Pereira, Mário
2013-04-01
Several studies demonstrate that wildfires in Portugal present high temporal and spatial variability as well as cluster behavior (Pereira et al., 2005, 2011). This study aims to contribute to the characterization of the fire regime in Portugal with the multivariate statistical analysis of the time series of number of fires and area burned in Portugal during the 1980 - 2009 period. The data used in the analysis is an extended version of the Rural Fire Portuguese Database (PRFD) (Pereira et al, 2011), provided by the National Forest Authority (Autoridade Florestal Nacional, AFN), the Portuguese Forest Service, which includes information for more than 500,000 fire records. There are many multiple advanced techniques for examining the relationships among multiple time series at the same time (e.g., canonical correlation analysis, principal components analysis, factor analysis, path analysis, multiple analyses of variance, clustering systems). This study compares and discusses the results obtained with these different techniques. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692, the project FLAIR (PTDC/AAC-AMB/104702/2008) and the EU 7th Framework Program through FUME (contract number 243888).
Dufour, J-C; Reynier, P; Boudjema, S; Soto Aladro, A; Giorgi, R; Brouqui, P
2017-04-01
Hand hygiene is a major means for preventing healthcare-associated infections. One critical point in understanding poor compliance is the lack of relevant markers used to monitor practices systematically. This study analysed hand hygiene compliance and associated factors with a radio-frequency-identification-based real-time continuous automated monitoring system in an infectious disease ward with 17 single bedrooms. Healthcare workers (HCWs) were tracked while performing routine care over 171 days. A multi-level multi-variate logistics model was used for data analysis. The main outcome measures were hand disinfection before entering the bedroom (outside use) and before entering the patient care zone, defined as the zone surrounding the patient's bed (inside/bedside use). Variables analysed included HCWs' characteristics and behaviour, patients, room layouts, path chains and duration of HCWs' paths. In total, 4629 paths with initial hand hygiene opportunities when entering the patient care zone were selected, of which 763 (16.5%), 285 (6.1%) and 3581 (77.4%) were associated with outside use, inside/bedside use and no use, respectively. Hand hygiene is caregiver-dependent. The shorter the duration of the HCW's path, the worse the bedside hand hygiene. Bedside hand hygiene is improved when one or two extra HCWs are present in the room. Hand hygiene compliance at the bedside, as analysed using the continuous monitoring system, depended upon the HCW's occupation and personal behaviour, number of HCWs, time spent in the room and (potentially) dispenser location. Meal tray distribution was a possible factor in the case of failure to disinfect hands. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Multivariate Model of Antisocial Behavior and Substance Use in Spanish Adolescents
ERIC Educational Resources Information Center
Pena, M. Elena; Andreu, Jose M.; Grana, Jose L.
2009-01-01
This study was designed to examine the causal paths that predict antisocial behavior and the consumption of legal and illegal substances (drugs) in adolescents. The sample comprised 1,629 adolescents, 786 males and 843 females, between 14 and 18 years old. All participants provided reports of family, school, personality, and peer-group factors…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattson, Earl; Smith, Robert; Fujita, Yoshiko
2015-03-01
The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoirmore » temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.« less
Peeters, M W; Thomis, M A; Claessens, A L; Loos, R J F; Maes, H H M; Lysens, R; Vanden Eynde, B; Vlietinck, R; Beunen, G
2003-01-01
Several studies with different designs have attempted to estimate the heritability of somatotype components. However they often ignore the covariation between the three components as well as possible sex and age effects. Shared environmental factors are not always controlled for. This study explores the pattern of genetic and environmental determination of the variation in Heath-Carter somatotype components from early adolescence into young adulthood. Data from the Leuven Longitudinal Twin Study, a longitudinal sample of Belgian same-aged twins followed from 10 to 18 years (n = 105 pairs, equally divided over five zygosity groups), is entered into a multivariate path analysis. Thus the covariation between the somatotype components is taken into account, gender heterogeneity can be tested, common environmental influences can be distinguished from genetic effects and age effects are controlled for. Heritability estimates from 10 to 18 years range from 0.21 to 0.88, 0.46 to 0.76 and 0.16 to 0.73 for endomorphy, mesomorphy and ectomorphy in boys. In girls, heritability estimates range from 0.76 to 0.89, 0.36 to 0.57 and 0.57 to 0.76 for the respective somatotype components. Sex differences are significant from 14 years onwards. More than half of the variance in all somatotype components for both sexes at all time points is explained by factors the three components have in common. The finding of substantial genetic influence on the variability of somatotype components is further supported. The need to consider somatotype as a whole is stressed as well as the need for sex- and perhaps age-specific analyses. Further multivariate analyses are needed to confirm the present findings.
Numminen, Olivia; Leino-Kilpi, Helena; Isoaho, Hannu; Meretoja, Riitta
2015-09-01
To study the relationships between newly graduated nurses' (NGNs') perceptions of their professional competence, and individual and organizational work-related factors. A multivariate, quantitative, descriptive, correlation design was applied. Data collection took place in November 2012 with a national convenience sample of 318 NGNs representing all main healthcare settings in Finland. Five instruments measured NGNs' perceptions of their professional competence, occupational commitment, empowerment, practice environment, and its ethical climate, with additional questions on turnover intentions, job satisfaction, and demographics. Descriptive statistics summarized the demographic data, and inferential statistics multivariate path analysis modeling estimated the relationships between the variables. The strongest relationship was found between professional competence and empowerment, competence explaining 20% of the variance of empowerment. The explanatory power of competence regarding practice environment, ethical climate of the work unit, and occupational commitment, and competence's associations with turnover intentions, job satisfaction, and age, were statistically significant but considerably weaker. Higher competence and satisfaction with quality of care were associated with more positive perceptions of practice environment and its ethical climate as well as higher empowerment and occupational commitment. Apart from its association with empowerment, competence seems to be a rather independent factor in relation to the measured work-related factors. Further exploration would deepen the knowledge of this relationship, providing support for planning educational and developmental programs. Research on other individual and organizational factors is warranted to shed light on factors associated with professional competence in providing high-quality and safe care as well as retaining new nurses in the workforce. The study sheds light on the strength and direction of the significantly associated work-related factors. Nursing professional bodies, managers, and supervisors can use the findings in planning orientation programs and other occupational interventions for NGNs. © 2015 Sigma Theta Tau International.
Bohler, Anwesha; Eijssen, Lars M T; van Iersel, Martijn P; Leemans, Christ; Willighagen, Egon L; Kutmon, Martina; Jaillard, Magali; Evelo, Chris T
2015-08-23
Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.
Hengartner, M P; Ajdacic-Gross, V; Rodgers, S; Müller, M; Rössler, W
2013-10-01
Various studies have reported a positive relationship between child maltreatment and personality disorders (PDs). However, few studies included all DSM-IV PDs and even fewer adjusted for other forms of childhood adversity, e.g. bullying or family problems. We analyzed questionnaires completed by 512 participants of the ZInEP epidemiology survey, a comprehensive psychiatric survey of the general population in Zurich, Switzerland. Associations between childhood adversity and PDs were analyzed bivariately via simple regression analyses and multivariately via multiple path analysis. The bivariate analyses revealed that all PD dimensions were significantly related to various forms of family and school problems as well as child abuse. In contrast, according to the multivariate analysis only school problems and emotional abuse were associated with various PDs. Poverty was uniquely associated with schizotypal PD, conflicts with parents with obsessive-compulsive PD, physical abuse with antisocial PD, and physical neglect with narcissistic PD. Sexual abuse was statistically significantly associated with schizotypal and borderline PD, but corresponding effect sizes were small. Childhood adversity has a serious impact on PDs. Bullying and violence in schools and emotional abuse appear to be more salient markers of general personality pathology than other forms of childhood adversity. Associations with sexual abuse were negligible when adjusted for other forms of adversity. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Modeling meander morphodynamics over self-formed heterogeneous floodplains
NASA Astrophysics Data System (ADS)
Bogoni, Manuel; Putti, Mario; Lanzoni, Stefano
2017-06-01
This work addresses the signatures embedded in the planform geometry of meandering rivers consequent to the formation of floodplain heterogeneities as the river bends migrate. Two geomorphic features are specifically considered: scroll bars produced by lateral accretion of point bars at convex banks and oxbow lake fills consequent to neck cutoffs. The sedimentary architecture of these geomorphic units depends on the type and amount of sediment, and controls bank erodibility as the river impinges on them, favoring or contrasting the river migration. The geometry of numerically generated planforms obtained for different scenarios of floodplain heterogeneity is compared to that of natural meandering paths. Half meander metrics and spatial distribution of channel curvatures are used to disclose the complexity embedded in meandering geometry. Fourier Analysis, Principal Component Analysis, Singular Spectrum Analysis and Multivariate Singular Spectrum Analysis are used to emphasize the subtle but crucial differences which may emerge between apparently similar configurations. A closer similarity between observed and simulated planforms is attained when fully coupling flow and sediment dynamics (fully-coupled models) and when considering self-formed heterogeneities that are less erodible than the surrounding floodplain.
A preliminary analysis of quantifying computer security vulnerability data in "the wild"
NASA Astrophysics Data System (ADS)
Farris, Katheryn A.; McNamara, Sean R.; Goldstein, Adam; Cybenko, George
2016-05-01
A system of computers, networks and software has some level of vulnerability exposure that puts it at risk to criminal hackers. Presently, most vulnerability research uses data from software vendors, and the National Vulnerability Database (NVD). We propose an alternative path forward through grounding our analysis in data from the operational information security community, i.e. vulnerability data from "the wild". In this paper, we propose a vulnerability data parsing algorithm and an in-depth univariate and multivariate analysis of the vulnerability arrival and deletion process (also referred to as the vulnerability birth-death process). We find that vulnerability arrivals are best characterized by the log-normal distribution and vulnerability deletions are best characterized by the exponential distribution. These distributions can serve as prior probabilities for future Bayesian analysis. We also find that over 22% of the deleted vulnerability data have a rate of zero, and that the arrival vulnerability data is always greater than zero. Finally, we quantify and visualize the dependencies between vulnerability arrivals and deletions through a bivariate scatterplot and statistical observations.
Task complexity, student perceptions of vocabulary learning in EFL, and task performance.
Wu, Xiaoli; Lowyck, Joost; Sercu, Lies; Elen, Jan
2013-03-01
The study deepened our understanding of how students' self-efficacy beliefs contribute to the context of teaching English as a foreign language in the framework of cognitive mediational paradigm at a fine-tuned task-specific level. The aim was to examine the relationship among task complexity, self-efficacy beliefs, domain-related prior knowledge, learning strategy use, and task performance as they were applied to English vocabulary learning from reading tasks. Participants were 120 second-year university students (mean age 21) from a Chinese university. This experiment had two conditions (simple/complex). A vocabulary level test was first conducted to measure participants' prior knowledge of English vocabulary. Participants were then randomly assigned to one of the learning tasks. Participants were administered task booklets together with the self-efficacy scales, measures of learning strategy use, and post-tests. Data obtained were submitted to multivariate analysis of variance (MANOVA) and path analysis. Results from the MANOVA model showed a significant effect of vocabulary level on self-efficacy beliefs, learning strategy use, and task performance. Task complexity showed no significant effect; however, an interaction effect between vocabulary level and task complexity emerged. Results from the path analysis showed self-efficacy beliefs had an indirect effect on performance. Our results highlighted the mediating role of self-efficacy beliefs and learning strategy use. Our findings indicate that students' prior knowledge plays a crucial role on both self-efficacy beliefs and task performance, and the predictive power of self-efficacy on task performance may lie in its association with learning strategy use. © 2011 The British Psychological Society.
Tada, Akio
2017-01-01
Background: Nursing students in many countries have been reported to experience high levels of stress and psychological distress. Health habits could potentially mediate the association between coping styles and psychological status. The purpose of this study was to evaluate the mediation effect of health habits in the relationship between stress coping styles and psychological distress in Japanese nursing students. Methods: A total of 181 nursing students completed anonymous self-reported questionnaires comprised of the General Health Questionnaire-12 (GHQ-12), the Brief Coping Orientation questionnaire, and an additional questionnaire on health behavior. A mediation analysis using path analysis with bootstrapping was used for data analysis. Results: Multivariate linear regression analysis showed that psychological distress was significantly and positively associated with “Avoidance coping” (β = 0.39, p < 0.001), and was negatively associated with “Active coping” (β = −0.30, p < 0.001), “exercise habit” (β = −0.25, p = 0.001), and “sleeping” (β = −0.24, p = 0.002). In the path model, “Active coping” and “Avoidance coping” had significant or marginally significant associations with “exercise habits” (active: β = 0.19, p = 0.008, avoidance: β = −0.12, p = 0.088), and psychological distress (active: β = −0.25, p < 0.001, avoidance: β = 0.363, p < 0.001). However, these coping style variables did not have a significant association with “sleep”. In general, the size of the correlations was below 0.4. Conclusions: Exercise habits mediated the relationship between coping styles and psychological distress to a greater extent than sleep. The present study suggests the possibility that complex interactions between health habits and coping styles may influence the psychological status of nursing students. PMID:29165395
A path-level exact parallelization strategy for sequential simulation
NASA Astrophysics Data System (ADS)
Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.
2018-01-01
Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
Cognitive and affective mechanisms of pain and fatigue in multiple sclerosis.
Arewasikporn, Anne; Turner, Aaron P; Alschuler, Kevin N; Hughes, Abbey J; Ehde, Dawn M
2018-06-01
To examine the extent to which pain catastrophizing, fatigue catastrophizing, positive affect, and negative affect simultaneously mediated the associations between common symptoms of multiple sclerosis (MS; i.e., pain, fatigue) and impact on daily life, depressive symptoms, and resilience. Participants were community-dwelling adults with MS (N = 163) reporting chronic pain, fatigue, and/or moderate depressive symptoms. Multiple mediation path analysis was used to model potential mediators of pain and fatigue separately, using baseline data from a randomized controlled trial comparing two symptom self-management interventions. In the pain model, pain catastrophizing was a mediator of pain intensity with pain interference and depression. Negative affect was a mediator of pain intensity with depression and resilience. In the fatigue model, fatigue catastrophizing was a mediator of fatigue intensity with fatigue impact and depression. Positive affect was a mediator of fatigue intensity with depression and resilience. These findings provide preliminary support for the presence of differential effects of cognitive-affective mediators and suggest potential targets for psychological interventions based on an individual's clinical presentation. The differential mediating effects also support the inclusion of both positive and negative aspects of psychological health in models of pain and fatigue, which would not be otherwise apparent if negative constructs were examined in isolation. To our knowledge, this is the first study to utilize a multivariate path analysis approach to examine cognitive-affective mediators of pain and fatigue in MS, while also examining positive and negative constructs concurrently. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Garland, Eric L; Roberts-Lewis, Amelia; Kelley, Karen; Tronnier, Christine; Hanley, Adam
2014-04-01
The present study aimed to identify affective, cognitive, and conative mediators of the relation between trait mindfulness and craving in data culled from an urban sample of 165 persons (in abstinence verified by urinalysis) entering into residential treatment for substance use disorders between 2010 and 2012. Multivariate path analysis adjusting for age, gender, education level, employment status, and substance use frequency indicated that the association between the total trait mindfulness score on the Five Facet Mindfulness Questionnaire and alcohol/drug craving was statistically mediated by negative affect (measured by the PANAS, beta = -.13) and cognitive reappraisal (measured by the CERQ, beta = -.08), but not by readiness to change (measured by the URICA, beta = -.001). Implications for mindfulness-oriented treatment of persons with substance use disorders are discussed. The study's limitations are noted.
Chang, Pao-Erh Paul; Yang, Jen-Chih Rena; Den, Walter; Wu, Chang-Fu
2014-09-01
Emissions of volatile organic compounds (VOCs) are most frequent environmental nuisance complaints in urban areas, especially where industrial districts are nearby. Unfortunately, identifying the responsible emission sources of VOCs is essentially a difficult task. In this study, we proposed a dynamic approach to gradually confine the location of potential VOC emission sources in an industrial complex, by combining multi-path open-path Fourier transform infrared spectrometry (OP-FTIR) measurement and the statistical method of principal component analysis (PCA). Close-cell FTIR was further used to verify the VOC emission source by measuring emitted VOCs from selected exhaust stacks at factories in the confined areas. Multiple open-path monitoring lines were deployed during a 3-month monitoring campaign in a complex industrial district. The emission patterns were identified and locations of emissions were confined by the wind data collected simultaneously. N,N-Dimethyl formamide (DMF), 2-butanone, toluene, and ethyl acetate with mean concentrations of 80.0 ± 1.8, 34.5 ± 0.8, 103.7 ± 2.8, and 26.6 ± 0.7 ppbv, respectively, were identified as the major VOC mixture at all times of the day around the receptor site. As the toxic air pollutant, the concentrations of DMF in air samples were found exceeding the ambient standard despite the path-average effect of OP-FTIR upon concentration levels. The PCA data identified three major emission sources, including PU coating, chemical packaging, and lithographic printing industries. Applying instrumental measurement and statistical modeling, this study has established a systematic approach for locating emission sources. Statistical modeling (PCA) plays an important role in reducing dimensionality of a large measured dataset and identifying underlying emission sources. Instrumental measurement, however, helps verify the outcomes of the statistical modeling. The field study has demonstrated the feasibility of using multi-path OP-FTIR measurement. The wind data incorporating with the statistical modeling (PCA) may successfully identify the major emission source in a complex industrial district.
Applying image quality in cell phone cameras: lens distortion
NASA Astrophysics Data System (ADS)
Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje
2009-01-01
This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways
Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-01-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes. PMID:27832067
MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.
Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George
2016-11-01
Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.
Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng
2013-05-01
Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.
Wei, Hsi-Sheng; Williams, James Herbert
2004-10-01
Peer victimization is a common occurrence in school settings. This study investigated the relationship between peer victimization and school adjustment in a sample of 1,022 sixth-grade students. Measures used in this study include peer victimization, perceived peer non-support, school attachment, inattention problems, and academic achievement. Multivariate path analyses were conducted to test direct and mediation effects in the over-all model and to explore gender differences. The results provided support for the hypothesized model indicating that the relationship between peer victimization and school attachment is mediated by perceived peer non-support, and that school attachment is related to inattentive school behaviors and poor academic achievement. Paths indicated invariance across models for gender. Prevention and intervention implications of these findings are discussed.
Valikhani, Ahmad; Goodarzi, Mohammad Ali
2017-08-01
Although previous studies have shown that people applying for cosmetic surgery experience high-intensity psychological distress, important variables that function as protective factors have rarely been the subject of study in this population. Therefore, this study aims to investigate the role of low and high self-knowledge in experiencing psychological distress and contingencies of self-worth to appearance and approval from others and to identify the mediatory role of the integrative self-knowledge in patients seeking cosmetic surgery. Eighty-eight patients seeking cosmetic surgery were selected and completed the contingencies of self-worth and integrative self-knowledge scales, as well as the depression, anxiety and stress scale. Data were analyzed using multivariate analysis of variance (MANOVA) and path analysis using 5000 bootstrap resampling. The results of MANOVA showed that patients seeking cosmetic surgery with high self-knowledge had lower levels of depression, anxiety and stress compared to patients with low self-knowledge. They also gained lower scores in contingencies of self-worth to appearance and approval from others. The results of path analysis indicated that self-knowledge is a complete mediator in the relationship between contingencies of self-worth to appearance and approval from others and psychological distress. Based on the results of this study, it can be concluded that self-knowledge as a protective factor plays a major role in relation to the psychological distress experienced by the patients seeking cosmetic surgery. In fact, by increasing self-knowledge among this group of patients, their psychological distress can be decreased. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Heritability of somatotype components: a multivariate analysis.
Peeters, M W; Thomis, M A; Loos, R J F; Derom, C A; Fagard, R; Claessens, A L; Vlietinck, R F; Beunen, G P
2007-08-01
To study the genetic and environmental determination of variation in Heath-Carter somatotype (ST) components (endomorphy, mesomorphy and ectomorphy). Multivariate path analysis on twin data. Eight hundred and three members of 424 adult Flemish twin pairs (18-34 years of age). The results indicate the significance of sex differences and the significance of the covariation between the three ST components. After age-regression, variation of the population in ST components and their covariation is explained by additive genetic sources of variance (A), shared (familial) environment (C) and unique environment (E). In men, additive genetic sources of variance explain 28.0% (CI 8.7-50.8%), 86.3% (71.6-90.2%) and 66.5% (37.4-85.1%) for endomorphy, mesomorphy and ectomorphy, respectively. For women, corresponding values are 32.3% (8.9-55.6%), 82.0% (67.7-87.7%) and 70.1% (48.9-81.8%). For all components in men and women, more than 70% of the total variation was explained by sources of variance shared between the three components, emphasising the importance of analysing the ST in a multivariate way. The findings suggest that the high heritabilities for mesomorphy and ectomorphy reported in earlier twin studies in adolescence are maintained in adulthood. For endomorphy, which represents a relative measure of subcutaneous adipose tissue, however, the results suggest heritability may be considerably lower than most values reported in earlier studies on adolescent twins. The heritability is also lower than values reported for, for example, body mass index (BMI), which next to the weight of organs and adipose tissue also includes muscle and bone tissue. Considering the differences in heritability between musculoskeletal robustness (mesomorphy) and subcutaneous adipose tissue (endomorphy) it may be questioned whether studying the genetics of BMI will eventually lead to a better understanding of the genetics of fatness, obesity and overweight.
NASA Astrophysics Data System (ADS)
Marhadi, Kun Saptohartyadi
Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.
Meyer, Linda
2002-03-01
This study examined the antecedents and determinants predictive of whether nursing students (N = 92) intend to ask for assignments to perform nursing behaviors after using a database to record essential clinical behaviors. The results of applying the theory of planned behavior (TPB) to behavioral intention using multivariant path analysis suggested that the endogenous variables, attitude and subjective norms, had a significant effect on the intention to ask for assignments to perform nursing behaviors. In addition, it was primarily through attitudes and subjective norms that the respective antecedents or exogenous variables, behavioral beliefs and normative beliefs, affected the intention to ask for assignments to perform nursing behaviors. The lack of direct influence of perceived behavioral control on intention and the direct negative impact of control belief on intention were contrary to expectations, given the tenets of the TPB.
The development of comparative bias index
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-08-01
Structural Equation Modeling (SEM) is a second generation statistical analysis techniques developed for analyzing the inter-relationships among multiple variables in a model simultaneously. There are two most common used methods in SEM namely Covariance-Based Structural Equation Modeling (CB-SEM) and Partial Least Square Path Modeling (PLS-PM). There have been continuous debates among researchers in the use of PLS-PM over CB-SEM. While there is few studies were conducted to test the performance of CB-SEM and PLS-PM bias in estimating simulation data. This study intends to patch this problem by a) developing the Comparative Bias Index and b) testing the performance of CB-SEM and PLS-PM using developed index. Based on balanced experimental design, two multivariate normal simulation data with of distinct specifications of size 50, 100, 200 and 500 are generated and analyzed using CB-SEM and PLS-PM.
The Grand Tour via Geodesic Interpolation of 2-frames
NASA Technical Reports Server (NTRS)
Asimov, Daniel; Buja, Andreas
1994-01-01
Grand tours are a class of methods for visualizing multivariate data, or any finite set of points in n-space. The idea is to create an animation of data projections by moving a 2-dimensional projection plane through n-space. The path of planes used in the animation is chosen so that it becomes dense, that is, it comes arbitrarily close to any plane. One of the original inspirations for the grand tour was the experience of trying to comprehend an abstract sculpture in a museum. One tends to walk around the sculpture, viewing it from many different angles. A useful class of grand tours is based on the idea of continuously interpolating an infinite sequence of randomly chosen planes. Visiting randomly (more precisely: uniformly) distributed planes guarantees denseness of the interpolating path. In computer implementations, 2-dimensional orthogonal projections are specified by two 1-dimensional projections which map to the horizontal and vertical screen dimensions, respectively. Hence, a grand tour is specified by a path of pairs of orthonormal projection vectors. This paper describes an interpolation scheme for smoothly connecting two pairs of orthonormal vectors, and thus for constructing interpolating grand tours. The scheme is optimal in the sense that connecting paths are geodesics in a natural Riemannian geometry.
Multivariate analysis in thoracic research.
Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego
2015-03-01
Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.
Correlative and multivariate analysis of increased radon concentration in underground laboratory.
Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena
2014-11-01
The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
ERIC Educational Resources Information Center
Grochowalski, Joseph H.
2015-01-01
Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…
ERIC Educational Resources Information Center
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
Effect of Emphysema on CT Scan Measures of Airway Dimensions in Smokers
Han, MeiLan K.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kim, Victor; Dransfield, Mark T.; Curran-Everett, Douglas; Schroeder, Joyce D.; Lynch, David A.; Tschirren, Juerg; Silverman, Edwin K.; Washko, George R.
2013-01-01
Background: In CT scans of smokers with COPD, the subsegmental airway wall area percent (WA%) is greater and more strongly correlated with FEV1 % predicted than WA% obtained in the segmental airways. Because emphysema is linked to loss of airway tethering and may limit airway expansion, increases in WA% may be related to emphysema and not solely to remodeling. We aimed to first determine whether the stronger association of subsegmental vs segmental WA% with FEV1 % predicted is mitigated by emphysema and, second, to assess the relationships among emphysema, WA%, and total bronchial area (TBA). Methods: We analyzed CT scan segmental and subsegmental WA% (WA% = 100 × wall area/TBA) of six bronchial paths and corresponding lobar emphysema, lung function, and clinical data in 983 smokers with COPD. Results: Compared with segmental WA%, the subsegmental WA% had a greater effect on FEV1% predicted (−0.8% to −1.7% vs −1.9% to −2.6% per 1-unit increase in WA%, respectively; P < .05 for most bronchial paths). After adjusting for emphysema, the association between subsegmental WA% and FEV1 % predicted was weakened in two bronchial paths. Increases in WA% between bronchial segments correlated directly with emphysema in all bronchial paths (P < .05). In multivariate regression models, emphysema was directly related to subsegmental WA% in most bronchial paths and inversely related to subsegmental TBA in all bronchial paths. Conclusion: The greater effect of subsegmental WA% on airflow obstruction is mitigated by emphysema. Part of the emphysema effect might be due to loss of airway tethering, leading to a reduction in TBA and an increase in WA%. Trial registry: ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov PMID:23460155
NASA Astrophysics Data System (ADS)
Mashayekhi, Mohammad Jalali; Behdinan, Kamran
2017-10-01
The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.
Interactive cutting path analysis programs
NASA Technical Reports Server (NTRS)
Weiner, J. M.; Williams, D. S.; Colley, S. R.
1975-01-01
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.
Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.
Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili
2016-02-01
The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment.
Multivariate meta-analysis: potential and promise.
Jackson, Dan; Riley, Richard; White, Ian R
2011-09-10
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.
Butaciu, Sinziana; Senila, Marin; Sarbu, Costel; Ponta, Michaela; Tanaselia, Claudiu; Cadar, Oana; Roman, Marius; Radu, Emil; Sima, Mihaela; Frentiu, Tiberiu
2017-04-01
The study proposes a combined model based on diagrams (Gibbs, Piper, Stuyfzand Hydrogeochemical Classification System) and unsupervised statistical approaches (Cluster Analysis, Principal Component Analysis, Fuzzy Principal Component Analysis, Fuzzy Hierarchical Cross-Clustering) to describe natural enrichment of inorganic arsenic and co-occurring species in groundwater in the Banat Plain, southwestern Romania. Speciation of inorganic As (arsenite, arsenate), ion concentrations (Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - , Cl - , F - , SO 4 2- , PO 4 3- , NO 3 - ), pH, redox potential, conductivity and total dissolved substances were performed. Classical diagrams provided the hydrochemical characterization, while statistical approaches were helpful to establish (i) the mechanism of naturally occurring of As and F - species and the anthropogenic one for NO 3 - , SO 4 2- , PO 4 3- and K + and (ii) classification of groundwater based on content of arsenic species. The HCO 3 - type of local groundwater and alkaline pH (8.31-8.49) were found to be responsible for the enrichment of arsenic species and occurrence of F - but by different paths. The PO 4 3- -AsO 4 3- ion exchange, water-rock interaction (silicates hydrolysis and desorption from clay) were associated to arsenate enrichment in the oxidizing aquifer. Fuzzy Hierarchical Cross-Clustering was the strongest tool for the rapid simultaneous classification of groundwaters as a function of arsenic content and hydrogeochemical characteristics. The approach indicated the Na + -F - -pH cluster as marker for groundwater with naturally elevated As and highlighted which parameters need to be monitored. A chemical conceptual model illustrating the natural and anthropogenic paths and enrichment of As and co-occurring species in the local groundwater supported by mineralogical analysis of rocks was established. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deserno, Marie K; Borsboom, Denny; Begeer, Sander; Geurts, Hilde M
2017-11-01
Given the heterogeneity of autism spectrum disorder, an important limitation of much autism spectrum disorder research is that outcome measures are statistically modeled as separate dependent variables. Often, their multivariate structure is either ignored or treated as a nuisance. This study aims to lift this limitation by applying network analysis to explicate the multivariate pattern of risk and success factors for subjective well-being in autism spectrum disorder. We estimated a network structure for 27 potential factors in 2341 individuals with autism spectrum disorder to assess the centrality of specific life domains and their importance for well-being. The data included both self- and proxy-reported information. We identified social satisfaction and societal contribution as the strongest direct paths to subjective well-being. The results suggest that an important contribution to well-being lies in resources that allow the individual to engage in social relations, which influence well-being directly. Factors most important in determining the network's structure include self-reported IQ, living situation, level of daily activity, and happiness. Number of family members with autism spectrum disorder and openness about one's diagnosis are least important of all factors for subjective well-being. These types of results can serve as a roadmap for interventions directed at improving the well-being of individuals with autism spectrum disorder.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-03-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process
NASA Astrophysics Data System (ADS)
Lapovok, R.; Timokhina, I.; Mester, A.-K.; Weiss, M.; Shekhter, A.
2018-06-01
A study of preferable deformation modes on strain path and strain level in a TWIP steel sheet was performed. Different strain paths were obtained by stretch forming of specimens with various shapes and tensile tests. TEM analysis was performed on samples cut from various locations in the deformed specimens, which had different strain paths and strain levels and the preferable deformation modes were identified. Stresses caused by various strain paths were considered and an analytical analysis performed to identify the preferable deformation modes for the case of single crystal. For a single crystal, in assumption of the absence of lattice rotation, the strain path and the level of accumulated equivalent strain define the preferable deformation mode. For a polycrystalline material, such analytical analysis is not possible due to the large number of grains and, therefore, numerical simulation was employed. For the polycrystalline material, the role of strain path diminishes due to the presence of a large number of grains with random orientations and the effect of accumulated strain becomes dominant. However, at small strains the strain path still defines the level of twinning activity. TEM analysis experimentally confirmed that various deformation modes lead to different deformation strengthening mechanisms.
Social network analysis using k-Path centrality method
NASA Astrophysics Data System (ADS)
Taniarza, Natya; Adiwijaya; Maharani, Warih
2018-03-01
k-Path centrality is deemed as one of the effective methods to be applied in centrality measurement in which the influential node is estimated as the node that is being passed by information path frequently. Regarding this, k-Path centrality has been employed in the analysis of this paper specifically by adapting random-algorithm approach in order to: (1) determine the influential user’s ranking in a social media Twitter; and (2) ascertain the influence of parameter α in the numeration of k-Path centrality. According to the analysis, the findings showed that the method of k-Path centrality with random-algorithm approach can be used to determine user’s ranking which influences in the dissemination of information in Twitter. Furthermore, the findings also showed that parameter α influenced the duration and the ranking results: the less the α value, the longer the duration, yet the ranking results were more stable.
Multivariate Models for Normal and Binary Responses in Intervention Studies
ERIC Educational Resources Information Center
Pituch, Keenan A.; Whittaker, Tiffany A.; Chang, Wanchen
2016-01-01
Use of multivariate analysis (e.g., multivariate analysis of variance) is common when normally distributed outcomes are collected in intervention research. However, when mixed responses--a set of normal and binary outcomes--are collected, standard multivariate analyses are no longer suitable. While mixed responses are often obtained in…
Gilmore, Adam Matthew
2014-01-01
Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling.
Wall, Stephen P; Lee, David C; Frangos, Spiros G; Sethi, Monica; Heyer, Jessica H; Ayoung-Chee, Patricia; DiMaggio, Charles J
2016-01-01
We conducted individual and ecologic analyses of prospectively collected data from 839 injured bicyclists who collided with motorized vehicles and presented to Bellevue Hospital, an urban Level-1 trauma center in New York City, from December 2008 to August 2014. Variables included demographics, scene information, rider behaviors, bicycle route availability, and whether the collision occurred before the road segment was converted to a bicycle route. We used negative binomial modeling to assess the risk of injury occurrence following bicycle path or lane implementation. We dichotomized U.S. National Trauma Data Bank Injury Severity Scores (ISS) into none/mild (0-8) versus moderate, severe, or critical (>8) and used adjusted multivariable logistic regression to model the association of ISS with collision proximity to sharrows (i.e., bicycle lanes designated for sharing with cars), painted bicycle lanes, or physically protected paths. Negative binomial modeling of monthly counts, while adjusting for pedestrian activity, revealed that physically protected paths were associated with 23% fewer injuries. Painted bicycle lanes reduced injury risk by nearly 90% (IDR 0.09, 95% CI 0.02-0.33). Holding all else equal, compared to no bicycle route, a bicycle injury nearby sharrows was nearly twice as likely to be moderate, severe, or critical (adjusted odds ratio 1.94; 95% confidence interval (CI) 0.91-4.15). Painted bicycle lanes and physically protected paths were 1.52 (95% CI 0.85-2.71) and 1.66 (95% CI 0.85-3.22) times as likely to be associated with more than mild injury respectively.
Deconstructing multivariate decoding for the study of brain function.
Hebart, Martin N; Baker, Chris I
2017-08-04
Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.
Childhood Predictors of Teen Dating Violence Victimization
Maas, Carl D.; Fleming, Charles B.; Herrenkohl, Todd I.; Catalano, Richard F.
2009-01-01
Most research on predictors of teen dating violence (TDV) has used cross-sectional data, which weakens predictive modeling and hypothesis testing analyses. This study uses prospective and retrospective longitudinal data on a community sample to examine previously identified predictors of TDV victimization and pathways from childhood risk and protection to TDV victimization. Data are from 941 participants in the Raising Healthy Children project. Bivariate analyses found associations in the expected direction between potential predictors and TDV victimization. For girls, a multivariate path model indicated that higher levels of bonding to parents and social skills protected against TDV victimizations, partly by reducing early adolescent alcohol use. While externalizing and internalizing behaviors in early adolescence were predicted by childhood risk and protective factors for girls, neither uniquely predicted TDV victimization. For boys, there was an indirect path from childhood bonding to parents to TDV victimization through early adolescent externalizing behavior. PMID:20514813
Multivariate meta-analysis: Potential and promise
Jackson, Dan; Riley, Richard; White, Ian R
2011-01-01
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052
Statistical Analysis of the First Passage Path Ensemble of Jump Processes
NASA Astrophysics Data System (ADS)
von Kleist, Max; Schütte, Christof; Zhang, Wei
2018-02-01
The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
Multivariate Longitudinal Analysis with Bivariate Correlation Test
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692
Multivariate Longitudinal Analysis with Bivariate Correlation Test.
Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory
2016-01-01
In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.
MapMaker and PathTracer for tracking carbon in genome-scale metabolic models
Tervo, Christopher J.; Reed, Jennifer L.
2016-01-01
Constraint-based reconstruction and analysis (COBRA) modeling results can be difficult to interpret given the large numbers of reactions in genome-scale models. While paths in metabolic networks can be found, existing methods are not easily combined with constraint-based approaches. To address this limitation, two tools (MapMaker and PathTracer) were developed to find paths (including cycles) between metabolites, where each step transfers carbon from reactant to product. MapMaker predicts carbon transfer maps (CTMs) between metabolites using only information on molecular formulae and reaction stoichiometry, effectively determining which reactants and products share carbon atoms. MapMaker correctly assigned CTMs for over 97% of the 2,251 reactions in an Escherichia coli metabolic model (iJO1366). Using CTMs as inputs, PathTracer finds paths between two metabolites. PathTracer was applied to iJO1366 to investigate the importance of using CTMs and COBRA constraints when enumerating paths, to find active and high flux paths in flux balance analysis (FBA) solutions, to identify paths for putrescine utilization, and to elucidate a potential CO2 fixation pathway in E. coli. These results illustrate how MapMaker and PathTracer can be used in combination with constraint-based models to identify feasible, active, and high flux paths between metabolites. PMID:26771089
Anger expression, partner support, and quality of life in cancer patients.
Julkunen, Juhani; Gustavsson-Lilius, Mila; Hietanen, Päivi
2009-03-01
Family members are the most important source of social support for cancer patients. The determinants of family support, however, are not well understood. In this study, the associations of anger-expression styles of both patients and their partners with patient-perceived partner support and the impact of these variables on long-term health-related quality of life (HRQL) of the patient were examined. The baseline data were collected at the time of diagnosis; a follow-up survey was conducted at 8 months. Questionnaires included the Spielberger AX scale, the Family Support scale, and the RAND-36 Health Survey. The sample comprised 153 patients and their partners. The theoretical model was tested with a path analysis using structural equation modeling, and gender differences were tested using multivariate analysis of covariance. Path analyses indicated that partner support was an important mediator, partly explaining the associations between anger-expression styles and HRQL. As hypothesized, anger control had a positive relationship with perceived partner support, while habitual inhibition of anger (anger-in) showed a negative correlation with partner support. Analyses by gender revealed some clear differences: for the male patients, the wife's high level of anger expression (anger-out) was significantly positively related to patient mental HRQL, whereas for the female patients, their husband's anger-out was negatively correlated with the patient's mental HRQL. In addition, patient's own anger-out had a more pronounced negative effect on HRQL for women as compared to men. The anger-expression styles of both patients and their partners seem to modify the family atmosphere, and together, they are important determinants of the long-term quality of life of the cancer patients. Interventions for couples facing cancer should include a focus on ways of dealing with anger and thereby support dyadic coping with cancer.
Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)
1998-01-01
For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.
Multiple-path model of spectral reflectance of a dyed fabric.
Rogers, Geoffrey; Dalloz, Nicolas; Fournel, Thierry; Hebert, Mathieu
2017-05-01
Experimental results are presented of the spectral reflectance of a dyed fabric as analyzed by a multiple-path model of reflection. The multiple-path model provides simple analytic expressions for reflection and transmission of turbid media by applying the Beer-Lambert law to each path through the medium and summing over all paths, each path weighted by its probability. The path-length probability is determined by a random-walk analysis. The experimental results presented here show excellent agreement with predictions made by the model.
A taxonomy of integral reaction path analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grcar, Joseph F.; Day, Marcus S.; Bell, John B.
2004-12-23
W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examplesmore » illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.« less
Comparative Analysis of English Language Student's School Paths at a Mexico University
ERIC Educational Resources Information Center
Robelo, Octaviano García; Marquez, Jorge Hernández; Pérez, Ileana Casasola
2017-01-01
Seven factors related to academic paths of students of the Bachelor of English Language of a public university in Mexico are investigated. With a non-experimental descriptive design, a Likert scale was applied to evaluate the college students' perception of these factors. A comparative analysis between three types of school paths was performed. It…
ERIC Educational Resources Information Center
Morcol, Goktug; McLaughlin, Gerald W.
1990-01-01
The study proposes using path analysis and residual plotting as methods supporting environmental scanning in strategic planning for higher education institutions. Path models of three levels of independent variables are developed. Dependent variables measuring applications and enrollments at Virginia Polytechnic Institute and State University are…
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
Peacock-Chambers, Elizabeth; Martin, Justin T; Necastro, Kelly A; Cabral, Howard J; Bair-Merritt, Megan
2017-03-01
To: 1) examine sociodemographic factors associated with high parental self-efficacy and perceived control, and 2) determine how self-efficacy and control relate to the home learning environment (HLE), including whether they mediate the relationship between sociodemographic characteristics and HLE, among low-income parents of young children. Cross-sectional survey of English- and Spanish-speaking parents, 18 years of age and older, with children 15 to 36 months old, to assess parental self-efficacy, perceived control, HLE, and sociodemographic characteristics. Bivariate analysis identified sociodemographic predictors of high self-efficacy and control. Separate multivariate linear regression models were used to examine associations between self-efficacy, control, and the HLE. Formal path analysis was used to assess whether self-efficacy and control mediate the relationship between sociodemographic characteristics and HLE. Of 144 participants, 25% were white, 65% were immigrants, and 35% completed the survey in Spanish. US-born subjects, those who completed English surveys, or who had higher educational levels had significantly higher mean self-efficacy and perceived control scores (P < .05). Higher self-efficacy and perceived control were associated with a positive change in HLE score in separate multivariate models (self-efficacy β = .7 [95% confidence interval (CI), 0.5-0.9]; control β = .5 [95% CI, 0.2-0.8]). Self-efficacy acted as a mediator such that low self-efficacy explained part of the association between parental depressive symptoms, immigrant status, and less optimal HLE (P = .04 and < .001, respectively). High parental self-efficacy and perceived control positively influence HLEs of young children. Self-efficacy alone mediates the relationship between parental depressive symptoms, immigrant status, and less optimal early home learning. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Solimun, Fernandes, Adji Achmad Rinaldo; Arisoesilaningsih, Endang
2017-12-01
Research in various fields generally investigates systems and involves latent variables. One method to analyze the model representing the system is path analysis. The data of latent variables measured using questionnaires by applying attitude scale model yields data in the form of score, before analyzed should be transformation so that it becomes data of scale. Path coefficient, is parameter estimator, calculated from scale data using method of successive interval (MSI) and summated rating scale (SRS). In this research will be identifying which data transformation method is better. Path coefficients have smaller varieties are said to be more efficient. The transformation method that produces scaled data and used in path analysis capable of producing path coefficients (parameter estimators) with smaller varieties is said to be better. The result of analysis using real data shows that on the influence of Attitude variable to Intention Entrepreneurship, has relative efficiency (ER) = 1, where it shows that the result of analysis using data transformation of MSI and SRS as efficient. On the other hand, for simulation data, at high correlation between items (0.7-0.9), MSI method is more efficient 1.3 times better than SRS method.
minepath.org: a free interactive pathway analysis web server.
Koumakis, Lefteris; Roussos, Panos; Potamias, George
2017-07-03
( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.
2018-06-01
The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
Logan-Greene, Patricia; Nurius, Paula S.; Hooven, Carole; Thompson, Elaine Adams
2014-01-01
The connections between early maltreatment and later aggression are well established in the literature, however gaps remain in our understanding of developmental processes. This study investigates the cascading life course linkages between victimization experiences from childhood through early adulthood and later aggressive behavior. The diverse, at-risk sample is of particular importance to child and adolescent specialists, as it represents highly vulnerable youth accessible through conventional school settings. In addition to direct pathways from proximal life periods, path analysis revealed significant indirect mediated pathways through which earlier life victimization contributes to aggressive behaviors in later life periods as well as revictimization. Multivariate regressions support theorized cumulative effects of multi-form victimization as well as distinct contributions of victimization domains (emotional, witnessing, physical, property, and sexual) in explaining aggressive behavior. Consistent with theorizing about the developmental impact of early maltreatment, results bolster the importance of interrupting pathways from victimization to revictimization and later aggression. Findings are evaluated in light of implications for early identification and prevention programming. PMID:26190900
Multivariate analysis: A statistical approach for computations
NASA Astrophysics Data System (ADS)
Michu, Sachin; Kaushik, Vandana
2014-10-01
Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.
Multivariate Cluster Analysis.
ERIC Educational Resources Information Center
McRae, Douglas J.
Procedures for grouping students into homogeneous subsets have long interested educational researchers. The research reported in this paper is an investigation of a set of objective grouping procedures based on multivariate analysis considerations. Four multivariate functions that might serve as criteria for adequate grouping are given and…
Multispectral scanner system parameter study and analysis software system description, volume 2
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.
1978-01-01
The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.
An Introduction to Path Analysis
ERIC Educational Resources Information Center
Wolfe, Lee M.
1977-01-01
The analytical procedure of path analysis is described in terms of its use in nonexperimental settings in the social sciences. The description assumes a moderate statistical background on the part of the reader. (JKS)
Bonetti, Jennifer; Quarino, Lawrence
2014-05-01
This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.
Quantifying the impact of between-study heterogeneity in multivariate meta-analyses
Jackson, Dan; White, Ian R; Riley, Richard D
2012-01-01
Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950
Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models
Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.
2014-01-01
Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071
Multivariate analysis of regional differentials of nuptiality in Bangladesh.
Chowdhury, A A; Islam, M A
1981-01-01
The importance of socioeconomics differentials in nuptiality has occupied a very important position in recent demographic research. An effort has been made in this paper to find out the nature and extent of the causal relationship between the dependent variable--nuptiality, and its determinants. Our findings suggest that education may play a vital role in raising mean age at marriage. This may be done by extending free and compulsory mass and primary education throughout the country. It has further been observed that urbanization through economic development is a precondition to increase the literacy rate and hence female labor force participation in the country's economy. Thus proper education will increase the female employment rate which in turn will raise the age at marriage. Equal distribution of population and insurance schemes for childless couples may also indirectly put a positive effect on nuptiality. Finally, this paper provides a guideline for using the path analysis technique in determining the factors causing the changes and the effects of these factors on nuptiality in Bangladesh. However, caution should be made in taking into account the causal ordering of the indices. Different ordering may give different results.
JPL-ANTOPT antenna structure optimization program
NASA Technical Reports Server (NTRS)
Strain, D. M.
1994-01-01
New antenna path-length error and pointing-error structure optimization codes were recently added to the MSC/NASTRAN structural analysis computer program. Path-length and pointing errors are important measured of structure-related antenna performance. The path-length and pointing errors are treated as scalar displacements for statics loading cases. These scalar displacements can be subject to constraint during the optimization process. Path-length and pointing-error calculations supplement the other optimization and sensitivity capabilities of NASTRAN. The analysis and design functions were implemented as 'DMAP ALTERs' to the Design Optimization (SOL 200) Solution Sequence of MSC-NASTRAN, Version 67.5.
Generalized causal mediation and path analysis: Extensions and practical considerations.
Albert, Jeffrey M; Cho, Jang Ik; Liu, Yiying; Nelson, Suchitra
2018-01-01
Causal mediation analysis seeks to decompose the effect of a treatment or exposure among multiple possible paths and provide casually interpretable path-specific effect estimates. Recent advances have extended causal mediation analysis to situations with a sequence of mediators or multiple contemporaneous mediators. However, available methods still have limitations, and computational and other challenges remain. The present paper provides an extended causal mediation and path analysis methodology. The new method, implemented in the new R package, gmediation (described in a companion paper), accommodates both a sequence (two stages) of mediators and multiple mediators at each stage, and allows for multiple types of outcomes following generalized linear models. The methodology can also handle unsaturated models and clustered data. Addressing other practical issues, we provide new guidelines for the choice of a decomposition, and for the choice of a reference group multiplier for the reduction of Monte Carlo error in mediation formula computations. The new method is applied to data from a cohort study to illuminate the contribution of alternative biological and behavioral paths in the effect of socioeconomic status on dental caries in adolescence.
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
Methods for presentation and display of multivariate data
NASA Technical Reports Server (NTRS)
Myers, R. H.
1981-01-01
Methods for the presentation and display of multivariate data are discussed with emphasis placed on the multivariate analysis of variance problems and the Hotelling T(2) solution in the two-sample case. The methods utilize the concepts of stepwise discrimination analysis and the computation of partial correlation coefficients.
A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists
ERIC Educational Resources Information Center
Warne, Russell T.
2014-01-01
Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…
Career Paths in Educational Leadership: Examining Principals' Narratives
ERIC Educational Resources Information Center
Parylo, Oksana; Zepeda, Sally J.; Bengtson, Ed
2012-01-01
This qualitative study analyzes the career path narratives of active principals. Structural narrative analysis was supplemented with sociolinguistic theory and thematic narrative analysis to discern the similarities and differences, as well as the patterns in the language used by participating principals. Thematic analysis found four major themes…
Multiscale Path Metrics for the Analysis of Discrete Geometric Structures
2017-11-30
Report: Multiscale Path Metrics for the Analysis of Discrete Geometric Structures The views, opinions and/or findings contained in this report are those...Analysis of Discrete Geometric Structures Report Term: 0-Other Email: tomasi@cs.duke.edu Distribution Statement: 1-Approved for public release
Statistical Symbolic Execution with Informed Sampling
NASA Technical Reports Server (NTRS)
Filieri, Antonio; Pasareanu, Corina S.; Visser, Willem; Geldenhuys, Jaco
2014-01-01
Symbolic execution techniques have been proposed recently for the probabilistic analysis of programs. These techniques seek to quantify the likelihood of reaching program events of interest, e.g., assert violations. They have many promising applications but have scalability issues due to high computational demand. To address this challenge, we propose a statistical symbolic execution technique that performs Monte Carlo sampling of the symbolic program paths and uses the obtained information for Bayesian estimation and hypothesis testing with respect to the probability of reaching the target events. To speed up the convergence of the statistical analysis, we propose Informed Sampling, an iterative symbolic execution that first explores the paths that have high statistical significance, prunes them from the state space and guides the execution towards less likely paths. The technique combines Bayesian estimation with a partial exact analysis for the pruned paths leading to provably improved convergence of the statistical analysis. We have implemented statistical symbolic execution with in- formed sampling in the Symbolic PathFinder tool. We show experimentally that the informed sampling obtains more precise results and converges faster than a purely statistical analysis and may also be more efficient than an exact symbolic analysis. When the latter does not terminate symbolic execution with informed sampling can give meaningful results under the same time and memory limits.
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer.
Lorenzo, Enery; Camacho-Caceres, Katia; Ropelewski, Alexander J; Rosas, Juan; Ortiz-Mojer, Michael; Perez-Marty, Lynn; Irizarry, Juan; Gonzalez, Valerie; Rodríguez, Jesús A; Cabrera-Rios, Mauricio; Isaza, Clara
2015-06-01
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Analysis of crossing path crashes
DOT National Transportation Integrated Search
2001-07-01
This report defines the problem of crossing path crashes in the United States. This crash type involves one moving vehicle that cuts across the path of another when their initial approach comes from either lateral or opposite directions and they typi...
Multivariate Analysis and Machine Learning in Cerebral Palsy Research
Zhang, Jing
2017-01-01
Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP. PMID:29312134
Multivariate Analysis and Machine Learning in Cerebral Palsy Research.
Zhang, Jing
2017-01-01
Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have been increasingly used in CP research. This paper aims to identify such multivariate studies and provide an overview of this relatively young field. Studies reviewed in this paper have demonstrated that multivariate analytic methods are useful in identification of risk factors, detection of CP, movement assessment for CP prediction, and outcome assessment, and ML approaches have made it possible to automatically identify movement impairments in high-risk infants. In addition, outcome predictors for surgical treatments have been identified by multivariate outcome studies. To make the multivariate and ML approaches useful in clinical settings, further research with large samples is needed to verify and improve these multivariate methods in risk factor identification, CP detection, movement assessment, and outcome evaluation or prediction. As multivariate analysis, ML and data processing technologies advance in the era of Big Data of this century, it is expected that multivariate analysis and ML will play a bigger role in improving the diagnosis and treatment of CP to reduce mortality and morbidity rates, and enhance patient care for children with CP.
Development and Demonstration of an Ada Test Generation System
NASA Technical Reports Server (NTRS)
1996-01-01
In this project we have built a prototype system that performs Feasible Path Analysis on Ada programs: given a description of a set of control flow paths through a procedure, and a predicate at a program point feasible path analysis determines if there is input data which causes execution to flow down some path in the collection reaching the point so that tile predicate is true. Feasible path analysis can be applied to program testing, program slicing, array bounds checking, and other forms of anomaly checking. FPA is central to most applications of program analysis. But, because this problem is formally unsolvable, syntactic-based approximations are used in its place. For example, in dead-code analysis the problem is to determine if there are any input values which cause execution to reach a specified program point. Instead an approximation to this problem is computed: determine whether there is a control flow path from the start of the program to the point. This syntactic approximation is efficiently computable and conservative: if there is no such path the program point is clearly unreachable, but if there is such a path, the analysis is inconclusive, and the code is assumed to be live. Such conservative analysis too often yields unsatisfactory results because the approximation is too weak. As another example, consider data flow analysis. A du-pair is a pair of program points such that the first point is a definition of a variable and the second point a use and for which there exists a definition-free path from the definition to the use. The sharper, semantic definition of a du-pair requires that there be a feasible definition-free path from the definition to the use. A compiler using du-pairs for detecting dead variables may miss optimizations by not considering feasibility. Similarly, a program analyzer computing program slices to merge parallel versions may report conflicts where none exist. In the context of software testing, feasibility analysis plays an important role in identifying testing requirements which are infeasible. This is especially true for data flow testing and modified condition/decision coverage. Our system uses in an essential way symbolic analysis and theorem proving technology, and we believe this work represents one of the few successful uses of a theorem prover working in a completely automatic fashion to solve a problem of practical interest. We believe this work anticipates an important trend away from purely syntactic-based methods for program analysis to semantic methods based on symbolic processing and inference technology. Other results demonstrating the practical use of automatic inference is being reported in hardware verification, although there are significant differences between the hardware work and ours. However, what is common and important is that general purpose theorem provers are being integrated with more special-purpose decision procedures to solve problems in analysis and verification. We are pursuina commercial opportunities for this work, and will use and extend the work in other projects we are engaged in. Ultimately we would like to rework the system to analyze C, C++, or Java as a key step toward commercialization.
Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder
2009-12-01
To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.
1999-01-01
High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.
Fade Analysis of ORCA DATA Beam at NTTR and Pax River
2010-08-01
bit-error-rate (BER) of the data beam on the downlink path. 15 Start Time-PST (Duration) Range Scin Index 1 Rx=5.1cm... Scin Index 2 Rx=13.7cm Scin Index 3 Rx=27.2cm Path Ave Cn2 (m-2/3) Path Ave Inner Scale Path Ave Outer Scale Flight 2 May 16
Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)
ERIC Educational Resources Information Center
Steyn, H. S., Jr.; Ellis, S. M.
2009-01-01
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Dangers in Using Analysis of Covariance Procedures.
ERIC Educational Resources Information Center
Campbell, Kathleen T.
Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…
Performance analysis of CCSDS path service
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.
1989-01-01
A communications service, called Path Service, is currently being developed by the Consultative Committee for Space Data Systems (CCSDS) to provide a mechanism for the efficient transmission of telemetry data from space to ground for complex space missions of the future. This is an important service, due to the large volumes of telemetry data that will be generated during these missions. A preliminary analysis of performance of Path Service is presented with respect to protocol-processing requirements and channel utilization.
Evaluation of Acoustic Propagation Paths into the Human Head
2005-07-25
paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult male head. Finite-element analysis was used to model the...air-borne sound pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database ... database of an adult male head Coupled acoustic-mechanical finite-element analysis (FEA) was used to model the wave propagation through the fluid-solid
Simulating Mission Command for Planning and Analysis
2015-06-01
mission plan. 14. SUBJECT TERMS Mission Planning, CPM , PERT, Simulation, DES, Simkit, Triangle Distribution, Critical Path 15. NUMBER OF...Battalion Task Force CO Company CPM Critical Path Method DES Discrete Event Simulation FA BAT Field Artillery Battalion FEL Future Event List FIST...management tools that can be utilized to find the critical path in military projects. These are the Critical Path Method ( CPM ) and the Program Evaluation and
PathVisio 3: an extendable pathway analysis toolbox.
Kutmon, Martina; van Iersel, Martijn P; Bohler, Anwesha; Kelder, Thomas; Nunes, Nuno; Pico, Alexander R; Evelo, Chris T
2015-02-01
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun
2016-01-01
As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.
Quantifying tight-gas sandstone permeability via critical path analysis
USDA-ARS?s Scientific Manuscript database
Rock permeability has been actively investigated over the past several decades by the geosciences community. However, its accurate estimation still presents significant technical challenges, especially in spatially complex rocks. In this letter, we apply critical path analysis (CPA) to estimate perm...
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-07-01
A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-01-01
Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-05-01
Structural equation modeling (SEM) is the second generation statistical analysis technique developed for analyzing the inter-relationships among multiple variables in a model. Previous studies have shown that there seemed to be at least an implicit agreement about the factors that should drive the choice between covariance-based structural equation modeling (CB-SEM) and partial least square path modeling (PLS-PM). PLS-PM appears to be the preferred method by previous scholars because of its less stringent assumption and the need to avoid the perceived difficulties in CB-SEM. Along with this issue has been the increasing debate among researchers on the use of CB-SEM and PLS-PM in studies. The present study intends to assess the performance of CB-SEM and PLS-PM as a confirmatory study in which the findings will contribute to the body of knowledge of SEM. Maximum likelihood (ML) was chosen as the estimator for CB-SEM and was expected to be more powerful than PLS-PM. Based on the balanced experimental design, the multivariate normal data with specified population parameter and sample sizes were generated using Pro-Active Monte Carlo simulation, and the data were analyzed using AMOS for CB-SEM and SmartPLS for PLS-PM. Comparative Bias Index (CBI), construct relationship, average variance extracted (AVE), composite reliability (CR), and Fornell-Larcker criterion were used to study the consequence of each estimator. The findings conclude that CB-SEM performed notably better than PLS-PM in estimation for large sample size (100 and above), particularly in terms of estimations accuracy and consistency.
Parameter Uncertainty on AGCM-simulated Tropical Cyclones
NASA Astrophysics Data System (ADS)
He, F.
2015-12-01
This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.
Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students
ERIC Educational Resources Information Center
Valero-Mora, Pedro M.; Ledesma, Ruben D.
2011-01-01
This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…
ERIC Educational Resources Information Center
Anderson, Paul; Griego, Orlando V.; Stevens, Roxanne Helm
2010-01-01
Students at a private university in southern California took part in a study focusing on high level motivation and goal commitment. Using path analysis, this study mapped out two-paths. The first path to motivation and, therefore, goal commitment was through self-efficacy. The second path to goal commitment required a more supportive course.…
A power analysis for multivariate tests of temporal trend in species composition.
Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel
2011-10-01
Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.
Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana
2013-01-01
The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030
Multivariate meta-analysis for non-linear and other multi-parameter associations
Gasparrini, A; Armstrong, B; Kenward, M G
2012-01-01
In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043
Time-Domain Pure-state Polarization Analysis of Surface Waves Traversing California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Walter, W R; Lay, T
A time-domain pure-state polarization analysis method is used to characterize surface waves traversing California parallel to the plate boundary. The method is applied to data recorded at four broadband stations in California from twenty-six large, shallow earthquakes which occurred since 1988, yielding polarization parameters such as the ellipticity, Euler angles, instantaneous periods, and wave incident azimuths. The earthquakes are located along the circum-Pacific margin and the ray paths cluster into two groups, with great-circle paths connecting stations MHC and PAS or CMB and GSC. The first path (MHC-PAS) is in the vicinity of the San Andreas Fault System (SAFS), andmore » the second (CMB-GSC) traverses the Sierra Nevada Batholith parallel to and east of the SAFS. Both Rayleigh and Love wave data show refractions due to lateral velocity heterogeneities under the path, indicating that accurate phase velocity and attenuation analysis requires array measurements. The Rayleigh waves are strongly affected by low velocity anomalies beneath Central California, with ray paths bending eastward as waves travel toward the south, while Love waves are less affected, providing observables to constrain the depth extent of the anomalies. Strong lateral gradients in the lithospheric structure between the continent and the ocean are the likely cause of the path deflections.« less
The Potential of Multivariate Analysis in Assessing Students' Attitude to Curriculum Subjects
ERIC Educational Resources Information Center
Gaotlhobogwe, Michael; Laugharne, Janet; Durance, Isabelle
2011-01-01
Background: Understanding student attitudes to curriculum subjects is central to providing evidence-based options to policy makers in education. Purpose: We illustrate how quantitative approaches used in the social sciences and based on multivariate analysis (categorical Principal Components Analysis, Clustering Analysis and General Linear…
Two-sample tests and one-way MANOVA for multivariate biomarker data with nondetects.
Thulin, M
2016-09-10
Testing whether the mean vector of a multivariate set of biomarkers differs between several populations is an increasingly common problem in medical research. Biomarker data is often left censored because some measurements fall below the laboratory's detection limit. We investigate how such censoring affects multivariate two-sample and one-way multivariate analysis of variance tests. Type I error rates, power and robustness to increasing censoring are studied, under both normality and non-normality. Parametric tests are found to perform better than non-parametric alternatives, indicating that the current recommendations for analysis of censored multivariate data may have to be revised. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A non-iterative extension of the multivariate random effects meta-analysis.
Makambi, Kepher H; Seung, Hyunuk
2015-01-01
Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.
New Insights into Signed Path Coefficient Granger Causality Analysis.
Zhang, Jian; Li, Chong; Jiang, Tianzi
2016-01-01
Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
A refined method for multivariate meta-analysis and meta-regression.
Jackson, Daniel; Riley, Richard D
2014-02-20
Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.
DiversePathsJ: diverse shortest paths for bioimage analysis.
Uhlmann, Virginie; Haubold, Carsten; Hamprecht, Fred A; Unser, Michael
2018-02-01
We introduce a formulation for the general task of finding diverse shortest paths between two end-points. Our approach is not linked to a specific biological problem and can be applied to a large variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints imposing diversity between solutions. The software allows obtaining a collection of diverse shortest paths under some user-defined constraints through a convenient and user-friendly interface. It can be used alone or be integrated into larger image analysis pipelines. http://bigwww.epfl.ch/algorithms/diversepathsj. michael.unser@epfl.ch or fred.hamprecht@iwr.uni-heidelberg.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Efficient computation paths for the systematic analysis of sensitivities
NASA Astrophysics Data System (ADS)
Greppi, Paolo; Arato, Elisabetta
2013-01-01
A systematic sensitivity analysis requires computing the model on all points of a multi-dimensional grid covering the domain of interest, defined by the ranges of variability of the inputs. The issues to efficiently perform such analyses on algebraic models are handling solution failures within and close to the feasible region and minimizing the total iteration count. Scanning the domain in the obvious order is sub-optimal in terms of total iterations and is likely to cause many solution failures. The problem of choosing a better order can be translated geometrically into finding Hamiltonian paths on certain grid graphs. This work proposes two paths, one based on a mixed-radix Gray code and the other, a quasi-spiral path, produced by a novel heuristic algorithm. Some simple, easy-to-visualize examples are presented, followed by performance results for the quasi-spiral algorithm and the practical application of the different paths in a process simulation tool.
Timm, Tina M; Keiley, Margaret K
2011-01-01
This article explores the relations among differentiation of self, adult attachment, sexual communication, sexual satisfaction, and marital satisfaction, in a path analysis model. In a sample of 205 married adults, the path analysis results indicated that (a) differentiation of self had no direct effect on marital or sexual satisfaction, although it was significantly related to sexual communication; (b) adult attachment had a direct effect on marital satisfaction, but not on sexual satisfaction; (c) sexual communication is a mediating variable; (d) sexual communication was positively related to sexual satisfaction and marital satisfaction; and (e) no gender differences existed in the model.
Nam, Julia EunJu; Mueller, Klaus
2013-02-01
Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.
Sobel, E.; Lange, K.
1996-01-01
The introduction of stochastic methods in pedigree analysis has enabled geneticists to tackle computations intractable by standard deterministic methods. Until now these stochastic techniques have worked by running a Markov chain on the set of genetic descent states of a pedigree. Each descent state specifies the paths of gene flow in the pedigree and the founder alleles dropped down each path. The current paper follows up on a suggestion by Elizabeth Thompson that genetic descent graphs offer a more appropriate space for executing a Markov chain. A descent graph specifies the paths of gene flow but not the particular founder alleles traveling down the paths. This paper explores algorithms for implementing Thompson's suggestion for codominant markers in the context of automatic haplotyping, estimating location scores, and computing gene-clustering statistics for robust linkage analysis. Realistic numerical examples demonstrate the feasibility of the algorithms. PMID:8651310
Multivariate missing data in hydrology - Review and applications
NASA Astrophysics Data System (ADS)
Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.
2017-12-01
Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.
Yanashima, Ryoji; Kitagawa, Noriyuki; Matsubara, Yoshiya; Weatheritt, Robert; Oka, Kotaro; Kikuchi, Shinichi; Tomita, Masaru; Ishizaki, Shun
2009-01-01
The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.
1993-06-18
the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991
Theoretical analysis for scaling law of thermal blooming based on optical phase deference
NASA Astrophysics Data System (ADS)
Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie
2016-10-01
In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.
Cao, Miao; He, Yong; Dai, Zhengjia; Liao, Xuhong; Jeon, Tina; Ouyang, Minhui; Chalak, Lina; Bi, Yanchao; Rollins, Nancy; Dong, Qi; Huang, Hao
2017-03-01
Human brain functional networks are topologically organized with nontrivial connectivity characteristics such as small-worldness and densely linked hubs to support highly segregated and integrated information processing. However, how they emerge and change at very early developmental phases remains poorly understood. Here, we used resting-state functional MRI and voxel-based graph theory analysis to systematically investigate the topological organization of whole-brain networks in 40 infants aged around 31 to 42 postmenstrual weeks. The functional connectivity strength and heterogeneity increased significantly in primary motor, somatosensory, visual, and auditory regions, but much less in high-order default-mode and executive-control regions. The hub and rich-club structures in primary regions were already present at around 31 postmenstrual weeks and exhibited remarkable expansions with age, accompanied by increased local clustering and shortest path length, indicating a transition from a relatively random to a more organized configuration. Moreover, multivariate pattern analysis using support vector regression revealed that individual brain maturity of preterm babies could be predicted by the network connectivity patterns. Collectively, we highlighted a gradually enhanced functional network segregation manner in the third trimester, which is primarily driven by the rapid increases of functional connectivity of the primary regions, providing crucial insights into the topological development patterns prior to birth. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Multivariate analysis for scanning tunneling spectroscopy data
NASA Astrophysics Data System (ADS)
Yamanishi, Junsuke; Iwase, Shigeru; Ishida, Nobuyuki; Fujita, Daisuke
2018-01-01
We applied principal component analysis (PCA) to two-dimensional tunneling spectroscopy (2DTS) data obtained on a Si(111)-(7 × 7) surface to explore the effectiveness of multivariate analysis for interpreting 2DTS data. We demonstrated that several components that originated mainly from specific atoms at the Si(111)-(7 × 7) surface can be extracted by PCA. Furthermore, we showed that hidden components in the tunneling spectra can be decomposed (peak separation), which is difficult to achieve with normal 2DTS analysis without the support of theoretical calculations. Our analysis showed that multivariate analysis can be an additional powerful way to analyze 2DTS data and extract hidden information from a large amount of spectroscopic data.
Fuchs, Lynn S.; Gilbert, Jennifer K.; Fuchs, Douglas; Seethaler, Pamela M.; Martin, BrittanyLee N.
2018-01-01
This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory, and foundational skill (word identification, arithmetic) and (b) year-end WP solving, WP-language processing (understanding WP statements, without calculation demands), and calculations. Multivariate, multilevel path analysis, accounting for classroom and school effects, indicated that TC was a significant and comparably strong predictor of all outcomes. Start-of-year language was a significantly stronger predictor of both year-end WP outcomes than of calculations, whereas start-of-year arithmetic was a significantly stronger predictor of calculations than of either WP measure. Implications are discussed in terms of WP solving as a form of TC and a theoretically coordinated approach, focused on language, for addressing TC and WP-solving instruction. PMID:29643723
Neuroanatomical and Cognitive Mediators of Age-Related Differences in Episodic Memory
Head, Denise; Rodrigue, Karen M.; Kennedy, Kristen M.; Raz, Naftali
2009-01-01
Aging is associated with declines in episodic memory. In this study, the authors used a path analysis framework to explore the mediating role of differences in brain structure, executive functions, and processing speed in age-related differences in episodic memory. Measures of regional brain volume (prefrontal gray and white matter, caudate, hippocampus, visual cortex), executive functions (working memory, inhibitory control, task switching, temporal processing), processing speed, and episodic memory were obtained in a sample of young and older adults. As expected, age was linked to reduction in regional brain volumes and cognitive performance. Moreover, neural and cognitive factors completely mediated age differences in episodic memory. Whereas hippocampal shrinkage directly affected episodic memory, prefrontal volumetric reductions influenced episodic memory via limitations in working memory and inhibitory control. Age-related slowing predicted reduced efficiency in temporal processing, working memory, and inhibitory control. Lastly, poorer temporal processing directly affected episodic memory. No direct effects of age on episodic memory remained once these factors were taken into account. These analyses highlight the value of a multivariate approach with the understanding of complex relationships in cognitive and brain aging. PMID:18590361
Immigrants' initial steps in Germany and their later economic success.
Kogan, Irena; Weißmann, Markus
2013-09-01
In line with the emerging research that acknowledges the importance of the process character of immigrants' labour market integration, this paper examines the existence of path dependencies of early employment trajectories on later labour market outcomes. Theoretically we are interested in establishing whether career trajectories provide a distinct signal, used by both employers and employees: a signal that operates apart and beyond the accumulation of host-country relevant resources, especially, host-country labour market experience or training. The analyses are performed with the help of a unique dataset comprised of recent immigrants from the former Soviet Union in Germany. Sequence analysis techniques and multivariate regressions are applied. Results show that starting in higher-status employment leaves a distinguishable imprint on immigrants' later occupational standings, even after the returns to the skills associated with early trajectories are taken into account. At the same time, initial career trajectories do not have any direct effect on wages, apart from the pay-off to relevant skills acquired while pursuing these careers. The findings are discussed in concurrence with the human capital and signalling theories. Copyright © 2013 Elsevier Ltd. All rights reserved.
Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria.
Belkhiri, Lazhar; Mouni, Lotfi; Tiri, Ammar
2012-02-01
Hydrochemical, multivariate statistical, and inverse geochemical modeling techniques were used to investigate the hydrochemical evolution within the Ain Azel aquifer, Algeria. Cluster analysis based on major ion contents defined 3 main chemical water types, reflecting different hydrochemical processes. The first group water, group 1, has low salinity (mean EC = 735 μS/cm). The second group waters are classified as Cl-HCO(3)-alkaline earth type. The third group is made up of water samples, the cation composition of which is dominated by Ca and Mg with anion composition varying from dominantly Cl to dominantly HCO(3) plus SO(4). The varifactors obtained from R-mode FA indicate that the parameters responsible for groundwater quality variations are mainly related to the presence and dissolution of some carbonate, silicate, and evaporite minerals in the aquifer. Inverse geochemical modeling along groundwater flow paths indicates the dominant processes are the consumption of CO(2), the dissolution of dolomite, gypsum, and halite, along with the precipitation of calcite, Ca-montmorillonite, illite, kaolinite, and quartz. © Springer Science+Business Media B.V. 2011
Multivariate Analysis of Schools and Educational Policy.
ERIC Educational Resources Information Center
Kiesling, Herbert J.
This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…
TabPath: interactive tables for metabolic pathway analysis.
Moraes, Lauro Ângelo Gonçalves de; Felestrino, Érica Barbosa; Assis, Renata de Almeida Barbosa; Matos, Diogo; Lima, Joubert de Castro; Lima, Leandro de Araújo; Almeida, Nalvo Franco; Setubal, João Carlos; Garcia, Camila Carrião Machado; Moreira, Leandro Marcio
2018-03-15
Information about metabolic pathways in a comparative context is one of the most powerful tool to help the understanding of genome-based differences in phenotypes among organisms. Although several platforms exist that provide a wealth of information on metabolic pathways of diverse organisms, the comparison among organisms using metabolic pathways is still a difficult task. We present TabPath (Tables for Metabolic Pathway), a web-based tool to facilitate comparison of metabolic pathways in genomes based on KEGG. From a selection of pathways and genomes of interest on the menu, TabPath generates user-friendly tables that facilitate analysis of variations in metabolism among the selected organisms. TabPath is available at http://200.239.132.160:8686. lmmorei@gmail.com.
Path Analysis Tests of Theoretical Models of Children's Memory Performance
ERIC Educational Resources Information Center
DeMarie, Darlene; Miller, Patricia H.; Ferron, John; Cunningham, Walter R.
2004-01-01
Path analysis was used to test theoretical models of relations among variables known to predict differences in children's memory--strategies, capacity, and metamemory. Children in kindergarten to fourth grade (chronological ages 5 to 11) performed different memory tasks. Several strategies (i.e., sorting, clustering, rehearsal, and self-testing)…
Adolescent Risk: The Co-Occurrence of Illness, Suicidality, and Substance Use
ERIC Educational Resources Information Center
Husler, Gebhard; Blakeney, Ronny; Werlen, Egon
2005-01-01
Illness is rarely considered a "risk factor" in adolescence. This study tests illness, suicidality and substance use as outcome measures in a path analysis of 1028 Swiss adolescents in secondary prevention programs. The model showed that negative mood (depression and anxiety) predicted two paths. One path led from negative mood to…
NASA Technical Reports Server (NTRS)
Wolf, S. F.; Lipschutz, M. E.
1993-01-01
Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansone, G.; Stagira, S.; Nisoli, M.
2004-07-01
High-order harmonic generation process in the few- and multiple-optical-cycle regime is theoretically investigated, using the saddle-point method generalized to account for nonadiabatic effects. The influence of the carrier-envelope phase of the driving pulses on the various electron quantum paths is analyzed. We demonstrate that the short and long quantum paths are influenced in different ways by the carrier-envelope phase. In particular, we show that clear phase effects are visible on the long quantum paths even in the multiple-optical-cycle regime, while the short quantum paths are significantly influenced by the carrier-envelope phase only in the few-optical-cycle regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, R.S.
1989-06-01
For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from elevation information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a braking component dependent on vertical distance, and a constant path-independent component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal set of traversalmore » types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating sequences of goal-feasible window lists from analyzing the polygonal map and applying pruning criteria. The pruning criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible window lists specifies an associated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-optimal path. These ideas have been implemented in a computer program, with results showing considerably better performance than the exponential average-case behavior predicted.« less
Li, Chunhe; Wang, Jin
2013-01-01
Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477
Analysis of Non-Uniform Gain for Control of a Deformable Mirror in an Adaptive-Optics System
2008-03-01
Turbulence Estimator SM Path SH WFS – DM Path Figure 3.6: Primary layout. The blue boxed components is representative of the SM path, the red boxed components...layout that was developed for the majority of the experiments conducted. 3.1.5.1 Steering Mirror Path. This path, boxed in blue in Figure 3.6, is used to...Christou, T.S. Duncan, R.J. Eager, M.A. Ealey, B.L. Ellerbroek, R.Q. Fugate , G.W. Jones, R.M. Kuhns, D.J. Lee, W.H. Lowrey, M.D. Oliker, R.E. Ruane
Vulnerabilities, Influences and Interaction Paths: Failure Data for Integrated System Risk Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Fleming, Land
2006-01-01
We describe graph-based analysis methods for identifying and analyzing cross-subsystem interaction risks from subsystem connectivity information. By discovering external and remote influences that would be otherwise unexpected, these methods can support better communication among subsystem designers at points of potential conflict and to support design of more dependable and diagnosable systems. These methods identify hazard causes that can impact vulnerable functions or entities if propagated across interaction paths from the hazard source to the vulnerable target. The analysis can also assess combined impacts of And-Or trees of disabling influences. The analysis can use ratings of hazards and vulnerabilities to calculate cumulative measures of the severity and importance. Identification of cross-subsystem hazard-vulnerability pairs and propagation paths across subsystems will increase coverage of hazard and risk analysis and can indicate risk control and protection strategies.
Alinoori, Amir Hossein; Masoum, Saeed
2018-05-22
A unique metal oxide semiconductor sensor (MOS) array detector with eight sensors was designed and fabricated in a PTFE chamber as an interface for coupling with multicapillary gas chromatography. This design consists of eight transfer lines with equal length between the multicapillary columns (MCC) and sensors. The deactivated capillary columns were passed through each transfer line and homemade flow splitter to distribute the same gas flow on each sensor. Using the eight ports flow splitter design helps us to equal the length of carrier gas path and flow for each sensor, minimizing the dead volume of the sensor's chamber and increasing chromatographic resolution. In addition to coupling of MCC to MOS array detector and other considerations in hardware design, modulation of MOS temperature was used to increase sensitivity and selectivity, and data analysis was enhanced with adapted Gaussian apodization factor analysis (GAFA) as a multivariate curve resolution algorithm. Continues air sampling and injecting system (CASI) design provides a fast and easily applied method for continues injection of air sample with no additional sample preparation. The analysis cycle time required for each run is less than 300 s. The high sample load and sharp injection with the fast separation by MCC decrease the peak widths and improve detection limits. This homemade customized instrument is an alternative to other time-consuming and expensive technologies for continuous monitoring of outgassing in air samples.
Ferreira, Ana P; Tobyn, Mike
2015-01-01
In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.
Multi-variant study of obesity risk genes in African Americans: The Jackson Heart Study.
Liu, Shijian; Wilson, James G; Jiang, Fan; Griswold, Michael; Correa, Adolfo; Mei, Hao
2016-11-30
Genome-wide association study (GWAS) has been successful in identifying obesity risk genes by single-variant association analysis. For this study, we designed steps of analysis strategy and aimed to identify multi-variant effects on obesity risk among candidate genes. Our analyses were focused on 2137 African American participants with body mass index measured in the Jackson Heart Study and 657 common single nucleotide polymorphisms (SNPs) genotyped at 8 GWAS-identified obesity risk genes. Single-variant association test showed that no SNPs reached significance after multiple testing adjustment. The following gene-gene interaction analysis, which was focused on SNPs with unadjusted p-value<0.10, identified 6 significant multi-variant associations. Logistic regression showed that SNPs in these associations did not have significant linear interactions; examination of genetic risk score evidenced that 4 multi-variant associations had significant additive effects of risk SNPs; and haplotype association test presented that all multi-variant associations contained one or several combinations of particular alleles or haplotypes, associated with increased obesity risk. Our study evidenced that obesity risk genes generated multi-variant effects, which can be additive or non-linear interactions, and multi-variant study is an important supplement to existing GWAS for understanding genetic effects of obesity risk genes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Begnaud, M. L.; Anderson, D. N.; Phillips, W. S.; Myers, S. C.; Ballard, S.
2016-12-01
The Regional Seismic Travel Time (RSTT) tomography model has been developed to improve travel time predictions for regional phases (Pn, Sn, Pg, Lg) in order to increase seismic location accuracy, especially for explosion monitoring. The RSTT model is specifically designed to exploit regional phases for location, especially when combined with teleseismic arrivals. The latest RSTT model (version 201404um) has been released (http://www.sandia.gov/rstt). Travel time uncertainty estimates for RSTT are determined using one-dimensional (1D), distance-dependent error models, that have the benefit of being very fast to use in standard location algorithms, but do not account for path-dependent variations in error, and structural inadequacy of the RSTTT model (e.g., model error). Although global in extent, the RSTT tomography model is only defined in areas where data exist. A simple 1D error model does not accurately model areas where RSTT has not been calibrated. We are developing and validating a new error model for RSTT phase arrivals by mathematically deriving this multivariate model directly from a unified model of RSTT embedded into a statistical random effects model that captures distance, path and model error effects. An initial method developed is a two-dimensional path-distributed method using residuals. The goals for any RSTT uncertainty method are for it to be both readily useful for the standard RSTT user as well as improve travel time uncertainty estimates for location. We have successfully tested using the new error model for Pn phases and will demonstrate the method and validation of the error model for Sn, Pg, and Lg phases.
Johnson, Sheri L; Tharp, Jordan A; Peckham, Andrew D; Carver, Charles S; Haase, Claudia M
2017-09-01
A growing empirical literature indicates that emotion-related impulsivity (compared to impulsivity that is unrelated to emotion) is particularly relevant for understanding a broad range of psychopathologies. Recent work, however, has differentiated two forms of emotion-related impulsivity: A factor termed Pervasive Influence of Feelings captures tendencies for emotions (mostly negative emotions) to quickly shape thoughts, and a factor termed Feelings Trigger Action captures tendencies for positive and negative emotions to quickly and reflexively shape behaviour and speech. This study used path modelling to consider links from emotion-related and non-emotion-related impulsivity to a broad range of psychopathologies. Undergraduates completed self-report measures of impulsivity, depression, anxiety, aggression, and substance use symptoms. A path model (N = 261) indicated specificity of these forms of impulsivity. Pervasive Influence of Feelings was related to anxiety and depression, whereas Feelings Trigger Action and non-emotion-related impulsivity were related to aggression and substance use. The findings of this study suggest that emotion-relevant impulsivity could be a potentially important treatment target for a set of psychopathologies. Recent work has differentiated two forms of emotion-related impulsivity. This study tests a multivariate path model linking emotion-related and non-emotion-related impulsivity with multiple forms of psychopathology. Impulsive thoughts in response to negative emotions were related to anxiety and depression. Impulsive actions in response to emotions were related to aggression and substance use, as did non-emotion-related impulsivity. The study was limited by the reliance on self-report measures of impulsivity and psychopathology. There is a need for longitudinal work on how these forms of impulsivity predict the onset and course of psychopathology. © 2017 The British Psychological Society.
Alovisi, M; Cemenasco, A; Mancini, L; Paolino, D; Scotti, N; Bianchi, C C; Pasqualini, D
2017-04-01
To evaluate the ability of ProGlider instruments, PathFiles and K-files to maintain canal anatomy during glide path preparation using X-ray computed micro-tomography (micro-CT). Forty-five extracted maxillary first permanent molars were selected. Mesio-buccal canals were randomly assigned (n = 15) to manual K-file, PathFile or ProGlider groups for glide path preparation. Irrigation was achieved with 5% NaOCl and 10% EDTA. After glide path preparation, each canal was shaped with ProTaper Next X1 and X2 to working length. Specimens were scanned (isotropic voxel size 9.1 μm) for matching volumes and surface areas and post-treatment analyses. Canal volume, surface area, centroid shift, canal geometry variation through ratio of diameter ratios and ratio of cross-sectional areas were assessed in the apical and coronal levels and at the point of maximum canal curvature. One-way factorial anovas were used to evaluate the significance of instrument in the various canal regions. Post-glide path analysis revealed that instrument factor was significant at the apical level for both the ratio of diameter ratios and the ratio of cross-sectional areas (P < 0.001), with an improved maintenance of root canal geometry by ProGlider and PathFile. At the coronal level and point of maximum canal curvature, ProGlider demonstrated a tendency to pre-flare the root canal compared with K-file and PathFile. PathFile and ProGlider demonstrated a significantly lower centroid shift compared with K-file at the apical level (P = 0.023). Post-shaping analysis demonstrated a more centred preparation of ProGlider, compared with PathFile and K-files, with no significant differences for other parameters. Use of ProGlider instruments led to less canal transportation than PathFiles and K-files. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara
2013-01-01
Background Despite widespread acceptance of the ‘biopsychosocial model’, the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Methods and Findings Participants were 32,827 (age 18–85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ2 (3199, N = 23,397) = 126654·8, p<·001; RCFI = ·97; RMSEA = ·04 (·038–·039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. Conclusion These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies. PMID:24146890
Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara
2013-01-01
Despite widespread acceptance of the 'biopsychosocial model', the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Participants were 32,827 (age 18-85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ(2) (3199, N = 23,397) = 126654.8, p<.001; RCFI = .97; RMSEA = .04 (.038-.039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies.
Working conditions, socioeconomic factors and low birth weight: path analysis.
Mahmoodi, Zohreh; Karimlou, Masoud; Sajjadi, Homeira; Dejman, Masoumeh; Vameghi, Meroe; Dolatian, Mahrokh
2013-09-01
In recent years, with socioeconomic changes in the society, the presence of women in the workplace is inevitable. The differences in working condition, especially for pregnant women, has adverse consequences like low birth weight. This study was conducted with the aim to model the relationship between working conditions, socioeconomic factors, and birth weight. This study was conducted in case-control design. The control group consisted of 500 women with normal weight babies, and the case group, 250 women with low weight babies from selected hospitals in Tehran. Data were collected using a researcher-made questionnaire to determine mothers' lifestyle during pregnancy with low birth weight with health-affecting social determinants approach. This questionnaire investigated women's occupational lifestyle in terms of working conditions, activities, and job satisfaction. Data were analyzed with SPSS-16 and Lisrel-8.8 software using statistical path analysis. The final path model fitted well (CFI =1, RMSEA=0.00) and showed that among direct paths, working condition (β=-0.032), among indirect paths, household income (β=-0.42), and in the overall effect, unemployed spouse (β=-0.1828) had the most effects on the low birth weight. Negative coefficients indicate decreasing effect on birth weight. Based on the path analysis model, working condition and socioeconomic status directly and indirectly influence birth weight. Thus, as well as attention to treatment and health care (biological aspect), special attention must also be paid to mothers' socioeconomic factors.
Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data.
Marco-Ramell, Anna; Palau-Rodriguez, Magali; Alay, Ania; Tulipani, Sara; Urpi-Sarda, Mireia; Sanchez-Pla, Alex; Andres-Lacueva, Cristina
2018-01-02
Bioinformatic tools for the enrichment of 'omics' datasets facilitate interpretation and understanding of data. To date few are suitable for metabolomics datasets. The main objective of this work is to give a critical overview, for the first time, of the performance of these tools. To that aim, datasets from metabolomic repositories were selected and enriched data were created. Both types of data were analysed with these tools and outputs were thoroughly examined. An exploratory multivariate analysis of the most used tools for the enrichment of metabolite sets, based on a non-metric multidimensional scaling (NMDS) of Jaccard's distances, was performed and mirrored their diversity. Codes (identifiers) of the metabolites of the datasets were searched in different metabolite databases (HMDB, KEGG, PubChem, ChEBI, BioCyc/HumanCyc, LipidMAPS, ChemSpider, METLIN and Recon2). The databases that presented more identifiers of the metabolites of the dataset were PubChem, followed by METLIN and ChEBI. However, these databases had duplicated entries and might present false positives. The performance of over-representation analysis (ORA) tools, including BioCyc/HumanCyc, ConsensusPathDB, IMPaLA, MBRole, MetaboAnalyst, Metabox, MetExplore, MPEA, PathVisio and Reactome and the mapping tool KEGGREST, was examined. Results were mostly consistent among tools and between real and enriched data despite the variability of the tools. Nevertheless, a few controversial results such as differences in the total number of metabolites were also found. Disease-based enrichment analyses were also assessed, but they were not found to be accurate probably due to the fact that metabolite disease sets are not up-to-date and the difficulty of predicting diseases from a list of metabolites. We have extensively reviewed the state-of-the-art of the available range of tools for metabolomic datasets, the completeness of metabolite databases, the performance of ORA methods and disease-based analyses. Despite the variability of the tools, they provided consistent results independent of their analytic approach. However, more work on the completeness of metabolite and pathway databases is required, which strongly affects the accuracy of enrichment analyses. Improvements will be translated into more accurate and global insights of the metabolome.
Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance
NASA Astrophysics Data System (ADS)
Glascock, M. D.; Neff, H.; Vaughn, K. J.
2004-06-01
The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.
A Study of Effects of MultiCollinearity in the Multivariable Analysis
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.
2015-01-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257
A Study of Effects of MultiCollinearity in the Multivariable Analysis.
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W
2014-10-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.
Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas
2017-02-01
In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hurd, Noelle M.; Stoddard, Sarah A.; Zimmerman, Marc A.
2013-01-01
This study explored how neighborhood characteristics may relate to African American adolescents' internalizing symptoms via adolescents' social support and perceptions of neighborhood cohesion. Participants included 571 urban, African American adolescents (52% female; "M" age = 17.8). A multilevel path analysis testing both direct and…
Identification of limit cycles in multi-nonlinearity, multiple path systems
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Barron, O. L.
1979-01-01
A method of analysis which identifies limit cycles in autonomous systems with multiple nonlinearities and multiple forward paths is presented. The FORTRAN code for implementing the Harmonic Balance Algorithm is reported. The FORTRAN code is used to identify limit cycles in multiple path and nonlinearity systems while retaining the effects of several harmonic components.
Localization of genes involved in the metabolic syndrome using multivariate linkage analysis.
Olswold, Curtis; de Andrade, Mariza
2003-12-31
There are no well accepted criteria for the diagnosis of the metabolic syndrome. However, the metabolic syndrome is identified clinically by the presence of three or more of these five variables: larger waist circumference, higher triglyceride levels, lower HDL-cholesterol concentrations, hypertension, and impaired fasting glucose. We use sets of two or three variables, which are available in the Framingham Heart Study data set, to localize genes responsible for this syndrome using multivariate quantitative linkage analysis. This analysis demonstrates the applicability of using multivariate linkage analysis and how its use increases the power to detect linkage when genes are involved in the same disease mechanism.
New Insights into Signed Path Coefficient Granger Causality Analysis
Zhang, Jian; Li, Chong; Jiang, Tianzi
2016-01-01
Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an “excitatory” or “inhibitory” influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation. PMID:27833547
Observed cloud reflectivities and liquid water paths: An update
NASA Technical Reports Server (NTRS)
Coakley, James A., Jr.; Snider, Jack B.
1990-01-01
The FIRE microwave radiometer observations of liquid water path from San Nicolas Island and simultaneous NOAA AVHRR observations of cloud reflectivity were used to test a relationship between cloud liquid water path and cloud reflectivity that is often used in general circulation climate models (Stephens, 1978). The results of attempts to improve the data analysis which was described at the previous FIRE Science Team Workshop and elsewhere (Coakley and Snider, 1989) are reported. The improvements included the analysis of additional satellite passes over San Nicolas and sensitivity studies to estimate the effects on the observed reflectivities due to: (1) nonzero surface reflectivities beneath the clouds; (2) the anisotropy of the reflected radiances observed by the AVHRR; (3) small scale spatial structure in the liquid water path; and (4) adjustments to the calibration of AVHRR.
Multivariate frequency domain analysis of protein dynamics
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori
2009-03-01
Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.
Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy
2014-01-01
Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885
A refined method for multivariate meta-analysis and meta-regression
Jackson, Daniel; Riley, Richard D
2014-01-01
Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351
Jackson, Dan; White, Ian R; Riley, Richard D
2013-01-01
Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213
Biostatistics Series Module 10: Brief Overview of Multivariate Methods.
Hazra, Avijit; Gogtay, Nithya
2017-01-01
Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.
Feelings of energy, exercise-related self-efficacy, and voluntary exercise participation.
Yoon, Seok; Buckworth, Janet; Focht, Brian; Ko, Bomna
2013-12-01
This study used a path analysis approach to examine the relationship between feelings of energy, exercise-related self-efficacy beliefs, and exercise participation. A cross-sectional mailing survey design was used to measure feelings of physical and mental energy, task and scheduling self-efficacy beliefs, and voluntary moderate and vigorous exercise participation in 368 healthy, full-time undergraduate students (mean age = 21.43 ± 2.32 years). The path analysis revealed that the hypothesized path model had a strong fit to the study data. The path model showed that feelings of physical energy had significant direct effects on task and scheduling self-efficacy beliefs as well as exercise behaviors. In addition, scheduling self-efficacy had direct effects on moderate and vigorous exercise participation. However, there was no significant direct relationship between task self-efficacy and exercise participation. The path model also revealed that scheduling self-efficacy partially mediated the relationship between feelings of physical energy and exercise participation.
NASA Technical Reports Server (NTRS)
Grimm, K. R.; Hodge, D. B.
1971-01-01
The performance of a path diversity satellite-to-ground millimeter wave link with two ground terminals separated by 4 km is discussed. At this separation distance the duration of fades below 6 dB was decreased by at least a factor of 10 when using path diversity and the cumulative crosscorrelation between the attenuations observed at the two terminals during rain events was approximately 0.45. Narrow beam radiometers directed along the propagation paths were also utilized to relate the path radiometric temperature to the path attenuation. An analysis of downlink propagation data for generating diversity link performance statistics is included.
Multivariate time series analysis of neuroscience data: some challenges and opportunities.
Pourahmadi, Mohsen; Noorbaloochi, Siamak
2016-04-01
Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Park, Steve
1990-01-01
A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.
Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis
Nicole Labbe; David Harper; Timothy Rials; Thomas Elder
2006-01-01
In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...
Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin
2015-01-01
The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Fawson, Parker C.; Reutzel, D. Ray; Read, Sylvia; Smith, John A.; Moore, Sharon A.
2009-01-01
The purpose of this study was to examine the impact of four incentive paths on third graders' reading vocabulary and comprehension achievement and recreational and academic reading attitude. One hundred and twenty third-grade students were assigned to one of four incentive path treatment conditions. Data were analyzed using analysis of covariance…
Multivariate analysis: greater insights into complex systems
USDA-ARS?s Scientific Manuscript database
Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel
Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that varymore » as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.« less
Isolating causal pathways between flow and fish in the regulated river hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
Villanti, Andrea C; Johnson, Amanda L; Ambrose, Bridget K; Cummings, K Michael; Stanton, Cassandra A; Rose, Shyanika W; Feirman, Shari P; Tworek, Cindy; Glasser, Allison M; Pearson, Jennifer L; Cohn, Amy M; Conway, Kevin P; Niaura, Raymond S; Bansal-Travers, Maansi; Hyland, Andrew
2017-08-01
The 2009 Family Smoking Prevention and Tobacco Control Act banned characterizing flavors other than menthol in cigarettes but did not restrict their use in other forms of tobacco (e.g., smokeless, cigars, hookah, e-cigarettes). A cross-sectional analysis of Wave 1 data from 45,971 U.S. adults and youth, aged ≥12 years in the Population Assessment of Tobacco and Health (PATH) Study collected in 2013-2014, was conducted in 2016. This study examined (1) the prevalence and reasons for use of flavored tobacco products; (2) the proportion of ever tobacco users reporting that their first product was flavored; and (3) correlates of current flavored tobacco product use. Current flavored (including menthol) tobacco product use was highest in youth (80%, aged 12-17 years); and young adult tobacco users (73%, aged 18-24 years); and lowest in older adult tobacco users aged ≥65 years (29%). Flavor was a primary reason for using a given tobacco product, particularly among youth. Eighty-one percent of youth and 86% of young adult ever tobacco users reported that their first product was flavored versus 54% of adults aged ≥25 years. In multivariable models, reporting that one's first tobacco product was flavored was associated with a 13% higher prevalence of current tobacco use among youth ever tobacco users and a 32% higher prevalence of current tobacco use among adult ever users. These results add to the evidence base that flavored tobacco products may attract young users and serve as starter products to regular tobacco use. Copyright © 2017 American Journal of Preventive Medicine. All rights reserved.
Isolating causal pathways between flow and fish in the regulated river hierarchy
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...
2015-07-07
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
ERIC Educational Resources Information Center
Chang, Hsiu-Ju
2016-01-01
This research focus on the temporal path analysis of learning stress, test anxiety, peer stress (classmate relatedness), teacher relatedness, autonomy, and self-regulative performance in junior high school. Owing to the processes of self-determination always combines several negotiations with the interactive perceptions of personal experiences and…
ERIC Educational Resources Information Center
Tonyan, Holli A.; Nuttall, Joce
2014-01-01
Family day care or childminding involves a particularly transient workforce. This paper introduces Eco(logical)-Cultural Theory (ECT) to examine the cultural organisation of childminding and presents an ECT analysis of pilot survey results: asking minders about their daily routines and their career paths. Reasons for becoming a minder and…
Establishing a Causal Model for Bloom's Taxonomy through Path Analysis.
ERIC Educational Resources Information Center
O'Hara, Takeshi; And Others
Path analysis was used to reanalyze Kropp and Stoker's data from tests designed to evaluate Bloom's taxonomy of educational objectives in the cognitive domain. Scores for 1,128 students in grades nine through twelve were analyzed separately by grade level for four content areas on six taxonomic levels. A measure of general ability was also…
Mathematics Teaching Anxiety and Self-Efficacy Beliefs toward Mathematics Teaching: A Path Analysis
ERIC Educational Resources Information Center
Peker, Murat
2016-01-01
The purpose of this study was to investigate the relationship between pre-service primary school teachers' mathematics teaching anxiety and their self-efficacy beliefs toward mathematics teaching through path analysis. There were a total of 250 pre-service primary school teachers involved in this study. Of the total, 202 were female and 48 were…
Explaining Technology Integration in K-12 Classrooms: A Multilevel Path Analysis Model
ERIC Educational Resources Information Center
Liu, Feng; Ritzhaupt, Albert D.; Dawson, Kara; Barron, Ann E.
2017-01-01
The purpose of this research was to design and test a model of classroom technology integration in the context of K-12 schools. The proposed multilevel path analysis model includes teacher, contextual, and school related variables on a teacher's use of technology and confidence and comfort using technology as mediators of classroom technology…
Mapping eQTL Networks with Mixed Graphical Markov Models
Tur, Inma; Roverato, Alberto; Castelo, Robert
2014-01-01
Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303
Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan
2017-12-01
Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of connectivity analyses for resting state EEG data
NASA Astrophysics Data System (ADS)
Olejarczyk, Elzbieta; Marzetti, Laura; Pizzella, Vittorio; Zappasodi, Filippo
2017-06-01
Objective. In the present work, a nonlinear measure (transfer entropy, TE) was used in a multivariate approach for the analysis of effective connectivity in high density resting state EEG data in eyes open and eyes closed. Advantages of the multivariate approach in comparison to the bivariate one were tested. Moreover, the multivariate TE was compared to an effective linear measure, i.e. directed transfer function (DTF). Finally, the existence of a relationship between the information transfer and the level of brain synchronization as measured by phase synchronization value (PLV) was investigated. Approach. The comparison between the connectivity measures, i.e. bivariate versus multivariate TE, TE versus DTF, TE versus PLV, was performed by means of statistical analysis of indexes based on graph theory. Main results. The multivariate approach is less sensitive to false indirect connections with respect to the bivariate estimates. The multivariate TE differentiated better between eyes closed and eyes open conditions compared to DTF. Moreover, the multivariate TE evidenced non-linear phenomena in information transfer, which are not evidenced by the use of DTF. We also showed that the target of information flow, in particular the frontal region, is an area of greater brain synchronization. Significance. Comparison of different connectivity analysis methods pointed to the advantages of nonlinear methods, and indicated a relationship existing between the flow of information and the level of synchronization of the brain.
NASA Astrophysics Data System (ADS)
Hardy, Jason; Campbell, Mark; Miller, Isaac; Schimpf, Brian
2008-10-01
The local path planner implemented on Cornell's 2007 DARPA Urban Challenge entry vehicle Skynet utilizes a novel mixture of discrete and continuous path planning steps to facilitate a safe, smooth, and human-like driving behavior. The planner first solves for a feasible path through the local obstacle map using a grid based search algorithm. The resulting path is then refined using a cost-based nonlinear optimization routine with both hard and soft constraints. The behavior of this optimization is influenced by tunable weighting parameters which govern the relative cost contributions assigned to different path characteristics. This paper studies the sensitivity of the vehicle's performance to these path planner weighting parameters using a data driven simulation based on logged data from the National Qualifying Event. The performance of the path planner in both the National Qualifying Event and in the Urban Challenge is also presented and analyzed.
Working Conditions, Socioeconomic Factors and Low Birth Weight: Path Analysis
Mahmoodi, Zohreh; Karimlou, Masoud; Sajjadi, Homeira; Dejman, Masoumeh; Vameghi, Meroe; Dolatian, Mahrokh
2013-01-01
Background In recent years, with socioeconomic changes in the society, the presence of women in the workplace is inevitable. The differences in working condition, especially for pregnant women, has adverse consequences like low birth weight. Objectives This study was conducted with the aim to model the relationship between working conditions, socioeconomic factors, and birth weight. Patients and Methods This study was conducted in case-control design. The control group consisted of 500 women with normal weight babies, and the case group, 250 women with low weight babies from selected hospitals in Tehran. Data were collected using a researcher-made questionnaire to determine mothers’ lifestyle during pregnancy with low birth weight with health-affecting social determinants approach. This questionnaire investigated women’s occupational lifestyle in terms of working conditions, activities, and job satisfaction. Data were analyzed with SPSS-16 and Lisrel-8.8 software using statistical path analysis. Results The final path model fitted well (CFI =1, RMSEA=0.00) and showed that among direct paths, working condition (β=-0.032), among indirect paths, household income (β=-0.42), and in the overall effect, unemployed spouse (β=-0.1828) had the most effects on the low birth weight. Negative coefficients indicate decreasing effect on birth weight. Conclusions Based on the path analysis model, working condition and socioeconomic status directly and indirectly influence birth weight. Thus, as well as attention to treatment and health care (biological aspect), special attention must also be paid to mothers’ socioeconomic factors. PMID:24616796
MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA
Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...
Characterizing multivariate decoding models based on correlated EEG spectral features
McFarland, Dennis J.
2013-01-01
Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267
Drunk driving detection based on classification of multivariate time series.
Li, Zhenlong; Jin, Xue; Zhao, Xiaohua
2015-09-01
This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Hurtado Rúa, Sandra M; Mazumdar, Madhu; Strawderman, Robert L
2015-12-30
Bayesian meta-analysis is an increasingly important component of clinical research, with multivariate meta-analysis a promising tool for studies with multiple endpoints. Model assumptions, including the choice of priors, are crucial aspects of multivariate Bayesian meta-analysis (MBMA) models. In a given model, two different prior distributions can lead to different inferences about a particular parameter. A simulation study was performed in which the impact of families of prior distributions for the covariance matrix of a multivariate normal random effects MBMA model was analyzed. Inferences about effect sizes were not particularly sensitive to prior choice, but the related covariance estimates were. A few families of prior distributions with small relative biases, tight mean squared errors, and close to nominal coverage for the effect size estimates were identified. Our results demonstrate the need for sensitivity analysis and suggest some guidelines for choosing prior distributions in this class of problems. The MBMA models proposed here are illustrated in a small meta-analysis example from the periodontal field and a medium meta-analysis from the study of stroke. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan
2015-01-01
The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393
Emotional states, attentional resources, and cognitive activity: a preliminary study.
Versace, R; Monteil, J M; Mailhot, L
1993-06-01
This study explored the link between emotional state and attentional resources. A neutral or negative emotional state was induced in 50 subjects, then they performed a path-learning task followed by a word-memorization task while reproducing the prelearned path. Memory performance was assessed on a free-recall test. Analysis indicated that a previous induction of a negative emotional state disrupted path learning. Recall was not significantly affected by the subjects' emotional states, but recall was higher for subjects who had automatized the path prior to memorizing the words.
Lee, Youn Soo; Gong, Gyungyub; Sohn, Jin Hee; Ryu, Ki Sung; Lee, Jung Hun; Khang, Shin Kwang; Cho, Kyung-Ja; Kim, Yong-Man; Kang, Chang Suk
2013-06-01
The objective of this study was to evaluate a newly-developed EASYPREP liquid-based cytology method in cervicovaginal specimens and compare it with SurePath. Cervicovaginal specimens were prospectively collected from 1,000 patients with EASYPREP and SurePath. The specimens were first collected by brushing for SurePath and second for EASYPREP. The specimens of both methods were diagnosed according to the Bethesda System. Additionally, we performed to REBA HPV-ID genotyping and sequencing analysis for human papillomavirus (HPV) on 249 specimens. EASYPREP and SurePath showed even distribution of cells and were equal in cellularity and staining quality. The diagnostic agreement between the two methods was 96.5%. Based on the standard of SurePath, the sensitivity, specificity, positive predictive value, and negative predictive value of EASYPREP were 90.7%, 99.2%, 94.8%, and 98.5%, respectively. The positivity of REBA HPV-ID was 49.4% and 95.1% in normal and abnormal cytological samples, respectively. The result of REBA HPV-ID had high concordance with sequencing analysis. EASYPREP provided comparable results to SurePath in the diagnosis and staining quality of cytology examinations and in HPV testing with REBA HPV-ID. EASYPREP could be another LBC method choice for the cervicovaginal specimens. Additionally, REBA HPV-ID may be a useful method for HPV genotyping.
Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.
Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.
ERIC Educational Resources Information Center
Barton, Mitch; Yeatts, Paul E.; Henson, Robin K.; Martin, Scott B.
2016-01-01
There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent…
Park, Hyunseok; Magee, Christopher L
2017-01-01
The aim of this paper is to propose a new method to identify main paths in a technological domain using patent citations. Previous approaches for using main path analysis have greatly improved our understanding of actual technological trajectories but nonetheless have some limitations. They have high potential to miss some dominant patents from the identified main paths; nonetheless, the high network complexity of their main paths makes qualitative tracing of trajectories problematic. The proposed method searches backward and forward paths from the high-persistence patents which are identified based on a standard genetic knowledge persistence algorithm. We tested the new method by applying it to the desalination and the solar photovoltaic domains and compared the results to output from the same domains using a prior method. The empirical results show that the proposed method can dramatically reduce network complexity without missing any dominantly important patents. The main paths identified by our approach for two test cases are almost 10x less complex than the main paths identified by the existing approach. The proposed approach identifies all dominantly important patents on the main paths, but the main paths identified by the existing approach miss about 20% of dominantly important patents.
2017-01-01
The aim of this paper is to propose a new method to identify main paths in a technological domain using patent citations. Previous approaches for using main path analysis have greatly improved our understanding of actual technological trajectories but nonetheless have some limitations. They have high potential to miss some dominant patents from the identified main paths; nonetheless, the high network complexity of their main paths makes qualitative tracing of trajectories problematic. The proposed method searches backward and forward paths from the high-persistence patents which are identified based on a standard genetic knowledge persistence algorithm. We tested the new method by applying it to the desalination and the solar photovoltaic domains and compared the results to output from the same domains using a prior method. The empirical results show that the proposed method can dramatically reduce network complexity without missing any dominantly important patents. The main paths identified by our approach for two test cases are almost 10x less complex than the main paths identified by the existing approach. The proposed approach identifies all dominantly important patents on the main paths, but the main paths identified by the existing approach miss about 20% of dominantly important patents. PMID:28135304
EuPathDB: the eukaryotic pathogen genomics database resource
Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie
2017-01-01
The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906
Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2001-01-01
This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.
ERIC Educational Resources Information Center
Cantu, Norma
2012-01-01
This essay outlines how the book, "Paths to Discovery: Autobiographies from Chicanas with Careers in Science, Mathematics, and Engineering" (Cantu, 2008) came about. I then use "testimonio" theory to analyze the narratives in this book as the data of a qualitative study, and I describe the general themes that the analysis highlights. I scrutinize…
NASA Technical Reports Server (NTRS)
Mixson, John S.; Wilby, John F.
1991-01-01
The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.
Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.
Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W
2013-01-01
Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.
MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.
Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin
2015-04-01
Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Bethge, Matthias; Borngräber, Yvonne
2015-03-18
Under conditions of gender-specific division of paid employment and unpaid childcare and housework, rising employment of women increases the likelihood that they will be faced with work-family conflicts. As recent research indicates, such conflicts might also contribute to musculoskeletal disorders. However, research in patient samples is needed to clarify how important these conflicts are for relevant health-related measures of functioning (e.g., work ability). We therefore examined, in a sample of women with chronic musculoskeletal disorders, the indirect and direct associations between the indicators of work-family conflicts and self-reported work ability as well as whether the direct effects remained significant after adjustment for covariates. A cross-sectional questionnaire-based study was conducted. Participants were recruited from five rehabilitation centers. Work-family conflicts were assessed by four scales referring to time- and strain-based work interference with family (WIF) and family interference with work (FIW). Self-reported work ability was measured by the Work Ability Index. A confirmatory factor analysis was performed to approve the anticipated four-factor structure of the work-family conflict measure. Direct and indirect associations between work-family conflict indicators and self-reported work ability were examined by path model analysis. Multivariate regression models were performed to calculate adjusted estimators of the direct effects of strain-based WIF and FIW on work ability. The study included 351 employed women. The confirmatory factor analysis provided support for the anticipated four-factor structure of the work-family conflict measure. The path model analysis identified direct effects of both strain-based scales on self-reported work ability. The time-based scales were indirectly associated with work ability via the strain-based scales. Adjusted regression analyses showed that a five-point increase in strain-based WIF or FIW was associated with a four- and two-point decrease in self-reported work ability, respectively. The standardized regression coefficients were β = 0.35 and β = 0.12. Our findings indicate that work-family conflicts are associated with poor work ability in female patients with chronic musculoskeletal disorders. However, longitudinal research is needed to establish a causal relationship. Better compatibility of work and family life might be an environmental facilitator of better rehabilitation outcomes in female patients with musculoskeletal disorders.
Multivariate meta-analysis using individual participant data
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2016-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484
Abort-once-around entry corridor analysis program document
NASA Technical Reports Server (NTRS)
Kyle, H. C.
1975-01-01
The abort once around entry target corridor analysis program (ABECAP) was studied. The allowable range of flight path angles at entry interface for acceptable entry trajectories from a shuttle abort once around (AOA) situation was established. The solutions thus determined may be shown as corridor plots of entry interface flight path angle versus range from entry interface (EI) to the target.
ERIC Educational Resources Information Center
Kirikkanat, Berke; Soyer, Makbule Kali
2018-01-01
The major purpose of this study was to create a path analysis model of academic success in a group of university students, which included the variables of academic confidence and psychological capital with a mediator variable--academic coping. 400 undergraduates from Marmara University and Istanbul Commerce University who were in sophomore, junior…
Jang, Mi Heui; Lee, Gyungjoo
2013-04-01
This study was done to examine not only the relationships between body mass index (BMI), self-esteem, body image dissatisfaction (BID) and mental health, according to gender, but the mediating role of BID on mental health in relation to BMI and self-esteem among early adolescents. Data from 576 (296 boys and 280 girls) elementary school students in grades 5 to 6 were collected. A multiple-group path analysis was utilized to examine the relationships between BMI, self-esteem, BID and mental health by gender. In the path analysis for all students, poor mental health was related directly to BID, while it was indirectly related to BMI and self-esteem. In the multiple-group path analysis of both genders, BID was found to have a significant direct and indirect effect on mental health for girls alone. The findings suggested that BID should be examined early to prevent poor mental health in early adolescent girls. This study helps to elucidate the role of early adolescent BID on mental health and provides insight for further prevention and intervention programs in school and community mental health settings.
Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path.
Tunick, Arnold
2007-10-17
Experimental research is conducted to determine the characteristic behavior of high frequency laser signal intensity data collected over a 2.33 km optical path. Results focus mainly on calculated power spectra and frequency distributions. In addition, a model is developed to calculate optical turbulence intensity (C(n)/2) as a function of receiving and transmitting aperture diameter, log-amplitude variance, and path length. Initial comparisons of calculated to measured C(n)/2 data are favorable. It is anticipated that this kind of signal data analysis will benefit laser communication systems development and testing at the U.S. Army Research Laboratory (ARL) and elsewhere.
Effects of forming history on crash simulation of a vehicle
NASA Astrophysics Data System (ADS)
Gökler, M. İ.; Doğan, U. Ç.; Darendeliler, H.
2016-08-01
The effects of forming on the crash simulation of a vehicle have been investigated by considering the load paths produced by sheet metal forming process. The frontal crash analysis has been performed by the finite element method, firstly without considering the forming history, to find out the load paths that absorb the highest energy. The sheet metal forming simulations have been realized for each structural component of the load paths and the frontal crash analysis has been repeated by including forming history. The results of the simulations with and without forming effects have been compared with the physical crash test results available in literature.
Study on system for extracted type infrared gas analysis
NASA Astrophysics Data System (ADS)
Gu, Ruirui; Yao, Jun; Li, Wei; Li, Wenzhong; Zhang, Shaohua; Liu, Zhe; Wen, Qiang
2015-12-01
Based on the Beer-Lambert law and the characteristic IR absorption spectrum of CO, a system for extracted type infrared gas analysis has been designed and manufactured, which utilizes different absorptive degrees infrared light gain under different concentration degrees of the gas to be measured to the value of detect CO concentration, including optical path, electric circuit and gas path. A forward and backward gas detection chamber equipped with a micro flow sensor has been used in the optical path as well as a multistage high precision amplifier and filter circuit has been used in the electric circuit. The experimental results accord with the testing standard.
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2002-01-01
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions
2013-01-01
Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370
D'Amico, E J; Neilands, T B; Zambarano, R
2001-11-01
Although power analysis is an important component in the planning and implementation of research designs, it is often ignored. Computer programs for performing power analysis are available, but most have limitations, particularly for complex multivariate designs. An SPSS procedure is presented that can be used for calculating power for univariate, multivariate, and repeated measures models with and without time-varying and time-constant covariates. Three examples provide a framework for calculating power via this method: an ANCOVA, a MANOVA, and a repeated measures ANOVA with two or more groups. The benefits and limitations of this procedure are discussed.
Multi-Sample Cluster Analysis Using Akaike’s Information Criterion.
1982-12-20
of Likelihood Criteria for I)fferent Hypotheses," in P. A. Krishnaiah (Ed.), Multivariate Analysis-Il, New York: Academic Press. [5] Fisher, R. A...Methods of Simultaneous Inference in MANOVA," in P. R. Krishnaiah (Ed.), rultivariate Analysis-Il, New York: Academic Press. [8) Kendall, M. G. (1966...1982), Applied Multivariate Statisti- cal-Analysis, Englewood Cliffs: Prentice-Mall, Inc. [1U] Krishnaiah , P. R. (1969), "Simultaneous Test
Docking and multivariate methods to explore HIV-1 drug-resistance: a comparative analysis
NASA Astrophysics Data System (ADS)
Almerico, Anna Maria; Tutone, Marco; Lauria, Antonino
2008-05-01
In this paper we describe a comparative analysis between multivariate and docking methods in the study of the drug resistance to the reverse transcriptase and the protease inhibitors. In our early papers we developed a simple but efficient method to evaluate the features of compounds that are less likely to trigger resistance or are effective against mutant HIV strains, using the multivariate statistical procedures PCA and DA. In the attempt to create a more solid background for the prediction of susceptibility or resistance, we carried out a comparative analysis between our previous multivariate approach and molecular docking study. The intent of this paper is not only to find further support to the results obtained by the combined use of PCA and DA, but also to evidence the structural features, in terms of molecular descriptors, similarity, and energetic contributions, derived from docking, which can account for the arising of drug-resistance against mutant strains.
SUGGESTIONS FOR OPTIMIZED PLANNING OF MULTIVARIATE MONITORING OF ATMOSPHERIC POLLUTION
Recent work in factor analysis of multivariate data sets has shown that variables with little signal should not be included in the factor analysis. Work also shows that rotational ambiguity is reduced if sources impacting a receptor have both large and small contributions. Thes...
Multivariate Meta-Analysis Using Individual Participant Data
ERIC Educational Resources Information Center
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2015-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is…
Barnert, Elizabeth S; Perry, Raymond; Azzi, Veronica F; Shetgiri, Rashmi; Ryan, Gery; Dudovitz, Rebecca; Zima, Bonnie; Chung, Paul J
2015-07-01
We sought to understand incarcerated youths' perspectives on the role of protective factors and risk factors for juvenile offending. We performed an in-depth qualitative analysis of interviews (conducted October-December 2013) with 20 incarcerated youths detained in the largest juvenile hall in Los Angeles. The adolescent participants described their homes, schools, and neighborhoods as chaotic and unsafe. They expressed a need for love and attention, discipline and control, and role models and perspective. Youths perceived that when home or school failed to meet these needs, they spent more time on the streets, leading to incarceration. They contrasted the path through school with the path to jail, reporting that the path to jail felt easier. All of them expressed the insight that they had made bad decisions and that the more difficult path was not only better but also still potentially achievable. Breaking cycles of juvenile incarceration will require that the public health community partner with legislators, educators, community leaders, and youths to determine how to make success, rather than incarceration, the easier path for disadvantaged adolescents.
Perry, Raymond; Azzi, Veronica F.; Shetgiri, Rashmi; Ryan, Gery; Dudovitz, Rebecca; Zima, Bonnie; Chung, Paul J.
2015-01-01
Objectives. We sought to understand incarcerated youths’ perspectives on the role of protective factors and risk factors for juvenile offending. Methods. We performed an in-depth qualitative analysis of interviews (conducted October–December 2013) with 20 incarcerated youths detained in the largest juvenile hall in Los Angeles. Results. The adolescent participants described their homes, schools, and neighborhoods as chaotic and unsafe. They expressed a need for love and attention, discipline and control, and role models and perspective. Youths perceived that when home or school failed to meet these needs, they spent more time on the streets, leading to incarceration. They contrasted the path through school with the path to jail, reporting that the path to jail felt easier. All of them expressed the insight that they had made bad decisions and that the more difficult path was not only better but also still potentially achievable. Conclusions. Breaking cycles of juvenile incarceration will require that the public health community partner with legislators, educators, community leaders, and youths to determine how to make success, rather than incarceration, the easier path for disadvantaged adolescents. PMID:25521878
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin
2013-01-01
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin
2013-10-15
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less
Maione, Camila; Barbosa, Rommel Melgaço
2018-01-24
Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.
Koivisto, J; Dalbe, M-J; Alava, M J; Santucci, S
2016-08-31
Crack propagation is tracked here with Digital Image Correlation analysis in the test case of two cracks propagating in opposite directions in polycarbonate, a material with high ductility and a large Fracture Process Zone (FPZ). Depending on the initial distances between the two crack tips, one may observe different complex crack paths with in particular a regime where the two cracks repel each other prior to being attracted. We show by strain field analysis how this can be understood according to the principle of local symmetry: the propagation is to the direction where the local shear - mode KII in fracture mechanics language - is zero. Thus the interactions exhibited by the cracks arise from symmetry, from the initial geometry, and from the material properties which induce the FPZ. This complexity makes any long-range prediction of the path(s) impossible.
Systems and methods for analyzing liquids under vacuum
Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua
2013-10-15
Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.
Fast orthogonal transforms and generation of Brownian paths
Leobacher, Gunther
2012-01-01
We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545
Equilibrium paths analysis of materials with rheological properties by using the chaos theory
NASA Astrophysics Data System (ADS)
Bednarek, Paweł; Rządkowski, Jan
2018-01-01
The numerical equilibrium path analysis of the material with random rheological properties by using standard procedures and specialist computer programs was not successful. The proper solution for the analysed heuristic model of the material was obtained on the base of chaos theory elements and neural networks. The paper deals with mathematical reasons of used computer programs and also are elaborated the properties of the attractor used in analysis. There are presented results of conducted numerical analysis both in a numerical and in graphical form for the used procedures.
NASA Astrophysics Data System (ADS)
Everaers, Ralf
2012-08-01
We show that the front factor appearing in the shear modulus of a phantom network, Gph=(1-2/f)(ρkBT)/Ns, also controls the ratio of the strand length, Ns, and the number of monomers per Kuhn length of the primitive paths, NphPPKuhn, characterizing the average network conformation. In particular, NphPPKuhn=Ns/(1-2/f) and Gph=(ρkBT)/NphPPKuhn. Neglecting the difference between cross-links and slip-links, these results can be transferred to entangled systems and the interpretation of primitive path analysis data. In agreement with the tube model, the analogy to phantom networks suggest that the rheological entanglement length, Nerheo=(ρkBT)/Ge, should equal NePPKuhn. Assuming binary entanglements with f=4 functional junctions, we expect that Nerheo should be twice as large as the topological entanglement length, Netopo. These results are in good agreement with reported primitive path analysis results for model systems and a wide range of polymeric materials. Implications for tube and slip-link models are discussed.
Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.
Roff, D A; Fairbairn, D J
2011-09-01
This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Insights into vehicle trajectories at the handling limits: analysing open data from race car drivers
NASA Astrophysics Data System (ADS)
Kegelman, John C.; Harbott, Lene K.; Gerdes, J. Christian
2017-02-01
Race car drivers can offer insights into vehicle control during extreme manoeuvres; however, little data from race teams is publicly available for analysis. The Revs Program at Stanford has built a collection of vehicle dynamics data acquired from vintage race cars during live racing events with the intent of making this database publicly available for future analysis. This paper discusses the data acquisition, post-processing, and storage methods used to generate the database. An analysis of available data quantifies the repeatability of professional race car driver performance by examining the statistical dispersion of their driven paths. Certain map features, such as sections with high path curvature, consistently corresponded to local minima in path dispersion, quantifying the qualitative concept that drivers anchor their racing lines at specific locations around the track. A case study explores how two professional drivers employ distinct driving styles to achieve similar lap times, supporting the idea that driving at the limits allows a family of solutions in terms of paths and speed that can be adapted based on specific spatial, temporal, or other constraints and objectives.
van Velsen, Evert F S; Niessen, Wiro J; de Weert, Thomas T; de Monyé, Cécile; van der Lugt, Aad; Meijering, Erik; Stokking, Rik
2007-07-01
Vessel image analysis is crucial when considering therapeutical options for (cardio-) vascular diseases. Our method, VAMPIRE (Vascular Analysis using Multiscale Paths Inferred from Ridges and Edges), involves two parts: a user defines a start- and endpoint upon which a lumen path is automatically defined, and which is used for initialization; the automatic segmentation of the vessel lumen on computed tomographic angiography (CTA) images. Both parts are based on the detection of vessel-like structures by analyzing intensity, edge, and ridge information. A multi-observer evaluation study was performed to compare VAMPIRE with a conventional method on the CTA data of 15 patients with carotid artery stenosis. In addition to the start- and endpoint, the two radiologists required on average 2.5 (SD: 1.9) additional points to define a lumen path when using the conventional method, and 0.1 (SD: 0.3) when using VAMPIRE. The segmentation results were quantitatively evaluated using Similarity Indices, which were slightly lower between VAMPIRE and the two radiologists (respectively 0.90 and 0.88) compared with the Similarity Index between the radiologists (0.92). The evaluation shows that the improved definition of a lumen path requires minimal user interaction, and that using this path as initialization leads to good automatic lumen segmentation results.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; Roberts, C. M.; White, D. D.; Larson, K. L.; Brewis, A.
2013-06-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences based on development status and, to a lesser extent, water scarcity. People in less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in more developed sites. Thematically, people in less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community based solutions, while people in more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in water-rich sites. Thematically, people in water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun
2015-11-04
There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.
ERIC Educational Resources Information Center
Chiu, Chung-Yi; Lynch, Ruth Torkelson; Chan, Fong; Rose, Lindsey
2012-01-01
The main objective of this study was to evaluate the health action process approach (HAPA) as a motivational model for dietary self-management for people with multiple sclerosis (MS). Quantitative descriptive research design using path analysis was used. Participants were 209 individuals with MS recruited from the National MS Society and a…
ERIC Educational Resources Information Center
Kelly, William E.
2010-01-01
The relation between reading for pleasure, night-sky watching interest, and openness to experience were examined in a sample of 129 college students. Results of a path analysis examining a mediation model indicated that the influence of night-sky interest on reading for pleasure was not mediated by the broad personality domain openness to…
ERIC Educational Resources Information Center
Hu, Chun-mei; Cui, Shu-jing; Wang, Lei
2016-01-01
Objective: To investigate the path analysis of work family conflict, job salary and promotion satisfaction, work engagement to subjective well-being of the primary and middle school principals, and provide advice for enhancing their well-being. Methods: Using convenient sampling, totally 300 primary and middle school principals completed the WFC,…
ERIC Educational Resources Information Center
Harrison, Neil; Agnew, Steve
2016-01-01
This study examines the construction of debt attitudes among 439 first-year undergraduates in England and New Zealand. It works from a conceptual model that predicts that attitudes will be partly determined by a range of social factors, mediated through personality and 'financial literacy'. Path analysis is used to explore this model. The proposed…
ERIC Educational Resources Information Center
Bejar, Isaac I.
1981-01-01
Effects of nutritional supplementation on physical development of malnourished children was analyzed by univariate and multivariate methods for the analysis of repeated measures. Results showed that the nutritional treatment was successful, but it was necessary to resort to the multivariate approach. (Author/GK)
A Multivariate Descriptive Model of Motivation for Orthodontic Treatment.
ERIC Educational Resources Information Center
Hackett, Paul M. W.; And Others
1993-01-01
Motivation for receiving orthodontic treatment was studied among 109 young adults, and a multivariate model of the process is proposed. The combination of smallest scale analysis and Partial Order Scalogram Analysis by base Coordinates (POSAC) illustrates an interesting methodology for health treatment studies and explores motivation for dental…
ERIC Educational Resources Information Center
Grundmann, Matthias
Following the assumptions of ecological socialization research, adequate analysis of socialization conditions must take into account the multilevel and multivariate structure of social factors that impact on human development. This statement implies that complex models of family configurations or of socialization factors are needed to explain the…
Univariate Analysis of Multivariate Outcomes in Educational Psychology.
ERIC Educational Resources Information Center
Hubble, L. M.
1984-01-01
The author examined the prevalence of multiple operational definitions of outcome constructs and an estimate of the incidence of Type I error rates when univariate procedures were applied to multiple variables in educational psychology. Multiple operational definitions of constructs were advocated and wider use of multivariate analysis was…
Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM
ERIC Educational Resources Information Center
Warner, Rebecca M.
2007-01-01
This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…
Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques
NASA Technical Reports Server (NTRS)
McDonald, G.; Storrie-Lombardi, M.; Nealson, K.
1999-01-01
The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.
Microenvironmental and biological/personal monitoring information were collected during the National Human Exposure Assessment Survey (NHEXAS), conducted in the six states comprising U.S. EPA Region Five. They have been analyzed by multivariate analysis techniques with general ...
Multivariate meta-analysis: a robust approach based on the theory of U-statistic.
Ma, Yan; Mazumdar, Madhu
2011-10-30
Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.
Two-condition within-participant statistical mediation analysis: A path-analytic framework.
Montoya, Amanda K; Hayes, Andrew F
2017-03-01
Researchers interested in testing mediation often use designs where participants are measured on a dependent variable Y and a mediator M in both of 2 different circumstances. The dominant approach to assessing mediation in such a design, proposed by Judd, Kenny, and McClelland (2001), relies on a series of hypothesis tests about components of the mediation model and is not based on an estimate of or formal inference about the indirect effect. In this article we recast Judd et al.'s approach in the path-analytic framework that is now commonly used in between-participant mediation analysis. By so doing, it is apparent how to estimate the indirect effect of a within-participant manipulation on some outcome through a mediator as the product of paths of influence. This path-analytic approach eliminates the need for discrete hypothesis tests about components of the model to support a claim of mediation, as Judd et al.'s method requires, because it relies only on an inference about the product of paths-the indirect effect. We generalize methods of inference for the indirect effect widely used in between-participant designs to this within-participant version of mediation analysis, including bootstrap confidence intervals and Monte Carlo confidence intervals. Using this path-analytic approach, we extend the method to models with multiple mediators operating in parallel and serially and discuss the comparison of indirect effects in these more complex models. We offer macros and code for SPSS, SAS, and Mplus that conduct these analyses. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuo; Maillet, Yoann; Wang, Fei
2010-01-01
High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.
Blocking performance approximation in flexi-grid networks
NASA Astrophysics Data System (ADS)
Ge, Fei; Tan, Liansheng
2016-12-01
The blocking probability to the path requests is an important issue in flexible bandwidth optical communications. In this paper, we propose a blocking probability approximation method of path requests in flexi-grid networks. It models the bundled neighboring carrier allocation with a group of birth-death processes and provides a theoretical analysis to the blocking probability under variable bandwidth traffic. The numerical results show the effect of traffic parameters to the blocking probability of path requests. We use the first fit algorithm in network nodes to allocate neighboring carriers to path requests in simulations, and verify approximation results.
Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophytic mutualist
Freeman, Stanley; Rodriguez, Rusty J.
1993-01-01
The filamentous fungal ascomycete Colletotrichum magna causes anthracnose in cucurbit plants. Isolation of a nonpathogenic mutant of this species (path-1) resulted in maintained wild-type levels of in vitro sporulation, spore adhesion, appressorial formation, and infection. Path-1 grew throughout host tissues as an endophyte and retained the wild-type host range, which indicates that the genetics involved in pathogenicity and host specificity are distinct. Prior infection with path-1 protected plants from disease caused by Colletotrichum and Fusarium.Genetic analysis of a cross between path-1 and wild-type strains indicated mutation of a single locus.
Koch, Ina; Schueler, Markus; Heiner, Monika
2005-01-01
To understand biochemical processes caused by, e. g., mutations or deletions in the genome, the knowledge of possible alternative paths between two arbitrary chemical compounds is of increasing interest for biotechnology, pharmacology, medicine, and drug design. With the steadily increasing amount of data from high-throughput experiments new biochemical networks can be constructed and existing ones can be extended, which results in many large metabolic, signal transduction, and gene regulatory networks. The search for alternative paths within these complex and large networks can provide a huge amount of solutions, which can not be handled manually. Moreover, not all of the alternative paths are generally of interest. Therefore, we have developed and implemented a method, which allows us to define constraints to reduce the set of all structurally possible paths to the truly interesting path set. The paper describes the search algorithm and the constraints definition language. We give examples for path searches using this dedicated special language for a Petri net model of the sucrose-to-starch breakdown in the potato tuber.
Koch, Ina; Schüler, Markus; Heiner, Monika
2011-01-01
To understand biochemical processes caused by, e.g., mutations or deletions in the genome, the knowledge of possible alternative paths between two arbitrary chemical compounds is of increasing interest for biotechnology, pharmacology, medicine, and drug design. With the steadily increasing amount of data from high-throughput experiments new biochemical networks can be constructed and existing ones can be extended, which results in many large metabolic, signal transduction, and gene regulatory networks. The search for alternative paths within these complex and large networks can provide a huge amount of solutions, which can not be handled manually. Moreover, not all of the alternative paths are generally of interest. Therefore, we have developed and implemented a method, which allows us to define constraints to reduce the set of all structurally possible paths to the truly interesting path set. The paper describes the search algorithm and the constraints definition language. We give examples for path searches using this dedicated special language for a Petri net model of the sucrose-to-starch breakdown in the potato tuber. http://sanaga.tfh-berlin.de/~stepp/
Classical least squares multivariate spectral analysis
Haaland, David M.
2002-01-01
An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.
Optimal impulsive time-fixed orbital rendezvous and interception with path constraints
NASA Technical Reports Server (NTRS)
Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.
1990-01-01
Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.
Sensory feedback in a bump attractor model of path integration.
Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P
2016-04-01
Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1985-01-01
The bearingless rotorcraft offers reduced weight, less complexity and superior flying qualities. Almost all the current industrial structural dynamic programs of conventional rotors which consist of single load path rotor blades employ the transfer matrix method to determine natural vibration characteristics because this method is ideally suited for one dimensional chain like structures. This method is extended to multiple load path rotor blades without resorting to an equivalent single load path approximation. Unlike the conventional blades, it isk necessary to introduce the axial-degree-of-freedom into the solution process to account for the differential axial displacements in the different load paths. With the present extension, the current rotor dynamic programs can be modified with relative ease to account for the multiple load paths without resorting to the equivalent single load path modeling. The results obtained by the transfer matrix method are validated by comparing with the finite element solutions. A differential stiffness matrix due to blade rotation is derived to facilitate the finite element solutions.
Cultural and social determinants of health among indigenous Mexican migrants in the United States.
Lee, Junghee; Donlan, William; Cardoso, Edgar Ezequiel Orea; Paz, Juan Jesus
2013-01-01
Despite growing numbers, indigenous Mexican migrants are relatively invisible to health practitioners who group them with nonindigenous, mestizo Mexican-origin populations. Associations between indigenous and mestizo cultural identifications with psychosocial characteristics and health indicators among indigenous Mexican migrants were examined. Results revealed gender differences in cultural identifications, perceived discrimination, self-esteem, self-efficacy, and various health indicators including depression severity, culture-bound syndromes, and self-rated health. Multivariate regression and structural equation path modeling demonstrated how indigenous cultural identification and perceived discrimination affects health. Findings suggest that interventions should utilize indigenous community-based activities designed to promote self-esteem and the value of indigenous culture, with a focus on females.
Characterizing multivariate decoding models based on correlated EEG spectral features.
McFarland, Dennis J
2013-07-01
Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil.
Rauscher, Markus S; Tremmel, Anton J; Schardt, Michael; Koch, Alexander W
2017-02-18
The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit.
Gentilini, Davide; Garagnani, Paolo; Pisoni, Serena; Bacalini, Maria Giulia; Calzari, Luciano; Mari, Daniela; Vitale, Giovanni; Franceschi, Claudio; Di Blasio, Anna Maria
2015-08-01
In this study we applied a new analytical strategy to investigate the relations between stochastic epigenetic mutations (SEMs) and aging. We analysed methylation levels through the Infinium HumanMethylation27 and HumanMethylation450 BeadChips in a population of 178 subjects ranging from 3 to 106 years. For each CpG probe, epimutated subjects were identified as the extreme outliers with methylation level exceeding three times interquartile ranges the first quartile (Q1-(3 x IQR)) or the third quartile (Q3+(3 x IQR)). We demonstrated that the number of SEMs was low in childhood and increased exponentially during aging. Using the HUMARA method, skewing of X chromosome inactivation (XCI) was evaluated in heterozygotes women. Multivariate analysis indicated a significant correlation between log(SEMs) and degree of XCI skewing after adjustment for age (β = 0.41; confidence interval: 0.14, 0.68; p-value = 0.0053). The PATH analysis tested the complete model containing the variables: skewing of XCI, age, log(SEMs) and overall CpG methylation. After adjusting for the number of epimutations we failed to confirm the well reported correlation between skewing of XCI and aging. This evidence might suggest that the known correlation between XCI skewing and aging could not be a direct association but mediated by the number of SEMs.
A graphical vector autoregressive modelling approach to the analysis of electronic diary data
2010-01-01
Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research. PMID:20359333
Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil
Rauscher, Markus S.; Tremmel, Anton J.; Schardt, Michael; Koch, Alexander W.
2017-01-01
The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit. PMID:28218701
Time Series Model Identification by Estimating Information.
1982-11-01
principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R
Genomic Analysis of Complex Microbial Communities in Wounds
2012-01-01
thoroughly in the ecology literature. Permutation Multivariate Analysis of Variance ( PerMANOVA ). We used PerMANOVA to test the null-hypothesis of no...difference between the bacterial communities found within a single wound compared to those from different patients (α = 0.05). PerMANOVA is a...permutation-based version of the multivariate analysis of variance (MANOVA). PerMANOVA uses the distances between samples to partition variance and
Parental influences on students' self-concept, task value beliefs, and achievement in science.
Senler, Burcu; Sungur, Semra
2009-05-01
The aim of this study was twofold: firstly, to investigate the grade level (elementary and middle school) and gender effect on students' motivation in science (perceived academic science self-concept and task value) and perceived family involvement, and secondly to examine the relationship among family environment variables (fathers' educational level, mothers' educational level, and perceived family involvement), motivation, gender and science achievement in elementary and middle schools. Multivariate Analysis of Variance (MANOVA) showed that elementary school students have more positive science self-concept and task value beliefs compared to middle school students. Moreover, elementary school students appeared to perceive more family involvement in their schooling. Path analyses also suggested that family involvement was directly linked to elementary school students' task value and achievement. Also, in elementary school level, significant relationships were found among father educational level, science self-concept, task value and science achievement. On the other hand, in middle school level, family involvement, father educational level, and mother educational level were positively related to students' task value which is directly linked to students' science achievement. Moreover, mother educational level contributed to science achievement through its effect on self-concept.
Scott, Lori N.; Stepp, Stephanie D.; Pilkonis, Paul A.
2014-01-01
Difficulties with emotion regulation and behavioral instability, including impulsive aggression, are seen as core dimensions underlying borderline personality disorder (BPD). Although both BPD and antisocial personality disorder (ASPD) are associated with impulsivity and aggressive behavior, difficulties regulating emotions may be associated uniquely with BPD and may explain distinctive associations between BPD and aggression. This study was designed to examine the unique prospective associations between BPD symptoms at baseline, difficulties with emotion regulation and trait impulsivity, and psychological and physical aggression (both perpetration and victimization) over the course of a year after controlling for ASPD symptoms in a mixed clinical and community sample of adults (N = 150). Results of a multivariate path analysis demonstrated that associations between BPD symptoms at baseline and later psychological and physical aggression were fully mediated by difficulties with emotion regulation. Although BPD symptoms also predicted trait impulsivity, impulsivity did not predict aggression after controlling for emotion dysregulation. ASPD symptoms were directly associated with physical assault perpetration and victimization but were not associated with emotion dysregulation, impulsivity, or psychological aggression. These findings suggest that although both BPD and ASPD are associated with aggressive behaviors, associations between BPD symptoms and aggression are mediated uniquely by difficulties regulating emotions. PMID:24635753
Unraveling spurious properties of interaction networks with tailored random networks.
Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus
2011-01-01
We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.
Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks
Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus
2011-01-01
We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. PMID:21850239
Deployment-Related Benefit Finding and Postdeployment Marital Satisfaction in Military Couples.
Renshaw, Keith D; Campbell, Sarah B
2017-12-01
Extensive research has evaluated potential negative effects of military deployments on romantic relationships. Comparatively few studies have examined potential positive effects of such deployments. In stressful situations, benefit finding (BF) has been found to be linked with better functioning on both individual and interpersonal levels. This study reports on deployment-related BF in a sample of 67 male service members (SMs) who deployed at least once since 9/11/2001 and their wives. Couples completed measures of marital satisfaction at baseline (an average of 1 year postdeployment) and follow-up 4-6 months later. At follow-up, SMs also provided data on symptoms of posttraumatic stress, and both partners provided reports of deployment-related BF. Multivariate path analysis controlling for SMs' PTSD symptom severity revealed that wives' BF was positively associated with increases in SMs' relationship satisfaction. These findings suggest that wives' responses to deployment may be more influential than SMs' responses to deployment on military couples' relationships. This pattern indicates that support for spouses during deployments is essential; furthermore, such support should include an emphasis on trying to facilitate personal growth in spouses. © 2016 Family Process Institute.
Equilibrium paths of an imperfect plate with respect to its aspect ratio
NASA Astrophysics Data System (ADS)
Psotny, Martin
2017-07-01
The stability analysis of a rectangular plate loaded in compression is presented, a specialized code based on FEM has been created. Special finite element with 48 degrees of freedom has been used for analysis. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To trace the complete nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used, load versus displacement control was changed during the calculation process. The peculiarities of the effects of the initial imperfections on the load-deflection paths are investigated with respect to aspect ratio of the plate. Special attention is paid to the influence of imperfections on the post-critical buckling mode.
Influence of Shear Stiffness Degradation on Crack Paths in Uni-Directional Composite Laminates
NASA Technical Reports Server (NTRS)
Satyanarayana, Arunkumar; Bogert, Phil B.
2017-01-01
Influence of shear stiffness degradation in an element, due to damage, on crack paths in uni-directional laminates has been demonstrated. A new shear stiffness degradation approach to improve crack path prediction has been developed and implemented in an ABAQUS/Explicit frame work using VUMAT. Three progressive failure analysis models, built-in ABAQUS (TradeMark), original COmplete STress Reduction (COSTR) and the modified COSTR damage models have been utilized in this study to simulate crack paths in five unidirectional notched laminates, 15deg, 30deg, 45deg, 60deg and 75deg under uniaxial tension load. Results such as crack paths and load vs. edge displacement curves are documented in this report. Modified COSTR damage model shows better accuracy in predicting crack paths in all the uni-directional laminates compared to the ABAQUS (TradeMark) and the original COSTR damage models.
On load paths and load bearing topology from finite element analysis
NASA Astrophysics Data System (ADS)
Kelly, D.; Reidsema, C.; Lee, M.
2010-06-01
Load paths can be mapped from vector plots of 'pointing stress vectors'. They define a path along which a component of load remains constant as it traverses the solution domain. In this paper the theory for the paths is first defined. Properties of the plots that enable a designer to interpret the structural behavior from the contours are then identified. Because stress is a second order tensor defined on an orthogonal set of axes, the vector plots define separate paths for load transfer in each direction of the set of axes. An algorithm is therefore presented that combines the vectors to define a topology to carry the loads. The algorithm is shown to straighten the paths reducing bending moments and removing stress concentration. Application to a bolted joint, a racing car body and a yacht hull demonstrate the usefulness of the plots.
Predictor laws for pictorial flight displays
NASA Technical Reports Server (NTRS)
Grunwald, A. J.
1985-01-01
Two predictor laws are formulated and analyzed: (1) a circular path law based on constant accelerations perpendicular to the path and (2) a predictor law based on state transition matrix computations. It is shown that for both methods the predictor provides the essential lead zeros for the path-following task. However, in contrast to the circular path law, the state transition matrix law furnishes the system with additional zeros that entirely cancel out the higher-frequency poles of the vehicle dynamics. On the other hand, the circular path law yields a zero steady-state error in following a curved trajectory with a constant radius. A combined predictor law is suggested that utilizes the advantages of both methods. A simple analysis shows that the optimal prediction time mainly depends on the level of precision required in the path-following task, and guidelines for determining the optimal prediction time are given.
Vibrational Analysis of a Shipboard Free Electron Laser Beam Path
2011-12-01
2 Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1...in Figure 2. Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1]) The narrow beam...3 is a top down view of the entire electron beam path. Figure 3. Electron Beam Line of a Notional FEL Oscillator . 2. Optical Path The optical
A career path in clinical pathways.
Bower, K A
1998-03-01
Much like the development of a clinical path, the creation of a career path requires knowledge of patterns of behavior, needs for standardized education and skill development, along with variance analysis and individualized care. This nationally known nursing entrepreneur tells the story of her involvement in the development of case management and clinical pathways and how she turned that into a successful business that has changed how patient care is managed nationally and internationally.
The Role of Datasets on Scientific Influence within Conflict Research
Van Holt, Tracy; Johnson, Jeffery C.; Moates, Shiloh; Carley, Kathleen M.
2016-01-01
We inductively tested if a coherent field of inquiry in human conflict research emerged in an analysis of published research involving “conflict” in the Web of Science (WoS) over a 66-year period (1945–2011). We created a citation network that linked the 62,504 WoS records and their cited literature. We performed a critical path analysis (CPA), a specialized social network analysis on this citation network (~1.5 million works), to highlight the main contributions in conflict research and to test if research on conflict has in fact evolved to represent a coherent field of inquiry. Out of this vast dataset, 49 academic works were highlighted by the CPA suggesting a coherent field of inquiry; which means that researchers in the field acknowledge seminal contributions and share a common knowledge base. Other conflict concepts that were also analyzed—such as interpersonal conflict or conflict among pharmaceuticals, for example, did not form their own CP. A single path formed, meaning that there was a cohesive set of ideas that built upon previous research. This is in contrast to a main path analysis of conflict from 1957–1971 where ideas didn’t persist in that multiple paths existed and died or emerged reflecting lack of scientific coherence (Carley, Hummon, and Harty, 1993). The critical path consisted of a number of key features: 1) Concepts that built throughout include the notion that resource availability drives conflict, which emerged in the 1960s-1990s and continued on until 2011. More recent intrastate studies that focused on inequalities emerged from interstate studies on the democracy of peace earlier on the path. 2) Recent research on the path focused on forecasting conflict, which depends on well-developed metrics and theories to model. 3) We used keyword analysis to independently show how the CP was topically linked (i.e., through democracy, modeling, resources, and geography). Publically available conflict datasets developed early on helped shape the operationalization of conflict. In fact, 94% of the works on the CP that analyzed data either relied on publically available datasets, or they generated a dataset and made it public. These datasets appear to be important in the development of conflict research, allowing for cross-case comparisons, and comparisons to previous works. PMID:27124569
The Role of Datasets on Scientific Influence within Conflict Research.
Van Holt, Tracy; Johnson, Jeffery C; Moates, Shiloh; Carley, Kathleen M
2016-01-01
We inductively tested if a coherent field of inquiry in human conflict research emerged in an analysis of published research involving "conflict" in the Web of Science (WoS) over a 66-year period (1945-2011). We created a citation network that linked the 62,504 WoS records and their cited literature. We performed a critical path analysis (CPA), a specialized social network analysis on this citation network (~1.5 million works), to highlight the main contributions in conflict research and to test if research on conflict has in fact evolved to represent a coherent field of inquiry. Out of this vast dataset, 49 academic works were highlighted by the CPA suggesting a coherent field of inquiry; which means that researchers in the field acknowledge seminal contributions and share a common knowledge base. Other conflict concepts that were also analyzed-such as interpersonal conflict or conflict among pharmaceuticals, for example, did not form their own CP. A single path formed, meaning that there was a cohesive set of ideas that built upon previous research. This is in contrast to a main path analysis of conflict from 1957-1971 where ideas didn't persist in that multiple paths existed and died or emerged reflecting lack of scientific coherence (Carley, Hummon, and Harty, 1993). The critical path consisted of a number of key features: 1) Concepts that built throughout include the notion that resource availability drives conflict, which emerged in the 1960s-1990s and continued on until 2011. More recent intrastate studies that focused on inequalities emerged from interstate studies on the democracy of peace earlier on the path. 2) Recent research on the path focused on forecasting conflict, which depends on well-developed metrics and theories to model. 3) We used keyword analysis to independently show how the CP was topically linked (i.e., through democracy, modeling, resources, and geography). Publically available conflict datasets developed early on helped shape the operationalization of conflict. In fact, 94% of the works on the CP that analyzed data either relied on publically available datasets, or they generated a dataset and made it public. These datasets appear to be important in the development of conflict research, allowing for cross-case comparisons, and comparisons to previous works.
Prescription Pain Medicines - An Addictive Path?
... Addictive Path? Past Issues / Fall 2007 Table of Contents For an enhanced version of this page please turn Javascript on. Many Americans may have been startled last summer when an Associated Press (AP) analysis of U.S. Drug Enforcement Administration statistics showed that ...
In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis
Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan
2007-11-10
In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2004-03-23
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2005-12-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provides a unique opportunity to analyze the local atmospheric chemical composition. Many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of diurnal trends in the trace gas concentrations. Anthropogenic influences are of special interest, and seasonal and daily trends in amounts of tropospheric pollutants such as ozone correlate with other sources such as the EPA. Although obviously limited by weather considerations, the technique is suited to the regional climate and a body of data of more than two years extent is available for analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagli, Stefano, E-mail: stefano.bagli@gecosistema.i; Geneletti, Davide, E-mail: davide.geneletti@ing.unitn.i; Center for International Development, Harvard University, 79 JFK Street, Cambridge, MA 02138
2011-04-15
Least-cost path analysis (LCPA) allows designers to find the 'cheapest' way to connect two locations within a cost surface, which can be computed by combining multiple criteria, and therefore by accounting for different issues (environmental impact, economic investment, etc.). This procedure can be easily implemented with modern Geographic Information System (GIS) technologies, and consequently it has been widely employed to support planning and design of different types of linear infrastructures, ranging from roads to pipelines. This paper presents an approach based on the integration of multicriteria evaluation (MCE) and LCPA to identify the most suitable route for a 132 kVmore » power line. Criteria such as cost, visibility, population density, and ecosystem naturalness were used for the analysis. Firstly, spatial MCE and LCPA were combined to generate cost surfaces, and to identify alternative paths. Subsequently, MCE was used to compare the alternatives, and rank them according to their overall suitability. Finally, a sensitivity analysis allowed the stability of the results to be tested and the most critical factors of the evaluation to be detected. The study found that small changes in the location of the power line start and end points can result in significantly different paths, and consequently impact levels. This suggested that planners should always consider alternative potential locations of terminals in order to identify the best path. Furthermore, it was shown that the use of different weight scenarios may help making the model adaptable to varying environmental and social contexts. The approach was tested on a real-world case study in north-eastern Italy.« less
Richard. D. Wood-Smith; John M. Buffington
1996-01-01
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...
ERIC Educational Resources Information Center
Tchumtchoua, Sylvie; Dey, Dipak K.
2012-01-01
This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…
Use of Multivariate Linkage Analysis for Dissection of a Complex Cognitive Trait
Marlow, Angela J.; Fisher, Simon E.; Francks, Clyde; MacPhie, I. Laurence; Cherny, Stacey S.; Richardson, Alex J.; Talcott, Joel B.; Stein, John F.; Monaco, Anthony P.; Cardon, Lon R.
2003-01-01
Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits. PMID:12587094
The association between body mass index and severe biliary infections: a multivariate analysis.
Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W
2012-11-01
Obesity has been associated with worse infectious disease outcomes. It is a risk factor for cholesterol gallstones, but little is known about associations between body mass index (BMI) and biliary infections. We studied this using factors associated with biliary infections. A total of 427 patients with gallstones were studied. Gallstones, bile, and blood (as applicable) were cultured. Illness severity was classified as follows: none (no infection or inflammation), systemic inflammatory response syndrome (fever, leukocytosis), severe (abscess, cholangitis, empyema), or multi-organ dysfunction syndrome (bacteremia, hypotension, organ failure). Associations between BMI and biliary bacteria, bacteremia, gallstone type, and illness severity were examined using bivariate and multivariate analysis. BMI inversely correlated with pigment stones, biliary bacteria, bacteremia, and increased illness severity on bivariate and multivariate analysis. Obesity correlated with less severe biliary infections. BMI inversely correlated with pigment stones and biliary bacteria; multivariate analysis showed an independent correlation between lower BMI and illness severity. Most patients with severe biliary infections had a normal BMI, suggesting that obesity may be protective in biliary infections. This study examined the correlation between BMI and biliary infection severity. Published by Elsevier Inc.
Multivariate meta-analysis using individual participant data.
Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R
2015-06-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
Vitte, Joana; Ranque, Stéphane; Carsin, Ania; Gomez, Carine; Romain, Thomas; Cassagne, Carole; Gouitaa, Marion; Baravalle-Einaudi, Mélisande; Bel, Nathalie Stremler-Le; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Gaudart, Jean
2017-01-01
Molecular-based allergy diagnosis yields multiple biomarker datasets. The classical diagnostic score for allergic bronchopulmonary aspergillosis (ABPA), a severe disease usually occurring in asthmatic patients and people with cystic fibrosis, comprises succinct immunological criteria formulated in 1977: total IgE, anti- Aspergillus fumigatus ( Af ) IgE, anti- Af "precipitins," and anti- Af IgG. Progress achieved over the last four decades led to multiple IgE and IgG(4) Af biomarkers available with quantitative, standardized, molecular-level reports. These newly available biomarkers have not been included in the current diagnostic criteria, either individually or in algorithms, despite persistent underdiagnosis of ABPA. Large numbers of individual biomarkers may hinder their use in clinical practice. Conversely, multivariate analysis using new tools may bring about a better chance of less diagnostic mistakes. We report here a proof-of-concept work consisting of a three-step multivariate analysis of Af IgE, IgG, and IgG4 biomarkers through a combination of principal component analysis, hierarchical ascendant classification, and classification and regression tree multivariate analysis. The resulting diagnostic algorithms might show the way for novel criteria and improved diagnostic efficiency in Af -sensitized patients at risk for ABPA.
Multivariate analysis of longitudinal rates of change.
Bryan, Matthew; Heagerty, Patrick J
2016-12-10
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed in the literature. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, 'accelerated time' methods have been developed which assume that covariates rescale time in longitudinal models for disease progression. In this manuscript, we detail an alternative multivariate model formulation that directly structures longitudinal rates of change and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Directed Incremental Symbolic Execution
NASA Technical Reports Server (NTRS)
Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz
2011-01-01
The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.
2014-01-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Cho, Hwui-Dong; Kim, Ki-Hun; Hwang, Shin; Ahn, Chul-Soo; Moon, Deok-Bog; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Park, Gil-Chun; Lee, Sung-Gyu
2018-02-01
To compare the outcomes of pure laparoscopic left hemihepatectomy (LLH) versus open left hemihepatectomy (OLH) for benign and malignant conditions using multivariate analysis. All consecutive cases of LLH and OLH between October 2007 and December 2013 in a tertiary referral hospital were enrolled in this retrospective cohort study. All surgical procedures were performed by one surgeon. The LLH and OLH groups were compared in terms of patient demographics, preoperative data, clinical perioperative outcomes, and tumor characteristics in patients with malignancy. Multivariate analysis of the prognostic factors associated with severe complications was then performed. The LLH group (n = 62) had a significantly shorter postoperative hospital stay than the OLH group (n = 118) (9.53 ± 3.30 vs 14.88 ± 11.36 days, p < 0.001). Multivariate analysis revealed that the OLH group had >4 times the risk of the LLH group in terms of developing severe complications (Clavien-Dindo grade ≥III) (odds ratio 4.294, 95% confidence intervals 1.165-15.832, p = 0.029). LLH was a safe and feasible procedure for selected patients. LLH required shorter hospital stay and resulted in less operative blood loss. Multivariate analysis revealed that LLH was associated with a lower risk of severe complications compared to OLH. The authors suggest that LLH could be a reasonable treatment option for selected patients.
Cain, Meghan K; Zhang, Zhiyong; Yuan, Ke-Hai
2017-10-01
Nonnormality of univariate data has been extensively examined previously (Blanca et al., Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84, 2013; Miceeri, Psychological Bulletin, 105(1), 156, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74 % of univariate distributions and 68 % multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17 % in a t-test and 30 % in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. To facilitate future report of skewness and kurtosis, we provide a tutorial on how to compute univariate and multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.
A Statistical Discrimination Experiment for Eurasian Events Using a Twenty-Seven-Station Network
1980-07-08
to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...the weight assigned to each variable whenever a new one is added. Jennrich, R. I. (1977). Stepwise discriminant analysis , in Statistical Methods for
2015-01-01
different PRBC transfusion volumes. We performed multivariate regression analysis using HRV metrics and routine vital signs to test the hypothesis that...study sponsors did not have any role in the study design, data collection, analysis and interpretation of data, report writing, or the decision to...primary outcome was hemorrhagic injury plus different PRBC transfusion volumes. We performed multivariate regression analysis using HRV metrics and
Multivariate optimum interpolation of surface pressure and winds over oceans
NASA Technical Reports Server (NTRS)
Bloom, S. C.
1984-01-01
The observations of surface pressure are quite sparse over oceanic areas. An effort to improve the analysis of surface pressure over oceans through the development of a multivariate surface analysis scheme which makes use of surface pressure and wind data is discussed. Although the present research used ship winds, future versions of this analysis scheme could utilize winds from additional sources, such as satellite scatterometer data.
The navigation system of the JPL robot
NASA Technical Reports Server (NTRS)
Thompson, A. M.
1977-01-01
The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.
Nonlinear multivariate and time series analysis by neural network methods
NASA Astrophysics Data System (ADS)
Hsieh, William W.
2004-03-01
Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.
Li, Jinling; He, Ming; Han, Wei; Gu, Yifan
2009-05-30
An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Extended shortest path selection for package routing of complex networks
NASA Astrophysics Data System (ADS)
Ye, Fan; Zhang, Lei; Wang, Bing-Hong; Liu, Lu; Zhang, Xing-Yi
The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.
NASA Astrophysics Data System (ADS)
Allen, David
Some informal discussions among educators regarding motivation of students and academic performance have included the topic of magnet schools. The premise is that a focused theme, such as an aspect of science, positively affects student motivation and academic achievement. However, there is limited research involving magnet schools and their influence on student motivation and academic performance. This study provides empirical data for the discussion about magnet schools influence on motivation and academic ability. This study utilized path analysis in a structural equation modeling framework to simultaneously investigate the relationships between demographic exogenous independent variables, the independent variable of attending a science or technology magnet middle school, and the dependent variables of motivation to learn science and academic achievement in science. Due to the categorical nature of the variables, Bayesian statistical analysis was used to calculate the path coefficients and the standardized effects for each relationship in the model. The coefficients of determination were calculated to determine the amount of variance each path explained. Only five of 21 paths had statistical significance. Only one of the five statistically significant paths (Attended Magnet School to Motivation to Learn Science) explained a noteworthy amount (45.8%) of the variance.
Bai, Mingsian R; Pan, Weichi; Chen, Hungyu
2018-03-01
Active noise control (ANC) of headsets is revisited in this paper. An in-depth electroacoustic analysis of the combined loudspeaker-cavity headset system is conducted on the basis of electro-mechano-acoustical analogous circuits. Model matching of the primary path and the secondary path leads to a feedforward control architecture. The ideal controller sheds some light on the key parameters that affect the noise reduction performance. Filtered-X least-mean-squares algorithm is employed to implement the feedforward controller on a digital signal processor. Since the relative delay of the primary path and the secondary path is crucial to the noise reduction performance, multirate signal processing with polyphase implementation is utilized to minimize the effective analog-digital conversion delay in the secondary path. Ad hoc decimation and interpolation filters are designed in order not to introduce excessive phase delays at the cutoff. Real-time experiments are undertaken to validate the implemented ANC system. Listening tests are also conducted to compare the fixed controller and the adaptive controller in terms of noise reduction and signal tracking performance for three noise types. The results have demonstrated that the fixed feedforward controller achieved satisfactory noise reduction performance and signal tracking quality.
Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.
Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz
2014-06-03
We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development.
Effects of eHealth Literacy on General Practitioner Consultations: A Mediation Analysis
Fitzpatrick, Mary Anne; Hess, Alexandra; Sudbury-Riley, Lynn; Hartung, Uwe
2017-01-01
Background Most evidence (not all) points in the direction that individuals with a higher level of health literacy will less frequently utilize the health care system than individuals with lower levels of health literacy. The underlying reasons of this effect are largely unclear, though people’s ability to seek health information independently at the time of wide availability of such information on the Internet has been cited in this context. Objective We propose and test two potential mediators of the negative effect of eHealth literacy on health care utilization: (1) health information seeking and (2) gain in empowerment by information seeking. Methods Data were collected in New Zealand, the United Kingdom, and the United States using a Web-based survey administered by a company specialized on providing online panels. Combined, the three samples resulted in a total of 996 baby boomers born between 1946 and 1965 who had used the Internet to search for and share health information in the previous 6 months. Measured variables include eHealth literacy, Internet health information seeking, the self-perceived gain in empowerment by that information, and the number of consultations with one’s general practitioner (GP). Path analysis was employed for data analysis. Results We found a bundle of indirect effect paths showing a positive relationship between health literacy and health care utilization: via health information seeking (Path 1), via gain in empowerment (Path 2), and via both (Path 3). In addition to the emergence of these indirect effects, the direct effect of health literacy on health care utilization disappeared. Conclusions The indirect paths from health literacy via information seeking and empowerment to GP consultations can be interpreted as a dynamic process and an expression of the ability to find, process, and understand relevant information when that is necessary. PMID:28512081
Statistical Analysis of the Links between Blocking and Nor'easters
NASA Astrophysics Data System (ADS)
Booth, J. F.; Pfahl, S.
2015-12-01
Nor'easters can be loosely defined as extratropical cyclones that develop as they progress northward along the eastern coast of North America. The path makes it possible for these storms to generate storm surge along the coastline and/or heavy precipitation or snow inland. In the present analysis, the path of the storms is investigated relative to the behavior of upstream blocking events over the North Atlantic Ocean. For this analysis, two separate Lagrangian tracking methods are used to identify the extratropical cyclone paths and the blocking events. Using the cyclone paths, Nor'easters are identified and blocking statistics are calculated for the days prior to, during and following the occurrence of the Nor'easters. The path, strength and intensification rates of the cyclones are compared with the strength and location of the blocks. In the event that a Nor'easter occurs, the likelihood of the presence of block at the southeast tip of Greenland is statistically significantly increased, i.e., the presence of a block concurrent with a Nor'easter happens more often than by random coincidence. However no significant link between the strength of the storms and the strength of the block is identified. These results suggest that the presence of the block mainly affects the path of the Nor'easters. On the other hand, in the event of blocking at the southeast tip of Greenland, the likelihood of a Nor'easter, as opposed to a different type of storm is no greater than what one might expect from randomly sampling cyclone tracks. The results confirm a long held understanding in forecast meteorology that upstream blocking is a necessary but not sufficient condition for generating a Nor'easter.
PYCHEM: a multivariate analysis package for python.
Jarvis, Roger M; Broadhurst, David; Johnson, Helen; O'Boyle, Noel M; Goodacre, Royston
2006-10-15
We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of multivariate tools that are available, it has a broad complement of methods that are widely used in the biological sciences. In contrast to tools like MATLAB, PyChem 2.0.0 is easily accessible and free, allows for rapid extension using a range of Python modules and is part of the growing amount of complementary and interoperable scientific software in Python based upon SciPy. One of the attractions of PyChem is that it is an open source project and so there is an opportunity, through collaboration, to increase the scope of the software and to continually evolve a user-friendly platform that has applicability across a wide range of analytical and post-genomic disciplines. http://sourceforge.net/projects/pychem
Borrowing of strength and study weights in multivariate and network meta-analysis.
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2017-12-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).
Multivariate longitudinal data analysis with censored and intermittent missing responses.
Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun
2018-05-08
The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.
Borrowing of strength and study weights in multivariate and network meta-analysis
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2016-01-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254
NASA Astrophysics Data System (ADS)
Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar
2015-06-01
In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.
PathCase-SB architecture and database design
2011-01-01
Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889
Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes
2017-08-30
Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.
Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.
2018-01-01
Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path analysis can help conservation practitioners improve science-based management plans for disturbed aquatic systems worldwide.
Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S
2018-04-01
Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path analysis can help conservation practitioners improve science-based management plans for disturbed aquatic systems worldwide. Copyright © 2017 Elsevier B.V. All rights reserved.
PathFinder: reconstruction and dynamic visualization of metabolic pathways.
Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert
2002-01-01
Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
Multivariate geometry as an approach to algal community analysis
Allen, T.F.H.; Skagen, S.
1973-01-01
Multivariate analyses are put in the context of more usual approaches to phycological investigations. The intuitive common-sense involved in methods of ordination, classification and discrimination are emphasised by simple geometric accounts which avoid jargon and matrix algebra. Warnings are given that artifacts result from technique abuses by the naive or over-enthusiastic. An analysis of a simple periphyton data set is presented as an example of the approach. Suggestions are made as to situations in phycological investigations, where the techniques could be appropriate. The discipline is reprimanded for its neglect of the multivariate approach.
A complete VLBI delay model for deforming radio telescopes: the Effelsberg case
NASA Astrophysics Data System (ADS)
Artz, T.; Springer, A.; Nothnagel, A.
2014-12-01
Deformations of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) observations belong to the class of systematic error sources which require correction in data analysis. In this paper we present a model for all path length variations in the geometrical optics of radio telescopes which are due to gravitational deformation. The Effelsberg 100 m radio telescope of the Max Planck Institute for Radio Astronomy, Bonn, Germany, has been surveyed by various terrestrial methods. Thus, all necessary information that is needed to model the path length variations is available. Additionally, a ray tracing program has been developed which uses as input the parameters of the measured deformations to produce an independent check of the theoretical model. In this program as well as in the theoretical model, the illumination function plays an important role because it serves as the weighting function for the individual path lengths depending on the distance from the optical axis. For the Effelsberg telescope, the biggest contribution to the total path length variations is the bending of the main beam located along the elevation axis which partly carries the weight of the paraboloid at its vertex. The difference in total path length is almost 100 mm when comparing observations at 90 and at 0 elevation angle. The impact of the path length corrections is validated in a global VLBI analysis. The application of the correction model leads to a change in the vertical position of mm. This is more than the maximum path length, but the effect can be explained by the shape of the correction function.
MEPSA: minimum energy pathway analysis for energy landscapes.
Marcos-Alcalde, Iñigo; Setoain, Javier; Mendieta-Moreno, Jesús I; Mendieta, Jesús; Gómez-Puertas, Paulino
2015-12-01
From conformational studies to atomistic descriptions of enzymatic reactions, potential and free energy landscapes can be used to describe biomolecular systems in detail. However, extracting the relevant data of complex 3D energy surfaces can sometimes be laborious. In this article, we present MEPSA (Minimum Energy Path Surface Analysis), a cross-platform user friendly tool for the analysis of energy landscapes from a transition state theory perspective. Some of its most relevant features are: identification of all the barriers and minima of the landscape at once, description of maxima edge profiles, detection of the lowest energy path connecting two minima and generation of transition state theory diagrams along these paths. In addition to a built-in plotting system, MEPSA can save most of the generated data into easily parseable text files, allowing more versatile uses of MEPSA's output such as the generation of molecular dynamics restraints from a calculated path. MEPSA is freely available (under GPLv3 license) at: http://bioweb.cbm.uam.es/software/MEPSA/ CONTACT: pagomez@cbm.csic.es. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jang, Sun Joo; Park, Hyunju; Kim, Hyunjung; Chang, Sun Ju
2015-06-01
The purpose of the study was to identify factors influencing physical activity among community-dwelling older adults with type 2 diabetes. The study design was based on the Theory of Triadic Influence. A total of 242 older adults with type 2 diabetes participated in this study. Six variables related to physical activity in older adults, including self-efficacy, social normative belief, attitudes, intention, experience, and level of physical activity, were measured using reliable instruments. Data were analyzed using descriptive statistics, Pearson's correlation analyses, and a path analysis. The mean physical activity score was 104.2, range from zero to 381.21. The path analysis showed that self-efficacy had the greatest total effect on physical activity. Also, experience had direct and total effects on physical activity as well as mediated the paths of social normative beliefs to attitudes and intention to physical activity. These factors accounted for 10% of the total variance, and the fit indices of the model satisfied the criteria of fitness. The findings of the study reveal the important role of self-efficacy and past experience in physical activity in older adults with type 2 diabetes.
Breaking the Change Barrier: A 40 Year Analysis of Air Force Pilot Retention Solutions
national defense. A problem/solution research methodology using the organizational management theory of path dependence explored the implications of the...exodus is to start the incentive process earlier in the career and prior to the final decision to separate. Path dependent analysis indicates all prior... incentive options and personal involvement in the overall process. The Air Force can annually budget and forecast incentive requirements and personnel
Comparison of Optimum Interpolation and Cressman Analyses
NASA Technical Reports Server (NTRS)
Baker, W. E.; Bloom, S. C.; Nestler, M. S.
1984-01-01
The objective of this investigation is to develop a state-of-the-art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies. A three-dimensional multivariate O/I analysis scheme has been developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.
Comparison of Optimum Interpolation and Cressman Analyses
NASA Technical Reports Server (NTRS)
Baker, W. E.; Bloom, S. C.; Nestler, M. S.
1985-01-01
The development of a state of the art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies was investigated. A three dimensional multivariate O/I analysis scheme was developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.
1992-01-01
Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.
Automatic Match between Delimitation Line and Real Terrain Based on Least-Cost Path Analysis
NASA Astrophysics Data System (ADS)
Feng, C. Q.; Jiang, N.; Zhang, X. N.; Ma, J.
2013-11-01
Nowadays, during the international negotiation on separating dispute areas, manual adjusting is lonely applied to the match between delimitation line and real terrain, which not only consumes much time and great labor force, but also cannot ensure high precision. Concerning that, the paper mainly explores automatic match between them and study its general solution based on Least -Cost Path Analysis. First, under the guidelines of delimitation laws, the cost layer is acquired through special disposals of delimitation line and terrain features line. Second, a new delimitation line gets constructed with the help of Least-Cost Path Analysis. Third, the whole automatic match model is built via Module Builder in order to share and reuse it. Finally, the result of automatic match is analyzed from many different aspects, including delimitation laws, two-sided benefits and so on. Consequently, a conclusion is made that the method of automatic match is feasible and effective.
Correlation and path analysis of biomass sorghum production.
Vendruscolo, T P S; Barelli, M A A; Castrillon, M A S; da Silva, R S; de Oliveira, F T; Corrêa, C L; Zago, B W; Tardin, F D
2016-12-23
Sorghum biomass is an interesting raw material for bioenergy production due to its versatility, potential of being a renewable energy source, and low-cost of production. The objective of this study was to evaluate the genetic variability of biomass sorghum genotypes and to estimate genotypic, phenotypic, and environmental correlations, and direct and indirect effects of seven agronomic traits through path analysis. Thirty-four biomass sorghum genotypes and two forage sorghum genotypes were cultivated in a randomized block design with three replicates. The following morpho-agronomic traits were evaluated: flowering date, stem diameter, number of stems, plant height, number of leaves, green mass production, and dry matter production. There were significant differences at the 1% level for all traits. The highest genotypic correlation was found between the traits green mass production and dry matter production. The path analysis demonstrated that green mass production and number of leaves can assist in the selection of dry matter production.
Mund, Marcus; Neyer, Franz J
2016-10-01
Prior research demonstrated influences of personality traits and their development on later status of subjective health and loneliness. In the present study, we intended to extend these findings by examining mutual influences between health-related characteristics and personality traits and their development over time. German adults were assessed at two time points across 15 years (NT1 = 654, NT2 = 271; Mage at Time 1 = 24.39, SD = 3.69). Data were analyzed with multivariate structural equation models and a multivariate latent change model. Neuroticism was found to predict later levels and the development of subjective health and loneliness. While subjective health likewise predicted later levels of Neuroticism, loneliness was found to be predictive of later levels as well as the development of Neuroticism, Extraversion, and Conscientiousness. Correlated changes indicated that developing a socially more desirable personality is associated with slower declines in subjective health and slower increases in loneliness. The findings indicate that characteristics related to an individual's health are reciprocally associated with personality traits. Thus, the study adds to the understanding of the development of personality and health-related characteristics. © 2015 Wiley Periodicals, Inc.
Modeling stochastic frontier based on vine copulas
NASA Astrophysics Data System (ADS)
Constantino, Michel; Candido, Osvaldo; Tabak, Benjamin M.; da Costa, Reginaldo Brito
2017-11-01
This article models a production function and analyzes the technical efficiency of listed companies in the United States, Germany and England between 2005 and 2012 based on the vine copula approach. Traditional estimates of the stochastic frontier assume that data is multivariate normally distributed and there is no source of asymmetry. The proposed method based on vine copulas allow us to explore different types of asymmetry and multivariate distribution. Using data on product, capital and labor, we measure the relative efficiency of the vine production function and estimate the coefficient used in the stochastic frontier literature for comparison purposes. This production vine copula predicts the value added by firms with given capital and labor in a probabilistic way. It thereby stands in sharp contrast to the production function, where the output of firms is completely deterministic. The results show that, on average, S&P500 companies are more efficient than companies listed in England and Germany, which presented similar average efficiency coefficients. For comparative purposes, the traditional stochastic frontier was estimated and the results showed discrepancies between the coefficients obtained by the application of the two methods, traditional and frontier-vine, opening new paths of non-linear research.
Addendum to "Free energies from integral equation theories: enforcing path independence".
Kast, Stefan M
2006-01-01
The variational formalism developed for the analysis of the path dependence of free energies from integral equation theories [S. M. Kast, Phys. Rev. E 67, 041203 (2003)] is extended in order to allow for the three-dimensional treatment of arbitrarily shaped solutes.
Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms
ERIC Educational Resources Information Center
Anderson, John R.
2012-01-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…
Missing Data and Multiple Imputation in the Context of Multivariate Analysis of Variance
ERIC Educational Resources Information Center
Finch, W. Holmes
2016-01-01
Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…
Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity
ERIC Educational Resources Information Center
Dinov, Ivo D.; Christou, Nicolas
2011-01-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…
ERIC Educational Resources Information Center
Kim, Soyoung; Olejnik, Stephen
2005-01-01
The sampling distributions of five popular measures of association with and without two bias adjusting methods were examined for the single factor fixed-effects multivariate analysis of variance model. The number of groups, sample sizes, number of outcomes, and the strength of association were manipulated. The results indicate that all five…
Multivariate analysis of climate along the southern coast of Alaskasome forestry implications.
Wilbur A. Farr; John S. Hard
1987-01-01
A multivariate analysis of climate was used to delineate 10 significantly different groups of climatic stations along the southern coast of Alaska based on latitude, longitude, seasonal temperatures and precipitation, frost-free periods, and total number of growing degree days. The climatic stations were too few to delineate this rugged, mountainous region into...
Primitive Path Analysis and Stress Distribution in Highly Strained Macromolecules
2017-01-01
Polymer material properties are strongly affected by entanglement effects. For long polymer chains and composite materials, they are expected to be at the origin of many technically important phenomena, such as shear thinning or the Mullins effect, which microscopically can be related to topological constraints between chains. Starting from fully equilibrated highly entangled polymer melts, we investigate the effect of isochoric elongation on the entanglement structure and force distribution of such systems. Theoretically, the related viscoelastic response usually is discussed in terms of the tube model. We relate stress relaxation in the linear and nonlinear viscoelastic regimes to a primitive path analysis (PPA) and show that tension forces both along the original paths and along primitive paths, that is, the backbone of the tube, in the stretching direction correspond to each other. Unlike homogeneous relaxation along the chain contour, the PPA reveals a so far not observed long-lived clustering of topological constraints along the chains in the deformed state. PMID:29503762
Molloy, Kevin; Shehu, Amarda
2013-01-01
Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.
Behavior analysis, mentalism, and the path to social justice
Moore, J.
2003-01-01
Traditional psychology is mentalistic in the sense that it appeals to inner causes in the explanation of behavior. Two examples of mentalism in traditional psychology are (a) dispositional attributions and (b) conventional treatments of intelligence. These examples may be linked to such pernicious social -isms as racism and sexism by noting that some individuals justify engaging in discriminatory conduct toward others by appealing to some deficient inner quality of those being discriminated against. This sort of mentalistic appeal ultimately prevents some members of our society from being integrated into society and from progressing down the path of social justice. Behavior analysis offers a constructional alternative to the mentalistic views of traditional psychology and allows our society as a whole to move down the path. PMID:22478401
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study
Neupane, Binod; Beyene, Joseph
2015-01-01
In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance. PMID:26196398
Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.
Neupane, Binod; Beyene, Joseph
2015-01-01
In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously) than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE) of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when the missing data in the endpoint are imputed with null effects and quite large variance.
Many multivariate methods are used in describing and predicting relation; each has its unique usage of categorical and non-categorical data. In multivariate analysis of variance (MANOVA), many response variables (y's) are related to many independent variables that are categorical...
Multivariate Density Estimation and Remote Sensing
NASA Technical Reports Server (NTRS)
Scott, D. W.
1983-01-01
Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.
Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index
NASA Astrophysics Data System (ADS)
Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun
2018-02-01
It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.
Effect of Contact Damage on the Strength of Ceramic Materials.
1982-10-01
variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, H.; Fullwood, R.; Glancy, J.
This is the second volume of a two volume report on the VISA method for evaluating safeguards at fixed-site facilities. This volume contains appendices that support the description of the VISA concept and the initial working version of the method, VISA-1, presented in Volume I. The information is separated into four appendices, each describing details of one of the four analysis modules that comprise the analysis sections of the method. The first appendix discusses Path Analysis methodology, applies it to a Model Fuel Facility, and describes the computer codes that are being used. Introductory material on Path Analysis given inmore » Chapter 3.2.1 and Chapter 4.2.1 of Volume I. The second appendix deals with Detection Analysis, specifically the schemes used in VISA-1 for classifying adversaries and the methods proposed for evaluating individual detection mechanisms in order to build the data base required for detection analysis. Examples of evaluations on identity-access systems, SNM portal monitors, and intrusion devices are provided. The third appendix describes the Containment Analysis overt-segment path ranking, the Monte Carlo engagement model, the network simulation code, the delay mechanism data base, and the results of a sensitivity analysis. The last appendix presents general equations used in Interruption Analysis for combining covert-overt segments and compares them with equations given in Volume I, Chapter 3.« less
Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees
2018-06-07
The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.
Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye
2016-01-13
A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.
Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2017-06-01
The correctness of the consistent histories analysis of weakly interacting probes, related to the path of a particle, is maintained against the criticisms in the Comment, and against the alternative approach described there, which receives no support from standard (textbook) quantum mechanics.
Biological Systems and Career Analysis.
ERIC Educational Resources Information Center
Thiemann, Francis C.
Neither a review of the literature nor three data displays (showing career paths, general influence patterns, and predecessor and successor influence patterns) yield a generative or explanatory theory by which to understand data collected on the professional career paths of Alberta (Canada) educational administrators. The data came from a survey…
Sociological Theory and Youth Aspiration Research: A Critical Overview.
ERIC Educational Resources Information Center
Picou, J. Steven; Wells, Richard H.
Reviewing sociological theories relative to youth aspiration research, the following thesis was presented: "pre-path analysis aspiration research was characterized by a person-centered, middle-range functionalist approach which eventually shifted to a person-centered, functionalist-system approach with the introduction of the path model…
A Course in... Multivariable Control Methods.
ERIC Educational Resources Information Center
Deshpande, Pradeep B.
1988-01-01
Describes an engineering course for graduate study in process control. Lists four major topics: interaction analysis, multiloop controller design, decoupling, and multivariable control strategies. Suggests a course outline and gives information about each topic. (MVL)
Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q
2017-03-22
Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.
Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways
Seyler, Sean L.; Kumar, Avishek; Thorpe, M. F.; Beckstein, Oliver
2015-01-01
Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions. PMID:26488417
Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio
2016-10-01
personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.
Compensation of high order harmonic long quantum-path attosecond chirp
NASA Astrophysics Data System (ADS)
Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.
2017-12-01
We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.
Evaluating the risk of industrial espionage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott, T.F.
1998-12-31
A methodology for estimating the relative probabilities of different compromise paths for protected information by insider and visitor intelligence collectors has been developed based on an event-tree analysis of the intelligence collection operation. The analyst identifies target information and ultimate users who might attempt to gain that information. The analyst then uses an event tree to develop a set of compromise paths. Probability models are developed for each of the compromise paths that user parameters based on expert judgment or historical data on security violations. The resulting probability estimates indicate the relative likelihood of different compromise paths and provide anmore » input for security resource allocation. Application of the methodology is demonstrated using a national security example. A set of compromise paths and probability models specifically addressing this example espionage problem are developed. The probability models for hard-copy information compromise paths are quantified as an illustration of the results using parametric values representative of historical data available in secure facilities, supplemented where necessary by expert judgment.« less
NASA Astrophysics Data System (ADS)
Naharudin, N.; Ahamad, M. S. S.; Sadullah, A. F. M.
2017-10-01
Every transit trip begins and ends with pedestrian travel. People need to walk to access the transit services. However, their choice to walk depends on many factors including the connectivity, level of comfort and safety. These factors can influence the pleasantness of riding the transit itself, especially during the first/last mile (FLM) journey. This had triggered few studies attempting to measure the pedestrian-friendliness a walking environment can offer. There were studies that implement the pedestrian experience on walking to assess the pedestrian-friendliness of a walking environment. There were also studies that use spatial analysis to measure it based on the path connectivity and accessibility to public facilities and amenities. Though both are good, but the perception-based studies and spatial analysis can be combined to derive more holistic results. This paper proposes a framework for selecting a pedestrian-friendly path for the FLM transit journey by using the two techniques (perception-based and spatial analysis). First, the degree of importance for the factors influencing a good walking environment will be aggregated by using Analytical Network Process (ANP) decision rules based on people's preferences on those factors. The weight will then be used as attributes in the GIS network analysis. Next, the network analysis will be performed to find a pedestrian-friendly walking route based on the priorities aggregated by ANP. It will choose routes passing through the preferred attributes accordingly. The final output is a map showing pedestrian-friendly walking path for the FLM transit journey.
Independent Predictors of Prognosis Based on Oral Cavity Squamous Cell Carcinoma Surgical Margins.
Buchakjian, Marisa R; Ginader, Timothy; Tasche, Kendall K; Pagedar, Nitin A; Smith, Brian J; Sperry, Steven M
2018-05-01
Objective To conduct a multivariate analysis of a large cohort of oral cavity squamous cell carcinoma (OCSCC) cases for independent predictors of local recurrence (LR) and overall survival (OS), with emphasis on the relationship between (1) prognosis and (2) main specimen permanent margins and intraoperative tumor bed frozen margins. Study Design Retrospective cohort study. Setting Tertiary academic head and neck cancer program. Subjects and Methods This study included 426 patients treated with OCSCC resection between 2005 and 2014 at University of Iowa Hospitals and Clinics. Patients underwent excision of OCSCC with intraoperative tumor bed frozen margin sampling and main specimen permanent margin assessment. Multivariate analysis of the data set to predict LR and OS was performed. Results Independent predictors of LR included nodal involvement, histologic grade, and main specimen permanent margin status. Specifically, the presence of a positive margin (odds ratio, 6.21; 95% CI, 3.3-11.9) or <1-mm/carcinoma in situ margin (odds ratio, 2.41; 95% CI, 1.19-4.87) on the main specimen was an independent predictor of LR, whereas intraoperative tumor bed margins were not predictive of LR on multivariate analysis. Similarly, independent predictors of OS on multivariate analysis included nodal involvement, extracapsular extension, and a positive main specimen margin. Tumor bed margins did not independently predict OS. Conclusion The main specimen margin is a strong independent predictor of LR and OS on multivariate analysis. Intraoperative tumor bed frozen margins do not independently predict prognosis. We conclude that emphasis should be placed on evaluating the main specimen margins when estimating prognosis after OCSCC resection.
NASA Astrophysics Data System (ADS)
Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Galarraga, Remigio; Mynett, Arthur
2014-05-01
Simulations of carbon cycling are prone to uncertainties from different sources, which in general are related to input data, parameters and the model representation capacities itself. The gross carbon uptake in the cycle is represented by the gross primary production (GPP), which deals with the spatio-temporal variability of the precipitation and the soil moisture dynamics. This variability associated with uncertainty of the parameters can be modelled by multivariate probabilistic distributions. Our study presents a novel methodology that uses multivariate Copulas analysis to assess the GPP. Multi-species and elevations variables are included in a first scenario of the analysis. Hydro-meteorological conditions that might generate a change in the next 50 or more years are included in a second scenario of this analysis. The biogeochemical model BIOME-BGC was applied in the Ecuadorian Andean region in elevations greater than 4000 masl with the presence of typical vegetation of páramo. The change of GPP over time is crucial for climate scenarios of the carbon cycling in this type of ecosystem. The results help to improve our understanding of the ecosystem function and clarify the dynamics and the relationship with the change of climate variables. Keywords: multivariate analysis, Copula, BIOME-BGC, NPP, páramos
Multivariate analysis of cytokine profiles in pregnancy complications.
Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali
2018-03-01
The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.
Wang, Yong; Yao, Xiaomei; Parthasarathy, Ranganathan
2008-01-01
Fourier transform infrared (FTIR) chemical imaging can be used to investigate molecular chemical features of the adhesive/dentin interfaces. However, the information is not straightforward, and is not easily extracted. The objective of this study was to use multivariate analysis methods, principal component analysis and fuzzy c-means clustering, to analyze spectral data in comparison with univariate analysis. The spectral imaging data collected from both the adhesive/healthy dentin and adhesive/caries-affected dentin specimens were used and compared. The univariate statistical methods such as mapping of intensities of specific functional group do not always accurately identify functional group locations and concentrations due to more or less band overlapping in adhesive and dentin. Apart from the ease with which information can be extracted, multivariate methods highlight subtle and often important changes in the spectra that are difficult to observe using univariate methods. The results showed that the multivariate methods gave more satisfactory, interpretable results than univariate methods and were conclusive in showing that they can discriminate and classify differences between healthy dentin and caries-affected dentin within the interfacial regions. It is demonstrated that the multivariate FTIR imaging approaches can be used in the rapid characterization of heterogeneous, complex structure. PMID:18980198
Multivariate Analysis of Longitudinal Rates of Change
Bryan, Matthew; Heagerty, Patrick J.
2016-01-01
Longitudinal data allow direct comparison of the change in patient outcomes associated with treatment or exposure. Frequently, several longitudinal measures are collected that either reflect a common underlying health status, or characterize processes that are influenced in a similar way by covariates such as exposure or demographic characteristics. Statistical methods that can combine multivariate response variables into common measures of covariate effects have been proposed by Roy and Lin [1]; Proust-Lima, Letenneur and Jacqmin-Gadda [2]; and Gray and Brookmeyer [3] among others. Current methods for characterizing the relationship between covariates and the rate of change in multivariate outcomes are limited to select models. For example, Gray and Brookmeyer [3] introduce an “accelerated time” method which assumes that covariates rescale time in longitudinal models for disease progression. In this manuscript we detail an alternative multivariate model formulation that directly structures longitudinal rates of change, and that permits a common covariate effect across multiple outcomes. We detail maximum likelihood estimation for a multivariate longitudinal mixed model. We show via asymptotic calculations the potential gain in power that may be achieved with a common analysis of multiple outcomes. We apply the proposed methods to the analysis of a trivariate outcome for infant growth and compare rates of change for HIV infected and uninfected infants. PMID:27417129
Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis
NASA Astrophysics Data System (ADS)
Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful
2016-02-01
This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.
Griswold, Cortland K
2015-12-21
Epistatic gene action occurs when mutations or alleles interact to produce a phenotype. Theoretically and empirically it is of interest to know whether gene interactions can facilitate the evolution of diversity. In this paper, we explore how epistatic gene action affects the additive genetic component or heritable component of multivariate trait variation, as well as how epistatic gene action affects the evolvability of multivariate traits. The analysis involves a sexually reproducing and recombining population. Our results indicate that under stabilizing selection conditions a population with a mixed additive and epistatic genetic architecture can have greater multivariate additive genetic variation and evolvability than a population with a purely additive genetic architecture. That greater multivariate additive genetic variation can occur with epistasis is in contrast to previous theory that indicated univariate additive genetic variation is decreased with epistasis under stabilizing selection conditions. In a multivariate setting, epistasis leads to less relative covariance among individuals in their genotypic, as well as their breeding values, which facilitates the maintenance of additive genetic variation and increases a population׳s evolvability. Our analysis involves linking the combinatorial nature of epistatic genetic effects to the ancestral graph structure of a population to provide insight into the consequences of epistasis on multivariate trait variation and evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Joo, Soohyung; Kipp, Margaret E. I.
2015-01-01
Introduction: This study examines the structure of Web space in the field of library and information science using multivariate analysis of social tags from the Website, Delicious.com. A few studies have examined mathematical modelling of tags, mainly examining tagging in terms of tripartite graphs, pattern tracing and descriptive statistics. This…
2016-06-01
unlimited. v List of Tables Table 1 Single-lap-joint experimental parameters ..............................................7 Table 2 Survey ...Joints: Experimental and Workflow Protocols by Robert E Jensen, Daniel C DeSchepper, and David P Flanagan Approved for...TR-7696 ● JUNE 2016 US Army Research Laboratory Multivariate Analysis of High Through-Put Adhesively Bonded Single Lap Joints: Experimental
A Multivariate Model for the Meta-Analysis of Study Level Survival Data at Multiple Times
ERIC Educational Resources Information Center
Jackson, Dan; Rollins, Katie; Coughlin, Patrick
2014-01-01
Motivated by our meta-analytic dataset involving survival rates after treatment for critical leg ischemia, we develop and apply a new multivariate model for the meta-analysis of study level survival data at multiple times. Our data set involves 50 studies that provide mortality rates at up to seven time points, which we model simultaneously, and…
Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F
2011-06-01
We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.
Bastidas, Camila Y; von Plessing, Carlos; Troncoso, José; Del P Castillo, Rosario
2018-04-15
Fourier Transform infrared imaging and multivariate analysis were used to identify, at the microscopic level, the presence of florfenicol (FF), a heavily-used antibiotic in the salmon industry, supplied to fishes in feed pellets for the treatment of salmonid rickettsial septicemia (SRS). The FF distribution was evaluated using Principal Component Analysis (PCA) and Augmented Multivariate Curve Resolution with Alternating Least Squares (augmented MCR-ALS) on the spectra obtained from images with pixel sizes of 6.25 μm × 6.25 μm and 1.56 μm × 1.56 μm, in different zones of feed pellets. Since the concentration of the drug was 3.44 mg FF/g pellet, this is the first report showing the powerful ability of the used of spectroscopic techniques and multivariate analysis, especially the augmented MCR-ALS, to describe the FF distribution in both the surface and inner parts of feed pellets at low concentration, in a complex matrix and at the microscopic level. The results allow monitoring the incorporation of the drug into the feed pellets. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Zhixiang; Shao, Peng; Sun, Qizhao; Zhao, Dong
2015-03-01
The purpose of the present study was to use a prospectively collected data to evaluate the rate of incidental durotomy (ID) during lumbar surgery and determine the associated risk factors by using univariate and multivariate analysis. We retrospectively reviewed 2184 patients who underwent lumbar surgery from January 1, 2009 to December 31, 2011 at a single hospital. Patients with ID (n=97) were compared with the patients without ID (n=2019). The influences of several potential risk factors that might affect the occurrence of ID were assessed using univariate and multivariate analyses. The overall incidence of ID was 4.62%. Univariate analysis demonstrated that older age, diabetes, lumbar central stenosis, posterior approach, revision surgery, prior lumber surgery and minimal invasive surgery are risk factors for ID during lumbar surgery. However, multivariate analysis identified older age, prior lumber surgery, revision surgery, and minimally invasive surgery as independent risk factors. Older age, prior lumber surgery, revision surgery, and minimal invasive surgery were independent risk factors for ID during lumbar surgery. These findings may guide clinicians making future surgical decisions regarding ID and aid in the patient counseling process to alleviate risks and complications. Copyright © 2015 Elsevier B.V. All rights reserved.
MacNab, Ying C
2016-08-01
This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.
Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei
2013-12-03
We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.
Andrés-Toro, B; Girón-Sierra, J M; Fernández-Blanco, P; López-Orozco, J A; Besada-Portas, E
2004-04-01
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
Causal diagrams and multivariate analysis II: precision work.
Jupiter, Daniel C
2014-01-01
In this Investigators' Corner, I continue my discussion of when and why we researchers should include variables in multivariate regression. My examination focuses on studies comparing treatment groups and situations for which we can either exclude variables from multivariate analyses or include them for reasons of precision. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow ...
Structural Equations and Path Analysis for Discrete Data.
ERIC Educational Resources Information Center
Winship, Christopher; Mare, Robert D.
1983-01-01
Presented is an approach to causal models in which some or all variables are discretely measured, showing that path analytic methods permit quantification of causal relationships among variables with the same flexibility and power of interpretation as is feasible in models including only continuous variables. Examples are provided. (Author/IS)
Multivariate optimum interpolation of surface pressure and surface wind over oceans
NASA Technical Reports Server (NTRS)
Bloom, S. C.; Baker, W. E.; Nestler, M. S.
1984-01-01
The present multivariate analysis method for surface pressure and winds incorporates ship wind observations into the analysis of surface pressure. For the specific case of 0000 GMT, on February 3, 1979, the additional data resulted in a global rms difference of 0.6 mb; individual maxima as larse as 5 mb occurred over the North Atlantic and East Pacific Oceans. These differences are noted to be smaller than the analysis increments to the first-guess fields.
NASA Astrophysics Data System (ADS)
Hsiao, Y. R.; Tsai, C.
2017-12-01
As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.
Shams-Ghahfarokhi, Zahra; Khalajabadi-Farahani, Farideh
2016-01-01
Background: Iran has the second highest rate of cesarean section in the world. the corresponding rate in the third metropolitan city of Iran, Isfahan, is even higher. This paper aimed to assess correlates and determinants of intention for cesarean section versus normal vaginal delivery (NVD) among pregnant women in Isfahan. Methods: A study was conducted among 400 pregnant women aged 18–38 years, with gestational age of 24–40 weeks who attended labor clinics of nine hospitals in Isfahan during June and July 2014. Probability proportional to size was used to estimate the number of cases required to be selected for each hospital. T-test, chi-square and logistic regression analysis were employed to analyze the data. Results: Mean age of women was 26.6±4.4 years. Multivariate analysis identified selected factors as determinants of intention for CS. These were “the role of physician” (OR=1.33, p<0.001), “subjective norms” (OR=1.19, p<0.01) and “body Image” (OR= 1.46, p<0.001) upon control of education, income and intended fertility (number of children intended). Moreover, path analysis showed that “attitude towards cesarean section” and “individualism” influence CS decision through subjective norm. Conclusion: Choosing cesarean section voluntarily is a multifaceted decision which is shaped by various factors; hence, comprehensive interventions are suggested to discourage voluntary cesarean section. These interventions need to encompass changes in physicians’ role, social norms, body image and correcting misperceptions among women towards CS and NVD during prenatal courses. PMID:27921002
Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data
NASA Technical Reports Server (NTRS)
Baker, W. E.; Bloom, S. C.; Nestler, M. S.
1985-01-01
A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.
cPath: open source software for collecting, storing, and querying biological pathways.
Cerami, Ethan G; Bader, Gary D; Gross, Benjamin E; Sander, Chris
2006-11-13
Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.
Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel
2015-01-01
The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.
STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL
2015-01-01
Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749
Alves, Vanessa de Oliveira; Bueno, Carlos Eduardo da Silveira; Cunha, Rodrigo Sanches; Pinheiro, Sérgio Luiz; Fontana, Carlos Eduardo; de Martin, Alexandre Sigrist
2012-01-01
Nickel-titanium rotary instruments reduce procedural errors and the time required to finish root canal preparation. The goal of this study was to evaluate the occurrences of apical transportation and canal aberrations produced with different instruments used to create a glide path in the preparation of curved root canals, namely manual K-files (Dentsply Maillefer, Ballaigues, Switzerland) and PathFile (Dentsply Maillefer) and Mtwo (Sweden and Martina, Padua, Italy) nickel-titanium rotary files. The mesial canals of 45 mandibular first and second molars (with curvature angles between 25° and 35°) were selected for this study. The specimens were divided randomly into 3 groups with 15 canals each, and canal preparation was performed by an endodontist using #10-15-20 K-type stainless steel manual files (group M), #13-16-19 PathFile rotary instruments (group PF), and #10-15-20 Mtwo rotary instruments (group MT). The double digital radiograph technique was used, pre- and postinstrumentation, to assess whether apical transportation and/or aberration in root canal morphology occurred. The initial and final images of the central axis of the canals were compared by superimposition through computerized analysis and with the aid of magnification. The specimens were analyzed by 3 evaluators, whose calibration was checked using the Kendall agreement test. No apical transportation or aberration in root canal morphology occurred in any of the teeth; therefore, no statistical analysis was conducted. Neither the manual instruments nor the PathFile or Mtwo rotary instruments used to create a glide path had any influence on the occurrence of apical transportation or produced any canal aberration. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redman, R.S.; Rodriguez, R.J.; Clifton, D.R.
1999-02-01
A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) plant-defense response were investigated in anthracnose-resistant and-susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h andmore » then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1-colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.« less
Rouseff, Daniel; Badiey, Mohsen; Song, Aijun
2009-11-01
The performance of a communications equalizer is quantified in terms of the number of acoustic paths that are treated as usable signal. The analysis uses acoustical and oceanographic data collected off the Hawaiian Island of Kauai. Communication signals were measured on an eight-element vertical array at two different ranges, 1 and 2 km, and processed using an equalizer based on passive time-reversal signal processing. By estimating the Rayleigh parameter, it is shown that all paths reflected by the sea surface at both ranges undergo incoherent scattering. It is demonstrated that some of these incoherently scattered paths are still useful for coherent communications. At range of 1 km, optimal communications performance is achieved when six acoustic paths are retained and all paths with more than one reflection off the sea surface are rejected. Consistent with a model that ignores loss from near-surface bubbles, the performance improves by approximately 1.8 dB when increasing the number of retained paths from four to six. The four-path results though are more stable and require less frequent channel estimation. At range of 2 km, ray refraction is observed and communications performance is optimal when some paths with two sea-surface reflections are retained.
Combining control input with flight path data to evaluate pilot performance in transport aircraft.
Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney
2008-11-01
When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.
Redman, R.S.; Freeman, S.; Clifton, D.R.; Morrel, J.; Brown, G.; Rodriguez, R.J.
1999-01-01
A nonpathogenic mutant of Colletotrichum magna (path-1) was previously shown to protect watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) seedlings from anthracnose disease elicited by wild-type C. magna. Disease protection was observed in stems of path-1-colonized cucurbits but not in cotyledons, indicating that path-1 conferred tissue-specific and/or localized protection. Plant biochemical indicators of a localized and systemic (peroxidase, phenylalanine ammonia-lyase, lignin, and salicylic acid) 'plant-defense' response were investigated in anthracnose-resistant and -susceptible cultivars of cucurbit seedlings exposed to four treatments: (1) water (control), (2) path-1 conidia, (3) wild-type conidia, and (4) challenge conditions (inoculation into path-1 conidia for 48 h and then exposure to wild-type conidia). Collectively, these analyses indicated that disease protection in path-1 colonized plants was correlated with the ability of these plants to mount a defense response more rapidly and to equal or greater levels than plants exposed to wild-type C. magna alone. Watermelon plants colonized with path-1 were also protected against disease caused by Colletotrichum orbiculare and Fusarium oxysporum. A model based on the kinetics of plant-defense activation is presented to explain the mechanism of path-1-conferred disease protection.
Sampling the kinetic pathways of a micelle fusion and fission transition.
Pool, René; Bolhuis, Peter G
2007-06-28
The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.
NASA Astrophysics Data System (ADS)
Wood, Brian M.; Wood, Zoë J.
2006-01-01
We present a visualization and computation tool for modeling the caloric cost of pedestrian travel across three dimensional terrains. This tool is being used in ongoing archaeological research that analyzes how costs of locomotion affect the spatial distribution of trails and artifacts across archaeological landscapes. Throughout human history, traveling by foot has been the most common form of transportation, and therefore analyses of pedestrian travel costs are important for understanding prehistoric patterns of resource acquisition, migration, trade, and political interaction. Traditionally, archaeologists have measured geographic proximity based on "as the crow flies" distance. We propose new methods for terrain visualization and analysis based on measuring paths of least caloric expense, calculated using well established metabolic equations. Our approach provides a human centered metric of geographic closeness, and overcomes significant limitations of available Geographic Information System (GIS) software. We demonstrate such path computations and visualizations applied to archaeological research questions. Our system includes tools to visualize: energetic cost surfaces, comparisons of the elevation profiles of shortest paths versus least cost paths, and the display of paths of least caloric effort on Digital Elevation Models (DEMs). These analysis tools can be applied to calculate and visualize 1) likely locations of prehistoric trails and 2) expected ratios of raw material types to be recovered at archaeological sites.
Spectral compression algorithms for the analysis of very large multivariate images
Keenan, Michael R.
2007-10-16
A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.
NASA Astrophysics Data System (ADS)
Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan
2013-01-01
The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.
New multivariable capabilities of the INCA program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.
1989-01-01
The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.
Bathke, Arne C.; Friedrich, Sarah; Pauly, Markus; Konietschke, Frank; Staffen, Wolfgang; Strobl, Nicolas; Höller, Yvonne
2018-01-01
ABSTRACT To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer’s disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved. PMID:29565679
Development of multivariate exposure and fatal accident involvement rates for 1977
DOT National Transportation Integrated Search
1985-10-01
The need for multivariate accident involvement rates is often encounted in : accident analysis. The FARS (Fatal Accident Reporting System) files contain : records of fatal involvements characterized by many variables while NPTS : (National Personal T...
Bayesian multivariate hierarchical transformation models for ROC analysis.
O'Malley, A James; Zou, Kelly H
2006-02-15
A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.
Bayesian multivariate hierarchical transformation models for ROC analysis
O'Malley, A. James; Zou, Kelly H.
2006-01-01
SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beppler, Christina L
2015-12-01
A new approach was created for studying energetic material degradation. This approach involved detecting and tentatively identifying non-volatile chemical species by liquid chromatography-mass spectrometry (LC-MS) with multivariate statistical data analysis that form as the CL-20 energetic material thermally degraded. Multivariate data analysis showed clear separation and clustering of samples based on sample group: either pristine or aged material. Further analysis showed counter-clockwise trends in the principal components analysis (PCA), a type of multivariate data analysis, Scores plots. These trends may indicate that there was a discrete shift in the chemical markers as the went from pristine to aged material, andmore » then again when the aged CL-20 mixed with a potentially incompatible material was thermally aged for 4, 6, or 9 months. This new approach to studying energetic material degradation should provide greater knowledge of potential degradation markers in these materials.« less
Geladi, Paul; Nelson, Andrew; Lindholm-Sethson, Britta
2007-07-09
Electrical impedance gives multivariate complex number data as results. Two examples of multivariate electrical impedance data measured on lipid monolayers in different solutions give rise to matrices (16x50 and 38x50) of complex numbers. Multivariate data analysis by principal component analysis (PCA) or singular value decomposition (SVD) can be used for complex data and the necessary equations are given. The scores and loadings obtained are vectors of complex numbers. It is shown that the complex number PCA and SVD are better at concentrating information in a few components than the naïve juxtaposition method and that Argand diagrams can replace score and loading plots. Different concentrations of Magainin and Gramicidin A give different responses and also the role of the electrolyte medium can be studied. An interaction of Gramicidin A in the solution with the monolayer over time can be observed.
Sciutto, Giorgia; Oliveri, Paolo; Catelli, Emilio; Bonacini, Irene
2017-01-01
In the field of applied researches in heritage science, the use of multivariate approach is still quite limited and often chemometric results obtained are often underinterpreted. Within this scenario, the present paper is aimed at disseminating the use of suitable multivariate methodologies and proposes a procedural workflow applied on a representative group of case studies, of considerable importance for conservation purposes, as a sort of guideline on the processing and on the interpretation of this FTIR data. Initially, principal component analysis (PCA) is performed and the score values are converted into chemical maps. Successively, the brushing approach is applied, demonstrating its usefulness for a deep understanding of the relationships between the multivariate map and PC score space, as well as for the identification of the spectral bands mainly involved in the definition of each area localised within the score maps. PMID:29333162
Risk Factors for Central Serous Chorioretinopathy: Multivariate Approach in a Case-Control Study.
Chatziralli, Irini; Kabanarou, Stamatina A; Parikakis, Efstratios; Chatzirallis, Alexandros; Xirou, Tina; Mitropoulos, Panagiotis
2017-07-01
The purpose of this prospective study was to investigate the potential risk factors associated independently with central serous retinopathy (CSR) in a Greek population, using multivariate approach. Participants in the study were 183 consecutive patients diagnosed with CSR and 183 controls, matched for age. All participants underwent complete ophthalmological examination and information regarding their sociodemographic, clinical, medical and ophthalmological history were recorded, so as to assess potential risk factors for CSR. Univariate and multivariate analysis was performed. Univariate analysis showed that male sex, high educational status, high income, alcohol consumption, smoking, hypertension, coronary heart disease, obstructive sleep apnea, autoimmune disorders, H. pylori infection, type A personality and stress, steroid use, pregnancy and hyperopia were associated with CSR, while myopia was found to protect from CSR. In multivariate analysis, alcohol consumption, hypertension, coronary heart disease and autoimmune disorders lost their significance, while the remaining factors were all independently associated with CSR. It is important to take into account the various risk factors for CSR, so as to define vulnerable groups and to shed light into the pathogenesis of the disease.
Pedestrian paths: why path-dependence theory leaves health policy analysis lost in space.
Brown, Lawrence D
2010-08-01
Path dependence, a model first advanced to explain puzzles in the diffusion of technology, has lately won allegiance among analysts of the politics of public policy, including health care policy. Though the central premise of the model--that past events and decisions shape options for innovation in the present and future--is indisputable (indeed path dependence is, so to speak, too shallow to be false), the approach, at least as applied to health policy, suffers from ambiguities that undercut its claims to illuminate policy projects such as managed care, on which this article focuses. Because path dependence adds little more than marginal value to familiar images of the politics of policy--incrementalism, for one--analysts might do well to put it on the back burner and pursue instead "thick descriptions" that help them to distinguish different degrees of openness to exogenous change among diverse policy arenas.
Sharrock, R; Gudjonsson, G H
1993-05-01
The main purpose of this study was to investigate the relationship between interrogative suggestibility and previous convictions among 108 defendants in criminal trials, using a path analysis technique. It was hypothesized that previous convictions, which may provide defendants with interrogative experiences, would correlate negatively with 'shift' as measured by the Gudjonsson Suggestibility Scale (Gudjonsson, 1984a), after intelligence and memory had been controlled for. The hypothesis was partially confirmed and the theoretical and practical implications of the findings are discussed.
A Fast, Locally Adaptive, Interactive Retrieval Algorithm for the Analysis of DIAL Measurements
NASA Astrophysics Data System (ADS)
Samarov, D. V.; Rogers, R.; Hair, J. W.; Douglass, K. O.; Plusquellic, D.
2010-12-01
Differential absorption light detection and ranging (DIAL) is a laser-based tool which is used for remote, range-resolved measurement of particular gases in the atmosphere, such as carbon-dioxide and methane. In many instances it is of interest to study how these gases are distributed over a region such as a landfill, factory, or farm. While a single DIAL measurement only tells us about the distribution of a gas along a single path, a sequence of consecutive measurements provides us with information on how that gas is distributed over a region, making DIAL a natural choice for such studies. DIAL measurements present a number of interesting challenges; first, in order to convert the raw data to concentration it is necessary to estimate the derivative along the path of the measurement. Second, as the distribution of gases across a region can be highly heterogeneous it is important that the spatial nature of the measurements be taken into account. Finally, since it is common for the set of collected measurements to be quite large it is important for the method to be computationally efficient. Existing work based on Local Polynomial Regression (LPR) has been developed which addresses the first two issues, but the issue of computational speed remains an open problem. In addition to the latter, another desirable property is to allow user input into the algorithm. In this talk we present a novel method based on LPR which utilizes a variant of the RODEO algorithm to provide a fast, locally adaptive and interactive approach to the analysis of DIAL measurements. This methodology is motivated by and applied to several simulated examples and a study out of NASA Langley Research Center (LaRC) looking at the estimation of aerosol extinction in the atmosphere. A comparison study of our method against several other algorithms is also presented. References Chaudhuri, P., Marron, J.S., Scale-space view of curve estimation, Annals of Statistics 28 (2000) 408-428. Duong, T., Cowling, A., Koch, I., Wand, M.P., Feature significance for multivariate kernel density estimation, Computational Statistics and Data Analysis 52 (2008) 4225-4242. Godtliebsen, F., Marron, J.S., Chaudhuri, P., Statistical Significance of features in digital images, Image and Vision Computing 22 (2004) 1093-1104. Lafferty, J., Wasserman, L., RODEO: Sparse, Greedy Nonparametric Regression, Annals of Statistics 36 (2008) 28-63. Lindstrom, T., Holst, U., Weibring, P., Analysis of lidar fields using local polynomial regression, Environmetrics 16 (2005) 619-634
A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.
ERIC Educational Resources Information Center
Keegan, John; Ditchman, Nicole; Dutta, Alo; Chiu, Chung-Yi; Muller, Veronica; Chan, Fong; Kundu, Madan
2016-01-01
Purpose: To apply the constructs of social cognitive theory (SCT) and the theory of planned behavior (TPB) to understand the stages of change (SOC) for physical activities among individuals with a spinal cord injury (SCI). Method: Ex post facto design using multivariate analysis of variance (MANOVA). The participants were 144 individuals with SCI…
ERIC Educational Resources Information Center
Pezzolo, Alessandra De Lorenzi
2011-01-01
The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…
Oosterhof, Nikolaas N; Wiggett, Alison J; Cross, Emily S
2014-04-01
Cook et al. overstate the evidence supporting their associative account of mirror neurons in humans: most studies do not address a key property, action-specificity that generalizes across the visual and motor domains. Multivariate pattern analysis (MVPA) of neuroimaging data can address this concern, and we illustrate how MVPA can be used to test key predictions of their account.
Multivariate Quantitative Chemical Analysis
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Capezza, Mary
1995-01-01
Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.
Analysis of switch and examine combining with post-examining selection in cognitive radio
NASA Astrophysics Data System (ADS)
Agarwal, Rupali; Srivastava, Neelam; Katiyar, Himanshu
2018-06-01
To perform spectrum sensing in fading environment is one of the most challenging tasks for a CR system. Diversity combining schemes are used to combat the effect of fading and hence detection probability of CR gets improved. Among many diversity combining techniques, switched diversity offers one of the lowest complexity solutions. The receiver embedded with switched diversity looks for an acceptable diversity path (having signal to noise ratio (SNR) above the required threshold) to receive the data. In conventional switch and examine combining (SEC) scheme, when no acceptable path is found after all the paths are examined, the receiver randomly chooses an unacceptable path. Switch and examine combining with post-examining selection (SECp) is a modified version of conventional SEC. In SECp, the conventional SEC scheme is altered in a way that it selects the best path when no acceptable path is found after all paths have been examined. In this paper, formula for probability of detection ( ?) is derived using SECp and SEC diversity combining technique over Rayleigh fading channel. Also the performance of SECp is compared with SEC and no diversity case. Performance comparison is done with the help of SNR vs. ? and complementary receiver operating characteristic curves.
Analysis multi-agent with precense of the leader
NASA Astrophysics Data System (ADS)
Achmadi, Sentot; Marjono, Miswanto
2017-12-01
The phenomenon of swarm is a natural phenomenon that is often done by a collection of living things in the form of motion from one place to another. By clustering, a group of animals can increase their effectiveness in food search and avoid predators. A group of geese also performs a swarm phenomenon when flying and forms an inverted V-formation with one of the geese acting as a leader. Each flying track of members of the geese group always follows the leader's path at a certain distance. This article discusses the mathematical modeling of the swarm phenomenon, which is the optimal tracking control for multi-agent model with the influence of the leader in the 2-dimensional space. The leader in this model is intended to track the specified path. Firstly, the leader's motion control is to follow the predetermined path using the Tracking Error Dynamic method. Then, the path from the leader is used to design the motion control of each agent to track the leader's path at a certain distance. The result of numerical simulation shows that the leader trajectory can track the specified path. Similarly, the motion of each agent can trace and follow the leader's path.
NASA Astrophysics Data System (ADS)
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
Multivariate statistical analysis of low-voltage EDS spectrum images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.M.
1998-03-01
Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.
Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi
2017-01-01
High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The approach for shortest paths in fire succor based on component GIS technology
NASA Astrophysics Data System (ADS)
Han, Jie; Zhao, Yong; Dai, K. W.
2007-06-01
Fire safety is an important issue for the national economy and people's living. Efficiency and exactness of fire department succor directly relate to safety of peoples' lives and property. Many disadvantages of the traditional fire system have been emerged in practical applications. The preparation of pumpers is guided by wireless communication or wire communication, so its real-time and accurate performances are much poorer. The information about the reported fire, such as the position, disaster and map, et al., for alarm and command was processed by persons, which slows the reaction speed and delays the combat opportunity. In order to solve these disadvantages, it has an important role to construct a modern fire command center based on high technology. The construction of modern fire command center can realize the modernization and automation of fire command and management. It will play a great role in protecting safety of peoples' lives and property. The center can enhance battle ability and can reduce the direct and indirect loss of fire damage at most. With the development of science technology, Geographic Information System (GIS) has becoming a new information industry for hardware production, software development, data collection, space analysis and counseling. With the popularization of computers and the development of GIS, GIS has gained increasing broad applications for its strong functionality. Network analysis is one of the most important functions of GIS, and the most elementary and pivotal issue of network analysis is the calculation of shortest paths. The shortest paths are mostly applied to some emergent systems such as 119 fire alarms. These systems mainly require that the computation time of the optimal path should be 1-3 seconds. And during traveling, the next running path of the vehicles should be calculated in time. So the implement of the shortest paths must have a high efficiency. In this paper, the component GIS technology was applied to collect and record the data information (such as, the situation of this disaster, map and road status et al) of the reported fire firstly. The ant colony optimization was used to calculate the shortest path of fire succor secondly. The optimization results were sent to the pumpers, which can let pumpers choose the shortest paths intelligently and come to fire position with least time. The programming method for shortest paths is proposed in section 3. There are three parts in this section. The elementary framework of the proposed programming method is presented in part one. The systematic framework of GIS component is described in part two. The ant colony optimization employed is presented in part three. In section 4, a simple application instance was presented to demonstrate the proposed programming method. There are three parts in this section. The distributed Web application based on component GIS was described in part one. The optimization results without traffic constraint were presented in part two. The optimization results with traffic constraint were presented in part three. The contributions of this paper can be summarized as follows. (1) It proposed an effective approach for shortest paths in fire succor based on component GIS technology. This proposed approach can achieve the real-time decisions of shortest paths for fire succor. (2) It applied the ant colony optimization to implement the shortest path decision. The traffic information was considered in the shortest path decision using ant colony optimization. The final application instance suggests that the proposed approach is feasible, correct and valid.
Statistical analysis of dynamic fibrils observed from NST/BBSO observations
NASA Astrophysics Data System (ADS)
Gopalan Priya, Thambaje; Su, Jiang-Tao; Chen, Jie; Deng, Yuan-Yong; Prasad Choudhury, Debi
2018-02-01
We present the results obtained from the analysis of dynamic fibrils in NOAA active region (AR) 12132, using high resolution Hα observations from the New Solar Telescope operating at Big Bear Solar Observatory. The dynamic fibrils are seen to be moving up and down, and most of these dynamic fibrils are periodic and have a jet-like appearance. We found from our observations that the fibrils follow almost perfect parabolic paths in many cases. A statistical analysis on the properties of the parabolic paths showing an analysis on deceleration, maximum velocity, duration and kinetic energy of these fibrils is presented here. We found the average maximum velocity to be around 15 kms‑1 and mean deceleration to be around 100 ms‑2. The observed deceleration appears to be a fraction of gravity of the Sun and is not compatible with the path of ballistic motion due to gravity of the Sun. We found a positive correlation between deceleration and maximum velocity. This correlation is consistent with simulations done earlier on magnetoacoustic shock waves propagating upward.
Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin
2013-10-01
In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.
Correlations and path analysis among agronomic and technological traits of upland cotton.
Farias, F J C; Carvalho, L P; Silva Filho, J L; Teodoro, P E
2016-08-12
To date, path analysis has been used with the aim of breeding different cultures. However, for cotton, there have been few studies using this analysis, and all of these have used fiber productivity as the primary dependent variable. Therefore, the aim of the present study was to identify agronomic and technological properties that can be used as criteria for direct and indirect phenotypes in selecting cotton genotypes with better fibers. We evaluated 16 upland cotton genotypes in eight trials conducted during the harvest 2008/2009 in the State of Mato Grosso, using a randomized block design with four replicates. The evaluated traits were: plant height, average boll weight, percentage of fiber, cotton seed yield, fiber length, uniformity of fiber, short fiber index, fiber strength, elongation, maturity of the fibers, micronaire, reflectance, and the degree of yellowing. Phenotypic correlations between the traits and cotton fiber yield (main dependent variable) were unfolded in direct and indirect effects through path analysis. Fiber strength, uniformity of fiber, and reflectance were found to influence fiber length, and therefore, these traits are recommended for both direct and indirect selection of cotton genotypes.
Utilization of Multimedia Laboratory: An Acceptance Analysis using TAM
NASA Astrophysics Data System (ADS)
Modeong, M.; Palilingan, V. R.
2018-02-01
Multimedia is often utilized by teachers to present a learning materials. Learning that delivered by multimedia enables people to understand the information of up to 60% of the learning in general. To applying the creative learning to the classroom, multimedia presentation needs a laboratory as a space that provides multimedia needs. This study aims to reveal the level of student acceptance on the multimedia laboratories, by explaining the direct and indirect effect of internal support and technology infrastructure. Technology Acceptance Model (TAM) is used as the basis of measurement on this research, through the perception of usefulness, ease of use, and the intention, it’s recognized capable of predicting user acceptance about technology. This study used the quantitative method. The data analysis using path analysis that focuses on trimming models, it’s performed to improve the model of path analysis structure by removing exogenous variables that have insignificant path coefficients. The result stated that Internal Support and Technology Infrastructure are well mediated by TAM variables to measure the level of technology acceptance. The implications suggest that TAM can measure the success of multimedia laboratory utilization in Faculty of Engineering UNIMA.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Achana, Felix A; Cooper, Nicola J; Bujkiewicz, Sylwia; Hubbard, Stephanie J; Kendrick, Denise; Jones, David R; Sutton, Alex J
2014-07-21
Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.
Morphological Awareness in Literacy Acquisition of Chinese Second Graders: A Path Analysis
ERIC Educational Resources Information Center
Zhang, Haomin
2016-01-01
The present study tested a path diagram regarding the contribution of morphological awareness (MA) to early literacy acquisition among Chinese-speaking second graders (N = 123). Three facets of MA were addressed, namely derivational awareness, compound awareness and compound structure awareness. The model aimed to test a theory of causal order…
Knowledge Monitoring, Goal Orientations, Self-Efficacy, and Academic Performance: A Path Analysis
ERIC Educational Resources Information Center
Al-Harthy, Ibrahim S.; Was, Christopher A.
2013-01-01
The purpose of this study was to examine the relationship between knowledge monitoring and motivation as defined by self-efficacy and goal orientations. A path model was proposed to hypothesize the causal relations among predictors of the students' total score in the Educational Psychology course. The sample consisted of undergraduate students…
ERIC Educational Resources Information Center
Mann, Heather M.; Rutstein, Daisy W.; Hancock, Gregory R.
2009-01-01
Multisample measured variable path analysis is used to test whether causal/structural relations among measured variables differ across populations. Several invariance testing approaches are available for assessing cross-group equality of such relations, but the associated test statistics may vary considerably across methods. This study is a…
Folded-path optical analysis gas cell
Carangelo, R.M.; Wright, D.D.
1995-08-08
A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.
Path Analysis on Educational Fiscal Decision-Making Mechanism in China
ERIC Educational Resources Information Center
Zhao, Hongbin; Sun, Baicai
2007-01-01
In China's current educational fiscal decision making, problems are as follows: no law to trust or not abiding by available laws, absence of equity and efficiency, as well as the standardization of decision-making procedures. It is necessary to set up effective fiscal decision-making mechanism in education and rationally devise reliable paths.
Modeling Dynamic Functional Neuroimaging Data Using Structural Equation Modeling
ERIC Educational Resources Information Center
Price, Larry R.; Laird, Angela R.; Fox, Peter T.; Ingham, Roger J.
2009-01-01
The aims of this study were to present a method for developing a path analytic network model using data acquired from positron emission tomography. Regions of interest within the human brain were identified through quantitative activation likelihood estimation meta-analysis. Using this information, a "true" or population path model was then…
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
NASA Technical Reports Server (NTRS)
Foore, Larry; Ida, Nathan
2007-01-01
This study introduces the use of a modified Longley-Rice irregular terrain model and digital elevation data representative of an analogue lunar site for the prediction of RF path loss over the lunar surface. The results are validated by theoretical models and past Apollo studies. The model is used to approximate the path loss deviation from theoretical attenuation over a reflecting sphere. Analysis of the simulation results provides statistics on the fade depths for frequencies of interest, and correspondingly a method for determining the maximum range of communications for various coverage confidence intervals. Communication system engineers and mission planners are provided a link margin and path loss policy for communication frequencies of interest.
jFuzz: A Concolic Whitebox Fuzzer for Java
NASA Technical Reports Server (NTRS)
Jayaraman, Karthick; Harvison, David; Ganesh, Vijay; Kiezun, Adam
2009-01-01
We present jFuzz, a automatic testing tool for Java programs. jFuzz is a concolic whitebox fuzzer, built on the NASA Java PathFinder, an explicit-state Java model checker, and a framework for developing reliability and analysis tools for Java. Starting from a seed input, jFuzz automatically and systematically generates inputs that exercise new program paths. jFuzz uses a combination of concrete and symbolic execution, and constraint solving. Time spent on solving constraints can be significant. We implemented several well-known optimizations and name-independent caching, which aggressively normalizes the constraints to reduce the number of calls to the constraint solver. We present preliminary results due to the optimizations, and demonstrate the effectiveness of jFuzz in creating good test inputs. The source code of jFuzz is available as part of the NASA Java PathFinder. jFuzz is intended to be a research testbed for investigating new testing and analysis techniques based on concrete and symbolic execution. The source code of jFuzz is available as part of the NASA Java PathFinder.
Goh, Choon Fu; Craig, Duncan Q M; Hadgraft, Jonathan; Lane, Majella E
2017-02-01
Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm -1 ) containing the carboxylate (COO - ) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO - asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Describing the Elephant: Structure and Function in Multivariate Data.
ERIC Educational Resources Information Center
McDonald, Roderick P.
1986-01-01
There is a unity underlying the diversity of models for the analysis of multivariate data. Essentially, they constitute a family of models, most generally nonlinear, for structural/functional relations between variables drawn from a behavior domain. (Author)
2013-01-01
Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158
Grace, J.B.; Bollen, K.A.
2008-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.
The Interface Between Theory and Data in Structural Equation Models
Grace, James B.; Bollen, Kenneth A.
2006-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite, for representing general concepts. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling general relationships of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially reduced form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influences of suites of variables are often of interest.
SensePath: Understanding the Sensemaking Process Through Analytic Provenance.
Nguyen, Phong H; Xu, Kai; Wheat, Ashley; Wong, B L William; Attfield, Simon; Fields, Bob
2016-01-01
Sensemaking is described as the process of comprehension, finding meaning and gaining insight from information, producing new knowledge and informing further action. Understanding the sensemaking process allows building effective visual analytics tools to make sense of large and complex datasets. Currently, it is often a manual and time-consuming undertaking to comprehend this: researchers collect observation data, transcribe screen capture videos and think-aloud recordings, identify recurring patterns, and eventually abstract the sensemaking process into a general model. In this paper, we propose a general approach to facilitate such a qualitative analysis process, and introduce a prototype, SensePath, to demonstrate the application of this approach with a focus on browser-based online sensemaking. The approach is based on a study of a number of qualitative research sessions including observations of users performing sensemaking tasks and post hoc analyses to uncover their sensemaking processes. Based on the study results and a follow-up participatory design session with HCI researchers, we decided to focus on the transcription and coding stages of thematic analysis. SensePath automatically captures user's sensemaking actions, i.e., analytic provenance, and provides multi-linked views to support their further analysis. A number of other requirements elicited from the design session are also implemented in SensePath, such as easy integration with existing qualitative analysis workflow and non-intrusive for participants. The tool was used by an experienced HCI researcher to analyze two sensemaking sessions. The researcher found the tool intuitive and considerably reduced analysis time, allowing better understanding of the sensemaking process.
Edwards, Jeffrey R; Lambert, Lisa Schurer
2007-03-01
Studies that combine moderation and mediation are prevalent in basic and applied psychology research. Typically, these studies are framed in terms of moderated mediation or mediated moderation, both of which involve similar analytical approaches. Unfortunately, these approaches have important shortcomings that conceal the nature of the moderated and the mediated effects under investigation. This article presents a general analytical framework for combining moderation and mediation that integrates moderated regression analysis and path analysis. This framework clarifies how moderator variables influence the paths that constitute the direct, indirect, and total effects of mediated models. The authors empirically illustrate this framework and give step-by-step instructions for estimation and interpretation. They summarize the advantages of their framework over current approaches, explain how it subsumes moderated mediation and mediated moderation, and describe how it can accommodate additional moderator and mediator variables, curvilinear relationships, and structural equation models with latent variables. (c) 2007 APA, all rights reserved.
The prediction of postpartum depression: The role of the PRECEDE model and health locus of control
Moshki, Mahdi; Kharazmi, Akram; Cheravi, Khadijeh; Beydokhti, Tahereh Baloochi
2015-01-01
Background: The main purpose of this study was to investigate the effect of the PRECEDE model and health locus of control (HLC) on postpartum depression. This study used the path analysis to test the pattern of causal relations through the correlation coefficients. Materials and Method: The participants included 230 pregnant women in the north-east of Iran who were selected by convenience sampling. To analyze data, Pearson correlation and path analysis were applied to examine the relationships between variables using SPSS 20 and LISREL 8.50software. Results: The result of path analysis showed that a positive correlation exists between predisposing (knowledge, internal HLC, powerful others HLC, chance HLC) enabling and reinforcing factors with postpartum depression by GHQ score (GFI = 1, RSMEA = 000). Conclusion: The current study supported the application of the PRECEDE model and HLC in understanding the promoting behaviors in mental health and demonstrated their relationships with postpartum depression. PMID:26288792
Moisture Risk in Unvented Attics Due to Air Leakage Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, D.; Shaffer, M.
2014-11-01
IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less
Moisture Risk in Unvented Attics Due to Air Leakage Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, D.; Shaffer, M.
2014-11-01
IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less
Merino Ventosa, María; Urbanos-Garrido, Rosa M Maria Merino Ven Gmail Com
2016-09-01
This paper complements previous estimations regarding socioeconomic inequalities in obesity for Spanish adults, and provides new evidence about the mechanisms through which socioeconomic status (SES) affects obesity. Microdata from the Spanish National Health Survey (SNHS) 2011-2012 are analysed. Corrected concentration indices (CCI) are calculated to measure inequality. Path analysis is employed to disentangle direct and indirect effects of SES on obesity, where dietary patterns, physical activity and sleep habits act as mediator variables. Multivariate logistic models are used to select those exogenous variables to be included in the path diagram. Men and women are analysed separately. Our results show significant pro-rich inequality in the distribution of obesity (the poorer the more obese), particularly for women (CCI=-0.070 for men, CCI=-0.079 for women). The indirect effects of SES on obesity (those transmitted via mediator variables) are quite modest (3.3% for males, 2.4% for females) due to three reasons. Firstly, dietary habits do not show a significant mediating effect. Secondly, the mediating effect of physical activity in leisure time, although significant (14% for males, 11.1% for females), is offset by that related to main activity. Finally, sleep habits contribution to total effect of SES on obesity is statistically significant but small (roughly 1%). Our results indicate that promoting physical activity in leisure time for those with a low SES, particularly for men, would contribute to prevent obesity and to reduce health inequalities. Promotion of adequate sleep habits for women with a low SES might have a similar effect. However, interventions aimed to reduce sedentarism related to main activity, although useful to prevent obesity, would amplify the obesity socioeconomic gradient. Since effects of SES are different for men and women, socioeconomic health inequalities should be addressed also from a gender perspective. Copyright © 2016 Elsevier B.V. All rights reserved.
Wells, Konstans; Pfeiffer, Martin; Lakim, Maklarin B; Kalko, Elisabeth K V
2006-09-01
1. Non-volant animals in tropical rain forests differ in their ability to exploit the habitat above the forest floor and also in their response to habitat variability. It is predicted that specific movement trajectories are determined both by intrinsic factors such as ecological specialization, morphology and body size and by structural features of the surrounding habitat such as undergrowth and availability of supportive structures. 2. We applied spool-and-line tracking in order to describe movement trajectories and habitat segregation of eight species of small mammals from an assemblage of Muridae, Tupaiidae and Sciuridae in the rain forest of Borneo where we followed a total of 13,525 m path. We also analysed specific changes in the movement patterns of the small mammals in relation to habitat stratification between logged and unlogged forests. Variables related to climbing activity of the tracked species as well as the supportive structures of the vegetation and undergrowth density were measured along their tracks. 3. Movement patterns of the small mammals differed significantly between species. Most similarities were found in congeneric species that converged strongly in body size and morphology. All species were affected in their movement patterns by the altered forest structure in logged forests with most differences found in Leopoldamys sabanus. However, the large proportions of short step lengths found in all species for both forest types and similar path tortuosity suggest that the main movement strategies of the small mammals were not influenced by logging but comprised generally a response to the heterogeneous habitat as opposed to random movement strategies predicted for homogeneous environments. 4. Overall shifts in microhabitat use showed no coherent trend among species. Multivariate (principal component) analysis revealed contrasting trends for convergent species, in particular for Maxomys rajah and M. surifer as well as for Tupaia longipes and T. tana, suggesting that each species was uniquely affected in its movement trajectories by a multiple set of environmental and intrinsic features.
Applications and development of new algorithms for displacement analysis using InSAR time series
NASA Astrophysics Data System (ADS)
Osmanoglu, Batuhan
Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.
Noguchi, M; Kido, Y; Kubota, H; Kinjo, H; Kohama, G
1999-12-01
The records of 136 patients with N1-3 oral squamous cell carcinoma treated by surgery were investigated retrospectively, with the aim of finding out which factors were predictive of survival on multivariate analysis. Four independent factors significantly influenced survival in the following order: pN stage; T stage; histological grade; and N stage. The most significant was pN stage, the five-year survival for patients with pN0 being 91% and for patients with pN1-3 41%. A further study was carried out on the 80 patients with pN1-3 to find out their prognostic factors for survival and the independent factors identified by multivariate analysis were T stage and presence or absence of extracapsular spread to metastatic lymph nodes.
Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.
Zakrzewski, Martha; Proietti, Carla; Ellis, Jonathan J; Hasan, Shihab; Brion, Marie-Jo; Berger, Bernard; Krause, Lutz
2017-03-01
Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. The web-interface is accessible via http://cgenome.net/calypso/ . The software is programmed in Java, PERL and R and the source code is available from Zenodo ( https://zenodo.org/record/50931 ). The software is freely available for non-commercial users. l.krause@uq.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
DigOut: viewing differential expression genes as outliers.
Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan
2010-12-01
With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.
Yokoyama, Kazuhiko; Itoman, Moritoshi; Uchino, Masataka; Fukushima, Kensuke; Nitta, Hiroshi; Kojima, Yoshiaki
2008-10-01
The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN) by multivariate analysis. We examined 99 open tibial fractures (98 patients) treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (< or =6 h or >6 h), method of soft-tissue management, skin closure time (< or =1 week or >1 week), existence of polytrauma (ISS< 18 or ISS> or =18), existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5) of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection (P< 0.0001). In the immediate nailing group alone, the deep infection rate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA (P = 0.016). Nonunion occurred in 17 fractures (20.3%, 17/84). Multivariate analysis revealed that Gustilo type, skin closure time, and existence of deep infection significantly correlated with occurrence of nonunion (P < 0.05). Gustilo type and existence of deep infection were significantly correlated with healing time to union on multivariate analysis (r(2) = 0.263, P = 0.0001). Multivariate analyses for open tibial fractures treated with IMN showed that IMN after EF (especially in existence of pin site infection) was at high risk of deep infection, and that debridement within 6 h and appropriate soft-tissue managements were also important factor in preventing deep infections. These analyses postulated that both the Gustilo type and the existence of deep infection is related with fracture healing in open fractures treated with IMN. In addition, immediate IMN for type IIIB and IIIC is potentially risky, and canal reaming did not increase the risk of complication for open tibial fractures treated with IMN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.T.; Hiergesell, R.A.; Kaplan, D.I.
2006-07-01
At the Savannah River Site (SRS), nuclear production reactors used de-ionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These de-ionizers were removed from the reactors and stored as a legacy waste and due to the relatively high carbon-14 (C-14) contamination (i.e., on the order of 740 giga becquerel (GBq) (20 curies) per de-ionizer) were considered a legacy 'waste with no path to disposal'. Considerable progress has been made in consideration of a disposal path for the legacy reactor de-ionizers. Presently, 48 - 50 de-ionizers being stored atmore » SRS have 'no path to disposal' because the disposal limit for C-14 in the SRS's low-level waste disposal facility's Intermediate Level Vault (ILV) is only 160 GBq (4.2 curies) per vault. The current C-14 ILV disposal limit is based on a very conservative analysis of the air pathway. The paper will describe the alternatives that were investigated that resulted in the selection of a route to pursue. This paper will then describe SRS's efforts to reduce the conservatism in the analysis, which resulted in a significantly larger C-14 disposal limit. The work consisted of refining the gas-phase analysis to simulate the migration of C-14 from the waste to the ground surface and evaluated the efficacy of carbonate chemistry in cementitious environment of the ILV for suppressing the volatilization of C-14. During the past year, a Special Analysis was prepared for Department of Energy approval to incorporate the results of these activities that increased the C-14 disposal limits for the ILV, thus allowing for disposal of the Reactor Moderator De-ionizers. Once the Special Analysis is approved by DOE, the actual disposal would be dependent on priority and funding, but the de-ionizers will be removed from the 'waste with no path to disposal list'. (authors)« less
Moazami-Goudarzi, K; Laloë, D
2002-01-01
To determine the relationships among closely related populations or species, two methods are commonly used in the literature: phylogenetic reconstruction or multivariate analysis. The aim of this article is to assess the reliability of multivariate analysis. We describe a method that is based on principal component analysis and Mantel correlations, using a two-step process: The first step consists of a single-marker analysis and the second step tests if each marker reveals the same typology concerning population differentiation. We conclude that if single markers are not congruent, the compromise structure is not meaningful. Our model is not based on any particular mutation process and it can be applied to most of the commonly used genetic markers. This method is also useful to determine the contribution of each marker to the typology of populations. We test whether our method is efficient with two real data sets based on microsatellite markers. Our analysis suggests that for closely related populations, it is not always possible to accept the hypothesis that an increase in the number of markers will increase the reliability of the typology analysis. PMID:12242255
NASA Astrophysics Data System (ADS)
Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.
2018-02-01
Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.
Effects of eHealth Literacy on General Practitioner Consultations: A Mediation Analysis.
Schulz, Peter Johannes; Fitzpatrick, Mary Anne; Hess, Alexandra; Sudbury-Riley, Lynn; Hartung, Uwe
2017-05-16
Most evidence (not all) points in the direction that individuals with a higher level of health literacy will less frequently utilize the health care system than individuals with lower levels of health literacy. The underlying reasons of this effect are largely unclear, though people's ability to seek health information independently at the time of wide availability of such information on the Internet has been cited in this context. We propose and test two potential mediators of the negative effect of eHealth literacy on health care utilization: (1) health information seeking and (2) gain in empowerment by information seeking. Data were collected in New Zealand, the United Kingdom, and the United States using a Web-based survey administered by a company specialized on providing online panels. Combined, the three samples resulted in a total of 996 baby boomers born between 1946 and 1965 who had used the Internet to search for and share health information in the previous 6 months. Measured variables include eHealth literacy, Internet health information seeking, the self-perceived gain in empowerment by that information, and the number of consultations with one's general practitioner (GP). Path analysis was employed for data analysis. We found a bundle of indirect effect paths showing a positive relationship between health literacy and health care utilization: via health information seeking (Path 1), via gain in empowerment (Path 2), and via both (Path 3). In addition to the emergence of these indirect effects, the direct effect of health literacy on health care utilization disappeared. The indirect paths from health literacy via information seeking and empowerment to GP consultations can be interpreted as a dynamic process and an expression of the ability to find, process, and understand relevant information when that is necessary. ©Peter Johannes Schulz, Mary Anne Fitzpatrick, Alexandra Hess, Lynn Sudbury-Riley, Uwe Hartung. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.05.2017.