Sample records for multivariate permutation methods

  1. EXTENDING MULTIVARIATE DISTANCE MATRIX REGRESSION WITH AN EFFECT SIZE MEASURE AND THE ASYMPTOTIC NULL DISTRIBUTION OF THE TEST STATISTIC

    PubMed Central

    McArtor, Daniel B.; Lubke, Gitta H.; Bergeman, C. S.

    2017-01-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains. PMID:27738957

  2. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic.

    PubMed

    McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S

    2017-12-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

  3. A power analysis for multivariate tests of temporal trend in species composition.

    PubMed

    Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel

    2011-10-01

    Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.

  4. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  5. Genomic Analysis of Complex Microbial Communities in Wounds

    DTIC Science & Technology

    2012-01-01

    thoroughly in the ecology literature. Permutation Multivariate Analysis of Variance ( PerMANOVA ). We used PerMANOVA to test the null-hypothesis of no...difference between the bacterial communities found within a single wound compared to those from different patients (α = 0.05). PerMANOVA is a...permutation-based version of the multivariate analysis of variance (MANOVA). PerMANOVA uses the distances between samples to partition variance and

  6. Non-parametric combination and related permutation tests for neuroimaging.

    PubMed

    Winkler, Anderson M; Webster, Matthew A; Brooks, Jonathan C; Tracey, Irene; Smith, Stephen M; Nichols, Thomas E

    2016-04-01

    In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  7. Non‐parametric combination and related permutation tests for neuroimaging

    PubMed Central

    Webster, Matthew A.; Brooks, Jonathan C.; Tracey, Irene; Smith, Stephen M.; Nichols, Thomas E.

    2016-01-01

    Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016. © 2016 Wiley Periodicals, Inc. PMID:26848101

  8. Multi-response permutation procedure as an alternative to the analysis of variance: an SPSS implementation.

    PubMed

    Cai, Li

    2006-02-01

    A permutation test typically requires fewer assumptions than does a comparable parametric counterpart. The multi-response permutation procedure (MRPP) is a class of multivariate permutation tests of group difference useful for the analysis of experimental data. However, psychologists seldom make use of the MRPP in data analysis, in part because the MRPP is not implemented in popular statistical packages that psychologists use. A set of SPSS macros implementing the MRPP test is provided in this article. The use of the macros is illustrated by analyzing example data sets.

  9. Testing for the Presence of Correlation Changes in a Multivariate Time Series: A Permutation Based Approach.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Hunyadi, Borbála; Ceulemans, Eva

    2018-01-15

    Detecting abrupt correlation changes in multivariate time series is crucial in many application fields such as signal processing, functional neuroimaging, climate studies, and financial analysis. To detect such changes, several promising correlation change tests exist, but they may suffer from severe loss of power when there is actually more than one change point underlying the data. To deal with this drawback, we propose a permutation based significance test for Kernel Change Point (KCP) detection on the running correlations. Given a requested number of change points K, KCP divides the time series into K + 1 phases by minimizing the within-phase variance. The new permutation test looks at how the average within-phase variance decreases when K increases and compares this to the results for permuted data. The results of an extensive simulation study and applications to several real data sets show that, depending on the setting, the new test performs either at par or better than the state-of-the art significance tests for detecting the presence of correlation changes, implying that its use can be generally recommended.

  10. Permutation Tests of Hierarchical Cluster Analyses of Carrion Communities and Their Potential Use in Forensic Entomology.

    PubMed

    van der Ham, Joris L

    2016-05-19

    Forensic entomologists can use carrion communities' ecological succession data to estimate the postmortem interval (PMI). Permutation tests of hierarchical cluster analyses of these data provide a conceptual method to estimate part of the PMI, the post-colonization interval (post-CI). This multivariate approach produces a baseline of statistically distinct clusters that reflect changes in the carrion community composition during the decomposition process. Carrion community samples of unknown post-CIs are compared with these baseline clusters to estimate the post-CI. In this short communication, I use data from previously published studies to demonstrate the conceptual feasibility of this multivariate approach. Analyses of these data produce series of significantly distinct clusters, which represent carrion communities during 1- to 20-day periods of the decomposition process. For 33 carrion community samples, collected over an 11-day period, this approach correctly estimated the post-CI within an average range of 3.1 days. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    PubMed

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Combining p-values in replicated single-case experiments with multivariate outcome.

    PubMed

    Solmi, Francesca; Onghena, Patrick

    2014-01-01

    Interest in combining probabilities has a long history in the global statistical community. The first steps in this direction were taken by Ronald Fisher, who introduced the idea of combining p-values of independent tests to provide a global decision rule when multiple aspects of a given problem were of interest. An interesting approach to this idea of combining p-values is the one based on permutation theory. The methods belonging to this particular approach exploit the permutation distributions of the tests to be combined, and use a simple function to combine probabilities. Combining p-values finds a very interesting application in the analysis of replicated single-case experiments. In this field the focus, while comparing different treatments effects, is more articulated than when just looking at the means of the different populations. Moreover, it is often of interest to combine the results obtained on the single patients in order to get more global information about the phenomenon under study. This paper gives an overview of how the concept of combining p-values was conceived, and how it can be easily handled via permutation techniques. Finally, the method of combining p-values is applied to a simulated replicated single-case experiment, and a numerical illustration is presented.

  13. Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials

    PubMed Central

    Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo

    2018-01-01

    This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555

  14. Four applications of permutation methods to testing a single-mediator model.

    PubMed

    Taylor, Aaron B; MacKinnon, David P

    2012-09-01

    Four applications of permutation tests to the single-mediator model are described and evaluated in this study. Permutation tests work by rearranging data in many possible ways in order to estimate the sampling distribution for the test statistic. The four applications to mediation evaluated here are the permutation test of ab, the permutation joint significance test, and the noniterative and iterative permutation confidence intervals for ab. A Monte Carlo simulation study was used to compare these four tests with the four best available tests for mediation found in previous research: the joint significance test, the distribution of the product test, and the percentile and bias-corrected bootstrap tests. We compared the different methods on Type I error, power, and confidence interval coverage. The noniterative permutation confidence interval for ab was the best performer among the new methods. It successfully controlled Type I error, had power nearly as good as the most powerful existing methods, and had better coverage than any existing method. The iterative permutation confidence interval for ab had lower power than do some existing methods, but it performed better than any other method in terms of coverage. The permutation confidence interval methods are recommended when estimating a confidence interval is a primary concern. SPSS and SAS macros that estimate these confidence intervals are provided.

  15. Rapid and Accurate Multiple Testing Correction and Power Estimation for Millions of Correlated Markers

    PubMed Central

    Han, Buhm; Kang, Hyun Min; Eskin, Eleazar

    2009-01-01

    With the development of high-throughput sequencing and genotyping technologies, the number of markers collected in genetic association studies is growing rapidly, increasing the importance of methods for correcting for multiple hypothesis testing. The permutation test is widely considered the gold standard for accurate multiple testing correction, but it is often computationally impractical for these large datasets. Recently, several studies proposed efficient alternative approaches to the permutation test based on the multivariate normal distribution (MVN). However, they cannot accurately correct for multiple testing in genome-wide association studies for two reasons. First, these methods require partitioning of the genome into many disjoint blocks and ignore all correlations between markers from different blocks. Second, the true null distribution of the test statistic often fails to follow the asymptotic distribution at the tails of the distribution. We propose an accurate and efficient method for multiple testing correction in genome-wide association studies—SLIDE. Our method accounts for all correlation within a sliding window and corrects for the departure of the true null distribution of the statistic from the asymptotic distribution. In simulations using the Wellcome Trust Case Control Consortium data, the error rate of SLIDE's corrected p-values is more than 20 times smaller than the error rate of the previous MVN-based methods' corrected p-values, while SLIDE is orders of magnitude faster than the permutation test and other competing methods. We also extend the MVN framework to the problem of estimating the statistical power of an association study with correlated markers and propose an efficient and accurate power estimation method SLIP. SLIP and SLIDE are available at http://slide.cs.ucla.edu. PMID:19381255

  16. Permutation-based inference for the AUC: A unified approach for continuous and discontinuous data.

    PubMed

    Pauly, Markus; Asendorf, Thomas; Konietschke, Frank

    2016-11-01

    We investigate rank-based studentized permutation methods for the nonparametric Behrens-Fisher problem, that is, inference methods for the area under the ROC curve. We hereby prove that the studentized permutation distribution of the Brunner-Munzel rank statistic is asymptotically standard normal, even under the alternative. Thus, incidentally providing the hitherto missing theoretical foundation for the Neubert and Brunner studentized permutation test. In particular, we do not only show its consistency, but also that confidence intervals for the underlying treatment effects can be computed by inverting this permutation test. In addition, we derive permutation-based range-preserving confidence intervals. Extensive simulation studies show that the permutation-based confidence intervals appear to maintain the preassigned coverage probability quite accurately (even for rather small sample sizes). For a convenient application of the proposed methods, a freely available software package for the statistical software R has been developed. A real data example illustrates the application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Determining distinct circuit in complete graphs using permutation

    NASA Astrophysics Data System (ADS)

    Karim, Sharmila; Ibrahim, Haslinda; Darus, Maizon Mohd

    2017-11-01

    A Half Butterfly Method (HBM) is a method introduced to construct the distinct circuits in complete graphs where used the concept of isomorphism. The Half Butterfly Method was applied in the field of combinatorics such as in listing permutations of n elements. However the method of determining distinct circuit using HBM for n > 4 is become tedious. Thus, in this paper, we present the method of generating distinct circuit using permutation.

  18. Efficient Blockwise Permutation Tests Preserving Exchangeability

    PubMed Central

    Zhou, Chunxiao; Zwilling, Chris E.; Calhoun, Vince D.; Wang, Michelle Y.

    2014-01-01

    In this paper, we present a new blockwise permutation test approach based on the moments of the test statistic. The method is of importance to neuroimaging studies. In order to preserve the exchangeability condition required in permutation tests, we divide the entire set of data into certain exchangeability blocks. In addition, computationally efficient moments-based permutation tests are performed by approximating the permutation distribution of the test statistic with the Pearson distribution series. This involves the calculation of the first four moments of the permutation distribution within each block and then over the entire set of data. The accuracy and efficiency of the proposed method are demonstrated through simulated experiment on the magnetic resonance imaging (MRI) brain data, specifically the multi-site voxel-based morphometry analysis from structural MRI (sMRI). PMID:25289113

  19. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Image encryption using a synchronous permutation-diffusion technique

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi; Altameem, Ayman; Lee, Malrey

    2017-03-01

    In the past decade, the interest on digital images security has been increased among scientists. A synchronous permutation and diffusion technique is designed in order to protect gray-level image content while sending it through internet. To implement the proposed method, two-dimensional plain-image is converted to one dimension. Afterward, in order to reduce the sending process time, permutation and diffusion steps for any pixel are performed in the same time. The permutation step uses chaotic map and deoxyribonucleic acid (DNA) to permute a pixel, while diffusion employs DNA sequence and DNA operator to encrypt the pixel. Experimental results and extensive security analyses have been conducted to demonstrate the feasibility and validity of this proposed image encryption method.

  1. Multivariate Welch t-test on distances

    PubMed Central

    2016-01-01

    Motivation: Permutational non-Euclidean analysis of variance, PERMANOVA, is routinely used in exploratory analysis of multivariate datasets to draw conclusions about the significance of patterns visualized through dimension reduction. This method recognizes that pairwise distance matrix between observations is sufficient to compute within and between group sums of squares necessary to form the (pseudo) F statistic. Moreover, not only Euclidean, but arbitrary distances can be used. This method, however, suffers from loss of power and type I error inflation in the presence of heteroscedasticity and sample size imbalances. Results: We develop a solution in the form of a distance-based Welch t-test, TW2, for two sample potentially unbalanced and heteroscedastic data. We demonstrate empirically the desirable type I error and power characteristics of the new test. We compare the performance of PERMANOVA and TW2 in reanalysis of two existing microbiome datasets, where the methodology has originated. Availability and Implementation: The source code for methods and analysis of this article is available at https://github.com/alekseyenko/Tw2. Further guidance on application of these methods can be obtained from the author. Contact: alekseye@musc.edu PMID:27515741

  2. Multivariate Welch t-test on distances.

    PubMed

    Alekseyenko, Alexander V

    2016-12-01

    Permutational non-Euclidean analysis of variance, PERMANOVA, is routinely used in exploratory analysis of multivariate datasets to draw conclusions about the significance of patterns visualized through dimension reduction. This method recognizes that pairwise distance matrix between observations is sufficient to compute within and between group sums of squares necessary to form the (pseudo) F statistic. Moreover, not only Euclidean, but arbitrary distances can be used. This method, however, suffers from loss of power and type I error inflation in the presence of heteroscedasticity and sample size imbalances. We develop a solution in the form of a distance-based Welch t-test, [Formula: see text], for two sample potentially unbalanced and heteroscedastic data. We demonstrate empirically the desirable type I error and power characteristics of the new test. We compare the performance of PERMANOVA and [Formula: see text] in reanalysis of two existing microbiome datasets, where the methodology has originated. The source code for methods and analysis of this article is available at https://github.com/alekseyenko/Tw2 Further guidance on application of these methods can be obtained from the author. alekseye@musc.edu. © The Author 2016. Published by Oxford University Press.

  3. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  4. An empirical study using permutation-based resampling in meta-regression

    PubMed Central

    2012-01-01

    Background In meta-regression, as the number of trials in the analyses decreases, the risk of false positives or false negatives increases. This is partly due to the assumption of normality that may not hold in small samples. Creation of a distribution from the observed trials using permutation methods to calculate P values may allow for less spurious findings. Permutation has not been empirically tested in meta-regression. The objective of this study was to perform an empirical investigation to explore the differences in results for meta-analyses on a small number of trials using standard large sample approaches verses permutation-based methods for meta-regression. Methods We isolated a sample of randomized controlled clinical trials (RCTs) for interventions that have a small number of trials (herbal medicine trials). Trials were then grouped by herbal species and condition and assessed for methodological quality using the Jadad scale, and data were extracted for each outcome. Finally, we performed meta-analyses on the primary outcome of each group of trials and meta-regression for methodological quality subgroups within each meta-analysis. We used large sample methods and permutation methods in our meta-regression modeling. We then compared final models and final P values between methods. Results We collected 110 trials across 5 intervention/outcome pairings and 5 to 10 trials per covariate. When applying large sample methods and permutation-based methods in our backwards stepwise regression the covariates in the final models were identical in all cases. The P values for the covariates in the final model were larger in 78% (7/9) of the cases for permutation and identical for 22% (2/9) of the cases. Conclusions We present empirical evidence that permutation-based resampling may not change final models when using backwards stepwise regression, but may increase P values in meta-regression of multiple covariates for relatively small amount of trials. PMID:22587815

  5. Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data

    PubMed Central

    McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen

    2016-01-01

    Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. PMID:26921716

  6. A transposase strategy for creating libraries of circularly permuted proteins.

    PubMed

    Mehta, Manan M; Liu, Shirley; Silberg, Jonathan J

    2012-05-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.

  7. A transposase strategy for creating libraries of circularly permuted proteins

    PubMed Central

    Mehta, Manan M.; Liu, Shirley; Silberg, Jonathan J.

    2012-01-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions. PMID:22319214

  8. Permutation inference for the general linear model

    PubMed Central

    Winkler, Anderson M.; Ridgway, Gerard R.; Webster, Matthew A.; Smith, Stephen M.; Nichols, Thomas E.

    2014-01-01

    Permutation methods can provide exact control of false positives and allow the use of non-standard statistics, making only weak assumptions about the data. With the availability of fast and inexpensive computing, their main limitation would be some lack of flexibility to work with arbitrary experimental designs. In this paper we report on results on approximate permutation methods that are more flexible with respect to the experimental design and nuisance variables, and conduct detailed simulations to identify the best method for settings that are typical for imaging research scenarios. We present a generic framework for permutation inference for complex general linear models (glms) when the errors are exchangeable and/or have a symmetric distribution, and show that, even in the presence of nuisance effects, these permutation inferences are powerful while providing excellent control of false positives in a wide range of common and relevant imaging research scenarios. We also demonstrate how the inference on glm parameters, originally intended for independent data, can be used in certain special but useful cases in which independence is violated. Detailed examples of common neuroimaging applications are provided, as well as a complete algorithm – the “randomise” algorithm – for permutation inference with the glm. PMID:24530839

  9. A Computationally Efficient Hypothesis Testing Method for Epistasis Analysis using Multifactor Dimensionality Reduction

    PubMed Central

    Pattin, Kristine A.; White, Bill C.; Barney, Nate; Gui, Jiang; Nelson, Heather H.; Kelsey, Karl R.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.

    2008-01-01

    Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free data mining method for detecting, characterizing, and interpreting epistasis in the absence of significant main effects in genetic and epidemiologic studies of complex traits such as disease susceptibility. The goal of MDR is to change the representation of the data using a constructive induction algorithm to make nonadditive interactions easier to detect using any classification method such as naïve Bayes or logistic regression. Traditionally, MDR constructed variables have been evaluated with a naïve Bayes classifier that is combined with 10-fold cross validation to obtain an estimate of predictive accuracy or generalizability of epistasis models. Traditionally, we have used permutation testing to statistically evaluate the significance of models obtained through MDR. The advantage of permutation testing is that it controls for false-positives due to multiple testing. The disadvantage is that permutation testing is computationally expensive. This is in an important issue that arises in the context of detecting epistasis on a genome-wide scale. The goal of the present study was to develop and evaluate several alternatives to large-scale permutation testing for assessing the statistical significance of MDR models. Using data simulated from 70 different epistasis models, we compared the power and type I error rate of MDR using a 1000-fold permutation test with hypothesis testing using an extreme value distribution (EVD). We find that this new hypothesis testing method provides a reasonable alternative to the computationally expensive 1000-fold permutation test and is 50 times faster. We then demonstrate this new method by applying it to a genetic epidemiology study of bladder cancer susceptibility that was previously analyzed using MDR and assessed using a 1000-fold permutation test. PMID:18671250

  10. Storage and computationally efficient permutations of factorized covariance and square-root information arrays

    NASA Technical Reports Server (NTRS)

    Muellerschoen, R. J.

    1988-01-01

    A unified method to permute vector stored Upper triangular Diagonal factorized covariance and vector stored upper triangular Square Root Information arrays is presented. The method involves cyclic permutation of the rows and columns of the arrays and retriangularization with fast (slow) Givens rotations (reflections). Minimal computation is performed, and a one dimensional scratch array is required. To make the method efficient for large arrays on a virtual memory machine, computations are arranged so as to avoid expensive paging faults. This method is potentially important for processing large volumes of radio metric data in the Deep Space Network.

  11. Error-free holographic frames encryption with CA pixel-permutation encoding algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Xiao, Dan; Wang, Qiong-Hua

    2018-01-01

    The security of video data is necessary in network security transmission hence cryptography is technique to make video data secure and unreadable to unauthorized users. In this paper, we propose a holographic frames encryption technique based on the cellular automata (CA) pixel-permutation encoding algorithm. The concise pixel-permutation algorithm is used to address the drawbacks of the traditional CA encoding methods. The effectiveness of the proposed video encoding method is demonstrated by simulation examples.

  12. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  13. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  14. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  15. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  16. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2016-06-01

    Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.

  17. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    PubMed

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P < 0.05) affected the beetle and tree species diversity as well as the soil nutrients as shown by univariate (one-way analysis of variance (ANOVA), correlation and regression, diversity indices) and multivariate (cluster analysis, principal component analysis (PCA), detrended correspondence analysis (DCA), canonical variate analysis (CVA), permutational multivariate analysis of variance (PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern. The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the near future.

  18. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu

    2013-11-28

    A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less

  19. The coupling analysis between stock market indices based on permutation measures

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian; Xia, Jianan; Yeh, Chien-Hung

    2016-04-01

    Many information-theoretic methods have been proposed for analyzing the coupling dependence between time series. And it is significant to quantify the correlation relationship between financial sequences since the financial market is a complex evolved dynamic system. Recently, we developed a new permutation-based entropy, called cross-permutation entropy (CPE), to detect the coupling structures between two synchronous time series. In this paper, we extend the CPE method to weighted cross-permutation entropy (WCPE), to address some of CPE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. It shows more stable and reliable results than CPE does when applied it to spiky data and AR(1) processes. Besides, we adapt the CPE method to infer the complexity of short-length time series by freely changing the time delay, and test it with Gaussian random series and random walks. The modified method shows the advantages in reducing deviations of entropy estimation compared with the conventional one. Finally, the weighted cross-permutation entropy of eight important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.

  20. Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data.

    PubMed

    McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen

    2016-05-15

    Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Permutational distribution of the log-rank statistic under random censorship with applications to carcinogenicity assays.

    PubMed

    Heimann, G; Neuhaus, G

    1998-03-01

    In the random censorship model, the log-rank test is often used for comparing a control group with different dose groups. If the number of tumors is small, so-called exact methods are often applied for computing critical values from a permutational distribution. Two of these exact methods are discussed and shown to be incorrect. The correct permutational distribution is derived and studied with respect to its behavior under unequal censoring in the light of recent results proving that the permutational version and the unconditional version of the log-rank test are asymptotically equivalent even under unequal censoring. The log-rank test is studied by simulations of a realistic scenario from a bioassay with small numbers of tumors.

  2. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masataka; Okumura, Hisashi

    2017-11-01

    We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.

  3. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2017-07-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  4. A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection

    PubMed Central

    Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B

    2015-01-01

    Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050

  5. In Response to Rowland on "Realism and Debateability in Policy Advocacy."

    ERIC Educational Resources Information Center

    Herbeck, Dale A.; Katsulas, John P.

    1986-01-01

    Argues that Robert Rowland has overstated the case against the permutation process for assessing counterplan competitiveness. Claims that the permutation standard is a viable method for ascertaining counterplan competitiveness. Examines Rowland's alternative and argues that it is an unsatisfactory method for determining counterplan…

  6. A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information.

    PubMed

    Cui, Dong; Pu, Weiting; Liu, Jing; Bian, Zhijie; Li, Qiuli; Wang, Lei; Gu, Guanghua

    2016-10-01

    Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estimator measure to generate a new method named S-estimator based normalized weighted-permutation mutual information (SNWPMI) for analyzing multi-channel electroencephalographic (EEG) synchronization strength. The performances including the effects of time delay, embedding dimension, coupling coefficients, signal to noise ratios (SNRs) and data length of the NWPMI are evaluated by using Coupled Henon mapping model. The results show that the NWPMI is superior in describing the synchronization compared with the normalized permutation mutual information (NPMI). Furthermore, the proposed SNWPMI method is applied to analyze scalp EEG data from 26 amnestic mild cognitive impairment (aMCI) subjects and 20 age-matched controls with normal cognitive function, who both suffer from type 2 diabetes mellitus (T2DM). The proposed methods NWPMI and SNWPMI are suggested to be an effective index to estimate the synchronization strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Introduction to Permutation and Resampling-Based Hypothesis Tests

    ERIC Educational Resources Information Center

    LaFleur, Bonnie J.; Greevy, Robert A.

    2009-01-01

    A resampling-based method of inference--permutation tests--is often used when distributional assumptions are questionable or unmet. Not only are these methods useful for obvious departures from parametric assumptions (e.g., normality) and small sample sizes, but they are also more robust than their parametric counterparts in the presences of…

  8. Explorations in Statistics: Permutation Methods

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2012-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eighth installment of "Explorations in Statistics" explores permutation methods, empiric procedures we can use to assess an experimental result--to test a null hypothesis--when we are reluctant to trust statistical…

  9. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

  10. Storage and computationally efficient permutations of factorized covariance and square-root information matrices

    NASA Technical Reports Server (NTRS)

    Muellerschoen, R. J.

    1988-01-01

    A unified method to permute vector-stored upper-triangular diagonal factorized covariance (UD) and vector stored upper-triangular square-root information filter (SRIF) arrays is presented. The method involves cyclical permutation of the rows and columns of the arrays and retriangularization with appropriate square-root-free fast Givens rotations or elementary slow Givens reflections. A minimal amount of computation is performed and only one scratch vector of size N is required, where N is the column dimension of the arrays. To make the method efficient for large SRIF arrays on a virtual memory machine, three additional scratch vectors each of size N are used to avoid expensive paging faults. The method discussed is compared with the methods and routines of Bierman's Estimation Subroutine Library (ESL).

  11. Frequency-domain-independent vector analysis for mode-division multiplexed transmission

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Hu, Guijun; Li, Jiao

    2018-04-01

    In this paper, we propose a demultiplexing method based on frequency-domain independent vector analysis (FD-IVA) algorithm for mode-division multiplexing (MDM) system. FD-IVA extends frequency-domain independent component analysis (FD-ICA) from unitary variable to multivariate variables, and provides an efficient method to eliminate the permutation ambiguity. In order to verify the performance of FD-IVA algorithm, a 6 ×6 MDM system is simulated. The simulation results show that the FD-IVA algorithm has basically the same bit-error-rate(BER) performance with the FD-ICA algorithm and frequency-domain least mean squares (FD-LMS) algorithm. Meanwhile, the convergence speed of FD-IVA algorithm is the same as that of FD-ICA. However, compared with the FD-ICA and the FD-LMS, the FD-IVA has an obviously lower computational complexity.

  12. Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie

    2008-01-01

    Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…

  13. Accurate and fast multiple-testing correction in eQTL studies.

    PubMed

    Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm

    2015-06-04

    In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. An AUC-based permutation variable importance measure for random forests

    PubMed Central

    2013-01-01

    Background The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. Results We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. Conclusions The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html. PMID:23560875

  15. An AUC-based permutation variable importance measure for random forests.

    PubMed

    Janitza, Silke; Strobl, Carolin; Boulesteix, Anne-Laure

    2013-04-05

    The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html.

  16. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  17. Alignment-Independent Comparisons of Human Gastrointestinal Tract Microbial Communities in a Multidimensional 16S rRNA Gene Evolutionary Space▿

    PubMed Central

    Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete

    2007-01-01

    We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554

  18. PBOOST: a GPU-based tool for parallel permutation tests in genome-wide association studies.

    PubMed

    Yang, Guangyuan; Jiang, Wei; Yang, Qiang; Yu, Weichuan

    2015-05-01

    The importance of testing associations allowing for interactions has been demonstrated by Marchini et al. (2005). A fast method detecting associations allowing for interactions has been proposed by Wan et al. (2010a). The method is based on likelihood ratio test with the assumption that the statistic follows the χ(2) distribution. Many single nucleotide polymorphism (SNP) pairs with significant associations allowing for interactions have been detected using their method. However, the assumption of χ(2) test requires the expected values in each cell of the contingency table to be at least five. This assumption is violated in some identified SNP pairs. In this case, likelihood ratio test may not be applicable any more. Permutation test is an ideal approach to checking the P-values calculated in likelihood ratio test because of its non-parametric nature. The P-values of SNP pairs having significant associations with disease are always extremely small. Thus, we need a huge number of permutations to achieve correspondingly high resolution for the P-values. In order to investigate whether the P-values from likelihood ratio tests are reliable, a fast permutation tool to accomplish large number of permutations is desirable. We developed a permutation tool named PBOOST. It is based on GPU with highly reliable P-value estimation. By using simulation data, we found that the P-values from likelihood ratio tests will have relative error of >100% when 50% cells in the contingency table have expected count less than five or when there is zero expected count in any of the contingency table cells. In terms of speed, PBOOST completed 10(7) permutations for a single SNP pair from the Wellcome Trust Case Control Consortium (WTCCC) genome data (Wellcome Trust Case Control Consortium, 2007) within 1 min on a single Nvidia Tesla M2090 device, while it took 60 min in a single CPU Intel Xeon E5-2650 to finish the same task. More importantly, when simultaneously testing 256 SNP pairs for 10(7) permutations, our tool took only 5 min, while the CPU program took 10 h. By permuting on a GPU cluster consisting of 40 nodes, we completed 10(12) permutations for all 280 SNP pairs reported with P-values smaller than 1.6 × 10⁻¹² in the WTCCC datasets in 1 week. The source code and sample data are available at http://bioinformatics.ust.hk/PBOOST.zip. gyang@ust.hk; eeyu@ust.hk Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V., E-mail: truhlar@umn.edu, E-mail: candler@aem.umn.edu

    2014-02-07

    Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with amore » review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.« less

  20. EXPLICIT SYMPLECTIC-LIKE INTEGRATORS WITH MIDPOINT PERMUTATIONS FOR SPINNING COMPACT BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Junjie; Wu, Xin; Huang, Guoqing

    2017-01-01

    We refine the recently developed fourth-order extended phase space explicit symplectic-like methods for inseparable Hamiltonians using Yoshida’s triple product combined with a midpoint permuted map. The midpoint between the original variables and their corresponding extended variables at every integration step is readjusted as the initial values of the original variables and their corresponding extended ones at the next step integration. The triple-product construction is apparently superior to the composition of two triple products in computational efficiency. Above all, the new midpoint permutations are more effective in restraining the equality of the original variables and their corresponding extended ones at each integration step thanmore » the existing sequent permutations of momenta and coordinates. As a result, our new construction shares the benefit of implicit symplectic integrators in the conservation of the second post-Newtonian Hamiltonian of spinning compact binaries. Especially for the chaotic case, it can work well, but the existing sequent permuted algorithm cannot. When dissipative effects from the gravitational radiation reaction are included, the new symplectic-like method has a secular drift in the energy error of the dissipative system for the orbits that are regular in the absence of radiation, as an implicit symplectic integrator does. In spite of this, it is superior to the same-order implicit symplectic integrator in accuracy and efficiency. The new method is particularly useful in discussing the long-term evolution of inseparable Hamiltonian problems.« less

  1. A studentized permutation test for three-arm trials in the 'gold standard' design.

    PubMed

    Mütze, Tobias; Konietschke, Frank; Munk, Axel; Friede, Tim

    2017-03-15

    The 'gold standard' design for three-arm trials refers to trials with an active control and a placebo control in addition to the experimental treatment group. This trial design is recommended when being ethically justifiable and it allows the simultaneous comparison of experimental treatment, active control, and placebo. Parametric testing methods have been studied plentifully over the past years. However, these methods often tend to be liberal or conservative when distributional assumptions are not met particularly with small sample sizes. In this article, we introduce a studentized permutation test for testing non-inferiority and superiority of the experimental treatment compared with the active control in three-arm trials in the 'gold standard' design. The performance of the studentized permutation test for finite sample sizes is assessed in a Monte Carlo simulation study under various parameter constellations. Emphasis is put on whether the studentized permutation test meets the target significance level. For comparison purposes, commonly used Wald-type tests, which do not make any distributional assumptions, are included in the simulation study. The simulation study shows that the presented studentized permutation test for assessing non-inferiority in three-arm trials in the 'gold standard' design outperforms its competitors, for instance the test based on a quasi-Poisson model, for count data. The methods discussed in this paper are implemented in the R package ThreeArmedTrials which is available on the comprehensive R archive network (CRAN). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Cipher image damage and decisions in real time

    NASA Astrophysics Data System (ADS)

    Silva-García, Victor Manuel; Flores-Carapia, Rolando; Rentería-Márquez, Carlos; Luna-Benoso, Benjamín; Jiménez-Vázquez, Cesar Antonio; González-Ramírez, Marlon David

    2015-01-01

    This paper proposes a method for constructing permutations on m position arrangements. Our objective is to encrypt color images using advanced encryption standard (AES), using variable permutations means a different one for each 128-bit block in the first round after the x-or operation is applied. Furthermore, this research offers the possibility of knowing the original image when the encrypted figure suffered a failure from either an attack or not. This is achieved by permuting the original image pixel positions before being encrypted with AES variable permutations, which means building a pseudorandom permutation of 250,000 position arrays or more. To this end, an algorithm that defines a bijective function between the nonnegative integer and permutation sets is built. From this algorithm, the way to build permutations on the 0,1,…,m-1 array, knowing m-1 constants, is presented. The transcendental numbers are used to select these m-1 constants in a pseudorandom way. The quality of the proposed encryption according to the following criteria is evaluated: the correlation coefficient, the entropy, and the discrete Fourier transform. A goodness-of-fit test for each basic color image is proposed to measure the bits randomness degree of the encrypted figure. On the other hand, cipher images are obtained in a loss-less encryption way, i.e., no JPEG file formats are used.

  3. Weighted multiscale Rényi permutation entropy of nonlinear time series

    NASA Astrophysics Data System (ADS)

    Chen, Shijian; Shang, Pengjian; Wu, Yue

    2018-04-01

    In this paper, based on Rényi permutation entropy (RPE), which has been recently suggested as a relative measure of complexity in nonlinear systems, we propose multiscale Rényi permutation entropy (MRPE) and weighted multiscale Rényi permutation entropy (WMRPE) to quantify the complexity of nonlinear time series over multiple time scales. First, we apply MPRE and WMPRE to the synthetic data and make a comparison of modified methods and RPE. Meanwhile, the influence of the change of parameters is discussed. Besides, we interpret the necessity of considering not only multiscale but also weight by taking the amplitude into account. Then MRPE and WMRPE methods are employed to the closing prices of financial stock markets from different areas. By observing the curves of WMRPE and analyzing the common statistics, stock markets are divided into 4 groups: (1) DJI, S&P500, and HSI, (2) NASDAQ and FTSE100, (3) DAX40 and CAC40, and (4) ShangZheng and ShenCheng. Results show that the standard deviations of weighted methods are smaller, showing WMRPE is able to ensure the results more robust. Besides, WMPRE can provide abundant dynamical properties of complex systems, and demonstrate the intrinsic mechanism.

  4. Cluster mass inference via random field theory.

    PubMed

    Zhang, Hui; Nichols, Thomas E; Johnson, Timothy D

    2009-01-01

    Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single subject and a group fMRI dataset demonstrate better power than traditional cluster size inference, and good accuracy relative to a gold-standard permutation test.

  5. Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG

    PubMed Central

    2018-01-01

    Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and “permutation entropy” were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography. PMID:29606959

  6. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

    PubMed Central

    Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales. PMID:27723803

  7. Soil Bacteria and Fungi Respond on Different Spatial Scales to Invasion by the Legume Lespedeza cuneata

    DTIC Science & Technology

    2011-05-24

    of 230   community similarity (Legendre and Legendre 1998). 231   232   Permutational Multivariate Analysis of Variance ( PerMANOVA ) (McArdle...241   null hypothesis can be rejected with a type I error rate of a. We used an implementation 242   of PerMANOVA that involved sequential removal...TEXTURE, and 249   HABITAT. 250   251   The null distribution for PerMANOVA tests for site-scale effects was generated 252   using a restricted

  8. A Versatile Platform for Nanotechnology Based on Circular Permutation of a Chaperonin Protein

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; McMillan, Andrew; Trent, Jonathan; Chan, Suzanne; Mazzarella, Kellen; Li, Yi-Fen

    2004-01-01

    A number of protein complexes have been developed as nanoscale templates. These templates can be functionalized using the peptide sequences that bind inorganic materials. However, it is difficult to integrate peptides into a specific position within a protein template. Integrating intact proteins with desirable binding or catalytic activities is an even greater challenge. We present a general method for modifying protein templates using circular permutation so that additional peptide sequence can be added in a wide variety of specific locations. Circular permutation is a reordering of the polypeptide chain such that the original termini are joined and new termini are created elsewhere in the protein. New sequence can be joined to the protein termini without perturbing the protein structure and with minimal limitation on the size and conformation of the added sequence. We have used this approach to modify a chaperonin protein template, placing termini at five different locations distributed across the surface of the protein complex. These permutants are competent to form the double-ring structures typical of chaperonin proteins. The permuted double-rings also form the same assemblies as the unmodified protein. We fused a fluorescent protein to two representative permutants and demonstrated that it assumes its active structure and does not interfere with assembly of chaperonin double-rings.

  9. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng

    2018-01-01

    Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.

  10. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS

    PubMed Central

    Kuai, Moshen; Cheng, Gang; Li, Yong

    2018-01-01

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively. PMID:29510569

  11. Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS.

    PubMed

    Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong

    2018-03-05

    For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.

  12. Gene set analysis using variance component tests.

    PubMed

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  13. Multiple comparisons permutation test for image based data mining in radiotherapy.

    PubMed

    Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel

    2013-12-23

    : Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

  14. Generalized permutation entropy analysis based on the two-index entropic form S q , δ

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Shang, Pengjian

    2015-05-01

    Permutation entropy (PE) is a novel measure to quantify the complexity of nonlinear time series. In this paper, we propose a generalized permutation entropy ( P E q , δ ) based on the recently postulated entropic form, S q , δ , which was proposed as an unification of the well-known Sq of nonextensive-statistical mechanics and S δ , a possibly appropriate candidate for the black-hole entropy. We find that P E q , δ with appropriate parameters can amplify minor changes and trends of complexities in comparison to PE. Experiments with this generalized permutation entropy method are performed with both synthetic and stock data showing its power. Results show that P E q , δ is an exponential function of q and the power ( k ( δ ) ) is a constant if δ is determined. Some discussions about k ( δ ) are provided. Besides, we also find some interesting results about power law.

  15. Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies.

    PubMed

    Dudbridge, Frank; Koeleman, Bobby P C

    2004-09-01

    Large exploratory studies, including candidate-gene-association testing, genomewide linkage-disequilibrium scans, and array-expression experiments, are becoming increasingly common. A serious problem for such studies is that statistical power is compromised by the need to control the false-positive rate for a large family of tests. Because multiple true associations are anticipated, methods have been proposed that combine evidence from the most significant tests, as a more powerful alternative to individually adjusted tests. The practical application of these methods is currently limited by a reliance on permutation testing to account for the correlated nature of single-nucleotide polymorphism (SNP)-association data. On a genomewide scale, this is both very time-consuming and impractical for repeated explorations with standard marker panels. Here, we alleviate these problems by fitting analytic distributions to the empirical distribution of combined evidence. We fit extreme-value distributions for fixed lengths of combined evidence and a beta distribution for the most significant length. An initial phase of permutation sampling is required to fit these distributions, but it can be completed more quickly than a simple permutation test and need be done only once for each panel of tests, after which the fitted parameters give a reusable calibration of the panel. Our approach is also a more efficient alternative to a standard permutation test. We demonstrate the accuracy of our approach and compare its efficiency with that of permutation tests on genomewide SNP data released by the International HapMap Consortium. The estimation of analytic distributions for combined evidence will allow these powerful methods to be applied more widely in large exploratory studies.

  16. Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy

    NASA Astrophysics Data System (ADS)

    Traversaro, Francisco; O. Redelico, Francisco

    2018-04-01

    In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of complexity is the Permutation Entropy. But there is still no known method to determine the accuracy of this measure. There has been little research on the statistical properties of this quantity that characterize time series. The literature describes some resampling methods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but these seems to fail. In this contribution, we propose a parametric bootstrap methodology using a symbolic representation of the time series to obtain the distribution of the Permutation Entropy estimator. We perform several time series simulations given by well-known stochastic processes: the 1/fα noise family, and show in each case that the proposed accuracy measure is as efficient as the one obtained by the frequentist approach of repeating the experiment. The complexity of brain electrical activity, measured by the Permutation Entropy, has been extensively used in epilepsy research for detection in dynamical changes in electroencephalogram (EEG) signal with no consideration of the variability of this complexity measure. An application of the parametric bootstrap methodology is used to compare normal and pre-ictal EEG signals.

  17. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds.

    PubMed

    Altschuler, M D; Kassaee, A

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an 'NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use 'local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good 'global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  18. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds

    NASA Astrophysics Data System (ADS)

    Altschuler, Martin D.; Kassaee, Alireza

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an `NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use `local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good `global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  19. Rank-based permutation approaches for non-parametric factorial designs.

    PubMed

    Umlauft, Maria; Konietschke, Frank; Pauly, Markus

    2017-11-01

    Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability. © 2017 The British Psychological Society.

  20. MEMD-enhanced multivariate fuzzy entropy for the evaluation of complexity in biomedical signals.

    PubMed

    Azami, Hamed; Smith, Keith; Escudero, Javier

    2016-08-01

    Multivariate multiscale entropy (mvMSE) has been proposed as a combination of the coarse-graining process and multivariate sample entropy (mvSE) to quantify the irregularity of multivariate signals. However, both the coarse-graining process and mvSE may not be reliable for short signals. Although the coarse-graining process can be replaced with multivariate empirical mode decomposition (MEMD), the relative instability of mvSE for short signals remains a problem. Here, we address this issue by proposing the multivariate fuzzy entropy (mvFE) with a new fuzzy membership function. The results using white Gaussian noise show that the mvFE leads to more reliable and stable results, especially for short signals, in comparison with mvSE. Accordingly, we propose MEMD-enhanced mvFE to quantify the complexity of signals. The characteristics of brain regions influenced by partial epilepsy are investigated by focal and non-focal electroencephalogram (EEG) time series. In this sense, the proposed MEMD-enhanced mvFE and mvSE are employed to discriminate focal EEG signals from non-focal ones. The results demonstrate the MEMD-enhanced mvFE values have a smaller coefficient of variation in comparison with those obtained by the MEMD-enhanced mvSE, even for long signals. The results also show that the MEMD-enhanced mvFE has better performance to quantify focal and non-focal signals compared with multivariate multiscale permutation entropy.

  1. Estrogen pathway polymorphisms in relation to primary open angle glaucoma: An analysis accounting for gender from the United States

    PubMed Central

    Loomis, Stephanie J.; Weinreb, Robert N.; Kang, Jae H.; Yaspan, Brian L.; Bailey, Jessica Cooke; Gaasterland, Douglas; Gaasterland, Terry; Lee, Richard K.; Scott, William K.; Lichter, Paul R.; Budenz, Donald L.; Liu, Yutao; Realini, Tony; Friedman, David S.; McCarty, Catherine A.; Moroi, Sayoko E.; Olson, Lana; Schuman, Joel S.; Singh, Kuldev; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J.; Brilliant, Murray; Sit, Arthur J.; Christen, William G.; Fingert, John; Kraft, Peter; Zhang, Kang; Allingham, R. Rand; Pericak-Vance, Margaret A.; Richards, Julia E.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.

    2013-01-01

    Purpose Circulating estrogen levels are relevant in glaucoma phenotypic traits. We assessed the association between an estrogen metabolism single nucleotide polymorphism (SNP) panel in relation to primary open angle glaucoma (POAG), accounting for gender. Methods We included 3,108 POAG cases and 3,430 controls of both genders from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium genotyped on the Illumina 660W-Quad platform. We assessed the relation between the SNP panels representative of estrogen metabolism and POAG using pathway- and gene-based approaches with the Pathway Analysis by Randomization Incorporating Structure (PARIS) software. PARIS executes a permutation algorithm to assess statistical significance relative to the pathways and genes of comparable genetic architecture. These analyses were performed using the meta-analyzed results from the GLAUGEN and NEIGHBOR data sets. We evaluated POAG overall as well as two subtypes of POAG defined as intraocular pressure (IOP) ≥22 mmHg (high-pressure glaucoma [HPG]) or IOP <22 mmHg (normal pressure glaucoma [NPG]) at diagnosis. We conducted these analyses for each gender separately and then jointly in men and women. Results Among women, the estrogen SNP pathway was associated with POAG overall (permuted p=0.006) and HPG (permuted p<0.001) but not NPG (permuted p=0.09). Interestingly, there was no relation between the estrogen SNP pathway and POAG when men were considered alone (permuted p>0.99). Among women, gene-based analyses revealed that the catechol-O-methyltransferase gene showed strong associations with HTG (permuted gene p≤0.001) and NPG (permuted gene p=0.01). Conclusions The estrogen SNP pathway was associated with POAG among women. PMID:23869166

  2. Permutation approach, high frequency trading and variety of micro patterns in financial time series

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Ebrahimian, Mehran; Tahmooresi, Hamed

    2014-11-01

    Permutation approach is suggested as a method to investigate financial time series in micro scales. The method is used to see how high frequency trading in recent years has affected the micro patterns which may be seen in financial time series. Tick to tick exchange rates are considered as examples. It is seen that variety of patterns evolve through time; and that the scale over which the target markets have no dominant patterns, have decreased steadily over time with the emergence of higher frequency trading.

  3. Multiple comparisons permutation test for image based data mining in radiotherapy

    PubMed Central

    2013-01-01

    Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy. PMID:24365155

  4. Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy

    PubMed Central

    Li, Zhaohui; Li, Xiaoli

    2013-01-01

    Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662

  5. Novel permutation measures for image encryption algorithms

    NASA Astrophysics Data System (ADS)

    Abd-El-Hafiz, Salwa K.; AbdElHaleem, Sherif H.; Radwan, Ahmed G.

    2016-10-01

    This paper proposes two measures for the evaluation of permutation techniques used in image encryption. First, a general mathematical framework for describing the permutation phase used in image encryption is presented. Using this framework, six different permutation techniques, based on chaotic and non-chaotic generators, are described. The two new measures are, then, introduced to evaluate the effectiveness of permutation techniques. These measures are (1) Percentage of Adjacent Pixels Count (PAPC) and (2) Distance Between Adjacent Pixels (DBAP). The proposed measures are used to evaluate and compare the six permutation techniques in different scenarios. The permutation techniques are applied on several standard images and the resulting scrambled images are analyzed. Moreover, the new measures are used to compare the permutation algorithms on different matrix sizes irrespective of the actual parameters used in each algorithm. The analysis results show that the proposed measures are good indicators of the effectiveness of the permutation technique.

  6. On the representation matrices of the spin permutation group. [for atomic and molecular electronic structures

    NASA Technical Reports Server (NTRS)

    Wilson, S.

    1977-01-01

    A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.

  7. Statistical validation of normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Blocks in cycles and k-commuting permutations.

    PubMed

    Moreno, Rutilo; Rivera, Luis Manuel

    2016-01-01

    We introduce and study k -commuting permutations. One of our main results is a characterization of permutations that k -commute with a given permutation. Using this characterization, we obtain formulas for the number of permutations that k -commute with a permutation [Formula: see text], for some cycle types of [Formula: see text]. Our enumerative results are related with integer sequences in "The On-line Encyclopedia of Integer Sequences", and in some cases provide new interpretations for such sequences.

  9. Fast algorithms for transforming back and forth between a signed permutation and its equivalent simple permutation.

    PubMed

    Gog, Simon; Bader, Martin

    2008-10-01

    The problem of sorting signed permutations by reversals is a well-studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into an equivalent simple permutation, and an O(n log n) algorithm for the back transformation of the sorting sequence.

  10. A Random Variable Related to the Inversion Vector of a Partial Random Permutation

    ERIC Educational Resources Information Center

    Laghate, Kavita; Deshpande, M. N.

    2005-01-01

    In this article, we define the inversion vector of a permutation of the integers 1, 2,..., n. We set up a particular kind of permutation, called a partial random permutation. The sum of the elements of the inversion vector of such a permutation is a random variable of interest.

  11. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  12. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the ``sorting all permutations'' method of selecting the most frequently occurring variables, we show that the results of a single 10-variable discriminant analysis are consistent with the ranking. We demonstrate that individually, the variables considered here have little ability to differentiate between flaring and flare-quiet populations, but with multivariable combinations, the populations may be distinguished.

  13. Estimation of absolute solvent and solvation shell entropies via permutation reduction

    NASA Astrophysics Data System (ADS)

    Reinhard, Friedemann; Grubmüller, Helmut

    2007-01-01

    Despite its prominent contribution to the free energy of solvated macromolecules such as proteins or DNA, and although principally contained within molecular dynamics simulations, the entropy of the solvation shell is inaccessible to straightforward application of established entropy estimation methods. The complication is twofold. First, the configurational space density of such systems is too complex for a sufficiently accurate fit. Second, and in contrast to the internal macromolecular dynamics, the configurational space volume explored by the diffusive motion of the solvent molecules is too large to be exhaustively sampled by current simulation techniques. Here, we develop a method to overcome the second problem and to significantly alleviate the first one. We propose to exploit the permutation symmetry of the solvent by transforming the trajectory in a way that renders established estimation methods applicable, such as the quasiharmonic approximation or principal component analysis. Our permutation-reduced approach involves a combinatorial problem, which is solved through its equivalence with the linear assignment problem, for which O(N3) methods exist. From test simulations of dense Lennard-Jones gases, enhanced convergence and improved entropy estimates are obtained. Moreover, our approach renders diffusive systems accessible to improved fit functions.

  14. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH{sub 4} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun, E-mail: jli15@cqu.edu.cn, E-mail: zhangdh@dicp.ac.cn; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131; Chen, Jun

    2015-05-28

    We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including themore » abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].« less

  15. Correntropy-based partial directed coherence for testing multivariate Granger causality in nonlinear processes

    NASA Astrophysics Data System (ADS)

    Kannan, Rohit; Tangirala, Arun K.

    2014-06-01

    Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.

  16. Chemometric and biological validation of a capillary electrophoresis metabolomic experiment of Schistosoma mansoni infection in mice.

    PubMed

    Garcia-Perez, Isabel; Angulo, Santiago; Utzinger, Jürg; Holmes, Elaine; Legido-Quigley, Cristina; Barbas, Coral

    2010-07-01

    Metabonomic and metabolomic studies are increasingly utilized for biomarker identification in different fields, including biology of infection. The confluence of improved analytical platforms and the availability of powerful multivariate analysis software have rendered the multiparameter profiles generated by these omics platforms a user-friendly alternative to the established analysis methods where the quality and practice of a procedure is well defined. However, unlike traditional assays, validation methods for these new multivariate profiling tools have yet to be established. We propose a validation for models obtained by CE fingerprinting of urine from mice infected with the blood fluke Schistosoma mansoni. We have analysed urine samples from two sets of mice infected in an inter-laboratory experiment where different infection methods and animal husbandry procedures were employed in order to establish the core biological response to a S. mansoni infection. CE data were analysed using principal component analysis. Validation of the scores consisted of permutation scrambling (100 repetitions) and a manual validation method, using a third of the samples (not included in the model) as a test or prediction set. The validation yielded 100% specificity and 100% sensitivity, demonstrating the robustness of these models with respect to deciphering metabolic perturbations in the mouse due to a S. mansoni infection. A total of 20 metabolites across the two experiments were identified that significantly discriminated between S. mansoni-infected and noninfected control samples. Only one of these metabolites, allantoin, was identified as manifesting different behaviour in the two experiments. This study shows the reproducibility of CE-based metabolic profiling methods for disease characterization and screening and highlights the importance of much needed validation strategies in the emerging field of metabolomics.

  17. Encoding Sequential Information in Semantic Space Models: Comparing Holographic Reduced Representation and Random Permutation

    PubMed Central

    Recchia, Gabriel; Sahlgren, Magnus; Kanerva, Pentti; Jones, Michael N.

    2015-01-01

    Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics. PMID:25954306

  18. Finite state model and compatibility theory - New analysis tools for permutation networks

    NASA Technical Reports Server (NTRS)

    Huang, S.-T.; Tripathi, S. K.

    1986-01-01

    A simple model to describe the fundamental operation theory of shuffle-exchange-type permutation networks, the finite permutation machine (FPM), is described, and theorems which transform the control matrix result to a continuous compatible vector result are developed. It is found that only 2n-1 shuffle exchange passes are necessary, and that 3n-3 passes are sufficient, to realize all permutations, reducing the sufficient number of passes by two from previous results. The flexibility of the approach is demonstrated by the description of a stack permutation machine (SPM) which can realize all permutations, and by showing that the FPM corresponding to the Benes (1965) network belongs to the SPM. The FPM corresponding to the network with two cascaded reverse-exchange networks is found to realize all permutations, and a simple mechanism to verify several equivalence relationships of various permutation networks is discussed.

  19. Sorting permutations by prefix and suffix rearrangements.

    PubMed

    Lintzmayer, Carla Negri; Fertin, Guillaume; Dias, Zanoni

    2017-02-01

    Some interesting combinatorial problems have been motivated by genome rearrangements, which are mutations that affect large portions of a genome. When we represent genomes as permutations, the goal is to transform a given permutation into the identity permutation with the minimum number of rearrangements. When they affect segments from the beginning (respectively end) of the permutation, they are called prefix (respectively suffix) rearrangements. This paper presents results for rearrangement problems that involve prefix and suffix versions of reversals and transpositions considering unsigned and signed permutations. We give 2-approximation and ([Formula: see text])-approximation algorithms for these problems, where [Formula: see text] is a constant divided by the number of breakpoints (pairs of consecutive elements that should not be consecutive in the identity permutation) in the input permutation. We also give bounds for the diameters concerning these problems and provide ways of improving the practical results of our algorithms.

  20. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring.

    PubMed

    Su, Cui; Liang, Zhenhu; Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Six MSPE algorithms-derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis-were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect changes. CG-based multiscale permutation entropies may fail to describe the characteristics of EEG at high decomposition scales.

  1. A Reversible Logical Circuit Synthesis Algorithm Based on Decomposition of Cycle Representations of Permutations

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Li, Zhiqiang; Zhang, Gaoman; Pan, Suhan; Zhang, Wei

    2018-05-01

    A reversible function is isomorphic to a permutation and an arbitrary permutation can be represented by a series of cycles. A new synthesis algorithm for 3-qubit reversible circuits was presented. It consists of two parts, the first part used the Number of reversible function's Different Bits (NDBs) to decide whether the NOT gate should be added to decrease the Hamming distance of the input and output vectors; the second part was based on the idea of exploring properties of the cycle representation of permutations, decomposed the cycles to make the permutation closer to the identity permutation and finally turn into the identity permutation, it was realized by using totally controlled Toffoli gates with positive and negative controls.

  2. Support vector machine learning-based fMRI data group analysis.

    PubMed

    Wang, Ze; Childress, Anna R; Wang, Jiongjiong; Detre, John A

    2007-07-15

    To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.

  3. EPEPT: A web service for enhanced P-value estimation in permutation tests

    PubMed Central

    2011-01-01

    Background In computational biology, permutation tests have become a widely used tool to assess the statistical significance of an event under investigation. However, the common way of computing the P-value, which expresses the statistical significance, requires a very large number of permutations when small (and thus interesting) P-values are to be accurately estimated. This is computationally expensive and often infeasible. Recently, we proposed an alternative estimator, which requires far fewer permutations compared to the standard empirical approach while still reliably estimating small P-values [1]. Results The proposed P-value estimator has been enriched with additional functionalities and is made available to the general community through a public website and web service, called EPEPT. This means that the EPEPT routines can be accessed not only via a website, but also programmatically using any programming language that can interact with the web. Examples of web service clients in multiple programming languages can be downloaded. Additionally, EPEPT accepts data of various common experiment types used in computational biology. For these experiment types EPEPT first computes the permutation values and then performs the P-value estimation. Finally, the source code of EPEPT can be downloaded. Conclusions Different types of users, such as biologists, bioinformaticians and software engineers, can use the method in an appropriate and simple way. Availability http://informatics.systemsbiology.net/EPEPT/ PMID:22024252

  4. Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags

    NASA Astrophysics Data System (ADS)

    ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu

    2017-05-01

    Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.

  5. [Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].

    PubMed

    Panchelyuga, V A; Panchelyuga, M S

    2015-01-01

    Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed.

  6. Decryption of pure-position permutation algorithms.

    PubMed

    Zhao, Xiao-Yu; Chen, Gang; Zhang, Dan; Wang, Xiao-Hong; Dong, Guang-Chang

    2004-07-01

    Pure position permutation image encryption algorithms, commonly used as image encryption investigated in this work are unfortunately frail under known-text attack. In view of the weakness of pure position permutation algorithm, we put forward an effective decryption algorithm for all pure-position permutation algorithms. First, a summary of the pure position permutation image encryption algorithms is given by introducing the concept of ergodic matrices. Then, by using probability theory and algebraic principles, the decryption probability of pure-position permutation algorithms is verified theoretically; and then, by defining the operation system of fuzzy ergodic matrices, we improve a specific decryption algorithm. Finally, some simulation results are shown.

  7. Successful attack on permutation-parity-machine-based neural cryptography.

    PubMed

    Seoane, Luís F; Ruttor, Andreas

    2012-02-01

    An algorithm is presented which implements a probabilistic attack on the key-exchange protocol based on permutation parity machines. Instead of imitating the synchronization of the communicating partners, the strategy consists of a Monte Carlo method to sample the space of possible weights during inner rounds and an analytic approach to convey the extracted information from one outer round to the next one. The results show that the protocol under attack fails to synchronize faster than an eavesdropper using this algorithm.

  8. A permutation-based non-parametric analysis of CRISPR screen data.

    PubMed

    Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua

    2017-07-19

    Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .

  9. Refined composite multiscale weighted-permutation entropy of financial time series

    NASA Astrophysics Data System (ADS)

    Zhang, Yongping; Shang, Pengjian

    2018-04-01

    For quantifying the complexity of nonlinear systems, multiscale weighted-permutation entropy (MWPE) has recently been proposed. MWPE has incorporated amplitude information and been applied to account for the multiple inherent dynamics of time series. However, MWPE may be unreliable, because its estimated values show large fluctuation for slight variation of the data locations, and a significant distinction only for the different length of time series. Therefore, we propose the refined composite multiscale weighted-permutation entropy (RCMWPE). By comparing the RCMWPE results with other methods' results on both synthetic data and financial time series, RCMWPE method shows not only the advantages inherited from MWPE but also lower sensitivity to the data locations, more stable and much less dependent on the length of time series. Moreover, we present and discuss the results of RCMWPE method on the daily price return series from Asian and European stock markets. There are significant differences between Asian markets and European markets, and the entropy values of Hang Seng Index (HSI) are close to but higher than those of European markets. The reliability of the proposed RCMWPE method has been supported by simulations on generated and real data. It could be applied to a variety of fields to quantify the complexity of the systems over multiple scales more accurately.

  10. Randomization in cancer clinical trials: permutation test and development of a computer program.

    PubMed Central

    Ohashi, Y

    1990-01-01

    When analyzing cancer clinical trial data where the treatment allocation is done using dynamic balancing methods such as the minimization method for balancing the distribution of important prognostic factors in each arm, conservativeness occurs if such a randomization scheme is ignored and a simple unstratified analysis is carried out. In this paper, the above conservativeness is demonstrated by computer simulation, and the development of a computer program that carries out permutation tests of the log-rank statistics for clinical trial data where the allocation is done by the minimization method or a stratified permuted block design is introduced. We are planning to use this program in practice to supplement a usual stratified analysis and model-based methods such as the Cox regression. The most serious problem in cancer clinical trials in Japan is how to carry out the quality control or data management in trials that are initiated and conducted by researchers without support from pharmaceutical companies. In the final section of this paper, one international collaborative work for developing international guidelines on data management in clinical trials of bladder cancer is briefly introduced, and the differences between the system adopted in US/European statistical centers and the Japanese system is described. PMID:2269216

  11. Weight distributions for turbo codes using random and nonrandom permutations

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Divsalar, D.

    1995-01-01

    This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.

  12. PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries.

    PubMed

    Jones, Alicia M; Atkinson, Joshua T; Silberg, Jonathan J

    2017-01-01

    Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.

  13. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kaixuan; Wang, Jun

    2017-02-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model.

  14. Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.

    PubMed

    Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio

    2018-02-21

    Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.

  15. Visual recognition of permuted words

    NASA Astrophysics Data System (ADS)

    Rashid, Sheikh Faisal; Shafait, Faisal; Breuel, Thomas M.

    2010-02-01

    In current study we examine how letter permutation affects in visual recognition of words for two orthographically dissimilar languages, Urdu and German. We present the hypothesis that recognition or reading of permuted and non-permuted words are two distinct mental level processes, and that people use different strategies in handling permuted words as compared to normal words. A comparison between reading behavior of people in these languages is also presented. We present our study in context of dual route theories of reading and it is observed that the dual-route theory is consistent with explanation of our hypothesis of distinction in underlying cognitive behavior for reading permuted and non-permuted words. We conducted three experiments in lexical decision tasks to analyze how reading is degraded or affected by letter permutation. We performed analysis of variance (ANOVA), distribution free rank test, and t-test to determine the significance differences in response time latencies for two classes of data. Results showed that the recognition accuracy for permuted words is decreased 31% in case of Urdu and 11% in case of German language. We also found a considerable difference in reading behavior for cursive and alphabetic languages and it is observed that reading of Urdu is comparatively slower than reading of German due to characteristics of cursive script.

  16. PsiQuaSP-A library for efficient computation of symmetric open quantum systems.

    PubMed

    Gegg, Michael; Richter, Marten

    2017-11-24

    In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.

  17. An efficient genome-wide association test for mixed binary and continuous phenotypes with applications to substance abuse research.

    PubMed

    Buu, Anne; Williams, L Keoki; Yang, James J

    2018-03-01

    We propose a new genome-wide association test for mixed binary and continuous phenotypes that uses an efficient numerical method to estimate the empirical distribution of the Fisher's combination statistic under the null hypothesis. Our simulation study shows that the proposed method controls the type I error rate and also maintains its power at the level of the permutation method. More importantly, the computational efficiency of the proposed method is much higher than the one of the permutation method. The simulation results also indicate that the power of the test increases when the genetic effect increases, the minor allele frequency increases, and the correlation between responses decreases. The statistical analysis on the database of the Study of Addiction: Genetics and Environment demonstrates that the proposed method combining multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests.

  18. Circular Permutation of a Chaperonin Protein: Biophysics and Application to Nanotechnology

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; Chan, Suzanne; Li, Yi-Fen; McMillan, R. Andrew; Trent, Jonathan

    2004-01-01

    We have designed five circular permutants of a chaperonin protein derived from the hyperthermophilic organism Sulfolobus shibatae. These permuted proteins were expressed in E. coli and are well-folded. Furthermore, all the permutants assemble into 18-mer double rings of the same form as the wild-type protein. We characterized the thermodynamics of folding for each permutant by both guanidine denaturation and differential scanning calorimetry. We also examined the assembly of chaperonin rings into higher order structures that may be used as nanoscale templates. The results show that circular permutation can be used to tune the thermodynamic properties of a protein template as well as facilitating the fusion of peptides, binding proteins or enzymes onto nanostructured templates.

  19. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis

    PubMed Central

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-01-01

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526

  20. A faster 1.375-approximation algorithm for sorting by transpositions.

    PubMed

    Cunha, Luís Felipe I; Kowada, Luis Antonio B; Hausen, Rodrigo de A; de Figueiredo, Celina M H

    2015-11-01

    Sorting by Transpositions is an NP-hard problem for which several polynomial-time approximation algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-approximation [Formula: see text] algorithm, whose running time was improved to O(nlogn) by Feng and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman (2006) developed a 1.375-approximation O(n(2)) algorithm, and Firoz et al. (2011) claimed an improvement to the running time, from O(n(2)) to O(nlogn), by using the permutation tree. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them. In addition, we propose a 1.375-approximation algorithm, modifying Elias and Hartman's approach with the use of permutation trees and achieving O(nlogn) time.

  1. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis.

    PubMed

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-04-21

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.

  2. An extended continuous estimation of distribution algorithm for solving the permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2017-11-01

    This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.

  3. Simulating the component counts of combinatorial structures.

    PubMed

    Arratia, Richard; Barbour, A D; Ewens, W J; Tavaré, Simon

    2018-02-09

    This article describes and compares methods for simulating the component counts of random logarithmic combinatorial structures such as permutations and mappings. We exploit the Feller coupling for simulating permutations to provide a very fast method for simulating logarithmic assemblies more generally. For logarithmic multisets and selections, this approach is replaced by an acceptance/rejection method based on a particular conditioning relationship that represents the distribution of the combinatorial structure as that of independent random variables conditioned on a weighted sum. We show how to improve its acceptance rate. We illustrate the method by estimating the probability that a random mapping has no repeated component sizes, and establish the asymptotic distribution of the difference between the number of components and the number of distinct component sizes for a very general class of logarithmic structures. Copyright © 2018. Published by Elsevier Inc.

  4. The structure of a thermophilic kinase shapes fitness upon random circular permutation

    PubMed Central

    Jones, Alicia M.; Mehta, Manan M.; Thomas, Emily E.; Atkinson, Joshua T.; Segall-Shapiro, Thomas H.; Liu, Shirley; Silberg, Jonathan J.

    2016-01-01

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement where native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein’s functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AK with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and they reveal a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection. PMID:26976658

  5. The Structure of a Thermophilic Kinase Shapes Fitness upon Random Circular Permutation.

    PubMed

    Jones, Alicia M; Mehta, Manan M; Thomas, Emily E; Atkinson, Joshua T; Segall-Shapiro, Thomas H; Liu, Shirley; Silberg, Jonathan J

    2016-05-20

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement in which native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein's functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AKs with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and it reveals a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection.

  6. Teaching Tip: When a Matrix and Its Inverse Are Stochastic

    ERIC Educational Resources Information Center

    Ding, J.; Rhee, N. H.

    2013-01-01

    A stochastic matrix is a square matrix with nonnegative entries and row sums 1. The simplest example is a permutation matrix, whose rows permute the rows of an identity matrix. A permutation matrix and its inverse are both stochastic. We prove the converse, that is, if a matrix and its inverse are both stochastic, then it is a permutation matrix.

  7. Tag-KEM from Set Partial Domain One-Way Permutations

    NASA Astrophysics Data System (ADS)

    Abe, Masayuki; Cui, Yang; Imai, Hideki; Kurosawa, Kaoru

    Recently a framework called Tag-KEM/DEM was introduced to construct efficient hybrid encryption schemes. Although it is known that generic encode-then-encrypt construction of chosen ciphertext secure public-key encryption also applies to secure Tag-KEM construction and some known encoding method like OAEP can be used for this purpose, it is worth pursuing more efficient encoding method dedicated for Tag-KEM construction. This paper proposes an encoding method that yields efficient Tag-KEM schemes when combined with set partial one-way permutations such as RSA and Rabin's encryption scheme. To our knowledge, this leads to the most practical hybrid encryption scheme of this type. We also present an efficient Tag-KEM which is CCA-secure under general factoring assumption rather than Blum factoring assumption.

  8. Limited Rationality and Its Quantification Through the Interval Number Judgments With Permutations.

    PubMed

    Liu, Fang; Pedrycz, Witold; Zhang, Wei-Guo

    2017-12-01

    The relative importance of alternatives expressed in terms of interval numbers in the fuzzy analytic hierarchy process aims to capture the uncertainty experienced by decision makers (DMs) when making a series of comparisons. Under the assumption of full rationality, the judgements of DMs in the typical analytic hierarchy process could be consistent. However, since the uncertainty in articulating the opinions of DMs is unavoidable, the interval number judgements are associated with the limited rationality. In this paper, we investigate the concept of limited rationality by introducing interval multiplicative reciprocal comparison matrices. By analyzing the consistency of interval multiplicative reciprocal comparison matrices, it is observed that the interval number judgements are inconsistent. By considering the permutations of alternatives, the concepts of approximation-consistency and acceptable approximation-consistency of interval multiplicative reciprocal comparison matrices are proposed. The exchange method is designed to generate all the permutations. A novel method of determining the interval weight vector is proposed under the consideration of randomness in comparing alternatives, and a vector of interval weights is determined. A new algorithm of solving decision making problems with interval multiplicative reciprocal preference relations is provided. Two numerical examples are carried out to illustrate the proposed approach and offer a comparison with the methods available in the literature.

  9. Deciphering the Preference and Predicting the Viability of Circular Permutations in Proteins

    PubMed Central

    Liu, Yen-Yi; Wang, Li-Fen; Hwang, Jenn-Kang; Lyu, Ping-Chiang

    2012-01-01

    Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology. PMID:22359629

  10. Dynamic connectivity regression: Determining state-related changes in brain connectivity

    PubMed Central

    Cribben, Ivor; Haraldsdottir, Ragnheidur; Atlas, Lauren Y.; Wager, Tor D.; Lindquist, Martin A.

    2014-01-01

    Most statistical analyses of fMRI data assume that the nature, timing and duration of the psychological processes being studied are known. However, often it is hard to specify this information a priori. In this work we introduce a data-driven technique for partitioning the experimental time course into distinct temporal intervals with different multivariate functional connectivity patterns between a set of regions of interest (ROIs). The technique, called Dynamic Connectivity Regression (DCR), detects temporal change points in functional connectivity and estimates a graph, or set of relationships between ROIs, for data in the temporal partition that falls between pairs of change points. Hence, DCR allows for estimation of both the time of change in connectivity and the connectivity graph for each partition, without requiring prior knowledge of the nature of the experimental design. Permutation and bootstrapping methods are used to perform inference on the change points. The method is applied to various simulated data sets as well as to an fMRI data set from a study (N=26) of a state anxiety induction using a socially evaluative threat challenge. The results illustrate the method’s ability to observe how the networks between different brain regions changed with subjects’ emotional state. PMID:22484408

  11. The potential use of cuticular hydrocarbons and multivariate analysis to age empty puparial cases of Calliphora vicina and Lucilia sericata.

    PubMed

    Moore, Hannah E; Pechal, Jennifer L; Benbow, M Eric; Drijfhout, Falko P

    2017-05-16

    Cuticular hydrocarbons (CHC) have been successfully used in the field of forensic entomology for identifying and ageing forensically important blowfly species, primarily in the larval stages. However in older scenes where all other entomological evidence is no longer present, Calliphoridae puparial cases can often be all that remains and therefore being able to establish the age could give an indication of the PMI. This paper examined the CHCs present in the lipid wax layer of insects, to determine the age of the cases over a period of nine months. The two forensically important species examined were Calliphora vicina and Lucilia sericata. The hydrocarbons were chemically extracted and analysed using Gas Chromatography - Mass Spectrometry. Statistical analysis was then applied in the form of non-metric multidimensional scaling analysis (NMDS), permutational multivariate analysis of variance (PERMANOVA) and random forest models. This study was successful in determining age differences within the empty cases, which to date, has not been establish by any other technique.

  12. Analysis of crude oil markets with improved multiscale weighted permutation entropy

    NASA Astrophysics Data System (ADS)

    Niu, Hongli; Wang, Jun; Liu, Cheng

    2018-03-01

    Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.

  13. A novel image encryption algorithm based on the chaotic system and DNA computing

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun

    A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.

  14. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    PubMed

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  15. Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters.

    PubMed

    Cao, Y; Griffith, J F; Dorevitch, S; Weisberg, S B

    2012-07-01

      Draft criteria for the optional use of qPCR for recreational water quality monitoring have been published in the United States. One concern is that inhibition of the qPCR assay can lead to false-negative results and potentially inadequate public health protection. We evaluate the effectiveness of strategies for minimizing the impact of inhibition.   Five qPCR method permutations for measuring Enterococcus were challenged with 133 potentially inhibitory fresh and marine water samples. Serial dilutions were conducted to assess Enterococcus target assay inhibition, to which inhibition identified using four internal controls (IC) was compared. The frequency and magnitude of inhibition varied considerably among qPCR methods, with the permutation using an environmental master mix performing substantially better. Fivefold dilution was also effective at reducing inhibition in most samples (>78%). ICs were variable and somewhat ineffective, with 54-85% agreement between ICs and serial dilution.   The current IC methods appear to not accurately predict Enterococcus inhibition and should be used with caution; fivefold dilution and the use of reagents designed for environmental sample analysis (i.e. more robust qPCR chemistry) may be preferable.   Suitable approaches for defining, detecting and reducing inhibition will improve implementation of qPCR for water monitoring. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  16. Quantile-based permutation thresholds for quantitative trait loci hotspots.

    PubMed

    Neto, Elias Chaibub; Keller, Mark P; Broman, Andrew F; Attie, Alan D; Jansen, Ritsert C; Broman, Karl W; Yandell, Brian S

    2012-08-01

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.

  17. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy

    NASA Astrophysics Data System (ADS)

    Li, Yongbo; Li, Guoyan; Yang, Yuantao; Liang, Xihui; Xu, Minqiang

    2018-05-01

    The fault diagnosis of planetary gearboxes is crucial to reduce the maintenance costs and economic losses. This paper proposes a novel fault diagnosis method based on adaptive multi-scale morphological filter (AMMF) and modified hierarchical permutation entropy (MHPE) to identify the different health conditions of planetary gearboxes. In this method, AMMF is firstly adopted to remove the fault-unrelated components and enhance the fault characteristics. Second, MHPE is utilized to extract the fault features from the denoised vibration signals. Third, Laplacian score (LS) approach is employed to refine the fault features. In the end, the obtained features are fed into the binary tree support vector machine (BT-SVM) to accomplish the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault categories of planetary gearboxes.

  18. Predicting clinical diagnosis in Huntington's disease: An imaging polymarker

    PubMed Central

    Daws, Richard E.; Soreq, Eyal; Johnson, Eileanoir B.; Scahill, Rachael I.; Tabrizi, Sarah J.; Barker, Roger A.; Hampshire, Adam

    2018-01-01

    Objective Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real‐life clinical diagnosis in HD. Method A multivariate machine learning approach was applied to resting‐state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross‐group comparisons between preHD and controls, and within the preHD group in relation to “estimated” and “actual” proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. Results Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. Interpretation We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532–543 PMID:29405351

  19. Overlap Cycles for Permutations: Necessary and Sufficient Conditions

    DTIC Science & Technology

    2013-09-19

    for Weak Orders, To appear in SIAM Journal of Discrete Math . [9] G. Hurlbert and G. Isaak, Equivalence class universal cycles for permutations, Discrete ... Math . 149 (1996), pp. 123–129. [10] J. R. Johnson, Universal cycles for permutations, Discrete Math . 309 (2009), pp. 5264– 5270. [11] E. A. Ragland

  20. A Space–Time Permutation Scan Statistic for Disease Outbreak Detection

    PubMed Central

    Kulldorff, Martin; Heffernan, Richard; Hartman, Jessica; Assunção, Renato; Mostashari, Farzad

    2005-01-01

    Background The ability to detect disease outbreaks early is important in order to minimize morbidity and mortality through timely implementation of disease prevention and control measures. Many national, state, and local health departments are launching disease surveillance systems with daily analyses of hospital emergency department visits, ambulance dispatch calls, or pharmacy sales for which population-at-risk information is unavailable or irrelevant. Methods and Findings We propose a prospective space–time permutation scan statistic for the early detection of disease outbreaks that uses only case numbers, with no need for population-at-risk data. It makes minimal assumptions about the time, geographical location, or size of the outbreak, and it adjusts for natural purely spatial and purely temporal variation. The new method was evaluated using daily analyses of hospital emergency department visits in New York City. Four of the five strongest signals were likely local precursors to citywide outbreaks due to rotavirus, norovirus, and influenza. The number of false signals was at most modest. Conclusion If such results hold up over longer study times and in other locations, the space–time permutation scan statistic will be an important tool for local and national health departments that are setting up early disease detection surveillance systems. PMID:15719066

  1. Properties of permutation-based gene tests and controlling type 1 error using a summary statistic based gene test

    PubMed Central

    2013-01-01

    Background The advent of genome-wide association studies has led to many novel disease-SNP associations, opening the door to focused study on their biological underpinnings. Because of the importance of analyzing these associations, numerous statistical methods have been devoted to them. However, fewer methods have attempted to associate entire genes or genomic regions with outcomes, which is potentially more useful knowledge from a biological perspective and those methods currently implemented are often permutation-based. Results One property of some permutation-based tests is that their power varies as a function of whether significant markers are in regions of linkage disequilibrium (LD) or not, which we show from a theoretical perspective. We therefore develop two methods for quantifying the degree of association between a genomic region and outcome, both of whose power does not vary as a function of LD structure. One method uses dimension reduction to “filter” redundant information when significant LD exists in the region, while the other, called the summary-statistic test, controls for LD by scaling marker Z-statistics using knowledge of the correlation matrix of markers. An advantage of this latter test is that it does not require the original data, but only their Z-statistics from univariate regressions and an estimate of the correlation structure of markers, and we show how to modify the test to protect the type 1 error rate when the correlation structure of markers is misspecified. We apply these methods to sequence data of oral cleft and compare our results to previously proposed gene tests, in particular permutation-based ones. We evaluate the versatility of the modification of the summary-statistic test since the specification of correlation structure between markers can be inaccurate. Conclusion We find a significant association in the sequence data between the 8q24 region and oral cleft using our dimension reduction approach and a borderline significant association using the summary-statistic based approach. We also implement the summary-statistic test using Z-statistics from an already-published GWAS of Chronic Obstructive Pulmonary Disorder (COPD) and correlation structure obtained from HapMap. We experiment with the modification of this test because the correlation structure is assumed imperfectly known. PMID:24199751

  2. Properties of permutation-based gene tests and controlling type 1 error using a summary statistic based gene test.

    PubMed

    Swanson, David M; Blacker, Deborah; Alchawa, Taofik; Ludwig, Kerstin U; Mangold, Elisabeth; Lange, Christoph

    2013-11-07

    The advent of genome-wide association studies has led to many novel disease-SNP associations, opening the door to focused study on their biological underpinnings. Because of the importance of analyzing these associations, numerous statistical methods have been devoted to them. However, fewer methods have attempted to associate entire genes or genomic regions with outcomes, which is potentially more useful knowledge from a biological perspective and those methods currently implemented are often permutation-based. One property of some permutation-based tests is that their power varies as a function of whether significant markers are in regions of linkage disequilibrium (LD) or not, which we show from a theoretical perspective. We therefore develop two methods for quantifying the degree of association between a genomic region and outcome, both of whose power does not vary as a function of LD structure. One method uses dimension reduction to "filter" redundant information when significant LD exists in the region, while the other, called the summary-statistic test, controls for LD by scaling marker Z-statistics using knowledge of the correlation matrix of markers. An advantage of this latter test is that it does not require the original data, but only their Z-statistics from univariate regressions and an estimate of the correlation structure of markers, and we show how to modify the test to protect the type 1 error rate when the correlation structure of markers is misspecified. We apply these methods to sequence data of oral cleft and compare our results to previously proposed gene tests, in particular permutation-based ones. We evaluate the versatility of the modification of the summary-statistic test since the specification of correlation structure between markers can be inaccurate. We find a significant association in the sequence data between the 8q24 region and oral cleft using our dimension reduction approach and a borderline significant association using the summary-statistic based approach. We also implement the summary-statistic test using Z-statistics from an already-published GWAS of Chronic Obstructive Pulmonary Disorder (COPD) and correlation structure obtained from HapMap. We experiment with the modification of this test because the correlation structure is assumed imperfectly known.

  3. Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs

    ERIC Educational Resources Information Center

    Eudey, T. Lynn; Kerr, Joshua D.; Trumbo, Bruce E.

    2010-01-01

    Null distributions of permutation tests for two-sample, paired, and block designs are simulated using the R statistical programming language. For each design and type of data, permutation tests are compared with standard normal-theory and nonparametric tests. These examples (often using real data) provide for classroom discussion use of metrics…

  4. Circular permutation of a WW domain: Folding still occurs after excising the turn of the folding-nucleating hairpin

    PubMed Central

    Kier, Brandon L.; Anderson, Jordan M.; Andersen, Niels H.

    2014-01-01

    A hyperstable Pin1 WW domain has been circularly permuted via excision of the fold-nucleating turn; it still folds to form the native three-strand sheet and hydrophobic core features. Multiprobe folding dynamics studies of the normal and circularly permuted sequences, as well as their constituent hairpin fragments and comparable-length β-strand-loop-β-strand models, indicate 2-state folding for all topologies. N-terminal hairpin formation is the fold nucleating event for the wild-type sequence; the slower folding circular permutant has a more distributed folding transition state. PMID:24350581

  5. An authenticated image encryption scheme based on chaotic maps and memory cellular automata

    NASA Astrophysics Data System (ADS)

    Bakhshandeh, Atieh; Eslami, Ziba

    2013-06-01

    This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.

  6. Intrinsically bent DNA in replication origins and gene promoters.

    PubMed

    Gimenes, F; Takeda, K I; Fiorini, A; Gouveia, F S; Fernandez, M A

    2008-06-24

    Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.

  7. Permutation testing of orthogonal factorial effects in a language-processing experiment using fMRI.

    PubMed

    Suckling, John; Davis, Matthew H; Ooi, Cinly; Wink, Alle Meije; Fadili, Jalal; Salvador, Raymond; Welchew, David; Sendur, Levent; Maxim, Vochita; Bullmore, Edward T

    2006-05-01

    The block-paradigm of the Functional Image Analysis Contest (FIAC) dataset was analysed with the Brain Activation and Morphological Mapping software. Permutation methods in the wavelet domain were used for inference on cluster-based test statistics of orthogonal contrasts relevant to the factorial design of the study, namely: the average response across all active blocks, the main effect of speaker, the main effect of sentence, and the interaction between sentence and speaker. Extensive activation was seen with all these contrasts. In particular, different vs. same-speaker blocks produced elevated activation in bilateral regions of the superior temporal lobe and repetition suppression for linguistic materials (same vs. different-sentence blocks) in left inferior frontal regions. These are regions previously reported in the literature. Additional regions were detected in this study, perhaps due to the enhanced sensitivity of the methodology. Within-block sentence suppression was tested post-hoc by regression of an exponential decay model onto the extracted time series from the left inferior frontal gyrus, but no strong evidence of such an effect was found. The significance levels set for the activation maps are P-values at which we expect <1 false-positive cluster per image. Nominal type I error control was verified by empirical testing of a test statistic corresponding to a randomly ordered design matrix. The small size of the BOLD effect necessitates sensitive methods of detection of brain activation. Permutation methods permit the necessary flexibility to develop novel test statistics to meet this challenge.

  8. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity.

    PubMed

    Mefford, Melissa A; Zappulla, David C

    2016-01-15

    Telomerase is a specialized ribonucleoprotein complex that extends the 3' ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5' and 3' ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3' of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity

    PubMed Central

    Mefford, Melissa A.

    2015-01-01

    Telomerase is a specialized ribonucleoprotein complex that extends the 3′ ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5′ and 3′ ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3′ of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics. PMID:26503788

  10. Set-Based Discrete Particle Swarm Optimization Based on Decomposition for Permutation-Based Multiobjective Combinatorial Optimization Problems.

    PubMed

    Yu, Xue; Chen, Wei-Neng; Gu, Tianlong; Zhang, Huaxiang; Yuan, Huaqiang; Kwong, Sam; Zhang, Jun

    2018-07-01

    This paper studies a specific class of multiobjective combinatorial optimization problems (MOCOPs), namely the permutation-based MOCOPs. Many commonly seen MOCOPs, e.g., multiobjective traveling salesman problem (MOTSP), multiobjective project scheduling problem (MOPSP), belong to this problem class and they can be very different. However, as the permutation-based MOCOPs share the inherent similarity that the structure of their search space is usually in the shape of a permutation tree, this paper proposes a generic multiobjective set-based particle swarm optimization methodology based on decomposition, termed MS-PSO/D. In order to coordinate with the property of permutation-based MOCOPs, MS-PSO/D utilizes an element-based representation and a constructive approach. Through this, feasible solutions under constraints can be generated step by step following the permutation-tree-shaped structure. And problem-related heuristic information is introduced in the constructive approach for efficiency. In order to address the multiobjective optimization issues, the decomposition strategy is employed, in which the problem is converted into multiple single-objective subproblems according to a set of weight vectors. Besides, a flexible mechanism for diversity control is provided in MS-PSO/D. Extensive experiments have been conducted to study MS-PSO/D on two permutation-based MOCOPs, namely the MOTSP and the MOPSP. Experimental results validate that the proposed methodology is promising.

  11. Hurdles and sorting by inversions: combinatorial, statistical, and experimental results.

    PubMed

    Swenson, Krister M; Lin, Yu; Rajan, Vaibhav; Moret, Bernard M E

    2009-10-01

    As data about genomic architecture accumulates, genomic rearrangements have attracted increasing attention. One of the main rearrangement mechanisms, inversions (also called reversals), was characterized by Hannenhalli and Pevzner and this characterization in turn extended by various authors. The characterization relies on the concepts of breakpoints, cycles, and obstructions colorfully named hurdles and fortresses. In this paper, we study the probability of generating a hurdle in the process of sorting a permutation if one does not take special precautions to avoid them (as in a randomized algorithm, for instance). To do this we revisit and extend the work of Caprara and of Bergeron by providing simple and exact characterizations of the probability of encountering a hurdle in a random permutation. Using similar methods we provide the first asymptotically tight analysis of the probability that a fortress exists in a random permutation. Finally, we study other aspects of hurdles, both analytically and through experiments: when are they created in a sequence of sorting inversions, how much later are they detected, and how much work may need to be undone to return to a sorting sequence.

  12. SCOPES: steganography with compression using permutation search

    NASA Astrophysics Data System (ADS)

    Boorboor, Sahar; Zolfaghari, Behrouz; Mozafari, Saadat Pour

    2011-10-01

    LSB (Least Significant Bit) is a widely used method for image steganography, which hides the secret message as a bit stream in LSBs of pixel bytes in the cover image. This paper proposes a variant of LSB named SCOPES that encodes and compresses the secret message while being hidden through storing addresses instead of message bytes. Reducing the length of the stored message improves the storage capacity and makes the stego image visually less suspicious to the third party. The main idea behind the SCOPES approach is dividing the message into 3-character segments, seeking each segment in the cover image and storing the address of the position containing the segment instead of the segment itself. In this approach, every permutation of the 3 bytes (if found) can be stored along with some extra bits indicating the permutation. In some rare cases the segment may not be found in the image and this can cause the message to be expanded by some overhead bits2 instead of being compressed. But experimental results show that SCOPES performs overlay better than traditional LSB even in the worst cases.

  13. Identifying ADHD children using hemodynamic responses during a working memory task measured by functional near-infrared spectroscopy.

    PubMed

    Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli

    2018-06-01

    Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. The results showed that 86.0% ([Formula: see text]) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.

  14. Altering the orientation of a fused protein to the RNA-binding ribosomal protein L7Ae and its derivatives through circular permutation.

    PubMed

    Ohuchi, Shoji J; Sagawa, Fumihiko; Sakamoto, Taiichi; Inoue, Tan

    2015-10-23

    RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. The results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Altering the orientation of a fused protein to the RNA-binding ribosomal protein L7Ae and its derivatives through circular permutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohuchi, Shoji J.; Sagawa, Fumihiko; Sakamoto, Taiichi

    RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. Themore » results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique.« less

  16. A statistical method for the conservative adjustment of false discovery rate (q-value).

    PubMed

    Lai, Yinglei

    2017-03-14

    q-value is a widely used statistical method for estimating false discovery rate (FDR), which is a conventional significance measure in the analysis of genome-wide expression data. q-value is a random variable and it may underestimate FDR in practice. An underestimated FDR can lead to unexpected false discoveries in the follow-up validation experiments. This issue has not been well addressed in literature, especially in the situation when the permutation procedure is necessary for p-value calculation. We proposed a statistical method for the conservative adjustment of q-value. In practice, it is usually necessary to calculate p-value by a permutation procedure. This was also considered in our adjustment method. We used simulation data as well as experimental microarray or sequencing data to illustrate the usefulness of our method. The conservativeness of our approach has been mathematically confirmed in this study. We have demonstrated the importance of conservative adjustment of q-value, particularly in the situation that the proportion of differentially expressed genes is small or the overall differential expression signal is weak.

  17. Modulation of a protein free-energy landscape by circular permutation.

    PubMed

    Radou, Gaël; Enciso, Marta; Krivov, Sergei; Paci, Emanuele

    2013-11-07

    Circular permutations usually retain the native structure and function of a protein while inevitably perturbing its folding dynamics. By using simulations with a structure-based model and a rigorous methodology to determine free-energy surfaces from trajectories, we evaluate the effect of a circular permutation on the free-energy landscape of the protein T4 lysozyme. We observe changes which, although subtle, largely affect the cooperativity between the two subdomains. Such a change in cooperativity has been previously experimentally observed and recently also characterized using single molecule optical tweezers and the Crooks relation. The free-energy landscapes show that both the wild type and circular permutant have an on-pathway intermediate, previously experimentally characterized, in which one of the subdomains is completely formed. The landscapes, however, differ in the position of the rate-limiting step for folding, which occurs before the intermediate in the wild type and after in the circular permutant. This shift of transition state explains the observed change in the cooperativity. The underlying free-energy landscape thus provides a microscopic description of the folding dynamics and the connection between circular permutation and the loss of cooperativity experimentally observed.

  18. Toward a general theory of conical intersections in systems of identical nuclei

    NASA Astrophysics Data System (ADS)

    Keating, Sean P.; Mead, C. Alden

    1987-02-01

    It has been shown previously that the Herzberg-Longuet-Higgins sign change produced in Born-Oppenheimer electronic wave functions when the nuclei traverse a closed path around a conical intersection has implications for the symmetry of wave functions under permutations of identical nuclei. For systems of three or four identical nuclei, there are special features present which have facilitated the detailed analysis. The present paper reports progress toward a general theory for systems of n nuclei. For n=3 or 4, the two key functions which locate conical intersections and define compensating phase factors can conveniently be defined so as to transform under permutations according to a two-dimensional irreducible representation of the permutation group. Since such representations do not exist for n>4, we have chosen to develop a formalism in terms of lab-fixed electronic basis functions, and we show how to define the two key functions in principle. The functions so defined both turn out to be totally symmetric under permutations. We show how they can be used to define compensating phase factors so that all modified electronic wave functions are either totally symmetric or totally antisymmetric under permutations. A detailed analysis is made to cyclic permutations in the neighborhood of Dnh symmetry, which can be extended by continuity arguments to more general configurations, and criteria are obtained for sign changes. There is a qualitative discussion of the treatment of more general permutations.

  19. A secure transmission scheme of streaming media based on the encrypted control message

    NASA Astrophysics Data System (ADS)

    Li, Bing; Jin, Zhigang; Shu, Yantai; Yu, Li

    2007-09-01

    As the use of streaming media applications increased dramatically in recent years, streaming media security becomes an important presumption, protecting the privacy. This paper proposes a new encryption scheme in view of characteristics of streaming media and the disadvantage of the living method: encrypt the control message in the streaming media with the high security lever and permute and confuse the data which is non control message according to the corresponding control message. Here the so-called control message refers to the key data of the streaming media, including the streaming media header and the header of the video frame, and the seed key. We encrypt the control message using the public key encryption algorithm which can provide high security lever, such as RSA. At the same time we make use of the seed key to generate key stream, from which the permutation list P responding to GOP (group of picture) is derived. The plain text of the non-control message XORs the key stream and gets the middle cipher text. And then obtained one is permutated according to P. In contrast the decryption process is the inverse process of the above. We have set up a testbed for the above scheme and found our scheme is six to eight times faster than the conventional method. It can be applied not only between PCs but also between handheld devices.

  20. Fecal Microbiota Characteristics of Patients with Colorectal Adenoma Detected by Screening: A Population-based Study

    PubMed Central

    Goedert, James J.; Gong, Yangming; Hua, Xing; Zhong, Huanzi; He, Yimin; Peng, Peng; Yu, Guoqin; Wang, Wenjing; Ravel, Jacques; Shi, Jianxin; Zheng, Ying

    2015-01-01

    Background Screening for colorectal cancer (CRC) and precancerous colorectal adenoma (CRA) can detect curable disease. However, participation in colonoscopy and sensitivity of fecal heme for CRA are low. Methods Microbiota metrics were determined by Illumina sequencing of 16S rRNA genes amplified from DNA extracted from feces self-collected in RNAlater. Among fecal immunochemical test-positive (FIT +) participants, colonoscopically-defined normal versus CRA patients were compared by regression, permutation, and random forest plus leave-one-out methods. Findings Of 95 FIT + participants, 61 had successful fecal microbiota profiling and colonoscopy, identifying 24 completely normal patients, 20 CRA patients, 2 CRC patients, and 15 with other conditions. Phylum-level fecal community composition differed significantly between CRA and normal patients (permutation P = 0.02). Rank phylum-level abundance distinguished CRA from normal patients (area under the curve = 0.767, permutation P = 0.006). CRA prevalence was 59% in phylum-level cluster B versus 20% in cluster A (exact P = 0.01). Most of the difference reflected 3-fold higher median relative abundance of Proteobacteria taxa (Wilcoxon signed-rank P = 0.03, positive predictive value = 67%). Antibiotic exposure and other potential confounders did not affect the associations. Interpretation If confirmed in larger, more diverse populations, fecal microbiota analysis might be employed to improve screening for CRA and ultimately to reduce mortality from CRC. PMID:26288821

  1. A permutation testing framework to compare groups of brain networks.

    PubMed

    Simpson, Sean L; Lyday, Robert G; Hayasaka, Satoru; Marsh, Anthony P; Laurienti, Paul J

    2013-01-01

    Brain network analyses have moved to the forefront of neuroimaging research over the last decade. However, methods for statistically comparing groups of networks have lagged behind. These comparisons have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions. Current comparison approaches generally either rely on a summary metric or on mass-univariate nodal or edge-based comparisons that ignore the inherent topological properties of the network, yielding little power and failing to make network level comparisons. Gleaning deeper insights into normal and abnormal changes in complex brain function demands methods that take advantage of the wealth of data present in an entire brain network. Here we propose a permutation testing framework that allows comparing groups of networks while incorporating topological features inherent in each individual network. We validate our approach using simulated data with known group differences. We then apply the method to functional brain networks derived from fMRI data.

  2. A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.

  3. Permutation parity machines for neural cryptography.

    PubMed

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  4. Inference for Distributions over the Permutation Group

    DTIC Science & Technology

    2008-05-01

    world problems, such as voting , ranking, and data association. Representing uncertainty over permutations is challenging, since there are n...problems, such as voting , ranking, and data association. Representing uncertainty over permutations is challenging, since there are n! possibilities...the Krone ker (or Tensor ) Produ t Representation.In general, the Krone ker produ t representation is redu ible, and so it ande omposed into a dire t

  5. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  6. Permutation parity machines for neural cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Oscar Mauricio; Escuela de Ingenieria Electrica, Electronica y Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga; Zimmermann, Karl-Heinz

    2010-06-15

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  7. Sorting signed permutations by short operations.

    PubMed

    Galvão, Gustavo Rodrigues; Lee, Orlando; Dias, Zanoni

    2015-01-01

    During evolution, global mutations may alter the order and the orientation of the genes in a genome. Such mutations are referred to as rearrangement events, or simply operations. In unichromosomal genomes, the most common operations are reversals, which are responsible for reversing the order and orientation of a sequence of genes, and transpositions, which are responsible for switching the location of two contiguous portions of a genome. The problem of computing the minimum sequence of operations that transforms one genome into another - which is equivalent to the problem of sorting a permutation into the identity permutation - is a well-studied problem that finds application in comparative genomics. There are a number of works concerning this problem in the literature, but they generally do not take into account the length of the operations (i.e. the number of genes affected by the operations). Since it has been observed that short operations are prevalent in the evolution of some species, algorithms that efficiently solve this problem in the special case of short operations are of interest. In this paper, we investigate the problem of sorting a signed permutation by short operations. More precisely, we study four flavors of this problem: (i) the problem of sorting a signed permutation by reversals of length at most 2; (ii) the problem of sorting a signed permutation by reversals of length at most 3; (iii) the problem of sorting a signed permutation by reversals and transpositions of length at most 2; and (iv) the problem of sorting a signed permutation by reversals and transpositions of length at most 3. We present polynomial-time solutions for problems (i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for problem (iv). Moreover, we show that the expected approximation ratio of the 5-approximation algorithm is not greater than 3 for random signed permutations with more than 12 elements. Finally, we present experimental results that show that the approximation ratios of the approximation algorithms cannot be smaller than 3. In particular, this means that the approximation ratio of the 3-approximation algorithm is tight.

  8. Permutation importance: a corrected feature importance measure.

    PubMed

    Altmann, André; Toloşi, Laura; Sander, Oliver; Lengauer, Thomas

    2010-05-15

    In life sciences, interpretability of machine learning models is as important as their prediction accuracy. Linear models are probably the most frequently used methods for assessing feature relevance, despite their relative inflexibility. However, in the past years effective estimators of feature relevance have been derived for highly complex or non-parametric models such as support vector machines and RandomForest (RF) models. Recently, it has been observed that RF models are biased in such a way that categorical variables with a large number of categories are preferred. In this work, we introduce a heuristic for normalizing feature importance measures that can correct the feature importance bias. The method is based on repeated permutations of the outcome vector for estimating the distribution of measured importance for each variable in a non-informative setting. The P-value of the observed importance provides a corrected measure of feature importance. We apply our method to simulated data and demonstrate that (i) non-informative predictors do not receive significant P-values, (ii) informative variables can successfully be recovered among non-informative variables and (iii) P-values computed with permutation importance (PIMP) are very helpful for deciding the significance of variables, and therefore improve model interpretability. Furthermore, PIMP was used to correct RF-based importance measures for two real-world case studies. We propose an improved RF model that uses the significant variables with respect to the PIMP measure and show that its prediction accuracy is superior to that of other existing models. R code for the method presented in this article is available at http://www.mpi-inf.mpg.de/ approximately altmann/download/PIMP.R CONTACT: altmann@mpi-inf.mpg.de, laura.tolosi@mpi-inf.mpg.de Supplementary data are available at Bioinformatics online.

  9. Assessing Discriminative Performance at External Validation of Clinical Prediction Models

    PubMed Central

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.

    2016-01-01

    Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753

  10. Rank score and permutation testing alternatives for regression quantile estimates

    USGS Publications Warehouse

    Cade, B.S.; Richards, J.D.; Mielke, P.W.

    2006-01-01

    Performance of quantile rank score tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1) were evaluated by simulation for models with p = 2 and 6 predictors, moderate collinearity among predictors, homogeneous and hetero-geneous errors, small to moderate samples (n = 20–300), and central to upper quantiles (0.50–0.99). Test statistics evaluated were the conventional quantile rank score T statistic distributed as χ2 random variable with q degrees of freedom (where q parameters are constrained by H 0:) and an F statistic with its sampling distribution approximated by permutation. The permutation F-test maintained better Type I errors than the T-test for homogeneous error models with smaller n and more extreme quantiles τ. An F distributional approximation of the F statistic provided some improvements in Type I errors over the T-test for models with > 2 parameters, smaller n, and more extreme quantiles but not as much improvement as the permutation approximation. Both rank score tests required weighting to maintain correct Type I errors when heterogeneity under the alternative model increased to 5 standard deviations across the domain of X. A double permutation procedure was developed to provide valid Type I errors for the permutation F-test when null models were forced through the origin. Power was similar for conditions where both T- and F-tests maintained correct Type I errors but the F-test provided some power at smaller n and extreme quantiles when the T-test had no power because of excessively conservative Type I errors. When the double permutation scheme was required for the permutation F-test to maintain valid Type I errors, power was less than for the T-test with decreasing sample size and increasing quantiles. Confidence intervals on parameters and tolerance intervals for future predictions were constructed based on test inversion for an example application relating trout densities to stream channel width:depth.

  11. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds

    USGS Publications Warehouse

    Goetz, Daniel B.; Kroger, Robert; Miranda, Leandro E.

    2014-01-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (< 1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  12. An analog scrambler for speech based on sequential permutations in time and frequency

    NASA Astrophysics Data System (ADS)

    Cox, R. V.; Jayant, N. S.; McDermott, B. J.

    Permutation of speech segments is an operation that is frequently used in the design of scramblers for analog speech privacy. In this paper, a sequential procedure for segment permutation is considered. This procedure can be extended to two dimensional permutation of time segments and frequency bands. By subjective testing it is shown that this combination gives a residual intelligibility for spoken digits of 20 percent with a delay of 256 ms. (A lower bound for this test would be 10 percent). The complexity of implementing such a system is considered and the issues of synchronization and channel equalization are addressed. The computer simulation results for the system using both real and simulated channels are examined.

  13. A 1.375-approximation algorithm for sorting by transpositions.

    PubMed

    Elias, Isaac; Hartman, Tzvika

    2006-01-01

    Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.

  14. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  15. cit: hypothesis testing software for mediation analysis in genomic applications.

    PubMed

    Millstein, Joshua; Chen, Gary K; Breton, Carrie V

    2016-08-01

    The challenges of successfully applying causal inference methods include: (i) satisfying underlying assumptions, (ii) limitations in data/models accommodated by the software and (iii) low power of common multiple testing approaches. The causal inference test (CIT) is based on hypothesis testing rather than estimation, allowing the testable assumptions to be evaluated in the determination of statistical significance. A user-friendly software package provides P-values and optionally permutation-based FDR estimates (q-values) for potential mediators. It can handle single and multiple binary and continuous instrumental variables, binary or continuous outcome variables and adjustment covariates. Also, the permutation-based FDR option provides a non-parametric implementation. Simulation studies demonstrate the validity of the cit package and show a substantial advantage of permutation-based FDR over other common multiple testing strategies. The cit open-source R package is freely available from the CRAN website (https://cran.r-project.org/web/packages/cit/index.html) with embedded C ++ code that utilizes the GNU Scientific Library, also freely available (http://www.gnu.org/software/gsl/). joshua.millstein@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. A novel chaos-based image encryption algorithm using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Chen, Yiran; Broyde, Lucie

    2017-01-01

    An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.

  17. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting.

    PubMed

    Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F

    2010-07-19

    A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic.

  18. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting

    PubMed Central

    2010-01-01

    Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic. PMID:20642827

  19. A Flexible Computational Framework Using R and Map-Reduce for Permutation Tests of Massive Genetic Analysis of Complex Traits.

    PubMed

    Mahjani, Behrang; Toor, Salman; Nettelblad, Carl; Holmgren, Sverker

    2017-01-01

    In quantitative trait locus (QTL) mapping significance of putative QTL is often determined using permutation testing. The computational needs to calculate the significance level are immense, 10 4 up to 10 8 or even more permutations can be needed. We have previously introduced the PruneDIRECT algorithm for multiple QTL scan with epistatic interactions. This algorithm has specific strengths for permutation testing. Here, we present a flexible, parallel computing framework for identifying multiple interacting QTL using the PruneDIRECT algorithm which uses the map-reduce model as implemented in Hadoop. The framework is implemented in R, a widely used software tool among geneticists. This enables users to rearrange algorithmic steps to adapt genetic models, search algorithms, and parallelization steps to their needs in a flexible way. Our work underlines the maturity of accessing distributed parallel computing for computationally demanding bioinformatics applications through building workflows within existing scientific environments. We investigate the PruneDIRECT algorithm, comparing its performance to exhaustive search and DIRECT algorithm using our framework on a public cloud resource. We find that PruneDIRECT is vastly superior for permutation testing, and perform 2 ×10 5 permutations for a 2D QTL problem in 15 hours, using 100 cloud processes. We show that our framework scales out almost linearly for a 3D QTL search.

  20. Photographs and Committees: Activities That Help Students Discover Permutations and Combinations.

    ERIC Educational Resources Information Center

    Szydlik, Jennifer Earles

    2000-01-01

    Presents problem situations that support students when discovering the multiplication principle, permutations, combinations, Pascal's triangle, and relationships among those objects in a concrete context. (ASK)

  1. A permutation characterization of Sturm global attractors of Hamiltonian type

    NASA Astrophysics Data System (ADS)

    Fiedler, Bernold; Rocha, Carlos; Wolfrum, Matthias

    We consider Neumann boundary value problems of the form u=u+f on the interval 0⩽x⩽π for dissipative nonlinearities f=f(u). A permutation characterization for the global attractors of the semiflows generated by these equations is well known, even in the much more general case f=f(x,u,u). We present a permutation characterization for the global attractors in the restrictive class of nonlinearities f=f(u). In this class the stationary solutions of the parabolic equation satisfy the second order ODE v+f(v)=0 and we obtain the permutation characterization from a characterization of the set of 2 π-periodic orbits of this planar Hamiltonian system. Our results are based on a diligent discussion of this mere pendulum equation.

  2. Identifying ADHD children using hemodynamic responses during a working memory task measured by functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli

    2018-06-01

    Objective. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. Approach. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. Main results. The results showed that 86.0% (p<0.001 ) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. Significance. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.

  3. Engineering calculations for solving the orbital allotment problem

    NASA Technical Reports Server (NTRS)

    Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.

    1988-01-01

    Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.

  4. MCMC genome rearrangement.

    PubMed

    Miklós, István

    2003-10-01

    As more and more genomes have been sequenced, genomic data is rapidly accumulating. Genome-wide mutations are believed more neutral than local mutations such as substitutions, insertions and deletions, therefore phylogenetic investigations based on inversions, transpositions and inverted transpositions are less biased by the hypothesis on neutral evolution. Although efficient algorithms exist for obtaining the inversion distance of two signed permutations, there is no reliable algorithm when both inversions and transpositions are considered. Moreover, different type of mutations happen with different rates, and it is not clear how to weight them in a distance based approach. We introduce a Markov Chain Monte Carlo method to genome rearrangement based on a stochastic model of evolution, which can estimate the number of different evolutionary events needed to sort a signed permutation. The performance of the method was tested on simulated data, and the estimated numbers of different types of mutations were reliable. Human and Drosophila mitochondrial data were also analysed with the new method. The mixing time of the Markov Chain is short both in terms of CPU times and number of proposals. The source code in C is available on request from the author.

  5. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.

    PubMed

    Kelly, Brendan J; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D; Collman, Ronald G; Bushman, Frederic D; Li, Hongzhe

    2015-08-01

    The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Permutation entropy analysis of financial time series based on Hill's diversity number

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Shang, Pengjian

    2017-12-01

    In this paper the permutation entropy based on Hill's diversity number (Nn,r) is introduced as a new way to assess the complexity of a complex dynamical system such as stock market. We test the performance of this method with simulated data. Results show that Nn,r with appropriate parameters is more sensitive to the change of system and describes the trends of complex systems clearly. In addition, we research the stock closing price series from different data that consist of six indices: three US stock indices and three Chinese stock indices during different periods, Nn,r can quantify the changes of complexity for stock market data. Moreover, we get richer information from Nn,r, and obtain some properties about the differences between the US and Chinese stock indices.

  7. Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow.

    PubMed

    Stanley, Clayton; Byrne, Michael D

    2016-12-01

    The growth of social media and user-created content on online sites provides unique opportunities to study models of human declarative memory. By framing the task of choosing a hashtag for a tweet and tagging a post on Stack Overflow as a declarative memory retrieval problem, 2 cognitively plausible declarative memory models were applied to millions of posts and tweets and evaluated on how accurately they predict a user's chosen tags. An ACT-R based Bayesian model and a random permutation vector-based model were tested on the large data sets. The results show that past user behavior of tag use is a strong predictor of future behavior. Furthermore, past behavior was successfully incorporated into the random permutation model that previously used only context. Also, ACT-R's attentional weight term was linked to an entropy-weighting natural language processing method used to attenuate high-frequency words (e.g., articles and prepositions). Word order was not found to be a strong predictor of tag use, and the random permutation model performed comparably to the Bayesian model without including word order. This shows that the strength of the random permutation model is not in the ability to represent word order, but rather in the way in which context information is successfully compressed. The results of the large-scale exploration show how the architecture of the 2 memory models can be modified to significantly improve accuracy, and may suggest task-independent general modifications that can help improve model fit to human data in a much wider range of domains. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    PubMed Central

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  9. Significance levels for studies with correlated test statistics.

    PubMed

    Shi, Jianxin; Levinson, Douglas F; Whittemore, Alice S

    2008-07-01

    When testing large numbers of null hypotheses, one needs to assess the evidence against the global null hypothesis that none of the hypotheses is false. Such evidence typically is based on the test statistic of the largest magnitude, whose statistical significance is evaluated by permuting the sample units to simulate its null distribution. Efron (2007) has noted that correlation among the test statistics can induce substantial interstudy variation in the shapes of their histograms, which may cause misleading tail counts. Here, we show that permutation-based estimates of the overall significance level also can be misleading when the test statistics are correlated. We propose that such estimates be conditioned on a simple measure of the spread of the observed histogram, and we provide a method for obtaining conditional significance levels. We justify this conditioning using the conditionality principle described by Cox and Hinkley (1974). Application of the method to gene expression data illustrates the circumstances when conditional significance levels are needed.

  10. Design of an image encryption scheme based on a multiple chaotic map

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  11. Integrated Analysis of Pharmacologic, Clinical, and SNP Microarray Data using Projection onto the Most Interesting Statistical Evidence with Adaptive Permutation Testing

    PubMed Central

    Pounds, Stan; Cao, Xueyuan; Cheng, Cheng; Yang, Jun; Campana, Dario; Evans, William E.; Pui, Ching-Hon; Relling, Mary V.

    2010-01-01

    Powerful methods for integrated analysis of multiple biological data sets are needed to maximize interpretation capacity and acquire meaningful knowledge. We recently developed Projection Onto the Most Interesting Statistical Evidence (PROMISE). PROMISE is a statistical procedure that incorporates prior knowledge about the biological relationships among endpoint variables into an integrated analysis of microarray gene expression data with multiple biological and clinical endpoints. Here, PROMISE is adapted to the integrated analysis of pharmacologic, clinical, and genome-wide genotype data that incorporating knowledge about the biological relationships among pharmacologic and clinical response data. An efficient permutation-testing algorithm is introduced so that statistical calculations are computationally feasible in this higher-dimension setting. The new method is applied to a pediatric leukemia data set. The results clearly indicate that PROMISE is a powerful statistical tool for identifying genomic features that exhibit a biologically meaningful pattern of association with multiple endpoint variables. PMID:21516175

  12. MIDAS: Regionally linear multivariate discriminative statistical mapping.

    PubMed

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2018-07-01

    Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.

  13. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds.

    PubMed

    Goetz, D; Kröger, R; Miranda, L E

    2014-05-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (<1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  14. An EEMD-ICA Approach to Enhancing Artifact Rejection for Noisy Multivariate Neural Data.

    PubMed

    Zeng, Ke; Chen, Dan; Ouyang, Gaoxiang; Wang, Lizhe; Liu, Xianzeng; Li, Xiaoli

    2016-06-01

    As neural data are generally noisy, artifact rejection is crucial for data preprocessing. It has long been a grand research challenge for an approach which is able: 1) to remove the artifacts and 2) to avoid loss or disruption of the structural information at the same time, thus the risk of introducing bias to data interpretation may be minimized. In this study, an approach (namely EEMD-ICA) was proposed to first decompose multivariate neural data that are possibly noisy into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD). Independent component analysis (ICA) was then applied to the IMFs to separate the artifactual components. The approach was tested against the classical ICA and the automatic wavelet ICA (AWICA) methods, which were dominant methods for artifact rejection. In order to evaluate the effectiveness of the proposed approach in handling neural data possibly with intensive noises, experiments on artifact removal were performed using semi-simulated data mixed with a variety of noises. Experimental results indicate that the proposed approach continuously outperforms the counterparts in terms of both normalized mean square error (NMSE) and Structure SIMilarity (SSIM). The superiority becomes even greater with the decrease of SNR in all cases, e.g., SSIM of the EEMD-ICA can almost double that of AWICA and triple that of ICA. To further examine the potentials of the approach in sophisticated applications, the approach together with the counterparts were used to preprocess a real-life epileptic EEG with absence seizure. Experiments were carried out with the focus on characterizing the dynamics of the data after artifact rejection, i.e., distinguishing seizure-free, pre-seizure and seizure states. Using multi-scale permutation entropy to extract feature and linear discriminant analysis for classification, the EEMD-ICA performed the best for classifying the states (87.4%, about 4.1% and 8.7% higher than that of AWICA and ICA respectively), which was closest to the results of the manually selected dataset (89.7%).

  15. Permutation auto-mutual information of electroencephalogram in anesthesia

    NASA Astrophysics Data System (ADS)

    Liang, Zhenhu; Wang, Yinghua; Ouyang, Gaoxiang; Voss, Logan J.; Sleigh, Jamie W.; Li, Xiaoli

    2013-04-01

    Objective. The dynamic change of brain activity in anesthesia is an interesting topic for clinical doctors and drug designers. To explore the dynamical features of brain activity in anesthesia, a permutation auto-mutual information (PAMI) method is proposed to measure the information coupling of electroencephalogram (EEG) time series obtained in anesthesia. Approach. The PAMI is developed and applied on EEG data collected from 19 patients under sevoflurane anesthesia. The results are compared with the traditional auto-mutual information (AMI), SynchFastSlow (SFS, derived from the BIS index), permutation entropy (PE), composite PE (CPE), response entropy (RE) and state entropy (SE). Performance of all indices is assessed by pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability. Main results. The PK/PD modeling and prediction probability analysis show that the PAMI index correlates closely with the anesthetic effect. The coefficient of determination R2 between PAMI values and the sevoflurane effect site concentrations, and the prediction probability Pk are higher in comparison with other indices. The information coupling in EEG series can be applied to indicate the effect of the anesthetic drug sevoflurane on the brain activity as well as other indices. The PAMI of the EEG signals is suggested as a new index to track drug concentration change. Significance. The PAMI is a useful index for analyzing the EEG dynamics during general anesthesia.

  16. Frozen Scope and Grammatical Optimization

    ERIC Educational Resources Information Center

    Freedman, Michael

    2014-01-01

    The literature on quantifier scope has repeatedly observed that some otherwise expected permutations of scope taking elements are unavailable. Various methods have been proffered explaining these facts. This thesis aims to unify three disparate areas where the scope of operators seems to be frozen: the interaction of universal quantifiers with…

  17. Activities in Elementary Probability, Monograph No. 9.

    ERIC Educational Resources Information Center

    Fouch, Daniel J.

    This monograph on elementary probability for middle school, junior high, or high school consumer mathematics students is divided into two parts. Part one emphasizes lessons which cover the fundamental counting principle, permutations, and combinations. The 5 lessons of part I indicate the objectives, examples, methods, application, and problems…

  18. Permutation entropy of fractional Brownian motion and fractional Gaussian noise

    NASA Astrophysics Data System (ADS)

    Zunino, L.; Pérez, D. G.; Martín, M. T.; Garavaglia, M.; Plastino, A.; Rosso, O. A.

    2008-06-01

    We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays.

  19. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    NASA Astrophysics Data System (ADS)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  20. Diagnostic index of 3D osteoarthritic changes in TMJ condylar morphology

    NASA Astrophysics Data System (ADS)

    Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João. Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia

    2015-03-01

    The aim of this study was to investigate imaging statistical approaches for classifying 3D osteoarthritic morphological variations among 169 Temporomandibular Joint (TMJ) condyles. Cone beam Computed Tomography (CBCT) scans were acquired from 69 patients with long-term TMJ Osteoarthritis (OA) (39.1 ± 15.7 years), 15 patients at initial diagnosis of OA (44.9 ± 14.8 years) and 7 healthy controls (43 ± 12.4 years). 3D surface models of the condyles were constructed and Shape Correspondence was used to establish correspondent points on each model. The statistical framework included a multivariate analysis of covariance (MANCOVA) and Direction-Projection- Permutation (DiProPerm) for testing statistical significance of the differences between healthy control and the OA group determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering (HAC) was then conducted. Condylar morphology in OA and healthy subjects varied widely. Compared with healthy controls, OA average condyle was statistically significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis (p < 0.05). It was observed areas of 3.88 mm bone resorption at the superior surface and 3.10 mm bone apposition at the anterior aspect of the long-term OA average model. 1000 permutation statistics of DiProPerm supported a significant difference between the healthy control group and OA group (t = 6.7, empirical p-value = 0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition.

  1. Mathematical Methods of Communication Signal Design

    DTIC Science & Technology

    1990-09-30

    Labelling of Annals of Discrete Math ., 1989-90. iv. T. Etzion, S.W. Golomb, and H. Taylor, "Polygonal Path Constructions for Tuscan-k Squares...the Special Issue on Graph Labellings of A,.nals of Discrete Math ., 1989-1990. vi. T. Etzion, "An Algorithm for Realization of Permutations in a

  2. A MULTIPLE TESTING OF THE ABC METHOD AND THE DEVELOPMENT OF A SECOND GENERATION MODEL. PART I, PRELIMINARY DISCUSSIONS OF METHODOLOGY. SUPPLEMENT, COMPUTER PROGRAMS OF THE HDL INFORMATION SYSTEMS.

    ERIC Educational Resources Information Center

    ALTMANN, BERTHOLD; BROWN, WILLIAM G.

    THE FIRST-GENERATION APPROACH BY CONCEPT (ABC) STORAGE AND RETRIEVAL METHOD, A METHOD WHICH UTILIZES AS A SUBJECT APPROACH APPROPRIATE STANDARDIZED ENGLISH-LANGUAGE STATEMENTS PROCESSED AND PRINTED IN A PERMUTED INDEX FORMAT, UNDERWENT A PERFORMANCE TEST, THE PRIMARY OBJECTIVE OF WHICH WAS TO SPOT DEFICIENCIES AND TO DEVELOP A SECOND-GENERATION…

  3. A space efficient flexible pivot selection approach to evaluate determinant and inverse of a matrix.

    PubMed

    Jafree, Hafsa Athar; Imtiaz, Muhammad; Inayatullah, Syed; Khan, Fozia Hanif; Nizami, Tajuddin

    2014-01-01

    This paper presents new simple approaches for evaluating determinant and inverse of a matrix. The choice of pivot selection has been kept arbitrary thus they reduce the error while solving an ill conditioned system. Computation of determinant of a matrix has been made more efficient by saving unnecessary data storage and also by reducing the order of the matrix at each iteration, while dictionary notation [1] has been incorporated for computing the matrix inverse thereby saving unnecessary calculations. These algorithms are highly class room oriented, easy to use and implemented by students. By taking the advantage of flexibility in pivot selection, one may easily avoid development of the fractions by most. Unlike the matrix inversion method [2] and [3], the presented algorithms obviate the use of permutations and inverse permutations.

  4. User manual for Blossom statistical package for R

    USGS Publications Warehouse

    Talbert, Marian; Cade, Brian S.

    2005-01-01

    Blossom is an R package with functions for making statistical comparisons with distance-function based permutation tests developed by P.W. Mielke, Jr. and colleagues at Colorado State University (Mielke and Berry, 2001) and for testing parameters estimated in linear models with permutation procedures developed by B. S. Cade and colleagues at the Fort Collins Science Center, U.S. Geological Survey. This manual is intended to provide identical documentation of the statistical methods and interpretations as the manual by Cade and Richards (2005) does for the original Fortran program, but with changes made with respect to command inputs and outputs to reflect the new implementation as a package for R (R Development Core Team, 2012). This implementation in R has allowed for numerous improvements not supported by the Cade and Richards (2005) Fortran implementation, including use of categorical predictor variables in most routines.

  5. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energymore » surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.« less

  6. Sylow p-groups of polynomial permutations on the integers mod pn☆

    PubMed Central

    Frisch, Sophie; Krenn, Daniel

    2013-01-01

    We enumerate and describe the Sylow p-groups of the groups of polynomial permutations of the integers mod pn for n⩾1 and of the pro-finite group which is the projective limit of these groups. PMID:26869732

  7. Note on new KLT relations

    NASA Astrophysics Data System (ADS)

    Feng, Bo; He, Song; Huang, Rijun; Jia, Yin

    2010-10-01

    In this short note, we present two results about KLT relations discussed in recent several papers. Our first result is the re-derivation of Mason-Skinner MHV amplitude by applying the S n-3 permutation symmetric KLT relations directly to MHV amplitude. Our second result is the equivalence proof of the newly discovered S n-2 permutation symmetric KLT relations and the well-known S n-3 permutation symmetric KLT relations. Although both formulas have been shown to be correct by BCFW recursion relations, our result is the first direct check using the regularized definition of the new formula.

  8. Combating HER2-overexpressing breast cancer through induction of calreticulin exposure by Tras-Permut CrossMab

    PubMed Central

    Zhang, Fan; Zhang, Jie; Liu, Moyan; Zhao, Lichao; LingHu, RuiXia; Feng, Fan; Gao, Xudong; Jiao, Shunchang; Zhao, Lei; Hu, Yi; Yang, Junlan

    2015-01-01

    Although trastuzumab has succeeded in breast cancer treatment, acquired resistance is one of the prime obstacles for breast cancer therapies. There is an urgent need to develop novel HER2 antibodies against trastuzumab resistance. Here, we first rational designed avidity-imporved trastuzumab and pertuzumab variants, and explored the correlation between the binding avidity improvement and their antitumor activities. After characterization of a pertuzumab variant L56TY with potent antitumor activities, a bispecific immunoglobulin G-like CrossMab (Tras-Permut CrossMab) was generated from trastuzumab and binding avidity-improved pertuzumab variant L56TY. Although, the antitumor efficacy of trastuzumab was not enhanced by improving its binding avidity, binding avidity improvement could significantly increase the anti-proliferative and antibody-dependent cellular cytotoxicity (ADCC) activities of pertuzumab. Further studies showed that Tras-Permut CrossMab exhibited exceptional high efficiency to inhibit the progression of trastuzumab-resistant breast cancer. Notably, we found that calreticulin (CRT) exposure induced by Tras-Permut CrossMab was essential for induction of tumor-specific T cell immunity against tumor recurrence. These data indicated that simultaneous blockade of HER2 protein by Tras-Permut CrossMab could trigger CRT exposure and subsequently induce potent tumor-specific T cell immunity, suggesting it could be a promising therapeutic strategy against trastuzumab resistance. PMID:25949918

  9. Multivariate statistical analysis of diffusion imaging parameters using partial least squares: Application to white matter variations in Alzheimer's disease.

    PubMed

    Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H; Fischl, Bruce

    2016-07-01

    Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: "are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?" and "are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?" Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Multivariate Statistical Analysis of Diffusion Imaging Parameters using Partial Least Squares: Application to White Matter Variations in Alzheimer’s Disease

    PubMed Central

    Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H.; Fischl, Bruce

    2016-01-01

    Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer’s and Huntington’s diseases1,2. The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as Diffusion Tensor Imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer’s disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: “are there regions in the white matter where Alzheimer’s disease has a different effect than aging or similar effect as aging?” and “are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer’s disease but with differing multivariate effects?” PMID:27103138

  11. Wing morphometrics as a possible tool for the diagnosis of the Ceratitis fasciventris, C. anonae, C. rosa complex (Diptera, Tephritidae).

    PubMed

    Van Cann, Joannes; Virgilio, Massimiliano; Jordaens, Kurt; De Meyer, Marc

    2015-01-01

    Previous attempts to resolve the Ceratitis FAR complex (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa, Diptera, Tephritidae) showed contrasting results and revealed the occurrence of five microsatellite genotypic clusters (A, F1, F2, R1, R2). In this paper we explore the potential of wing morphometrics for the diagnosis of FAR morphospecies and genotypic clusters. We considered a set of 227 specimens previously morphologically identified and genotyped at 16 microsatellite loci. Seventeen wing landmarks and 6 wing band areas were used for morphometric analyses. Permutational multivariate analysis of variance detected significant differences both across morphospecies and genotypic clusters (for both males and females). Unconstrained and constrained ordinations did not properly resolve groups corresponding to morphospecies or genotypic clusters. However, posterior group membership probabilities (PGMPs) of the Discriminant Analysis of Principal Components (DAPC) allowed the consistent identification of a relevant proportion of specimens (but with performances differing across morphospecies and genotypic clusters). This study suggests that wing morphometrics and PGMPs might represent a possible tool for the diagnosis of species within the FAR complex. Here, we propose a tentative diagnostic method and provide a first reference library of morphometric measures that might be used for the identification of additional and unidentified FAR specimens.

  12. Generating Sudoku puzzles and its applications in teaching mathematics

    NASA Astrophysics Data System (ADS)

    Evans, Ryan; Lindner, Brett; Shi, Yixun

    2011-07-01

    This article presents a few methods for generating Sudoku puzzles. These methods are developed based on the concepts of matrix, permutation, and modular functions, and therefore can be used to form application examples or student projects when teaching various mathematics courses. Mathematical properties of these methods are studied, connections between the methods are investigated, and student projects are suggested. Since most students tend to enjoy games, studies like this may help raising students' interests and enhance their problem-solving skills.

  13. Automatic NEPHIS Coding of Descriptive Titles for Permuted Index Generation.

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    1982-01-01

    Describes a system for the automatic coding of most descriptive titles which generates Nested Phrase Indexing System (NEPHIS) input strings of sufficient quality for permuted index production. A series of examples and an 11-item reference list accompany the text. (JL)

  14. Global spectral graph wavelet signature for surface analysis of carpal bones

    NASA Astrophysics Data System (ADS)

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.

    2018-02-01

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  15. Global spectral graph wavelet signature for surface analysis of carpal bones.

    PubMed

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A

    2018-02-05

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  16. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  17. Creation of a Ligand-Dependent Enzyme by Fusing Circularly Permuted Antibody Variable Region Domains.

    PubMed

    Iwai, Hiroto; Kojima-Misaizu, Miki; Dong, Jinhua; Ueda, Hiroshi

    2016-04-20

    Allosteric control of enzyme activity with exogenous substances has been hard to achieve, especially using antibody domains that potentially allow control by any antigens of choice. Here, in order to attain this goal, we developed a novel antibody variable region format introduced with circular permutations, called Clampbody. The two variable-region domains of the antibone Gla protein (BGP) antibody were each circularly permutated to have novel termini at the loops near their domain interface. Through their attachment to the N- and C-termini of a circularly permutated TEM-1 β-lactamase (cpBLA), we created a molecular switch that responds to the antigen peptide. The fusion protein specifically recognized the antigen, and in the presence of some detergent or denaturant, its catalytic activity was enhanced up to 4.7-fold in an antigen-dependent manner, due to increased resistance to these reagents. Hence, Clampbody will be a powerful tool for the allosteric regulation of enzyme and other protein activities and especially useful to design robust biosensors.

  18. Quantum one-way permutation over the finite field of two elements

    NASA Astrophysics Data System (ADS)

    de Castro, Alexandre

    2017-06-01

    In quantum cryptography, a one-way permutation is a bounded unitary operator U:{H} → {H} on a Hilbert space {H} that is easy to compute on every input, but hard to invert given the image of a random input. Levin (Probl Inf Transm 39(1):92-103, 2003) has conjectured that the unitary transformation g(a,x)=(a,f(x)+ax), where f is any length-preserving function and a,x \\in {GF}_{{2}^{\\Vert x\\Vert }}, is an information-theoretically secure operator within a polynomial factor. Here, we show that Levin's one-way permutation is provably secure because its output values are four maximally entangled two-qubit states, and whose probability of factoring them approaches zero faster than the multiplicative inverse of any positive polynomial poly( x) over the Boolean ring of all subsets of x. Our results demonstrate through well-known theorems that existence of classical one-way functions implies existence of a universal quantum one-way permutation that cannot be inverted in subexponential time in the worst case.

  19. Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014-2015.

    PubMed

    Greene, Sharon K; Peterson, Eric R; Kapell, Deborah; Fine, Annie D; Kulldorff, Martin

    2016-10-01

    Each day, the New York City Department of Health and Mental Hygiene uses the free SaTScan software to apply prospective space-time permutation scan statistics to strengthen early outbreak detection for 35 reportable diseases. This method prompted early detection of outbreaks of community-acquired legionellosis and shigellosis.

  20. Parasite fauna of Etheostoma nigrum (Percidae: Etheostomatinae) in localities of varying pollution stress in the St. Lawrence River, Quebec, Canada.

    PubMed

    Krause, Rachel J; McLaughlin, J Daniel; Marcogliese, David J

    2010-07-01

    Parasite communities were examined in johnny darters (Etheostoma nigrum) collected from five localities in the St. Lawrence River in southwestern Quebec: two reference localities, one polluted locality upstream of the Island of Montreal and downstream of industrial and agricultural activity, and two polluted localities downstream of the Island of Montreal in the plume from the wastewater treatment facility. Twenty-four helminth species were found. Fish from the upstream polluted locality had the highest parasite species richness and total parasite numbers, and fish from the downstream polluted localities the lowest. Nonmetric multivariate analyses were conducted using square-root-transformed Bray-Curtis dissimilarity index. An analysis of similarity, dendrogram of centroids, and a permutational multivariate analysis of variance with contrasts all showed that fish from the reference localities had different parasite community composition than those from the polluted localities, and fish from the upstream polluted locality had different parasite communities than fish from the downstream polluted localities. Differences between reference and polluted localities were mainly due to higher abundances of the brain-encysting trematode, Ornithodiplostomum sp., at the reference localities. Differences between upstream and downstream polluted localities were mainly due to a higher diversity and abundance of trematodes in fish at the upstream locality.

  1. Group-theoretic models of the inversion process in bacterial genomes.

    PubMed

    Egri-Nagy, Attila; Gebhardt, Volker; Tanaka, Mark M; Francis, Andrew R

    2014-07-01

    The variation in genome arrangements among bacterial taxa is largely due to the process of inversion. Recent studies indicate that not all inversions are equally probable, suggesting, for instance, that shorter inversions are more frequent than longer, and those that move the terminus of replication are less probable than those that do not. Current methods for establishing the inversion distance between two bacterial genomes are unable to incorporate such information. In this paper we suggest a group-theoretic framework that in principle can take these constraints into account. In particular, we show that by lifting the problem from circular permutations to the affine symmetric group, the inversion distance can be found in polynomial time for a model in which inversions are restricted to acting on two regions. This requires the proof of new results in group theory, and suggests a vein of new combinatorial problems concerning permutation groups on which group theorists will be needed to collaborate with biologists. We apply the new method to inferring distances and phylogenies for published Yersinia pestis data.

  2. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA

    PubMed Central

    Kelly, Brendan J.; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D.; Collman, Ronald G.; Bushman, Frederic D.; Li, Hongzhe

    2015-01-01

    Motivation: The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence–absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. Results: We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. Availability and implementation: http://github.com/brendankelly/micropower. Contact: brendank@mail.med.upenn.edu or hongzhe@upenn.edu PMID:25819674

  4. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR).

    PubMed

    O'Leary, Neil; Chauhan, Balwantray C; Artes, Paul H

    2012-10-01

    To establish a method for estimating the overall statistical significance of visual field deterioration from an individual patient's data, and to compare its performance to pointwise linear regression. The Truncated Product Method was used to calculate a statistic S that combines evidence of deterioration from individual test locations in the visual field. The overall statistical significance (P value) of visual field deterioration was inferred by comparing S with its permutation distribution, derived from repeated reordering of the visual field series. Permutation of pointwise linear regression (PoPLR) and pointwise linear regression were evaluated in data from patients with glaucoma (944 eyes, median mean deviation -2.9 dB, interquartile range: -6.3, -1.2 dB) followed for more than 4 years (median 10 examinations over 8 years). False-positive rates were estimated from randomly reordered series of this dataset, and hit rates (proportion of eyes with significant deterioration) were estimated from the original series. The false-positive rates of PoPLR were indistinguishable from the corresponding nominal significance levels and were independent of baseline visual field damage and length of follow-up. At P < 0.05, the hit rates of PoPLR were 12, 29, and 42%, at the fifth, eighth, and final examinations, respectively, and at matching specificities they were consistently higher than those of pointwise linear regression. In contrast to population-based progression analyses, PoPLR provides a continuous estimate of statistical significance for visual field deterioration individualized to a particular patient's data. This allows close control over specificity, essential for monitoring patients in clinical practice and in clinical trials.

  5. Molecular symmetry: Why permutation-inversion (PI) groups don't render the point groups obsolete

    NASA Astrophysics Data System (ADS)

    Groner, Peter

    2018-01-01

    The analysis of spectra of molecules with internal large-amplitude motions (LAMs) requires molecular symmetry (MS) groups that are larger than and significantly different from the more familiar point groups. MS groups are described often by the permutation-inversion (PI) group method. It is shown that point groups still can and should play a significant role together with the PI groups for a class of molecules with internal rotors. In molecules of this class, several simple internal rotors are attached to a rigid molecular frame. The PI groups for this class are semidirect products like H ^ F, where the invariant subgroup H is a direct product of cyclic groups and F is a point group. This result is used to derive meaningful labels for MS groups, and to derive correlation tables between MS groups and point groups. MS groups of this class have many parallels to space groups of crystalline solids.

  6. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review.

    PubMed

    Groppe, David M; Urbach, Thomas P; Kutas, Marta

    2011-12-01

    Event-related potentials (ERPs) and magnetic fields (ERFs) are typically analyzed via ANOVAs on mean activity in a priori windows. Advances in computing power and statistics have produced an alternative, mass univariate analyses consisting of thousands of statistical tests and powerful corrections for multiple comparisons. Such analyses are most useful when one has little a priori knowledge of effect locations or latencies, and for delineating effect boundaries. Mass univariate analyses complement and, at times, obviate traditional analyses. Here we review this approach as applied to ERP/ERF data and four methods for multiple comparison correction: strong control of the familywise error rate (FWER) via permutation tests, weak control of FWER via cluster-based permutation tests, false discovery rate control, and control of the generalized FWER. We end with recommendations for their use and introduce free MATLAB software for their implementation. Copyright © 2011 Society for Psychophysiological Research.

  7. Entanglement distillation protocols and number theory

    NASA Astrophysics Data System (ADS)

    Bombin, H.; Martin-Delgado, M. A.

    2005-09-01

    We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set ZDn associated with Bell diagonal states is a module rather than a vector space. We find that a partition of ZDn into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D . When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively.

  8. Permutation methods for the structured exploratory data analysis (SEDA) of familial trait values.

    PubMed

    Karlin, S; Williams, P T

    1984-07-01

    A collection of functions that contrast familial trait values between and across generations is proposed for studying transmission effects and other collateral influences in nuclear families. Two classes of structured exploratory data analysis (SEDA) statistics are derived from ratios of these functions. SEDA-functionals are the empirical cumulative distributions of the ratio of the two contrasts computed within each family. SEDA-indices are formed by first averaging the numerator and denominator contrasts separately over the population and then forming their ratio. The significance of SEDA results are determined by a spectrum of permutation techniques that selectively shuffle the trait values across families. The process systematically alters certain family structure relationships while keeping other familial relationships intact. The methodology is applied to five data examples of plasma total cholesterol concentrations, reported height values, dermatoglyphic pattern intensity index scores, measurements of dopamine-beta-hydroxylase activity, and psychometric cognitive test results.

  9. Learning molecular energies using localized graph kernels.

    PubMed

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-21

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  10. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  11. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  12. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    PubMed

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  13. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies.

    PubMed

    Burgdorf, R J; Laing, M D; Morris, C D; Jamal-Ally, S F

    2014-01-01

    Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM). Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p < 0.05) from the untreated control. PERMANOVA revealed a significant difference between all treatments (p < 0.05). The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies.

  14. A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies

    PubMed Central

    Burgdorf, R.J.; Laing, M.D.; Morris, C.D.; Jamal-Ally, S.F.

    2014-01-01

    Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM). Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p < 0.05) from the untreated control. PERMANOVA revealed a significant difference between all treatments (p < 0.05). The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies. PMID:25477934

  15. Levels of Conceptual Development in Melodic Permutation Concepts Based on Piaget's Theory

    ERIC Educational Resources Information Center

    Larn, Ronald L.

    1973-01-01

    Article considered different ways in which subjects at different age levels solved a musical task involving melodic permutation. The differences in responses to the musical task between age groups were judged to be compatible with Piaget's theory of cognitive development. (Author/RK)

  16. Rotational excitations of N2O in small helium clusters and the role of Bose permutation symmetry

    NASA Astrophysics Data System (ADS)

    Paesani, F.; Whaley, K. B.

    2004-09-01

    We present a detailed study of the energetics, structures, and Bose properties of small clusters of 4He containing a single nitrous oxide (N2O) molecule, from N=1 4He up to sizes corresponding to completion of the first solvation shell around N2O (N=16 4He). Ground state properties are calculated using the importance-sampled rigid-body diffusion Monte Carlo method, rotational excited state calculations are made with the projection operator imaginary time spectral evolution method, and Bose permutation exchange and associated superfluid properties are calculated with the finite temperature path integral method. For N⩽5 the helium atoms are seen to form an equatorial ring around the molecular axis, at N=6 helium density starts to occupy the second (local) minimum of the N2O-He interaction at the oxygen side of the molecule, and N=9 is the critical size at which there is onset of helium solvation all along the molecular axis. For N⩾8 six 4He atoms are distributed in a symmetric, quasirigid ring around N2O. Path integral calculations show essentially complete superfluid response to rotation about the molecular axis for N⩾5, and a rise of the perpendicular superfluid response from zero to appreciable values for N⩾8. Rotational excited states are computed for three values of the total angular momentum, J=1-3, and the energy levels fitted to obtain effective spectroscopic constants that show excellent agreement with the experimentally observed N dependence of the effective rotational constant Beff. The non-monotonic behavior of the rotational constant is seen to be due to the onset of long 4He permutation exchanges and associated perpendicular superfluid response of the clusters for N⩾8. We provide a detailed analysis of the role of the helium solvation structure and superfluid properties in determining the effective rotational constants.

  17. Examining biological continuity across the late holocene occupation of the Aleutian Islands using cranial morphometrics and quantitative genetic permutation.

    PubMed

    Maley, Blaine

    2016-05-01

    The number of distinct human migrations into the Aleutian Islands during the Holocene has been a recurrent debate in the anthropological literature. Stemming from Hrdlička's sorting of the prehistoric remains into two distinct populations based on archaeological context and cranial measurements, the human occupation of the Aleutian Islands has long been thought to be the consequence of two distinct human migrations, a Paleo-Aleut migration that provided the initial settlement of the islands, and a Neo-Aleut migration that replaced the original settlers around 1000 BP. This study examines the relationship of the Aleut cranial assemblages in the context of greater Alaskan population variability to assess the evidence for a substantial migration into the Aleutian Islands during the late Holocene. A battery of 29 cranial measurements that quantify global cranial shape were analyzed using Euclidean morphometric methods and quantitative genetic permutation methods to examine the plausibility for two distinct Aleut occupations ("Paleo-Aleut" and "Neo-Aleut"), the latter of which is held to share closer phenetic affinities to mainland Alaskan populations than the former. The Aleut skeletal assemblages were arranged according to temporal association, geographic location, and cranial typology, and analyzed within a comparative framework of mainland Alaskan samples using principal coordinates, biological distance and random skewers permutation methods. Regardless of how the Aleut assemblages are divided, they show greater similarity to each other than to any of the mainland Alaskan assemblages. These findings are consistent across the methodological approaches. The results obtained in this study provide no support for a cranial morphology-based subdivision of the Aleuts into two distinct samples, Hence, there is no evidence for a substantial population migration of so-called Neo-Aleuts, nor for a population replacement event of an extant Paleo-Aleut population by a mainland-affiliated Neo-Aleuts population at or after 1000 BP. © 2016 Wiley Periodicals, Inc.

  18. Improved statistical assessment of a long-term groundwater-quality dataset with a non-parametric permutation method

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.

    2016-12-01

    The Waste Isolation Pilot Plant (WIPP) is the only deep geological repository for transuranic waste in the United States. As the Science Advisor for the WIPP, Sandia National Laboratories annually evaluates site data against trigger values (TVs), metrics whose violation is indicative of conditions that may impact long-term repository performance. This study focuses on a groundwater-quality dataset used to redesign a TV for the Culebra Dolomite Member (Culebra) of the Permian-age Rustler Formation. Prior to this study, a TV violation occurred if the concentration of a major ion fell outside a range defined as the mean +/- two standard deviations. The ranges were thought to denote conditions that 95% of future values would fall within. Groundwater-quality data used in evaluating compliance, however, are rarely normally distributed. To create a more robust Culebra groundwater-quality TV, this study employed the randomization test, a non-parametric permutation method. Recent groundwater compositions considered TV violations under the original ion concentration ranges are now interpreted as false positives in light of the insignificant p-values calculated with the randomization test. This work highlights that the normality assumption can weaken as the size of a groundwater-quality dataset grows over time. Non-parametric permutation methods are an attractive option because no assumption about the statistical distribution is required and calculating all combinations of the data is an increasingly tractable problem with modern workstations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2016-7306A

  19. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.

  20. Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme

    DOE PAGES

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...

    2014-12-09

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.« less

  1. Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data.

    PubMed

    Drakesmith, M; Caeyenberghs, K; Dutt, A; Lewis, G; David, A S; Jones, D K

    2015-09-01

    Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred network topologies. Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and smallworldness) were tested using a model tractography dataset. It was found that all four network metrics were significantly affected even by just one FP. Results also show that thresholding effectively dampens the impact of FPs, but at the expense of adding significant bias to network metrics. In a larger number (n=248) of tractography datasets, statistics were computed across random group permutations for a range of thresholds, revealing that statistics for network metrics varied significantly more than for non-network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some network metrics, this atrophy was detected as significant (p<0.05, determined using permutation testing) only across a limited range of thresholds. We propose a multi-threshold permutation correction (MTPC) method, based on the cluster-enhanced permutation correction approach, to identify sustained significant effects across clusters of thresholds. This approach minimises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of MTPC on a previously published network analysis of tractography data derived from a clinical population. In conclusion, we show that there are large biases and instability induced by thresholding, making statistical comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using MTPC, true group differences can be robustly identified. Copyright © 2015. Published by Elsevier Inc.

  2. On the rank-distance median of 3 permutations.

    PubMed

    Chindelevitch, Leonid; Pereira Zanetti, João Paulo; Meidanis, João

    2018-05-08

    Recently, Pereira Zanetti, Biller and Meidanis have proposed a new definition of a rearrangement distance between genomes. In this formulation, each genome is represented as a matrix, and the distance d is the rank distance between these matrices. Although defined in terms of matrices, the rank distance is equal to the minimum total weight of a series of weighted operations that leads from one genome to the other, including inversions, translocations, transpositions, and others. The computational complexity of the median-of-three problem according to this distance is currently unknown. The genome matrices are a special kind of permutation matrices, which we study in this paper. In their paper, the authors provide an [Formula: see text] algorithm for determining three candidate medians, prove the tight approximation ratio [Formula: see text], and provide a sufficient condition for their candidates to be true medians. They also conduct some experiments that suggest that their method is accurate on simulated and real data. In this paper, we extend their results and provide the following: Three invariants characterizing the problem of finding the median of 3 matrices A sufficient condition for uniqueness of medians that can be checked in O(n) A faster, [Formula: see text] algorithm for determining the median under this condition A new heuristic algorithm for this problem based on compressed sensing A [Formula: see text] algorithm that exactly solves the problem when the inputs are orthogonal matrices, a class that includes both permutations and genomes as special cases. Our work provides the first proof that, with respect to the rank distance, the problem of finding the median of 3 genomes, as well as the median of 3 permutations, is exactly solvable in polynomial time, a result which should be contrasted with its NP-hardness for the DCJ (double cut-and-join) distance and most other families of genome rearrangement operations. This result, backed by our experimental tests, indicates that the rank distance is a viable alternative to the DCJ distance widely used in genome comparisons.

  3. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    PubMed

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W

    2016-01-01

    External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  4. NASA Thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The NASA Thesaurus -- Volume 2, Access Vocabulary -- contains an alphabetical listing of all Thesaurus terms (postable and nonpostable) and permutations of all multiword and pseudo-multiword terms. Also included are Other Words (non-Thesaurus terms) consisting of abbreviations, chemical symbols, etc. The permutations and Other Words provide 'access' to the appropriate postable entries in the Thesaurus.

  5. A Permutation Test for Correlated Errors in Adjacent Questionnaire Items

    ERIC Educational Resources Information Center

    Hildreth, Laura A.; Genschel, Ulrike; Lorenz, Frederick O.; Lesser, Virginia M.

    2013-01-01

    Response patterns are of importance to survey researchers because of the insight they provide into the thought processes respondents use to answer survey questions. In this article we propose the use of structural equation modeling to examine response patterns and develop a permutation test to quantify the likelihood of observing a specific…

  6. The Parity Theorem Shuffle

    ERIC Educational Resources Information Center

    Smith, Michael D.

    2016-01-01

    The Parity Theorem states that any permutation can be written as a product of transpositions, but no permutation can be written as a product of both an even number and an odd number of transpositions. Most proofs of the Parity Theorem take several pages of mathematical formalism to complete. This article presents an alternative but equivalent…

  7. permGPU: Using graphics processing units in RNA microarray association studies.

    PubMed

    Shterev, Ivo D; Jung, Sin-Ho; George, Stephen L; Owzar, Kouros

    2010-06-16

    Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  8. Multi-scale symbolic transfer entropy analysis of EEG

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-10-01

    From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.

  9. Sorting signed permutations by inversions in O(nlogn) time.

    PubMed

    Swenson, Krister M; Rajan, Vaibhav; Lin, Yu; Moret, Bernard M E

    2010-03-01

    The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a subquadratic algorithm for providing a shortest sequence of inversions--also known as sorting by inversions. Remaining open was the question of whether sorting by inversions could be done in O(nlogn) time. In this article, we present a qualified answer to this question, by providing two new sorting algorithms, a simple and fast randomized algorithm and a deterministic refinement. The deterministic algorithm runs in time O(nlogn + kn), where k is a data-dependent parameter. We provide the results of extensive experiments showing that both the average and the standard deviation for k are small constants, independent of the size of the permutation. We conclude (but do not prove) that almost all signed permutations can be sorted by inversions in O(nlogn) time.

  10. Revisiting the European sovereign bonds with a permutation-information-theory approach

    NASA Astrophysics Data System (ADS)

    Fernández Bariviera, Aurelio; Zunino, Luciano; Guercio, María Belén; Martinez, Lisana B.; Rosso, Osvaldo A.

    2013-12-01

    In this paper we study the evolution of the informational efficiency in its weak form for seventeen European sovereign bonds time series. We aim to assess the impact of two specific economic situations in the hypothetical random behavior of these time series: the establishment of a common currency and a wide and deep financial crisis. In order to evaluate the informational efficiency we use permutation quantifiers derived from information theory. Specifically, time series are ranked according to two metrics that measure the intrinsic structure of their correlations: permutation entropy and permutation statistical complexity. These measures provide the rectangular coordinates of the complexity-entropy causality plane; the planar location of the time series in this representation space reveals the degree of informational efficiency. According to our results, the currency union contributed to homogenize the stochastic characteristics of the time series and produced synchronization in the random behavior of them. Additionally, the 2008 financial crisis uncovered differences within the apparently homogeneous European sovereign markets and revealed country-specific characteristics that were partially hidden during the monetary union heyday.

  11. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review

    PubMed Central

    Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.

    2015-01-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561

  12. Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution.

    PubMed

    Bratus, Alexander S; Novozhilov, Artem S; Semenov, Yuri S

    2014-10-01

    A particular case of the famous quasispecies model - the Crow-Kimura model with a permutation invariant fitness landscape - is investigated. Using the fact that the mutation matrix in the case of a permutation invariant fitness landscape has a special tridiagonal form, a change of the basis is suggested such that in the new coordinates a number of analytical results can be obtained. In particular, using the eigenvectors of the mutation matrix as the new basis, we show that the quasispecies distribution approaches a binomial one and give simple estimates for the speed of convergence. Another consequence of the suggested approach is a parametric solution to the system of equations determining the quasispecies. Using this parametric solution we show that our approach leads to exact asymptotic results in some cases, which are not covered by the existing methods. In particular, we are able to present not only the limit behavior of the leading eigenvalue (mean population fitness), but also the exact formulas for the limit quasispecies eigenvector for special cases. For instance, this eigenvector has a geometric distribution in the case of the classical single peaked fitness landscape. On the biological side, we propose a mathematical definition, based on the closeness of the quasispecies to the binomial distribution, which can be used as an operational definition of the notorious error threshold. Using this definition, we suggest two approximate formulas to estimate the critical mutation rate after which the quasispecies delocalization occurs. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Quantum image encryption based on restricted geometric and color transformations

    NASA Astrophysics Data System (ADS)

    Song, Xian-Hua; Wang, Shen; Abd El-Latif, Ahmed A.; Niu, Xia-Mu

    2014-08-01

    A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.

  14. An Evaluation of Mi Familia No Fuma: Family Cohesion and Impact on Secondhand Smoking

    ERIC Educational Resources Information Center

    Law, Jon; Kelly, Michael; Garcia, Pema; Taylor, Thom

    2010-01-01

    Background: Family cohesion may be a factor to prevent exposure of Hispanics in United States to secondhand smoke. Purpose: The purpose of this study was to evaluate one permutation of Mi Familia No Fuma (MFNF) and its resulting outputs or proximal client outcomes. Methods: MFNF is an approach to secondhand smoke prevention, using family cohesion…

  15. A New Paradigm to Identify Reaction Pathways in Gas-phase

    DTIC Science & Technology

    2015-04-27

    uses a history-dependent bias to favor the exploration of new states. Briefly, the well - tempered Metadynamics (WTM) technique was introduced to...Social PeRmutation INvarianT coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 WTM well - tempered Metadynamics ...overcome energetic barriers is not new [13], we used the basic algorithm that is use in Metadynamics (META) [14], an already well -tested method [15] that

  16. Hippocampal Structure and Human Cognition: Key Role of Spatial Processing and Evidence Supporting the Efficiency Hypothesis in Females

    ERIC Educational Resources Information Center

    Colom, Roberto; Stein, Jason L.; Rajagopalan, Priya; Martinez, Kenia; Hermel, David; Wang, Yalin; Alvarez-Linera, Juan; Burgaleta, Miguel; Quiroga, Ma. Angeles; Shih, Pei Chun; Thompson, Paul M.

    2013-01-01

    Here we apply a method for automated segmentation of the hippocampus in 3D high-resolution structural brain MRI scans. One hundred and four healthy young adults completed twenty one tasks measuring abstract, verbal, and spatial intelligence, along with working memory, executive control, attention, and processing speed. After permutation tests…

  17. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

    PubMed

    Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang

    2018-06-14

    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.

  18. A practical comparison of algorithms for the measurement of multiscale entropy in neural time series data.

    PubMed

    Kuntzelman, Karl; Jack Rhodes, L; Harrington, Lillian N; Miskovic, Vladimir

    2018-06-01

    There is a broad family of statistical methods for capturing time series regularity, with increasingly widespread adoption by the neuroscientific community. A common feature of these methods is that they permit investigators to quantify the entropy of brain signals - an index of unpredictability/complexity. Despite the proliferation of algorithms for computing entropy from neural time series data there is scant evidence concerning their relative stability and efficiency. Here we evaluated several different algorithmic implementations (sample, fuzzy, dispersion and permutation) of multiscale entropy in terms of their stability across sessions, internal consistency and computational speed, accuracy and precision using a combination of electroencephalogram (EEG) and synthetic 1/ƒ noise signals. Overall, we report fair to excellent internal consistency and longitudinal stability over a one-week period for the majority of entropy estimates, with several caveats. Computational timing estimates suggest distinct advantages for dispersion and permutation entropy over other entropy estimates. Considered alongside the psychometric evidence, we suggest several ways in which researchers can maximize computational resources (without sacrificing reliability), especially when working with high-density M/EEG data or multivoxel BOLD time series signals. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Use of gene expression data to determine effects on gonad phenotype in Japanese medaka after exposure to trenbolone or estradiol.

    PubMed

    Flynn, Kevin; Swintek, Joe; Johnson, Rodney

    2013-06-01

    Various aquatic bioassays using one of several fish species have been developed or are in the process of being developed by organizations like the US Environmental Protection Agency and the Office of Economic Cooperation and Development for testing potential endocrine-disrupting chemicals (EDCs). Often, these involve assessment of the gonad phenotype of individuals as a key endpoint that is inputted into a risk or hazard assessment. Typically, gonad phenotype is determined histologically, which involves specialized and time-consuming techniques. The methods detailed here utilize an entirely different methodology, reverse-transcription quantitative polymerase chain reaction, to determine the relative expression levels of 4 genes after exposure to either 17β-estradiol or 17β-trenbolone and, by extension, the effects of EDCs on the phenotypic status of the gonad. The 4 genes quantified, Sox9b, protamine, Fig1α, and ZPC1, are all involved in gonad development and maintenance in Japanese medaka (Oryzias latipes); these data were then inputted into a permutational multivariate analysis of variance to determine whether significant differences exist between treatment groups. This information in conjunction with the sexual genotype, which can be determined in medaka, can be used to determine adverse effects of exposure to EDCs in a similar fashion to the histologically determined gonad phenotype. Copyright © 2013 SETAC.

  20. Data Mining Methods for Omics and Knowledge of Crude Medicinal Plants toward Big Data Biology

    PubMed Central

    Afendi, Farit M.; Ono, Naoaki; Nakamura, Yukiko; Nakamura, Kensuke; Darusman, Latifah K.; Kibinge, Nelson; Morita, Aki Hirai; Tanaka, Ken; Horai, Hisayuki; Altaf-Ul-Amin, Md.; Kanaya, Shigehiko

    2013-01-01

    Molecular biological data has rapidly increased with the recent progress of the Omics fields, e.g., genomics, transcriptomics, proteomics and metabolomics that necessitates the development of databases and methods for efficient storage, retrieval, integration and analysis of massive data. The present study reviews the usage of KNApSAcK Family DB in metabolomics and related area, discusses several statistical methods for handling multivariate data and shows their application on Indonesian blended herbal medicines (Jamu) as a case study. Exploration using Biplot reveals many plants are rarely utilized while some plants are highly utilized toward specific efficacy. Furthermore, the ingredients of Jamu formulas are modeled using Partial Least Squares Discriminant Analysis (PLS-DA) in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. This model produces 71.6% correct classification in predicting efficacy. Permutation test then is used to determine plants that serve as main ingredients in Jamu formula by evaluating the significance of the PLS-DA coefficients. Next, in order to explain the role of plants that serve as main ingredients in Jamu medicines, information of pharmacological activity of the plants is added to the predictor block. Then N-PLS-DA model, multiway version of PLS-DA, is utilized to handle the three-dimensional array of the predictor block. The resulting N-PLS-DA model reveals that the effects of some pharmacological activities are specific for certain efficacy and the other activities are diverse toward many efficacies. Mathematical modeling introduced in the present study can be utilized in global analysis of big data targeting to reveal the underlying biology. PMID:24688691

  1. Harnessing Multivariate Statistics for Ellipsoidal Data in Structural Geology

    NASA Astrophysics Data System (ADS)

    Roberts, N.; Davis, J. R.; Titus, S.; Tikoff, B.

    2015-12-01

    Most structural geology articles do not state significance levels, report confidence intervals, or perform regressions to find trends. This is, in part, because structural data tend to include directions, orientations, ellipsoids, and tensors, which are not treatable by elementary statistics. We describe a full procedural methodology for the statistical treatment of ellipsoidal data. We use a reconstructed dataset of deformed ooids in Maryland from Cloos (1947) to illustrate the process. Normalized ellipsoids have five degrees of freedom and can be represented by a second order tensor. This tensor can be permuted into a five dimensional vector that belongs to a vector space and can be treated with standard multivariate statistics. Cloos made several claims about the distribution of deformation in the South Mountain fold, Maryland, and we reexamine two particular claims using hypothesis testing: 1) octahedral shear strain increases towards the axial plane of the fold; 2) finite strain orientation varies systematically along the trend of the axial trace as it bends with the Appalachian orogen. We then test the null hypothesis that the southern segment of South Mountain is the same as the northern segment. This test illustrates the application of ellipsoidal statistics, which combine both orientation and shape. We report confidence intervals for each test, and graphically display our results with novel plots. This poster illustrates the importance of statistics in structural geology, especially when working with noisy or small datasets.

  2. Quantification and Statistical Analysis Methods for Vessel Wall Components from Stained Images with Masson's Trichrome

    PubMed Central

    Hernández-Morera, Pablo; Castaño-González, Irene; Travieso-González, Carlos M.; Mompeó-Corredera, Blanca; Ortega-Santana, Francisco

    2016-01-01

    Purpose To develop a digital image processing method to quantify structural components (smooth muscle fibers and extracellular matrix) in the vessel wall stained with Masson’s trichrome, and a statistical method suitable for small sample sizes to analyze the results previously obtained. Methods The quantification method comprises two stages. The pre-processing stage improves tissue image appearance and the vessel wall area is delimited. In the feature extraction stage, the vessel wall components are segmented by grouping pixels with a similar color. The area of each component is calculated by normalizing the number of pixels of each group by the vessel wall area. Statistical analyses are implemented by permutation tests, based on resampling without replacement from the set of the observed data to obtain a sampling distribution of an estimator. The implementation can be parallelized on a multicore machine to reduce execution time. Results The methods have been tested on 48 vessel wall samples of the internal saphenous vein stained with Masson’s trichrome. The results show that the segmented areas are consistent with the perception of a team of doctors and demonstrate good correlation between the expert judgments and the measured parameters for evaluating vessel wall changes. Conclusion The proposed methodology offers a powerful tool to quantify some components of the vessel wall. It is more objective, sensitive and accurate than the biochemical and qualitative methods traditionally used. The permutation tests are suitable statistical techniques to analyze the numerical measurements obtained when the underlying assumptions of the other statistical techniques are not met. PMID:26761643

  3. Learning molecular energies using localized graph kernels

    DOE PAGES

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    2017-03-21

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  4. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGES

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added tomore » the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  5. Learning molecular energies using localized graph kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  6. NASA thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains 40,738 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing.

  7. NASA Thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains, 40,661 entries that give increased access to he hierarchies in Volume 1 - Hierarchical Listing.

  8. Instability of Hierarchical Cluster Analysis Due to Input Order of the Data: The PermuCLUSTER Solution

    ERIC Educational Resources Information Center

    van der Kloot, Willem A.; Spaans, Alexander M. J.; Heiser, Willem J.

    2005-01-01

    Hierarchical agglomerative cluster analysis (HACA) may yield different solutions under permutations of the input order of the data. This instability is caused by ties, either in the initial proximity matrix or arising during agglomeration. The authors recommend to repeat the analysis on a large number of random permutations of the rows and columns…

  9. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  10. A Novel Bit-level Image Encryption Method Based on Chaotic Map and Dynamic Grouping

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Ji; Shen, Yan

    2012-10-01

    In this paper, a novel bit-level image encryption method based on dynamic grouping is proposed. In the proposed method, the plain-image is divided into several groups randomly, then permutation-diffusion process on bit level is carried out. The keystream generated by logistic map is related to the plain-image, which confuses the relationship between the plain-image and the cipher-image. The computer simulation results of statistical analysis, information entropy analysis and sensitivity analysis show that the proposed encryption method is secure and reliable enough to be used for communication application.

  11. Controllability of symmetric spin networks

    NASA Astrophysics Data System (ADS)

    Albertini, Francesca; D'Alessandro, Domenico

    2018-05-01

    We consider a network of n spin 1/2 systems which are pairwise interacting via Ising interaction and are controlled by the same electro-magnetic control field. Such a system presents symmetries since the Hamiltonian is unchanged if we permute two spins. This prevents full (operator) controllability, in that not every unitary evolution can be obtained. We prove however that controllability is verified if we restrict ourselves to unitary evolutions which preserve the above permutation invariance. For low dimensional cases, n = 2 and n = 3, we provide an analysis of the Lie group of available evolutions and give explicit control laws to transfer between two arbitrary permutation invariant states. This class of states includes highly entangled states such as Greenberger-Horne-Zeilinger (GHZ) states and W states, which are of interest in quantum information.

  12. A permutation information theory tour through different interest rate maturities: the Libor case.

    PubMed

    Bariviera, Aurelio Fernández; Guercio, María Belén; Martinez, Lisana B; Rosso, Osvaldo A

    2015-12-13

    This paper analyses Libor interest rates for seven different maturities and referred to operations in British pounds, euros, Swiss francs and Japanese yen, during the period 2001-2015. The analysis is performed by means of two quantifiers derived from information theory: the permutation Shannon entropy and the permutation Fisher information measure. An anomalous behaviour in the Libor is detected in all currencies except euros during the years 2006-2012. The stochastic switch is more severe in one, two and three months maturities. Given the special mechanism of Libor setting, we conjecture that the behaviour could have been produced by the manipulation that was uncovered by financial authorities. We argue that our methodology is pertinent as a market overseeing instrument. © 2015 The Author(s).

  13. Assessment of the Lower Urinary Tract Microbiota during Symptom Flare in Women with Urologic Chronic Pelvic Pain Syndrome: A MAPP Network Study

    PubMed Central

    Nickel, J. Curtis; Stephens, Alisa; Landis, J. Richard; Mullins, Chris; van Bokhoven, Adrie; Lucia, M. Scott; Ehrlich, Garth D.

    2016-01-01

    Purpose We compared culture independent assessment of microbiota of the lower urinary tract in standard culture negative female patients with urological chronic pelvic pain syndrome who reported symptom flare vs those who did not report a flare. Materials and Methods Initial stream (VB1) and midstream (VB2) urine specimens (233 patients with urological chronic pelvic pain syndrome) were analyzed with Ibis T-5000 Universal Biosensor system technology for comprehensive identification of microorganism species. Differences between flare and nonflare groups for presence or number of different species within a higher level group (richness) were examined by permutational multivariate analysis of variance and logistic regression. Results Overall 81 species (35 genera) were detected in VB1 and 73 (33) in VB2. Mean (SD) VB1 and VB2 species count per person was 2.6 (1.5) and 2.4 (1.5) for 86 flare cases and 2.8 (1.3) and 2.5 (1.5) for 127 nonflare cases, respectively. Overall the species composition did not significantly differ between flare and nonflare cases at any level (p=0.14 species, p=0.95 genus in VB1 and VB2, respectively) in multivariate analysis for richness. Univariate analysis, unadjusted as well as adjusted, confirmed a significantly greater prevalence of fungi (Candida and Saccharomyces) in the flare group (15.7%) compared to the nonflare group in VB2 (3.9%) (p=0.01). When adjusted for antibiotic use and menstrual phase, women who reported a flare remained more likely to have fungi present in VB2 specimens (OR 8.3, CI 1.7–39.4). Conclusions Among women with urological chronic pelvic pain syndrome the prevalence of fungi (Candida and Saccharomyces sp.) was significantly greater in those who reported a flare compared to those who did not. PMID:26410734

  14. Relationships between depressive symptoms and self-reported unintentional injuries: the cross-sectional population–based FIN-D2D survey

    PubMed Central

    2012-01-01

    Background There is a lack of knowledge on the influence of different levels of physical activity (PA) on unintentional injuries among those with depressive symptoms (DS). The aim of this study was to evaluate the relationship between PA categories and unintentional injuries among participants with and without DS based on a cross-sectional population–based FIN-D2D survey conducted in 2007. Methods Out of 4500, 2682 participants (60%) aged 45–74 years attended in this study. The unintentional injuries over the past year were captured in a questionnaire. DS were determined with the Beck Depression Inventory (≥ 10 points) and PA with the International Physical Activity Questionnaire. The statistical significance between DS and unintentional injury categories was evaluated by using t-test, chi-square test, or permutation test, analysis of covariance, or regression models. The factors related to unintentional injuries were estimated by univariate and multivariate logistic regression models. Results The proportion of subjects with unintentional injuries was higher among those with DS (17%) compared to those without DS (10%) (age- and gender-adjusted p = 0.023). The median (range) number of activity-loss days after injury was 22 (0–365) in participants with DS and 7 (0–120) in participants without DS ( p = 0.009). The percentage of subjects with unintentional injuries was not significantly different between PA categories in participants with DS and without DS. A stepwise multivariate logistic regression analysis showed that DS, functional ability, and musculoskeletal diseases were related to unintentional injuries. Conclusions PA level was not related to unintentional injuries, whereas those with DS had a higher prevalence of unintentional injuries and prolonged activity-loss after injury. These results underline the importance of injury prevention, especially among those who have DS and additional risk factors. PMID:22781103

  15. Permutation-symmetric three-particle hyper-spherical harmonics based on the S3 ⊗ SO(3)rot ⊂ O(2)⊗SO(3)rot ⊂ U(3)⋊S2 ⊂ O(6) subgroup chain

    NASA Astrophysics Data System (ADS)

    Salom, Igor; Dmitrašinović, V.

    2017-07-01

    We construct the three-body permutation symmetric hyperspherical harmonics to be used in the non-relativistic three-body Schrödinger equation in three spatial dimensions (3D). We label the state vectors according to the S3 ⊗ SO(3)rot ⊂ O (2) ⊗ SO(3)rot ⊂ U (3) ⋊S2 ⊂ O (6) subgroup chain, where S3 is the three-body permutation group and S2 is its two element subgroup containing transposition of first two particles, O (2) is the ;democracy transformation;, or ;kinematic rotation; group for three particles; SO(3)rot is the 3D rotation group, and U (3) , O (6) are the usual Lie groups. We discuss the good quantum numbers implied by the above chain of algebras, as well as their relation to the S3 permutation properties of the harmonics, particularly in view of the SO(3)rot ⊂ SU (3) degeneracy. We provide a definite, practically implementable algorithm for the calculation of harmonics with arbitrary finite integer values of the hyper angular momentum K, and show an explicit example of this construction in a specific case with degeneracy, as well as tables of K ≤ 6 harmonics. All harmonics are expressed as homogeneous polynomials in the Jacobi vectors (λ , ρ) with coefficients given as algebraic numbers unless the ;operator method; is chosen for the lifting of the SO(3)rot ⊂ SU (3) multiplicity and the dimension of the degenerate subspace is greater than four - in which case one must resort to numerical diagonalization; the latter condition is not met by any K ≤ 15 harmonic, or by any L ≤ 7 harmonic with arbitrary K. We also calculate a certain type of matrix elements (the Gaunt integrals of products of three harmonics) in two ways: 1) by explicit evaluation of integrals and 2) by reduction to known SU (3) Clebsch-Gordan coefficients. In this way we complete the calculation of the ingredients sufficient for the solution to the quantum-mechanical three-body bound state problem.

  16. Deep Brain Stimulation of the Subthalamic Nucleus Parameter Optimization for Vowel Acoustics and Speech Intelligibility in Parkinson's Disease

    ERIC Educational Resources Information Center

    Knowles, Thea; Adams, Scott; Abeyesekera, Anita; Mancinelli, Cynthia; Gilmore, Greydon; Jog, Mandar

    2018-01-01

    Purpose: The settings of 3 electrical stimulation parameters were adjusted in 12 speakers with Parkinson's disease (PD) with deep brain stimulation of the subthalamic nucleus (STN-DBS) to examine their effects on vowel acoustics and speech intelligibility. Method: Participants were tested under permutations of low, mid, and high STN-DBS frequency,…

  17. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation.

    PubMed

    Azami, Hamed; Escudero, Javier

    2016-05-01

    Signal segmentation and spike detection are two important biomedical signal processing applications. Often, non-stationary signals must be segmented into piece-wise stationary epochs or spikes need to be found among a background of noise before being further analyzed. Permutation entropy (PE) has been proposed to evaluate the irregularity of a time series. PE is conceptually simple, structurally robust to artifacts, and computationally fast. It has been extensively used in many applications, but it has two key shortcomings. First, when a signal is symbolized using the Bandt-Pompe procedure, only the order of the amplitude values is considered and information regarding the amplitudes is discarded. Second, in the PE, the effect of equal amplitude values in each embedded vector is not addressed. To address these issues, we propose a new entropy measure based on PE: the amplitude-aware permutation entropy (AAPE). AAPE is sensitive to the changes in the amplitude, in addition to the frequency, of the signals thanks to it being more flexible than the classical PE in the quantification of the signal motifs. To demonstrate how the AAPE method can enhance the quality of the signal segmentation and spike detection, a set of synthetic and realistic synthetic neuronal signals, electroencephalograms and neuronal data are processed. We compare the performance of AAPE in these problems against state-of-the-art approaches and evaluate the significance of the differences with a repeated ANOVA with post hoc Tukey's test. In signal segmentation, the accuracy of AAPE-based method is higher than conventional segmentation methods. AAPE also leads to more robust results in the presence of noise. The spike detection results show that AAPE can detect spikes well, even when presented with single-sample spikes, unlike PE. For multi-sample spikes, the changes in AAPE are larger than in PE. We introduce a new entropy metric, AAPE, that enables us to consider amplitude information in the formulation of PE. The AAPE algorithm can be used in almost every irregularity-based application in various signal and image processing fields. We also made freely available the Matlab code of the AAPE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. NASA thesaurus. Volume 2: Access vocabulary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The access vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries and pseudo-multiword terms that are permutations of words that contain words within words. The access vocabulary contains almost 42,000 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing.

  19. Circular permutation of the starch-binding domain: inversion of ligand selectivity with increased affinity.

    PubMed

    Stephen, Preyesh; Tseng, Kai-Li; Liu, Yu-Nan; Lyu, Ping-Chiang

    2012-03-07

    Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications. This journal is © The Royal Society of Chemistry 2012

  20. Sampling solution traces for the problem of sorting permutations by signed reversals

    PubMed Central

    2012-01-01

    Background Traditional algorithms to solve the problem of sorting by signed reversals output just one optimal solution while the space of all optimal solutions can be huge. A so-called trace represents a group of solutions which share the same set of reversals that must be applied to sort the original permutation following a partial ordering. By using traces, we therefore can represent the set of optimal solutions in a more compact way. Algorithms for enumerating the complete set of traces of solutions were developed. However, due to their exponential complexity, their practical use is limited to small permutations. A partial enumeration of traces is a sampling of the complete set of traces and can be an alternative for the study of distinct evolutionary scenarios of big permutations. Ideally, the sampling should be done uniformly from the space of all optimal solutions. This is however conjectured to be ♯P-complete. Results We propose and evaluate three algorithms for producing a sampling of the complete set of traces that instead can be shown in practice to preserve some of the characteristics of the space of all solutions. The first algorithm (RA) performs the construction of traces through a random selection of reversals on the list of optimal 1-sequences. The second algorithm (DFALT) consists in a slight modification of an algorithm that performs the complete enumeration of traces. Finally, the third algorithm (SWA) is based on a sliding window strategy to improve the enumeration of traces. All proposed algorithms were able to enumerate traces for permutations with up to 200 elements. Conclusions We analysed the distribution of the enumerated traces with respect to their height and average reversal length. Various works indicate that the reversal length can be an important aspect in genome rearrangements. The algorithms RA and SWA show a tendency to lose traces with high average reversal length. Such traces are however rare, and qualitatively our results show that, for testable-sized permutations, the algorithms DFALT and SWA produce distributions which approximate the reversal length distributions observed with a complete enumeration of the set of traces. PMID:22704580

  1. Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Lang, Jun

    2015-03-01

    In this paper, we propose a novel color image encryption method by using Color Blend (CB) and Chaos Permutation (CP) operations in the reality-preserving multiple-parameter fractional Fourier transform (RPMPFRFT) domain. The original color image is first exchanged and mixed randomly from the standard red-green-blue (RGB) color space to R‧G‧B‧ color space by rotating the color cube with a random angle matrix. Then RPMPFRFT is employed for changing the pixel values of color image, three components of the scrambled RGB color space are converted by RPMPFRFT with three different transform pairs, respectively. Comparing to the complex output transform, the RPMPFRFT transform ensures that the output is real which can save storage space of image and convenient for transmission in practical applications. To further enhance the security of the encryption system, the output of the former steps is scrambled by juxtaposition of sections of the image in the reality-preserving multiple-parameter fractional Fourier domains and the alignment of sections is determined by two coupled chaotic logistic maps. The parameters in the Color Blend, Chaos Permutation and the RPMPFRFT transform are regarded as the key in the encryption algorithm. The proposed color image encryption can also be applied to encrypt three gray images by transforming the gray images into three RGB color components of a specially constructed color image. Numerical simulations are performed to demonstrate that the proposed algorithm is feasible, secure, sensitive to keys and robust to noise attack and data loss.

  2. Inference With Difference-in-Differences With a Small Number of Groups: A Review, Simulation Study, and Empirical Application Using SHARE Data.

    PubMed

    Rokicki, Slawa; Cohen, Jessica; Fink, Günther; Salomon, Joshua A; Landrum, Mary Beth

    2018-01-01

    Difference-in-differences (DID) estimation has become increasingly popular as an approach to evaluate the effect of a group-level policy on individual-level outcomes. Several statistical methodologies have been proposed to correct for the within-group correlation of model errors resulting from the clustering of data. Little is known about how well these corrections perform with the often small number of groups observed in health research using longitudinal data. First, we review the most commonly used modeling solutions in DID estimation for panel data, including generalized estimating equations (GEE), permutation tests, clustered standard errors (CSE), wild cluster bootstrapping, and aggregation. Second, we compare the empirical coverage rates and power of these methods using a Monte Carlo simulation study in scenarios in which we vary the degree of error correlation, the group size balance, and the proportion of treated groups. Third, we provide an empirical example using the Survey of Health, Ageing, and Retirement in Europe. When the number of groups is small, CSE are systematically biased downwards in scenarios when data are unbalanced or when there is a low proportion of treated groups. This can result in over-rejection of the null even when data are composed of up to 50 groups. Aggregation, permutation tests, bias-adjusted GEE, and wild cluster bootstrap produce coverage rates close to the nominal rate for almost all scenarios, though GEE may suffer from low power. In DID estimation with a small number of groups, analysis using aggregation, permutation tests, wild cluster bootstrap, or bias-adjusted GEE is recommended.

  3. On testing for spatial correspondence between maps of human brain structure and function.

    PubMed

    Alexander-Bloch, Aaron F; Shou, Haochang; Liu, Siyuan; Satterthwaite, Theodore D; Glahn, David C; Shinohara, Russell T; Vandekar, Simon N; Raznahan, Armin

    2018-06-01

    A critical issue in many neuroimaging studies is the comparison between brain maps. Nonetheless, it remains unclear how one should test hypotheses focused on the overlap or spatial correspondence between two or more brain maps. This "correspondence problem" affects, for example, the interpretation of comparisons between task-based patterns of functional activation, resting-state networks or modules, and neuroanatomical landmarks. To date, this problem has been addressed with remarkable variability in terms of methodological approaches and statistical rigor. In this paper, we address the correspondence problem using a spatial permutation framework to generate null models of overlap by applying random rotations to spherical representations of the cortical surface, an approach for which we also provide a theoretical statistical foundation. We use this method to derive clusters of cognitive functions that are correlated in terms of their functional neuroatomical substrates. In addition, using publicly available data, we formally demonstrate the correspondence between maps of task-based functional activity, resting-state fMRI networks and gyral-based anatomical landmarks. We provide open-access code to implement the methods presented for two commonly-used tools for surface based cortical analysis (https://www.github.com/spin-test). This spatial permutation approach constitutes a useful advance over widely-used methods for the comparison of cortical maps, thereby opening new possibilities for the integration of diverse neuroimaging data. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Permutation glass.

    PubMed

    Williams, Mobolaji

    2018-01-01

    The field of disordered systems in statistical physics provides many simple models in which the competing influences of thermal and nonthermal disorder lead to new phases and nontrivial thermal behavior of order parameters. In this paper, we add a model to the subject by considering a disordered system where the state space consists of various orderings of a list. As in spin glasses, the disorder of such "permutation glasses" arises from a parameter in the Hamiltonian being drawn from a distribution of possible values, thus allowing nominally "incorrect orderings" to have lower energies than "correct orderings" in the space of permutations. We analyze a Gaussian, uniform, and symmetric Bernoulli distribution of energy costs, and, by employing Jensen's inequality, derive a simple condition requiring the permutation glass to always transition to the correctly ordered state at a temperature lower than that of the nondisordered system, provided that this correctly ordered state is accessible. We in turn find that in order for the correctly ordered state to be accessible, the probability that an incorrectly ordered component is energetically favored must be less than the inverse of the number of components in the system. We show that all of these results are consistent with a replica symmetric ansatz of the system. We conclude by arguing that there is no distinct permutation glass phase for the simplest model considered here and by discussing how to extend the analysis to more complex Hamiltonians capable of novel phase behavior and replica symmetry breaking. Finally, we outline an apparent correspondence between the presented system and a discrete-energy-level fermion gas. In all, the investigation introduces a class of exactly soluble models into statistical mechanics and provides a fertile ground to investigate statistical models of disorder.

  5. Statistical significance approximation in local trend analysis of high-throughput time-series data using the theory of Markov chains.

    PubMed

    Xia, Li C; Ai, Dongmei; Cram, Jacob A; Liang, Xiaoyi; Fuhrman, Jed A; Sun, Fengzhu

    2015-09-21

    Local trend (i.e. shape) analysis of time series data reveals co-changing patterns in dynamics of biological systems. However, slow permutation procedures to evaluate the statistical significance of local trend scores have limited its applications to high-throughput time series data analysis, e.g., data from the next generation sequencing technology based studies. By extending the theories for the tail probability of the range of sum of Markovian random variables, we propose formulae for approximating the statistical significance of local trend scores. Using simulations and real data, we show that the approximate p-value is close to that obtained using a large number of permutations (starting at time points >20 with no delay and >30 with delay of at most three time steps) in that the non-zero decimals of the p-values obtained by the approximation and the permutations are mostly the same when the approximate p-value is less than 0.05. In addition, the approximate p-value is slightly larger than that based on permutations making hypothesis testing based on the approximate p-value conservative. The approximation enables efficient calculation of p-values for pairwise local trend analysis, making large scale all-versus-all comparisons possible. We also propose a hybrid approach by integrating the approximation and permutations to obtain accurate p-values for significantly associated pairs. We further demonstrate its use with the analysis of the Polymouth Marine Laboratory (PML) microbial community time series from high-throughput sequencing data and found interesting organism co-occurrence dynamic patterns. The software tool is integrated into the eLSA software package that now provides accelerated local trend and similarity analysis pipelines for time series data. The package is freely available from the eLSA website: http://bitbucket.org/charade/elsa.

  6. How to think about indiscernible particles

    NASA Astrophysics Data System (ADS)

    Giglio, Daniel Joseph

    Permutation symmetries which arise in quantum mechanics pose an intriguing problem. It is not clear that particles which exhibit permutation symmetries (i.e. particles which are indiscernible, meaning that they can be swapped with each other without this yielding a new physical state) qualify as "objects" in any reasonable sense of the term. One solution to this puzzle, which I attribute to W.V. Quine, would have us eliminate such particles from our ontology altogether in order to circumvent the metaphysical vexations caused by permutation symmetries. In this essay I argue that Quine's solution is too rash, and in its place I suggest a novel solution based on altering some of the language of quantum mechanics. Before launching into the technical details of indiscernible particles, however, I begin this essay with some remarks on the methodology -- instrumentalism -- which motivates my arguments.

  7. Fermion systems in discrete space-time

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  8. Dynamic Testing and Automatic Repair of Reconfigurable Wiring Harnesses

    DTIC Science & Technology

    2006-11-27

    Switch An M ×N grid of switches configured to provide a M -input, N -output routing network. Permutation Network A permutation network performs an...wiring reduces the effective advantage of their reduced switch count, particularly when considering that regular grids (crossbar switches being a...are connected to. The outline circuit shown in Fig. 20 shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a UART

  9. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation.

    PubMed

    Pandey, Naresh; Kuypers, Brianna E; Nassif, Barbara; Thomas, Emily E; Alnahhas, Razan N; Segatori, Laura; Silberg, Jonathan J

    2016-07-12

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.

  10. Tolerance of a knotted near infrared fluorescent protein to random circular permutation

    PubMed Central

    Pandey, Naresh; Kuypers, Brianna E.; Nassif, Barbara; Thomas, Emily E.; Alnahhas, Razan N.; Segatori, Laura; Silberg, Jonathan J.

    2016-01-01

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFP to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified twenty seven circularly permuted iRFP that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants were discovered that initiated translation within the PAS and GAF domains. Circularly permuted iRFP retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a similar quantum yield as iRFP, but exhibited increased resistance to chemical denaturation, suggesting that the observed signal increase arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step towards the creation of near-infrared biosensors with expanded chemical-sensing functions for in vivo imaging. PMID:27304983

  11. Outcome Prediction in Patients with Glioblastoma by Using Imaging, Clinical, and Genomic Biomarkers: Focus on the Nonenhancing Component of the Tumor

    PubMed Central

    Poisson, Laila M.; Gutman, David; Scarpace, Lisa; Hwang, Scott N.; Holder, Chad A.; Wintermark, Max; Rao, Arvind; Colen, Rivka R.; Kirby, Justin; Freymann, John; Jaffe, C. Carl; Mikkelsen, Tom; Flanders, Adam

    2014-01-01

    Purpose To correlate patient survival with morphologic imaging features and hemodynamic parameters obtained from the nonenhancing region (NER) of glioblastoma (GBM), along with clinical and genomic markers. Materials and Methods An institutional review board waiver was obtained for this HIPAA-compliant retrospective study. Forty-five patients with GBM underwent baseline imaging with contrast material–enhanced magnetic resonance (MR) imaging and dynamic susceptibility contrast-enhanced T2*-weighted perfusion MR imaging. Molecular and clinical predictors of survival were obtained. Single and multivariable models of overall survival (OS) and progression-free survival (PFS) were explored with Kaplan-Meier estimates, Cox regression, and random survival forests. Results Worsening OS (log-rank test, P = .0103) and PFS (log-rank test, P = .0223) were associated with increasing relative cerebral blood volume of NER (rCBVNER), which was higher with deep white matter involvement (t test, P = .0482) and poor NER margin definition (t test, P = .0147). NER crossing the midline was the only morphologic feature of NER associated with poor survival (log-rank test, P = .0125). Preoperative Karnofsky performance score (KPS) and resection extent (n = 30) were clinically significant OS predictors (log-rank test, P = .0176 and P = .0038, respectively). No genomic alterations were associated with survival, except patients with high rCBVNER and wild-type epidermal growth factor receptor (EGFR) mutation had significantly poor survival (log-rank test, P = .0306; area under the receiver operating characteristic curve = 0.62). Combining resection extent with rCBVNER marginally improved prognostic ability (permutation, P = .084). Random forest models of presurgical predictors indicated rCBVNER as the top predictor; also important were KPS, age at diagnosis, and NER crossing the midline. A multivariable model containing rCBVNER, age at diagnosis, and KPS can be used to group patients with more than 1 year of difference in observed median survival (0.49–1.79 years). Conclusion Patients with high rCBVNER and NER crossing the midline and those with high rCBVNER and wild-type EGFR mutation showed poor survival. In multivariable survival models, however, rCBVNER provided unique prognostic information that went above and beyond the assessment of all NER imaging features, as well as clinical and genomic features. © RSNA, 2014 Online supplemental material is available for this article. PMID:24646147

  12. Comparison of a non-stationary voxelation-corrected cluster-size test with TFCE for group-Level MRI inference.

    PubMed

    Li, Huanjie; Nickerson, Lisa D; Nichols, Thomas E; Gao, Jia-Hong

    2017-03-01

    Two powerful methods for statistical inference on MRI brain images have been proposed recently, a non-stationary voxelation-corrected cluster-size test (CST) based on random field theory and threshold-free cluster enhancement (TFCE) based on calculating the level of local support for a cluster, then using permutation testing for inference. Unlike other statistical approaches, these two methods do not rest on the assumptions of a uniform and high degree of spatial smoothness of the statistic image. Thus, they are strongly recommended for group-level fMRI analysis compared to other statistical methods. In this work, the non-stationary voxelation-corrected CST and TFCE methods for group-level analysis were evaluated for both stationary and non-stationary images under varying smoothness levels, degrees of freedom and signal to noise ratios. Our results suggest that, both methods provide adequate control for the number of voxel-wise statistical tests being performed during inference on fMRI data and they are both superior to current CSTs implemented in popular MRI data analysis software packages. However, TFCE is more sensitive and stable for group-level analysis of VBM data. Thus, the voxelation-corrected CST approach may confer some advantages by being computationally less demanding for fMRI data analysis than TFCE with permutation testing and by also being applicable for single-subject fMRI analyses, while the TFCE approach is advantageous for VBM data. Hum Brain Mapp 38:1269-1280, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. A statistical method (cross-validation) for bone loss region detection after spaceflight

    PubMed Central

    Zhao, Qian; Li, Wenjun; Li, Caixia; Chu, Philip W.; Kornak, John; Lang, Thomas F.

    2010-01-01

    Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. PMID:20632144

  14. A new collage steganographic algorithm using cartoon design

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Zhou, Yicong; Pun, Chi-Man; Chen, C. L. Philip

    2014-02-01

    Existing collage steganographic methods suffer from low payload of embedding messages. To improve the payload while providing a high level of security protection to messages, this paper introduces a new collage steganographic algorithm using cartoon design. It embeds messages into the least significant bits (LSBs) of color cartoon objects, applies different permutations to each object, and adds objects to a cartoon cover image to obtain the stego image. Computer simulations and comparisons demonstrate that the proposed algorithm shows significantly higher capacity of embedding messages compared with existing collage steganographic methods.

  15. General Rotorcraft Aeromechanical Stability Program (GRASP) - Theory Manual

    DTIC Science & Technology

    1990-10-01

    the A basis. Two symbols frequently encountered in vector operations that use index notation are the Kronecker delta eij and the Levi - Civita epsilon...Blade root cutout fijk Levi - Civita epsilon permutation symbol 0 pretwist angle 0’ pretwist per unit length (d;) Oi Tait-Bryan angles K~i moment strains...the components of the identity tensor in a Cartesian coordinate system, while the Levi Civita epsilon consists of components of the permutation

  16. Using permutations to detect dependence between time series

    NASA Astrophysics Data System (ADS)

    Cánovas, Jose S.; Guillamón, Antonio; Ruíz, María del Carmen

    2011-07-01

    In this paper, we propose an independence test between two time series which is based on permutations. The proposed test can be carried out by means of different common statistics such as Pearson’s chi-square or the likelihood ratio. We also point out why an exact test is necessary. Simulated and real data (return exchange rates between several currencies) reveal the capacity of this test to detect linear and nonlinear dependences.

  17. Testing of Error-Correcting Sparse Permutation Channel Codes

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill, V.; Orlov, Sergei S.

    2008-01-01

    A computer program performs Monte Carlo direct numerical simulations for testing sparse permutation channel codes, which offer strong error-correction capabilities at high code rates and are considered especially suitable for storage of digital data in holographic and volume memories. A word in a code of this type is characterized by, among other things, a sparseness parameter (M) and a fixed number (K) of 1 or "on" bits in a channel block length of N.

  18. Scrambled Sobol Sequences via Permutation

    DTIC Science & Technology

    2009-01-01

    LCG LCG64 LFG MLFG PMLCG Sobol Scrambler PermutationScrambler LinearScrambler <<uses>> PermuationFactory StaticFactory DynamicFactory <<uses>> Figure 3...Phy., 19:252–256, 1979. [2] Emanouil I. Atanassov. A new efficient algorithm for generating the scrambled sobol ’ sequence. In NMA ’02: Revised Papers...Deidre W.Evan, and Micheal Mascagni. On the scrambled sobol sequence. In ICCS2005, pages 775–782, 2005. [7] Richard Durstenfeld. Algorithm 235: Random

  19. Optimization and experimental realization of the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, I.; Gedik, Z.

    2017-12-01

    The quantum permutation algorithm provides computational speed-up over classical algorithms for determining the parity of a given cyclic permutation. For its n -qubit implementations, the number of required quantum gates scales quadratically with n due to the quantum Fourier transforms included. We show here for the n -qubit case that the algorithm can be simplified so that it requires only O (n ) quantum gates, which theoretically reduces the complexity of the implementation. To test our results experimentally, we utilize IBM's 5-qubit quantum processor to realize the algorithm by using the original and simplified recipes for the 2-qubit case. It turns out that the latter results in a significantly higher success probability which allows us to verify the algorithm more precisely than the previous experimental realizations. We also verify the algorithm for the first time for the 3-qubit case with a considerable success probability by taking the advantage of our simplified scheme.

  20. A Weak Quantum Blind Signature with Entanglement Permutation

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoping; Chen, Zhigang; Guo, Ying

    2015-09-01

    Motivated by the permutation encryption algorithm, a weak quantum blind signature (QBS) scheme is proposed. It involves three participants, including the sender Alice, the signatory Bob and the trusted entity Charlie, in four phases, i.e., initializing phase, blinding phase, signing phase and verifying phase. In a small-scale quantum computation network, Alice blinds the message based on a quantum entanglement permutation encryption algorithm that embraces the chaotic position string. Bob signs the blinded message with private parameters shared beforehand while Charlie verifies the signature's validity and recovers the original message. Analysis shows that the proposed scheme achieves the secure blindness for the signer and traceability for the message owner with the aid of the authentic arbitrator who plays a crucial role when a dispute arises. In addition, the signature can neither be forged nor disavowed by the malicious attackers. It has a wide application to E-voting and E-payment system, etc.

  1. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    PubMed

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  2. On Correlated-noise Analyses Applied to Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Loredo, Thomas J.; Lust, Nate B.; Blecic, Jasmina; Stemm, Madison

    2017-01-01

    Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here, we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging’s rms-versus-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in terms of the relative-accuracy and coverage-fraction statistics. Both the time-averaging and wavelet-likelihood methods significantly improve the estimate of the eclipse depth over a white-noise analysis (a Markov-chain Monte Carlo exploration assuming uncorrelated noise). However, the corrections are not perfect when retrieving the eclipse depth from Spitzer data sets, these methods covered the true (injected) depth within the 68% credible region in only ˜45%-65% of the trials. Lastly, we present our open-source model-fitting tool, Multi-Core Markov-Chain Monte Carlo (MC3). This package uses Bayesian statistics to estimate the best-fitting values and the credible regions for the parameters for a (user-provided) model. MC3 is a Python/C code, available at https://github.com/pcubillos/MCcubed.

  3. A bootstrap based space-time surveillance model with an application to crime occurrences

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; O'Kelly, Morton

    2008-06-01

    This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.

  4. Genetic polymorphisms and the risk of stroke after cardiac surgery.

    PubMed

    Grocott, Hilary P; White, William D; Morris, Richard W; Podgoreanu, Mihai V; Mathew, Joseph P; Nielsen, Dahlia M; Schwinn, Debra A; Newman, Mark F

    2005-09-01

    Stroke represents a significant cause of morbidity and mortality after cardiac surgery. Although the risk of stroke varies according to both patient and procedural factors, the impact of genetic variants on stroke risk is not well understood. Therefore, we tested the hypothesis that specific genetic polymorphisms are associated with an increased risk of stroke after cardiac surgery. Patients undergoing cardiac surgery utilizing cardiopulmonary bypass surgery were studied. DNA was isolated from preoperative blood and analyzed for 26 different single-nucleotide polymorphisms. Multivariable logistic regression modeling was used to determine the association of clinical and genetic characteristics with stroke. Permutation analysis was used to adjust for multiple comparisons inherent in genetic association studies. A total of 1635 patients experiencing 28 strokes (1.7%) were included in the final genetic model. The combination of the 2 minor alleles of C-reactive protein (CRP; 3'UTR 1846C/T) and interleukin-6 (IL-6; -174G/C) polymorphisms, occurring in 583 (35.7%) patients, was significantly associated with stroke (odds ratio, 3.3; 95% CI, 1.4 to 8.1; P=0.0023). In a multivariable logistic model adjusting for age, the CRP and IL-6 single-nucleotide polymorphism combination remained significantly associated with stroke (P=0.0020). We demonstrate that common genetic variants of CRP (3'UTR 1846C/T) and IL-6 (-174G/C) are significantly associated with the risk of stroke after cardiac surgery, suggesting a pivotal role of inflammation in post-cardiac surgery stroke.

  5. Effects of an artificial oyster shell reef on macrobenthic communities in Rongcheng Bay, East China

    NASA Astrophysics Data System (ADS)

    Xu, Qinzeng; Zhang, Libin; Zhang, Tao; Zhou, Yi; Xia, Sudong; Liu, Hui; Yang, Hongsheng

    2014-01-01

    An artificial oyster shell reef was deployed in Rongcheng Bay, East China. However, the effects of this reef on the surrounding macrobenthic communities were unknown. We compared sedimentary factors, macrobenthic biomass, abundance, and community composition and ecological indicators between the reef and non-reef areas over a one year period. The mean values for chlorophyll a (Chl a), total organic matter (TOM), total organic carbon (TOC), and total nitrogen (TN) content in surface sediments in the reef area were slightly higher than those in the non-reef area. The Chl a levels differed significantly between the two areas, but the TOM, TOC, and TN were not significantly different. The abundance of crustaceans was significantly different between the two areas, but the abundance and biomass of polychaetes, echinoderms, mollusk did not differ significantly. The permutational multivariate analysis of variance (PERMANOVA) revealed that the macrobenthic community differed significantly through time and analysis of similarity multivariate analyses (ANOSIM) revealed that the macrobenthic community differed significantly in some months. The ecological indicators revealed that the environmental quality of the reef area was slightly better than that of the non-reef area. Overall, our results suggest that the artificial oyster shell reef may change the macrobenthic community and the quality of the environment. Despite the lack of an effect in the short term, long-term monitoring is still needed to evaluate the effects of artificial oyster shell reefs on macrobenthic communities.

  6. Thresholding functional connectomes by means of mixture modeling.

    PubMed

    Bielczyk, Natalia Z; Walocha, Fabian; Ebel, Patrick W; Haak, Koen V; Llera, Alberto; Buitelaar, Jan K; Glennon, Jeffrey C; Beckmann, Christian F

    2018-05-01

    Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Inferring the Presence of Reverse Proxies Through Timing Analysis

    DTIC Science & Technology

    2015-06-01

    16 Figure 3.2 The three different instances of timing measurement configurations 17 Figure 3.3 Permutation of a web request iteration...Their data showed that they could detect at least 6 bits of entropy between unlike devices and that it was enough to determine that they are in fact...depending on the permutation being executed so that every iteration was conducted under the same distance 15 City   Lat   Long   City   Lat   Long

  8. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    PubMed

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  9. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  10. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per, E-mail: jensen@uni-wuppertal.de

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thusmore » far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.« less

  11. PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances.

    PubMed

    Tang, Zheng-Zheng; Chen, Guanhua; Alekseyenko, Alexander V

    2016-09-01

    Recent advances in sequencing technology have made it possible to obtain high-throughput data on the composition of microbial communities and to study the effects of dysbiosis on the human host. Analysis of pairwise intersample distances quantifies the association between the microbiome diversity and covariates of interest (e.g. environmental factors, clinical outcomes, treatment groups). In the design of these analyses, multiple choices for distance metrics are available. Most distance-based methods, however, use a single distance and are underpowered if the distance is poorly chosen. In addition, distance-based tests cannot flexibly handle confounding variables, which can result in excessive false-positive findings. We derive presence-weighted UniFrac to complement the existing UniFrac distances for more powerful detection of the variation in species richness. We develop PERMANOVA-S, a new distance-based method that tests the association of microbiome composition with any covariates of interest. PERMANOVA-S improves the commonly-used Permutation Multivariate Analysis of Variance (PERMANOVA) test by allowing flexible confounder adjustments and ensembling multiple distances. We conducted extensive simulation studies to evaluate the performance of different distances under various patterns of association. Our simulation studies demonstrate that the power of the test relies on how well the selected distance captures the nature of the association. The PERMANOVA-S unified test combines multiple distances and achieves good power regardless of the patterns of the underlying association. We demonstrate the usefulness of our approach by reanalyzing several real microbiome datasets. miProfile software is freely available at https://medschool.vanderbilt.edu/tang-lab/software/miProfile z.tang@vanderbilt.edu or g.chen@vanderbilt.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  12. PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances

    PubMed Central

    Tang, Zheng-Zheng; Chen, Guanhua; Alekseyenko, Alexander V.

    2016-01-01

    Motivation: Recent advances in sequencing technology have made it possible to obtain high-throughput data on the composition of microbial communities and to study the effects of dysbiosis on the human host. Analysis of pairwise intersample distances quantifies the association between the microbiome diversity and covariates of interest (e.g. environmental factors, clinical outcomes, treatment groups). In the design of these analyses, multiple choices for distance metrics are available. Most distance-based methods, however, use a single distance and are underpowered if the distance is poorly chosen. In addition, distance-based tests cannot flexibly handle confounding variables, which can result in excessive false-positive findings. Results: We derive presence-weighted UniFrac to complement the existing UniFrac distances for more powerful detection of the variation in species richness. We develop PERMANOVA-S, a new distance-based method that tests the association of microbiome composition with any covariates of interest. PERMANOVA-S improves the commonly-used Permutation Multivariate Analysis of Variance (PERMANOVA) test by allowing flexible confounder adjustments and ensembling multiple distances. We conducted extensive simulation studies to evaluate the performance of different distances under various patterns of association. Our simulation studies demonstrate that the power of the test relies on how well the selected distance captures the nature of the association. The PERMANOVA-S unified test combines multiple distances and achieves good power regardless of the patterns of the underlying association. We demonstrate the usefulness of our approach by reanalyzing several real microbiome datasets. Availability and Implementation: miProfile software is freely available at https://medschool.vanderbilt.edu/tang-lab/software/miProfile. Contact: z.tang@vanderbilt.edu or g.chen@vanderbilt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27197815

  13. Bootstrapping on Undirected Binary Networks Via Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Fushing, Hsieh; Chen, Chen; Liu, Shan-Yu; Koehl, Patrice

    2014-09-01

    We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a fine description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks.

  14. Fast and Accurate Approximation to Significance Tests in Genome-Wide Association Studies

    PubMed Central

    Zhang, Yu; Liu, Jun S.

    2011-01-01

    Genome-wide association studies commonly involve simultaneous tests of millions of single nucleotide polymorphisms (SNP) for disease association. The SNPs in nearby genomic regions, however, are often highly correlated due to linkage disequilibrium (LD, a genetic term for correlation). Simple Bonferonni correction for multiple comparisons is therefore too conservative. Permutation tests, which are often employed in practice, are both computationally expensive for genome-wide studies and limited in their scopes. We present an accurate and computationally efficient method, based on Poisson de-clumping heuristics, for approximating genome-wide significance of SNP associations. Compared with permutation tests and other multiple comparison adjustment approaches, our method computes the most accurate and robust p-value adjustments for millions of correlated comparisons within seconds. We demonstrate analytically that the accuracy and the efficiency of our method are nearly independent of the sample size, the number of SNPs, and the scale of p-values to be adjusted. In addition, our method can be easily adopted to estimate false discovery rate. When applied to genome-wide SNP datasets, we observed highly variable p-value adjustment results evaluated from different genomic regions. The variation in adjustments along the genome, however, are well conserved between the European and the African populations. The p-value adjustments are significantly correlated with LD among SNPs, recombination rates, and SNP densities. Given the large variability of sequence features in the genome, we further discuss a novel approach of using SNP-specific (local) thresholds to detect genome-wide significant associations. This article has supplementary material online. PMID:22140288

  15. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic.

    PubMed

    Xie, Kun; Fox, Grace E; Liu, Jun; Lyu, Cheng; Lee, Jason C; Kuang, Hui; Jacobs, Stephanie; Li, Meng; Liu, Tianming; Song, Sen; Tsien, Joe Z

    2016-01-01

    There is considerable scientific interest in understanding how cell assemblies-the long-presumed computational motif-are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic ( N = 2 i -1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors-the synaptic switch for learning and memory-were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques-which preferentially encode specific and low-combinatorial features and project inter-cortically-is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6-which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems-is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain's basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex.

  16. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic

    PubMed Central

    Xie, Kun; Fox, Grace E.; Liu, Jun; Lyu, Cheng; Lee, Jason C.; Kuang, Hui; Jacobs, Stephanie; Li, Meng; Liu, Tianming; Song, Sen; Tsien, Joe Z.

    2016-01-01

    There is considerable scientific interest in understanding how cell assemblies—the long-presumed computational motif—are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i–1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors—the synaptic switch for learning and memory—were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques—which preferentially encode specific and low-combinatorial features and project inter-cortically—is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6—which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems—is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain’s basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex. PMID:27895562

  17. Crossbar Switches For Optical Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  18. Security of the Five-Round KASUMI Type Permutation

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsu; Yagi, Tohru; Kurosawa, Kaoru

    KASUMI is a blockcipher that forms the heart of the 3GPP confidentiality and integrity algorithms. In this paper, we study the security of the five-round KASUMI type permutations, and derive a highly non-trivial security bound against adversaries with adaptive chosen plaintext and chosen ciphertext attacks. To derive our security bound, we heavily use the tools from graph theory. However the result does not show its super-pseudorandomness, this gives us a strong evidence that the design of KASUMI is sound.

  19. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    PubMed

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-06-30

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. How to Evaluate Phase Differences between Trial Groups in Ongoing Electrophysiological Signals

    PubMed Central

    VanRullen, Rufin

    2016-01-01

    A growing number of studies endeavor to reveal periodicities in sensory and cognitive functions, by comparing the distribution of ongoing (pre-stimulus) oscillatory phases between two (or more) trial groups reflecting distinct experimental outcomes. A systematic relation between the phase of spontaneous electrophysiological signals, before a stimulus is even presented, and the eventual result of sensory or cognitive processing for that stimulus, would be indicative of an intrinsic periodicity in the underlying neural process. Prior studies of phase-dependent perception have used a variety of analytical methods to measure and evaluate phase differences, and there is currently no established standard practice in this field. The present report intends to remediate this need, by systematically comparing the statistical power of various measures of “phase opposition” between two trial groups, in a number of real and simulated experimental situations. Seven measures were evaluated: one parametric test (circular Watson-Williams test), and three distinct measures of phase opposition (phase bifurcation index, phase opposition sum, and phase opposition product) combined with two procedures for non-parametric statistical testing (permutation, or a combination of z-score and permutation). While these are obviously not the only existing or conceivable measures, they have all been used in recent studies. All tested methods performed adequately on a previously published dataset (Busch et al., 2009). On a variety of artificially constructed datasets, no single measure was found to surpass all others, but instead the suitability of each measure was contingent on several experimental factors: the time, frequency, and depth of oscillatory phase modulation; the absolute and relative amplitudes of post-stimulus event-related potentials for the two trial groups; the absolute and relative trial numbers for the two groups; and the number of permutations used for non-parametric testing. The concurrent use of two phase opposition measures, the parametric Watson-Williams test and a non-parametric test based on summing inter-trial coherence values for the two trial groups, appears to provide the most satisfactory outcome in all situations tested. Matlab code is provided to automatically compute these phase opposition measures. PMID:27683543

  1. A note on the estimation of the Pareto efficient set for multiobjective matrix permutation problems.

    PubMed

    Brusco, Michael J; Steinley, Douglas

    2012-02-01

    There are a number of important problems in quantitative psychology that require the identification of a permutation of the n rows and columns of an n × n proximity matrix. These problems encompass applications such as unidimensional scaling, paired-comparison ranking, and anti-Robinson forms. The importance of simultaneously incorporating multiple objective criteria in matrix permutation applications is well recognized in the literature; however, to date, there has been a reliance on weighted-sum approaches that transform the multiobjective problem into a single-objective optimization problem. Although exact solutions to these single-objective problems produce supported Pareto efficient solutions to the multiobjective problem, many interesting unsupported Pareto efficient solutions may be missed. We illustrate the limitation of the weighted-sum approach with an example from the psychological literature and devise an effective heuristic algorithm for estimating both the supported and unsupported solutions of the Pareto efficient set. © 2011 The British Psychological Society.

  2. Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.

    PubMed

    Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang

    2015-01-01

    Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

  3. Exploiting Lipid Permutation Symmetry to Compute Membrane Remodeling Free Energies.

    PubMed

    Bubnis, Greg; Risselada, Herre Jelger; Grubmüller, Helmut

    2016-10-28

    A complete physical description of membrane remodeling processes, such as fusion or fission, requires knowledge of the underlying free energy landscapes, particularly in barrier regions involving collective shape changes, topological transitions, and high curvature, where Canham-Helfrich (CH) continuum descriptions may fail. To calculate these free energies using atomistic simulations, one must address not only the sampling problem due to high free energy barriers, but also an orthogonal sampling problem of combinatorial complexity stemming from the permutation symmetry of identical lipids. Here, we solve the combinatorial problem with a permutation reduction scheme to map a structural ensemble into a compact, nondegenerate subregion of configuration space, thereby permitting straightforward free energy calculations via umbrella sampling. We applied this approach, using a coarse-grained lipid model, to test the CH description of bending and found sharp increases in the bending modulus for curvature radii below 10 nm. These deviations suggest that an anharmonic bending term may be required for CH models to give quantitative energetics of highly curved states.

  4. A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo

    2015-03-01

    In recent years, a variety of chaos-based image cryptosystems have been investigated to meet the increasing demand for real-time secure image transmission. Most of them are based on permutation-diffusion architecture, in which permutation and diffusion are two independent procedures with fixed control parameters. This property results in two flaws. (1) At least two chaotic state variables are required for encrypting one plain pixel, in permutation and diffusion stages respectively. Chaotic state variables produced with high computation complexity are not sufficiently used. (2) The key stream solely depends on the secret key, and hence the cryptosystem is vulnerable against known/chosen-plaintext attacks. In this paper, a fast chaos-based image encryption scheme with a dynamic state variables selection mechanism is proposed to enhance the security and promote the efficiency of chaos-based image cryptosystems. Experimental simulations and extensive cryptanalysis have been carried out and the results prove the superior security and high efficiency of the scheme.

  5. Permutation coding technique for image recognition systems.

    PubMed

    Kussul, Ernst M; Baidyk, Tatiana N; Wunsch, Donald C; Makeyev, Oleksandr; Martín, Anabel

    2006-11-01

    A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1%.

  6. Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators

    DTIC Science & Technology

    2012-09-27

    particular, we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...of states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states...process tomography: first prepare the Jamiołkowski state ρE (by adjoining an ancilla, preparing the maximally entangled state |ψ0, and applying E); then

  7. Direction of Coupling from Phases of Interacting Oscillators: A Permutation Information Approach

    NASA Astrophysics Data System (ADS)

    Bahraminasab, A.; Ghasemi, F.; Stefanovska, A.; McClintock, P. V. E.; Kantz, H.

    2008-02-01

    We introduce a directionality index for a time series based on a comparison of neighboring values. It can distinguish unidirectional from bidirectional coupling, as well as reveal and quantify asymmetry in bidirectional coupling. It is tested on a numerical model of coupled van der Pol oscillators, and applied to cardiorespiratory data from healthy subjects. There is no need for preprocessing and fine-tuning the parameters, which makes the method very simple, computationally fast and robust.

  8. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    PubMed

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biometric identification of capillariid eggs from archaeological sites in Patagonia.

    PubMed

    Taglioretti, V; Fugassa, M H; Beltrame, M O; Sardella, N H

    2014-06-01

    Numerous eggs of capillariid nematodes have been found in coprolites from a wide range of hosts and in raptor pellets in archaeological samples from Patagonia. The structure and sculpture of the eggshell of these nematodes and their biometry are commonly used for identification. The aim of this study was to determine whether eggs of the genus Calodium with similar morphology, found in different archaeological samples from Patagonia, belong to the same species. For this purpose, capillariid eggs (N= 843) with thick walls and radial striations were studied by permutational multivariate analysis of variance (PERMANOVA). Eggs exhibiting similar shape and structure also showed similar biometry, regardless of the zoological origin of coprolites (P= 0.84), host diet (P= 0.19), character of the archaeological sites (P= 0.67) and chronology (P= 0.66). Thus, they were attributed to the same species. We suggest that an unidentified zoonotic species of the genus Calodium occurred in the digestive tract of a wide range of hosts in Patagonia during the Holocene and that both human and animal populations were exposed to this parasite during the Holocene in the study area.

  10. Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies

    PubMed Central

    2014-01-01

    Background Increased ratio of n-3/n-6 polyunsaturated fatty acids (PUFAs) in diet or serum may have a protective effect on the risk of breast cancer (BC); however, the conclusions from prospective studies are still controversial. The purpose of this study is to ascertain the relationship between intake ratio of n-3/n-6 PUFAs and the risk of BC, and estimate the potential summarized dose–response trend. Methods Relevant English-language studies were identified through Cochrane Library, PubMed and EMBASE database till April 2013. Eligible prospective studies reporting the multivariate adjusted risk ratios (RRs) for association of n-3/n-6 PUFAs ratio in diet or serum with BC risk. Data extraction was conducted independently by 2 investigators; disagreements were reconciled by consensus. Study quality was assessed using the Newcastle-Ottawa scale. Study-specific RRs were combined via a random-effects model. Results Six prospective nested case–control and 5 cohort studies, involving 8,331 BC events from 274,135 adult females across different countries, were included in present study. Subjects with higher dietary intake ratio of n-3/n-6 PUFAs have a significantly lower risk of BC among study populations (pooled RR = 0.90; 95% CI: 0.82, 0.99), and per 1/10 increment of ratio in diet was associated with a 6% reduction of BC risk (pooled RR = 0.94; 95% CI: 0.90, 0.99; P for linear trend = 0.012). USA subjects with higher ratio of n-3/n-6 in serum phospholipids (PL) have a significantly lower risk of BC (pooled RR = 0.62; 95% CI: 0.39, 0.97; I2 = 0.00%; P for metaregression = 0.103; P for a permutation test = 0.100), and per 1/10 increment of ratio in serum PL was associated with 27% reduction of BC risk (pooled RR = 0.73; 95% CI: 0.59, 0.91; P for linear trend = 0.004; P for metaregression = 0.082; P for a permutation test = 0.116). Conclusions Higher intake ratio of n-3/n-6 PUFAs is associated with lower risk of BC among females, which implies an important evidence for BC prevention and treatment is by increasing dietary intake ratio of n-3/n-6 PUFA. No firm conclusions from USA populations could be obtained, due to the limited numbers of USA studies. PMID:24548731

  11. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies*

    PubMed Central

    Kesavardhana, Sannula; Das, Raksha; Citron, Michael; Datta, Rohini; Ecto, Linda; Srilatha, Nonavinakere Seetharam; DiStefano, Daniel; Swoyer, Ryan; Joyce, Joseph G.; Dutta, Somnath; LaBranche, Celia C.; Montefiori, David C.; Flynn, Jessica A.; Varadarajan, Raghavan

    2017-01-01

    A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses. PMID:27879316

  12. Decoding the Traumatic Memory among Women with PTSD: Implications for Neurocircuitry Models of PTSD and Real-Time fMRI Neurofeedback

    PubMed Central

    Cisler, Josh M.; Bush, Keith; James, G. Andrew; Smitherman, Sonet; Kilts, Clinton D.

    2015-01-01

    Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic memory. While numerous studies have investigated the neural processing mechanisms engaged during trauma memory recall in PTSD, these analyses have only focused on group-level contrasts that reveal little about the predictive validity of the identified brain regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying the neural mechanisms engaged during trauma memory recall would entail testing whether a multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an individual is engaging in trauma or non-trauma memory recall. Here, we use a MVPA approach to test 1) whether trauma memory vs neutral memory recall can be predicted reliably using a multivariate set of brain regions among women with PTSD related to assaultive violence exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of the feature weight spatial maps, and 3) the correspondence between brain regions that discriminate trauma memory recall and the brain regions predicted by neurocircuitry models of PTSD. Cross-validation classification accuracy was significantly above chance for all methodological permutations tested; mean accuracy across participants was 76% for the methodological parameters selected as optimal for both efficiency and accuracy. Classification accuracy was significantly better for a voxel-wise approach relative to voxels within restricted regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable involvement of the left hippocampus in discriminating memory recall across participants and that the contribution of the left amygdala to the decision function was dependent upon PTSD symptom severity. These results have methodological implications for real-time fMRI neurofeedback of the trauma memory in PTSD and conceptual implications for neurocircuitry models of PTSD that attempt to explain core neural processing mechanisms mediating PTSD. PMID:26241958

  13. Decoding the Traumatic Memory among Women with PTSD: Implications for Neurocircuitry Models of PTSD and Real-Time fMRI Neurofeedback.

    PubMed

    Cisler, Josh M; Bush, Keith; James, G Andrew; Smitherman, Sonet; Kilts, Clinton D

    2015-01-01

    Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic memory. While numerous studies have investigated the neural processing mechanisms engaged during trauma memory recall in PTSD, these analyses have only focused on group-level contrasts that reveal little about the predictive validity of the identified brain regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying the neural mechanisms engaged during trauma memory recall would entail testing whether a multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an individual is engaging in trauma or non-trauma memory recall. Here, we use a MVPA approach to test 1) whether trauma memory vs neutral memory recall can be predicted reliably using a multivariate set of brain regions among women with PTSD related to assaultive violence exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of the feature weight spatial maps, and 3) the correspondence between brain regions that discriminate trauma memory recall and the brain regions predicted by neurocircuitry models of PTSD. Cross-validation classification accuracy was significantly above chance for all methodological permutations tested; mean accuracy across participants was 76% for the methodological parameters selected as optimal for both efficiency and accuracy. Classification accuracy was significantly better for a voxel-wise approach relative to voxels within restricted regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable involvement of the left hippocampus in discriminating memory recall across participants and that the contribution of the left amygdala to the decision function was dependent upon PTSD symptom severity. These results have methodological implications for real-time fMRI neurofeedback of the trauma memory in PTSD and conceptual implications for neurocircuitry models of PTSD that attempt to explain core neural processing mechanisms mediating PTSD.

  14. Two-level optimization of composite wing structures based on panel genetic optimization

    NASA Astrophysics Data System (ADS)

    Liu, Boyang

    The design of complex composite structures used in aerospace or automotive vehicles presents a major challenge in terms of computational cost. Discrete choices for ply thicknesses and ply angles leads to a combinatorial optimization problem that is too expensive to solve with presently available computational resources. We developed the following methodology for handling this problem for wing structural design: we used a two-level optimization approach with response-surface approximations to optimize panel failure loads for the upper-level wing optimization. We tailored efficient permutation genetic algorithms to the panel stacking sequence design on the lower level. We also developed approach for improving continuity of ply stacking sequences among adjacent panels. The decomposition approach led to a lower-level optimization of stacking sequence with a given number of plies in each orientation. An efficient permutation genetic algorithm (GA) was developed for handling this problem. We demonstrated through examples that the permutation GAs are more efficient for stacking sequence optimization than a standard GA. Repair strategies for standard GA and the permutation GAs for dealing with constraints were also developed. The repair strategies can significantly reduce computation costs for both standard GA and permutation GA. A two-level optimization procedure for composite wing design subject to strength and buckling constraints is presented. At wing-level design, continuous optimization of ply thicknesses with orientations of 0°, 90°, and +/-45° is performed to minimize weight. At the panel level, the number of plies of each orientation (rounded to integers) and inplane loads are specified, and a permutation genetic algorithm is used to optimize the stacking sequence. The process begins with many panel genetic optimizations for a range of loads and numbers of plies of each orientation. Next, a cubic polynomial response surface is fitted to the optimum buckling load. The resulting response surface is used for wing-level optimization. In general, complex composite structures consist of several laminates. A common problem in the design of such structures is that some plies in the adjacent laminates terminate in the boundary between the laminates. These discontinuities may cause stress concentrations and may increase manufacturing difficulty and cost. We developed measures of continuity of two adjacent laminates. We studied tradeoffs between weight and continuity through a simple composite wing design. Finally, we compared the two-level optimization to a single-level optimization based on flexural lamination parameters. The single-level optimization is efficient and feasible for a wing consisting of unstiffened panels.

  15. Why Multivariate Methods Are Usually Vital in Research: Some Basic Concepts.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    The present paper suggests that multivariate methods ought to be used more frequently in behavioral research and explores the potential consequences of failing to use multivariate methods when these methods are appropriate. The paper explores in detail two reasons why multivariate methods are usually vital. The first is that they limit the…

  16. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  17. Finding fixed satellite service orbital allotments with a k-permutation algorithm

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1990-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.

  18. Magic informationally complete POVMs with permutations

    NASA Astrophysics Data System (ADS)

    Planat, Michel; Gedik, Zafer

    2017-09-01

    Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.

  19. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  20. Efficient identification of context dependent subgroups of risk from genome wide association studies

    PubMed Central

    Dyson, Greg; Sing, Charles F.

    2014-01-01

    We have developed a modified Patient Rule-Induction Method (PRIM) as an alternative strategy for analyzing representative samples of non-experimental human data to estimate and test the role of genomic variations as predictors of disease risk in etiologically heterogeneous sub-samples. A computational limit of the proposed strategy is encountered when the number of genomic variations (predictor variables) under study is large (> 500) because permutations are used to generate a null distribution to test the significance of a term (defined by values of particular variables) that characterizes a sub-sample of individuals through the peeling and pasting processes. As an alternative, in this paper we introduce a theoretical strategy that facilitates the quick calculation of Type I and Type II errors in the evaluation of terms in the peeling and pasting processes carried out in the execution of a PRIM analysis that are underestimated and non-existent, respectively, when a permutation-based hypothesis test is employed. The resultant savings in computational time makes possible the consideration of larger numbers of genomic variations (an example genome wide association study is given) in the selection of statistically significant terms in the formulation of PRIM prediction models. PMID:24570412

  1. A Permutation-Randomization Approach to Test the Spatial Distribution of Plant Diseases.

    PubMed

    Lione, G; Gonthier, P

    2016-01-01

    The analysis of the spatial distribution of plant diseases requires the availability of trustworthy geostatistical methods. The mean distance tests (MDT) are here proposed as a series of permutation and randomization tests to assess the spatial distribution of plant diseases when the variable of phytopathological interest is categorical. A user-friendly software to perform the tests is provided. Estimates of power and type I error, obtained with Monte Carlo simulations, showed the reliability of the MDT (power > 0.80; type I error < 0.05). A biological validation on the spatial distribution of spores of two fungal pathogens causing root rot on conifers was successfully performed by verifying the consistency between the MDT responses and previously published data. An application of the MDT was carried out to analyze the relation between the plantation density and the distribution of the infection of Gnomoniopsis castanea, an emerging fungal pathogen causing nut rot on sweet chestnut. Trees carrying nuts infected by the pathogen were randomly distributed in areas with different plantation densities, suggesting that the distribution of G. castanea was not related to the plantation density. The MDT could be used to analyze the spatial distribution of plant diseases both in agricultural and natural ecosystems.

  2. EARLY CHILDHOOD INVESTMENTS SUBSTANTIALLY BOOST ADULT HEALTH

    PubMed Central

    Campbell, Frances; Conti, Gabriella; Heckman, James J.; Moon, Seong Hyeok; Pinto, Rodrigo; Pungello, Elizabeth; Pan, Yi

    2014-01-01

    High-quality early childhood programs have been shown to have substantial benefits in reducing crime, raising earnings, and promoting education. Much less is known about their benefits for adult health. We report the long-term health impacts of one of the oldest and most heavily cited early childhood interventions with long-term follow-up evaluated by the method of randomization: the Carolina Abecedarian Project (ABC). Using recently collected biomedical data, we find that disadvantaged children randomly assigned to treatment have significantly lower prevalence of risk factors for cardiovascular and metabolic diseases in their mid-30s. The evidence is especially strong for males. The mean systolic blood pressure among the control males is 143, while only 126 among the treated. One in four males in the control group is affected by metabolic syndrome, while none in the treatment group is. To reach these conclusions, we address several statistical challenges. We use exact permutation tests to account for small sample sizes and conduct a parallel bootstrap confidence interval analysis to confirm the permutation analysis. We adjust inference to account for the multiple hypotheses tested and for nonrandom attrition. Our evidence shows the potential of early life interventions for preventing disease and promoting health. PMID:24675955

  3. A ripple-spreading genetic algorithm for the aircraft sequencing problem.

    PubMed

    Hu, Xiao-Bing; Di Paolo, Ezequiel A

    2011-01-01

    When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.

  4. Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2012-09-27

    we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states [62...by adjoining an ancilla, preparing the maximally entangled state |ψ0〉, and applying E); then do compressed quantum state tomography on ρE ; see

  5. International Symposium on Information Theory Held in San Diego, California on 14-19 January 1990: Abstracts of Papers

    DTIC Science & Technology

    1990-01-01

    intrinsic side information generated by an appropriate coding scheme . In this paper, we give sufficient conditions on channel classes for which a... zero redundancy case can be generalized to include the use of block channel coding of the permuted indices. An effective design method is introduced for...M. Naidjate, and C. R. P. Hartmann Boston University, College of Engineering, 44 Cummington Street, Boston, MA 02215 A generalization of the zero

  6. Nonparametric relevance-shifted multiple testing procedures for the analysis of high-dimensional multivariate data with small sample sizes.

    PubMed

    Frömke, Cornelia; Hothorn, Ludwig A; Kropf, Siegfried

    2008-01-27

    In many research areas it is necessary to find differences between treatment groups with several variables. For example, studies of microarray data seek to find a significant difference in location parameters from zero or one for ratios thereof for each variable. However, in some studies a significant deviation of the difference in locations from zero (or 1 in terms of the ratio) is biologically meaningless. A relevant difference or ratio is sought in such cases. This article addresses the use of relevance-shifted tests on ratios for a multivariate parallel two-sample group design. Two empirical procedures are proposed which embed the relevance-shifted test on ratios. As both procedures test a hypothesis for each variable, the resulting multiple testing problem has to be considered. Hence, the procedures include a multiplicity correction. Both procedures are extensions of available procedures for point null hypotheses achieving exact control of the familywise error rate. Whereas the shift of the null hypothesis alone would give straight-forward solutions, the problems that are the reason for the empirical considerations discussed here arise by the fact that the shift is considered in both directions and the whole parameter space in between these two limits has to be accepted as null hypothesis. The first algorithm to be discussed uses a permutation algorithm, and is appropriate for designs with a moderately large number of observations. However, many experiments have limited sample sizes. Then the second procedure might be more appropriate, where multiplicity is corrected according to a concept of data-driven order of hypotheses.

  7. Practice and Learning: Spatiotemporal Differences in Thalamo-Cortical-Cerebellar Networks Engagement across Learning Phases in Schizophrenia.

    PubMed

    Korostil, Michele; Remington, Gary; McIntosh, Anthony Randal

    2016-01-01

    Understanding how practice mediates the transition of brain-behavior networks between early and later stages of learning is constrained by the common approach to analysis of fMRI data. Prior imaging studies have mostly relied on a single scan, and parametric, task-related analyses. Our experiment incorporates a multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to further knowledge of the distributed networks supporting practice-related learning in schizophrenia (SZ). Participants with SZ were compared with healthy control (HC) participants as they learned a novel lexicon during two fMRI scans over a several day period. All participants were trained to equal task proficiency prior to scanning. Behavioral-Partial Least Squares, a multivariate analytic approach, was used to analyze the imaging data. Permutation testing was used to determine statistical significance and bootstrap resampling to determine the reliability of the findings. With practice, HC participants transitioned to a brain-accuracy network incorporating dorsostriatal regions in late-learning stages. The SZ participants did not transition to this pattern despite comparable behavioral results. Instead, successful learners with SZ were differentiated primarily on the basis of greater engagement of perceptual and perceptual-integration brain regions. There is a different spatiotemporal unfolding of brain-learning relationships in SZ. In SZ, given the same amount of practice, the movement from networks suggestive of effortful learning toward subcortically driven procedural one differs from HC participants. Learning performance in SZ is driven by varying levels of engagement in perceptual regions, which suggests perception itself is impaired and may impact downstream, "higher level" cognition.

  8. TNSPackage: A Fortran2003 library designed for tensor network state methods

    NASA Astrophysics Data System (ADS)

    Dong, Shao-Jun; Liu, Wen-Yuan; Wang, Chao; Han, Yongjian; Guo, G.-C.; He, Lixin

    2018-07-01

    Recently, the tensor network states (TNS) methods have proven to be very powerful tools to investigate the strongly correlated many-particle physics in one and two dimensions. The implementation of TNS methods depends heavily on the operations of tensors, including contraction, permutation, reshaping tensors, SVD and so on. Unfortunately, the most popular computer languages for scientific computation, such as Fortran and C/C++ do not have a standard library for such operations, and therefore make the coding of TNS very tedious. We develop a Fortran2003 package that includes all kinds of basic tensor operations designed for TNS. It is user-friendly and flexible for different forms of TNS, and therefore greatly simplifies the coding work for the TNS methods.

  9. CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave.

    PubMed

    Oosterhof, Nikolaas N; Connolly, Andrew C; Haxby, James V

    2016-01-01

    Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and across: space, time, frequency bands, neuroimaging modalities, individuals, and species. It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated readily in existing pipelines and used with existing preprocessed datasets. CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and frequency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation techniques. CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP measures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert programmers can easily extend its functionality. CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: http://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA.

  10. CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave

    PubMed Central

    Oosterhof, Nikolaas N.; Connolly, Andrew C.; Haxby, James V.

    2016-01-01

    Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and across: space, time, frequency bands, neuroimaging modalities, individuals, and species. It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated readily in existing pipelines and used with existing preprocessed datasets. CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and frequency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation techniques. CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP measures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert programmers can easily extend its functionality. CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: http://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA PMID:27499741

  11. Permutation-invariant distance between atomic configurations

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-01

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  12. Sample classification for improved performance of PLS models applied to the quality control of deep-frying oils of different botanic origins analyzed using ATR-FTIR spectroscopy.

    PubMed

    Kuligowski, Julia; Carrión, David; Quintás, Guillermo; Garrigues, Salvador; de la Guardia, Miguel

    2011-01-01

    The selection of an appropriate calibration set is a critical step in multivariate method development. In this work, the effect of using different calibration sets, based on a previous classification of unknown samples, on the partial least squares (PLS) regression model performance has been discussed. As an example, attenuated total reflection (ATR) mid-infrared spectra of deep-fried vegetable oil samples from three botanical origins (olive, sunflower, and corn oil), with increasing polymerized triacylglyceride (PTG) content induced by a deep-frying process were employed. The use of a one-class-classifier partial least squares-discriminant analysis (PLS-DA) and a rooted binary directed acyclic graph tree provided accurate oil classification. Oil samples fried without foodstuff could be classified correctly, independent of their PTG content. However, class separation of oil samples fried with foodstuff, was less evident. The combined use of double-cross model validation with permutation testing was used to validate the obtained PLS-DA classification models, confirming the results. To discuss the usefulness of the selection of an appropriate PLS calibration set, the PTG content was determined by calculating a PLS model based on the previously selected classes. In comparison to a PLS model calculated using a pooled calibration set containing samples from all classes, the root mean square error of prediction could be improved significantly using PLS models based on the selected calibration sets using PLS-DA, ranging between 1.06 and 2.91% (w/w).

  13. Systems Maintenance Automated Repair Tasks (SMART)

    NASA Technical Reports Server (NTRS)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.« less

  15. A k-permutation algorithm for Fixed Satellite Service orbital allotments

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1988-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.

  16. Convergence to equilibrium under a random Hamiltonian.

    PubMed

    Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  17. Convergence to equilibrium under a random Hamiltonian

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  18. A new Nawaz-Enscore-Ham-based heuristic for permutation flow-shop problems with bicriteria of makespan and machine idle time

    NASA Astrophysics Data System (ADS)

    Liu, Weibo; Jin, Yan; Price, Mark

    2016-10-01

    A new heuristic based on the Nawaz-Enscore-Ham algorithm is proposed in this article for solving a permutation flow-shop scheduling problem. A new priority rule is proposed by accounting for the average, mean absolute deviation, skewness and kurtosis, in order to fully describe the distribution style of processing times. A new tie-breaking rule is also introduced for achieving effective job insertion with the objective of minimizing both makespan and machine idle time. Statistical tests illustrate better solution quality of the proposed algorithm compared to existing benchmark heuristics.

  19. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  20. Functional linear models to test for differences in prairie wetland hydraulic gradients

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.

  1. Visualization of Global Disease Burden for the Optimization of Patient Management and Treatment.

    PubMed

    Schlee, Winfried; Hall, Deborah A; Edvall, Niklas K; Langguth, Berthold; Canlon, Barbara; Cederroth, Christopher R

    2017-01-01

    The assessment and treatment of complex disorders is challenged by the multiple domains and instruments used to evaluate clinical outcome. With the large number of assessment tools typically used in complex disorders comes the challenge of obtaining an integrative view of disease status to further evaluate treatment outcome both at the individual level and at the group level. Radar plots appear as an attractive visual tool to display multivariate data on a two-dimensional graphical illustration. Here, we describe the use of radar plots for the visualization of disease characteristics applied in the context of tinnitus, a complex and heterogeneous condition, the treatment of which has shown mixed success. Data from two different cohorts, the Swedish Tinnitus Outreach Project (STOP) and the Tinnitus Research Initiative (TRI) database, were used. STOP is a population-based cohort where cross-sectional data from 1,223 non-tinnitus and 933 tinnitus subjects were analyzed. By contrast, the TRI contained data from 571 patients who underwent various treatments and whose Clinical Global Impression (CGI) score was accessible to infer treatment outcome. In the latter, 34,560 permutations were tested to evaluate whether a particular ordering of the instruments could reflect better the treatment outcome measured with the CGI. Radar plots confirmed that tinnitus subtypes such as occasional and chronic tinnitus from the STOP cohort could be strikingly different, and helped appreciate a gender bias in tinnitus severity. Radar plots with greater surface areas were consistent with greater burden, and enabled a rapid appreciation of the global distress associated with tinnitus in patients categorized according to tinnitus severity. Permutations in the arrangement of instruments allowed to identify a configuration with minimal variance and maximized surface difference between CGI groups from the TRI database, thus affording a means of optimally evaluating the outcomes in individual patients. We anticipate such a tool to become a starting point for more sophisticated measures in clinical outcomes, applicable not only in the context of tinnitus but also in other complex diseases where the integration of multiple variables is needed for a comprehensive evaluation of treatment response.

  2. Spatial structure of helminth communities in the golden grey mullet, Liza aurata (Actinopterygii: Mugilidae), from the Western Mediterranean.

    PubMed

    Míguez-Lozano, Raúl; Pardo-Carranza, Trinidad V; Blasco-Costa, Isabel; Balbuena, Juan Antonio

    2012-10-01

    Ecological investigations regarding the parasite fauna of grey mullets are scarce. The present study provides a detailed description of the helminth communities of Liza aurata in the Spanish western Mediterranean and analyzes the role of spatial, temporal, and host variables in shaping the infracommunities. In total, 204 fish were collected in 2 localities, situated ca. 290 km apart, in spring and fall of 2004 and 2005. A non-metric multidimensional scaling (NMDS) was used to visualize an ordination of the infracommunities according to their relative similarities in parasite abundances. The relationship between infracommunity composition and explanatory variables (host size, locality, year, and season of harvest) was examined by permutational analysis of variance (PERMANOVA) applied to species abundances. Permutational tests for homogeneity of multivariate dispersion were used to test the null hypothesis of no differences in dispersion among groups formed by the factors whose effects were significant in PERMANOVA. A total of 33,241 helminth parasites, belonging to 18 species, was collected, i.e., 12 species of adult digeneans (23% of the parasite specimens), 3 digeneans as metacercariae (68%), 1 acanthocephalan (2.1%), and 2 monogeneans (6.5%). An important part of this helminth fauna is specialized to grey mullets, with a sizable portion of the component community restricted to the Mediterranean and northeast Atlantic. The NMDS ordination indicated high heterogeneity among infrapopulations. However, most differences at both the component and infracommunity level were related to geographic locality. In fact, the PERMANOVA showed that, among the explanatory variables considered, sampling locality accounted for the largest share of variation. The geographical differences observed may be related to local environmental characteristics or to the limited spatial dispersal of the species forming the component community. The latter was supported by the significant portion of variation explained by a 3-way interaction term. Thus, the spatial structure of our helminth infracommunities seems to be determined by a combination of differences in local environmental conditions and the transmission ability of each species at small local and time scales.

  3. Visual field progression with frequency-doubling matrix perimetry and standard automated perimetry in patients with glaucoma and in healthy controls.

    PubMed

    Redmond, Tony; O'Leary, Neil; Hutchison, Donna M; Nicolela, Marcelo T; Artes, Paul H; Chauhan, Balwantray C

    2013-12-01

    A new analysis method called permutation of pointwise linear regression measures the significance of deterioration over time at each visual field location, combines the significance values into an overall statistic, and then determines the likelihood of change in the visual field. Because the outcome is a single P value, individualized to that specific visual field and independent of the scale of the original measurement, the method is well suited for comparing techniques with different stimuli and scales. To test the hypothesis that frequency-doubling matrix perimetry (FDT2) is more sensitive than standard automated perimetry (SAP) in identifying visual field progression in glaucoma. Patients with open-angle glaucoma and healthy controls were examined by FDT2 and SAP, both with the 24-2 test pattern, on the same day at 6-month intervals in a longitudinal prospective study conducted in a hospital-based setting. Only participants with at least 5 examinations were included. Data were analyzed with permutation of pointwise linear regression. Permutation of pointwise linear regression is individualized to each participant, in contrast to current analyses in which the statistical significance is inferred from population-based approaches. Analyses were performed with both total deviation and pattern deviation. Sixty-four patients and 36 controls were included in the study. The median age, SAP mean deviation, and follow-up period were 65 years, -2.6 dB, and 5.4 years, respectively, in patients and 62 years, +0.4 dB, and 5.2 years, respectively, in controls. Using total deviation analyses, statistically significant deterioration was identified in 17% of patients with FDT2, in 34% of patients with SAP, and in 14% of patients with both techniques; in controls these percentages were 8% with FDT2, 31% with SAP, and 8% with both. Using pattern deviation analyses, statistically significant deterioration was identified in 16% of patients with FDT2, in 17% of patients with SAP, and in 3% of patients with both techniques; in controls these values were 3% with FDT2 and none with SAP. No evidence was found that FDT2 is more sensitive than SAP in identifying visual field deterioration. In about one-third of healthy controls, age-related deterioration with SAP reached statistical significance.

  4. Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique.

    PubMed

    Bonnot, F; de Franqueville, H; Lourenço, E

    2010-04-01

    Coconut lethal yellowing (LY) is caused by a phytoplasma and is a major threat for coconut production throughout its growing area. Incidence of LY was monitored visually on every coconut tree in six fields in Mozambique for 34 months. Disease progress curves were plotted and average monthly disease incidence was estimated. Spatial patterns of disease incidence were analyzed at six assessment times. Aggregation was tested by the coefficient of spatial autocorrelation of the beta-binomial distribution of diseased trees in quadrats. The binary power law was used as an assessment of overdispersion across the six fields. Spatial autocorrelation between symptomatic trees was measured by the BB join count statistic based on the number of pairs of diseased trees separated by a specific distance and orientation, and tested using permutation methods. Aggregation of symptomatic trees was detected in every field in both cumulative and new cases. Spatiotemporal patterns were analyzed with two methods. The proximity of symptomatic trees at two assessment times was investigated using the spatiotemporal BB join count statistic based on the number of pairs of trees separated by a specific distance and orientation and exhibiting the first symptoms of LY at the two times. The semivariogram of times of appearance of LY was calculated to characterize how the lag between times of appearance of LY was related to the distance between symptomatic trees. Both statistics were tested using permutation methods. A tendency for new cases to appear in the proximity of previously diseased trees and a spatially structured pattern of times of appearance of LY within clusters of diseased trees were detected, suggesting secondary spread of the disease.

  5. Exploration of association rule mining for coding consistency and completeness assessment in inpatient administrative health data.

    PubMed

    Peng, Mingkai; Sundararajan, Vijaya; Williamson, Tyler; Minty, Evan P; Smith, Tony C; Doktorchik, Chelsea T A; Quan, Hude

    2018-03-01

    Data quality assessment is a challenging facet for research using coded administrative health data. Current assessment approaches are time and resource intensive. We explored whether association rule mining (ARM) can be used to develop rules for assessing data quality. We extracted 2013 and 2014 records from the hospital discharge abstract database (DAD) for patients between the ages of 55 and 65 from five acute care hospitals in Alberta, Canada. The ARM was conducted using the 2013 DAD to extract rules with support ≥0.0019 and confidence ≥0.5 using the bootstrap technique, and tested in the 2014 DAD. The rules were compared against the method of coding frequency and assessed for their ability to detect error introduced by two kinds of data manipulation: random permutation and random deletion. The association rules generally had clear clinical meanings. Comparing 2014 data to 2013 data (both original), there were 3 rules with a confidence difference >0.1, while coding frequency difference of codes in the right hand of rules was less than 0.004. After random permutation of 50% of codes in the 2014 data, average rule confidence dropped from 0.72 to 0.27 while coding frequency remained unchanged. Rule confidence decreased with the increase of coding deletion, as expected. Rule confidence was more sensitive to code deletion compared to coding frequency, with slope of change ranging from 1.7 to 184.9 with a median of 9.1. The ARM is a promising technique to assess data quality. It offers a systematic way to derive coding association rules hidden in data, and potentially provides a sensitive and efficient method of assessing data quality compared to standard methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. HyDEn: A Hybrid Steganocryptographic Approach for Data Encryption Using Randomized Error-Correcting DNA Codes

    PubMed Central

    Regoui, Chaouki; Durand, Guillaume; Belliveau, Luc; Léger, Serge

    2013-01-01

    This paper presents a novel hybrid DNA encryption (HyDEn) approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach. PMID:23984392

  7. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  8. Robust inference from multiple test statistics via permutations: a better alternative to the single test statistic approach for randomized trials.

    PubMed

    Ganju, Jitendra; Yu, Xinxin; Ma, Guoguang Julie

    2013-01-01

    Formal inference in randomized clinical trials is based on controlling the type I error rate associated with a single pre-specified statistic. The deficiency of using just one method of analysis is that it depends on assumptions that may not be met. For robust inference, we propose pre-specifying multiple test statistics and relying on the minimum p-value for testing the null hypothesis of no treatment effect. The null hypothesis associated with the various test statistics is that the treatment groups are indistinguishable. The critical value for hypothesis testing comes from permutation distributions. Rejection of the null hypothesis when the smallest p-value is less than the critical value controls the type I error rate at its designated value. Even if one of the candidate test statistics has low power, the adverse effect on the power of the minimum p-value statistic is not much. Its use is illustrated with examples. We conclude that it is better to rely on the minimum p-value rather than a single statistic particularly when that single statistic is the logrank test, because of the cost and complexity of many survival trials. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Assessing the potential for raw meat to influence human colonization with Staphylococcus aureus.

    PubMed

    Carrel, Margaret; Zhao, Chang; Thapaliya, Dipendra; Bitterman, Patrick; Kates, Ashley E; Hanson, Blake M; Smith, Tara C

    2017-09-07

    The role of household meat handling and consumption in the transfer of Staphylococcus aureus (S. aureus) from livestock to consumers is not well understood. Examining the similarity of S. aureus colonizing humans and S. aureus in meat from the stores in which those individuals shop can provide insight into the role of meat in human S. aureus colonization. S. aureus isolates were collected from individuals in rural and urban communities in Iowa (n = 3347) and contemporaneously from meat products in stores where participants report purchasing meat (n = 913). The staphylococcal protein A (spa) gene was sequenced for all isolates to determine a spa type. Morisita indices and Permutational Multivariate Analysis of Variance Using Distance Matrices (PERMANOVA) were used to determine the relationship between spa type composition among human samples and meat samples. spa type composition was significantly different between households and meat sampled from their associated grocery stores. spa types found in meat were not significantly different regardless of the store or county in which they were sampled. spa types in people also exhibit high similarity regardless of residential location in urban or rural counties. Such findings suggest meat is not an important source of S. aureus colonization in shoppers.

  10. The placenta harbors a unique microbiome.

    PubMed

    Aagaard, Kjersti; Ma, Jun; Antony, Kathleen M; Ganu, Radhika; Petrosino, Joseph; Versalovic, James

    2014-05-21

    Humans and their microbiomes have coevolved as a physiologic community composed of distinct body site niches with metabolic and antigenic diversity. The placental microbiome has not been robustly interrogated, despite recent demonstrations of intracellular bacteria with diverse metabolic and immune regulatory functions. A population-based cohort of placental specimens collected under sterile conditions from 320 subjects with extensive clinical data was established for comparative 16S ribosomal DNA-based and whole-genome shotgun (WGS) metagenomic studies. Identified taxa and their gene carriage patterns were compared to other human body site niches, including the oral, skin, airway (nasal), vaginal, and gut microbiomes from nonpregnant controls. We characterized a unique placental microbiome niche, composed of nonpathogenic commensal microbiota from the Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes, and Fusobacteria phyla. In aggregate, the placental microbiome profiles were most akin (Bray-Curtis dissimilarity <0.3) to the human oral microbiome. 16S-based operational taxonomic unit analyses revealed associations of the placental microbiome with a remote history of antenatal infection (permutational multivariate analysis of variance, P = 0.006), such as urinary tract infection in the first trimester, as well as with preterm birth <37 weeks (P = 0.001). Copyright © 2014, American Association for the Advancement of Science.

  11. Parsing the roles of the frontal lobes and basal ganglia in task control using multivoxel pattern analysis

    PubMed Central

    Kehagia, Angie A.; Ye, Rong; Joyce, Dan W.; Doyle, Orla M.; Rowe, James B.; Robbins, Trevor W.

    2017-01-01

    Cognitive control has traditionally been associated with the prefrontal cortex, based on observations of deficits in patients with frontal lesions. However, evidence from patients with Parkinson’s disease (PD) indicates that subcortical regions also contribute to control under certain conditions. We scanned 17 healthy volunteers while they performed a task switching paradigm that previously dissociated performance deficits arising from frontal lesions in comparison with PD, as a function of the abstraction of the rules that are switched. From a multivoxel pattern analysis by Gaussian Process Classification (GPC), we then estimated the forward (generative) model to infer regional patterns of activity that predict Switch / Repeat behaviour between rule conditions. At 1000 permutations, Switch / Repeat classification accuracy for concrete rules was significant in the basal ganglia, but at chance in the frontal lobe. The inverse pattern was obtained for abstract rules, whereby the conditions were successfully discriminated in the frontal lobe but not in the basal ganglia. This double dissociation highlights the difference between cortical and subcortical contributions to cognitive control and demonstrates the utility of multivariate approaches in investigations of functions that rely on distributed and overlapping neural substrates. PMID:28387585

  12. A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems

    PubMed Central

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature. PMID:24672389

  13. A PSO-based hybrid metaheuristic for permutation flowshop scheduling problems.

    PubMed

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.

  14. Palmprint verification using Lagrangian decomposition and invariant interest points

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.

    2011-06-01

    This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.

  15. Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, W.B.; Passiakos, M.

    This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

  16. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    NASA Astrophysics Data System (ADS)

    Davies, E. Brian; Exner, Pavel; Lipovský, Jiří

    2010-11-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  17. Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding.

    PubMed

    Zhang, Xuncai; Han, Feng; Niu, Ying

    2017-01-01

    With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis.

  18. Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding

    PubMed Central

    2017-01-01

    With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis. PMID:28912802

  19. Diversification of Protein Cage Structure Using Circularly Permuted Subunits.

    PubMed

    Azuma, Yusuke; Herger, Michael; Hilvert, Donald

    2018-01-17

    Self-assembling protein cages are useful as nanoscale molecular containers for diverse applications in biotechnology and medicine. To expand the utility of such systems, there is considerable interest in customizing the structures of natural cage-forming proteins and designing new ones. Here we report that a circularly permuted variant of lumazine synthase, a cage-forming enzyme from Aquifex aeolicus (AaLS) affords versatile building blocks for the construction of nanocompartments that can be easily produced, tailored, and diversified. The topologically altered protein, cpAaLS, self-assembles into spherical and tubular cage structures with morphologies that can be controlled by the length of the linker connecting the native termini. Moreover, cpAaLS proteins integrate into wild-type and other engineered AaLS assemblies by coproduction in Escherichia coli to form patchwork cages. This coassembly strategy enables encapsulation of guest proteins in the lumen, modification of the exterior through genetic fusion, and tuning of the size and electrostatics of the compartments. This addition to the family of AaLS cages broadens the scope of this system for further applications and highlights the utility of circular permutation as a potentially general strategy for tailoring the properties of cage-forming proteins.

  20. Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Zhen; Horton, John R.; Cheng, Xiadong

    2009-11-02

    Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer.more » The crystal structures of one truncated variant (cp283{Delta}7) in the apo-form determined at 1.49 {angstrom} resolution and with a bound phosphonate inhibitor at 1.69 {angstrom} resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.« less

  1. Conditional Bounds on Polarization Transfer

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Sorensen, O. W.

    The implications of constraints on unitary transformations of spin operators with respect to the accessible regions of Liouville space are analyzed. Specifically, the effects of spin-permutation symmetry on the unitary propagators are investigated. The influence of S2 and S3 propagator symmetry on two-dimensional bounds for F z = Σ Ni=1 I iz ↔ G z = Σ Mj=1 S jz polarization transfer in IS and I 2S spin- {1}/{2} systems is examined in detail. One result is that the maximum achievable F z ↔ G z polarization transfer is not reduced by permutation symmetry among the spins. For I 2S spin systems, S3 symmetry in the unitary propagator is shown to significantly reduce the accessible region in the 2D F z-S z Liouville subspace compared to the case restricted by unitarity alone. That result is compared with transformations under symmetric dipolar and scalar J coupling as well as shift and RF interactions. An important practical implication is that the refined spin thermodynamic theory of Levitt, Suter, and Ernst ( J. Chem. Phys.84, 4243, 1986) for cross polarization in solid-state NMR does not predict experimental outcomes incompatible with constraints of unitarity and spin-permutation symmetry.

  2. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.

    PubMed

    Li, Bin-Bin; Wang, Ling

    2007-06-01

    This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.

  3. SO(4) algebraic approach to the three-body bound state problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Salom, Igor

    2014-08-01

    We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.

  4. Searching for the fastest dynamo: laminar ABC flows.

    PubMed

    Alexakis, Alexandros

    2011-08-01

    The growth rate of the dynamo instability as a function of the magnetic Reynolds number R(M) is investigated by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1/2-dimensional flow for which A=B and C=0 (and all permutations). (b) The second type of flow that results in a dynamo is the one for which A=B≃2C/5 (and permutations). (c) The most symmetric flow, A=B=C, is the third type of flow that results in a dynamo. (d) As R(M) is increased, the A=B=C flow stops being a dynamo and transitions from a local maximum to a third-order saddle point. (e) At larger R(M), the A=B=C flow reestablishes itself as a dynamo but remains a saddle point. (f) At the largest examined R(M), the growth rate of the 2 1/2-dimensional flows starts to decay, the A=B=C flow comes close to a local maximum again, and the flow A=B≃2C/5 (and permutations) results in the fastest dynamo with growth rate γ≃0.12 at the largest examined R(M). For the ABC flows that are driven at the second largest available length scale, it is found that (a) the 2 1/2-dimensional flows A=B,C=0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b) The most symmetric flow, A=B=C, is the second type of flow that results in a dynamo. It is, and it remains, a local maximum. (c) At larger R(M), the flow A=B≃2C/5 (and permutations) appears as the third type of flow that results in a dynamo. As R(M) is increased, it becomes the flow with the largest growth rate. The growth rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines appears equally important in determining the fastest dynamo flow.

  5. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  6. Identifying Neural Patterns of Functional Dyspepsia Using Multivariate Pattern Analysis: A Resting-State fMRI Study

    PubMed Central

    Liu, Peng; Qin, Wei; Wang, Jingjing; Zeng, Fang; Zhou, Guangyu; Wen, Haixia; von Deneen, Karen M.; Liang, Fanrong; Gong, Qiyong; Tian, Jie

    2013-01-01

    Background Previous imaging studies on functional dyspepsia (FD) have focused on abnormal brain functions during special tasks, while few studies concentrated on the resting-state abnormalities of FD patients, which might be potentially valuable to provide us with direct information about the neural basis of FD. The main purpose of the current study was thereby to characterize the distinct patterns of resting-state function between FD patients and healthy controls (HCs). Methodology/Principal Findings Thirty FD patients and thirty HCs were enrolled and experienced 5-mintue resting-state scanning. Based on the support vector machine (SVM), we applied multivariate pattern analysis (MVPA) to investigate the differences of resting-state function mapped by regional homogeneity (ReHo). A classifier was designed by using the principal component analysis and the linear SVM. Permutation test was then employed to identify the significant contribution to the final discrimination. The results displayed that the mean classifier accuracy was 86.67%, and highly discriminative brain regions mainly included the prefrontal cortex (PFC), orbitofrontal cortex (OFC), supplementary motor area (SMA), temporal pole (TP), insula, anterior/middle cingulate cortex (ACC/MCC), thalamus, hippocampus (HIPP)/parahippocamus (ParaHIPP) and cerebellum. Correlation analysis revealed significant correlations between ReHo values in certain regions of interest (ROI) and the FD symptom severity and/or duration, including the positive correlations between the dmPFC, pACC and the symptom severity; whereas, the positive correlations between the MCC, OFC, insula, TP and FD duration. Conclusions These findings indicated that significantly distinct patterns existed between FD patients and HCs during the resting-state, which could expand our understanding of the neural basis of FD. Meanwhile, our results possibly showed potential feasibility of functional magnetic resonance imaging diagnostic assay for FD. PMID:23874543

  7. Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.

    2007-10-01

    To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.

  8. Development of the Nasopharyngeal Microbiota in Infants with Cystic Fibrosis.

    PubMed

    Prevaes, Sabine M P J; de Winter-de Groot, Karin M; Janssens, Hettie M; de Steenhuijsen Piters, Wouter A A; Tramper-Stranders, Gerdien A; Wyllie, Anne L; Hasrat, Raiza; Tiddens, Harm A; van Westreenen, Mireille; van der Ent, Cornelis K; Sanders, Elisabeth A M; Bogaert, Debby

    2016-03-01

    Cystic fibrosis (CF) is characterized by early structural lung disease caused by pulmonary infections. The nasopharynx of infants is a major ecological reservoir of potential respiratory pathogens. To investigate the development of nasopharyngeal microbiota profiles in infants with CF compared with those of healthy control subjects during the first 6 months of life. We conducted a prospective cohort study, from the time of diagnosis onward, in which we collected questionnaires and 324 nasopharynx samples from 20 infants with CF and 45 age-matched healthy control subjects. Microbiota profiles were characterized by 16S ribosomal RNA-based sequencing. We observed significant differences in microbial community composition (P < 0.0002 by permutational multivariate analysis of variance) and development between groups. In infants with CF, early Staphylococcus aureus and, to a lesser extent, Corynebacterium spp. and Moraxella spp. dominance were followed by a switch to Streptococcus mitis predominance after 3 months of age. In control subjects, Moraxella spp. enrichment occurred throughout the first 6 months of life. In a multivariate analysis, S. aureus, S. mitis, Corynebacterium accolens, and bacilli were significantly more abundant in infants with CF, whereas Moraxella spp., Corynebacterium pseudodiphtericum and Corynebacterium propinquum and Haemophilus influenzae were significantly more abundant in control subjects, after correction for age, antibiotic use, and respiratory symptoms. Antibiotic use was independently associated with increased colonization of gram-negative bacteria such as Burkholderia spp. and members of the Enterobacteriaceae bacteria family and reduced colonization of potential beneficial commensals. From diagnosis onward, we observed distinct patterns of nasopharyngeal microbiota development in infants with CF under 6 months of age compared with control subjects and a marked effect of antibiotic therapy leading toward a gram-negative microbial composition.

  9. Validation of brain-derived signals in near-infrared spectroscopy through multivoxel analysis of concurrent functional magnetic resonance imaging.

    PubMed

    Moriguchi, Yoshiya; Noda, Takamasa; Nakayashiki, Kosei; Takata, Yohei; Setoyama, Shiori; Kawasaki, Shingo; Kunisato, Yoshihiko; Mishima, Kazuo; Nakagome, Kazuyuki; Hanakawa, Takashi

    2017-10-01

    Near-infrared spectroscopy (NIRS) is a convenient and safe brain-mapping tool. However, its inevitable confounding with hemodynamic responses outside the brain, especially in the frontotemporal head, has questioned its validity. Some researchers attempted to validate NIRS signals through concurrent measurements with functional magnetic resonance imaging (fMRI), but, counterintuitively, NIRS signals rarely correlate with local fMRI signals in NIRS channels, although both mapping techniques should measure the same hemoglobin concentration. Here, we tested a novel hypothesis that different voxels within the scalp and the brain tissues might have substantially different hemoglobin absorption rates of near-infrared light, which might differentially contribute to NIRS signals across channels. Therefore, we newly applied a multivariate approach, a partial least squares regression, to explain NIRS signals with multivoxel information from fMRI within the brain and soft tissues in the head. We concurrently obtained fMRI and NIRS signals in 9 healthy human subjects engaging in an n-back task. The multivariate fMRI model was quite successfully able to predict the NIRS signals by cross-validation (interclass correlation coefficient = ∼0.85). This result confirmed that fMRI and NIRS surely measure the same hemoglobin concentration. Additional application of Monte-Carlo permutation tests confirmed that the model surely reflects temporal and spatial hemodynamic information, not random noise. After this thorough validation, we calculated the ratios of the contributions of the brain and soft-tissue hemodynamics to the NIRS signals, and found that the contribution ratios were quite different across different NIRS channels in reality, presumably because of the structural complexity of the frontotemporal regions. Hum Brain Mapp 38:5274-5291, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    NASA Astrophysics Data System (ADS)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  11. A multivariate model and statistical method for validating tree grade lumber yield equations

    Treesearch

    Donald W. Seegrist

    1975-01-01

    Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.

  12. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS.

    PubMed

    Chang, Xiangwei; Zhang, Juanjuan; Li, Dekun; Zhou, Dazheng; Zhang, Yuling; Wang, Jincheng; Hu, Bing; Ju, Aichun; Ye, Zhengliang

    2017-07-15

    The adulteration or falsification of the cultivation age of mountain cultivated ginseng (MCG) has been a serious problem in the commercial MCG market. To develop an efficient discrimination tool for the cultivation age and to explore potential age-dependent markers, an optimized ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS)-based metabolomics approach was applied in the global metabolite profiling of 156 MCG leaf (MGL) samples aged from 6 to 18 years. Multivariate statistical methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to compare the derived patterns between MGL samples of different cultivation ages. The present study demonstrated that 6-18-year-old MGL samples can be successfully discriminated using two simple successive steps, together with four PLS-DA discrimination models. Furthermore, 39 robust age-dependent markers enabling differentiation among the 6-18-year-old MGL samples were discovered. The results were validated by a permutation test and an external test set to verify the predictability and reliability of the established discrimination models. More importantly, without destroying the MCG roots, the proposed approach could also be applied to discriminate MCG root ages indirectly, using a minimum amount of homophyletic MGL samples combined with the established four PLS-DA models and identified markers. Additionally, to the best of our knowledge, this is the first study in which 6-18-year-old MCG root ages have been nondestructively differentiated by analyzing homophyletic MGL samples using UHPLC/QTOF-MS analysis and two simple successive steps together with four PLS-DA models. The method developed in this study can be used as a standard protocol for discriminating and predicting MGL ages directly and homophyletic MCG root ages indirectly. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Permutation entropy analysis of heart rate variability for the assessment of cardiovascular autonomic neuropathy in type 1 diabetes mellitus.

    PubMed

    Carricarte Naranjo, Claudia; Sanchez-Rodriguez, Lazaro M; Brown Martínez, Marta; Estévez Báez, Mario; Machado García, Andrés

    2017-07-01

    Heart rate variability (HRV) analysis is a relevant tool for the diagnosis of cardiovascular autonomic neuropathy (CAN). To our knowledge, no previous investigation on CAN has assessed the complexity of HRV from an ordinal perspective. Therefore, the aim of this work is to explore the potential of permutation entropy (PE) analysis of HRV complexity for the assessment of CAN. For this purpose, we performed a short-term PE analysis of HRV in healthy subjects and type 1 diabetes mellitus patients, including patients with CAN. Standard HRV indicators were also calculated in the control group. A discriminant analysis was used to select the variables combination with best discriminative power between control and CAN patients groups, as well as for classifying cases. We found that for some specific temporal scales, PE indicators were significantly lower in CAN patients than those calculated for controls. In such cases, there were ordinal patterns with high probabilities of occurrence, while others were hardly found. We posit this behavior occurs due to a decrease of HRV complexity in the diseased system. Discriminant functions based on PE measures or probabilities of occurrence of ordinal patterns provided an average of 75% and 96% classification accuracy. Correlations of PE and HRV measures showed to depend only on temporal scale, regardless of pattern length. PE analysis at some specific temporal scales, seem to provide additional information to that obtained with traditional HRV methods. We concluded that PE analysis of HRV is a promising method for the assessment of CAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  15. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Brian; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Zhao, Bin

    2016-06-14

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H{sub 2} → H{sub 2} + H, H + H{sub 2}O → H{sub 2} + OH, and H + CH{sub 4} → H{sub 2} + CH{sub 3}. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggestmore » this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.« less

  16. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  17. Multivariate analysis in thoracic research.

    PubMed

    Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego

    2015-03-01

    Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.

  18. 1H NMR spectroscopy-based metabolomics analysis for the diagnosis of symptomatic E. coli-associated urinary tract infection (UTI).

    PubMed

    Lussu, Milena; Camboni, Tania; Piras, Cristina; Serra, Corrado; Del Carratore, Francesco; Griffin, Julian; Atzori, Luigi; Manzin, Aldo

    2017-09-21

    Urinary tract infection (UTI) is one of the most common diagnoses in girls and women, and to a lesser extent in boys and men younger than 50 years. Escherichia coli, followed by Klebsiella spp. and Proteus spp., cause 75-90% of all infections. Infection of the urinary tract is identified by growth of a significant number of a single species in the urine, in the presence of symptoms. Urinary culture is an accurate diagnostic method but takes several hours or days to be carried out. Metabolomics analysis aims to identify biomarkers that are capable of speeding up diagnosis. Urine samples from 51 patients with a prior diagnosis of Escherichia coli-associated UTI, from 21 patients with UTI caused by other pathogens (bacteria and fungi), and from 61 healthy controls were analyzed. The 1 H-NMR spectra were acquired and processed. Multivariate statistical models were applied and their performance was validated using permutation test and ROC curve. Orthogonal Partial Least Squares-discriminant Analysis (OPLS-DA) showed good separation (R 2 Y = 0.76, Q2=0.45, p < 0.001) between UTI caused by Escherichia coli and healthy controls. Acetate and trimethylamine were identified as discriminant metabolites. The concentrations of both metabolites were calculated and used to build the ROC curves. The discriminant metabolites identified were also evaluated in urine samples from patients with other pathogens infections to test their specificity. Acetate and trimethylamine were identified as optimal candidates for biomarkers for UTI diagnosis. The conclusions support the possibility of a fast diagnostic test for Escherichia coli-associated UTI using acetate and trimethylamine concentrations.

  19. An integrated mRNA and microRNA expression signature for glioblastoma multiforme prognosis.

    PubMed

    Xiong, Jie; Bing, Zhitong; Su, Yanlin; Deng, Defeng; Peng, Xiaoning

    2014-01-01

    Although patients with Glioblastoma multiforme (GBM) have grave prognosis, significant variability in patient outcome is observed. The objective of this study is to identify a molecular signature for GBM prognosis. We subjected 355 mRNA and microRNA expression profiles to elastic net-regulated Cox regression for identification of an integrated RNA signature for GBM prognosis. A prognostic index (PI) was generated for patient stratification. Survival comparison was conducted by Kaplan-Meier method and a general multivariate Cox regression procedure was applied to evaluate the independence of the PI. The abilities and efficiencies of signatures to predict GBM patient outcome was assessed and compared by the area under the curve (AUC) of the receiver-operator characteristic (ROC). An integrated RNA prognostic signature consisted by 4 protective mRNAs, 12 risky mRNAs, and 1 risky microRNA was identified. Decreased survival was associated with being in the high-risk group (hazard ratio = 2.864, P<0.0001). The prognostic value of the integrated signature was validated in five independent GBM expression datasets (n = 201, hazard ratio = 2.453, P<0.0001). The PI outperformed the known clinical factors, mRNA-only, and miRNA-only prognostic signatures for GBM prognosis (area under the ROC curve for the integrated RNA, mRNA-only, and miRNA-only signatures were 0.828, 0.742, and 0.757 at 3 years of overall survival, respectively, P<0.0001 by permutation test). We describe the first, to our knowledge, robust transcriptome-based integrated RNA signature that improves the current GBM prognosis based on clinical variables, mRNA-only, and miRNA-only signatures.

  20. Systematic interrogation of diverse Omic data reveals interpretable, robust, and generalizable transcriptomic features of clinically successful therapeutic targets.

    PubMed

    Rouillard, Andrew D; Hurle, Mark R; Agarwal, Pankaj

    2018-05-01

    Target selection is the first and pivotal step in drug discovery. An incorrect choice may not manifest itself for many years after hundreds of millions of research dollars have been spent. We collected a set of 332 targets that succeeded or failed in phase III clinical trials, and explored whether Omic features describing the target genes could predict clinical success. We obtained features from the recently published comprehensive resource: Harmonizome. Nineteen features appeared to be significantly correlated with phase III clinical trial outcomes, but only 4 passed validation schemes that used bootstrapping or modified permutation tests to assess feature robustness and generalizability while accounting for target class selection bias. We also used classifiers to perform multivariate feature selection and found that classifiers with a single feature performed as well in cross-validation as classifiers with more features (AUROC = 0.57 and AUPR = 0.81). The two predominantly selected features were mean mRNA expression across tissues and standard deviation of expression across tissues, where successful targets tended to have lower mean expression and higher expression variance than failed targets. This finding supports the conventional wisdom that it is favorable for a target to be present in the tissue(s) affected by a disease and absent from other tissues. Overall, our results suggest that it is feasible to construct a model integrating interpretable target features to inform target selection. We anticipate deeper insights and better models in the future, as researchers can reuse the data we have provided to improve methods for handling sample biases and learn more informative features. Code, documentation, and data for this study have been deposited on GitHub at https://github.com/arouillard/omic-features-successful-targets.

  1. An Integrated mRNA and microRNA Expression Signature for Glioblastoma Multiforme Prognosis

    PubMed Central

    Xiong, Jie; Bing, Zhitong; Su, Yanlin; Deng, Defeng; Peng, Xiaoning

    2014-01-01

    Although patients with Glioblastoma multiforme (GBM) have grave prognosis, significant variability in patient outcome is observed. The objective of this study is to identify a molecular signature for GBM prognosis. We subjected 355 mRNA and microRNA expression profiles to elastic net-regulated Cox regression for identification of an integrated RNA signature for GBM prognosis. A prognostic index (PI) was generated for patient stratification. Survival comparison was conducted by Kaplan-Meier method and a general multivariate Cox regression procedure was applied to evaluate the independence of the PI. The abilities and efficiencies of signatures to predict GBM patient outcome was assessed and compared by the area under the curve (AUC) of the receiver-operator characteristic (ROC). An integrated RNA prognostic signature consisted by 4 protective mRNAs, 12 risky mRNAs, and 1 risky microRNA was identified. Decreased survival was associated with being in the high-risk group (hazard ratio = 2.864, P<0.0001). The prognostic value of the integrated signature was validated in five independent GBM expression datasets (n = 201, hazard ratio = 2.453, P<0.0001). The PI outperformed the known clinical factors, mRNA-only, and miRNA-only prognostic signatures for GBM prognosis (area under the ROC curve for the integrated RNA, mRNA-only, and miRNA-only signatures were 0.828, 0.742, and 0.757 at 3 years of overall survival, respectively, P<0.0001 by permutation test). We describe the first, to our knowledge, robust transcriptome-based integrated RNA signature that improves the current GBM prognosis based on clinical variables, mRNA-only, and miRNA-only signatures. PMID:24871302

  2. Hemorrhagic Complications of Percutaneous Cryoablation for Renal Tumors: Results from a 7-year Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakarala, Bharat, E-mail: bkakara1@jhmi.edu, E-mail: bharat.kakarala@gmail.com; Frangakis, Constantine E., E-mail: cfrangak@jhsph.edu; Rodriguez, Ron, E-mail: rodriguezr32@uthscsa.edu

    PurposeCryoablation of renal tumors is assumed to have a higher risk of hemorrhagic complications compared to other ablative modalities. Our purpose was to establish the exact risk and to identify hemorrhagic risk factors.Materials and MethodsThis IRB approved, 7-year prospective study included 261 renal cryoablations. Procedures were under conscious sedation and CT guidance. Pre- and postablation CT was obtained, and hemorrhagic complications were CTCAE tabulated. Age, gender, tumor size, histology, and probes number were tested based on averages or proportions using their exact permutation distribution. “High-risk” subgroups (those exceeding the thresholds of all variables) were tested for each variable alone, andmore » for all combinations of variable threshold values. We compared the subgroup with the best PPV using one variable, with the subgroup with the best PPV using all variables (McNemmar test).ResultsThe hemorrhagic complication rate was 3.5 %. Four patients required transfusions, two required emergent angiograms, one required both a transfusion and angiogram, and two required bladder irrigation for outlet obstruction. Perirenal space hemorrhage was more clinically significant than elsewhere. Univariate risks were tumor size >2 cm, number of probes >2, and malignant histology (P = 0.005, 0.002, and 0.033, respectively). Multivariate analysis showed that patients >55 years with malignant tumors >2 cm requiring 2 or more probes yielded the highest PPV (7.5 %).ConclusionsAlthough older patients (>55 years old) with larger (>2 cm), malignant tumors have an increased risk of hemorrhagic complications, the low PPV does not support the routine use of embolization. Percutaneous cryoablation has a 3.5 % risk of significant hemorrhage, similar to that reported for other types of renal ablative modalities.« less

  3. Serum protein profiling using an aptamer array predicts clinical outcomes of stage IIA colon cancer: A leave-one-out crossvalidation

    PubMed Central

    Huh, Jung Wook; Kim, Sung Chun; Sohn, Insuk; Jung, Sin-Ho; Kim, Hee Cheol

    2016-01-01

    Background In this study, we established and validated a model for predicting prognosis of stage IIA colon cancer patients based on expression profiles of aptamers in serum. Methods Bloods samples were collected from 227 consecutive patients with pathologic T3N0M0 (stage IIA) colon cancer. We incubated 1,149 serum molecule-binding aptamer pools of clinical significance with serum from patients to obtain aptamers bound to serum molecules, which were then amplified and marked. Oligonucleotide arrays were constructed with the base sequences of the 1,149 aptamers, and the marked products identified above were reacted with one another to produce profiles of the aptamers bound to serum molecules. These profiles were organized into low- and high-risk groups of colon cancer patients based on clinical information for the serum samples. Cox proportional hazards model and leave-one-out cross-validation (LOOCV) were used to evaluate predictive performance. Results During a median follow-up period of 5 years, 29 of the 227 patients (11.9%) experienced recurrence. There were 212 patients (93.4%) in the low-risk group and 15 patients (6.6%) in the high-risk group in our aptamer prognosis model. Postoperative recurrence significantly correlated with age and aptamer risk stratification (p = 0.046 and p = 0.001, respectively). In multivariate analysis, aptamer risk stratification (p < 0.001) was an independent predictor of recurrence. Disease-free survival curves calculated according to aptamer risk level predicted through a LOOCV procedure and age showed significant differences (p < 0.001 from permutations). Conclusion Aptamer risk stratification can be a valuable prognostic factor in stage II colon cancer patients. PMID:26908450

  4. Search for Microorganisms in Men with Urologic Chronic Pelvic Pain Syndrome: A Culture-Independent Analysis in the MAPP Research Network

    PubMed Central

    Nickel, J. Curtis; Stephens, Alisa; Landis, J. Richard; Chen, Jun; Mullins, Chris; van Bokhoven, Adrie; Lucia, M. Scott; Melton-Kreft, Rachael; Ehrlich, Garth D.

    2015-01-01

    Introduction We used next-generation, state-of-the-art, culture-independent methodology to survey urine microbiota of UCPPS males and control participants enrolled in the MAPP Network to investigate a possible microbial etiology. Methods Male UCPPS patients and matched controls were asked to provide VB1, VB2 and VB3 urine specimens. Specimens were analyzed with Ibis T-5000 Universal Biosensor technology to provide comprehensive identification of bacterial and select fungal species. Differences between UCPPS and control study participants for presence of species or species variation within a higher taxonomic grouping (genus) were evaluated using permutational multivariate analysis of variance and logistic regression. Results VB1 and VB2 urine specimens were obtained from 110 (VB3 in 67) UCPPS participants and 115 (VB3 in 62) controls. A total of 78, 73 and 54 species (42, 39 and 27 genera) were detected in VB1, VB2 and VB3 respectively. Mean (SD) VB1, VB2 and VB3 species count per person was 1.62 (1.28), 1.38 (1.36) and 1.33(1.24) for cases and 1.75(1.32), 1.23(1.15) and 1.56 (0.97) for controls respectively. Overall species and genus composition differed significantly between UCPPS and control participants in VB1 (p=0.002 species level, p=0.004 genus level) with Burkholderia cenocepacia over represented in UCPPS cases. No significant differences were observed at any level in VB2 or VB3 samples. Conclusions Assessment of baseline culture-independent microbiological data from male subjects enrolled in the MAPP Network has identified over representation of B cenocepacia in UCPPS. Future studies are planned to further evaluate microbiota associations with variable and changing UCPPS symptom patterns. PMID:25596358

  5. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  7. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  9. ON THE NUMBER OF SOLUTIONS OF THE EQUATION x^k = a IN THE SYMMETRIC GROUP S_n

    NASA Astrophysics Data System (ADS)

    Pavlov, A. I.

    1981-04-01

    This paper consists of three sections. In the first a formula is given for the number N_n^{(k)}(a) of solutions of the equation x^k = a in S_n depending on the cyclic structure of the permutation a. In the second an asymptotic formula is given for the quantity M_n^{(k)} = \\max_{a \\in S_n} N_n^{(k)}(a) for a fixed k \\geq 2 as n \\to \\infty. In the third an asymptotic formula is found for the cardinality of the set of permutations a such that the equation x^k = a has a unique solution. Bibliography: 5 titles.

  10. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  11. Methods for presentation and display of multivariate data

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1981-01-01

    Methods for the presentation and display of multivariate data are discussed with emphasis placed on the multivariate analysis of variance problems and the Hotelling T(2) solution in the two-sample case. The methods utilize the concepts of stepwise discrimination analysis and the computation of partial correlation coefficients.

  12. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA

    NASA Astrophysics Data System (ADS)

    Coughlan, Michael R.

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  13. Permuting input for more effective sampling of 3D conformer space

    NASA Astrophysics Data System (ADS)

    Carta, Giorgio; Onnis, Valeria; Knox, Andrew J. S.; Fayne, Darren; Lloyd, David G.

    2006-03-01

    SMILES strings and other classic 2D structural formats offer a convenient way to represent molecules as a simplistic connection table, with the inherent advantages of ease of handling and storage. In the context of virtual screening, chemical databases to be screened are often initially represented by canonicalised SMILES strings that can be filtered and pre-processed in a number of ways, resulting in molecules that occupy similar regions of chemical space to active compounds of a therapeutic target. A wide variety of software exists to convert molecules into SMILES format, namely, Mol2smi (Daylight Inc.), MOE (Chemical Computing Group) and Babel (Openeye Scientific Software). Depending on the algorithm employed, the atoms of a SMILES string defining a molecule can be ordered differently. Upon conversion to 3D coordinates they result in the production of ostensibly the same molecule. In this work we show how different permutations of a SMILES string can affect conformer generation, affecting reliability and repeatability of the results. Furthermore, we propose a novel procedure for the generation of conformers, taking advantage of the permutation of the input strings—both SMILES and other 2D formats, leading to more effective sampling of conformation space in output, and also implementing fingerprint and principal component analyses step to post process and visualise the results.

  14. A simplified formalism of the algebra of partially transposed permutation operators with applications

    NASA Astrophysics Data System (ADS)

    Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał

    2018-03-01

    Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.

  15. Unequal homologous recombination between tandemly arranged sequences stably incorporated into cultured rat cells.

    PubMed Central

    Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C

    1985-01-01

    Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511

  16. Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test

    USGS Publications Warehouse

    Matchett, John R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.

    2015-01-01

    Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data.

  17. Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test

    PubMed Central

    Matchett, J. R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.

    2015-01-01

    Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data. PMID:26031755

  18. Tensor models, Kronecker coefficients and permutation centralizer algebras

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  19. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA.

    PubMed

    Coughlan, Michael R

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  20. Numerical Methods for Partial Differential Equations.

    DTIC Science & Technology

    1984-01-09

    Y2] L(i) . ) M Q)(i) - where R is k x k upper triangular. Rill Y1 2, is lower triangular, Y ,2 and the parameters of the rotations that make F i up Q...then x is a left singular vector of B and y is a right singular vector of B (5]. Thus we may attempt (1) x c*x + oy to find the eigendecomposition of C...After a sym- y ’ - -ox + cy metric interchange of rows and columns corresponding to the permutation (n+l, 2, n+2, 2, ..., 2n, n), where x, y , and c

  1. Identification of IL-7 as a candidate disease mediator in osteoarthritis in Chinese Han population: a case-control study.

    PubMed

    Zhang, Hong-Xin; Wang, Yan-Gui; Lu, Shun-Yuan; Lu, Xiong-Xiong; Liu, Jie

    2016-09-01

    Little is known about the biochemical mediators IL-7 that correlate with the initiation and progression of OA. We performed this study to assess the role of variants of IL-7 in OA susceptibility in the Chinese Han population. We performed a retrospective, case-control study in the Chinese Han population from 2013 to 2015. Four single nucleotide polymorphisms were genotyped (using a ligase detection reaction) in 602 patients and 454 controls. Differences between groups were analysed, and association was assessed by the odds ratio (OR) and 95% CI. Among these polymorphisms, rs2583764, rs2583760 and rs6993386 showed no significant association with OA in the Chinese Han population {rs2583764 [P-allele = 0.98651, P-genotype = 0.40392, OR (95% CI): 1.00162 (0.83066, 1.20775)]; rs2583760 [P-allele = 0.384500, P-genotype = 0.58752, OR (95% CI): 0.69859 (0.30996, 1.57449)]; rs6993386 [P-allele = 0.69525, P-genotype = 0.50712, OR (95% CI): 0.96432 (0.80406, 1.15653)]}. However, the results showed that the rs2583759 polymorphism was significantly associated with OA [P-allele = 0.00 P-genotype = 3.86 × 10(-30), OR (95% CI): 0.27794 (0.22407, 0.34476)], even when the 10 000 times permutation was performed (P-allele-permutation < 0.00010, P-genotype-permutation = 0.00010). Haplotype analyses showed A-G-A-C, A-G-A-T and G-G-G-C of rs2583764-rs2583760-rs6993386-rs2583759 were risk factors for OA, both before or after the 10 000 times permutation, indicating IL-7 to be associated with OA. There was a significant association between IL-7, especially rs2583759, and OA in the Chinese Han population. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Epistatic interaction between haplotypes of the ghrelin ligand and receptor genes influence susceptibility to myocardial infarction and coronary artery disease.

    PubMed

    Baessler, Andrea; Fischer, Marcus; Mayer, Bjoern; Koehler, Martina; Wiedmann, Silke; Stark, Klaus; Doering, Angela; Erdmann, Jeanette; Riegger, Guenter; Schunkert, Heribert; Kwitek, Anne E; Hengstenberg, Christian

    2007-04-15

    Data from both experimental models and humans provide evidence that ghrelin and its receptor, the growth hormone secretagogue receptor (ghrelin receptor, GHSR), possess a variety of cardiovascular effects. Thus, we hypothesized that genetic variants within the ghrelin system (ligand ghrelin and its receptor GHSR) are associated with susceptibility to myocardial infarction (MI) and coronary artery disease (CAD). Seven single nucleotide polymorphisms (SNPs) covering the GHSR region as well as eight SNPs across the ghrelin gene (GHRL) region were genotyped in index MI patients (864 Caucasians, 'index MI cases') from the German MI family study and in matched controls without evidence of CAD (864 Caucasians, 'controls', MONICA Augsburg). In addition, siblings of these MI patients with documented severe CAD (826 'affected sibs') were matched likewise with controls (n = 826 Caucasian 'controls') and used for verification. The effect of interactions between genetic variants of both genes of the ghrelin system was explored by conditional classification tree models. We found association of several GHSR SNPs with MI [best SNP odds ratio (OR) 1.7 (1.2-2.5); P = 0.002] using a recessive model. Moreover, we identified a common GHSR haplotype which significantly increases the risk for MI [multivariate adjusted OR for homozygous carriers 1.6 (1.1-2.5) and CAD OR 1.6 (1.1-2.5)]. In contrast, no relationship between genetic variants and the disease could be revealed for GHRL. However, the increase in MI/CAD frequency related to the susceptible GHSR haplotype was abolished when it coincided with a common GHRL haplotype. Multivariate adjustments as well as permutation-based methods conveyed the same results. These data are the first to demonstrate an association of SNPs and haplotypes within important genes of the ghrelin system and the susceptibility to MI, whereas association with MI/CAD could be identified for genetic variants across GHSR, no relationship could be revealed for GHRL itself. However, we found an effect of GHRL dependent upon the presence of a common, MI and CAD susceptible haplotype of GHSR. Thus, our data suggest that specific haplotypes of the ghrelin ligand and its receptor act epistatically to affect susceptibility or tolerance to MI and/or CAD.

  3. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia

    NASA Astrophysics Data System (ADS)

    Li, Duan; Li, Xiaoli; Liang, Zhenhu; Voss, Logan J.; Sleigh, Jamie W.

    2010-08-01

    Electroencephalogram (EEG) monitoring of the effect of anesthetic drugs on the central nervous system has long been used in anesthesia research. Several methods based on nonlinear dynamics, such as permutation entropy (PE), have been proposed to analyze EEG series during anesthesia. However, these measures are still single-scale based and may not completely describe the dynamical characteristics of complex EEG series. In this paper, a novel measure combining multiscale PE information, called CMSPE (composite multi-scale permutation entropy), was proposed for quantifying the anesthetic drug effect on EEG recordings during sevoflurane anesthesia. Three sets of simulated EEG series during awake, light and deep anesthesia were used to select the parameters for the multiscale PE analysis: embedding dimension m, lag τ and scales to be integrated into the CMSPE index. Then, the CMSPE index and raw single-scale PE index were applied to EEG recordings from 18 patients who received sevoflurane anesthesia. Pharmacokinetic/pharmacodynamic (PKPD) modeling was used to relate the measured EEG indices and the anesthetic drug concentration. Prediction probability (Pk) statistics and correlation analysis with the response entropy (RE) index, derived from the spectral entropy (M-entropy module; GE Healthcare, Helsinki, Finland), were investigated to evaluate the effectiveness of the new proposed measure. It was found that raw single-scale PE was blind to subtle transitions between light and deep anesthesia, while the CMSPE index tracked these changes accurately. Around the time of loss of consciousness, CMSPE responded significantly more rapidly than the raw PE, with the absolute slopes of linearly fitted response versus time plots of 0.12 (0.09-0.15) and 0.10 (0.06-0.13), respectively. The prediction probability Pk of 0.86 (0.85-0.88) and 0.85 (0.80-0.86) for CMSPE and raw PE indicated that the CMSPE index correlated well with the underlying anesthetic effect. The correlation coefficient for the comparison between the CMSPE index and RE index of 0.84 (0.80-0.88) was significantly higher than the raw PE index of 0.75 (0.66-0.84). The results show that the CMSPE outperforms the raw single-scale PE in reflecting the sevoflurane drug effect on the central nervous system.

  4. [Studies on the interaction between RNA with neutral red and determination of RNA by spectrophotometry].

    PubMed

    Si, Wen-Hui

    2007-06-01

    An analytical method for the determination of ribonucleic acid by spectrophotometry was established. At the maximum absorption wavelength for neutral red in B-R buffer solution, and under the best conditions, the decrease in the absorbance was linear with the amount of ribonucleic acid. The linearity range was 0.0-9.0 microg x mL(-1), the detection limit was 0.52 microg x mL(-1), and the correlation coeffient was 0.999 8. This method was simple, rapid, and selective. So its application to the determination of ribonucleic acid was satisfactory. The reaction mechanism was that the electrostatic interaction leads to molecular association of RNA with neutral red, resulting in anti-ion permutation and bonding reaction.

  5. An entropy-based nonparametric test for the validation of surrogate endpoints.

    PubMed

    Miao, Xiaopeng; Wang, Yong-Cheng; Gangopadhyay, Ashis

    2012-06-30

    We present a nonparametric test to validate surrogate endpoints based on measure of divergence and random permutation. This test is a proposal to directly verify the Prentice statistical definition of surrogacy. The test does not impose distributional assumptions on the endpoints, and it is robust to model misspecification. Our simulation study shows that the proposed nonparametric test outperforms the practical test of the Prentice criterion in terms of both robustness of size and power. We also evaluate the performance of three leading methods that attempt to quantify the effect of surrogate endpoints. The proposed method is applied to validate magnetic resonance imaging lesions as the surrogate endpoint for clinical relapses in a multiple sclerosis trial. Copyright © 2012 John Wiley & Sons, Ltd.

  6. The exact analysis of contingency tables in medical research.

    PubMed

    Mehta, C R

    1994-01-01

    A unified view of exact nonparametric inference, with special emphasis on data in the form of contingency tables, is presented. While the concept of exact tests has been in existence since the early work of RA Fisher, the computational complexity involved in actually executing such tests precluded their use until fairly recently. Modern algorithmic advances, combined with the easy availability of inexpensive computing power, has renewed interest in exact methods of inference, especially because they remain valid in the face of small, sparse, imbalanced, or heavily tied data. After defining exact p-values in terms of the permutation principle, we reference algorithms for computing them. Several data sets are then analysed by both exact and asymptotic methods. We end with a discussion of the available software.

  7. Application of microarray analysis on computer cluster and cloud platforms.

    PubMed

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  8. Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices.

    PubMed

    Tsafrir, D; Tsafrir, I; Ein-Dor, L; Zuk, O; Notterman, D A; Domany, E

    2005-05-15

    We introduce a novel unsupervised approach for the organization and visualization of multidimensional data. At the heart of the method is a presentation of the full pairwise distance matrix of the data points, viewed in pseudocolor. The ordering of points is iteratively permuted in search of a linear ordering, which can be used to study embedded shapes. Several examples indicate how the shapes of certain structures in the data (elongated, circular and compact) manifest themselves visually in our permuted distance matrix. It is important to identify the elongated objects since they are often associated with a set of hidden variables, underlying continuous variation in the data. The problem of determining an optimal linear ordering is shown to be NP-Complete, and therefore an iterative search algorithm with O(n3) step-complexity is suggested. By using sorting points into neighborhoods, i.e. SPIN to analyze colon cancer expression data we were able to address the serious problem of sample heterogeneity, which hinders identification of metastasis related genes in our data. Our methodology brings to light the continuous variation of heterogeneity--starting with homogeneous tumor samples and gradually increasing the amount of another tissue. Ordering the samples according to their degree of contamination by unrelated tissue allows the separation of genes associated with irrelevant contamination from those related to cancer progression. Software package will be available for academic users upon request.

  9. The Moderating Role of Close Friends in the Relationship Between Conduct Problems and Adolescent Substance Use

    PubMed Central

    Glaser, Beate; Shelton, Katherine H.; van den Bree, Marianne B.M.

    2010-01-01

    Purpose Conduct problems and peer effects are among the strongest risk factors for adolescent substance use and problem use. However, it is unclear to what extent the effects of conduct problems and peer behavior interact, and whether adolescents' capacity to refuse the offer of substances may moderate such links. This study was conducted to examine relationships between conduct problems, close friends' substance use, and refusal assertiveness with adolescents' alcohol use problems, tobacco, and marijuana use. Methods We studied a population-based sample of 1,237 individuals from the Cardiff Study of All Wales and North West of England Twins aged 11–18 years. Adolescent and mother-reported information was obtained. Statistical analyses included cross-sectional and prospective logistic regression models and family-based permutations. Results Conduct problems and close friends' substance use were associated with increased adolescents' substance use, whereas refusal assertiveness was associated with lower use of cigarettes, alcohol, and marijuana. Peer substance use moderated the relationship between conduct problems and alcohol use problems, such that conduct problems were only related to increased risk for alcohol use problems in the presence of substance-using friends. This effect was found in both cross-sectional and prospective analyses and confirmed using the permutation approach. Conclusions Reduced opportunities for interaction with alcohol-using peers may lower the risk of alcohol use problems in adolescents with conduct problems. PMID:20547290

  10. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco

    2018-06-01

    The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.

  11. Multivariate assessment of event-related potentials with the t-CWT method.

    PubMed

    Bostanov, Vladimir

    2015-11-05

    Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.

  12. Derivation of some formulae in combinatrics by heuristic methods

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukio

    2015-04-01

    Heuristic methods are more effective for students inlearning permutations and combinations in mathematics than passive learning such as rote memorization of formulae. Two examples, n! and 2n - 1Cn, of finding new combinatorial formulae are discussed from a pedagogical standpoint. First, the factorial of n can be expressed as ∑n - 1k = 0k . k!, which can be found by a heuristic method. This expression is comparable to representations of powers of r using geometrical series. Second, the number of possible combinations with repetition of n drawings from n elements is denoted 2n - 1Cn, which can be calculated from ∑n - 1k = 0nCk + 1n - 1Ck. The relation ∑n - 1k = 0nCk + 1n - 1Ck = 2n - 1Cn can be found by a heuristic method through a corresponding problem on mapping.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlenko, E. V., E-mail: eorlenko@mail.ru; Evstafev, A. V.; Orlenko, F. E.

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithiummore » atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated.« less

  14. Security Analysis of Some Diffusion Mechanisms Used in Chaotic Ciphers

    NASA Astrophysics Data System (ADS)

    Zhang, Leo Yu; Zhang, Yushu; Liu, Yuansheng; Yang, Anjia; Chen, Guanrong

    As a variant of the substitution-permutation network, the permutation-diffusion structure has received extensive attention in the field of chaotic cryptography over the last three decades. Because of the high implementation speed and nonlinearity over GF(2), the Galois field of two elements, mixing modulo addition/multiplication and Exclusive OR becomes very popular in various designs to achieve the desired diffusion effect. This paper reports that some diffusion mechanisms based on modulo addition/multiplication and Exclusive OR are not resistant to plaintext attacks as claimed. By cracking several recently proposed chaotic ciphers as examples, it is demonstrated that a good understanding of the strength and weakness of these crypto-primitives is crucial for designing more practical chaotic encryption algorithms in the future.

  15. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  16. Artificial Neural Identification and LMI Transformation for Model Reduction-Based Control of the Buck Switch-Mode Regulator

    NASA Astrophysics Data System (ADS)

    Al-Rabadi, Anas N.

    2009-10-01

    This research introduces a new method of intelligent control for the control of the Buck converter using newly developed small signal model of the pulse width modulation (PWM) switch. The new method uses supervised neural network to estimate certain parameters of the transformed system matrix [Ã]. Then, a numerical algorithm used in robust control called linear matrix inequality (LMI) optimization technique is used to determine the permutation matrix [P] so that a complete system transformation {[B˜], [C˜], [Ẽ]} is possible. The transformed model is then reduced using the method of singular perturbation, and state feedback control is applied to enhance system performance. The experimental results show that the new control methodology simplifies the model in the Buck converter and thus uses a simpler controller that produces the desired system response for performance enhancement.

  17. Indonesian name matching using machine learning supervised approach

    NASA Astrophysics Data System (ADS)

    Alifikri, Mohamad; Arif Bijaksana, Moch.

    2018-03-01

    Most existing name matching methods are developed for English language and so they cover the characteristics of this language. Up to this moment, there is no specific one has been designed and implemented for Indonesian names. The purpose of this thesis is to develop Indonesian name matching dataset as a contribution to academic research and to propose suitable feature set by utilizing combination of context of name strings and its permute-winkler score. Machine learning classification algorithms is taken as the method for performing name matching. Based on the experiments, by using tuned Random Forest algorithm and proposed features, there is an improvement of matching performance by approximately 1.7% and it is able to reduce until 70% misclassification result of the state of the arts methods. This improving performance makes the matching system more effective and reduces the risk of misclassified matches.

  18. Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data

    PubMed Central

    Xiong, Lie; Kuan, Pei-Fen; Tian, Jianan; Keles, Sunduz; Wang, Sijian

    2015-01-01

    In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of high-dimensional genomic data. Particularly, we are interested in two applications: studying the influence of DNA copy number alterations on RNA transcript levels and investigating the association between DNA methylation and gene expression. For this purpose, we model the dependence of the RNA expression levels on DNA copy number alterations and the dependence of gene expression on DNA methylation through multivariate regression models and utilize boosting-type method to handle the high dimensionality as well as model the possible nonlinear associations. The performance of the proposed method is demonstrated through simulation studies. Finally, our multivariate boosting method is applied to two breast cancer studies. PMID:26609213

  19. A non-iterative extension of the multivariate random effects meta-analysis.

    PubMed

    Makambi, Kepher H; Seung, Hyunuk

    2015-01-01

    Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.

  20. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  1. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions

    PubMed Central

    2013-01-01

    Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370

  2. Analyzing Multiple Outcomes in Clinical Research Using Multivariate Multilevel Models

    PubMed Central

    Baldwin, Scott A.; Imel, Zac E.; Braithwaite, Scott R.; Atkins, David C.

    2014-01-01

    Objective Multilevel models have become a standard data analysis approach in intervention research. Although the vast majority of intervention studies involve multiple outcome measures, few studies use multivariate analysis methods. The authors discuss multivariate extensions to the multilevel model that can be used by psychotherapy researchers. Method and Results Using simulated longitudinal treatment data, the authors show how multivariate models extend common univariate growth models and how the multivariate model can be used to examine multivariate hypotheses involving fixed effects (e.g., does the size of the treatment effect differ across outcomes?) and random effects (e.g., is change in one outcome related to change in the other?). An online supplemental appendix provides annotated computer code and simulated example data for implementing a multivariate model. Conclusions Multivariate multilevel models are flexible, powerful models that can enhance clinical research. PMID:24491071

  3. Following healthy pregnancy by nuclear magnetic resonance (NMR) metabolic profiling of human urine.

    PubMed

    Diaz, Sílvia O; Barros, António S; Goodfellow, Brian J; Duarte, Iola F; Carreira, Isabel M; Galhano, Eulália; Pita, Cristina; Almeida, Maria do Céu; Gil, Ana M

    2013-02-01

    In this work, untargeted NMR metabonomics was employed to evaluate the effects of pregnancy on the metabolite composition of maternal urine, thus establishing a control excretory trajectory for healthy pregnancies. Urine was collected for independent groups of healthy nonpregnant and pregnant women (in first, second, third trimesters) and multivariate analysis performed on the corresponding NMR spectra. Models were validated through Monte Carlo Cross Validation and permutation tests and metabolite correlations measured through Statistical Total Correlation Spectroscopy. The levels of 21 metabolites were found to change significantly throughout pregnancy, with variations observed for the first time to our knowledge for choline, creatinine, 4-deoxyerythronic acid, 4-deoxythreonic acid, furoylglycine, guanidoacetate, 3-hydroxybutyrate, and lactate. Results confirmed increased aminoaciduria across pregnancy and suggested (a) a particular involvement of isoleucine and threonine in lipid oxidation/ketone body synthesis, (b) a relation of excreted choline, taurine, and guanidoacetate to methionine metabolism and urea cycle regulation, and (c) a possible relationship of furoylglycine and creatinine to pregnancy, based on a tandem study of nonfasting confounding effects. Results demonstrate the usefulness of untargeted metabonomics in finding biomarker metabolic signatures for healthy pregnancies, against which disease-related deviations may be confronted in future studies, as a base for improved diagnostics and prediction.

  4. Comparative study on the gut microbiotas of four economically important Asian carp species.

    PubMed

    Li, Xinghao; Yu, Yuhe; Li, Chang; Yan, Qingyun

    2018-05-07

    Gut microbiota of four economically important Asian carp species (silver carp, Hypophthalmichthys molitrix; bighead carp, Hypophthalmichthys nobilis; grass carp, Ctenopharyngodon idella; common carp, Cyprinus carpio) were compared using 16S rRNA gene pyrosequencing. Analysis of more than 590,000 quality-filtered sequences obtained from the foregut, midgut and hindgut of these four carp species revealed high microbial diversity among the samples. The foregut samples of grass carp exhibited more than 1,600 operational taxonomy units (OTUs) and the highest alpha-diversity index, followed by the silver carp foregut and midgut. Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria were the predominant phyla regardless of fish species or gut type. Pairwise (weighted) UniFrac distance-based permutational multivariate analysis of variance with fish species as a factor produced significant association (P<0.01). The gut microbiotas of all four carp species harbored saccharolytic or proteolytic microbes, likely in response to the differences in their feeding habits. In addition, extensive variations were also observed even within the same fish species. Our results indicate that the gut microbiotas of Asian carp depend on the exact species, even when the different species were cohabiting in the same environment. This study provides some new insights into developing commercial fish feeds and improving existing aquaculture strategies.

  5. Minerals in soil select distinct bacterial communities in their microhabitats.

    PubMed

    Carson, Jennifer K; Campbell, Louise; Rooney, Deirdre; Clipson, Nicholas; Gleeson, Deirdre B

    2009-03-01

    We tested the hypothesis that different minerals in soil select distinct bacterial communities in their microhabitats. Mica (M), basalt (B) and rock phosphate (RP) were incubated separately in soil planted with Trifolium subterraneum, Lolium rigidum or left unplanted. After 70 days, the mineral and soil fractions were separated by sieving. Automated ribosomal intergenic spacer analysis was used to determine whether the bacterial community structure was affected by the mineral, fraction and plant treatments. Principal coordinate plots showed clustering of bacterial communities from different fraction and mineral treatments, but not from different plant treatments. Permutational multivariate anova (permanova) showed that the microhabitats of M, B and RP selected bacterial communities different from each other in unplanted and L. rigidum, and in T. subterraneum, bacterial communities from M and B differed (P<0.046). permanova also showed that each mineral fraction selected bacterial communities different from the surrounding soil fraction (P<0.05). This study shows that the structure of bacterial communities in soil is influenced by the mineral substrates in their microhabitat and that minerals in soil play a greater role in bacterial ecology than simply providing an inert matrix for bacterial growth. This study suggests that mineral heterogeneity in soil contributes to the spatial variation in bacterial communities.

  6. Cadaver Thanatomicrobiome Signatures: The Ubiquitous Nature of Clostridium Species in Human Decomposition.

    PubMed

    Javan, Gulnaz T; Finley, Sheree J; Smith, Tasia; Miller, Joselyn; Wilkinson, Jeremy E

    2017-01-01

    Human thanatomicrobiome studies have established that an abundant number of putrefactive bacteria within internal organs of decaying bodies are obligate anaerobes, Clostridium spp. These microorganisms have been implicated as etiological agents in potentially life-threatening infections; notwithstanding, the scale and trajectory of these microbes after death have not been elucidated. We performed phylogenetic surveys of thanatomicrobiome signatures of cadavers' internal organs to compare the microbial diversity between the 16S rRNA gene V4 hypervariable region and V3-4 conjoined regions from livers and spleens of 45 cadavers undergoing forensic microbiological studies. Phylogenetic analyses of 16S rRNA gene sequences revealed that the V4 region had a significantly higher mean Chao1 richness within the total microbiome data. Permutational multivariate analysis of variance statistical tests, based on unweighted UniFrac distances, demonstrated that taxa compositions were significantly different between V4 and V3-4 hypervariable regions ( p < 0.001). Of note, we present the first study, using the largest cohort of criminal cases to date, that two hypervariable regions show discriminatory power for human postmortem microbial diversity. In conclusion, here we propose the impact of hypervariable region selection for the 16S rRNA gene in differentiating thanatomicrobiomic profiles to provide empirical data to explain a unique concept, the Postmortem Clostridium Effect.

  7. Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters.

    PubMed

    Johnson, Riegardt M; Ramond, Jean-Baptiste; Gunnigle, Eoin; Seely, Mary; Cowan, Don A

    2017-03-01

    The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R 2  = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R 2  ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH 4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.

  8. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem.

    PubMed

    Rodríguez-Caballero, G; Caravaca, F; Fernández-González, A J; Alguacil, M M; Fernández-López, M; Roldán, A

    2017-04-15

    The main goal of this study was to assess the effect of the inoculation of four autochthonous shrub species with the arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices on the rhizosphere bacterial community and to ascertain whether such an effect is dependent on the host plant species. Additionally, analysis of rhizosphere soil chemical and biochemical properties was performed to find relationships between them and the rhizosphere bacterial communities. Non-metric multidimensional scaling analysis and subsequent permutational multivariate analysis of variance revealed differences in bacterial community composition and structure between non-inoculated and inoculated rhizospheres. Moreover, an influence of the plant species was observed. Different bacterial groups were found to be indicator taxonomic groups of non-inoculated and inoculated rhizospheres, Gemmatimonadetes and Anaerolineaceae, respectively, being the most notable indicators. As shown by distance based redundancy analysis, the shifts in bacterial community composition and structure mediated by the inoculation with the AM fungus were mainly related to changes in plant nutrients and growth parameters, such as the shoot phosphorus content. Our findings suggest that the AM fungal inoculum was able to modify the rhizosphere bacterial community assemblage while improving the host plant performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Enteral tube feeding alters the oral indigenous microbiota in elderly adults.

    PubMed

    Takeshita, Toru; Yasui, Masaki; Tomioka, Mikiko; Nakano, Yoshio; Shimazaki, Yoshihiro; Yamashita, Yoshihisa

    2011-10-01

    Enteral tube feeding is widely used to maintain nutrition for elderly adults with eating difficulties, but its long-term use alters the environment of the oral ecosystem. This study characterized the tongue microbiota of tube-fed elderly adults by analyzing the 16S rRNA gene. The terminal restriction fragment length polymorphism (T-RFLP) profiles of 44 tube-fed subjects were compared with those of 54 subjects fed orally (average age, 86.4 ± 6.9 years). Bar-coded pyrosequencing data were also obtained for a subset of the subjects from each group (15 tube-fed subjects and 16 subjects fed orally). The T-RFLP profiles demonstrated that the microbiota of the tube-fed subjects was distinct from that of the subjects fed orally (permutational multivariate analysis of variance [perMANOVA], P < 0.001). The pyrosequencing data revealed that 22 bacterial genera, including Corynebacterium, Peptostreptococcus, and Fusobacterium, were significantly more predominant in tube-fed subjects, whereas the dominant genera in the subjects fed orally, such as Streptococcus and Veillonella, were present in much lower proportions. Opportunistic pathogens rarely detected in the normal oral microbiota, such as Corynebacterium striatum and Streptococcus agalactiae, were often found in high proportions in tube-fed subjects. The oral indigenous microbiota is disrupted by the use of enteral feeding, allowing health-threatening bacteria to thrive.

  10. Bird distributional patterns support biogeographical histories and are associated with bioclimatic units in the Atlantic Forest, Brazil.

    PubMed

    Carvalho, Cristiano DE Santana; Nascimento, Nayla Fábia Ferreira DO; Araujo, Helder F P DE

    2017-10-17

    Rivers as barriers to dispersal and past forest refugia are two of the hypotheses proposed to explain the patterns of biodiversity in the Atlantic Forest. It has recently been shown that possible past refugia correspond to bioclimatically different regions, so we tested whether patterns of shared distribution of bird taxa in the Atlantic Forest are 1) limited by the Doce and São Francisco rivers or 2) associated with the bioclimatically different southern and northeastern regions. We catalogued lists of forest birds from 45 locations, 36 in the Atlantic forest and nine in Amazon, and used parsimony analysis of endemicity to identify groups of shared taxa. We also compared differences between these groups by permutational multivariate analysis of variance and identified the species that best supported the resulting groups. The results showed that the distribution of forest birds is divided into two main regions in the Atlantic Forest, the first with more southern localities and the second with northeastern localities. This distributional pattern is not delimited by riverbanks, but it may be associated with bioclimatic units, surrogated by altitude, that maintain current environmental differences between two main regions on Atlantic Forest and may be related to phylogenetic histories of taxa supporting the two groups.

  11. Diagnostic index of three-dimensional osteoarthritic changes in temporomandibular joint condylar morphology

    PubMed Central

    Gomes, Liliane R.; Gomes, Marcelo; Jung, Bryan; Paniagua, Beatriz; Ruellas, Antonio C.; Gonçalves, João Roberto; Styner, Martin A.; Wolford, Larry; Cevidanes, Lucia

    2015-01-01

    Abstract. This study aimed to investigate imaging statistical approaches for classifying three-dimensional (3-D) osteoarthritic morphological variations among 169 temporomandibular joint (TMJ) condyles. Cone-beam computed tomography scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA), 15 subjects at initial diagnosis of OA, and 7 healthy controls. Three-dimensional surface models of the condyles were constructed and SPHARM-PDM established correspondent points on each model. Multivariate analysis of covariance and direction-projection-permutation (DiProPerm) were used for testing statistical significance of the differences between the groups determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering was then conducted. Compared with healthy controls, OA average condyle was significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis. We observed areas of 3.88-mm bone resorption at the superior surface and 3.10-mm bone apposition at the anterior aspect of the long-term OA average model. DiProPerm supported a significant difference between the healthy control and OA group (p-value=0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3-D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition. PMID:26158119

  12. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling

    PubMed Central

    Chen, Gang; Taylor, Paul A.; Shin, Yong-Wook; Reynolds, Richard C.; Cox, Robert W.

    2016-01-01

    It has been argued that naturalistic conditions in FMRI studies provide a useful paradigm for investigating perception and cognition through a synchronization measure, inter-subject correlation (ISC). However, one analytical stumbling block has been the fact that the ISC values associated with each single subject are not independent, and our previous paper (Chen et al., 2016) used simulations and analyses of real data to show that the methodologies adopted in the literature do not have the proper control for false positives. In the same paper, we proposed nonparametric subject-wise bootstrapping and permutation testing techniques for one and two groups, respectively, which account for the correlation structure, and these greatly outperformed the prior methods in controlling the false positive rate (FPR); that is, subject-wise bootstrapping (SWB) worked relatively well for both cases with one and two groups, and subject-wise permutation (SWP) testing was virtually ideal for group comparisons. Here we seek to explicate and adopt a parametric approach through linear mixed-effects (LME) modeling for studying the ISC values, building on the previous correlation framework, with the benefit that the LME platform offers wider adaptability, more powerful interpretations, and quality control checking capability than nonparametric methods. We describe both theoretical and practical issues involved in the modeling and the manner in which LME with crossed random effects (CRE) modeling is applied. A data-doubling step further allows us to conveniently track the subject index, and achieve easy implementations. We pit the LME approach against the best nonparametric methods, and find that the LME framework achieves proper control for false positives. The new LME methodologies are shown to be both efficient and robust, and they will be added as an additional option and settings in an existing open source program, 3dLME, in AFNI (http://afni.nimh.nih.gov). PMID:27751943

  13. Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence.

    PubMed

    Olivares, Felipe; Zunino, Luciano; Gulich, Damián; Pérez, Darío G; Rosso, Osvaldo A

    2017-10-01

    We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy. We show that the permutation entropy estimations at multiple time scales evidence an interplay between different dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional Brownian motion with a Hurst exponent H=5/6 as the sampling time increases. Besides, we are able to quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength. We have also demonstrated that these experimental observations are in very good agreement with numerical simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling regimes.

  14. Comparative Robustness of Recent Methods for Analyzing Multivariate Repeated Measures Designs

    ERIC Educational Resources Information Center

    Seco, Guillermo Vallejo; Gras, Jaime Arnau; Garcia, Manuel Ato

    2007-01-01

    This study evaluated the robustness of two recent methods for analyzing multivariate repeated measures when the assumptions of covariance homogeneity and multivariate normality are violated. Specifically, the authors' work compares the performance of the modified Brown-Forsythe (MBF) procedure and the mixed-model procedure adjusted by the…

  15. Image encryption using random sequence generated from generalized information domain

    NASA Astrophysics Data System (ADS)

    Xia-Yan, Zhang; Guo-Ji, Zhang; Xuan, Li; Ya-Zhou, Ren; Jie-Hua, Wu

    2016-05-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation-diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.

  16. Combined group ECC protection and subgroup parity protection

    DOEpatents

    Gara, Alan G.; Chen, Dong; Heidelberger, Philip; Ohmacht, Martin

    2013-06-18

    A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.

  17. The exact probability distribution of the rank product statistics for replicated experiments.

    PubMed

    Eisinga, Rob; Breitling, Rainer; Heskes, Tom

    2013-03-18

    The rank product method is a widely accepted technique for detecting differentially regulated genes in replicated microarray experiments. To approximate the sampling distribution of the rank product statistic, the original publication proposed a permutation approach, whereas recently an alternative approximation based on the continuous gamma distribution was suggested. However, both approximations are imperfect for estimating small tail probabilities. In this paper we relate the rank product statistic to number theory and provide a derivation of its exact probability distribution and the true tail probabilities. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports

    NASA Astrophysics Data System (ADS)

    Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R.

    2017-12-01

    Supported nanoparticles containing more than one metal have a variety of applications in sensing, catalysis, and biomedicine. Common synthesis techniques for this type of material often result in large, unalloyed nanoparticles that lack the interactions between the two metals that give the particles their desired characteristics. We demonstrate a relatively simple, effective, generalizable method to produce highly dispersed, well-alloyed bimetallic nanoparticles. Ten permutations of noble and base metals (platinum, palladium, copper, nickel, and cobalt) were synthesized with average particle sizes from 0.9 to 1.4 nanometers, with tight size distributions. High-resolution imaging and x-ray analysis confirmed the homogeneity of alloying in these ultrasmall nanoparticles.

  19. Adinkra (in)equivalence from Coxeter group representations: A case study

    NASA Astrophysics Data System (ADS)

    Chappell, Isaac; Gates, S. James; Hübsch, T.

    2014-02-01

    Using a MathematicaTM code, we present a straightforward numerical analysis of the 384-dimensional solution space of signed permutation 4×4 matrices, which in sets of four, provide representations of the 𝒢ℛ(4, 4) algebra, closely related to the 𝒩 = 1 (simple) supersymmetry algebra in four-dimensional space-time. Following after ideas discussed in previous papers about automorphisms and classification of adinkras and corresponding supermultiplets, we make a new and alternative proposal to use equivalence classes of the (unsigned) permutation group S4 to define distinct representations of higher-dimensional spin bundles within the context of adinkras. For this purpose, the definition of a dual operator akin to the well-known Hodge star is found to partition the space of these 𝒢ℛ(4, 4) representations into three suggestive classes.

  20. A Spectral Algorithm for Envelope Reduction of Sparse Matrices

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.

    1993-01-01

    The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.

  1. Recovering DC coefficients in block-based DCT.

    PubMed

    Uehara, Takeyuki; Safavi-Naini, Reihaneh; Ogunbona, Philip

    2006-11-01

    It is a common approach for JPEG and MPEG encryption systems to provide higher protection for dc coefficients and less protection for ac coefficients. Some authors have employed a cryptographic encryption algorithm for the dc coefficients and left the ac coefficients to techniques based on random permutation lists which are known to be weak against known-plaintext and chosen-ciphertext attacks. In this paper we show that in block-based DCT, it is possible to recover dc coefficients from ac coefficients with reasonable image quality and show the insecurity of image encryption methods which rely on the encryption of dc values using a cryptoalgorithm. The method proposed in this paper combines dc recovery from ac coefficients and the fact that ac coefficients can be recovered using a chosen ciphertext attack. We demonstrate that a method proposed by Tang to encrypt and decrypt MPEG video can be completely broken.

  2. Assessing the significance of global and local correlations under spatial autocorrelation: a nonparametric approach.

    PubMed

    Viladomat, Júlia; Mazumder, Rahul; McInturff, Alex; McCauley, Douglas J; Hastie, Trevor

    2014-06-01

    We propose a method to test the correlation of two random fields when they are both spatially autocorrelated. In this scenario, the assumption of independence for the pair of observations in the standard test does not hold, and as a result we reject in many cases where there is no effect (the precision of the null distribution is overestimated). Our method recovers the null distribution taking into account the autocorrelation. It uses Monte-Carlo methods, and focuses on permuting, and then smoothing and scaling one of the variables to destroy the correlation with the other, while maintaining at the same time the initial autocorrelation. With this simulation model, any test based on the independence of two (or more) random fields can be constructed. This research was motivated by a project in biodiversity and conservation in the Biology Department at Stanford University. © 2014, The International Biometric Society.

  3. Soft tissue nasal asymmetry as an indicator of orofacial cleft predisposition.

    PubMed

    Zhang, Charles; Miller, Steven F; Roosenboom, Jasmien; Wehby, George L; Moreno Uribe, Lina M; Hecht, Jacqueline T; Deleyiannis, Frederic W B; Christensen, Kaare; Marazita, Mary L; Weinberg, Seth M

    2018-06-01

    The biological relatives of offspring with nonsyndromic orofacial clefts have been shown to exhibit distinctive facial features, including excess asymmetry, which are hypothesized to indicate the presence of genetic risk factors. The significance of excess soft tissue nasal asymmetry in at-risk relatives is unclear and was examined in the present study. Our sample included 164 unaffected parents from families with a history of orofacial clefting and 243 adult controls. Geometric morphometric methods were used to analyze the coordinates of 15 nasal landmarks collected from three-dimensional facial surface images. Following generalized Procrustes analysis, Procrustes ANOVA and MANOVA tests were applied to determine the type and magnitude of nasal asymmetry present in each group. Group differences in mean nasal asymmetry were also assessed via permutation testing. We found that nasal asymmetry in both parents and controls was directional in nature, although the magnitude of the asymmetry was greater in parents. This was confirmed with permutation testing, where the mean nasal asymmetry was significantly different (p < .0001) between parents and controls. The asymmetry was greatest for midline structures and the nostrils. When subsets of parents were subsequently analyzed and compared (parents with bilateral vs. unilateral offspring; parents with left vs. right unilateral offspring), each group showed a similar pattern of asymmetry and could not be distinguished statistically. Thus, the side of the unilateral cleft (right vs. left) in offspring was not associated with the direction of the nasal asymmetry in parents. © 2018 Wiley Periodicals, Inc.

  4. A multiagent evolutionary algorithm for constraint satisfaction problems.

    PubMed

    Liu, Jing; Zhong, Weicai; Jiao, Licheng

    2006-02-01

    With the intrinsic properties of constraint satisfaction problems (CSPs) in mind, we divide CSPs into two types, namely, permutation CSPs and nonpermutation CSPs. According to their characteristics, several behaviors are designed for agents by making use of the ability of agents to sense and act on the environment. These behaviors are controlled by means of evolution, so that the multiagent evolutionary algorithm for constraint satisfaction problems (MAEA-CSPs) results. To overcome the disadvantages of the general encoding methods, the minimum conflict encoding is also proposed. Theoretical analyzes show that MAEA-CSPs has a linear space complexity and converges to the global optimum. The first part of the experiments uses 250 benchmark binary CSPs and 79 graph coloring problems from the DIMACS challenge to test the performance of MAEA-CSPs for nonpermutation CSPs. MAEA-CSPs is compared with six well-defined algorithms and the effect of the parameters is analyzed systematically. The second part of the experiments uses a classical CSP, n-queen problems, and a more practical case, job-shop scheduling problems (JSPs), to test the performance of MAEA-CSPs for permutation CSPs. The scalability of MAEA-CSPs along n for n-queen problems is studied with great care. The results show that MAEA-CSPs achieves good performance when n increases from 10(4) to 10(7), and has a linear time complexity. Even for 10(7)-queen problems, MAEA-CSPs finds the solutions by only 150 seconds. For JSPs, 59 benchmark problems are used, and good performance is also obtained.

  5. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    PubMed Central

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  6. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor.

    PubMed

    Jain, Rajan; Poisson, Laila M; Gutman, David; Scarpace, Lisa; Hwang, Scott N; Holder, Chad A; Wintermark, Max; Rao, Arvind; Colen, Rivka R; Kirby, Justin; Freymann, John; Jaffe, C Carl; Mikkelsen, Tom; Flanders, Adam

    2014-08-01

    To correlate patient survival with morphologic imaging features and hemodynamic parameters obtained from the nonenhancing region (NER) of glioblastoma (GBM), along with clinical and genomic markers. An institutional review board waiver was obtained for this HIPAA-compliant retrospective study. Forty-five patients with GBM underwent baseline imaging with contrast material-enhanced magnetic resonance (MR) imaging and dynamic susceptibility contrast-enhanced T2*-weighted perfusion MR imaging. Molecular and clinical predictors of survival were obtained. Single and multivariable models of overall survival (OS) and progression-free survival (PFS) were explored with Kaplan-Meier estimates, Cox regression, and random survival forests. Worsening OS (log-rank test, P = .0103) and PFS (log-rank test, P = .0223) were associated with increasing relative cerebral blood volume of NER (rCBVNER), which was higher with deep white matter involvement (t test, P = .0482) and poor NER margin definition (t test, P = .0147). NER crossing the midline was the only morphologic feature of NER associated with poor survival (log-rank test, P = .0125). Preoperative Karnofsky performance score (KPS) and resection extent (n = 30) were clinically significant OS predictors (log-rank test, P = .0176 and P = .0038, respectively). No genomic alterations were associated with survival, except patients with high rCBVNER and wild-type epidermal growth factor receptor (EGFR) mutation had significantly poor survival (log-rank test, P = .0306; area under the receiver operating characteristic curve = 0.62). Combining resection extent with rCBVNER marginally improved prognostic ability (permutation, P = .084). Random forest models of presurgical predictors indicated rCBVNER as the top predictor; also important were KPS, age at diagnosis, and NER crossing the midline. A multivariable model containing rCBVNER, age at diagnosis, and KPS can be used to group patients with more than 1 year of difference in observed median survival (0.49-1.79 years). Patients with high rCBVNER and NER crossing the midline and those with high rCBVNER and wild-type EGFR mutation showed poor survival. In multivariable survival models, however, rCBVNER provided unique prognostic information that went above and beyond the assessment of all NER imaging features, as well as clinical and genomic features.

  7. Assessment of the Lower Urinary Tract Microbiota during Symptom Flare in Women with Urologic Chronic Pelvic Pain Syndrome: A MAPP Network Study.

    PubMed

    Nickel, J Curtis; Stephens, Alisa; Landis, J Richard; Mullins, Chris; van Bokhoven, Adrie; Lucia, M Scott; Ehrlich, Garth D

    2016-02-01

    We compared culture independent assessment of microbiota of the lower urinary tract in standard culture negative female patients with urological chronic pelvic pain syndrome who reported symptom flare vs those who did not report a flare. Initial stream (VB1) and midstream (VB2) urine specimens (233 patients with urological chronic pelvic pain syndrome) were analyzed with Ibis T-5000 Universal Biosensor system technology for comprehensive identification of microorganism species. Differences between flare and nonflare groups for presence or number of different species within a higher level group (richness) were examined by permutational multivariate analysis of variance and logistic regression. Overall 81 species (35 genera) were detected in VB1 and 73 (33) in VB2. Mean (SD) VB1 and VB2 species count per person was 2.6 (1.5) and 2.4 (1.5) for 86 flare cases and 2.8 (1.3) and 2.5 (1.5) for 127 nonflare cases, respectively. Overall the species composition did not significantly differ between flare and nonflare cases at any level (p=0.14 species, p=0.95 genus in VB1 and VB2, respectively) in multivariate analysis for richness. Univariate analysis, unadjusted as well as adjusted, confirmed a significantly greater prevalence of fungi (Candida and Saccharomyces) in the flare group (15.7%) compared to the nonflare group in VB2 (3.9%) (p=0.01). When adjusted for antibiotic use and menstrual phase, women who reported a flare remained more likely to have fungi present in VB2 specimens (OR 8.3, CI 1.7-39.4). Among women with urological chronic pelvic pain syndrome the prevalence of fungi (Candida and Saccharomyces sp.) was significantly greater in those who reported a flare compared to those who did not. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Using empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes.

    PubMed

    Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O

    2018-01-01

    Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.

  9. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    PubMed

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  10. Capacity of the generalized PPM channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Klimesh, Matt; McEliece, Bob; Moision, Bruce

    2004-01-01

    We show the capacity of a generalized pulse-position-modulation (PPM) channel, where the input vectors may be any set that allows a transitive group of coordinate permutations, is achieved by a uniform input distribution.

  11. Parallel approach on sorting of genes in search of optimal solution.

    PubMed

    Kumar, Pranav; Sahoo, G

    2018-05-01

    An important tool for comparing genome analysis is the rearrangement event that can transform one given genome into other. For finding minimum sequence of fission and fusion, we have proposed here an algorithm and have shown a transformation example for converting the source genome into the target genome. The proposed algorithm comprises of circular sequence i.e. "cycle graph" in place of mapping. The main concept of algorithm is based on optimal result of permutation. These sorting processes are performed in constant running time by showing permutation in the form of cycle. In biological instances it has been observed that transposition occurs half of the frequency as that of reversal. In this paper we are not dealing with reversal instead commencing with the rearrangement of fission, fusion as well as transposition. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Repelling Point Bosons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J. B.

    2011-12-01

    There is a body of conventional wisdom that holds that a solvable quantum problem, by virtue of its solvability, is pathological and thus irrelevant. It has been difficult to refute this view owing to the paucity of theoretical constructs and experimental results. Recent experiments involving equivalent ions trapped in a spatial conformation of extreme anisotropic confinement (longitudinal extension tens, hundreds or even thousands of times transverse extension) have modified the view of relevancy, and it is now possible to consider systems previously thought pathological, in particular point Bosons that repel in one dimension. It has been difficult for the experimentalistsmore » to utilize existing theory, mainly due to long-standing theoretical misunderstanding of the relevance of the permutation group, in particular the non-commutativity of translations (periodicity) and transpositions (permutation). This misunderstanding is most easily rectified in the case of repelling Bosons.« less

  13. Parallel solution of closely coupled systems

    NASA Technical Reports Server (NTRS)

    Utku, S.; Salama, M.

    1986-01-01

    The odd-even permutation and associated unitary transformations for reordering the matrix coefficient A are employed as means of breaking the strong seriality which is characteristic of closely coupled systems. The nested dissection technique is also reviewed, and the equivalence between reordering A and dissecting its network is established. The effect of transforming A with odd-even permutation on its topology and the topology of its Cholesky factors is discussed. This leads to the construction of directed graphs showing the computational steps required for factoring A, their precedence relationships and their sequential and concurrent assignment to the available processors. Expressions for the speed-up and efficiency of using N processors in parallel relative to the sequential use of a single processor are derived from the directed graph. Similar expressions are also derived when the number of available processors is fewer than required.

  14. The structure of EAP-groups and self-autopermutable subgroups.

    PubMed

    Housieni, Shima; Moghaddam, Mohammad Reza Rajabzadeh

    2014-01-01

    A subgroup H of a given group G is said to be autopermutable, if HH(α) = H(α)H for all α ∈ Aut(G). We also call H a self-autopermutable subgroup of G, when HH(α) = H(α)H implies that H(α) = H. Moreover, G is said to be EAP-group, if every subgroup of G is autopermutable. One notes that if α runs over the inner automorphisms of the group, one obtains the notions of conjugate-permutability, self-conjugate-permutability, and ECP-groups, which were studied by Foguel in 1997, Li and Meng in 2007, and Xu and Zhang in 2005, respectively. In the present paper, we determine the structure of a finite EAP-group when its centre is of index 4 in G. We also show that self-autopermutability and characteristic properties are equivalent for nilpotent groups.

  15. Permutation Entropy Applied to Movement Behaviors of Drosophila Melanogaster

    NASA Astrophysics Data System (ADS)

    Liu, Yuedan; Chon, Tae-Soo; Baek, Hunki; Do, Younghae; Choi, Jin Hee; Chung, Yun Doo

    Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.

  16. Recursive boson system in the Cuntz algebra O{sub {infinity}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Katsunori

    2007-09-15

    Bosons and fermions are often written by elements of other algebras. Abe (private communication) gave a realization of bosons by formal infinite sums of the canonical generators of the Cuntz algebra O{sub {infinity}}. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of O{sub {infinity}}. In this meaning, we can regard as if the algebra B of bosons was a unital *-subalgebra of O{sub {infinity}} on a given permutative representation. According to this relation, we compute branching laws arising from restrictions of representations of O{sub {infinity}} on B. For example,more » it is shown that the Fock representation of B is given as the restriction of the standard representation of O{sub {infinity}} on B.« less

  17. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  18. Effects of propofol, sevoflurane, remifentanil, and (S)-ketamine in subanesthetic concentrations on visceral and somatosensory pain-evoked potentials.

    PubMed

    Untergehrer, Gisela; Jordan, Denis; Eyl, Sebastian; Schneider, Gerhard

    2013-02-01

    Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain-evoked potentials (VPEP) and contact heat-evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs. In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation. With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application. Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.

  19. Augmenting the logrank test in the design of clinical trials in which non-proportional hazards of the treatment effect may be anticipated.

    PubMed

    Royston, Patrick; Parmar, Mahesh K B

    2016-02-11

    Most randomized controlled trials with a time-to-event outcome are designed assuming proportional hazards (PH) of the treatment effect. The sample size calculation is based on a logrank test. However, non-proportional hazards are increasingly common. At analysis, the estimated hazards ratio with a confidence interval is usually presented. The estimate is often obtained from a Cox PH model with treatment as a covariate. If non-proportional hazards are present, the logrank and equivalent Cox tests may lose power. To safeguard power, we previously suggested a 'joint test' combining the Cox test with a test of non-proportional hazards. Unfortunately, a larger sample size is needed to preserve power under PH. Here, we describe a novel test that unites the Cox test with a permutation test based on restricted mean survival time. We propose a combined hypothesis test based on a permutation test of the difference in restricted mean survival time across time. The test involves the minimum of the Cox and permutation test P-values. We approximate its null distribution and correct it for correlation between the two P-values. Using extensive simulations, we assess the type 1 error and power of the combined test under several scenarios and compare with other tests. We investigate powering a trial using the combined test. The type 1 error of the combined test is close to nominal. Power under proportional hazards is slightly lower than for the Cox test. Enhanced power is available when the treatment difference shows an 'early effect', an initial separation of survival curves which diminishes over time. The power is reduced under a 'late effect', when little or no difference in survival curves is seen for an initial period and then a late separation occurs. We propose a method of powering a trial using the combined test. The 'insurance premium' offered by the combined test to safeguard power under non-PH represents about a single-digit percentage increase in sample size. The combined test increases trial power under an early treatment effect and protects power under other scenarios. Use of restricted mean survival time facilitates testing and displaying a generalized treatment effect.

  20. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    PubMed

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Complexity-Entropy Causality Plane as a Complexity Measure for Two-Dimensional Patterns

    PubMed Central

    Ribeiro, Haroldo V.; Zunino, Luciano; Lenzi, Ervin K.; Santoro, Perseu A.; Mendes, Renio S.

    2012-01-01

    Complexity measures are essential to understand complex systems and there are numerous definitions to analyze one-dimensional data. However, extensions of these approaches to two or higher-dimensional data, such as images, are much less common. Here, we reduce this gap by applying the ideas of the permutation entropy combined with a relative entropic index. We build up a numerical procedure that can be easily implemented to evaluate the complexity of two or higher-dimensional patterns. We work out this method in different scenarios where numerical experiments and empirical data were taken into account. Specifically, we have applied the method to fractal landscapes generated numerically where we compare our measures with the Hurst exponent; liquid crystal textures where nematic-isotropic-nematic phase transitions were properly identified; 12 characteristic textures of liquid crystals where the different values show that the method can distinguish different phases; and Ising surfaces where our method identified the critical temperature and also proved to be stable. PMID:22916097

  2. The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications.

    PubMed

    Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter

    2013-10-07

    We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.

  3. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  4. Combined group ECC protection and subgroup parity protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gara, Alan; Cheng, Dong; Heidelberger, Philip

    A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit widemore » vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.« less

  5. Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed

    2014-09-01

    The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.

  6. Phase transitions between lower and higher level management learning in times of crisis: an experimental study based on synergetics.

    PubMed

    Liening, Andreas; Strunk, Guido; Mittelstadt, Ewald

    2013-10-01

    Much has been written about the differences between single- and double-loop learning, or more general between lower level and higher level learning. Especially in times of a fundamental crisis, a transition between lower and higher level learning would be an appropriate reaction to a challenge coming entirely out of the dark. However, so far there is no quantitative method to monitor such a transition. Therefore we introduce theory and methods of synergetics and present results from an experimental study based on the simulation of a crisis within a business simulation game. Hypothesized critical fluctuations - as a marker for so-called phase transitions - have been assessed with permutation entropy. Results show evidence for a phase transition during the crisis, which can be interpreted as a transition between lower and higher level learning.

  7. Bivariate versus multivariate smart spectrophotometric calibration methods for the simultaneous determination of a quaternary mixture of mosapride, pantoprazole and their degradation products.

    PubMed

    Hegazy, M A; Yehia, A M; Moustafa, A A

    2013-05-01

    The ability of bivariate and multivariate spectrophotometric methods was demonstrated in the resolution of a quaternary mixture of mosapride, pantoprazole and their degradation products. The bivariate calibrations include bivariate spectrophotometric method (BSM) and H-point standard addition method (HPSAM), which were able to determine the two drugs, simultaneously, but not in the presence of their degradation products, the results showed that simultaneous determinations could be performed in the concentration ranges of 5.0-50.0 microg/ml for mosapride and 10.0-40.0 microg/ml for pantoprazole by bivariate spectrophotometric method and in the concentration ranges of 5.0-45.0 microg/ml for both drugs by H-point standard addition method. Moreover, the applied multivariate calibration methods were able for the determination of mosapride, pantoprazole and their degradation products using concentration residuals augmented classical least squares (CRACLS) and partial least squares (PLS). The proposed multivariate methods were applied to 17 synthetic samples in the concentration ranges of 3.0-12.0 microg/ml mosapride, 8.0-32.0 microg/ml pantoprazole, 1.5-6.0 microg/ml mosapride degradation products and 2.0-8.0 microg/ml pantoprazole degradation products. The proposed bivariate and multivariate calibration methods were successfully applied to the determination of mosapride and pantoprazole in their pharmaceutical preparations.

  8. Effects of geoduck (Panopea generosa) aquaculture on resident and transient macrofauna communities of Puget Sound, Washington, USA

    USGS Publications Warehouse

    Mcdonald, P. Sean; Galloway, Aaron W.E.; McPeek, Kathleen C.; VanBlaricom, Glenn R.

    2015-01-01

    In Washington state, commercial culture of geoducks (Panopea generosa) involves large-scale out-planting of juveniles to intertidal habitats, and installation of PVC tubes and netting to exclude predators and increase early survival. Structures associated with this nascent aquaculture method are examined to determine whether they affect patterns of use by resident and transient macrofauna. Results are summarized from regular surveys of aquaculture operations and reference beaches in 2009 to 2011 at three sites during three phases of culture: (1) pregear (-geoducks, -structure), (2) gear present (+geoducks, +structures), and (3) postgear (+geoducks, -structures). Resident macroinvertebrates (infauna and epifauna) were sampled monthly (in most cases) using coring methods at low tide during all three phases. Differences in community composition between culture plots and reference areas were examined with permutational analysis of variance and homogeneity of multivariate dispersion tests. Scuba and shoreline transect surveys were used to examine habitat use by transient fish and macroinvertebrates. Analysis of similarity and complementary nonmetric multidimensional scaling were used to compare differences between species functional groups and habitat type during different aquaculture phases. Results suggest that resident and transient macrofauna respond differently to structures associated with geoduck aquaculture. No consistent differences in the community of resident macrofauna were observed at culture plots or reference areas at the three sites during any year. Conversely, total abundance of transient fish and macroinvertebrates were more than two times greater at culture plots than reference areas when aquaculture structures were in place. Community composition differed (analysis of similarity) between culture and reference plots during the gear-present phase, but did not persist to the next farming stage (postgear). Habitat complexity associated with shellfish aquaculture may attract some structure-associated transient species observed infrequently on reference beaches, and may displace other species that typically occur in areas lacking epibenthic structure. This study provides a first look at the effects of multiple phases of geoduck farming on macrofauna, and has important implications for the management of a rapidly expanding sector of the aquaculture industry.

  9. Symmetry breaking in a nutshell: the odyssey of a pseudo problem in molecular physics. The X̃(2)Σ(u)(+) BNB case revisited.

    PubMed

    Kalemos, Apostolos

    2013-06-14

    The X̃(2)Σu (+) BNB state considered to be of symmetry broken (SB) character has been studied by high level multireference variational and full configuration interaction methods. We discuss in great detail the roots of the so-called SB problem and we offer an in depth analysis of the unsuspected reasons behind the double minimum topology found in practically all previous theoretical investigations. We argue that the true reason of failure to recover a D∞h equilibrium geometry lies in the lack of the correct permutational symmetry of the wavefunctions employed and is by no means a real effect.

  10. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    DOE PAGES

    Peng, Bo; Kowalski, Karol

    2017-01-25

    In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.

  11. Predication-based semantic indexing: permutations as a means to encode predications in semantic space.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C

    2009-11-14

    Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.

  12. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Kowalski, Karol

    In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.

  13. Plasmid mapping computer program.

    PubMed Central

    Nolan, G P; Maina, C V; Szalay, A A

    1984-01-01

    Three new computer algorithms are described which rapidly order the restriction fragments of a plasmid DNA which has been cleaved with two restriction endonucleases in single and double digestions. Two of the algorithms are contained within a single computer program (called MPCIRC). The Rule-Oriented algorithm, constructs all logical circular map solutions within sixty seconds (14 double-digestion fragments) when used in conjunction with the Permutation method. The program is written in Apple Pascal and runs on an Apple II Plus Microcomputer with 64K of memory. A third algorithm is described which rapidly maps double digests and uses the above two algorithms as adducts. Modifications of the algorithms for linear mapping are also presented. PMID:6320105

  14. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  15. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  16. Regional Value Analysis at Threat Evaluation

    DTIC Science & Technology

    2014-06-01

    targets based on information entropy and fuzzy optimization theory. in Industrial Engineering and Engineering Management (IEEM), 2011 IEEE...Assignment by Virtual Permutation and Tabu Search Heuristics. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2010

  17. Assessing the Implications of Modified Nanomaterials in Bioassay Testing

    EPA Science Inventory

    As nanotechnology advances to product development, filling environmental health and safety knowledge gaps is critical. Nanotoxicology is over-generalized, provided the permutations of nanomaterial variants created by the classes of nanomaterials (carbonaceous, metals, quantum dot...

  18. Enteral Tube Feeding Alters the Oral Indigenous Microbiota in Elderly Adults ▿ †

    PubMed Central

    Takeshita, Toru; Yasui, Masaki; Tomioka, Mikiko; Nakano, Yoshio; Shimazaki, Yoshihiro; Yamashita, Yoshihisa

    2011-01-01

    Enteral tube feeding is widely used to maintain nutrition for elderly adults with eating difficulties, but its long-term use alters the environment of the oral ecosystem. This study characterized the tongue microbiota of tube-fed elderly adults by analyzing the 16S rRNA gene. The terminal restriction fragment length polymorphism (T-RFLP) profiles of 44 tube-fed subjects were compared with those of 54 subjects fed orally (average age, 86.4 ± 6.9 years). Bar-coded pyrosequencing data were also obtained for a subset of the subjects from each group (15 tube-fed subjects and 16 subjects fed orally). The T-RFLP profiles demonstrated that the microbiota of the tube-fed subjects was distinct from that of the subjects fed orally (permutational multivariate analysis of variance [perMANOVA], P < 0.001). The pyrosequencing data revealed that 22 bacterial genera, including Corynebacterium, Peptostreptococcus, and Fusobacterium, were significantly more predominant in tube-fed subjects, whereas the dominant genera in the subjects fed orally, such as Streptococcus and Veillonella, were present in much lower proportions. Opportunistic pathogens rarely detected in the normal oral microbiota, such as Corynebacterium striatum and Streptococcus agalactiae, were often found in high proportions in tube-fed subjects. The oral indigenous microbiota is disrupted by the use of enteral feeding, allowing health-threatening bacteria to thrive. PMID:21821752

  19. Responses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times

    PubMed Central

    Zhao, Jun; Ni, Tian; Li, Yong; Xiong, Wu; Ran, Wei; Shen, Biao; Shen, Qirong; Zhang, Ruifu

    2014-01-01

    Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005) and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter) rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production. PMID:24465530

  20. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    PubMed

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

Top