Multivariable Hermite polynomials and phase-space dynamics
NASA Technical Reports Server (NTRS)
Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.
1994-01-01
The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.
Preliminary Multivariable Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored
Multivariate singular spectrum analysis and the road to phase synchronization
NASA Astrophysics Data System (ADS)
Groth, Andreas; Ghil, Michael
2010-05-01
Singular spectrum analysis (SSA) and multivariate SSA (M-SSA) are based on the classical work of Kosambi (1943), Loeve (1945) and Karhunen (1946) and are closely related to principal component analysis. They have been introduced into information theory by Bertero, Pike and co-workers (1982, 1984) and into dynamical systems analysis by Broomhead and King (1986a,b). Ghil, Vautard and associates have applied SSA and M-SSA to the temporal and spatio-temporal analysis of short and noisy time series in climate dynamics and other fields in the geosciences since the late 1980s. M-SSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trends, oscillatory patterns and noise, and allow one to reconstruct a robust "skeleton" of the dynamical system's structure. For an overview we refer to Ghil et al. (Rev. Geophys., 2002). In this talk, we present M-SSA in the context of synchronization analysis and illustrate its ability to unveil information about the mechanisms behind the adjustment of rhythms in coupled dynamical systems. The focus of the talk is on the special case of phase synchronization between coupled chaotic oscillators (Rosenblum et al., PRL, 1996). Several ways of measuring phase synchronization are in use, and the robust definition of a reasonable phase for each oscillator is critical in each of them. We illustrate here the advantages of M-SSA in the automatic identification of oscillatory modes and in drawing conclusions about the transition to phase synchronization. Without using any a priori definition of a suitable phase, we show that M-SSA is able to detect phase synchronization in a chain of coupled chaotic oscillators (Osipov et al., PRE, 1996). Recently, Muller et al. (PRE, 2005) and Allefeld et al. (Intl. J. Bif. Chaos, 2007) have
Chao, Alexander Wu; /SLAC
2012-03-01
As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.
Acoustic wave network and multivariate analysis for biosensing in space
NASA Astrophysics Data System (ADS)
Jayarajah, Christine N.; Thompson, Michael
2005-03-01
Bioanalytical techniques play an important role in monitoring the effects of environmental stress factors on fundamental life processes. In terms of space flight and extraterrestrial research, radiation, altered and microgravity are known to induce changes in gene expression. We report the use of an on-line transverse shear mode (TSM) acoustic wave biosensor to detect the initiation of gene transcription and DNA — drug binding. Since this biosensor offers real-time, label free monitoring of biological processes, it is possible to detect sequential binding steps as demonstrated in this paper. Furthermore, this sensor responds to several factors in the liquid phase such as viscosity, elasticity, surface tension, charge distribution and mass loading, which can in turn be influenced by specific gravity. The sensing device is a piezoelectric quartz crystal onto which the probe molecule (DNA in this case) is immobilized. Change in resonance frequency of the crystal in response to the binding of the target molecule(s), RNA polymerase and actinomycin-D, is fit to an equivalent circuit model from which multidimensional data is extracted. By performing multivariate analysis on this data we are able to observe interactions between several of these data series representing parameters such as motional resistance and capacitance. As well, we are able to observe the dominating parameters (for instance, frequency vs. motional resistance, which in turn can correspond to mass loading vs. energy dissipation) during the course of the experiment, as they vary between the different steps. Such advantages offered by the TSM sensor along with multivariate analysis are indispensable for biotechnological work under the influence of microgravity as several variables come into play.
Preliminary Multi-Variable Parametric Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Hendrichs, Todd
2010-01-01
This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.
Compactification on phase space
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin; Wheeler, James
2016-03-01
A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.
NASA Astrophysics Data System (ADS)
Sheehan, Daniel Peter
1987-09-01
Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two
Positive phase space distributions and uncertainty relations
NASA Technical Reports Server (NTRS)
Kruger, Jan
1993-01-01
In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.
Information encryption in phase space.
Liu, Jun; Xu, Xiaobin; Wu, Quanying; Sheridan, John T; Situ, Guohai
2015-03-15
In this Letter, we propose an information encryption technique based on the theory of phase-space optics. We show that encoding the plaintext in phase space provides a higher level of security: first, the key-space is significantly enlarged. Second, it is immune to various known-plaintext (cyphertext) attacks to which the double-random phase encryption (DRPE) is vulnerable. Third, the bilinearity of phase-space distributions offers additional security. Theoretical analysis and numerical calculation results show that the proposed technique has significantly different responses to errors added to the cypheretext and the two phase keys in comparison to the classical DRPE.
Atmospheric conditions, lunar phases, and childbirth: a multivariate analysis
NASA Astrophysics Data System (ADS)
Ochiai, Angela Megumi; Gonçalves, Fabio Luiz Teixeira; Ambrizzi, Tercio; Florentino, Lucia Cristina; Wei, Chang Yi; Soares, Alda Valeria Neves; De Araujo, Natalucia Matos; Gualda, Dulce Maria Rosa
2012-07-01
Our objective was to assess extrinsic influences upon childbirth. In a cohort of 1,826 days containing 17,417 childbirths among them 13,252 spontaneous labor admissions, we studied the influence of environment upon the high incidence of labor (defined by 75th percentile or higher), analyzed by logistic regression. The predictors of high labor admission included increases in outdoor temperature (odds ratio: 1.742, P = 0.045, 95%CI: 1.011 to 3.001), and decreases in atmospheric pressure (odds ratio: 1.269, P = 0.029, 95%CI: 1.055 to 1.483). In contrast, increases in tidal range were associated with a lower probability of high admission (odds ratio: 0.762, P = 0.030, 95%CI: 0.515 to 0.999). Lunar phase was not a predictor of high labor admission ( P = 0.339). Using multivariate analysis, increases in temperature and decreases in atmospheric pressure predicted high labor admission, and increases of tidal range, as a measurement of the lunar gravitational force, predicted a lower probability of high admission.
Atmospheric conditions, lunar phases, and childbirth: a multivariate analysis.
Ochiai, Angela Megumi; Gonçalves, Fabio Luiz Teixeira; Ambrizzi, Tercio; Florentino, Lucia Cristina; Wei, Chang Yi; Soares, Alda Valeria Neves; De Araujo, Natalucia Matos; Gualda, Dulce Maria Rosa
2012-07-01
Our objective was to assess extrinsic influences upon childbirth. In a cohort of 1,826 days containing 17,417 childbirths among them 13,252 spontaneous labor admissions, we studied the influence of environment upon the high incidence of labor (defined by 75th percentile or higher), analyzed by logistic regression. The predictors of high labor admission included increases in outdoor temperature (odds ratio: 1.742, P = 0.045, 95%CI: 1.011 to 3.001), and decreases in atmospheric pressure (odds ratio: 1.269, P = 0.029, 95%CI: 1.055 to 1.483). In contrast, increases in tidal range were associated with a lower probability of high admission (odds ratio: 0.762, P = 0.030, 95%CI: 0.515 to 0.999). Lunar phase was not a predictor of high labor admission (P = 0.339). Using multivariate analysis, increases in temperature and decreases in atmospheric pressure predicted high labor admission, and increases of tidal range, as a measurement of the lunar gravitational force, predicted a lower probability of high admission.
On optimal spatial filtering for the detection of phase coupling in multivariate neural recordings.
Waterstraat, G; Curio, G; Nikulin, V V
2017-08-15
Neuronal oscillations synchronize processing in the brain over large spatiotemporal scales and thereby facilitate integration of individual functional modules. Up to now, the relation between the phases of neuronal oscillations and behavior or perception has mainly been analyzed in sensor space of multivariate EEG/MEG recordings. However, sensor-space analysis distorts the topographies of the underlying neuronal sources and suffers from low signal-to-noise ratio. Instead, we propose an optimized source reconstruction approach (Phase Coupling Optimization, PCO). PCO maximizes the 'mean vector length', calculated from the phases of recovered neuronal sources and a target variable of interest (e.g., experimental performance). As pre-processing, the signal-to-noise ratio in the search-space is maximized by spatio-spectral decomposition. PCO was benchmarked against several competing algorithms and sensor-space analysis using realistic forward model simulations. As a practical example, thirteen 96-channel EEG measurements during a simple reaction time task were analyzed. After time-frequency decomposition, PCO was applied to the EEG to examine the relation between the phases of pre-stimulus EEG activity and reaction times. In simulations, PCO outperformed other spatial optimization approaches and sensor-space analysis. Scalp topographies of the underlying source patterns and the relation between the phases of the source activity and the target variable could be reconstructed accurately even for very low SNRs (-10dB). In a simple reaction time experiment, the phases of pre-stimulus delta waves (<0.1Hz) with widely distributed fronto-parietal source topographies were found predictive of the reaction times. From multivariate recordings, PCO can reconstruct neuronal sources that are phase-coupled to a target variable using a data-driven optimization approach. Its superiority has been shown in simulations and in the analysis of a simple reaction time experiment. From this
NASA Astrophysics Data System (ADS)
Murphy, Andrew; Haestad, Jace; Morgan, Thomas
2015-09-01
We report characteristics of closed classical orbits in an electric field in phase space produced in photoabsorption. Rydberg states of atomic and molecular hydrogen and helium are considered. The core potential used for the hydrogen molecule is an effective one electron one center core potential evaluated at the internuclear equilibrium distance. Poincare surfaces of section in phase space are generated by integrating the equations of motion in semiparabolic coordinates u = (r + z) 1 / 2 and v = (r - z) 1 / 2, and plotting the location in phase space (pv versus v) whenever u = 0, with the electric field in the z direction. Combination orbits produced by Rydberg electron core scattering are studied and the evolution in phase space of these combination orbits due to scattering from one closed orbit into another is investigated. Connections are made to measured laser photoabsorption experiments that excite Rydberg states (20 < n < 30) and produce accompanying scaled energy recurrence spectra. The phase space structures responsible for the spectra are identified.
Quantum phase transition in space
Damski, Bogdan; Zurek, Wojciech H
2008-01-01
A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.
Multivariate space - time analysis of PRE-STORM precipitation
NASA Technical Reports Server (NTRS)
Polyak, Ilya; North, Gerald R.; Valdes, Juan B.
1994-01-01
This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.
Multivariate space - time analysis of PRE-STORM precipitation
NASA Technical Reports Server (NTRS)
Polyak, Ilya; North, Gerald R.; Valdes, Juan B.
1994-01-01
This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.
Phase nucleation in curved space
NASA Astrophysics Data System (ADS)
Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega
Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).
Multivariable parametric cost model for space and ground telescopes
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; Henrichs, Todd
2016-09-01
Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost (X) D (1.75 +/- 0.05) λ (-0.5 +/- 0.25) T-0.25 e (-0.04) Y Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).
Discontinuity Detection in Multivariate Space for Stochastic Simulations
Archibald, Richard K; Gelb, Anne; Saxena, Rishu; Xiu, Dongbin
2009-01-01
Edge detection has traditionally been associated with detecting physical space jump discontinuities in one dimension, e.g. seismic signals, and two dimensions, e.g. digital images. Hence most of the research on edge detection algorithms is restricted to these contexts. High dimension edge detection can be of significant importance, however. For instance, stochastic variants of classical differential equations not only have variables in space/time dimensions, but additional dimensions are often introduced to the problem by the nature of the random inputs. The stochastic solutions to such problems sometimes contain discontinuities in the corresponding random space and a prior knowledge of jump locations can be very helpful in increasing the accuracy of the final solution. Traditional edge detection methods typically require uniform grid point distribution. They also often involve the computation of gradients and/or Laplacians, which can become very complicated to compute as the number of dimensions increases. The polynomial annihilation edge detection method, on the other hand, is more flexible in terms of its geometric specifications and is furthermore relatively easy to apply. This paper discusses the numerical implementation of the polynomial annihilation edge detection method to high dimensional functions that arise when solving stochastic partial differential equations.
Roaming: A Phase Space Perspective
NASA Astrophysics Data System (ADS)
Mauguière, Frédéric A. L.; Collins, Peter; Kramer, Zeb C.; Carpenter, Barry K.; Ezra, Gregory S.; Farantos, Stavros C.; Wiggins, Stephen
2017-05-01
In this review we discuss the recently described roaming mechanism for chemical reactions from the point of view of nonlinear dynamical systems in phase space. The recognition of the roaming phenomenon shows the need for further developments in our fundamental understanding of basic reaction dynamics, as is made clear by considering some questions that cut across most studies of roaming: Is the dynamics statistical? Can transition state theory be applied to estimate roaming reaction rates? What role do saddle points on the potential energy surface play in explaining the behavior of roaming trajectories? How do we construct a dividing surface that is appropriate for describing the transformation from reactants to products for roaming trajectories? How should we define the roaming region? We show that the phase space perspective on reaction dynamics provides the setting in which these questions can be properly framed and answered. We illustrate these ideas by considering photodissociation of formaldehyde. The phase-space formulation allows an unambiguous description of all possible reactive events, which also allows us to uncover the phase space mechanism that explains which trajectories roam, as opposed to evolving toward a different reactive event.
Preliminary Multi-Variable Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Hendrichs, Todd
2010-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years.
Multivariable control of the Space Shuttle Remote Manipulator System
NASA Technical Reports Server (NTRS)
Adams, Neil J.; Appleby, Brent D.; Prakash, OM, II
1991-01-01
Linear controllers are designed to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in position hold mode. Design techniques used include H2 and H-infinity optimization. The nonlinear SRMS is linearized by modeling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability using both the small gain theorem with an H-infinity norm and the less conservative mu-analysis test. Regulator designs offer significant improvement over the current system for the nominal plant. Unfortunately, the SRMS model suffers from lightly damped poles with real parametric uncertainty. Under such conditions, the mu-analysis test, which allows for complex perturbations, cannot guarantee robust stability.
Longitudinal phase space tomography with space charge
NASA Astrophysics Data System (ADS)
Hancock, S.; Lindroos, M.; Koscielniak, S.
2000-12-01
Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the nonlinearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of the vacuum chamber parametrized by a single value of distributed reactive impedance and by a geometrical coupling coefficient. This is sufficient to model the dominant collective effects in machines of low to moderate energy. In contrast to simulation codes, binning is not an issue since the profiles to be differentiated are measured ones. The program is written in Fortran 90 with high-performance Fortran extensions for parallel processing. A major effort has been made to identify and remove execution bottlenecks, for example, by reducing floating-point calculations and recoding slow intrinsic functions. A pointerlike mechanism which avoids the problems associated with pointers and parallel processing has been implemented. This is required to handle the large, sparse matrices that the algorithm employs. Results obtained with and without the inclusion of space charge are presented and compared for proton beams in the CERN protron synchrotron booster. Comparisons
Multivariable State-Space Identification in the Delta and Shift Operators
NASA Technical Reports Server (NTRS)
Bayard, David S.
1993-01-01
This paper develops algorithms for multivariable state-space identification which can be used to estimate models in any operator of interest i.e., delta-rule, shift, Laplace s, etc. The approach is based on the State-Space from Frequency Data (SSFD) algorithm which was designed specifically to eliminate distortions from windowing effects.
Quantum shuttle in phase space.
Novotný, Tomás; Donarini, Andrea; Jauho, Antti-Pekka
2003-06-27
We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus extending the previously found classical results to the quantum domain. Further, a new dynamical regime is discovered, where the shuttling is driven exclusively by the quantum noise.
NASA Astrophysics Data System (ADS)
Groth, Andreas; Ghil, Michael; Hallegatte, Stephane; Dumas, Patrice
2010-05-01
Over the last two decades, singular spectrum analysis (SSA) and multivariate SSA (M-SSA) have proven their power in the temporal and spatio-temporal analysis of short and noisy time series in numerous fields of the geosciences and of other disciplines. M-SSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trends, oscillatory patterns and noise, and allow one to reconstruct a robust "skeleton" of the dynamical system's structure. For an overview we refer to Ghil et al. (Rev. Geophys., 2002). We first present M-SSA in the context of synchronization analysis and illustrate its ability to unveil information about the mechanisms behind the adjustment of rhythms in coupled dynamical systems. This poster deals with the special case of phase synchronization between coupled chaotic oscillators (Rosenblum et al., PRL, 1996). Several ways of measuring phase synchronization are in use, and the robust definition of a reasonable phase for each oscillator is critical in each of them. We illustrate here the advantages of M-SSA in the automatic identification of oscillatory modes and in drawing conclusions about the transition to phase synchronization. Without using any a priori definition of a suitable phase, we show that M-SSA is able to detect phase synchronization in a chain of coupled chaotic oscillators (Osipov et al., PRE, 1996). The key application of these theoretical results in this poster is to U.S. macroeconomic data for 1954--2005. M-SSA helps us draw conclusions about the cyclical behavior of the U.S. economy and its underlying dynamical properties. The recurrence of expansions and recessions, at approximately 5--6-year intervals, is referred to as business cycles; their origin is still a matter of considerable controversy. Our analysis sheds
Chetouani, L.; Hammann, T.F.
1987-03-01
The Hamiltonian of the three-dimensional hydrogen atom is reduced, in parabolic coordinates, to the Hamiltonians of two bidimensional harmonic oscillators, by doing several space-time transformations,separating the movement along the three parabolic directions (xi,eta,phi), and introducing two auxiliary angular variables psi and psi', 0less than or equal topsi, psi'less than or equal to2..pi... The Green's function is developed into partial Green's functions, and expressed in terms of two Green's functions that describe the movements along both the xi and eta axes. Introducing auxiliary Hamiltonians allows one to calculate the Green's function in the configurational space, via the phase-space evolution function of the two-dimensional harmonic oscillator. The auxiliary variables psi and psi' are eliminated by projection. The thus-obtained Green's function, save for a multiplicating factor, coincides with that calculated following the path-integral formalism.
Experimental compressive phase space tomography
Tian, Lei; Lee, Justin; Oh, Se Baek; Barbastathis, George
2012-01-01
Phase space tomography estimates correlation functions entirely from snapshots in the evolution of the wave function along a time or space variable. In contrast, traditional interferometric methods require measurement of multiple two–point correlations. However, as in every tomographic formulation, undersampling poses a severe limitation. Here we present the first, to our knowledge, experimental demonstration of compressive reconstruction of the classical optical correlation function, i.e. the mutual intensity function. Our compressive algorithm makes explicit use of the physically justifiable assumption of a low–entropy source (or state.) Since the source was directly accessible in our classical experiment, we were able to compare the compressive estimate of the mutual intensity to an independent ground–truth estimate from the van Cittert–Zernike theorem and verify substantial quantitative improvements in the reconstruction. PMID:22513541
A general formalism for phase space calculations
NASA Technical Reports Server (NTRS)
Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.
1988-01-01
General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.
The eigenvalue problem in phase space.
Cohen, Leon
2017-07-27
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Simplicity in simplicial phase space
Dittrich, Bianca; Ryan, James P.
2010-09-15
A key point in the spin foam approach to quantum gravity is the implementation of simplicity constraints in the partition functions of the models. Here, we discuss the imposition of these constraints in a phase space setting corresponding to simplicial geometries. On the one hand, this could serve as a starting point for a derivation of spin foam models by canonical quantization. On the other, it elucidates the interpretation of the boundary Hilbert space that arises in spin foam models. More precisely, we discuss different versions of the simplicity constraints, namely, gauge-variant and gauge-invariant versions. In the gauge-variant version, the primary and secondary simplicity constraints take a similar form to the reality conditions known already in the context of (complex) Ashtekar variables. Subsequently, we describe the effect of these primary and secondary simplicity constraints on gauge-invariant variables. This allows us to illustrate their equivalence to the so-called diagonal, cross and edge simplicity constraints, which are the gauge-invariant versions of the simplicity constraints. In particular, we clarify how the so-called gluing conditions arise from the secondary simplicity constraints. Finally, we discuss the significance of degenerate configurations, and the ramifications of our work in a broader setting.
Robustness of reduced-order multivariable state-space self-tuning controller
NASA Technical Reports Server (NTRS)
Yuan, Zhuzhi; Chen, Zengqiang
1994-01-01
In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.
Generalized Stokes parameters in phase space.
Sahin, Serkan
2010-05-15
The generalized Stokes parameters (GSP) are studied under the theory of phase space. It is noted that phase-space Stokes parameters can be a useful tool for Wigner distribution function measurements. Electromagnetic Wigner functions are introduced by use of the two-point statistics of GSP. The advantage in the GSP is that they can be measured in terms of the electric correlation matrix (which is a measurable quantity) or they can be measured independently. Hence, the GSP help in finding the polarization and coherence properties of electromagnetic beams. Within this framework, by using the GSP in phase space, the intensity feature of electromagnetic beams in phase space is given, as well.
Phase-space quantization of field theory.
Curtright, T.; Zachos, C.
1999-04-20
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.
Cichy, Radoslaw Martin; Pantazis, Dimitrios
2017-09-01
Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.
The Way to Phase Space Crystals
NASA Astrophysics Data System (ADS)
Guo, Lingzhen; Michael, Marthaler; Schön, Gerd
A novel way to create a band structure of the quasienergy spectrum for driven systems is proposed based on the discrete symmetry in phase space. The system, e.g., an ion or ultracold atom trapped in a potential, shows no spatial periodicity, but it is driven by a time-dependent field. Under rotating wave approximation, the system can produce a periodic lattice structure in phase space. The band structure in quasienergy arises as a consequence of the n-fold discrete periodicity in phase space induced by this driving field. We propose explicit models to realize such a phase space crystal and analyze its band structure in the frame of a tightbinding approximation. The phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry. The phase space crystal opens new ways to engineer energy band structures, with the added advantage that its properties can be changed in situ by tuning the driving field's parameters. Carl-Zeiss Stiftung.
Phase Space Transition States for Deterministic Thermostats
NASA Astrophysics Data System (ADS)
Ezra, Gregory; Wiggins, Stephen
2009-03-01
We describe the relation between the phase space structure of Hamiltonian and non-Hamiltonian deterministic thermostats. We show that phase space structures governing reaction dynamics in Hamiltonian systems, such as the transition state, map to the same type of phase space structures for the non-Hamiltonian isokinetic equations of motion for the thermostatted Hamiltonian. Our results establish a general theoretical framework for analyzing thermostat dynamics using concepts and methods developed in reaction rate theory. Numerical results are presented for the isokinetic thermostat.
Multivariate methods to visualise colour-space and colour discrimination data.
Hastings, Gareth D; Rubin, Alan
2015-01-01
Despite most modern colour spaces treating colour as three-dimensional (3-D), colour data is usually not visualised in 3-D (and two-dimensional (2-D) projection-plane segments and multiple 2-D perspective views are used instead). The objectives of this article are firstly, to introduce a truly 3-D percept of colour space using stereo-pairs, secondly to view colour discrimination data using that platform, and thirdly to apply formal statistics and multivariate methods to analyse the data in 3-D. This is the first demonstration of the software that generated stereo-pairs of RGB colour space, as well as of a new computerised procedure that investigated colour discrimination by measuring colour just noticeable differences (JND). An initial pilot study and thorough investigation of instrument repeatability were performed. Thereafter, to demonstrate the capabilities of the software, five colour-normal and one colour-deficient subject were examined using the JND procedure and multivariate methods of data analysis. Scatter plots of responses were meaningfully examined in 3-D and were useful in evaluating multivariate normality as well as identifying outliers. The extent and direction of the difference between each JND response and the stimulus colour point was calculated and appreciated in 3-D. Ellipsoidal surfaces of constant probability density (distribution ellipsoids) were fitted to response data; the volumes of these ellipsoids appeared useful in differentiating the colour-deficient subject from the colour-normals. Hypothesis tests of variances and covariances showed many statistically significant differences between the results of the colour-deficient subject and those of the colour-normals, while far fewer differences were found when comparing within colour-normals. The 3-D visualisation of colour data using stereo-pairs, as well as the statistics and multivariate methods of analysis employed, were found to be unique and useful tools in the representation and study
Explaining public support for space exploration funding in America: A multivariate analysis
NASA Astrophysics Data System (ADS)
Nadeau, François
2013-05-01
Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.
Phased array antenna for space shuttle orbiter
NASA Technical Reports Server (NTRS)
Davidson, Shayla E.
1987-01-01
The National Aeronautics and Space Administration is developing a distributed phased array antenna at the Lyndon B. Johnson Space Center as a possible upgrade for the Space Shuttle Orbiter S-band phase modulation communications system. The antenna consists of an eight-element transmit section, eight-element receive section, and a single L-band receive element. The antenna design is constrained by the existing Orbiter system and space environment. The solution to the interface design problems led to an antenna system which provides improved link margins and yet supports previous operational configurations. This paper describes the system development, antenna hardware, and the interface consideration which led to the final design.
RADON reconstruction in longitudinal phase space
Mane, V.; Peggs, S.; Wei, J.
1997-07-01
Longitudinal particle motion in circular accelerators is typically monitoring by one dimensional (1-D) profiles. Adiabatic particle motion in two dimensional (2-D) phase space can be reconstructed with tomographic techniques, using 1-D profiles. A computer program RADON has been developed in C++ to process digitized mountain range data and perform the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC).
Detecting event-related changes of multivariate phase coupling in dynamic brain networks.
Canolty, Ryan T; Cadieu, Charles F; Koepsell, Kilian; Ganguly, Karunesh; Knight, Robert T; Carmena, Jose M
2012-04-01
Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171-189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474-480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506-515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110-113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107-3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194-208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer
Liquid crystal phase shifters for space applications
NASA Astrophysics Data System (ADS)
Woehrle, Christopher D.
Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.
Single phase space laundry development
NASA Technical Reports Server (NTRS)
Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold
1993-01-01
This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.
Single phase space laundry development
NASA Technical Reports Server (NTRS)
Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold
1993-01-01
This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.
Beam Tomography in Longitudinal Phase Space
NASA Astrophysics Data System (ADS)
Mane, V.; Wei, J.; Peggs, S.
1997-05-01
Longitudinal particle motion in circular accelerators is typically monitored by one dimensional (1-D) profiles. Adiabatic particle motion in 2-D phase space can be reconstructed with tomographic techniques, using 1-D profiles. In this paper, we discuss a filtered backprojection algorithm, with a high pass ramp or Hann filter, for phase space reconstruction. The algorithm uses several projections of the beam at equally spaced angles over half a synchrotron period. A computer program RADON has been developed to process digitized mountain range data and do the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC). Analysis has been performed to determine the sensitivity to machine parameters and data acquisition errors. During the Sextant test of RHIC in early 1997, this program has been successfully employed to reconstruct the motion of Au^77+ beam in the AGS.
A Bayesian design space for analytical methods based on multivariate models and predictions.
Lebrun, Pierre; Boulanger, Bruno; Debrus, Benjamin; Lambert, Philippe; Hubert, Philippe
2013-01-01
The International Conference for Harmonization (ICH) has released regulatory guidelines for pharmaceutical development. In the document ICH Q8, the design space of a process is presented as the set of factor settings providing satisfactory results. However, ICH Q8 does not propose any practical methodology to define, derive, and compute design space. In parallel, in the last decades, it has been observed that the diversity and the quality of analytical methods have evolved exponentially, allowing substantial gains in selectivity and sensitivity. However, there is still a lack of a rationale toward the development of robust separation methods in a systematic way. Applying ICH Q8 to analytical methods provides a methodology for predicting a region of the space of factors in which results will be reliable. Combining design of experiments and Bayesian standard multivariate regression, an identified form of the predictive distribution of a new response vector has been identified and used, under noninformative as well as informative prior distributions of the parameters. From the responses and their predictive distribution, various critical quality attributes can be easily derived. This Bayesian framework was then extended to the multicriteria setting to estimate the predictive probability that several critical quality attributes will be jointly achieved in the future use of an analytical method. An example based on a high-performance liquid chromatography (HPLC) method is given. For this example, a constrained sampling scheme was applied to ensure the modeled responses have desirable properties.
Space, Phase Space and Quantum Numbers of Elementary Particles
NASA Astrophysics Data System (ADS)
Zenczykowski, P.
2007-06-01
We recall the arguments that there should be a close connection between the properties of elementary particles and the arena used for the description of macroscopic processes, and argue that a natural choice for this arena is provided by nonrelativistic phase space with momentum and position being independent variables. Accepting standard commutation relations for these variables, and adopting {x}2+{p}2 as an invariant, we linearise the latter à la Dirac. Phase space U(1) otimes SU(3) symmetry is then represented in the relevant Clifford algebra. Within this algebra, the eigenvalues of the U(1) generator are pm (+1/3,+1/3,+1/3,-1), characteristic of weak hypercharge Y for three coloured quarks and one lepton. The total U(1) generator contains contributions from the phase space and the Clifford algebra, and leads to a relation, which we propose to identify with the Gell-Mann-Nishijima-Glashow formula Q=I3+Y/2.
Representation of superoperators in double phase space
NASA Astrophysics Data System (ADS)
Saraceno, Marcos; Ozorio de Almeida, Alfredo M.
2016-04-01
Operators in quantum mechanics—either observables, density or evolution operators, unitary or not—can be represented by c-numbers in operator bases. The position and momentum bases are in one-to-one correspondence with lagrangian planes in double phase space, but this is also true for the well known Wigner-Weyl correspondence based on translation and reflection operators. These phase space methods are here extended to the representation of superoperators. We show that the Choi-Jamiolkowsky isomorphism between the dynamical matrix and the linear action of the superoperator constitutes a ‘double’ Wigner or chord transform when represented in double phase space. As a byproduct several previously unknown integral relationships between products of Wigner and chord distributions for pure states are derived.
Noether symmetries in the phase space
NASA Astrophysics Data System (ADS)
Díaz, Bogar; Galindo-Linares, Elizabeth; Ramírez-Romero, Cupatitzio; Silva-Ortigoza, Gilberto; Suárez-Xique, Román; Torres del Castillo, Gerardo F.; Velázquez, Mercedes
2014-09-01
The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.
Phase-space contraction and quantum operations
Garcia-Mata, Ignacio; Spina, Maria Elena; Saraceno, Marcos; Carlo, Gabriel
2005-12-15
We give a criterion to differentiate between dissipative and diffusive quantum operations. It is based on the classical idea that dissipative processes contract volumes in phase space. We define a quantity that can be regarded as 'quantum phase space contraction rate' and which is related to a fundamental property of quantum channels: nonunitality. We relate it to other properties of the channel and also show a simple example of dissipative noise composed with a chaotic map. The emergence of attractor-like structures is displayed.
Quantum entropy production in phase space
NASA Astrophysics Data System (ADS)
Deffner, Sebastian
2014-03-01
A fluctuation theorem for the nonequilibrium entropy production in quantum phase space is derived, which enables the consistent thermodynamic description of arbitrary quantum systems, open and closed. The new treatment naturally generalizes classical results to the quantum domain. As an illustration the harmonic oscillator dragged through a thermal bath is solved numerically. Finally, the significance of the new approach is discussed in detail, and the phase space treatment is opposed to the two time energy measurement approach. We acknowledge financial support by a fellowship within the postdoc-program of the German Academic Exchange Service (DAAD, contract No D/11/40955) and from the National Science Foundation (USA) under grant DMR-1206971.
Viewpoints: Interactive Exploration of Large Multivariate Earth and Space Science Data Sets
NASA Astrophysics Data System (ADS)
Levit, C.; Gazis, P. R.
2006-05-01
Analysis and visualization of extremely large and complex data sets may be one of the most significant challenges facing earth and space science investigators in the forthcoming decades. While advances in hardware speed and storage technology have roughly kept up with (indeed, have driven) increases in database size, the same is not of our abilities to manage the complexity of these data. Current missions, instruments, and simulations produce so much data of such high dimensionality that they outstrip the capabilities of traditional visualization and analysis software. This problem can only be expected to get worse as data volumes increase by orders of magnitude in future missions and in ever-larger supercomputer simulations. For large multivariate data (more than 105 samples or records with more than 5 variables per sample) the interactive graphics response of most existing statistical analysis, machine learning, exploratory data analysis, and/or visualization tools such as Torch, MLC++, Matlab, S++/R, and IDL stutters, stalls, or stops working altogether. Fortunately, the graphics processing units (GPUs) built in to all professional desktop and laptop computers currently on the market are capable of transforming, filtering, and rendering hundreds of millions of points per second. We present a prototype open-source cross-platform application which leverages much of the power latent in the GPU to enable smooth interactive exploration and analysis of large high- dimensional data using a variety of classical and recent techniques. The targeted application is the interactive analysis of large, complex, multivariate data sets, with dimensionalities that may surpass 100 and sample sizes that may exceed 106-108.
NASA Astrophysics Data System (ADS)
Portes, Leonardo L.; Aguirre, Luis A.
2016-09-01
Multivariate singular spectrum analysis (M-SSA) was recently adapted to study systems of coupled oscillators. It does not require an a priori definition for phase nor detailed knowledge of the individual oscillators, but it uses all the variables of each system. This aspect could be restrictive for practical applications, since usually just a few (sometimes only one) variables are measured. Based on dynamical systems and observability theories, we first show how to apply the M-SSA with only one variable and show the conditions to achieve good performance. Next, we provide numerical evidence that this single-variable approach enhances the explanatory power compared to the original M-SSA when computed with all the system variables. This could have important practical implications, as pointed out using benchmark oscillators.
Portes, Leonardo L; Aguirre, Luis A
2016-09-01
Multivariate singular spectrum analysis (M-SSA) was recently adapted to study systems of coupled oscillators. It does not require an a priori definition for phase nor detailed knowledge of the individual oscillators, but it uses all the variables of each system. This aspect could be restrictive for practical applications, since usually just a few (sometimes only one) variables are measured. Based on dynamical systems and observability theories, we first show how to apply the M-SSA with only one variable and show the conditions to achieve good performance. Next, we provide numerical evidence that this single-variable approach enhances the explanatory power compared to the original M-SSA when computed with all the system variables. This could have important practical implications, as pointed out using benchmark oscillators.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The Midas System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in Phase I of the overall program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 2 x 100,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. The MIDAS construction and wiring diagrams are given.
Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S
2015-10-27
To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD), followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.
Modular space station phase B extension
NASA Technical Reports Server (NTRS)
1971-01-01
The system safety analyses and requirements developed for the modular space station during the phase B extension are reviewed. Residual hazards and unresolved safety issues are summarized. Hazards resulting from equipment failures or malfunctions, operations, or credible accidents are identified and evaluated. Special safety trade studies are presented.
Phase space distributions tailored for dispersive media.
Petruccelli, Jonathan C; Alonso, Miguel A
2010-05-01
New phase space distributions are proposed for describing pulse propagation in dispersive media for one spatial dimension. These distributions depend on time, position, and velocity, so that the pulse's spatial propagation or temporal evolution is described by a free-particle-like transformation followed by integration over velocity. Examples are considered for approximate Lorentz-model dielectrics and metallic waveguides.
Characterizing maximally singular phase-space distributions
NASA Astrophysics Data System (ADS)
Sperling, J.
2016-07-01
Phase-space distributions are widely applied in quantum optics to access the nonclassical features of radiations fields. In particular, the inability to interpret the Glauber-Sudarshan distribution in terms of a classical probability density is the fundamental benchmark for quantum light. However, this phase-space distribution cannot be directly reconstructed for arbitrary states, because of its singular behavior. In this work, we perform a characterization of the Glauber-Sudarshan representation in terms of distribution theory. We address important features of such distributions: (i) the maximal degree of their singularities is studied, (ii) the ambiguity of representation is shown, and (iii) their dual space for nonclassicality tests is specified. In this view, we reconsider the methods for regularizing the Glauber-Sudarshan distribution for verifying its nonclassicality. This treatment is supported with comprehensive examples and counterexamples.
Tailoring accelerating beams in phase space
NASA Astrophysics Data System (ADS)
Wen, Yuanhui; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan
2017-02-01
An appropriate wave-front design will enable light fields that propagate along arbitrary trajectories, thus forming accelerating beams in free space. Previous strategies for designing such accelerating beams rely mainly on caustic methods, which start from diffraction integrals and deal only with two-dimensional fields. Here we introduce an alternate perspective to construct accelerating beams in phase space by designing the corresponding Wigner distribution function (WDF). We find that such a WDF-based method is capable of providing both the initial field distribution and the angular spectrum in need by projecting the WDF into the real space and the Fourier space, respectively. Moreover, this approach applies to the construction of both two- and three-dimensional fields, greatly generalizing previous caustic methods. It may therefore open a new route for construction of highly tailored accelerating beams and facilitate applications ranging from particle manipulation and trapping to optical routing as well as material processing.
ERIC Educational Resources Information Center
Joo, Soohyung; Kipp, Margaret E. I.
2015-01-01
Introduction: This study examines the structure of Web space in the field of library and information science using multivariate analysis of social tags from the Website, Delicious.com. A few studies have examined mathematical modelling of tags, mainly examining tagging in terms of tripartite graphs, pattern tracing and descriptive statistics. This…
Space market model development project, phase 3
NASA Technical Reports Server (NTRS)
Bishop, Peter C.; Hamel, Gary P.
1989-01-01
The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.
NASA Astrophysics Data System (ADS)
Taylor, J. E.
I consider a very simple model for the evolution of the real space and phase-space density profiles of a dark matter halo as it acquires its mass. I show that this model, which assumes slow growth through gradual accretion, predicts structures much more concentrated than those found in self-consistent simulations of halo formation. By implication, major mergers must act to reduce the concentration of dark matter haloes, adding the orbital energy of the infalling satellite to the internal energy of the pre-existing system and causing it to expand at intermediate radii. This effect should be easy to detect in numerical simulations.
Rockstar: Phase-space halo finder
NASA Astrophysics Data System (ADS)
Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi
2012-10-01
Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.
Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.
2006-11-27
In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.
Thermophotovoltaic space power system, phase 3
NASA Technical Reports Server (NTRS)
Horne, W. E.; Lancaster, C.
1987-01-01
Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application.
Catlett, Kierstin K; Schwartz, Gary T; Godfrey, Laurie R; Jungers, William L
2010-07-01
Studies of primate life history variation are constrained by the fact that all large-bodied extant primates are haplorhines. However, large-bodied strepsirrhines recently existed. If we can extract life history information from their skeletons, these species can contribute to our understanding of primate life history variation. This is particularly important in light of new critiques of the classic "fast-slow continuum" as a descriptor of variation in life history profiles across mammals in general. We use established dental histological methods to estimate gestation length and age at weaning for five extinct lemur species. On the basis of these estimates, we reconstruct minimum interbirth intervals and maximum reproductive rates. We utilize principal components analysis to create a multivariate "life history space" that captures the relationships among reproductive parameters and brain and body size in extinct and extant lemurs. Our data show that, whereas large-bodied extinct lemurs can be described as "slow" in some fashion, they also varied greatly in their life history profiles. Those with relatively large brains also weaned their offspring late and had long interbirth intervals. These were not the largest of extinct lemurs. Thus, we distinguish size-related life history variation from variation that linked more strongly to ecological factors. Because all lemur species larger than 10 kg, regardless of life history profile, succumbed to extinction after humans arrived in Madagascar, we argue that large body size increased the probability of extinction independently of reproductive rate. We also provide some evidence that, among lemurs, brain size predicts reproductive rate better than body size. (c) 2010 Wiley-Liss, Inc.
Computed Tomography of Transverse Phase Space
Watts, A.; Johnstone, C.; Johnstone, J.
2016-09-19
Two computed tomography techniques are explored to reconstruct beam transverse phase space using both simulated beam and multi-wire profile data in the Fermilab Muon Test Area ("MTA") beamline. Both Filtered Back-Projection ("FBP") and Simultaneous Algebraic Reconstruction Technique ("SART") algorithms [2] are considered and compared. Errors and artifacts are compared as a function of each algorithm’s free parameters, and it is shown through simulation and MTA beamline profiles that SART is advantageous for reconstructions with limited profile data.
Stochastic inflation: Quantum phase-space approach
NASA Astrophysics Data System (ADS)
Habib, Salman
1992-09-01
In this paper a quantum-mechanical phase-space picture is constructed for coarse-grained free quantum fields in an inflationary universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase-space quantum distribution function are found for the cases of power-law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field-theoretic results (we do not restrict ourselves only to <Φ2>). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase-space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does not by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence.
Thermodynamic products in extended phase-space
NASA Astrophysics Data System (ADS)
Pradhan, Parthapratim
We have examined the thermodynamic properties for a variety of spherically symmetric charged-AdS black hole (BH) solutions, including the charged AdS BH surrounded by quintessence dark energy and charged AdS BH in f(R) gravity in extended phase-space. This framework involves treating the cosmological constant as thermodynamic variable (for example: thermodynamic pressure and thermodynamic volume). Then they should behave as an analog of Van-der-Waal (VdW) like systems. In the extended phase-space we have calculated the entropy product and thermodynamic volume product of all horizons. The mass (or enthalpy) independent nature of the said product signals they are universal quantities. The divergence of the specific heat indicates that the second-order phase transition occurs under certain condition. In Appendix A, we have studied the thermodynamic volume products for axisymmetric spacetime and it is shown to be not universal in nature. Finally, in Appendix B, we have studied the P ‑ V criticality of Cauchy horizon for charged-AdS BH and found to be an universal relation of critical values between two horizons as Pc‑ = P c+, vc‑ = v c+, Tc‑ = ‑T c+, ρc‑ = ‑ρ c+. The symbols are defined in the main work.
Multivariate Analysis of Mixed Lipid Aggregate Phase Transitions Monitored Using Raman Spectroscopy.
Neal, Sharon L
2017-01-01
The phase behavior of aqueous 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) mixtures between 8.0 ℃ and 41.0 ℃ were monitored using Raman spectroscopy. Temperature-dependent Raman matrices were assembled from series of spectra and subjected to multivariate analysis. The consensus of pseudo-rank estimation results is that seven to eight components account for the temperature-dependent changes observed in the spectra. The spectra and temperature response profiles of the mixture components were resolved by applying a variant of the non-negative matrix factorization (NMF) algorithm described by Lee and Seung (1999). The rotational ambiguity of the data matrix was reduced by augmenting the original temperature-dependent spectral matrix with its cumulative counterpart, i.e., the matrix formed by successive integration of the spectra across the temperature index (columns). Successive rounds of constrained NMF were used to isolate component spectra from a significant fluorescence background. Five major components exhibiting varying degrees of gel and liquid crystalline lipid character were resolved. Hydrogen-bonded water networks exhibiting varying degrees of organization are associated with the lipid components. Spectral parameters were computed to compare the chain conformation, packing, and hydration indicated by the resolved spectra. Based on spectral features and relative amounts of the components observed, four components reflect long chain lipid response. The fifth component could reflect the response of the short chain lipid, DHPC, but there were no definitive spectral features confirming this assignment. A minor component of uncertain assignment that exhibits a striking response to the DMPC pre-transition and chain melting transition also was recovered. While none of the spectra resolved exhibit features unequivocally attributable to a specific aggregate morphology or step in the gelation process
Weak values and the quantum phase space
Lobo, A. C.; Ribeiro, C. A.
2009-07-15
We address the issue of how to properly treat, and in a more general setting, the concept of a weak value of a weak measurement in quantum mechanics. We show that for this purpose, one must take in account the effects of the measuring process on the entire phase space of the measuring system. By using coherent states, we go a step further than Jozsa in a recent paper and we present an example where the result of the measurement is symmetrical in the position and momentum observables and seems to be much better suited for quantum optical implementation.
Space shuttle phase B extension, volume 1
NASA Technical Reports Server (NTRS)
1971-01-01
In order to define a system which would significantly reduce payload delivery costs, activities were extended to modifications of the reusable space shuttle design concept. Considered were systems using orbiters with external propellant tanks and an interim expendable booster which allowed phased development of the usable orbiter and booster. Analyzed were: Merits of internal and external propellant tanks and the impact of external LH2 compared to L02 and LH2; impact of cargo bay size; impact abort; merit of expendable booster options; and merit of a phased development program. Studies showed that external L02/LH2 and the continued use of the J-2S engine on the orbiter reduced program cost and risk.
Space Transportation Engine Program (STEP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Space Transportation Engine Program (STEP), phase B
NASA Astrophysics Data System (ADS)
1990-10-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Levitas, Valery I; Javanbakht, Mahdi
2010-10-15
The Ginzburg-Landau theory for multivariant martensitic phase transformations is advanced in three directions: the potential is developed that introduces the surface tension at interfaces; a mixed term in gradient energy is introduced to control the martensite-martensite interface energy independent of that for austenite-martensite; and a noncontradictory expression for variable surface energy is suggested. The problems of surface-induced pretransformation, barrierless multivariant nucleation, and the growth of an embryo in a nanosize sample are solved to elucidate the effect of the above contributions. The obtained results represent an advanced model for coherent interface.
NASA Astrophysics Data System (ADS)
Malaquias, José B.; Ramalho, Francisco S.; Dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.
2017-02-01
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.
Malaquias, José B.; Ramalho, Francisco S.; dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.
2017-01-01
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied. PMID:28181503
Malaquias, José B; Ramalho, Francisco S; Dos S Dias, Carlos T; Brugger, Bruno P; S Lira, Aline Cristina; Wilcken, Carlos F; Pachú, Jéssica K S; Zanuncio, José C
2017-02-09
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.
Phase space representation of quantum dynamics
Polkovnikov, Anatoli
2010-08-15
We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.
Chirped nonlinear resonance dynamics in phase space
NASA Astrophysics Data System (ADS)
Friedland, Lazar; Armon, Tsafrir
2016-10-01
Passage through and capture into resonance in systems with slowly varying parameters is one of the outstanding problems of nonlinear dynamics. Examples include resonant capture in planetary dynamics , resonant excitation of nonlinear waves, adiabatic resonant transitions in atomic and molecular systems and more. In the most common setting the problem involves a nonlinear oscillator driven by an oscillating perturbation with a slowly varying frequency, which passes through the resonance with the unperturbed oscillator. The process of resonant capture in this case involves crossing of separatrix and, therefore, the adiabatic theorem cannot be used in studying this problem no matter how slow is the variation of the driving frequency. It will be shown that if instead of analyzing complicated single orbit dynamics in passage through resonance, one considers the evolution of a distribution of initial conditions in phase space, simple adiabaticity and phase space incompressibility arguments yield a solution to the resonant capture probability problem. The approach will be illustrated in the case of a beam of charged particles driven by a chirped frequency wave passing through the Cherenkov resonance with the velocity distribution of the particles. Supported by Israel Science Foundation Grant 30/14.
Phase space analysis of velocity bunched beams
NASA Astrophysics Data System (ADS)
Filippetto, D.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Cultrera, L.; di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Gatti, G.; Pace, E.; Vaccarezza, C.; Vicario, C.; Bacci, A.; Rossi, A. R.; Serafini, L.; Cianchi, A.; Marchetti, B.; Giannessi, L.; Labat, M.; Quattromini, M.; Ronsivalle, C.; Marrelli, C.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serluca, M.
2011-09-01
Peak current represents a key demand for new generation electron beam photoinjectors. Many beam applications, such as free electron laser, inverse Compton scattering, terahertz radiation generation, have efficiencies strongly dependent on the bunch length and current. A method of beam longitudinal compression (called velocity bunching) has been proposed some years ago, based on beam longitudinal phase space rotation in a rf field potential. The control of such rotation can lead to a compression factor in excess of 10, depending on the initial longitudinal emittance. Code simulations have shown the possibility to fully compensate the transverse emittance growth during rf compression, and this regime has been experimentally proven recently at SPARC. The key point is the control of transverse beam plasma oscillations, in order to freeze the emittance at its lowest value at the end of compression. Longitudinal and transverse phase space distortions have been observed during the experiments, leading to asymmetric current profiles and higher final projected emittances. In this paper we discuss in detail the results obtained at SPARC in the regime of velocity bunching, analyzing such nonlinearities and identifying the causes. The beam degradation is discussed, both for slice and projected parameters. Analytical tools are derived to experimentally quantify the effect of such distortions on the projected emittance.
Fujiki, Yuya; Kumada, Yoichi; Kishimoto, Michimasa
2015-08-01
The proteomics technique, which consists of two-dimensional gel electrophoresis (2-DE), peptide mass fingerprinting (PMF), gel image analysis, and multivariate statistics, was applied to the phase analysis of a fed-batch culture for the production of a single-chain variable fragment (scFv) of an anti-C-reactive protein (CRP) antibody by Pichia pastoris. The time courses of the fed-batch culture were separated into three distinct phases: the growth phase of the batch process, the growth phase of the fed-batch process, and the production phase of the fed-batch process. Multivariate statistical analysis using 2-DE gel image analysis data clearly showed the change in the culture phase and provided information concerning the protein expression, which suggested a metabolic change related to cell growth and production during the fed-batch culture. Furthermore, specific proteins, such as alcohol oxidase, which is strongly related to scFv expression, and proteinase A, which could biodegrade scFv in the latter phases of production, were identified via the PMF method. The proteomics technique provided valuable information about the effect of the methanol concentration on scFv production.
A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP)
Guo, Diansheng; Chen, Jin; MacEachren, Alan M.; Liao, Ke
2011-01-01
The research reported here integrates computational, visual, and cartographic methods to develop a geovisual analytic approach for exploring and understanding spatio-temporal and multivariate patterns. The developed methodology and tools can help analysts investigate complex patterns across multivariate, spatial, and temporal dimensions via clustering, sorting, and visualization. Specifically, the approach involves a self-organizing map, a parallel coordinate plot, several forms of reorderable matrices (including several ordering methods), a geographic small multiple display, and a 2-dimensional cartographic color design method. The coupling among these methods leverages their independent strengths and facilitates a visual exploration of patterns that are difficult to discover otherwise. The visualization system we developed supports overview of complex patterns and, through a variety of interactions, enables users to focus on specific patterns and examine detailed views. We demonstrate the system with an application to the IEEE InfoVis 2005 Contest data set, which contains time-varying, geographically referenced, and multivariate data for technology companies in the US. PMID:17073369
A Phase Space Tomography Diagnostic for Pitz
D.J. Holder; B.D. Muratori; F.E. Hannon; S. Khodyachykh; A. Oppelt
2006-06-26
The Photo Injector Test Facility at DESY in Zeuthen (PITZ) is a European collaboration developing RF photocathode electron guns for light source and linear collider projects. As part of the collaborative work being partially funded by the EU's FP6 programme, CCLRC Daresbury Laboratory and DESY are designing and building a phase space tomography diagnostic based on a set of multiple quadrupoles and view screens. In order to measure the beam emittance, four screens with intermediate quadrupole doublets will be used. The equipment will be installed and tested at PITZ as part of the facility upgrade presently ongoing. Following simulations of the gun using the ASTRA code at a range of energies, simulations of the electron beam parameters through the matching and tomography sections must be undertaken in order to specify the optimum arrangement of magnets and screens.
Uncertainty relations for general phase spaces
NASA Astrophysics Data System (ADS)
Werner, Reinhard F.
2016-04-01
We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.
Geometric inequalities from phase space translations
NASA Astrophysics Data System (ADS)
Huber, Stefan; König, Robert; Vershynina, Anna
2017-01-01
We establish a quantum version of the classical isoperimetric inequality relating the Fisher information and the entropy power of a quantum state. The key tool is a Fisher information inequality for a state which results from a certain convolution operation: the latter maps a classical probability distribution on phase space and a quantum state to a quantum state. We show that this inequality also gives rise to several related inequalities whose counterparts are well-known in the classical setting: in particular, it implies an entropy power inequality for the mentioned convolution operation as well as the isoperimetric inequality and establishes concavity of the entropy power along trajectories of the quantum heat diffusion semigroup. As an application, we derive a Log-Sobolev inequality for the quantum Ornstein-Uhlenbeck semigroup and argue that it implies fast convergence towards the fixed point for a large class of initial states.
Multivariate or Multivariable Regression?
Goodman, Melody
2013-01-01
The terms multivariate and multivariable are often used interchangeably in the public health literature. However, these terms actually represent 2 very distinct types of analyses. We define the 2 types of analysis and assess the prevalence of use of the statistical term multivariate in a 1-year span of articles published in the American Journal of Public Health. Our goal is to make a clear distinction and to identify the nuances that make these types of analyses so distinct from one another. PMID:23153131
Space market model development project, phase 2
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1988-01-01
The results of the prototype operations of the Space Business Information Center are presented. A clearinghouse for space business information for members of the U.S. space industry composed of public, private, and academic sectors was conducted. Behavioral and evaluation statistics were recorded from the clearinghouse and the conclusions from these statistics are presented. Business guidebooks on major markets in space business are discussed. Proprietary research and briefings for firms and agencies in the space industry are also discussed.
Update on Multi-Variable Parametric Cost Models for Ground and Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda
2012-01-01
Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper reports on recent revisions and improvements to our ground telescope cost model and refinements of our understanding of space telescope cost models. One interesting observation is that while space telescopes are 50X to 100X more expensive than ground telescopes, their respective scaling relationships are similar. Another interesting speculation is that the role of technology development may be different between ground and space telescopes. For ground telescopes, the data indicates that technology development tends to reduce cost by approximately 50% every 20 years. But for space telescopes, there appears to be no such cost reduction because we do not tend to re-fly similar systems. Thus, instead of reducing cost, 20 years of technology development may be required to enable a doubling of space telescope capability. Other findings include: mass should not be used to estimate cost; spacecraft and science instrument costs account for approximately 50% of total mission cost; and, integration and testing accounts for only about 10% of total mission cost.
Constructing Phase Space Distributions within the Heliosheath
NASA Astrophysics Data System (ADS)
Roelof, E. C.
2014-12-01
The key function in the description of the dynamics of the heliosheath (HS) is the phase space distribution (PSD) of the protons, i.e., how the interaction between the thermal and non-thermal (heated pick-up) proton populations evolves from the termination shock to the heliopause (HP) in this high-beta plasma. Voyager 1 found the heliopause to be essentially a (compound) magnetic separatrix, because the intensity of the non-thermal particle population became undetectably small beyond the HP, whereas the anisotropy characteristics of the galactic cosmic rays were consistent with no re-entry of the magnetic field lines into the HS (at either end). This paper attempts to synthesize in situ observations from Voyagers 1 and 2 (thermal plasma, magnetic field, energetic ions, and cosmic rays) with global ENA images from IBEX and Cassini/INCA into a self-consistent representation of the PSD within the noseward HS from thermal energies to several MeV/nuc. The interpretation of the ENA images requires assumptions on the global behavior of the bulk plasma flow throughout the HS that are self-consistent with all the available data (e.g., the spatial and energy dependence of the IBEX ribbon), because the Compton-Getting effects produced by the flows strongly affect the intensities (and thereby the partial densities and pressures) inferred from the ENA images.
Overview of Phase Space Manipulations of Relativistic Electron Beams
Xiang, Dao; /SLAC
2012-08-31
Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.
Multivariate Dynamic Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah
2014-01-01
The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in integrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.
Multivariate Dynamical Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah
2014-01-01
The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in intergrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.
Development of a Multivariable Parametric Cost Analysis for Space-Based Telescopes
NASA Technical Reports Server (NTRS)
Dollinger, Courtnay
2011-01-01
Over the past 400 years, the telescope has proven to be a valuable tool in helping humankind understand the Universe around us. The images and data produced by telescopes have revolutionized planetary, solar, stellar, and galactic astronomy and have inspired a wide range of people, from the child who dreams about the images seen on NASA websites to the most highly trained scientist. Like all scientific endeavors, astronomical research must operate within the constraints imposed by budget limitations. Hence the importance of understanding cost: to find the balance between the dreams of scientists and the restrictions of the available budget. By logically analyzing the data we have collected for over thirty different telescopes from more than 200 different sources, statistical methods, such as plotting regressions and residuals, can be used to determine what drives the cost of telescopes to build and use a cost model for space-based telescopes. Previous cost models have focused their attention on ground-based telescopes due to limited data for space telescopes and the larger number and longer history of ground-based astronomy. Due to the increased availability of cost data from recent space-telescope construction, we have been able to produce and begin testing a comprehensive cost model for space telescopes, with guidance from the cost models for ground-based telescopes. By separating the variables that effect cost such as diameter, mass, wavelength, density, data rate, and number of instruments, we advance the goal to better understand the cost drivers of space telescopes.. The use of sophisticated mathematical techniques to improve the accuracy of cost models has the potential to help society make informed decisions about proposed scientific projects. An improved knowledge of cost will allow scientists to get the maximum value returned for the money given and create a harmony between the visions of scientists and the reality of a budget.
NASA Astrophysics Data System (ADS)
Gaudeau de Gerlicz, Claude; Sechpine, Pierre; Bobola, Philippe; Antoine, Mathias
The knowledge about hidden variables in physics, (Bohr's-Schrödinger theories) and their developments, boundaries seem more and more fuzzy at physical scales. Also some other new theories give to both time and space as much fuzziness. The classical theory, (school of Copenhagen's) and also Heisenberg and Louis de Broglie give us the idea of a dual wave and particle parts such the way we observe. Thus, the Pondichery interpretation recently developed by Cramer and al. gives to the time part this duality. According Cramer, there could be a little more to this duality, some late or advanced waves of time that have been confirmed and admitted as possible solutions with the Maxwell's equations. We developed here a possible pattern that could matched in the sequence between Space and both retarded and advanced time wave in the "Cramer handshake" in locality of the present when the observation is made everything become local.
Towards a Multi-Variable Parametric Cost Model for Ground and Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Henrichs, Todd
2016-01-01
Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost approximately (X) D(exp (1.75 +/- 0.05)) lambda(exp(-0.5 +/- 0.25) T(exp -0.25) e (exp (-0.04)Y). Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).
Cosmology with galaxy cluster phase spaces
NASA Astrophysics Data System (ADS)
Stark, Alejo; Miller, Christopher J.; Huterer, Dragan
2017-07-01
We present a novel approach to constrain accelerating cosmologies with galaxy cluster phase spaces. With the Fisher matrix formalism we forecast constraints on the cosmological parameters that describe the cosmological expansion history. We find that our probe has the potential of providing constraints comparable to, or even stronger than, those from other cosmological probes. More specifically, with 1000 (100) clusters uniformly distributed in the redshift range 0 ≤z ≤0.8 , after applying a conservative 80% mass scatter prior on each cluster and marginalizing over all other parameters, we forecast 1 σ constraints on the dark energy equation of state w and matter density parameter ΩM of σw=0.138 (0.431 ) and σΩM=0.007(0.025 ) in a flat universe. Assuming 40% mass scatter and adding a prior on the Hubble constant we can achieve a constraint on the Chevallier-Polarski-Linder parametrization of the dark energy equation of state parameters w0 and wa with 100 clusters in the same redshift range: σw 0=0.191 and σwa=2.712. Dropping the assumption of flatness and assuming w =-1 we also attain competitive constraints on the matter and dark energy density parameters: σΩ M=0.101 and σΩ Λ=0.197 for 100 clusters uniformly distributed in the range 0 ≤z ≤0.8 after applying a prior on the Hubble constant. We also discuss various observational strategies for tightening constraints in both the near and far future.
Space shuttle phase B study plan
NASA Technical Reports Server (NTRS)
Hello, B.
1971-01-01
Phase B emphasis was directed toward development of data which would facilitate selection of the booster concept, and main propulsion system for the orbiter. A shuttle system is also defined which will form the baseline for Phase C program activities.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.
1974-01-01
The MIDAS System is described as a third-generation fast multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turnaround time and significant gains in throughput. The hardware and software are described. The system contains a mini-computer to control the various high-speed processing elements in the data path, and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 200,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation.
Quasi-Hermitian quantum mechanics in phase space
Curtright, Thomas; Veitia, Andrzej
2007-10-15
We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.
Space Shuttle aerothermodynamic data report, phase C
NASA Technical Reports Server (NTRS)
1985-01-01
Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.
Generalized phase-space tomography for intense beams
Stratakis, D; Bernal, S; Fiorito, R B; Haber, I; Reiser, M; O'Shea, P G; Tian, K; Thangaraj, J.C.T.
2010-02-01
Tomographic phase-space mapping in an intense particle beam is reviewed. The diagnostic is extended to beams with space-charge by assuming linear forces and is implemented using either solenoidal or quadrupole focusing lattices. The technique is benchmarked against self-consistent simulation and against a direct experimental sampling of phase-space using a pinhole scan. It is demonstrated that tomography can work for time-resolved phase-space mapping and slice emittance measurement. The technique is applied to a series of proof-of-principle tests conducted at the University of Maryland.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena
1993-01-01
This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena
1993-01-01
This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.
A phase space theory for roaming reactions.
Andrews, Duncan U; Kable, Scott H; Jordan, Meredith J T
2013-08-15
We describe a new, simple theory for predicting the branching fraction of products in roaming reactions, compared to the analogous barrierless bond dissociation products. The theory uses a phase space theory (PST) formalism to divide reactive states in the bond dissociation channel into states with enough translational energy to dissociate and states that may roam. Two parameters are required, ΔEroam, the energy difference between the bond dissociation threshold and the roaming threshold, and the roaming probability, Proam, the probability that states that may roam do roam rather than recombine to form reactants. The PST-roaming theory is tested against experimental and theoretical data on the dissociation dynamics of H2CO, NO3, and CH3CHO. The theory accurately models the relative roaming to bond dissociation branching fraction over the experimental or theoretical energy range available in the literature for each species. For H2CO, fixing ΔEroam = 146 cm(-1), the midpoint of the experimental bounds for the roaming threshold, we obtain Proam = 1. The best-fit value, ΔEroam = 161 cm(-1), is also consistent with the experimental bounds. Using this value, the relative roaming to dissociation branching ratios are predicted to be similar in D2CO and H2CO, consistent with experimental observation. For NO3, we fix ΔEroam = 258.6 cm(-1), the experimental threshold for NO + O2 production, and we model low-temperature experimental branching fractions using the experimental rotational and vibrational temperatures of Trot = 0 K and Tvib = 300 K. The best fit to the experimental data is obtained for Proam = 0.0075, with this very small Proam being consistent with the known geometric constraints to formation of NO + O2. Using Proam = 0.0075, our PST-roaming theory also accurately predicts the low-temperature NO yield spectrum and quantum yield data for room-temperature NO3 photolysis. For CH3CHO, we fix ΔEroam = 385 cm(-1), based on theoretical calculations, and obtain a
Space law information system design, phase 2
NASA Technical Reports Server (NTRS)
Morenoff, J.; Roth, D. L.; Singleton, J. W.
1973-01-01
Design alternatives were defined for the implementation of a Space Law Information System for the Office of the General Counsel, NASA. A thesaurus of space law terms was developed and a selected document sample indexed on the basis of that thesaurus. Abstracts were also prepared for the sample document set.
Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De
2016-01-01
High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427
Phase partitioning in space and on earth
NASA Technical Reports Server (NTRS)
Van Alstine, James M.; Karr, Laurel J.; Snyder, Robert S.; Matsos, Helen C.; Curreri, Peter A.; Harris, J. Milton; Bamberger, Stephan B.; Boyce, John; Brooks, Donald E.
1987-01-01
The influence of gravity on the efficiency and quality of the impressive separations achievable by bioparticle partitioning is investigated by demixing polymer phase systems in microgravity. The study involves the neutral polymers dextran and polyethylene glycol, which form a two-phase system in aqueous solution at low concentrations. It is found that demixing in low-gravity occurs primarily by coalescence, whereas on earth the demixing occurs because of density differences between the phases.
Surolia, Avadhesha
2015-01-01
Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads. PMID:26535573
A Framework for Robust Multivariable Optimization of Integrated Circuits in Space Applications
NASA Technical Reports Server (NTRS)
DuMonthier, Jeffrey; Suarez, George
2013-01-01
Application Specific Integrated Circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way which facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as framework of software modules, templates and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation. Templates provide a starting point for both while toolbox functions minimize the code required. Once a test bench has been coded to optimize a particular circuit, it is also used to verify the final design. The combination of test bench and cost function can then serve as a template for similar circuits or be re-used to migrate the design to different processes by re-running it with the
Real-space Berry phases: Skyrmion soccer (invited)
NASA Astrophysics Data System (ADS)
Everschor-Sitte, Karin; Sitte, Matthias
2014-05-01
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Cryptanalysis of an information encryption in phase space
NASA Astrophysics Data System (ADS)
Wang, Y.; Quan, C.; Tay, C. J.
2016-10-01
In this paper, we evaluate the security of an information encryption in phase space. We show that the scheme is vulnerable to two kinds of attack, namely, a chosen-ciphertext attack and a known-plaintext attack which is based on an iterative phase-retrieval algorithm using multiple plaintext-ciphertext pairs. The validity of the proposed methods of attack is verified by numerical simulations. The results cast doubts on the present security of information encryption in phase space.
Real-space Berry phases: Skyrmion soccer (invited)
Everschor-Sitte, Karin Sitte, Matthias
2014-05-07
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Omura, Seiichi; Kawai, Eiichiro; Sato, Fumitaka; Martinez, Nicholas E.; Chaitanya, Ganta V.; Rollyson, Phoebe A.; Cvek, Urska; Trutschl, Marjan; Alexander, J. Steven; Tsunoda, Ikuo
2015-01-01
Background Myocarditis is an inflammatory disease of the cardiac muscle and is mainly caused by viral infections. Viral myocarditis has been proposed to be divided into 3 phases: the acute viral phase, the subacute immune phase, and the chronic cardiac remodeling phase. Although individualized therapy should be applied depending on the phase, no clinical or experimental studies have found biomarkers that distinguish between the 3 phases. Theiler’s murine encephalomyelitis virus belongs to the genus Cardiovirus and can cause myocarditis in susceptible mouse strains. Methods and Results Using this novel model for viral myocarditis induced with Theiler’s murine encephalomyelitis virus, we conducted multivariate analysis including echocardiography, serum troponin and viral RNA titration, and microarray to identify the biomarker candidates that can discriminate the 3 phases. Using C3H mice infected with Theiler’s murine encephalomyelitis virus on 4, 7, and 60 days post infection, we conducted bioinformatics analyses, including principal component analysis and k-means clustering of microarray data, because our traditional cardiac and serum assays, including 2-way comparison of microarray data, did not lead to the identification of a single biomarker. Principal component analysis separated heart samples clearly between the groups of 4, 7, and 60 days post infection. Representative genes contributing to the separation were as follows: 4 and 7 days post infection, innate immunity–related genes, such as Irf7 and Cxcl9; 7 and 60 days post infection, acquired immunity–related genes, such as Cd3g and H2-Aa; and cardiac remodeling–related genes, such as Mmp12 and Gpnmb. Conclusions Sets of molecules, not single molecules, identified by unsupervised principal component analysis, were found to be useful as phase-specific biomarkers. PMID:25031303
A Space-Filling Visualization Technique for Multivariate Small World Graphs
Wong, Pak C.; Foote, Harlan P.; Mackey, Patrick S.; Chin, George; Huang, Zhenyu; Thomas, James J.
2012-03-15
We introduce an information visualization technique, known as GreenCurve, for large sparse graphs that exhibit small world properties. Our fractal-based design approach uses spatial cues to approximate the node connections and thus eliminates the links between the nodes in the visualization. The paper describes a sophisticated algorithm to order the neighboring nodes of a large sparse graph by solving the Fiedler vector of its graph Laplacian, and then fold the graph nodes into a space-filling fractal curve based on the Fiedler vector. The result is a highly compact visualization that gives a succinct overview of the graph with guaranteed visibility of every graph node. We show in the paper that the GreenCurve technology is (1) theoretically sustainable by introducing an error estimation metric to measure the fidelity of the new graph representation, (2) empirically rigorous by conducting a usability study to investigate its strengths and weaknesses against the traditional graph layout, and (3) pragmatically feasible by applying it to analyze stressed conditions of the large scale electric power grid on the west coast.
NASA Astrophysics Data System (ADS)
Deng, Linhua
2015-07-01
Three nonlinear analysis techniques, including cross-recurrence plot, line of synchronization, and cross-wavelet transform, are proposed to estimate the coherent phase vibrations of nonlinear and non-stationary time series. The case study utilizes the monthly averages of sunspot areas during the time interval from May 1874 to August 2014. The following prominent results are found: (1) the phase-leading hemisphere of long-term sunspot areas has changed twice in the past 140 years, indicating that the hemispheric imbalances and apparent phase differences on both hemispheres are a prevalent behavior and are not anomalous; (2) the alternating regularity of hemispheric asynchronism exhibits a cyclical pattern of 4.5+3.5 cycles, and the magnetic flux excess in a certain hemisphere during the ascending branch of a cycle can be taken as an indication of the phase-leading hemisphere in this cycle. We firmly believe that powerful nonlinear approaches are more advanced than classical linear methods when they are combined to determine the dynamic complexity of nonlinear physical systems.
Unequally spaced four levels phase encoding in holographic data storage
NASA Astrophysics Data System (ADS)
Xu, Ke; Huang, Yong; Lin, Xiao; Cheng, Yabin; Li, Xiaotong; Tan, Xiaodi
2016-12-01
Holographic data storage system is a candidate for the information recording due to its large storage capacity and high transfer rate. We propose an unequally spaced four levels phase encoding in the holographic data storage system here. Compared with two levels or three levels phase encoding, four levels phase encoding effectively improves the code rate. While more phase levels can further improve code rate, it also puts higher demand for the camera to differentiate the resulting smaller grayscale difference. Unequally spaced quaternary level phases eliminates the ambiguity of pixels with same phase difference relative to reference light compared to equally spaced quaternary levels. Corresponding encoding pattern design with phase pairs as the data element and decoding method were developed. Our encoding improves the code rate up to 0.875, which is 1.75 times of the conventional amplitude method with an error rate of 0.13 % according to our simulation results.
4D phase-space multiplexing for fluorescent microscopy
NASA Astrophysics Data System (ADS)
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2016-03-01
Phase-space measurements enable characterization of second-order spatial coherence properties and can be used for digital aberration removal or 3D position reconstruction. Previous methods use a scanning aperture to measure the phase space spectrogram, which is slow and light inefficient, while also attenuating information about higher-order correlations. We demonstrate a significant improvement of speed and light throughput by incorporating multiplexing techniques into our phase-space imaging system. The scheme implements 2D coded aperture patterning in the Fourier (pupil) plane of a microscope using a Spatial Light Modulator (SLM), while capturing multiple intensity images in real space. We compare various multiplexing schemes to scanning apertures and show that our phase-space reconstructions are accurate for experimental data with biological samples containing many 3D fluorophores.
Baig, Jameel A; Kazi, Tasneem G; Shah, Abdul Q; Arain, Mohammad B; Afridi, Hassan I; Kandhro, Ghulam A; Khan, Sumaira
2009-09-28
The simple and rapid pre-concentration techniques viz. cloud point extraction (CPE) and solid phase extraction (SPE) were applied for the determination of As(3+) and total inorganic arsenic (iAs) in surface and ground water samples. The As(3+) was formed complex with ammonium pyrrolidinedithiocarbamate (APDC) and extracted by surfactant-rich phases in the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was diluted with 0.1 mol L(-1) HNO(3) in methanol. While total iAs in water samples was adsorbed on titanium dioxide (TiO(2)); after centrifugation, the solid phase was prepared to be slurry for determination. The extracted As species were determined by electrothermal atomic absorption spectrometry. The multivariate strategy was applied to estimate the optimum values of experimental factors for the recovery of As(3+) and total iAs by CPE and SPE. The standard addition method was used to validate the optimized methods. The obtained result showed sufficient recoveries for As(3+) and iAs (>98.0%). The concentration factor in both cases was found to be 40.
A Simple, Low Cost Longitudinal Phase Space Diagnostic
Bertsche, Kirk; Emma, Paul; Shevchenko, Oleg; /Novosibirsk, IYF
2009-05-15
For proper operation of the LCLS [1] x-ray free-electron laser (FEL), and other similar machines, measurement and control of the electron bunch longitudinal phase space is critical. The LCLS accelerator includes two bunch compressor chicanes to magnify the peak current. These magnetic chicanes can generate significant coherent synchrotron radiation (CSR), which can distort the phase space distribution. We propose a diagnostic scheme by exciting a weak skew quadrupole at an energy-chirped, high dispersion point in the first LCLS bunch compressor (BC1) to reconstruct longitudinal phase space on an OTR screen after BC1, allowing a time-resolved characterization of CSR effects.
Longitudinal phase space experiments on the ELSA photoinjector
Dowell, D.H.; Joly, S.; Brion, J.P. de
1995-12-31
The excellent beam quality produced by RF photocathode injectors is well established, andhas been verified by numerous measurements of the transverse emittance. However, there are few experimental determinations of the longitudinal phase space. This paper reports on experiments performed at the ELSA FEL facility to emasure the longitudinal phase space distribution at the exit of the 144 MHz photoinjector cavity. Phase spaces were determined by the analysis of beam energy spectra and pulse shapes at 17.5 MeV for micropulse charges between 0.5 and 5 nC.
Leptons, Quarks, and Their Antiparticles: A Phase-Space View
NASA Astrophysics Data System (ADS)
Żenczykowski, Piotr
2010-09-01
Recently, a correspondence has been shown to exist between the structure of a single Standard Model generation of elementary particles and the properties of the Clifford algebra of nonrelativistic phase space. Here, this correspondence is spelled out in terms of phase-space variables. Thus, a phase-space interpretation of the connections between leptons, quarks and their antiparticles is proposed, in particular providing a timeless alternative to the standard Stückelberg-Feynman interpretation. The issue of the additivity of canonical momenta is raised and argued to be intimately related to the unobservability of free quarks and the emergence of mesons and baryons.
Selected tether applications in space: Phase 2
NASA Technical Reports Server (NTRS)
Thorsen, M. H.; Lippy, L. J.
1985-01-01
System characteristics and design requirements are assessed for tether deployment. Criteria are established for comparing alternate concepts for: (1) deployment of 220 klb space shuttle from the space station; (2) tether assisted launch of a 20,000 lb payload to geosynchronous orbit; (3) placement of the 20,000 lb AXAF into 320 nmi orbit via orbiter; (4) retrieval of 20,000 lb AXAF from 205 nmi circular orbit for maintenance and reboost to 320 nmi; and (5) tethered OMV rendezvous and retrieval of OTV returning from a geosynchronous mission. Tether deployment systems and technical issues are discussed.
Selected tether applications in space: Phase 2
NASA Astrophysics Data System (ADS)
Thorsen, M. H.; Lippy, L. J.
1985-02-01
System characteristics and design requirements are assessed for tether deployment. Criteria are established for comparing alternate concepts for: (1) deployment of 220 klb space shuttle from the space station; (2) tether assisted launch of a 20,000 lb payload to geosynchronous orbit; (3) placement of the 20,000 lb AXAF into 320 nmi orbit via orbiter; (4) retrieval of 20,000 lb AXAF from 205 nmi circular orbit for maintenance and reboost to 320 nmi; and (5) tethered OMV rendezvous and retrieval of OTV returning from a geosynchronous mission. Tether deployment systems and technical issues are discussed.
Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.
2011-12-01
This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.
The space transportation main engine phase A' study
NASA Technical Reports Server (NTRS)
1987-01-01
The Space Transportation Main Engine Phase A prime study was conducted over a 7 month period as an extension to the Phase A study. The Phase A prime program was designed to expand the study effort completed in Phase A, focusing on the baseline engine configuration selected. Analysis and trade studies were conducted to further optimize some of the major engine subsystems. These changes resulted in improvements to the baseline engine. Several options were evaluated for consideration by vehicle contractors.
Quantum gravity, dynamical phase-space and string theory
NASA Astrophysics Data System (ADS)
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
2014-08-01
In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).
Lie algebra type noncommutative phase spaces are Hopf algebroids
NASA Astrophysics Data System (ADS)
Meljanac, Stjepan; Škoda, Zoran; Stojić, Martina
2016-11-01
For a noncommutative configuration space whose coordinate algebra is the universal enveloping algebra of a finite-dimensional Lie algebra, it is known how to introduce an extension playing the role of the corresponding noncommutative phase space, namely by adding the commuting deformed derivatives in a consistent and nontrivial way; therefore, obtaining certain deformed Heisenberg algebra. This algebra has been studied in physical contexts, mainly in the case of the kappa-Minkowski space-time. Here, we equip the entire phase space algebra with a coproduct, so that it becomes an instance of a completed variant of a Hopf algebroid over a noncommutative base, where the base is the enveloping algebra.
Measuring group synchrony: a cluster-phase method for analyzing multivariate movement time-series
Richardson, Michael J.; Garcia, Randi L.; Frank, Till D.; Gergor, Madison; Marsh, Kerry L.
2012-01-01
A new method for assessing group synchrony is introduced as being potentially useful for objectively determining degree of group cohesiveness or entitativity. The cluster-phase method of Frank and Richardson (2010) was used to analyze movement data from the rocking chair movements of six-member groups who rocked their chairs while seated in a circle facing the center. In some trials group members had no information about others' movements (their eyes were shut) or they had their eyes open and gazed at a marker in the center of the group. As predicted, the group level synchrony measure was able to distinguish between situations where synchrony would have been possible and situations where it would be impossible. Moreover, other aspects of the analysis illustrated how the cluster phase measures can be used to determine the type of patterning of group synchrony, and, when integrated with multi-level modeling, can be used to examine individual-level differences in synchrony and dyadic level synchrony as well. PMID:23091463
Liquid phase sintered compacts in space
NASA Technical Reports Server (NTRS)
Mookherji, T. K.; Mcanelly, W. B.
1974-01-01
A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.
Two-Phase Thermal Management Systems for Space
NASA Astrophysics Data System (ADS)
Downing, Scott; Andres, Mike; Nguyen, Dam; Halsey, Dave; Bauch, Tim
2006-01-01
Active two-phase thermal management systems have been shown to be weight and power effective for space platforms dissipating over 20 kWt of waste heat. A two-phase thermal management system can provide nearly isothermal heat transport at mass flows significantly lower than required for single-phase systems by employing a working fluid's latent heat rather than absorbing the heat sensibly in temperature change. Phase management issues specific to reduced gravity include pump cavitation, loop inventory control and potential dry out in the evaporator. Hamilton Sundstrand has developed and demonstrated in a reduced gravity aircraft environment, a suite of two-phase technologies that manage the liquid-vapor phase distribution. These technologies keep the liquid phase available at the pump inlet for pumping and present at heat acquisition boundaries for evaporation. This paper reviews these technologies for future high power, long duration space platforms.
Hadjipantelis, P. Z.; Aston, J. A. D.; Müller, H. G.; Evans, J. P.
2015-01-01
Mandarin Chinese is characterized by being a tonal language; the pitch (or F 0) of its utterances carries considerable linguistic information. However, speech samples from different individuals are subject to changes in amplitude and phase, which must be accounted for in any analysis that attempts to provide a linguistically meaningful description of the language. A joint model for amplitude, phase, and duration is presented, which combines elements from functional data analysis, compositional data analysis, and linear mixed effects models. By decomposing functions via a functional principal component analysis, and connecting registration functions to compositional data analysis, a joint multivariate mixed effect model can be formulated, which gives insights into the relationship between the different modes of variation as well as their dependence on linguistic and nonlinguistic covariates. The model is applied to the COSPRO-1 dataset, a comprehensive database of spoken Taiwanese Mandarin, containing approximately 50,000 phonetically diverse sample F 0 contours (syllables), and reveals that phonetic information is jointly carried by both amplitude and phase variation. Supplementary materials for this article are available online. PMID:26692591
Hadjipantelis, P Z; Aston, J A D; Müller, H G; Evans, J P
2015-04-03
Mandarin Chinese is characterized by being a tonal language; the pitch (or F0) of its utterances carries considerable linguistic information. However, speech samples from different individuals are subject to changes in amplitude and phase, which must be accounted for in any analysis that attempts to provide a linguistically meaningful description of the language. A joint model for amplitude, phase, and duration is presented, which combines elements from functional data analysis, compositional data analysis, and linear mixed effects models. By decomposing functions via a functional principal component analysis, and connecting registration functions to compositional data analysis, a joint multivariate mixed effect model can be formulated, which gives insights into the relationship between the different modes of variation as well as their dependence on linguistic and nonlinguistic covariates. The model is applied to the COSPRO-1 dataset, a comprehensive database of spoken Taiwanese Mandarin, containing approximately 50,000 phonetically diverse sample F0 contours (syllables), and reveals that phonetic information is jointly carried by both amplitude and phase variation. Supplementary materials for this article are available online.
An extensive phase space for the potential martian biosphere.
Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D
2011-12-01
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.
Phase Space Structures Explain Hydrogen Atom Roaming in Formaldehyde Decomposition.
Mauguière, Frédéric A L; Collins, Peter; Kramer, Zeb C; Carpenter, Barry K; Ezra, Gregory S; Farantos, Stavros C; Wiggins, Stephen
2015-10-15
We re-examine the prototypical roaming reaction--hydrogen atom roaming in formaldehyde decomposition--from a phase space perspective. Specifically, we address the question "why do trajectories roam, rather than dissociate through the radical channel?" We describe and compute the phase space structures that define and control all possible reactive events for this reaction, as well as provide a dynamically exact description of the roaming region in phase space. Using these phase space constructs, we show that in the roaming region, there is an unstable periodic orbit whose stable and unstable manifolds define a conduit that both encompasses all roaming trajectories exiting the formaldehyde well and shepherds them toward the H2···CO well.
Phase-space geometry of the generalized Langevin equation.
Bartsch, Thomas
2009-09-28
The generalized Langevin equation is widely used to model the influence of a heat bath upon a reactive system. This equation will here be studied from a geometric point of view. A dynamical phase space that represents all possible states of the system will be constructed, the generalized Langevin equation will be formally rewritten as a pair of coupled ordinary differential equations, and the fundamental geometric structures in phase space will be described. It will be shown that the phase space itself and its geometric structure depend critically on the preparation of the system: A system that is assumed to have been in existence forever has a larger phase space with a simpler structure than a system that is prepared at a finite time. These differences persist even in the long-time limit, where one might expect the details of preparation to become irrelevant.
Phase space reduction and Poisson structure
NASA Astrophysics Data System (ADS)
Zaalani, Nadhem
1999-07-01
Let (P,π,B,G) be a G-principal fiber bundle. The action of G on the cotangent bundle T*P is free and Hamiltonian. By Liberman and Marle [Symplectic Geometry and Analytical Mechanics (Reidel, Dortrecht, 1987)] and Marsden and Ratiu [Lett. Math. Phys. 11, 161 (1981)] the quotient space T*P/G is a Poisson manifold. We will determine the Poisson bracket on the reduced Poisson manifold T*P/G, and its symplectic leaves.
Wigner function and Schroedinger equation in phase-space representation
Chruscinski, Dariusz; Mlodawski, Krzysztof
2005-05-15
We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation.
Group theoretical construction of planar noncommutative phase spaces
Ngendakumana, Ancille Todjihoundé, Leonard; Nzotungicimpaye, Joachim
2014-01-15
Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.
Explaining Gibbsean phase space to second year students
NASA Astrophysics Data System (ADS)
Vesely, Franz J.
2005-03-01
A new approach to teaching introductory statistical physics is presented. We recommend making extensive use of the fact that even systems with a very few degrees of freedom may display chaotic behaviour. This permits a didactic 'bottom-up' approach, starting out with toy systems whose phase space may be depicted on a screen or blackboard, then proceeding to ever higher dimensions in Gibbsean phase space.
Symmetry of quantum phase space in a degenerate Hamiltonian system
NASA Astrophysics Data System (ADS)
Berman, G. P.; Demikhovskii, V. Ya.; Kamenev, D. I.
2000-09-01
The structure of the global "quantum phase space" is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2μ (where μ is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaotic behavior.
Space shuttle phase B extension, volume 2
NASA Technical Reports Server (NTRS)
1971-01-01
Space shuttle systems are defined using a low technology orbiter combined with either an F-1 flyback booster or a pressure-fed booster. The mission and system requirements are given, and orbiter and booster configuration concepts are evaluated. Systems analyses and trades are discussed for LO2-RP propellent, F-1 engine main propulsion system, winged flyback recovery booster and for the pressure-fed, ocean recoverable, refurbishable booster system. Trade studies are also made for aluminum versus titanium orbiter and for crew location and compartment size.
The diffusion of stars through phase space
NASA Technical Reports Server (NTRS)
Binney, James; Lacey, Cedric
1988-01-01
An orbit-averaged Fokker-Planck equation has been derived to study the secular evolution of stellar systems with regular orbits and the heating of stellar disks. It is shown that a population of stars with an initially Maxwellian peculiar-velocity distribution will remain Maxwellian as it diffuses through orbit space only if: (1) a second-order diffusion tensor is proportional to epicycle energy; and (2) the population's velocity dispersion grows as the square root of time. Scattering by ephemeral spiral waves is able to account for the observed kinematics of the solar neighborhood only if the waves have wavelengths in excess of 9 kpc and constantly drifting pattern speeds.
Two-Phase Technology at NASA/Johnson Space Center
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.
Space power demonstrator engine, phase 1
NASA Technical Reports Server (NTRS)
1987-01-01
The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.
Symmetry induced compression of discrete phase space
NASA Astrophysics Data System (ADS)
Krawczyk, Małgorzata J.
2011-06-01
A compressed representation is described of the state space of discrete systems with some kind of symmetry of its states. An initial state space is represented as a network of states. Two states are linked if some single process leads from one state to another. The network can be compressed by a grouping of states into classes. States in the same class are represented by nodes of equal degree. Further, subclasses are defined: states belong to the same subclass if their neighbouring states belong to the same subclasses. The goal is that the equilibrium probability distribution of states in the initial network can be found from the probability of subclasses in the compressed network. The approach is applied to three exemplary systems: two pieces of a triangular lattice (25 and 36 nodes) with Ising spins at the lattice nodes, and a roundabout with three access roads and three exit roads. The compression is from 3630 ground states to 12 subclasses, from 263 640 ground states to 409 subclasses, and from 729 states to 55 subclasses, respectively.
NASA Astrophysics Data System (ADS)
Ando, Masahiro; Hamaguchi, Hiro-o.
2014-01-01
Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell.
Ando, Masahiro; Hamaguchi, Hiro-o
2014-01-01
Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell.
Space transfer concepts and analyses for exploration missions, phase 3
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.
1993-01-01
This report covers the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed issues that were raised during Phase 2, developed generic Mars missions profile analysis data, and conducted preliminary analysis of the Mars in-space transportation requirements and implementation from Stafford Committee Synthesis Report. The major effort of the study was the development of the first Lunar Outpost (FLO) baseline which evolved from the Space Station Freedom Hab Module. Modifications for the First Lunar Outpost were made to meet mission requirements and technology advancements.
Quantum de Finetti theorem in phase-space representation
NASA Astrophysics Data System (ADS)
Leverrier, Anthony; Cerf, Nicolas J.
2009-07-01
The quantum versions of de Finetti’s theorem derived so far express the convergence of n -partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form σ⊗n . Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n -mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states).
Phase space quantization, noncommutativity, and the gravitational field
NASA Astrophysics Data System (ADS)
Chatzistavrakidis, Athanasios
2014-07-01
In this paper we study the structure of the phase space in noncommutative geometry in the presence of a nontrivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider noncommutative spaces due to the quantization of the symplectic structure and determine the momentum operators that guarantee a set of canonical commutation relations, appropriately extended to include the nontrivial frame. We stress the important role of left vs right acting operators and of symplectic duality. This enables us to write down the form of the full phase space algebra on these noncommutative spaces, both in the noncompact and in the compact case. We test our results against the class of four-dimensional and six-dimensional symplectic nilmanifolds, thus presenting a large set of nontrivial examples that realizes the general formalism.
Phase-Space Detection of Cyber Events
Hernandez Jimenez, Jarilyn M; Ferber, Aaron E; Prowell, Stacy J; Hively, Lee M
2015-01-01
Energy Delivery Systems (EDS) are a network of processes that produce, transfer and distribute energy. EDS are increasingly dependent on networked computing assets, as are many Industrial Control Systems. Consequently, cyber-attacks pose a real and pertinent threat, as evidenced by Stuxnet, Shamoon and Dragonfly. Hence, there is a critical need for novel methods to detect, prevent, and mitigate effects of such attacks. To detect cyber-attacks in EDS, we developed a framework for gathering and analyzing timing data that involves establishing a baseline execution profile and then capturing the effect of perturbations in the state from injecting various malware. The data analysis was based on nonlinear dynamics and graph theory to improve detection of anomalous events in cyber applications. The goal was the extraction of changing dynamics or anomalous activity in the underlying computer system. Takens' theorem in nonlinear dynamics allows reconstruction of topologically invariant, time-delay-embedding states from the computer data in a sufficiently high-dimensional space. The resultant dynamical states were nodes, and the state-to-state transitions were links in a mathematical graph. Alternatively, sequential tabulation of executing instructions provides the nodes with corresponding instruction-to-instruction links. Graph theorems guarantee graph-invariant measures to quantify the dynamical changes in the running applications. Results showed a successful detection of cyber events.
Zeeman deceleration beyond periodic phase space stability
NASA Astrophysics Data System (ADS)
Toscano, Jutta; Tauschinsky, Atreju; Dulitz, Katrin; Rennick, Christopher J.; Heazlewood, Brianna R.; Softley, Timothy P.
2017-08-01
In Zeeman deceleration, time-varying spatially inhomogeneous magnetic fields are used to create packets of translationally cold, quantum-state-selected paramagnetic particles with a tuneable forward velocity, which are ideal for cold reaction dynamics studies. Here, the covariance matrix adaptation evolutionary strategy is adopted in order to optimise deceleration switching sequences for the operation of a Zeeman decelerator. Using the optimised sequences, a 40% increase in the number of decelerated particles is observed compared to standard sequences for the same final velocity, imposing the same experimental boundary conditions. Furthermore, we demonstrate that it is possible to remove up to 98% of the initial kinetic energy of particles in the incoming beam, compared to the removal of a maximum of 83% of kinetic energy with standard sequences. Three-dimensional particle trajectory simulations are employed to reproduce the experimental results and to investigate differences in the deceleration mechanism adopted by standard and optimised sequences. It is experimentally verified that the optimal solution uncovered by the evolutionary algorithm is not merely a local optimisation of the experimental parameters—it is a novel mode of operation that goes beyond the standard periodic phase stability approach typically adopted.
Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model
NASA Astrophysics Data System (ADS)
Kouletsis, I.; Kuchař, K. V.
2002-06-01
The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map
Phase Space Tomography Using the Cornell ERL DC Gun
Bazarov, Ivan; Dunham, Bruce; Li, Yulin; Liu, XianGhong; Hannon, Fay
2008-07-01
The brightness and quality of electron beams in linac-based light sources are ultimately limited by the properties of the beam in the injector. It is thus important to have knowledge of the phase space distribution in addition to the rms emittance to provide an insight into high beam brightness formation mechanisms. A tomography technique has been used to reconstruct the transverse phase space of the electron beam delivered from the Cornell University ERL DC gun. The tomography diagnostic utilised three solenoid magnets directly after the DC gun and a view-screen. The injector was operated at 250keV in the emittance dominated regime, and the results showed good agreement to the phase space measured using a slit-screen method and that generated from simulation with the particle tracking code ASTRA. Comparison of various reconstruction methods is provided.
Phase-space approach to continuous variable quantum teleportation
Ban, Masashi
2004-05-01
The phase-space method is applied for considering continuous variable quantum teleportation. It is found that the continuous variable quantum teleportation transforms the s-parametrized phase-space function of an input state into the (s+{delta})-parametrized phase-space function, where the parameter {delta} is determined by the shared quantum entanglement. It is shown from this result that the Wigner function of the teleported state is always non-negative for F{sub c}{<=}2/3 and the Glauber-Sudarshan P function non-negative for F{sub c}{<=}1/2, where F{sub c} is the fidelity of the coherent-state teleportation. Furthermore the fidelity between input and output states is calculated when Gaussian states are teleported.
Quantum mechanics on phase space and the Coulomb potential
NASA Astrophysics Data System (ADS)
Campos, P.; Martins, M. G. R.; Vianna, J. D. M.
2017-04-01
Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra is constructed using the Weyl (or star) product with Q ˆ = q ⋆ = q +iħ/2∂p , P ˆ = p ⋆ = p -iħ/2∂q, and the Schrödinger equation is rewritten in phase space; in consequence physical applications involving the Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the correspondent Wigner quasi-distribution functions are derived and discussed.
Dynamical phase space from an SO (d ,d ) matrix model
NASA Astrophysics Data System (ADS)
Chatzistavrakidis, Athanasios
2014-12-01
It is shown that a matrix model with SO (d ,d ) global symmetry is derived from a generalized Yang-Mills theory on the standard Courant algebroid. This model keeps all the positive features of the well-studied type IIB matrix model, and it has many additional welcome properties. We show that it not only captures the dynamics of spacetime, but it should be associated with the dynamics of phase space. This is supported by a large set of classical solutions of its equations of motion, which corresponds to phase spaces of noncommutative curved manifolds and points to a new mechanism of emergent gravity. The model possesses a symmetry that exchanges positions and momenta, in analogy to quantum mechanics. It is argued that the emergence of phase space in the model is an essential feature for the investigation of the precise relation of matrix models to string theory and quantum gravity.
Phase-space evolution of x-ray coherence in phase-sensitive imaging.
Wu, Xizeng; Liu, Hong
2008-08-01
X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.
NASA Astrophysics Data System (ADS)
Akagi, Jin; Skommer, Joanna; Matuszek, Anna; Takeda, Kazuo; Fujimura, Yuu; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Errington, Rachel; Smith, Paul J.; Darzynkiewicz, Zbigniew; Wlodkowic, Donald
2013-03-01
Measurement of apoptotic markers in tumors can be directly correlated with the cell cycle phase using flow cytometry (FCM). The conventional DNA content analysis requires cell permeabilization to stain nuclei with fluorescent probes such as propidium iodide or use of a costly UV-excitation line for Hoechst 33342 probe. The access to FCM is also still limited to centralized core facilities due to its inherent high costs and complex operation. This work describes development and proof-of-concept validation of a portable and user-friendly microfluidic flow cytometer (μFCM) that can perform multivariate real time analysis on live cells using sampling volumes as small as 10 microliters. The μFCM system employs disposable microfluidic cartridges fabricated using injection molding in poly(methylmethacrylate) transparent thermoplastic. Furthermore, the dedicated and miniaturized electronic hardware interface enables up to six parameter detection using a combination of spatially separated solid-state 473 (10 mW) and 640 nm (20 mW) lasers and x-y stage for rapid laser alignment adjustment. We provide new evidence that a simple 2D flow focusing on a chip is sufficient to measure cellular DNA content in live tumor cells using a far-red DNA probe DRAQ5. The feasibility of using the μFCM system for a dose-response profiling of investigational anti-cancer agents on human hematopoietic cancer cells is also demonstrated. The data show that μFCM can provide a viable novel alternative to conventional FCM for multiparameter detection of caspase activation and dissipation of mitochondrial inner membrane potential (ΔΨm) in relation to DNA content (cell cycle phase) in live tumor cells.
Akagi, Jin; Skommer, Joanna; Matuszek, Anna; Takeda, Kazuo; Fujimura, Yuu; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Errington, Rachel; Smith, Paul J; Darzynkiewicz, Zbigniew; Wlodkowic, Donald
2013-01-01
Measurement of apoptotic markers in tumors can be directly correlated with the cell cycle phase using flow cytometry (FCM). The conventional DNA content analysis requires cell permeabilization to stain nuclei with fluorescent probes such as propidium iodide or use of a costly UV-excitation line for Hoechst 33342 probe. The access to FCM is also still limited to centralized core facilities due to its inherent high costs and complex operation. This work describes development and proof-of-concept validation of a portable and user-friendly microfluidic flow cytometer (μFCM) that can perform multivariate real time analysis on live cells using sampling volumes as small as 10 microliters. The μFCM system employs disposable microfluidic cartridges fabricated using injection molding in poly(methylmethacrylate) transparent thermoplastic. Furthermore, the dedicated and miniaturized electronic hardware interface enables up to six parameter detection using a combination of spatially separated solid-state 473 (10 mW) and 640 nm (20 mW) lasers and x-y stage for rapid laser alignment adjustment. We provide new evidence that a simple 2D flow focusing on a chip is sufficient to measure cellular DNA content in live tumor cells using a far-red DNA probe DRAQ5. The feasibility of using the μFCM system for a dose-response profiling of investigational anti-cancer agents on human hematopoietic cancer cells is also demonstrated. The data show that μFCM can provide a viable novel alternative to conventional FCM for multiparameter detection of caspase activation and dissipation of mitochondrial inner membrane potential (ΔΨm) in relation to DNA content (cell cycle phase) in live tumor cells. PMID:24386542
Grassmann phase space methods for fermions. II. Field theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Jeffers, J.; Barnett, S. M.
2017-02-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker-Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.
Quantum phase transition induced by real-space topology
NASA Astrophysics Data System (ADS)
Li, C.; Zhang, G.; Lin, S.; Song, Z.
2016-12-01
A quantum phase transition (QPT), including both topological and symmetry breaking types, is usually induced by the change of global parameters, such as external fields or global coupling constants. In this work, we demonstrate the existence of QPT induced by the real-space topology of the system. We investigate the groundstate properties of the tight-binding model on a honeycomb lattice with the torus geometry based on exact results. It is shown that the ground state experiences a second-order QPT, exhibiting the scaling behavior, when the torus switches to a tube, which reveals the connection between quantum phase and the real-space topology of the system.
Relativistic Hydrogen-Like Atom on a Noncommutative Phase Space
NASA Astrophysics Data System (ADS)
Masum, Huseyin; Dulat, Sayipjamal; Tohti, Mutallip
2017-09-01
The energy levels of hydrogen-like atom on a noncommutative phase space were studied in the framework of relativistic quantum mechanics. The leading order corrections to energy levels 2 S 1/2, 2 P 1/2 and 2 P 3/2 were obtained by using the 𝜃 and the \\bar θ modified Dirac Hamiltonian of hydrogen-like atom on a noncommutative phase space. The degeneracy of the energy levels 2 P 1/2 and 2 P 3/2 were removed completely by 𝜃-correction. And the \\bar θ -correction shifts these energy levels.
Positive phase space transformation incompatible with classical physics.
Son, Wonmin; Kofler, Johannes; Kim, M S; Vedral, Vlatko; Brukner, Caslav
2009-03-20
Bell conjectured that a positive Wigner function does not allow violation of the inequalities imposed by local hidden variable theories. A requirement for this conjecture is "when phase space measurements are performed." We introduce the theory-independent concept of "operationally local transformations" which refers to the change of the switch on a local measurement apparatus. We show that two separated parties, performing only phase space measurements on a composite quantum system with a positive Wigner function and performing only operationally local transformations that preserve this positivity, can nonetheless violate Bell's inequality. Such operationally local transformations are realized using entangled ancillae.
Quantum phase transition induced by real-space topology
Li, C.; Zhang, G.; Lin, S.; Song, Z.
2016-01-01
A quantum phase transition (QPT), including both topological and symmetry breaking types, is usually induced by the change of global parameters, such as external fields or global coupling constants. In this work, we demonstrate the existence of QPT induced by the real-space topology of the system. We investigate the groundstate properties of the tight-binding model on a honeycomb lattice with the torus geometry based on exact results. It is shown that the ground state experiences a second-order QPT, exhibiting the scaling behavior, when the torus switches to a tube, which reveals the connection between quantum phase and the real-space topology of the system. PMID:28004736
Classical phase-space descriptions of continuous-variable teleportation.
Caves, Carlton M; Wódkiewicz, Krzysztof
2004-07-23
The non-negative Wigner function of all quantum states involved in teleportation of Gaussian states using the standard continuous-variable teleportation protocol means that there is a local realistic phase-space description of the process. This includes the coherent states teleported up to now in experiments. We extend the phase-space description to teleportation of non-Gaussian states using the standard protocol and conclude that teleportation of non-Gaussian pure states with a fidelity of 2/3 is a "gold standard" for this kind of teleportation.
κ-Deformed Phase Space, Hopf Algebroid and Twisting
NASA Astrophysics Data System (ADS)
Jurić; , Tajron; Kovačević, Domagoj; Meljanac, Stjepan
2014-11-01
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details.
Adaptive optics and phase diversity imaging for responsive space applications.
Smith, Mark William; Wick, David Victor
2004-11-01
The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.
Phase space formulation of radiative transfer in optically thick plasmas
NASA Astrophysics Data System (ADS)
Rosato, J.
2017-08-01
We present a formulation of the radiative transfer theory based on the quantum phase space formalism. The formalism employs the Wigner function relative to the electric field in (r , t , k , ω) space. It is shown that this quantity obeys a transport equation with source and loss terms nonlocal in space and time. This delocalization is a feature of the Heisenberg uncertainty relation, both relative to position and momentum and to time and energy. A discussion of the theory, together with links to the standard radiative transfer formalism, is done.
Naval Space Surveillance Center uses of time, frequency, and phase
NASA Technical Reports Server (NTRS)
Hayden, Carroll C.; Knowles, Stephen H.
1992-01-01
The Naval Space Surveillance Center (NAVSPASUR) is an operational naval command that has the mission of determining the location of all manmade objects in space and transmitting information on objects of interest to the fleet. NAVSPASUR operates a 217 MHz radar fence that has 9 transmitting and receiving stations deployed in a line across southern Continental United States (CONUS). This surveillance fence provides unalerted detection of satellites overflying CONUS. NAVSPASUR also maintains a space catalog of all orbiting space objects. NAVSPASUR plays an important role as operational alternate to the primary national Space Surveillance Center (SSC) and Space Defence Operations Center (SPADOC). In executing these responsibilities, NAVSPASUR needs precise and/or standardized time and frequency in a number of applications. These include maintenance of the radar fence references to specification, and coordination with other commands and agencies for data receipt and dissemination. Precise time and frequency must be maintained within each site to enable proper operation of the interferometry phasing technique used. Precise time-of-day clocking must exist between sites for proper intersite coordination. Phase may be considered a derivative of time and frequency. Its control within each transmitter or receiver site is of great importance to NAVSPASUR because of the operation of the sensor as an interferometer system, with source direction angles as the primary observable. Determination of the angular position of a satellite is directly dependent on the accuracy with which the differential phase between spaced subarrays can be measured at each receiver site. Various aspects of the NAVSPASUR are discussed with respect to time, frequency, and phase.
Naval Space Surveillance Center uses of time, frequency, and phase
NASA Astrophysics Data System (ADS)
Hayden, Carroll C.; Knowles, Stephen H.
1992-07-01
The Naval Space Surveillance Center (NAVSPASUR) is an operational naval command that has the mission of determining the location of all manmade objects in space and transmitting information on objects of interest to the fleet. NAVSPASUR operates a 217 MHz radar fence that has 9 transmitting and receiving stations deployed in a line across southern Continental United States (CONUS). This surveillance fence provides unalerted detection of satellites overflying CONUS. NAVSPASUR also maintains a space catalog of all orbiting space objects. NAVSPASUR plays an important role as operational alternate to the primary national Space Surveillance Center (SSC) and Space Defence Operations Center (SPADOC). In executing these responsibilities, NAVSPASUR needs precise and/or standardized time and frequency in a number of applications. These include maintenance of the radar fence references to specification, and coordination with other commands and agencies for data receipt and dissemination. Precise time and frequency must be maintained within each site to enable proper operation of the interferometry phasing technique used. Precise time-of-day clocking must exist between sites for proper intersite coordination. Phase may be considered a derivative of time and frequency. Its control within each transmitter or receiver site is of great importance to NAVSPASUR because of the operation of the sensor as an interferometer system, with source direction angles as the primary observable. Determination of the angular position of a satellite is directly dependent on the accuracy with which the differential phase between spaced subarrays can be measured at each receiver site. Various aspects of the NAVSPASUR are discussed with respect to time, frequency, and phase.
Naval Space Surveillance Center uses of time, frequency, and phase
NASA Technical Reports Server (NTRS)
Hayden, Carroll C.; Knowles, Stephen H.
1992-01-01
The Naval Space Surveillance Center (NAVSPASUR) is an operational naval command that has the mission of determining the location of all manmade objects in space and transmitting information on objects of interest to the fleet. NAVSPASUR operates a 217 MHz radar fence that has 9 transmitting and receiving stations deployed in a line across southern Continental United States (CONUS). This surveillance fence provides unalerted detection of satellites overflying CONUS. NAVSPASUR also maintains a space catalog of all orbiting space objects. NAVSPASUR plays an important role as operational alternate to the primary national Space Surveillance Center (SSC) and Space Defence Operations Center (SPADOC). In executing these responsibilities, NAVSPASUR needs precise and/or standardized time and frequency in a number of applications. These include maintenance of the radar fence references to specification, and coordination with other commands and agencies for data receipt and dissemination. Precise time and frequency must be maintained within each site to enable proper operation of the interferometry phasing technique used. Precise time-of-day clocking must exist between sites for proper intersite coordination. Phase may be considered a derivative of time and frequency. Its control within each transmitter or receiver site is of great importance to NAVSPASUR because of the operation of the sensor as an interferometer system, with source direction angles as the primary observable. Determination of the angular position of a satellite is directly dependent on the accuracy with which the differential phase between spaced subarrays can be measured at each receiver site. Various aspects of the NAVSPASUR are discussed with respect to time, frequency, and phase.
Wigner flow reveals topological order in quantum phase space dynamics.
Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg
2013-01-18
The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.
Two Phase Flow and Space-Based Applications
NASA Technical Reports Server (NTRS)
McQuillen, John
1999-01-01
A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.
Dimension of quantum phase space measured by photon correlations
NASA Astrophysics Data System (ADS)
Leuchs, Gerd; Glauber, Roy J.; Schleich, Wolfgang P.
2015-06-01
We show that the different values 1, 2 and 3 of the normalized second-order correlation function {g}(2)(0) corresponding to a coherent state, a thermal state and a highly squeezed vacuum originate from the different dimensionality of these states in phase space. In particular, we derive an exact expression for {g}(2)(0) in terms of the ratio of the moments of the classical energy evaluated with the Wigner function of the quantum state of interest and corrections proportional to the reciprocal of powers of the average number of photons. In this way we establish a direct link between {g}(2)(0) and the shape of the state in phase space. Moreover, we illuminate this connection by demonstrating that in the semi-classical limit the familiar photon statistics of a thermal state arise from an area in phase space weighted by a two-dimensional Gaussian, whereas those of a highly squeezed state are governed by a line-integral of a one-dimensional Gaussian. We dedicate this article to Margarita and Vladimir Man’ko on the occasion of their birthdays. The topic of our contribution is deeply rooted in and motivated by their love for non-classical light, quantum mechanical phase space distribution functions and orthogonal polynomials. Indeed, through their articles, talks and most importantly by many stimulating discussions and intensive collaborations with us they have contributed much to our understanding of physics. Happy birthday to you both!
Testing Nonclassicality and Non-Gaussianity in Phase Space
NASA Astrophysics Data System (ADS)
Park, Jiyong; Zhang, Junhua; Lee, Jaehak; Ji, Se-Wan; Um, Mark; Lv, Dingshun; Kim, Kihwan; Nha, Hyunchul
2015-05-01
We theoretically propose and experimentally demonstrate a nonclassicality test of a single-mode field in phase space, which has an analogy with the nonlocality test proposed by Banaszek and Wódkiewicz [Phys. Rev. Lett. 82, 2009 (1999)]. Our approach to deriving the classical bound draws on the fact that the Wigner function of a coherent state is a product of two independent distributions as if the orthogonal quadratures (position and momentum) in phase space behave as local realistic variables. Our method detects every pure nonclassical Gaussian state, which can also be extended to mixed states. Furthermore, it sets a bound for all Gaussian states and their mixtures, thereby providing a criterion to detect a genuine quantum non-Gaussian state. Remarkably, our phase-space approach with invariance under Gaussian unitary operations leads to an optimized test for a given non-Gaussian state. We experimentally show how this enhanced method can manifest quantum non-Gaussianity of a state by simply choosing phase-space points appropriately, which is essentially equivalent to implementing a squeezing operation on a given state.
Geometrical Series and Phase Space in a Finite Oscillatory Motion
ERIC Educational Resources Information Center
Mareco, H. R. Olmedo
2006-01-01
This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…
Modular space station phase B extension program master plan
NASA Technical Reports Server (NTRS)
Munsey, E. H.
1971-01-01
The project is defined for design, development, fabrication, test, and pre-mission and mission operations of a shuttle-launched modular space station. The project management approach is described in terms of organization, management requirements, work breakdown structure, schedule, time-phased logic, implementation plans, manpower, and funding. The programmatic and technical problems are identified.
Strong Field Double Ionization: The Phase Space Perspective
Mauger, F.; Chandre, C.; Uzer, T.
2009-05-01
We identify the phase-space structures that regulate atomic double ionization in strong ultrashort laser pulses. The emerging dynamical picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons, and leads to verifiable predictions on the characteristic features of the 'knee', a hallmark of the nonsequential process.
Phase-space reconstruction of focused x-ray fields
Tran, Chanh Q.; Mancuso, Adrian P.; Dhal, Bipin B.; Nugent, Keith A.; Peele, Andrew G.; Cai, Zhonghou; Paterson, David
2006-01-01
The phase-space tomography is used to reconstruct x-ray beams focused using a compound refractive lens, showing that it is possible to decouple the effect of aberrations in the optical system from the field and therefore measure both them and the original field. The complex coherence function is recovered and found to be consistent with expectations.
Depositing spacing layers on magnetic film with liquid phase epitaxy
NASA Technical Reports Server (NTRS)
Moody, J. W.; Shaw, R. W.; Sanfort, R. M.
1975-01-01
Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.
Phase space flow of particles in squeezed states
NASA Technical Reports Server (NTRS)
Ceperley, Peter H.
1994-01-01
The manipulation of noise and uncertainty in squeezed states is governed by the wave nature of the quantum mechanical particles in these states. This paper uses a deterministic model of quantum mechanics in which real guiding waves control the flow of localized particles. This model will be used to examine the phase space flow of particles in typical squeezed states.
Geometrical Models of the Phase Space Structures Governing Reaction Dynamics
2009-08-01
s.wiggins@bristol.ac.uk Abstract Hamiltonian dynamical systems possessing equilibria of saddle × centre × · · · × centre stability type display...definition of the phase space structures in the normal form coordinates . . . . . . . . 6 2.3 The foliation of the reaction region by Lagrangian ...McGehee representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Implications for Nonlinear Hamiltonian Vector Fields
Octopus: An Efficient Phase Space Mapping for Light Particles
NASA Astrophysics Data System (ADS)
Kosower, David A.
1992-09-01
I present a generator for relativistic phase space that incorporates much of the effect of typical experimental cuts, and which is suitable for use in Monte Carlo calculations of cross sections for high-energy hadron-hadron or electron-positron scattering experiments.
Phase space picture of neutrino mixing and oscillations
NASA Astrophysics Data System (ADS)
Blasone, Massimo; Vittoria Gargiulo, Maria; Vitiello, Giuseppe
2017-08-01
We consider a simple classical model in phase-space resembling the quantum one used for the description of neutrino oscillations and investigate the possibility of defining an analogue to the mixing transformation and to the oscillation formula in terms of generalized coordinates.
Geometrical Series and Phase Space in a Finite Oscillatory Motion
ERIC Educational Resources Information Center
Mareco, H. R. Olmedo
2006-01-01
This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…
Subdivision of phase space for anisotropically interacting water molecules
NASA Astrophysics Data System (ADS)
Epifanov, S. Yu.; Vigasin, A. A.
An efficient numerical algorithm is employed which enables one to perform multidimensional integrations of complicated integrands. Temperature dependence of the second virial coefficient for water is reproduced using the Matsuoka Clementi Yoshimine intermolecular water water potential. Metastable states are shown to occupy significant domain in the water dimer phase space.
Identifying the order of a quantum phase transition by means of Wehrl entropy in phase space.
Castaños, Octavio; Calixto, Manuel; Pérez-Bernal, Francisco; Romera, Elvira
2015-11-01
We propose a method to identify the order of a quantum phase transition by using area measures of the ground state in phase space. We illustrate our proposal by analyzing the well known example of the quantum cusp and four different paradigmatic boson models: Dicke, Lipkin-Meshkov-Glick, interacting boson model, and vibron model.
Identifying the order of a quantum phase transition by means of Wehrl entropy in phase space
NASA Astrophysics Data System (ADS)
Castaños, Octavio; Calixto, Manuel; Pérez-Bernal, Francisco; Romera, Elvira
2015-11-01
We propose a method to identify the order of a quantum phase transition by using area measures of the ground state in phase space. We illustrate our proposal by analyzing the well known example of the quantum cusp and four different paradigmatic boson models: Dicke, Lipkin-Meshkov-Glick, interacting boson model, and vibron model.
Classical mechanics in non-commutative phase space
NASA Astrophysics Data System (ADS)
Wei, Gao-Feng; Long, Chao-Yun; Long, Zheng-Wen; Qin, Shui-Jie; Fu, Qiang
2008-05-01
In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative. Supported by National Natural Science Foundation of China (10347003, 60666001), Planned Training Excellent Scientific and Technological Youth Foundation of Guizhou Province, China (2002,2013), Science Foundation of Guizhou Province, China, and Creativity Foundation for Graduate Guizhou University, China (2006031)
Vital phase of space science. [solar terrestrial interactions
NASA Technical Reports Server (NTRS)
Parker, E. N.
1994-01-01
Space science began with the indirect phase where the activity in space was inferred from such terrestrial phenomena as geomagnetic storms, ionospheric variations, and fluctuations in the cosmic ray intensity. The direct phase was initiated with spaceflight placing instruments directly in space and permitting the direct observation of UV and X rays, as well as precision observations of solar luminosity variations. The evidence from these many direct studies, together with the historical record of terrestrial conditions, shows that the variations of the luminosity of the Sun affect the terrestrial atmosphere at all levels, with devastating changes in climate tracking the major changes in the activity level and luminosity of the Sun. The quantification and understanding of this vital connection should be the first priority of space science and geophysics, from oceans and atmosphere through the ionosphere, magnetosphere, and all the way to the convective zone of the Sun. It becomes the vital phase of space science, focused on the basic science of the changing habitability of Earth.
Vital phase of space science. [solar terrestrial interactions
NASA Technical Reports Server (NTRS)
Parker, E. N.
1994-01-01
Space science began with the indirect phase where the activity in space was inferred from such terrestrial phenomena as geomagnetic storms, ionospheric variations, and fluctuations in the cosmic ray intensity. The direct phase was initiated with spaceflight placing instruments directly in space and permitting the direct observation of UV and X rays, as well as precision observations of solar luminosity variations. The evidence from these many direct studies, together with the historical record of terrestrial conditions, shows that the variations of the luminosity of the Sun affect the terrestrial atmosphere at all levels, with devastating changes in climate tracking the major changes in the activity level and luminosity of the Sun. The quantification and understanding of this vital connection should be the first priority of space science and geophysics, from oceans and atmosphere through the ionosphere, magnetosphere, and all the way to the convective zone of the Sun. It becomes the vital phase of space science, focused on the basic science of the changing habitability of Earth.
Evaluations of phase-only double random phase encoding based on key-space analysis.
Nakano, Kazuya; Takeda, Masafumi; Suzuki, Hiroyuki; Yamaguchi, Masahiro
2013-02-20
Although initial research shows that double-random phase encoding (DRPE) is vulnerable to known-plaintext attacks that use phase retrieval algorithms, subsequent research has shown that phase-only DRPE, in which the Fourier amplitude component of an image encrypted with classical DRPE remains constant, is resistant to attacks that apply phase retrieval algorithms. Herein, we numerically analyze the key-space of DRPE and investigate the distribution property of decryption keys for classical and phase-only DRPE. We determine the difference in the distribution property of successful decryption keys for these DRPE techniques from the numerical analysis results and then discuss the security offered by them.
Phase-space exploration in nuclear giant resonance decay
Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J. Institute of Nuclear Physics, PL-31-342 Krakow Department of Physics, University of Illinois at Urbana, Illinois 61801 College of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020 )
1995-02-13
The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in [sup 40]Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.
Driven phase space vortices in plasmas with nonextensive velocity distribution
NASA Astrophysics Data System (ADS)
Trivedi, Pallavi; Ganesh, Rajaraman
2017-03-01
The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary conditions. The initial velocity distribution of the 1D plasma is assumed to be governed by nonextensive q distribution [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. For an infinitesimal amplitude of an external drive, we investigate the effects of chirp driven dynamics that leads to the formation of giant phase space vortices (PSV) for both Maxwellian (q = 1) and non-Maxwellian ( q ≠ 1 ) plasmas. For non-Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown to be dependent on the strength of "q". Novel features such as "shark"-like and transient "honeycomb"-like structures in phase space are discussed. Wherever relevant, we compare our results with previous work.
Extended phase space description of human-controlled systems dynamics
NASA Astrophysics Data System (ADS)
Zgonnikov, Arkady; Lubashevsky, Ihor
2014-03-01
Humans are often incapable of precisely identifying and implementing the desired control strategy in controlling unstable dynamical systems. That is, the operator of a dynamical system treats the current control effort as acceptable even if it deviates slightly from the desired value, and starts correcting the actions only when the deviation has become evident. We argue that the standard Newtonian approach does not allow such behavior to be modeled. Instead, the physical phase space of a controlled system should be extended with an independent phase variable characterizing the motivated actions of the operator. The proposed approach is illustrated via a simple non-Newtonian model capturing the operators' fuzzy perception of their own actions. The properties of the model are investigated analytically and numerically; the results confirm that the extended phase space may aid in capturing the intricate dynamical properties of human-controlled systems.
Emittance and Phase Space Tomography for the Fermilab Linac
Garcia, F.G.G.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moore, C.D.; Newhart, D.L.; /Fermilab
2012-05-01
The Fermilab Linac delivers a variable intensity, 400-MeV beam to the MuCool Test Area experimental hall via a beam line specifically designed to facilitate measurements of the Linac beam emittance and properties. A 10 m, dispersion-free and magnet-free straight utilizes an upstream quadrupole focusing triplet in combination with the necessary in-straight beam diagnostics to fully characterize the transverse beam properties. Since the Linac does not produce a strictly elliptical phase space, tomography must be performed on the profile data to retrieve the actual particle distribution in phase space. This is achieved by rotating the phase space distribution using different waist focusing conditions of the upstream triplet and performing a deconvolution of the profile data. Preliminary measurements using this diagnostic section are reported here. These data represent a first-pass measurement of the Linac emittance based on various techniques. It is clear that the most accurate representation of the emittance is given by the 3-profile approach. Future work will entail minimizing the beam spot size on MW5 to test and possibly improve the accuracy of the 2-profile approach. The 95% emittance is {approx} 18{pi} in the vertical and {approx} 13{pi} in the horizontal, which is especially larger than anticipated - 8-10{pi} was expected. One possible explanation is that the entire Linac pulse is extracted into the MTA beamline and during the first few microseconds, the feed forward and RF regulation are not stable. This may result in a larger net emittance observed versus beam injected into Booster, where the leading part of the Linac beam pulse is chopped. Future studies will clearly entail a measurement of the emittance vs. pulse length. One additional concern is that the Linac phase space is most likely aperture-defined and non-elliptical in nature. A non-elliptical phase-space determination would require a more elaborate analysis and provide another explanation of the
Gravitational phase transitions with an exclusion constraint in position space
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2014-01-01
We discuss the statistical mechanics of a system of self-gravitating particles with an exclusion constraint in position space in a space of dimension d. The exclusion constraint puts an upper bound on the density of the system and can stabilize it against gravitational collapse. We plot the caloric curves giving the temperature as a function of the energy and investigate the nature of phase transitions as a function of the size of the system and of the dimension of space in both microcanonical and canonical ensembles. We consider stable and metastable states and emphasize the importance of the latter for systems with long-range interactions. For d ≤ 2, there is no phase transition. For d > 2, phase transitions can take place between a "gaseous" phase unaffected by the exclusion constraint and a "condensed" phase dominated by this constraint. The condensed configurations have a core-halo structure made of a "rocky core" surrounded by an "atmosphere", similar to a giant gaseous planet. For large systems there exist microcanonical and canonical first order phase transitions. For intermediate systems, only canonical first order phase transitions are present. For small systems there is no phase transition at all. As a result, the phase diagram exhibits two critical points, one in each ensemble. There also exist a region of negative specific heats and a situation of ensemble inequivalence for sufficiently large systems. We show that a statistical equilibrium state exists for any values of energy and temperature in any dimension of space. This differs from the case of the self-gravitating Fermi gas for which there is no statistical equilibrium state at low energies and low temperatures when d ≥ 4. By a proper interpretation of the parameters, our results have application for the chemotaxis of bacterial populations in biology described by a generalized Keller-Segel model including an exclusion constraint in position space. They also describe colloids at a fluid
Application of a localized chaos by rf-phase modulations in phase-space dilution
Lee, S.Y.; Ng, K.Y.; /Fermilab
2010-10-01
Physics of chaos in a localized phase-space region is exploited to produce a longitudinally uniformly distributed beam. Theoretical study and simulations are used to study its origin and applicability in phase-space dilution of beam bunch. Through phase modulation to a double-rf system, a central region of localized chaos bounded by invariant tori are generated by overlapping parametric resonances. Condition and stability of the chaos will be analyzed. Applications include high-power beam, beam distribution uniformization, and industrial beam irradiation.
Grassmann phase space theory and the Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.
2013-07-01
The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often
Wang, Lei; Cao, Peng; Li, Wei; Tong, Peijin; Zhang, Xiaofang; Du, Yiping
2016-04-15
Solid Phase Extraction Spectroscopy (SPES) developed in this paper is a technique to measure spectrum directly on the solid phase material where the analytes are concentrated in SPE process. Membrane enrichment and UV-Visible spectroscopy were utilized to fulfill SPES, and multivariate calibration method of partial least squares (PLS) was used to simultaneously detect the concentrations of trace cobalt (II) and zinc (II) in water samples. The proposed method is simple, sensitive and selective. The complexes of analyte ions were collected on the cellulose acetate membranes via membrane filtration after the complexation reaction with 1-2-pyridylazo 2-naphthol (PAN). The spectra of the membranes which contained the complexes of metal ions and PAN were measured directly without eluting. The analytical conditions including pH, reaction time, sample volume, the amount of PAN, and flow rates were optimized. Nonionic surfactant Brij-30 was absorbed on the membranes prior to SPES to modify the membranes for improving the enrichment and spectrum measurement. The interference from other ions to the determination was investigated. Under the optimal condition, the absorbance was linearly related to the concentration at the range of 0.1-3.0 μg/L and 0.1-2.0 μg/L, with the correlation coefficients (R(2)) of 0.9977 and 0.9951 for Co (II) and Zn (II), respectively. The limits of detection were 0.066 μg/L for cobalt (II) and 0.104 μg/L for zinc (II). PLS regression with leave-one-out cross-validation was utilized to build models to detect cobalt (II) and zinc (II) in drinking water samples simultaneously. The correlation coefficient between ion concentration and spectrum of calibration set and independent prediction set were 1.0000 and 0.9974 for cobalt (II) and 1.0000 and 0.9956 for zinc (II). For cobalt (II) and zinc (II), the errors of the prediction set were in the range 0.0406-0.1353 μg/L and 0.0025-0.1884 μg/L. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Lei; Cao, Peng; Li, Wei; Tong, Peijin; Zhang, Xiaofang; Du, Yiping
2016-04-01
Solid Phase Extraction Spectroscopy (SPES) developed in this paper is a technique to measure spectrum directly on the solid phase material where the analytes are concentrated in SPE process. Membrane enrichment and UV-Visible spectroscopy were utilized to fulfill SPES, and multivariate calibration method of partial least squares (PLS) was used to simultaneously detect the concentrations of trace cobalt (II) and zinc (II) in water samples. The proposed method is simple, sensitive and selective. The complexes of analyte ions were collected on the cellulose acetate membranes via membrane filtration after the complexation reaction with 1-2-pyridylazo 2-naphthol (PAN). The spectra of the membranes which contained the complexes of metal ions and PAN were measured directly without eluting. The analytical conditions including pH, reaction time, sample volume, the amount of PAN, and flow rates were optimized. Nonionic surfactant Brij-30 was absorbed on the membranes prior to SPES to modify the membranes for improving the enrichment and spectrum measurement. The interference from other ions to the determination was investigated. Under the optimal condition, the absorbance was linearly related to the concentration at the range of 0.1-3.0 μg/L and 0.1-2.0 μg/L, with the correlation coefficients (R2) of 0.9977 and 0.9951 for Co (II) and Zn (II), respectively. The limits of detection were 0.066 μg/L for cobalt (II) and 0.104 μg/L for zinc (II). PLS regression with leave-one-out cross-validation was utilized to build models to detect cobalt (II) and zinc (II) in drinking water samples simultaneously. The correlation coefficient between ion concentration and spectrum of calibration set and independent prediction set were 1.0000 and 0.9974 for cobalt (II) and 1.0000 and 0.9956 for zinc (II). For cobalt (II) and zinc (II), the errors of the prediction set were in the range 0.0406-0.1353 μg/L and 0.0025-0.1884 μg/L.
Multiple beam phased array for Space Station Control Zone Communications
NASA Astrophysics Data System (ADS)
Halsema, P. B.
The Space Station Communications Control Zone is a disk shaped region 40 nautical miles in diameter and 10 nautical miles thick centered about the Space Station. It is estimated that 6 simultaneous Multiple Access (MA) channels will be required to satisfy the projected communications needs within this zone. These channels will be used to communicate with MA users located anywhere within the Control Zone. This paper details the tradeoffs and design implementation of a multiple beam integrated phased array to provide antenna coverage of the Control Zone. The array is a compact, modular assembly using Gallium Arsenide circuits, microstrip elements, and advanced packaging techniques. This results in a small, reliable antenna system capable of meeting the projected Space Station requirements and flexible enough to grow and evolve as the Space Station communications needs develop.
Key-space analysis of double random phase encryption technique
NASA Astrophysics Data System (ADS)
Monaghan, David S.; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.
2007-09-01
We perform a numerical analysis on the double random phase encryption/decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.
Phase-space Dynamics of Runaway Electrons In Tokamaks
Xiaoyin Guan, Hong Qin, and Nathaniel J. Fisch
2010-08-31
The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.
Phase-space dynamics of runaway electrons in tokamaks
Guan Xiaoyin; Qin Hong; Fisch, Nathaniel J.
2010-09-15
The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.
New science from the phase space of old stellar systems
NASA Astrophysics Data System (ADS)
Varri, Anna Lisa; Breen, Philip G.; Heggie, Douglas C.; Tiongco, Maria; Vesperini, Enrico
2017-06-01
Our traditional interpretative picture of the internal dynamics of globular clusters has been recently revolutionized by a series of discoveries about their chemical, structural, and kinematic properties. The empirical evidence that their velocity space is much more complex than usually expected encourages us to use them as refreshingly novel phase space laboratories for some long-forgotten aspects of collisional gravitational dynamics. Such a realization, coupled with the discovery that the stars in clusters were not all born at once in a single population, makes them new, challenging chemodynamical puzzles.Thanks to the proper motions of thousands of stars that will be available from the Gaia mission, we are about to enter a new ''golden age'' for the study of the dynamics of this class of stellar systems, as the full phase space of several Galactic globular clusters will be soon unlocked for the first time. In this context, I will present the highlights of a more realistic dynamical paradigm for these intriguing stellar systems, with emphasis on the role of angular momentum, velocity anisotropy and external tidal field. Such a fundamental understanding of the emerging phase space complexity of globulars will allow us to address many open questions about their rich dynamical evolution, their elusive stellar populations and putative black holes, and their role within the history of our Galaxy.
Phase space structure and dynamics for the Hamiltonian isokinetic thermostat
NASA Astrophysics Data System (ADS)
Collins, Peter; Ezra, Gregory S.; Wiggins, Stephen
2010-07-01
We investigate the phase space structure and dynamics of a Hamiltonian isokinetic thermostat, for which ergodic thermostat trajectories at fixed (zero) energy generate a canonical distribution in configuration space. Model potentials studied consist of a single bistable mode plus transverse harmonic modes. Interpreting the bistable mode as a reaction (isomerization) coordinate, we establish connections with the theory of unimolecular reaction rates, in particular the formulation of isomerization rates in terms of gap times. In the context of molecular reaction rates, the distribution of gap times (or associated lifetimes) for a microcanonical ensemble initiated on the dividing surface is of great dynamical significance; an exponential lifetime distribution is usually taken to be an indicator of "statistical" behavior. Moreover, comparison of the magnitude of the phase space volume swept out by reactive trajectories as they pass through the reactant region with the total phase space volume (classical density of states) for the reactant region provides a necessary condition for ergodic dynamics. We compute gap times, associated lifetime distributions, mean gap times, reactive fluxes, reactive volumes, and total reactant phase space volumes for model thermostat systems with three and four degrees of freedom at three different temperatures. At all three temperatures, the necessary condition for ergodicity is approximately satisfied. At high temperatures a nonexponential lifetime distribution is found, while at low temperatures the lifetime is more nearly exponential. The degree of exponentiality of the lifetime distribution is quantified by computing the information entropy deficit with respect to pure exponential decay. The efficacy of the Hamiltonian isokinetic thermostat is examined by computing coordinate distributions averaged over single long trajectories initiated on the dividing surface.
Space transfer vehicle concepts and requirements study, phase 2
NASA Technical Reports Server (NTRS)
Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard
1992-01-01
This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.
Deformation quantization: Quantum mechanics lives and works in phase space
NASA Astrophysics Data System (ADS)
Zachos, Cosmas K.
2014-09-01
Wigner's 1932 quasi-probability Distribution Function in phase-space, his first paper in English, is a special (Weyl) representation of the density matrix. It has been useful in describing quantum flows in semiclassical limits; quantum optics; nuclear and physics; decoherence (eg, quantum computing); quantum chaos; "Welcher Weg" puzzles; molecular Talbot-Lau interferometry; atomic measurements. It is further of great importance in signal processing (time-frequency analysis). Nevertheless, a remarkable aspect of its internal logic, pioneered by H. Groenewold and J. Moyal, has only blossomed in the last quarter-century: It furnishes a third, alternate, formulation of Quantum Mechanics, independent of the conventional Hilbert Space (the gold medal), or Path Integral (the silver medal) formulations, and perhaps more intuitive, since it shares language with classical mechanics: one need not choose sides between coordinate or momentum space variables, since it is formulated simultaneously in terms of position and momentum. This bronze medal formulation is logically complete and self-standing, and accommodates the uncertainty principle in an unexpected manner, so that it offers unique insights into the classical limit of quantum theory. The observables in this formulation are cnumber functions in phase space instead of operators, with the same interpretation as their classical counterparts, only now composed together in novel algebraic ways using star products. One might then envision an imaginary world in which this formulation of quantum mechanics had preceded the conventional Hilbert-space formulation, and its own techniques and methods had arisen independently, perhaps out of generalizations of classical mechanics and statistical mechanics. A sampling of such intriguing techniques and methods has already been published in C. K. Zachos, Int Jou Mod Phys A17 297-316 (2002), and T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise Treatise on Quantum Mechanics in
Phase-space structures - II. Hierarchical Structure Finder
NASA Astrophysics Data System (ADS)
Maciejewski, M.; Colombi, S.; Springel, V.; Alard, C.; Bouchet, F. R.
2009-07-01
A new multidimensional Hierarchical Structure Finder (HSF) to study the phase-space structure of dark matter in N-body cosmological simulations is presented. The algorithm depends mainly on two parameters, which control the level of connectivity of the detected structures and their significance compared to Poisson noise. By working in six-dimensional phase space, where contrasts are much more pronounced than in three-dimensional (3D) position space, our HSF algorithm is capable of detecting subhaloes including their tidal tails, and can recognize other phase-space structures such as pure streams and candidate caustics. If an additional unbinding criterion is added, the algorithm can be used as a self-consistent halo and subhalo finder. As a test, we apply it to a large halo of the Millennium Simulation, where 19 per cent of the halo mass is found to belong to bound substructures, which is more than what is detected with conventional 3D substructure finders, and an additional 23-36 per cent of the total mass belongs to unbound HSF structures. The distribution of identified phase-space density peaks is clearly bimodal: high peaks are dominated by the bound structures and show a small spread in their height distribution; low peaks belong mostly to tidal streams, as expected. However, the projected (3D) density distribution of the structures shows that some of the streams can have comparable density to the bound structures in position space. In order to better understand what HSF provides, we examine the time evolution of structures, based on the merger tree history. Given the resolution limit of the Millennium Simulation, bound structures typically make only up to six orbits inside the main halo. The number of orbits scales approximately linearly with the redshift corresponding to the moment of merging of the structures with the halo. At fixed redshift, the larger the initial mass of the structure which enters the main halo, the faster it loses mass. The difference in
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in
Laser Interferometer Space Antenna (LISA) Far Field Phase Pattern
NASA Technical Reports Server (NTRS)
Waluschka, Eugene
1999-01-01
The Laser Interferometry Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer that will measure the changes in the distance of a five million kilometer arm to pico meter accuracies. Knowledge of the phase deviations from a spherical wave and what causes these deviations are needed considerations in (as a minimum) the design of the telescope and in determining pointing requirements. Here we present the far field phase deviations from a spherical wave for given Zernike aberrations and obscurations of the exit pupil.
Laser Interferometer Space Antenna (LISA) Far Field Phase Patterns
NASA Technical Reports Server (NTRS)
Waluschka, Eugene
1999-01-01
The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer, which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. Knowledge of the phase deviations from a spherical wave and what causes these deviations are needed considerations in (as a minimum) the design of the telescope and in determining pointing requirements. Here we will present the far field phase deviations from a spherical wave for given Zernike aberrations of the exit pupil and discuss how these results affect the choice of a telescope design.
Space shuttle phase B wind tunnel test database
NASA Technical Reports Server (NTRS)
Glynn, J. L.; Poucher, D. E.
1988-01-01
Archived wind tunnel test data are available for flyback booster or other alternate recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data were acquired by competing contractors and NASA centers for an extensive variety of configurations with an array of wing and body planforms. This wind tunnel test data has been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings.
Large space telescope, phase A. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
The Phase A study of the Large Space Telescope (LST) is reported. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. The LST is an unmanned astronomical observatory facility, consisting of an optical telescope assembly (OTA), scientific instrument package (SIP), and a support systems module (SSM). The report consists of five volumes. The report describes the constraints and trade off analyses that were performed to arrive at a reference design for each system and for the overall LST configuration. A low cost design approach was followed in the Phase A study. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and the sharing of shuttle maintenance flights with other payloads.
Probabilistic phase space trajectory description for anomalous polymer dynamics.
Panja, Debabrata
2011-03-16
It has been recently shown that the phase space trajectories for the anomalous dynamics of a tagged monomer of a polymer--for single polymeric systems and phenomena such as phantom Rouse, self-avoiding Rouse, and Zimm ones, reptation, and translocation through a narrow pore in a membrane, as well as for many polymeric systems such as polymer melts in the entangled regime--are robustly described by the generalized Langevin equation. Here I show that the probability distribution of phase space trajectories for all of these classical anomalous dynamics for single polymers is that of a fractional Brownian motion (fBm), while the dynamics for polymer melts between the entangled regime and the eventual diffusive regime exhibits small but systematic deviations from that of a fBm.
Carroll, Rachel; Lawson, Andrew B; Kirby, Russell S; Faes, Christel; Aregay, Mehreteab; Watjou, Kevin
2017-01-01
Many types of cancer have an underlying spatiotemporal distribution. Spatiotemporal mixture modeling can offer a flexible approach to risk estimation via the inclusion of latent variables. In this article, we examine the application and benefits of using four different spatiotemporal mixture modeling methods in the modeling of cancer of the lung and bronchus as well as "other" respiratory cancer incidences in the state of South Carolina. Of the methods tested, no single method outperforms the other methods; which method is best depends on the cancer under consideration. The lung and bronchus cancer incidence outcome is best described by the univariate modeling formulation, whereas the "other" respiratory cancer incidence outcome is best described by the multivariate modeling formulation. Spatiotemporal multivariate mixture methods can aid in the modeling of cancers with small and sparse incidences when including information from a related, more common type of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Pickup ion phase space distributions: Effects of atmospheric spatial gradients
NASA Astrophysics Data System (ADS)
Hartle, R. E.; Sittler, E. C.
2007-07-01
Spatial variations of the neutral source gases of pickup ions are known to affect the velocity distributions of the ions. An expression for the phase space density of pickup ions is derived from the Vlasov equation with a delta function ion source in velocity space that explicitly accounts for the spatial variation of the neutral gas. The background plasma velocity is uniform and perpendicular to a constant ambient magnetic field, which together produce a uniform motional electric field. The neutral source density is one dimensional, varying exponentially along the flow axis with a fixed scale height. The solutions apply to the limiting case of a weak interaction with negligible mass loading. The resulting ring distribution is applied to two examples approximating these criteria; i.e., pickup ions formed in the solar wind interaction with the Earth's Moon and the interaction of Saturn's rotating magnetosphere with Titan. A fundamental parameter appears in the resulting phase space density expression; namely, α = rg/H, the ratio of the gyroradius to the scale height. When α ≪ 1, the interaction is fluid-like with all orbit phases of pickup ion cycloidal motion present at an observation point. If α ≫ 1, the pickup ions appear as ion beams, where the phase space distribution peaks over a small velocity range at an observation site in the source region and the ions will have only executed the beginning phases of their cycloidal motion. The principal contribution to the ions in the velocity peak derives from ions born over a neutral scale height upstream from the observation site. The pickup ion phase space density expression, constrained by spacecraft plasma ion spectrometer and magnetometer measurements, can be used to estimate the neutral source densities of a planetary body's exosphere and its composition. Potential applications are the lunar surface composition, Venus' atmospheric interaction with the solar wind, the interaction of the Galilean moons with
Black hole shadows and invariant phase space structures
NASA Astrophysics Data System (ADS)
Grover, J.; Wittig, A.
2017-07-01
Utilizing concepts from dynamical systems theory, we demonstrate how the existence of light rings, or fixed points, in a spacetime will give rise to families of periodic orbits and invariant manifolds in phase space. It is shown that these structures can define the shape of the black hole shadow as well as a number of salient features of the spacetime lensing. We illustrate this through the analysis of lensing by a hairy black hole.
phase_space_cosmo_fisher: Fisher matrix 2D contours
NASA Astrophysics Data System (ADS)
Stark, Alejo
2016-11-01
phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.
Phase space analysis of some interacting Chaplygin gas models
NASA Astrophysics Data System (ADS)
Khurshudyan, M.; Myrzakulov, R.
2017-02-01
In this paper we discuss a phase space analysis of various interacting Chaplygin gas models in general relativity. Linear and nonlinear sign changeable interactions are considered. For each case appropriate late time attractors of field equations are found. The Chaplygin gas is one of the dark fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter.
Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
Ligabò, Marilena
2016-08-15
The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.
Phase-space structure of cold dark matter halos
Sikivie, P.; Ipser, J.R.
1991-12-31
A galactic halo of cold dark matter particles has a sheet-like structure in phase-space. The energy and momentum spectra of such particles on earth has a set of peaks whose central values and intensities form a record of the formation of the Galaxy. Scattering of the dark matter particles by stars and globular clusters broadens the peaks but does not erase them entirely. The giant shells around some elliptical galaxies may be a manifestation of this structure.
Phase-space structure of cold dark matter halos
Sikivie, P.; Ipser, J.R.
1991-01-01
A galactic halo of cold dark matter particles has a sheet-like structure in phase-space. The energy and momentum spectra of such particles on earth has a set of peaks whose central values and intensities form a record of the formation of the Galaxy. Scattering of the dark matter particles by stars and globular clusters broadens the peaks but does not erase them entirely. The giant shells around some elliptical galaxies may be a manifestation of this structure.
The ESA Virtual Space Weather Modelling Centre - Phase 1
NASA Astrophysics Data System (ADS)
Poedts, Stefaan
The ESA ITT project (AO/1-6738/11/NL/AT) to develop Phase 1 of a Virtual Space Weather Modelling Centre has the following objectives and scope: 1. The construction of a long term (~10 yrs) plan for the future development of a European virtual space weather modelling centre consisting of a new ‘open’ and distributed framework for the coupling of physics based models for space weather phenomena; 2. The assessment of model capabilities and the amount of work required to make them operational by integrating them in this framework and the identification of computing and networking requirements to do so. 3. The design of a system to enable models and other components to be installed locally or geographically distributed and the creation of a validation plan including a system of metrics for testing results. The consortium that took up this challenge involves: 1)the Katholieke Universiteit Leuven (Prime Contractor, coordinator: Prof. S. Poedts); 2) the Belgian Institute for Space Aeronomy (BIRA-IASB); 3) the Royal Observatory of Belgium (ROB); 4) the Von Karman Institute (VKI); 5) DH Consultancy (DHC); 6) Space Applications Services (SAS). The project started on May 14 2012, and will finish in May 2014. Thus, by the time of the meeting, both Phase 1A and Phase 1B (the development of the prototype) will be finished. The final report will be presented incl. the architecture decisions made, the framework, the current models integrated already as well as the model couplers installed. The prototype VSWMC will be demonstrated.
Medical care capabilities for Space Station Freedom: A phase approach
NASA Technical Reports Server (NTRS)
Doarn, C. R.; Lloyd, C. W.
1992-01-01
As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.
Zonal-flow dynamics from a phase-space perspective
Ruiz, D. E.; Parker, J. B.; Shi, E. L.; Dodin, I. Y.
2016-12-16
The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional terms missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.
Zonal-flow dynamics from a phase-space perspective
Ruiz, D. E.; Parker, J. B.; Shi, E. L.; ...
2016-12-16
The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less
Medical care capabilities for Space Station Freedom: A phase approach
NASA Astrophysics Data System (ADS)
Doarn, C. R.; Lloyd, C. W.
1992-05-01
As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.
Voyager observations of Saturnian ion and electron phase space densities
Armstrong, T.P.; Paonessa, M.T.; Bell, E.V. II; Krimigis, S.M.
1983-11-01
Voyager 1 and 2 low-energy charged particle (LECP) observations of 30-keV to 2-MeV electron and ion energy spectra and angular distributions have been used to calculate phase space densities at constant first and second adiabatic invariant in the Saturnian magnetosphere. The results are generally consistent with inward radial diffusion from a external source. The data obtained also indicate a source of ions located within the orbital distance of enceladus capable of producing 10-to 40-MeV/Gauss ions as well as a source of electrons at about 3.5 R/sub S/ which produces particles at 100 to 200 MeV/Gauss. Higher magnetic moment (200--400 MeV/Gauss) ions extend from the sunward boundary between a plasma mantle and the region of durable trapping at R/sub S/: the behavior of the phase space density suggests inward diffusion of these particles from a source at the boundary. The identification of sources of low (10 to 200 MeV/Gauss) magnetic moment particles deep in the Saturnian magnetosphere is a new result of this work. Several analyses of the observed phase space densities in terms of time-independent radial diffusion are presented.
Prediction of Tropical Rainfall by Local Phase Space Reconstruction.
NASA Astrophysics Data System (ADS)
Waelbroeck, H.; López-Pea, R.; Morales, T.; Zertuche, F.
1994-11-01
The authors propose a weather prediction model based on a local reconstruction of the dynamics in phase space, using an 11-year dataset from Tlaxcala, Mexico. A vector in phase space corresponds to T consecutive days of data; the best predictions are found for T = 14. The prediction for the next day, x0 fL(x0), is based on a local reconstruction of the dynamical map f in an ball centered at x0. The high dimensionality of the phase space implies a large optimal value of , so that the number of points in an ball is sufficient to reconstruct the local map. The local approximation fL f is therefore not very good and the prediction skill drops off quickly at first, with a timescale of 2 days. On the other hand, the authors find useful skill in the prediction of 10-day rainfall accumulations, which reflects the persistence of weather patterns. The mean-squared error in the prediction of the rainfall anomaly for the year 1992 was 64% of the variance, and the early beginning of the rain season was correctly predicted.
Relativistic algebraic spinors and quantum motions in phase space
Holland, P.R.
1986-08-01
Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C/sub 4/, a Jordan-Wigner algebra G/sub 4/, and Wigner transformations. To do this we solve the problem of the conditions under which elements in C/sub 4/ generate minimal ideals, and extend this to G/sub 4/. This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations.
Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S.; Misra, Anil; Spencer, Paulette
2014-01-01
Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment. PMID:24359662
Space station program phase B definition: Nuclear reactor-powered space station cost and schedules
NASA Technical Reports Server (NTRS)
1971-01-01
Tabulated data are presented on the costs, schedules, and technical characteristics for the space station phases C and D program. The work breakdown structure, schedule data, program ground rules, program costs, cost-estimating rationale, funding schedules, and supporting data are included.
Deep Space Habitat Team: HEFT Phase 2 Effects
NASA Technical Reports Server (NTRS)
Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary
2011-01-01
HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.
Parametric Modeling of Transverse Phase Space of an RF Photoinjector
Hartman, E.; Sayyar-Rodsari, B.; Schweiger, C.A.; Lee, M.J.; Lui, P.; Paterson, Ewan; Schmerge, J.F.; /SLAC
2008-01-24
High brightness electron beam sources such as rf photo-injectors as proposed for SASE FELs must consistently produce the desired beam quality. We report the results of a study in which a combined neural network (NN) and first-principles (FP) model is used to model the transverse phase space of the beam as a function of quadrupole strength, while beam charge, solenoid field, accelerator gradient, and linac voltage and phase are kept constant. The parametric transport matrix between the exit of the linac section and the spectrometer screen constitutes the FP component of the combined model. The NN block provides the parameters of the transport matrix as functions of quad current. Using real data from SLAC Gun Test Facility, we will highlight the significance of the constrained training of the NN block and show that the phase space of the beam is accurately modeled by the combined NN and FP model, while variations of beam matrix parameters with the quad current are correctly captured. We plan to extend the combined model in the future to capture the effects of variations in beam charge, solenoid field, and accelerator voltage and phase.
Grassmann phase space methods for fermions. I. Mode theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Jeffers, J.; Barnett, S. M.
2016-07-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic
Linearization of the longitudinal phase space without higher harmonic field
NASA Astrophysics Data System (ADS)
Zeitler, Benno; Floettmann, Klaus; Grüner, Florian
2015-12-01
Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.
Acceleration of Classical Mechanics by Phase Space Constraints.
Martínez-Núñez, Emilio; Shalashilin, Dmitrii V
2006-07-01
In this article phase space constrained classical mechanics (PSCCM), a version of accelerated dynamics, is suggested to speed up classical trajectory simulations of slow chemical processes. The approach is based on introducing constraints which lock trajectories in the region of the phase space close to the dividing surface, which separates reactants and products. This results in substantial (up to more than 2 orders of magnitude) speeding up of the trajectory simulation. Actual microcanonical rates are calculated by introducing a correction factor equal to the fraction of the phase volume which is allowed by the constraints. The constraints can be more complex than previously used boosting potentials. The approach has its origin in Intramolecular Dynamics Diffusion Theory, which shows that the majority of nonstatistical effects are localized near the transition state. An excellent agreement with standard trajectory simulation at high energies and Monte Carlo Transition State Theory at low energies is demonstrated for the unimolecular dissociation of methyl nitrite, proving that PSCCM works both in statistical and nonstatistical regimes.
Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation
Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.
2015-12-10
This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and themore » degree of particle dilution can be controlled by the rf parameters. As a result, the method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.« less
Tomographic measurement of the phase space distribution of a space-charge-dominated beam
NASA Astrophysics Data System (ADS)
Stratakis, Diktys
Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.
Multimegawatt space nuclear power supply, Phase 1 Final report
Not Available
1989-02-17
This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.
Invulnerability, coping, salutogenesis, integration: four phases of space psychology.
Suedfeld, Peter
2005-06-01
The relationship between NASA and the psychological research community has progressed through a number of phases during the past four decades. This paper summarizes how the relationship has developed as data have accumulated and space missions and crews have changed. In the beginning, most NASA astronauts and staff considered possible psychological problems during space missions to be a non-issue. It was assumed that people with "the right stuff" would not experience any such problems. A more realistic recognition of stress and its consequences has led to a concern with prevention and countermeasures, a concern that has come to dominate NASA's involvement with psychology. Very recently, space psychologists have started to import the concepts of positive psychology, and consider the benefits of participation in the space program, including the self-enhancing aspects of stressful experiences (salutogenesis). Both the agency and psychologists now need to broaden their thinking and their research to cover the gamut of empirical data and theoretical concepts. These include human strengths as well as vulnerabilities, both negative and positive impacts of spaceflight, long- as well as short-term effects, and the reactions not only of the astronauts themselves but also of ground personnel and the families of both groups.
Phase space analysis of multipactor saturation in rectangular waveguide
NASA Astrophysics Data System (ADS)
Lingwood, C. J.; Burt, G.; Dexter, A. C.; Smith, J. D. A.; Goudket, P.; Stoltz, P. H.
2012-03-01
In certain high power RF systems multipactor cannot be avoided for all operating points, but its existence places limits on performance, efficiency, lifetime, and reliability. As an example multipactor in the input couplers of superconducting RF cavities can be a major limitation to the maximum RF power. Several studies have concentrated on rectangular waveguide input couplers which are used in many light sources. Most of these studies neglect space charge assuming that the effect of space charge is simply to defocus the electron bunches. Modelling multipactor to saturation is of interest in determining the performance of waveguide under a range of conditions. Particle-in-cell modelling including space charge has been performed for 500 MHz half-height rectangular waveguide. Phase plots of electron trajectories can aid understanding the processes taking place in the multipactor. Results strongly suggest that the multipacting trajectories are strongly perturbed by space charge causing the electrons to transition from two-surface to single-surface trajectories as the multipactor approaches saturation.
Lifetime of Runaway Electrons at Phase-space Attractor
NASA Astrophysics Data System (ADS)
Fontanilla, Adrian; Breizman, Boris
2016-10-01
The kinetic theory for relativistic runaway electrons is extended to find a structure of the distribution function that is peaked around a phase-space attractor. Runaway electron dynamics are examined when the electric field is close to the threshold value required to sustain pre-existing runaways. The near vicinity of predicted stable and unstable points in momentum-space characterize a competition between accumulation and depletion which ultimately determines a finite lifetime for the accumulated runaways, albeit one that can be exponentially long and amenable to avalanche onset. The developed theory is then generalized to the case of stronger driving fields. Worked supported by the U.S. DOE Contract No. DEFG02-04ER54742.
A gauge theory of gravity in curved phase-spaces
NASA Astrophysics Data System (ADS)
Castro, Carlos
2016-06-01
After a cursory introduction of the basic ideas behind Born’s Reciprocal Relativity theory, the geometry of the cotangent bundle of spacetime is studied via the introduction of nonlinear connections associated with certain nonholonomic modifications of Riemann-Cartan gravity within the context of Finsler geometry. A novel gauge theory of gravity in the 8D cotangent bundle T∗M of spacetime is explicitly constructed and based on the gauge group SO(6, 2) ×sR8 which acts on the tangent space to the cotangent bundle T(x,p)T∗M at each point (x,p). Several gravitational actions involving curvature and torsion tensors and associated with the geometry of curved phase-spaces are presented. We conclude with a brief discussion of the field equations, the geometrization of matter, quantum field theory (QFT) in accelerated frames, T-duality, double field theory, and generalized geometry.
Evolution of electron phase space holes in inhomogeneous magnetic fields
NASA Astrophysics Data System (ADS)
Kuzichev, I. V.; Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.
2017-03-01
Electron phase space holes (EHs) are electrostatic solitary waves that are widely observed in the space plasma often permeated by inhomogeneous magnetic fields. Understanding of the EH evolution in inhomogeneous magnetic fields is critical for accurate interpretations of spacecraft data. To study this evolution, we use 1.5-D gyrokinetic electrostatic Vlasov code (magnetized electrons and immobile ions) with periodic boundary conditions. We find that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, decelerating EHs are reflected at the magnetic field dependent only on EH parameters (independent of the magnetic field gradient). A magnetic field inhomogeneity results in development of a net potential drop along EHs. Our simulations suggest that slow EHs recently observed in the plasma sheet boundary layer can appear due to braking of initially fast EHs by magnetic field gradients and that a large number of even fast EHs can contribute to macroscopic parallel potential drops.
A phase-space beam position monitor for synchrotron radiation.
Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean
2015-07-01
The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement.
Phase space variations of near equatorially mirroring ring current ions
Williams, D.J.
1981-01-01
We present Isee 1 observations of near equatorially mirroring ring current ions before and after the magnetic storm of November 25-26, 1977. The data are presented as phase space densities, f(s/sup 2//cm/sup 6/), versus the first adiabatic invariant, m(MeV/G), for the L range approx.2.7-8 R/sub E/. The m range covered varies from approx.50-1000 MeV/G at L = 8 to approx.1-100 MeV/G at L = 2.7. The prestorm phase space densities show an intensity peak at a m value which varies with L as m/sub peak/approx.38 MeV/G for 5< or approx. =L< or approx. =8 and m/sub peak/approx.10e/sup( 0.7L/-3) for 2.7< or approx. =L< or approx. =5. Phase space densities remain nearly constant throughout the storm for m values greater that m/sub peak/ and are enhanced for m values less than m/sub peak/. Thus high-energy ions respond adiabatically to the magnetic field changes caused by the low-energy ion enhancements. This result agrees with earlier Explorer 45 results (Lyons and Williams, 1976). The Isee 1 data are compared directly with the Explorer 45 data and are found to agree very well. The time difference of approx.6 years and local time separation of approx.12 hours between the two data sets lead to the conclusion that the ring current ion behavior presented here is a characteristic feature of geomagnetic storms.
NASA Astrophysics Data System (ADS)
Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric
2002-12-01
The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.
Efficient computations of quantum canonical Gibbs state in phase space
NASA Astrophysics Data System (ADS)
Bondar, Denys I.; Campos, Andre G.; Cabrera, Renan; Rabitz, Herschel A.
2016-06-01
The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.
Spatial coherence wavelets and phase-space representation of diffraction.
Castañeda, Román; Carrasquilla, Juan
2008-08-01
The phase-space representation of the Fresnel-Fraunhofer diffraction of optical fields in any state of spatial coherence is based on the marginal power spectrum carried by the spatial coherence wavelets. Its structure is analyzed in terms of the classes of source pairs and the spot of the field, which is treated as the hologram of the map of classes. Negative values of the marginal power spectrum are interpreted as negative energies. The influence of the aperture edge on diffraction is stated in terms of the distortion of the supports of the complex degree of spatial coherence near it. Experimental results are presented.
Advanced microelectronics research for space applications, phase 2
NASA Technical Reports Server (NTRS)
Gaertner, W. W.
1971-01-01
Negative-resistance circuits with possible space flight applications are discussed. The basic design approach is to use impedance rotation, i.e., the conversion from capacitance to negative resistance, and from resistance to inductance by the phase shift of the transistor current gain at high frequencies. The subjects discussed in detail are the following: hybrid fabrication of VHF and UHF negative-resistance stages with lumped passive elements; formulation of measurement techniques to characterize transistors and to extend the frequency of negative-resistance transistor amplifiers to higher microwave frequencies; and derivation of transistor characteristics required to increase the frequency range of negative-resistance transistor stages.
Uniformity of the phase space and fluctuations in thermal equilibrium
NASA Astrophysics Data System (ADS)
Majka, Arkadiusz; Wiślicki, Wojciech
2003-05-01
General relations are found between the measure of the uniformity of distributions on the phase space and the first moments and correlations of extensive variables for systems close to thermal equilibrium. The role played by the parameter of the Renyi entropy for the analysis of their fluctuations and correlations is studied. Analytical results are verified and illustrated by direct simulations of quantum systems of ideal fermions and bosons. Problems of finite statistics, usual in experiments and simulations, are addressed and discussed and solved by finding unbiased estimators for Renyi entropies and uniformities.
Phase space view of quantum mechanical systems and Fisher information
NASA Astrophysics Data System (ADS)
Nagy, Á.
2016-06-01
Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini-Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.
Testing gravity with the stacked phase space around galaxy clusters.
Lam, Tsz Yan; Nishimichi, Takahiro; Schmidt, Fabian; Takada, Masahiro
2012-08-03
In general relativity, the average velocity field of dark matter around galaxy clusters is uniquely determined by the mass profile. The latter can be measured through weak lensing. We propose a new method of measuring the velocity field (phase space density) by stacking redshifts of surrounding galaxies from a spectroscopic sample. In combination with lensing, this yields a direct test of gravity on scales of 1-30 Mpc. Using N-body simulations, we show that this method can improve upon current constraints on f(R) and Dvali-Gabadadze-Porrati model parameters by several orders of magnitude when applied to upcoming imaging and redshift surveys.
Values of the phase space factors for double beta decay
Stoica, Sabin Mirea, Mihai
2015-10-28
We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.
Space shuttle phase B. Volume 2: Technical summary, addendum A
NASA Technical Reports Server (NTRS)
1971-01-01
A study was conducted to analyze the characteristics and performance data for the booster vehicles to be used with the space shuttle operations. It was determined that the single pressure-fed booster offered the lowest program cost per flight of the pressure-fed booster arrangements studied. The fly back booster required the highest peak annual funding and highest program cost. It was recommended that the pressure-fed booster, series burn with liquid oxygen phase, be continued for further study. The flyback booster study was discontinued. Both solid and liquid propelled booster vehicles with 14 by 45 foot and 15 by 60 foot payload orbiters were considered.
Numerical phase front propagation for the laser interferometer space antenna
NASA Astrophysics Data System (ADS)
Papalexandris, Miltiadis V.; Waluschka, Eugene
2002-06-01
The present article reports on numerical studies of phase front propagation for the Laser Interferometer Space Antenna (LISA). The main objective is to determine the sensitivity of the average phase of the metrology beam with respect to fluctuations of the pointing of the beam. For this purpose, the metrology beam is propagated numerically along the interferometric arm of the instrument. The effects of the obscurations from the secondary mirror and its supporting struts are studied in detail. Further, the effects of random wavefront distortions that occur due to imperfections of the optical elements are estimated through a series of Monte Carlo simulations. The results of this study can be used to determine design requirements for the instrument.
The phase-space analysis of modified gravity (MOG)
NASA Astrophysics Data System (ADS)
Jamali, Sara; Roshan, Mahmood
2016-09-01
We investigate the cosmological consequences of a scalar-vector-tensor theory of gravity known as modified gravity (MOG). In MOG, in addition to metric tensor, there are two scalar fields G( x) and μ (x), and one vector field φ _{α }(x). Using the phase space analysis, we explore the cosmological consequences of a model of MOG and find some new interesting features which are absent in Λ CDM model. More specifically we study the possibility that if the extra fields of this theory behave like dark energy to explain the cosmic speedup. More interestingly, with or without cosmological constant, a strongly phantom crossing occurs. Also we find that this theory in its original form (Λ ≠ 0) possesses a true sequence of cosmological epochs. However, we show that, surprisingly, there are two radiation-dominated epochs, f_5 and f_6, two matter-dominated phases, f_3 and f_4, and two late time accelerated eras, f_{12} and f7. Depending on the initial conditions the universe will realize only three of these six eras. However, the matter-dominated phases are dramatically different from the standard matter-dominated epoch. In these phases the cosmic scale factor grows as a(t)˜ t^{0.46} and t^{0.52}, respectively, which are slower than the standard case, i.e. a(t)˜ t^{2/3}. Considering these results we discuss the cosmological viability of MOG.
An Absolute Phase Space for the Physicality of Matter
Valentine, John S.
2010-12-22
We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.
What is the phase space of the last glacial inception?
NASA Astrophysics Data System (ADS)
Bahadory, Taimaz; Tarasov, Lev
2017-04-01
Would the ice and climate pattern of glacial inception changed much with small tweaks to the initial Eemian climate state? Given the very limited available geological constraints, what is the range of potential spatio-temporal patterns of ice sheet inception and associated climate? What positive and negative feedbacks between ice, atmospheric and ocean circulation, and vegetation dominate glacial inception? As a step towards answering these questions, we examine the phase space of glacial inception in response to a subset of uncertainties in a coupled 3D model through an ensemble of simulations. The coupled model consists of the GSM (Glacial Systems Model) and LOVECLIM earth systems model of intermediate complexity. The former includes a 3D ice sheet model, asynchronously coupled glacio isostatic adjustment, surface drainage solver, and permafrost resolving bed thermal model. The latter includes an ocean GCM, atmospheric component, dynamic/thermodynamic seaice, and simplified dynamical vegetation. Our phase space exploration probes uncertainties in: initial conditions, downscaling and upscaling, the radiative effect of clouds, snow and ice albedo, precipitation parameterization, and freshwater discharge. The probe is constrained by model fit to present day climate and LGM climate.
Time-dependent quantum correlations in phase space
NASA Astrophysics Data System (ADS)
Krumm, F.; Vogel, W.; Sperling, J.
2017-06-01
General quasiprobabilities are introduced to visualize time-dependent quantum correlations of light in phase space. They are based on the generalization of the Glauber-Sudarshan P function to a time-dependent P functional [W. Vogel, Phys. Rev. Lett. 100, 013605 (2008), 10.1103/PhysRevLett.100.013605], which fully describes temporal correlations of radiation fields on the basis of continuous phase-space distributions. This approach is nontrivial, as the P functional itself is highly singular for many quantum states and nonlinear processes. In general, it yields neither a well-behaved nor an experimentally accessible description of quantum stochastic processes. Our regularized version of this multitime-dependent quasiprobability is a smooth function and applies to stronger divergences compared to the single-time and multimode scenario. The technique is used to characterize an optical parametric process with frequency mismatch and a strongly nonlinear evolution of the quantized center-of-mass motion of a trapped ion. A measurement scheme, together with a sampling approach, is provided which yields direct experimental access to the regularized P functional from measured data.
Fast-phase space computation of multiple arrivals
Fomel, S.; Sethian, J. A.
2002-01-01
We present a fast, general computational technique for computing the phase-space solution of static Hamilton–Jacobi equations. Starting with the Liouville formulation of the characteristic equations, we derive “Escape Equations” which are static, time-independent Eulerian PDEs. They represent all arrivals to the given boundary from all possible starting configurations. The solution is numerically constructed through a “one-pass” formulation, building on ideas from semi-Lagrangian methods, Dijkstra-like methods for the Eikonal equation, and Ordered Upwind Methods. To compute all possible trajectories corresponding to all possible boundary conditions, the technique is of computational order O(N log N), where N is the total number of points in the computational phase-space domain; any particular set of boundary conditions then is extracted through rapid post-processing. Suggestions are made for speeding up the algorithm in the case when the particular distribution of sources is provided in advance. As an application, we apply the technique to the problem of computing first, multiple, and most energetic arrivals to the Eikonal equation. PMID:12032282
Coherent quantum squeezing due to the phase space noncommutativity
NASA Astrophysics Data System (ADS)
Bernardini, Alex E.; Mizrahi, Salomon S.
2015-06-01
The effects of general noncommutativity of operators on producing deformed coherent squeezed states is examined in phase space. A two-dimensional noncommutative (NC) quantum system supported by a deformed mathematical structure, similar to that of Hadamard billiard, is obtained and the components behaviour is monitored in time. It is assumed that the independent degrees of freedom are two free 1D harmonic oscillators (HOs), so the system Hamiltonian does not contain interaction terms. Through the NC deformation parameterized by a Seiberg-Witten transform on the original canonical variables, one gets the standard commutation relations for the new ones, such that the obtained, new, Hamiltonian represents two interacting 1D HOs. By admitting that one HO is inverted relatively to the other, we show that their effective interaction induces a squeezing dynamics for initial coherent states imaged in the phase space. A suitable pattern of logarithmic spirals is obtained and some relevant properties are discussed in terms of Wigner functions, which are essential to put in evidence the effects of the noncommutativity.
Phase Space Velocy Correlation and Degrees of Freedom
NASA Astrophysics Data System (ADS)
Mattingly, Sean; Berumen, Jorge; Chu, Feng; Hood, Ryan; Skiff, Fred
2016-10-01
We measure the phase space distribution function's velocity correlation function C(v ,v' , τ) = < f (x , v , t) f(x' = x ,v' , t - τ > t in a cylindrical axially magnetized laboratory plasma (n 109 ,Te 5eV ,Ti 0.08eV) generated with an inductively coupled RF source. We use Laser Induced Fluorescence (LIF) with two lasers that each have their own atomic transition scheme and collection optics to simultaneously measure distinct ion subpopulations at differing velocities v and v'. A separately mounted antenna facilitates the velocity correlation measurement through either single mode excitation with a sinusoidal signal or broadband excitation with white noise. LIF photon acquisition is synchronized with digitizer sampling of the signal driving the fluctuation excitation antenna. With this we explore phase space degrees of freedom in v and v' with either monochromatic or broadband excitation. Finally, driving a sinusoidal wave near the ion cyclotron frequency causes linear wave - particle resonance ω - nΩci =k| |(ω) v| | that results in a tunable ion resonance velocity located within the Doppler broadened IVDF - making it measureable by LIF. NSF DOE Grant DE-FG02-99ER54543.
Artwork: Johnson Space Center U.S./International Cooperation Phase II -- This is a representation
NASA Technical Reports Server (NTRS)
1994-01-01
Artwork: Johnson Space Center U.S./International Cooperation Phase II -- This is a representation illustrating the United States' international cooperation in space. Phase II of the International Space Station is depicted with elements provided by the United States and Russia comprising the Human Tended Space Station. The scene was produced by John Frassanito and Associates. (JSC ref: S94-30086)
Artwork: Johnson Space Center U.S./International Cooperation Phase II -- This is a representation
NASA Technical Reports Server (NTRS)
1994-01-01
Artwork: Johnson Space Center U.S./International Cooperation Phase II -- This is a representation illustrating the United States' international cooperation in space. Phase II of the International Space Station is depicted with elements provided by the United States and Russia comprising the Human Tended Space Station. The scene was produced by John Frassanito and Associates. (JSC ref: S94-30086)
Laser Interferometer Space Antenna (LISA) Far Field Phase Patterns
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Obenschain, Arthur F. (Technical Monitor)
2000-01-01
The Laser Interferometer Space Antenna (LISA) consists of three spacecraft in orbit about the sun. The orbits are chosen such that the three spacecraft are always at (roughly) the vertices of a equilateral triangle with 5 million kilometer leg lengths. Even though the distances between the three spacecraft are 5 million kilometers, the expected phase shifts between any two beams, due to a gravitational wave, only correspond to a distance change of about 10 pico meters, which is about 10(exp -5) waves for a laser wavelength of 1064 nm. To obtain the best signal-to-noise ratio, noise sources such as changes in the apparent distances due to pointing jitter must be controlled carefully. This is the main reason for determining the far-field phase patterns of a LISA type telescope. Because of torque on the LISA spacecraft and other disturbances, continuous adjustments to the pointing of the telescopes are required. These pointing adjustments will be a "jitter" source. If the transmitted wave is perfectly spherical then rotations (Jitter) about its geometric center will not produce any effect at the receiving spacecraft. However, if the outgoing wave is not perfectly spherical, then pointing jitter will produce a phase variation at the receiving spacecraft. The following sections describe the "brute force" computational approach used to determine the scalar wave front as a function of exit pupil (Zernike) aberrations and to show the results (mostly graphically) of the computations. This approach is straightforward and produces believable phase variations to sub-pico meter accuracy over distances on the order of 5 million kilometers. As such this analyzes the far field phase sensitivity to exit pupil aberrations.
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed.
Evolution of electron phase space holes in inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Vasko, I. Y.; Kuzichev, I. V.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Roth, I.
2017-06-01
Electron phase space holes or vortices (EHs) are electrostatic solitary waves with a bipolar parallel (magnetic field-aligned) electric field. They are formed in a nonlinear stage of electron streaming type instabilities and exist due to electrons trapped within the EH electrostatic potential. The background plasma density gradients, characteristic for both space and laboratory plasmas, can affect the evolution of EHs. In this paper, we use a one-dimensional electrostatic Vlasov-Ampère code (ions are immobile) with periodic boundary conditions to study the evolution of a single EH in inhomogeneous plasmas. We find that the EH propagating along a positive (negative) plasma density gradient is accelerated (decelerated) and narrowed (widened). EH propagating along a positive density gradient results in the acceleration of a relatively small population of trapped electrons to suprathermal energies. Interestingly, a decelerating EH is reflected at the point with the plasma density value dependent only on EH parameters, but independent of the average density gradient in the system. We show that the density gradients result in the development of a unipolar parallel electric field in a vicinity of the EH. A theoretical estimate of the corresponding potential drop along the EH is derived. The results are discussed in the light of EH observations in space plasma.
Multivariate Time Series Decomposition into Oscillation Components.
Matsuda, Takeru; Komaki, Fumiyasu
2017-08-01
Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.
Capitán-Vallvey, L F; Fernández, M D; de Orbe, I; Vilchez, J L; Avidad, R
1997-04-01
A method for the simultaneous determination of the colorants Sunset Yellow FCF and Quinoline Yellow using solid-phase spectrophotometry is proposed. The colorants were isolated in Sephadex DEAE A-25 gel at pH 5.0, the gel-colorants system was packed in a 1 mm silica cell and spectra were recorded between 400 and 600 nm against a blank. Statistical results were obtained by partial least squares (PLS) multivariate calibration. The optimized matrix by using the PLS-2 method enables the determination of the colorants in artificial mixtures and commercial soft drinks.
Constraining neutron guide optimizations with phase-space considerations
NASA Astrophysics Data System (ADS)
Bertelsen, Mads; Lefmann, Kim
2016-09-01
We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.
Morie, Jacquelyn Ford; Iyer, Kumar; Luigi, Donat-Pierre; Williams, Josh; Dozois, Aimee; Rizzo, Albert Skip
2005-09-01
Virtual reality (VR) has become mature enough to be successfully used in clinical applications such as exposure therapy, pain distraction, and neuropsychological assessment. However, we now need to go beyond the outcome data from this research and conduct the detailed scientific investigations required to better understand what factors influence why VR works (or doesn't) in these types of clinical applications. This knowledge is required to guide the development of VR applications in the key areas of education, training, and rehabilitation and to further evolve existing VR approaches. One of the primary assets obtained with the use of VR is the ability to simulate the complexity of real world environments, within which human performance can be tested and trained. But this asset comes with a price in terms of the capture, quantification and analysis of large, multivariate and concurrent data sources that reflect the naturalistic behavioral interaction that is afforded in a virtual world. As well, while achieving realism has been a main goal in making convincing VR environments, just what constitutes realism and how much is needed is still an open question situated firmly in the research domain. Just as in real "reality," such factors in virtual reality are complex and multivariate, and the understanding of this complexity presents exceptional challenges to the VR researcher. For certain research questions, good behavioral science often requires consistent delivery of stimuli within tightly controlled lab-based experimental conditions. However, for other important research questions we do not want to constrain naturalistic behavior and limit VR's ability to replicate real world conditions, simply because it is easier to study human performance with traditional lab-based methodologies. By doing so we may compromise the very qualities that comprise VR's unique capacity to mimic the experiences and challenges that exist in everyday life. What is really needed to address
A study of the maximum entropy technique for phase space tomography
NASA Astrophysics Data System (ADS)
Hock, K. M.; Ibison, M. G.
2013-02-01
We study a problem with the Maximum Entropy Technique (MENT) when applied to tomographic measurements of the transverse phase space of electron beams, and suggest some ways to improve its reliability. We show that the outcome of a phase space reconstruction can be highly sensitive to the choice of projection angles. It is quite likely to obtain reconstructed distributions of the phase space that are obviously different from the actual distributions. We propose a method to obtain a ``good'' choice of projections angles using a normalised phase space. We demonstrate that the resulting reconstructions of the phase space can be significantly improved.
NASA Astrophysics Data System (ADS)
Trahan, Corey J.; Wyatt, Robert E.
2003-10-01
Recently, Donoso and Martens described a method for evolving both classical and quantum phase-space distribution functions, W(q,p,t), that involves the propagation of an ensemble of correlated trajectories. The trajectories are linked into a unified whole by spatial and momentum derivatives of density dependent terms in the equations of motion. On each time step, these nonlocal terms were evaluated by fitting the density around each trajectory to an assumed functional form. In the present study, we develop a different trajectory method for propagating phase-space distribution functions. A hierarchy of coupled analytic equations of motion are derived for the q and p derivatives of the density and a truncated set of these are integrated along each trajectory concurrently with the equation of motion for the density. The advantage of this approach is that individual trajectories can be propagated, one at a time, and function fitting is not required to evaluate the nonlocal terms. Regional nonlocality can be incorporated at various levels of approximation to "dress" what would otherwise be "thin" locally propagating trajectories. This derivative propagation method is used to obtain trajectory solutions for the Klein-Kramers equation, the Husimi equation, and for a smoothed version of the Caldeira-Leggett equation derived by the Diosi. Trajectory solutions are obtained for the relaxation of an oscillator in contact with a thermal bath and for the decay of a metastable state.
A study on quantum similarity in the phase space
NASA Astrophysics Data System (ADS)
Sellier, J. M.; Ivanova, D. Y.; Dimov, I.
2016-10-01
Quantum similarity represents an important concept in the context of many applied disciplines such as physical and quantum chemistry. Nowadays, two definitions exist based, respectively, on the real and the phase spaces. In this paper, we focus on the second one, which was presented recently, and investigate it. In particular, being its mathematical definition dependent on a given integer s, we study the influence of this parameter on the similarity between two systems. To keep this investigation comprehensible, while still meaningful, we focus on a very simple quantum system represented by a hydrogen atom in the ground and excited states corresponding to the quantum numbers (n , l , m) =(1 , 0 , 0) and (n , l , m) =(2 , 0 , 0) .
Space shuttle electromagnetic environment experiment. Phase A: Definition study
NASA Technical Reports Server (NTRS)
Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.
1974-01-01
A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.
Capture into resonance and phase space dynamics in optical centrifuge
NASA Astrophysics Data System (ADS)
Armon, Tsafrir; Friedland, Lazar
2016-05-01
The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.
Hubble Space Telescope characterized by using phase-retrieval algorithms.
Fienup, J R; Marron, J C; Schulz, T J; Seldin, J H
1993-04-01
We describe several results characterizing the Hubble Space Telescope from measured point spread functions by using phase-retrieval algorithms. The Cramer-Rao lower bounds show that point spread functions taken well out of focus result in smaller errors when aberrations are estimated and that, for those images, photon noise is not a limiting factor. Reconstruction experiments with both simulated and real data show that the calculation of wave-front propagation by the retrieval algorithms must be performed with a multiple-plane propagation rather than a simple fast Fourier transform to ensure the high accuracy required. Pupil reconstruction was performed and indicates a misalignment of the optical axis of a camera relay telescope relative to the main telescope. After we accounted for measured spherical aberration in the relay telescope, our estimate of the conic constant of the primary mirror of the HST was - 1.0144.
Phase-space treatment of the driven quantum harmonic oscillator
NASA Astrophysics Data System (ADS)
Campos, Diógenes
2017-03-01
A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the standard position and momentum wave functions, together with expressions for the ηth derivatives with respect to q and p, respectively. Afterwards, general formulae for momentum, position and energy expectation values are obtained, and the Ehrenfest theorem is verified. Subsequently, general expressions for the cross-Wigner functions are deduced. Finally, a specific example is considered to numerically and graphically illustrate some results.
Phase-space noncommutative formulation of Ozawa's uncertainty principle
NASA Astrophysics Data System (ADS)
Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Costa Dias, Nuno; Prata, João Nuno
2014-08-01
Ozawa's measurement-disturbance relation is generalized to a phase-space noncommutative extension of quantum mechanics. It is shown that the measurement-disturbance relations have additional terms for backaction evading quadrature amplifiers and for noiseless quadrature transducers. Several distinctive features appear as a consequence of the noncommutative extension: measurement interactions which are noiseless, and observables which are undisturbed by a measurement, or of independent intervention in ordinary quantum mechanics, may acquire noise, become disturbed by the measurement, or no longer be an independent intervention in noncommutative quantum mechanics. It is also found that there can be states which violate Ozawa's universal noise-disturbance trade-off relation, but verify its noncommutative deformation.
Production of Coherent Phase Space Islands in Trapped Plasma
NASA Astrophysics Data System (ADS)
Hunter, Eric; Povilus, Alex; Belmore, Nathan; Lewis, Nicole; Shanman, Sabrina; Fajans, Joel
2015-11-01
Particles are coherently extracted from a cold Maxwellian distribution into phase space islands by applying a fixed-frequency RF drive while the plasma bounce frequency is swept downward by lowering the potential confining the plasma. These objects can appear spontaneously in pure electron and mixed ion plasma experiments during particle extraction when the noise power spectrum of the confining potential has peaks in the rf band, as is often the case in a laboratory environment. Interestingly, the particles in these islands have been observed to form tight energy distributions, making the mechanism potentially useful for low energy/monoenergetic plasma injection devices. In particular, these features would be useful for antimatter spectroscopy and mixing for antihydrogen formation. This work is supported by DoE, Grant DE-FG02-06ER54904.
Interacting agegraphic dark energy models in phase space
Lemets, O.A.; Yerokhin, D.A.; Zazunov, L.G. E-mail: denyerokhin@gmail.com
2011-01-01
Agegraphic dark energy, has been recently proposed, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In the first part of the article we study the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. The phase space analysis was made and the critical points were found, one of which is the attractor corresponding to an accelerated expanding Universe. Recent observations of near supernova show that the acceleration of Universe decreases. This phenomenon is called the transient acceleration. In the second part of Article we consider the 3-component Universe composed of a scalar field, interacting with the dark matter on the agegraphic dark energy background. We show that the transient acceleration appears in frame of such a model. The obtained results agree with the observations.
ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS
Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.
2012-08-01
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.
Does string fragmentation reveal more than longitudinal phase space\\?
NASA Astrophysics Data System (ADS)
Schulze, H. J.; Aichelin, J.
1989-06-01
The fragmentation of a color string into hadrons is assumed to be a sequence of binary decays governed by Fermi's golden rule. In each decay step a hadron is produced and a string with lower energy is left. Assuming that the transition matrix element depends on pT only the decay is completely determined by the longitudinal phase space and one parameter, the
Does string fragmentation reveal more than longitudinal phase space
Schulze, H. J.; Aichelin, J.
1989-06-01
The fragmentation of a color string into hadrons is assumed to be a sequence of binary decays governed by Fermi's golden rule. In each decay step a hadron is produced and a string with lower energy is left. Assuming that the transition matrix element depends on /ital p//sub /ital T// only the decay is completely determined by the longitudinal phase space and one parameter, the of the produced hadrons. We find an almost complete agreement with the experimental momentum (longitudinal and transversal) and multiplicity distributions and the number of produced particles. The ''seagull'' shape of (x) turns out to be completely due to the sphericity analysis. This leaves little room for extracting information of QCD from single-particle-inclusive fragmentation data.
Semiclassical approximations in phase space with coherent states
NASA Astrophysics Data System (ADS)
Baranger, M.; de Aguiar, M. A. M.; Keck, F.; Korsch, H. J.; Schellhaaß, B.
2001-09-01
We present a complete derivation of the semiclassical limit of the coherent-state propagator in one dimension, starting from path integrals in phase space. We show that the arbitrariness in the path integral representation, which follows from the overcompleteness of the coherent states, results in many different semiclassical limits. We explicitly derive two possible semiclassical formulae for the propagator, we suggest a third one, and we discuss their relationships. We also derive an initial-value representation for the semiclassical propagator, based on an initial Gaussian wavepacket. It turns out to be related to, but different from, Heller's thawed Gaussian approximation. It is very different from the Herman-Kluk formula, which is not a correct semiclassical limit. We point out errors in two derivations of the latter. Finally we show how the semiclassical coherent-state propagators lead to WKB-type quantization rules and to approximations for the Husimi distributions of stationary states.
Determination of Longitudinal Phase Space in SLAC Main Accelerator Beams
Barnes, C.; Decker, F.-J.; Emma, P.; Hogan, M.J.; Iverson, R.; Krejcik, P.; O'Connell, C.L.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.
2005-06-07
In the E164 Experiment at that Stanford Linear Accelerator Center (SLAC), we drive plasma wakes for electron acceleration using 28.5 GeV bunches from the main accelerator. These bunches can now be made with an RMS length of 12 microns, and accurate direct measurement of their lengths is not feasible shot by shot. Instead, we use an indirect technique, measuring the energy spectrum at the end of the linac and comparing with detailed simulations of the entire machine. We simulate with LiTrack, a 2D particle tracking code developed at SLAC. Understanding the longitudinal profile allows a better understanding of acceleration in the plasma wake, as well as investigation of related effects. We discuss the method and validation of our phase space determinations.
Wigner phase space distribution via classical adiabatic switching
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Wigner phase space distribution via classical adiabatic switching
NASA Astrophysics Data System (ADS)
Bose, Amartya; Makri, Nancy
2015-09-01
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Generalizing the Boltzmann equation in complex phase space
NASA Astrophysics Data System (ADS)
Zadehgol, Abed
2016-08-01
In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014), 10.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015), 10.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others.
Generalizing the Boltzmann equation in complex phase space.
Zadehgol, Abed
2016-08-01
In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others.
Wigner phase space distribution via classical adiabatic switching.
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
2006-10-23
Missions & Operational Functions 6 Campaign Phases and Space Mission Correlation 10 Conclusion 16 Selected Bibliography...maintained throughout a conflict for the operational commander. This paper addresses emerging threats, the Space Mission Areas and Operational...purchase those capabilities – sometimes from our own allies. Space Missions and Operational Functions In order to understand the campaign
Proposal to Accomplish Phase B Space Shuttle Program
NASA Technical Reports Server (NTRS)
Mead, Lawrence M.; Gavin, Joseph G., Jr.
1970-01-01
This proposal has been prepared in response to National Aeronautics and Space Administration Request for Proposal No. 10-8423, dated February 20, 1970, and Amendments No.1, 2, 3, & 4 thereto. It is firm for a period of not less than one hundred twenty (120) days from March 30, 1970. The executed certifications requested in Enclosures 5 and 6 of the Request for Proposal are appended at the end of this proposal. Grumman Aerospace Corporation, along with its associates -- the General Electric Company, Eastern Airlines, the Northrop Corporation, and the Aerojet-General Corporation -- are pleased to submit this proposal. This study must prove that technical challenges can be met at a cost commensurate with realistic national funding levels at an early date, (perferably prior to the late 1977 initial operating capability (IOC) indicated in the Statement of Work). We have assembled a team of extremely competent associates. Together, we are fully qualified to study all facets of the proposed Phase B study, and to develop and build the product. We believe we have already made a promising start toward defining the concept of the space shuttle system.
The phase-space structure of tidally stripped haloes
NASA Astrophysics Data System (ADS)
Drakos, Nicole E.; Taylor, James E.; Benson, Andrew J.
2017-06-01
We propose a new method for generating equilibrium models of spherical systems of collisionless particles that are finite in extent, but whose central regions resemble dark matter haloes from cosmological simulations. This method involves iteratively removing unbound particles from a Navarro-Frenk-White (NFW) profile truncated sharply at some radius. The resulting models are extremely stable, and thus provide a good starting point for N-body simulations of isolated haloes. We provide a code to generate such models for NFW and a variety of other common density profiles. We then develop an analytic approximation to this truncated distribution function. Our method proceeds by analogy with the King model, truncating and shifting the original distribution function of an infinitely extended NFW profile in energy space. We show that the density profiles of our models closely resemble the tidally truncated density profiles seen previously in studies of satellite evolution. Pursuing this analogy further with a series of simulations of tidal mass-loss, we find that our models provide a good approximation to the full distribution function of tidally stripped systems, thus allowing theoretically motivated phase-space calculations for such systems.
Quantum trajectories in complex phase space: multidimensional barrier transmission.
Wyatt, Robert E; Rowland, Brad A
2007-07-28
The quantum Hamilton-Jacobi equation for the action function is approximately solved by propagating individual Lagrangian quantum trajectories in complex-valued phase space. Equations of motion for these trajectories are derived through use of the derivative propagation method (DPM), which leads to a hierarchy of coupled differential equations for the action function and its spatial derivatives along each trajectory. In this study, complex-valued classical trajectories (second order DPM), along which is transported quantum phase information, are used to study low energy barrier transmission for a model two-dimensional system involving either an Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. The arrival time for trajectories to reach the transmitted (product) region is studied. Trajectories launched from an "equal arrival time surface," defined as an isochrone, all reach the real-valued subspace in the transmitted region at the same time. The Rutherford-type diffraction of trajectories around poles in the complex extended Eckart potential energy surface is described. For thin barriers, these poles are close to the real axis and present problems for computing the transmitted density. In contrast, for the Gaussian barrier or the thick Eckart barrier where the poles are further from the real axis, smooth transmitted densities are obtained. Results obtained using higher-order quantum trajectories (third order DPM) are described for both thick and thin barriers, and some issues that arise for thin barriers are examined.
A varying polytropic gas universe and phase space analysis
NASA Astrophysics Data System (ADS)
Khurshudyan, M.
2016-05-01
In this paper, we will consider a phenomenological model of a dark fluid that is able to explain an accelerated expansion of our low redshift universe and the phase transition to this accelerated expanding universe. Recent developments in modern cosmology towards understanding of the accelerated expansion of the large scale universe involve various scenarios and approaches. Among these approaches, one of well-known and accepted practice is modeling of the content of our universe via dark fluid. There are various models of dark energy fluid actively studied in recent literature and polytropic gas is among them. In this work, we will consider a varying polytropic gas which is a phenomenological modification of polytropic gas. Our model of varying polytropic dark fluid has been constructed to analogue to a varying Chaplygin gas actively discussed in the literature. We will consider interacting models, where dark matter is a pressureless fluid, to have a comprehensive picture. Phase space analysis is an elegant mathematical tool to earn general understanding of large scale universe and easily see an existence of a solution to cosmological coincidence problem. Imposing some constraints on parameters of the models, we found late time attractors for each case analytically. Cosmological consequences for the obtained late time attractors are discussed.
Christensen, Niels Peter Aae; Van Eerdenbrugh, Bernard; Kwok, Kaho; Taylor, Lynne S; Bond, Andrew D; Rades, Thomas; Rantanen, Jukka; Cornett, Claus
2013-03-01
To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin. Multivariate curve resolution (MCR) was used to decompose a variable-temperature synchrotron X-ray powder diffraction (VT-XRPD) data matrix into diffraction patterns and concentration profiles of pure drug phases. By means of the MCR-estimated diffraction patterns and concentration profiles, the trihydrate phase of the drug salt was found to dehydrate sequentially into two partially dehydrated hydrate structures upon heating from 25 to 110°C, with no associated breakage of the original crystal lattice. During heating from 110 to 140°C, the remaining water was lost from the solid drug salt, which instantly collapsed into a liquid crystalline phase. An isotropic melt was formed above 155°C. Thermogravimetric analysis, hot-stage polarized light microscopy, and hot-stage Raman spectroscopy combined with principal component analysis (PCA) was shown to provide consistent results. This study demonstrates that MCR combined with VT-XRPD is a powerful tool for rapid interpretation of complex dehydration behavior of drug hydrates, and it is also the first report on a liquid crystalline phase of the calcium salt of atorvastatin.
Sanpei, Akio; Soga, Yukihiro; Ito, Kiyokazu; Himura, Haruhiko
2015-06-29
A trilinear phase space analysis is applied for dynamics of three electron clumps confined with a Penning-Malmberg trap. We show that the Aref’s concept of phase space describe the observed features of the dynamics of three point vortices qualitatively. In vacuum, phase point P moves to physical region boundary in phase space, i.e. triangular configuration cannot be kept. With the addition of a low level background vorticity distribution (BGVD), the excursion of the clumps is reduced and the distance between P and stable point does not extend in the phase space.
NASA Astrophysics Data System (ADS)
C T, D.; Rajendran, V.
2015-12-01
Climate change impact assessment studies associated with water resources and its management, presently, rely on a great extent on statistical downscaling techniques, to undertake fine resolution hydrologic modelling over a region. Though, recent literature is flooded with many new downscaling methodologies with varying complexities, the inefficiency of these downscaling techniques in accurately capturing the regional extremes, limits the employment of these downscaling techniques in any impact studies in water resources. It merely increases the monstrosity of uncertainty by adding one more factor: downscaling uncertainty. While chaotic nature of climate systems and existence of attractors are irrefutable, the knowledge on system dynamics is not incorporated in the statistical downscaling methodologies so far. A few questions rise from this context: (1) How possibly can we incorporate the information about system dynamics in statistical downscaling techniques? (2) Will it help in accurately simulating the characteristics of actual system, in statistical terms? (3) If so, will such as approach be able to capture the extremes better?. The present study attempts to address the above questions by adopting a phase space reconstruction approach, which reproduces the attractor of the system and inherent dynamics. The dominant variables to replicate the system dynamics are selected as surface air temperature, specific humidity, precipitable water, long wave radiation, and vertical velocity, in addition to rainfall, which is the variable to be downscaled. A multi-variate phase space reconstruction approach, taking into account the relevance and information contained in one variable, is adopted, to estimate the dimension of system and reconstruct the attractor. The downscaling of future rainfall is done by applying a local prediction approach, enforcing the known information of future dominant variables and employing classification and regression trees (CART). The present
Multivariate bubbles and antibubbles
NASA Astrophysics Data System (ADS)
Fry, John
2014-08-01
In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.
Effect of space environment on space-based radar phased-array antenna (A0133)
NASA Technical Reports Server (NTRS)
Delasi, R. J.; Rossi, M. L.; Whiteside, J. B.; Kesselman, M.; Heuer, R. L.; Kuehne, F. J.
1984-01-01
Kapton polyimide film was selected as the baseline material for the Grumman spce based radar (SBR) concept. To gain the requisite confidence for long-term service durability, it is desirable to subject material specimens as well as a portion of the SBR antenna directly to the combined space environment and compare property degradation to that caused by laboratory simulation. The overall objective of this program is to evauate the effect of the space environment on polymeric materials currently being considered for the Grumman SBR Phased-Array Antenna. Degradation mechanisms caused by thermal cycling, ultraviolet and charged-particle irradiation, applied load, and high-voltage plasma interaction will be evaluated. The experiment occupies a 6-in.-deep end corner tray located on the space end of the Long Duration Exposure Facility and consists of both passive and active parts. The passive part addresses the effect of environment and stress on the dimensional stability spliced and continuous Kapton, both plain and reinforced. The active part will study the interaction of high voltage and low-Earth-orbit plasma.
Quantum dynamics in phase space: Moyal trajectories 2
Braunss, G.
2013-01-15
Continuing a previous paper [G. Braunss, J. Phys. A: Math. Theor. 43, 025302 (2010)] where we had calculated Planck-Constant-Over-Two-Pi {sup 2}-approximations of quantum phase space viz. Moyal trajectories of examples with one and two degrees of freedom, we present in this paper the calculation of Planck-Constant-Over-Two-Pi {sup 2}-approximations for four examples: a two-dimensional Toda chain, the radially symmetric Schwarzschild field, and two examples with three degrees of freedom, the latter being the nonrelativistic spherically Coulomb potential and the relativistic cylinder symmetrical Coulomb potential with a magnetic field H. We show in particular that an Planck-Constant-Over-Two-Pi {sup 2}-approximation of the nonrelativistic Coulomb field has no singularity at the origin (r= 0) whereas the classical trajectories are singular at r= 0. In the third example, we show in particular that for an arbitrary function {gamma}(H, z) the expression {beta}{identical_to}p{sub z}+{gamma}(H, z) is classically ( Planck-Constant-Over-Two-Pi = 0) a constant of motion, whereas for Planck-Constant-Over-Two-Pi {ne} 0 this holds only if {gamma}(H, z) is an arbitrary polynomial of second order in z. This statement is shown to extend correspondingly to a cylinder symmetrical Schwarzschild field with a magnetic field. We exhibit in detail a number of properties of the radially symmetric Schwarzschild field. We exhibit finally the problems of the nonintegrable Henon-Heiles Hamiltonian and give a short review of the regular Hilbert space representation of Moyal operators.
Miniature vibration isolation system for space applications: Phase II
NASA Astrophysics Data System (ADS)
Jacobs, Jack H.; Ross, James A.; Hadden, Steve; Gonzalez, Mario; Rogers, Zach; Henderson, B. Kyle
2004-07-01
In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. During the Phase I MVIS program, funded by AFRL and DARPA, a hybrid piezoelectric/D-strut isolator was built and tested to prove its viability for retroffitable insertion into sensitive payload attachments. A second phase of the program, which is jointly funded between AFRL and Honeywell, was started in November of 2002 to build a hexapod and the supporting interface electronics and do a flight demonstration of the technology. The MVIS-II program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. This paper describes the simulations, overall test plan and product development status of the overall MVIS-II program as it approaches flight.
Mejzlik, J; Celakovsky, P; Tucek, L; Kotulek, M; Vrbacky, A; Matousek, P; Stanikova, L; Hoskova, T; Pazs, A; Mittu, P; Chrobok, V
2017-09-01
To identify deep neck infection factors related to life-threatening complications. This retrospective multi-institutional study comprised 586 patients treated for deep neck infections between 2002 and 2012. The statistical significance of variables associated with life-threatening complications of deep neck infections was assessed. During treatment, life-threatening complications occurred in 60 out of 586 cases. On univariate analysis, life-threatening complications were linked to: dyspnoea, neck movement disturbance and dysphonia (all p < 0.001); and parapharyngeal, anterior visceral or pretracheal deep neck involvement (all p < 0.002). Aetiology was significantly linked to tonsils (p < 0.001). Regarding infection type, fasciitis was a significant factor (p < 0.001). Candida albicans was a significant bacterial culture (p < 0.001). A multivariate step-wise model disclosed fewer significant variables: retropharyngeal space (p = 0.005) and major blood vessels area (p = 0.006) involvement, and bacterial culture C albicans (p < 0.001). It can be predicted that patients with deep neck infections, with neck movement disturbances, dysphonia, dyspnoea and swelling of the external neck, accompanied by severe pain, and inflammatory changes in the retropharyngeal space and large vessel areas, with culture-confirmed infection of C albicans, are likely to develop life-threatening complications.
NASA Astrophysics Data System (ADS)
Tang, Jinjun; Liu, Fang; Zhang, Weibin; Zhang, Shen; Wang, Yinhai
2016-05-01
A new method based on complex network theory is proposed to analyze traffic flow time series in different states. We use the data collected from loop detectors on freeway to establish traffic flow model and classify the flow into three states based on K-means method. We then introduced two widely used methods to convert time series into networks: phase space reconstruction and visibility graph. Furthermore, in phase space reconstruction, we discuss how to determine delay time constant and embedding dimension and how to select optimal critical threshold in terms of cumulative degree distribution. In the visibility graph, we design a method to construct network from multi-variables time series based on logical OR. Finally, we study and compare the statistic features of the networks converted from original traffic time series in three states based on phase space and visibility by using the degree distribution, network structure, correlation of the cluster coefficient to betweenness and degree-degree correlation.
Momo, Remi A; Povey, Jane F; Smales, C Mark; O'Malley, Christopher J; Montague, Gary A; Martin, Elaine B
2013-10-01
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS) has been exploited extensively in the field of microbiology for the characterisation of bacterial species, the detection of biomarkers for early disease diagnosis and bacterial identification. Here, the multivariate data analysis technique of partial least squares-discriminant analysis (PLS-DA) was applied to 'intact cell' MALDI-ToF MS data obtained from Escherichia coli cell samples to determine if such an approach could be used to distinguish between, and characterise, different growth phases. PLS-DA is a technique that has the potential to extract systematic variation from large and noisy data sets by identifying a lower-dimensional subspace that contains latent information. The application of PLS-DA to the MALDI-ToF data obtained from cells at different stages of growth resulted in the successful classification of the samples according to the growth phase of the bacteria cultures. A further outcome of the analysis was that it was possible to identify the mass-to-charge (m/z) ratio peaks or ion signals that contributed to the classification of the samples. The Swiss-Prot/TrEMBL database and primary literature were then used to provisionally assign a small number of these m/z ion signals to proteins, and these tentative assignments revealed that the major contributors from the exponential phase were ribosomal proteins. Additional assignments were possible for the stationary phase and the decline phase cultures where the proteins identified were consistent with previously observed biological interpretation. In summary, the results show that MALDI-ToF MS, PLS-DA and a protein database search can be used in combination to discriminate between 'intact cell' E. coli cell samples in different growth phases and thus could potentially be used as a tool in process development in the bioprocessing industry to enhance cell growth and cell engineering strategies.
PHASES: A Project to Perform Absolute Spectrophotometry from Space
NASA Astrophysics Data System (ADS)
del Burgo, C.; Vather, D.; Allende Prieto, C.; Murphy, N.
2013-04-01
This paper presents the current status of the opto-mechanical design of PHASES (Planet Hunting and AsteroSeismology Explorer Spectrophotometer), which is a project to develop a space-borne telescope to obtain absolute flux calibrated spectra of bright stars. The science payload is intended to be housed in a micro-satellite launched into a low-earth Sun-synchronous orbit with an inclination to the equator of 98.7° and a local time ascending node LTAN of 6:00 AM. PHASES will be able to measure micromagnitude photometric variations due to stellar oscillations/activity and planet/moon transits. It consists of a 20 cm aperture modified Baker telescope feeding two detectors: the tracking detector provides the fine telescope guidance system with a required pointing stability of 0.2″, and the science detector performs spectrophotometry in the wavelength range 370-960 nm with a resolving power between 200 and 900. The spectrograph is designed to provide 1% RMS flux calibrated spectra with signal-to-noise ratios > 100 for stars with V < 10 in short integration times. Our strategy to calibrate the system using A type stars is explained. From comparison with model atmospheres it would be possible to determine the stellar angular diameters with an uncertainty of approximately 0.5%. In the case of a star hosting a transiting planet it would be possible to derive its light curve, and then the planet to stellar radius ratio. Bright stars have high precision Hipparcos parallaxes and the expected level of accuracy for their fluxes will be propagated to the stellar radii, and more significantly to the planetary radii. The scientific drivers for PHASES give rise to some design challenges, which are particularly related to the opto-mechanics for extreme environmental conditions. The optical design has been developed with the primary goal of avoiding stray light reaching the science detector. Three different proposals for the opto-mechanical design are under investigation.
Prat, Chantal; Besalú, Emili; Bañeras, Lluís; Anticó, Enriqueta
2011-06-15
The volatile fraction of aqueous cork macerates of tainted and non-tainted agglomerate cork stoppers was analysed by headspace solid-phase microextraction (HS-SPME)/gas chromatography. Twenty compounds containing terpenoids, aliphatic alcohols, lignin-related compounds and others were selected and analysed in individual corks. Cork stoppers were previously classified in six different classes according to sensory descriptions including, 2,4,6-trichloroanisole taint and other frequent, non-characteristic odours found in cork. A multivariate analysis of the chromatographic data of 20 selected chemical compounds using linear discriminant analysis models helped in the differentiation of the a priori made groups. The discriminant model selected five compounds as the best combination. Selected compounds appear in the model in the following order; 2,4,6 TCA, fenchyl alcohol, 1-octen-3-ol, benzyl alcohol and benzothiazole. Unfortunately, not all six a priori differentiated sensory classes were clearly discriminated in the model, probably indicating that no measurable differences exist in the chromatographic data for some categories. The predictive analyses of a refined model in which two sensory classes were fused together resulted in a good classification. Prediction rates of control (non-tainted), TCA, musty-earthy-vegetative, vegetative and chemical descriptions were 100%, 100%, 85%, 67.3% and 100%, respectively, when the modified model was used. The multivariate analysis of chromatographic data will help in the classification of stoppers and provide a perfect complement to sensory analyses.
Phase Space Dissimilarity Measures for Structural Health Monitoring
Bubacz, Jacob A; Chmielewski, Hana T; Pape, Alexander E; Depersio, Andrew J; Hively, Lee M; Abercrombie, Robert K; Boone, Shane
2011-11-01
A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.
Topology of classical molecular optimal control landscapes in phase space
NASA Astrophysics Data System (ADS)
Joe-Wong, Carlee; Ho, Tak-San; Long, Ruixing; Rabitz, Herschel; Wu, Rebing
2013-03-01
Optimal control of molecular dynamics is commonly expressed from a quantum mechanical perspective. However, in most contexts the preponderance of molecular dynamics studies utilize classical mechanical models. This paper treats laser-driven optimal control of molecular dynamics in a classical framework. We consider the objective of steering a molecular system from an initial point in phase space to a target point, subject to the dynamic constraint of Hamilton's equations. The classical control landscape corresponding to this objective is a functional of the control field, and the topology of the landscape is analyzed through its gradient and Hessian with respect to the control. Under specific assumptions on the regularity of the control fields, the classical control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control field is shown to have finite rank, indicating the presence of an inherent degree of robustness to control noise. Extensive numerical simulations are performed to illustrate the theoretical principles on (a) a model diatomic molecule, (b) two coupled Morse oscillators, and (c) a chaotic system with a coupled quartic oscillator, confirming the absence of traps in the classical control landscape. We compare the classical formulation with the mathematically analogous quantum state-to-state transition probability control landscape.
Phase space of modified Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Carloni, Sante; Mimoso, José P.
2017-08-01
We investigate the evolution of non-vacuum Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss-Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within these theories. We also deduce from the dynamical equations some general conditions on the form of the action which guarantee the presence of specific behaviours like the emergence of accelerated expansion. As in f( R) gravity, our analysis shows that there is a set of initial conditions for which these models have a finite time singularity which can be an attractor. The presence of this instability also in the Gauss-Bonnet gravity is to be ascribed to the fourth-order derivative in the field equations, i.e., is the direct consequence of the higher order of the equations.
Phase-space estimate of satellite coverage time
Canavan, G.H.
1992-05-01
This note derives a phase-space estimate of the overlap in satellite coverage and evaluates its impact on the time for a constellation to cover some specified area. The satellites` motion is treated as random in the calculation of the overlaps. Enough passes are prescribed to assure that an adequate probability of observing each area is accumulated. For 0.9--0.99 probabilities of coverage, overlaps increase the time for coverage by factors of 2--4 over no-overlap estimates. This model also gives the probability of different vintages of data. If a given constellation covers the whole Earth in the no-overlap time T{sub 0}, the average vintage of the data over the earth will then be the average
Phase-space estimate of satellite coverage time
Canavan, G.H.
1992-05-01
This note derives a phase-space estimate of the overlap in satellite coverage and evaluates its impact on the time for a constellation to cover some specified area. The satellites' motion is treated as random in the calculation of the overlaps. Enough passes are prescribed to assure that an adequate probability of observing each area is accumulated. For 0.9--0.99 probabilities of coverage, overlaps increase the time for coverage by factors of 2--4 over no-overlap estimates. This model also gives the probability of different vintages of data. If a given constellation covers the whole Earth in the no-overlap time T{sub 0}, the average vintage of the data over the earth will then be the average
Simple procedure for phase-space measurement and entanglement validation
NASA Astrophysics Data System (ADS)
Rundle, R. P.; Mills, P. W.; Tilma, Todd; Samson, J. H.; Everitt, M. J.
2017-08-01
It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBM's Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger state. Because Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.
Analysis of traffic flow models in phase space
NASA Astrophysics Data System (ADS)
Velasco, R. M.; Saavedra, P.
2008-11-01
Traffic flow can be studied by means of hydrodynamic concepts, through an analogy with Navier-Stokes compressible flow or with models coming from kinetic equations. In this work we will consider two models for which the density and the average velocity are the relevant variables. The Kerner-Konhäuser [1] is a phenomenological model proposed in complete analogy with a viscous flow, whereas the so called kinetic model [2] comes from the Paveri-Fontana kinetic equation [3]. Both models are seen from a moving reference frame and a phase space is defined where all the analysis is done, some orbits exemplify and contrast the behavior in these models [4]. [1] B.S. Kerner, P. Konhäuser; Phys. Rev. E 48, R2335 (1993). [2] R.M. Velasco, W. Marques Jr.; Phys. Rev. E 72, 046102 (2005). [3] S.L. Paveri-Fontana; Transp.. Res. 9, 225 (1975). [4] H.K. Lee, H.W. Lee, D. Kim; Phys. Rev. E 69, 016118 (2004).
Characterization of informational completeness for covariant phase space observables
NASA Astrophysics Data System (ADS)
Kiukas, J.; Lahti, P.; Schultz, J.; Werner, R. F.
2012-10-01
In the nonrelativistic setting with finitely many canonical degrees of freedom, a shift-covariant phase space observable is uniquely characterized by a positive operator of trace one and, in turn, by the Fourier-Weyl transform of this operator. We study three properties of such observables, and characterize them in terms of the zero set of this transform. The first is informational completeness, for which it is necessary and sufficient that the zero set has dense complement. The second is a version of informational completeness for the Hilbert-Schmidt class, equivalent to the zero set being of measure zero, and the third, known as regularity, is equivalent to the zero set being empty. We give examples demonstrating that all three conditions are distinct. The three conditions are the special cases for p = 1, 2, ∞ of a more general notion of p-regularity defined as the norm density of the span of translates of the operator in the Schatten-p class. We show that the relation between zero sets and p-regularity can be mapped completely to the corresponding relation for functions in classical harmonic analysis.
Phase space analysis of the accelerating multifluid Universe
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.; Tretyakov, Petr V.
2017-08-01
We study in detail the phase space of a Friedmann-Robertson-Walker universe filled with various cosmological fluids that may or may not interact. We use various expressions for the equation of state, and we analyze the physical significance of the resulting fixed points. In addition, we discuss the effects of the stability or an instability of some fixed points. Moreover, we study an interesting phenomenological scenario for which there is an oscillating interaction between the dark energy and dark matter fluid. As we demonstrate, in the context of the model we use, at early times the interaction is negligible, and it starts to grow as the cosmic time approaches the late-time era. Also the cosmological dynamical system is split into two distinct dynamical systems that have two distinct de Sitter fixed points, with the early-time de Sitter point being unstable. This framework gives an explicit example of the unification of the early-time with late-time acceleration. Finally, we discuss in some detail the physical interpretation of the various models we present in this work.
Phase space of modified Gauss-Bonnet gravity.
Carloni, Sante; Mimoso, José P
2017-01-01
We investigate the evolution of non-vacuum Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss-Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within these theories. We also deduce from the dynamical equations some general conditions on the form of the action which guarantee the presence of specific behaviours like the emergence of accelerated expansion. As in f(R) gravity, our analysis shows that there is a set of initial conditions for which these models have a finite time singularity which can be an attractor. The presence of this instability also in the Gauss-Bonnet gravity is to be ascribed to the fourth-order derivative in the field equations, i.e., is the direct consequence of the higher order of the equations.
NASA Astrophysics Data System (ADS)
Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini
We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.
An effective method to accurately calculate the phase space factors for β-β- decay
Neacsu, Andrei; Horoi, Mihai
2016-01-01
Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. Here, we present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.
Phase-locked laser array having a non-uniform spacing between lasing regions
NASA Technical Reports Server (NTRS)
Ackley, Donald E. (Inventor)
1986-01-01
A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.
Laguerre, Mickaël; Mestres, Christian; Davrieux, Fabrice; Ringuet, Johanny; Boulanger, Renaud
2007-02-21
This study describes a new and suitable method for the rapid evaluation of rice (Oryza sativa, L.) aroma by analysis of the volatile fraction using solid-phase microextraction coupled with mass spectrometry (SPME/MS). The abundance list of unresolved mass fragments of the SPME extracted volatile fraction formed the "fingerprint" of a rice sample. Fingerprints of 61 rice samples were recorded in duplicate. Pollutants originating from the extraction system induce fingerprint background that could be lowered by careful cleaning of vials and caps and by exclusion of specific mass fragments. A good discrimination between scented and nonscented rice samples was obtained using the SIMCA procedure. Most of the discriminating mass fragments could be directly or indirectly assigned to potential aromatic molecules present in rice.
Phase-space dissimilarity measures for industrial and biomedical applications
NASA Astrophysics Data System (ADS)
Protopopescu, V. A.; Hively, L. M.
2005-12-01
One of the most important problems in time-series analysis is the suitable characterization of the dynamics for timely, accurate, and robust condition assessment of the underlying system. Machine and physiological processes display complex, non-stationary behaviors that are affected by noise and may range from (quasi-)periodic to completely irregular (chaotic) regimes. Nevertheless, extensive experimental evidence indicates that even when the systems behave very irregularly (e.g., severe tool chatter or cardiac fibrillation), one may assume that - for all practical purposes - the dynamics are confined to low dimensional manifolds. As a result, the behavior of these systems can be described via traditional nonlinear measures (TNM), such as Lyapunov exponents, Kolmogorov entropy, and correlation dimension. While these measures are adequate for discriminating between clear-cut regular and chaotic dynamics, they are not sufficiently sensitive to distinguish between slightly different irregular (chaotic) regimes, especially when data are noisy and/or limited. Both machine and physiological dynamics usually fall into this latter category, creating a massive stumbling block to prognostication of abnormal regimes. We present here a recently developed approach that captures more efficiently changes in the underlying dynamics. We start with process-indicative, time-serial data that are checked for quality and discarded if inadequate. Acceptable data are filtered to remove confounding artifacts (e.g., sinusoidal variation in three-phase electrical signals or eye-blinks and muscular activity in EEG). The artifact-filtered data are then used to recover the essential features of the underlying dynamics via standard time-delay, phase-space reconstruction. One of the main results of this reconstruction is a discrete approximation of the distribution function (DF) on the attractor. Unaltered dynamics yield an unchanging geometry of the attractor and the visitation frequencies of
Alizadeh, Taher; Ganjali, Mohammad Reza; Nourozi, Parviz; Zare, Mashaalah
2009-04-13
In this work a parathion selective molecularly imprinted polymer was synthesized and applied as a high selective adsorber material for parathion extraction and determination in aqueous samples. The method was based on the sorption of parathion in the MIP according to simple batch procedure, followed by desorption by using methanol and measurement with square wave voltammetry. Plackett-Burman and Box-Behnken designs were used for optimizing the solid-phase extraction, in order to enhance the recovery percent and improve the pre-concentration factor. By using the screening design, the effect of six various factors on the extraction recovery was investigated. These factors were: pH, stirring rate (rpm), sample volume (V(1)), eluent volume (V(2)), organic solvent content of the sample (org%) and extraction time (t). The response surface design was carried out considering three main factors of (V(2)), (V(1)) and (org%) which were found to be main effects. The mathematical model for the recovery percent was obtained as a function of the mentioned main effects. Finally the main effects were adjusted according to the defined desirability function. It was found that the recovery percents more than 95% could be easily obtained by using the optimized method. By using the experimental conditions, obtained in the optimization step, the method allowed parathion selective determination in the linear dynamic range of 0.20-467.4 microg L(-1), with detection limit of 49.0 ng L(-1) and R.S.D. of 5.7% (n=5). Parathion content of water samples were successfully analyzed when evaluating potentialities of the developed procedure.
NASA Technical Reports Server (NTRS)
Crutcher, H. L.; Falls, L. W.
1976-01-01
Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.
Generalised partition functions: inferences on phase space distributions
NASA Astrophysics Data System (ADS)
Treumann, Rudolf A.; Baumjohann, Wolfgang
2016-06-01
It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs-Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1/|q - 1|, with κ, q ∈ R) both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel-Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs-Boltzmann partition function is fundamental not only to Gibbs-Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the corresponding nonextensive statistical mechanics.
NASA Technical Reports Server (NTRS)
1984-01-01
The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.
Phase space and phase transitions in the Penner matrix model with negative coupling constant
NASA Astrophysics Data System (ADS)
Álvarez, Gabriel; Martínez Alonso, Luis; Medina, Elena
2017-03-01
The partition function of the Penner matrix model for both positive and negative values of the coupling constant can be explicitly written in terms of the Barnes G function. In this paper we show that for negative values of the coupling constant this partition function can also be represented as the product of an holomorphic matrix integral by a nontrivial oscillatory function of n. We show that the planar limit of the free energy with ’t Hooft sequences does not exist. Therefore we use a certain modification that uses Kuijlaars–McLaughlin sequences instead of ’t Hooft sequences and leads to a well-defined planar free energy and to an associated two-dimensional phase space. We describe the different configurations of complex saddle points of the holomorphic matrix integral both to the left and to the right of the critical point, and interpret the phase transitions in terms of processes of gap closing, eigenvalue tunneling, and Bose condensation.
Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe
2016-11-01
A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics.
Abdulra'uf, Lukman Bola; Tan, Guan Huat
2013-12-15
Solid-phase microextraction (SPME) is a solvent-less sample preparation method which combines sample preparation, isolation, concentration and enrichment into one step. In this study, multivariate strategy was used to determine the significance of the factors affecting the solid phase microextraction of pesticide residues (fenobucarb, diazinon, chlorothalonil and chlorpyrifos) using a randomised factorial design. The interactions and effects of temperature, time and salt addition on the efficiency of the extraction of the pesticide residues were evaluated using 2(3) factorial designs. The analytes were extracted with 100 μm PDMS fibres according to the factorial design matrix and desorbed into a gas chromatography-mass spectrometry detector. The developed method was applied for the analysis of apple samples and the limits of detection were between 0.01 and 0.2 μg kg(-)(1), which were lower than the MRLs for apples. The relative standard deviations (RSD) were between 0.1% and 13.37% with average recovery of 80-105%. The linearity ranges from 0.5-50 μg kg(-)(1) with correlation coefficient greater than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.
Selected tether applications in space: Phase 2. Executive summary
NASA Technical Reports Server (NTRS)
Thorson, M. H.; Lippy, L. J.
1985-01-01
The application of tether technology has the potential to increase the overall performance efficiency and capability of the integrated space operations and transportation systems through the decade of the 90s. The primary concepts for which significant economic benefits were identified are dependent on the space station as a storage device for angular momentum and as an operating base for the tether system. Concepts examined include: (1) tether deorbit of shuttle from space station; (2) tethered orbit insertion of a spacecraft from shuttle; (3) tethered platform deployed from space station; (4) tether-effected rendezvous of an OMV with a returning OTV; (5) electrodynamic tether as an auxiliary power source for space station; and (6) tether assisted launch of an OTV mission from space station.
Selected tether applications in space: Phase 2. Executive summary
NASA Astrophysics Data System (ADS)
Thorson, M. H.; Lippy, L. J.
1985-02-01
The application of tether technology has the potential to increase the overall performance efficiency and capability of the integrated space operations and transportation systems through the decade of the 90s. The primary concepts for which significant economic benefits were identified are dependent on the space station as a storage device for angular momentum and as an operating base for the tether system. Concepts examined include: (1) tether deorbit of shuttle from space station; (2) tethered orbit insertion of a spacecraft from shuttle; (3) tethered platform deployed from space station; (4) tether-effected rendezvous of an OMV with a returning OTV; (5) electrodynamic tether as an auxiliary power source for space station; and (6) tether assisted launch of an OTV mission from space station.
The full phase space of a model in the Calogero-Ruijsenaars family
NASA Astrophysics Data System (ADS)
Fehér, L.; Görbe, T. F.
2017-05-01
We complete the recent derivation of a Ruijsenaars type system that arises as a reduction of the natural free system on the Heisenberg double of SU(n , n) . The previous analysis by Marshall focused on a dense open submanifold of the reduced phase space, and here we describe the full phase space wherein Liouville integrability of the system holds by construction.
Deformed phase space Kaluza-Klein cosmology and late time acceleration
NASA Astrophysics Data System (ADS)
Sabido, M.; Yee-Romero, C.
2016-06-01
The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.
NASA Astrophysics Data System (ADS)
Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan; Feingold, Graham; Kostinski, Alexander B.; Khain, Alexander P.; Ovchinnikov, Mikhail; Fredj, Erick; Dagan, Guy; Pinto, Lital; Yaish, Ricki; Chen, Qian
2016-06-01
We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3-D cloud-tracking algorithm, and results are presented in the phase space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.
Contracted Schrödinger equation in quantum phase-space.
Frishberg, Carol; Cohen, Leon
2017-07-27
The phase space formulation of quantum mechanics is equivalent to standard quantum mechanics where averages are calculated by way of phase space integration as in the case of classical statistical mechanics. We derive the quantum hierarchy equations, often called the contracted Schrödinger equation, in the phase space representation of quantum mechanics which involves quasi-distributions of position and momentum. We use the Wigner distribution for the phase space function and the Moyal phase space eigenvalue formulation to derive the hierarchy. We show that the hierarchy equations in the position, momentum, and position-momentum representations are very similar in structure. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Modular space station phase B extension period executive summary
NASA Technical Reports Server (NTRS)
Tischler, A. A.; Could, C. L.
1972-01-01
A narrative summary is presented of technical, programmatic, and planning information developed during the space station definition study extension period. The modular space station is emphasized, but tasks pertaining to shuttle sorties missions and information management advanced development are included. A series of program options considering technical, schedule, and programmatic alternatives to the baseline program are defined and evaluated.
Caves, Leo S D; Verma, Chandra S
2002-04-01
Central to the study of a complex dynamical system is knowledge of its phase space behavior. Experimentally, it is rarely possible to record a system's (multidimensional) phase space variables. Rather, the system is observed via one (or few) scalar-valued signal(s) of emission or response. In dynamical systems analysis, the multidimensional phase space of a system can be reconstructed by manipulation of a one-dimensional signal. The trick is in the construction of a (higher-dimensional) space through the use of a time lag (or delay) on the signal time series. The trajectory in this embedding space can then be examined using phase portraits generated in selected subspaces. By contrast, in computer simulation, one has an embarrassment of riches: direct access to the complete multidimensional phase space variables, at arbitrary time resolution and precision. Here, the problem is one of reducing the dimensionality to make analysis tractable. This can be achieved through linear or nonlinear projection of the trajectory into subspaces containing high information content. This study considers trajectories of the small protein crambin from molecular dynamics simulations. The phase space behavior is examined using principal component analysis on the Cartesian coordinate covariance matrix of 138 dimensions. In addition, the phase space is reconstructed from a one dimensional signal, representing the radius of gyration of the structure along the trajectory. Comparison of low-dimensional phase portraits obtained from the two methods shows that the complete phase space distribution is well represented by the reconstruction. The study suggests that it may be possible to develop a deeper connection between the experimental and simulated dynamics of biomolecules via phase space reconstruction using data emerging from recent advances in single-molecule time-resolved biophysical techniques.
Trajectories and causal phase-space approach to relativistic quantum mechanics
Holland, P.R.; Kyprianidis, A.; Vigier, J.P.
1987-05-01
The authors analyze phase-space approaches to relativistic quantum mechanics from the viewpoint of the causal interpretation. In particular, they discuss the canonical phase space associated with stochastic quantization, its relation to Hilbert space, and the Wigner-Moyal formalism. They then consider the nature of Feynman paths, and the problem of nonlocality, and conclude that a perfectly consistent relativistically covariant interpretation of quantum mechanics which retains the notion of particle trajectory is possible.
Integrated study plan for space bioprocessing (phase 1)
NASA Technical Reports Server (NTRS)
1977-01-01
Current economic evaluation and analytical techniques are applied to decision problems faced by the space bioprocessing program. NASA decision makers are enabled to choose candidate substances, after ranking them according to their potential economic benefit. The determination of appropriate evaluation techniques necessary to obtain measures of potential economic benefits which result from the pursuit of various space bioprocessing endeavors are focused upon. The treatment of each disease is impacted by a successful outcome of space bioprocessing and specify data and other input needs for each candidate substance.
Space Station Freedom - Approaching the critical design phase
NASA Technical Reports Server (NTRS)
Kohrs, Richard H.; Huckins, Earle, III
1992-01-01
The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.
Transfer entropy between multivariate time series
NASA Astrophysics Data System (ADS)
Mao, Xuegeng; Shang, Pengjian
2017-06-01
It is a crucial topic to identify the direction and strength of the interdependence between time series in multivariate systems. In this paper, we propose the method of transfer entropy based on the theory of time-delay reconstruction of a phase space, which is a model-free approach to detect causalities in multivariate time series. This method overcomes the limitation that original transfer entropy only can capture which system drives the transition probabilities of another in scalar time series. Using artificial time series, we show that the driving character is obviously reflected with the increase of the coupling strength between two signals and confirm the effectiveness of the method with noise added. Furthermore, we utilize it to real-world data, namely financial time series, in order to characterize the information flow among different stocks.
Space station gas compressor technology study program, phase 1
NASA Technical Reports Server (NTRS)
Hafele, B. W.; Rapozo, R. R.
1989-01-01
The objectives were to identify the space station waste gases and their characteristics, and to investigate compressor and dryer types, as well as transport and storage requirements with tradeoffs leading to a preliminary system definition.
Research opportunities in space motion sickness, phase 2
NASA Technical Reports Server (NTRS)
Talbot, J. M.
1983-01-01
Space and motion sickness, the current and projected NASA research program, and the conclusions and suggestions of the ad hoc Working Group are summarized. The frame of reference for the report is ground-based research.
Space shuttle auxiliary power unit study, phase 2
NASA Technical Reports Server (NTRS)
Binsley, R. L.; Krause, A. A.; Maddox, R. D.; Marcy, R. D.; Siegler, R. S.
1972-01-01
A study was performed to establish the preliminary design of the space shuttle auxiliary power unit. Details of the analysis, optimizations, and design of the components, subsystems and systems are presented.
Phase C aerothermodynamic data base. [for space shuttle program
NASA Technical Reports Server (NTRS)
Moser, M., Jr.
1974-01-01
Summary listings of published documentation of SADSAC processed data arranged chronologically and by shuttle configuration are presented to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized in the course of the space shuttle program. The various tables or listings are designed to provide survey information to the various space shuttle managerial and technical levels. The various listings of the shuttle test data information, the list contents, and the purpose are described.
Multimegawatt space nuclear power supply: Phase 1, Final report
Not Available
1989-02-17
The preliminary safety assessment report analyzes the potential radiological risk of the integrated MSNPS with the launch vehicle including interface with the weapon system. Most emphasis will be placed the prime power concept design. Safety problems can occur any time during the entire life cycle of the system including contingency phases. The preliminary safety assessment report is to be delivered at the end of phase 2. This assessment will be the basis of the safety requirements which will be applied to the design of the MSNPS as it develops in subsequent phases. The assessment also focuses design activities on specific high-risk scenarios and missions that may impact safety.
Energy content of stormtime ring current from phase space mapping simulations
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.
1993-01-01
We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).
Gionfriddo, Emanuela; Naccarato, Attilio; Sindona, Giovanni; Tagarelli, Antonio
2014-07-04
In this work, the capabilities of solid phase microextraction were exploited in a fully optimized SPME-GC-QqQ-MS analytical approach for hydrazine assay. A rapid and easy method was obtained by a simple derivatization reaction with propyl chloroformate and pyridine carried out directly in water samples, followed by automated SPME analysis in the same vial without further sample handling. The affinity of the different derivatized compounds obtained towards five commercially available SPME coatings was evaluated, in order to achieve the best extraction efficiency. GC analyses were carried out using a GC-QqQ-MS instrument in selected reaction monitoring (SRM) acquisition mode which has allowed the achievement of high specificity by selecting appropriate precursor-product ion couples improving the capability in analyte identification. The multivariate approach of experimental design was crucial in order to optimize derivatization reaction, SPME process and tandem mass spectrometry parameters. Accuracy of the proposed protocol, tested at 60, 200 and 800 ng L(-1), provided satisfactory values (114.2%, 83.6% and 98.6%, respectively), whereas precision (RSD%) at the same concentration levels were of 10.9%, 7.9% and 7.7% respectively. Limit of detection and quantification of 4.4 and 8.3 ng L(-1) were obtained. The reliable application of the proposed protocol to real drinking water samples confirmed its capability to be used as analytical tool for routine analyses.
Multimegawatt space nuclear power supply: Phase 1, Final report
Not Available
1989-02-17
The Phase 2 program objectives are to (1) demonstrate concept feasibility, (2) develop a preliminary design, and (3) complete Phase 3 engineering development and ground test plans. The approach to accomplish these objectives is to prove technical feasibility of our baseline design early in the program while maintaining flexibility to easily respond to changing requirements and advances in technology. This approach recognizes that technology is advancing rapidly while the operational phase MSNPS is 15 to 20 years in the future. This plan further recognizes that the weapons platform and Advanced Launch System (ALS) are in very early program definition stages; consequently, their requirements, interfaces, and technological basis will evolve. This document outlines the Phase 2 plan along with task scheduling of the various program aspects.
Efficient molecular quantum dynamics in coordinate and phase space using pruned bases.
Larsson, H R; Hartke, B; Tannor, D J
2016-11-28
We present an efficient implementation of dynamically pruned quantum dynamics, both in coordinate space and in phase space. We combine the ideas behind the biorthogonal von Neumann basis (PvB) with the orthogonalized momentum-symmetrized Gaussians (Weylets) to create a new basis, projected Weylets, that takes the best from both methods. We benchmark pruned time-dependent dynamics using phase-space-localized PvB, projected Weylets, and coordinate-space-localized DVR bases, with real-world examples in up to six dimensions. For the examples studied, coordinate-space localization is the most important factor for efficient pruning and the pruned dynamics is much faster than the unpruned, exact dynamics. Phase-space localization is useful for more demanding dynamics where many basis functions are required. There, projected Weylets offer a more compact representation than pruned DVR bases.
Comment on "Discretization Problems for Functional Integrals in Phase Space"
1980-02-25
7 , m- -P-- - - -50- 11 PROFESSIONAL PAPER 281 IMay 1980 o COMMENT ON "DISC RETIZATI ON PROBLEMS OF FUNCTIONAL INTEGRALS IN PHASE SPACE " Mau rice M...on "Discretization problems of functional integrals in phase space " Maurice M. Mizrahi Centerfor Naval Analyses of the University of Rocheste llOONorth...m ’(t)p"(l)dw(p,q) , (2) lina f q(t)p2 (l’)dw(p.q)-ih f p(t)dw(p.q) where a, is phase space and w is the "measure" (the equivalence of these
NASA Astrophysics Data System (ADS)
Kosuga, Y.; Itoh, S.-I.; Diamond, P. H.; Itoh, K.; Lesur, M.
2017-07-01
In fusion plasmas, several mechanisms such as heating, wave-particle interaction etc can drive deviations of distribution function from Maxwelian to form phase space structures. This article discusses the impact of phase space structures in drift wave turbulence on dynamics and transport modeling. The two cases of (i) coherent holes and (ii) incoherent granulations (clusters of correlated resonant particles with finite life time) are treated. Their dynamical impact on driving subcritical instability is analyzed by explicitly calculating the nonlinear growth rate. The role of zonal flows is also addressed. It is explained how phase space structures can be related to transient events and non-diffusive transport, issues in current confinement research.
Space station contamination control study: Internal combustion, phase 1
NASA Technical Reports Server (NTRS)
Ruggeri, Robert T.
1987-01-01
Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.
Large space telescope, phase A. Volume 5: Support systems module
NASA Technical Reports Server (NTRS)
1972-01-01
The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.
Large space telescope, phase A. Volume 4: Scientific instrument package
NASA Technical Reports Server (NTRS)
1972-01-01
The design and characteristics of the scientific instrument package for the Large Space Telescope are discussed. The subjects include: (1) general scientific objectives, (2) package system analysis, (3) scientific instrumentation, (4) imaging photoelectric sensors, (5) environmental considerations, and (6) reliability and maintainability.
Large space telescope, phase A. Volume 3: Optical telescope assembly
NASA Technical Reports Server (NTRS)
1972-01-01
The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.
Space radiation hazards to Project Skylab photographic film, phase 2
NASA Technical Reports Server (NTRS)
Hill, C. W.; Neville, C. F.
1971-01-01
The results of a study of space radiation hazards to Project Skylab photographic film are presented. Radiation components include trapped protons, trapped electrons, bremsstrahlung, and galactic cosmic radiation. The shielding afforded by the Skylab cluster is taken into account with a 5000 volume element mathematical model. A preliminary survey of expected proton spectrometer data is reported.
Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector
Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.; /Fermilab
2011-03-01
The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.
Deep Space Habitat Concept of Operations for Transit Mission Phases
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.
2011-01-01
The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.
Optically controlled phased-array technology for space communication systems
NASA Technical Reports Server (NTRS)
Kunath, Richard R.; Bhasin, Kul B.
1988-01-01
Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.
Phase-space dynamics of runaway electrons in magnetic fields
Guo, Zehua; McDevitt, Christopher Joseph; Tang, Xian-Zhu
2017-02-16
Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Lastly, identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runawaymore » electron dynamics in magnetic fields.« less
Phase-space dynamics of runaway electrons in magnetic fields
NASA Astrophysics Data System (ADS)
Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu
2017-04-01
Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runaway electron dynamics in magnetic fields.
Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics
Xiang, Dao; Chao, Alex; /SLAC
2012-04-27
Alternative chicane-type beam lines are proposed for exact emittance exchange between transverse phase space (x,x') and longitudinal phase space (z,{delta}), where x is the transverse position, x' is the transverse divergence, and z and {delta} are relative longitudinal position and energy deviation with respect to the reference particle. Methods to achieve exact phase space exchanges, i.e., mapping x to z, x' to {delta}, z to x, and {delta} to x', are suggested. Schemes to mitigate and completely compensate for the thick-lens effect of the transverse cavity on emittance exchange are studied. Some applications of the phase space exchange for advanced beam manipulation and diagnostics are discussed.
LDEF (Postflight), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tr
NASA Technical Reports Server (NTRS)
1990-01-01
LDEF (Postflight), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tray H07 The postflight photograph was taken in the KSC SAEF II facility after the experiment was removed from the LDEF. The Space-Based Radar (SBR) Phased-Array Antenna occupies a six (6) inch deep LDEF end corner tray located on the space end of the LDEF. A light tan discoloration is visible on the left and lower flanges of the experiment tray and also on the unpainted aluminum filler to the left of the passive part of the experiment. A darker stain has discolored the lower corners of the tray structure. The SBR Phased-Array Antenna experiment, consisting of an active part in the upper half of the tray and a passive part located in the lower half of the experiment tray, appears to be intact with no apparent physical damage. The black thermal coating on the active part of the experiment appears to have changed from a flat black to a dark gray while the coating on the passive part of the experiment appears less degraded. The exposed Kapton specimen surfaces in both the active and passive parts of the experiment appear to have changed from specular to diffuse from exposure to the space environment.
Kotovskaia, A R; Vil'-Vil'iams, I F; Elizarov, S I; Yliatovskii, N V; Gavrilova, L N; Liamin, V R
1997-01-01
Tolerance of +Gz loads was assessed in space physician V.V. Polyakov during the active phases of his record, 438-day space mission. On the phases of insertion into orbit the +Gz-tolerance of the space physician was good; a fairly satisfactory g-tolerance during departure of orbit was extenuated by wearing of two anti-g suits (KARKAS-3 and CENTAUR) and administration of countermeasures against the unfavorable effects of space microgravity. His general health state and self-rating were not noticeably altered. +Gz loads in the course of descent from orbit instigated a syndrome characteristic of return to Earth from prolonged microgravity, i.e. a sensation of fierce pressure on the body, difficult breathing and speech, sine tachycardia, tachypnea, singular arrhythmias, petechial hemorrhage in the back integument, and vestibular/autonomous reactions. However, no evidence of any unusual physiological reactions that had never been seen in the other cosmonauts donned in the anti-g suits on earlier and less extended (from 65- to 366-day) missions were found. Extra systoles were registered on the phase of return to Earth after the 438-day but not previous 241-day mission of the space physician; they were probably associated with aging as he made his maiden flight at 47, and the second, at 53. The results speak in favor of the countermeasures against the adverse effects of microgravity applied during the mission, and the anti-g suits worn on the stage of return to Earth.
Modular space station phase B extension: Mass properties
NASA Technical Reports Server (NTRS)
Duffey, L. A.
1971-01-01
The MSS system, capable of supporting a six-man crew, is described as consisting of four common station modules, two special modules (core and power), and a cargo module arranged in a cruciform. The station buildup, and space station subsystems including environmental control life support, electrical power, guidance and control are also described. The MSS system weights are presented for design-to-weight, closeout weights, and shuttle payload weights.
A simulation of weak-light phase-locking for space laser interferometer
NASA Astrophysics Data System (ADS)
Li, Y. Q.; Dong, Y. H.; Liu, H. S.; Luo, Z. R.; Jin, G.
2017-05-01
A simulation was investigated to better understand the impacts and effects of the additional technical noises on weak-light phase-locking for space laser interferometer. The result showed that the locking precision was limited by the phase readout noise when the laser frequency noise and clock jitter noise were removed, and this result was then confirmed by a benchtop experimental test. The required space laser interferometer noise floor was recovered from the simulation which proved the validity of the simulation program.
Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.
1990-01-01
During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.
Subpicosecond electron bunch train production using a phase-space exchange technique
Sun, Y.-E.; Piot, P.; Johnson, A.S.; Lumpkin, A.H.; Maxwell, T.J.; Ruan, J.; Thurman-Keup, R.M.; /Fermilab
2011-03-01
Our recent experimental demonstration of a photoinjector electron bunch train with sub-picosecond structures is reported in this paper. The experiment is accomplished by converting an initially horizontal beam intensity modulation into a longitudinal phase space modulation, via a beamline capable of exchanging phase-space coordinates between the horizontal and longitudinal degrees of freedom. The initial transverse modulation is produced by intercepting the beam with a multislit mask prior to the exchange. We also compare our experimental results with numerical simulations.
Reduce phase space quantization of Ashtekar's gravity on de Sitter background
I. Grigentch; D.V. Vassilevich
1994-05-01
The authors solve perturbative constraints and eliminate gauge freedom for Ashtekar's gravity on de Sitter background. They show that the reduced phase space consists of transverse, traceless, symmetric, fluctuations of the triad and of transverse, traceless, symmetric fluctuations of the connection. A part of gauge freedom corresponding to the conformal Killing vectors of the three-manifold can be fixed only by imposing conditions on Lagrange multiplier. The reduced phase space is equivalent to that of ADM gravity on the same background.
Modular space station phase B extension integrated ground operations
NASA Technical Reports Server (NTRS)
Selegue, D. F.
1971-01-01
Requirements for development test, manufacturing, facilities, GSE, training, logistics support, and launch operations are described. The prime integrating requirement is the early establishment of a common data base and its use throughout the design, development, and operational life of the station. The common data base is defined, and the concept of its use is presented. Development requirements for the station modules and subsystems are outlined along with a master development phasing chart.
Figueira, José; Câmara, Hugo; Pereira, Jorge; Câmara, José S
2014-02-15
To gain insights on the effects of cultivar on the volatile metabolomic expression of different tomato (Lycopersicon esculentum L.) cultivars--Plum, Campari, Grape, Cherry and Regional, cultivated under similar edafoclimatic conditions, and to identify the most discriminate volatile marker metabolites related to the cultivar, the chromatographic profiles resulting from headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-qMS) analysis, combined with multivariate analysis were investigated. The data set composed by the 77 volatile metabolites identified in the target tomato cultivars, 5 of which (2,2,6-trimethylcyclohexanone, 2-methyl-6-methyleneoctan-2-ol, 4-octadecyl-morpholine, (Z)-methyl-3-hexenoate and 3-octanone) are reported for the first time in tomato volatile metabolomic composition, was evaluated by chemometrics. Firstly, principal component analysis was carried out in order to visualise data trends and clusters, and then, linear discriminant analysis in order to detect the set of volatile metabolites able to differentiate groups according to tomato cultivars. The results obtained revealed a perfect discrimination between the different Lycopersicon esculentum L. cultivars considered. The assignment success rate was 100% in classification and 80% in prediction ability by using "leave-one-out" cross-validation procedure. The volatile profile was able to differentiate all five cultivars and revealed complex interactions between them including the participation in the same biosynthetic pathway. The volatile metabolomic platform for tomato samples obtained by HS-SPME/GC-qMS here described, and the interrelationship detected among the volatile metabolites can be used as a roadmap for biotechnological applications, namely to improve tomato aroma and their acceptance in the final consumer, and for traceability studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Phase 1 space fission propulsion system design considerations
NASA Astrophysics Data System (ADS)
Houts, Mike; van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a ``Phase 1'' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. .
Phase 1 Space Fission Propulsion System Design Considerations
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Alternate space shuttle concepts study: Design requirements and phased programs evaluation
NASA Technical Reports Server (NTRS)
1971-01-01
A study to determine program and technical alternatives to the design of the space shuttle orbiter is described. The alternatives include a phased approach, involving orbiter development and operation with an expendable booster for an interim period, as well as design variations to the basic vehicle. The space shuttle orbiter configurations and predicted performance parameters are presented.
Development of CCD imaging sensors for space applications, phase 1
NASA Technical Reports Server (NTRS)
Antcliffe, G. A.
1975-01-01
The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.
Critical phenomena experiments in space. [for fluid phase-equilibrium
NASA Technical Reports Server (NTRS)
Sengers, J. V.; Moldover, M. R.
1978-01-01
The paper analyzes several types of critical phenomena in fluids, shows how they are affected by the presence of gravity, and describes how experiments conducted in an orbiting laboratory under low gravity conditions could extend the range of measurements needed to study critical phenomena. Future experiments are proposed. One would be a careful measurement of the dielectric constant in a low gravity environment. Two basic problems that can benefit especially from space experiments are the specific heat near the critical point and the shear viscosity at the gas-liquid critical point.
Space qualified Nd:YAG laser (phase 1 - design)
NASA Technical Reports Server (NTRS)
Foster, J. D.; Kirk, R. F.
1971-01-01
Results of a design study and preliminary design of a space qualified Nd:YAG laser are presented. A theoretical model of the laser was developed to allow the evaluation of the effects of various parameters on its performance. Various pump lamps were evaluated and sum pumping was considered. Cooling requirements were examined and cooling methods such as radiation, cryogenic and conductive were analysed. Power outputs and efficiences of various configurations and the pump and laser lifetime are discussed. Also considered were modulation and modulating methods.
Discrete phase-space mappings, tomographic condition and permutation invariance
NASA Astrophysics Data System (ADS)
Muñoz, C.; Klimov, A. B.
2017-04-01
We analyze various families of discrete maps in N-qubit systems in the context of permutation invariance. We prove that the tomographic condition imposed on the self-dual (Wigner) map is incompatible with the requirement of the invariance under particle permutations (except for the two-qubit case), which makes it impossible to project the Wootters-like Wigner function into the space of symmetric measurements. We also provide several explicit forms of the self-dual mappings: (a) tomographic and (b) permutation invariant, and analyze the symmetric projection in the latter case.
Space Fission Propulsion Testing and Development Progress. Phase 1
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.
Phase 1 space fission propulsion system testing and development progress
NASA Astrophysics Data System (ADS)
van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter
2001-02-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .
Phase 1 Space Fission Propulsion Energy Source Design
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor.(PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a "Phase I" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld
NASA Technical Reports Server (NTRS)
James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.
Project PARAS: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia
1992-01-01
An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.
PARAS program: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-01-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
3D imaging of translucent media with a plenoptic sensor based on phase space optics
NASA Astrophysics Data System (ADS)
Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun
2015-05-01
Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.
Proliferation of stability in phase and parameter spaces of nonlinear systems
NASA Astrophysics Data System (ADS)
Manchein, Cesar; da Silva, Rafael M.; Beims, Marcus W.
2017-08-01
In this work, we show how the composition of maps allows us to multiply, enlarge, and move stable domains in phase and parameter spaces of discrete nonlinear systems. Using Hénon maps with distinct parameters, we generate many identical copies of isoperiodic stable structures (ISSs) in the parameter space and attractors in phase space. The equivalence of the identical ISSs is checked by the largest Lyapunov exponent analysis, and the multiplied basins of attraction become riddled. Our proliferation procedure should be applicable to any two-dimensional nonlinear system.
Space shuttle electromagnetic environment experiment. Phase A: Definition study
NASA Technical Reports Server (NTRS)
Haber, F.; Showers, R. M.; Kocher, C.; Forrest, L. A., Jr.
1976-01-01
Methods for carrying out measurements of earth electromagnetic environment using the space shuttle as a measurement system platform are herein reported. The goal is to provide means for mapping intentional and nonintentional emitters on earth in the frequency range 0.4 to 40 GHz. A survey was made of known emitters using available data from national and international regulatory agencies, and from industry sources. The spatial distribution of sources, power levels, frequencies, degree of frequency re-use, etc., found in the survey, are here presented. A concept is developed for scanning the earth using a directive antenna whose beam is made to rotate at a fixed angle relative to the nadir; the illuminated area swept by the beam is of the form of cycloidal annulus over a sphere. During the beam's sojourn over a point, the receiver sweeps in frequency over ranges in the order of octave width using sweeping filter bandwidths sufficient to give stable readings.
Free-space microwave power transmission study, phase 3
NASA Technical Reports Server (NTRS)
Brown, W. C.
1975-01-01
The results of an investigation of the technology of free-space power transmission by microwave beam are presented. A description of the steps that were taken to increase the overall dc to dc efficiency of microwave power transmission from 15 percent to over 50 percent is given. Included in this overall efficiency were the efficiencies of the dc to microwave conversion, the microwave transmission itself, and the microwave to dc conversion. Improvements in launching the microwave beam with high efficiency by means of a dual mode horn resulted in 95 percent of the output of the microwave generator reaching the receiving area. Emphasis was placed upon successive improvements in reception and rectification of the microwave power, resulting in the design of a rectenna device for this purpose whose efficiency was 75 percent. The procedures and the hardware developed were the basis for tests certified by the Jet Propulsion Laboratory in which an overall dc to dc efficiency of 54 percent was achieved.
LONGITUDINAL PHASE SPACE CHARACTERIZATION OF ELECTRON BUNCHES AT THE JLAB FEL FACILITY
Shukui Zhang; Stephen Benson; David Douglas; David Hardy; George Neil; Michelle D. Shinn
2006-08-27
We report longitudinal phase space measurements of short electron bunches at the 10kW Free-Electron Laser Facility at Jefferson Lab using broadband synchrotron radiation and a remotely controlled fast streak camera. Accurate measurements are possible because the optical transport system uses only reflective components that do not introduce dispersion. The evolution of longitudinal phase space of the electron beam can be observed in real time while phases of accelerator RF components are being adjusted. This fast and efficient diagnostic enhances the suite of machine setup tools available to JLab FEL operators and applies to other accelerators. The results for certain beam setups will be presented.
Effects of phase conjugation on electromagnetic optical fields propagating in free space
NASA Astrophysics Data System (ADS)
Kanseri, Bhaskar
2017-03-01
By using the property of phase conjugation, we demonstrate that the inverse of van Cittert–Zernike theorem holds for electromagnetic (EM) fields propagating in free space. This essentially implies that spatially incoherent partially polarized field distributions can be generated from spatially coherent partially polarized optical fields. We further utilize phase conjugation with a polarization rotator to swap the spatial coherence properties of orthogonal polarization components of EM fields on propagation, at least in free space. This study suggests that the method of phase conjugation could be potentially useful in arbitrarily manipulating spatial coherence properties of vector optical fields in the field plane.
Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity
NASA Astrophysics Data System (ADS)
Gnatenko, Kh. P.; Tkachuk, V. M.
2017-08-01
The weak equivalence principle is studied in a space with noncommutativity of coordinates and noncommutativity of momenta. We find conditions on the parameters of noncommutativity which give the possibility to recover the equivalence principle in two-dimensional noncommutative phase space. It is also shown that in the case when these conditions are satisfied the motion of the center-of-mass of a composite system in noncommutative phase space and the relative motion are independent, the kinetic energy of composite system has additivity property and is independent on the systems composition. So, we propose conditions on the parameters of noncommutativity which give the possibility to solve the list of problems in noncommutative phase space.
Phenomenology of noncommutative phase space via the anomalous Zeeman effect in hydrogen atom
NASA Astrophysics Data System (ADS)
Santos, Willien O.; Souza, Andre M. C.
2014-12-01
The Hamiltonian describing the anomalous Zeeman effect for the hydrogen atom on noncommutative (NC) phase space is studied using the nonrelativistic limit of the Dirac equation. To preserve gauge invariance, space noncommutativity must be dropped. By using first-order perturbation theory, the correction to the energy is calculated for the case of a weak external magnetic field. We also obtained the orbital and spin g-factors on the NC phase space. We show that the experimental value for the spin g-factor puts an upper bound on the magnitude of the momentum NC parameter of the order of √ {η }< ˜ 0, 34 μeV/c. On the other hand, the experimental value for the spin g-factor was used to establish a correction introduced by NC phase space to the presently accepted value of Planck's constant with an uncertainty of 2 part in 1035.
Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.
Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir
2017-04-14
We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.
The effective two-dimensional phase space of cosmological scalar fields
NASA Astrophysics Data System (ADS)
Edwards, David C.
2016-08-01
It has been shown by Remmen and Carroll [1] that, for a model universe which contains only a kinetically canonical scalar field minimally coupled to gravity it is possible to choose `special coordinates' to describe a two-dimensional effective phase space. The special, non-canonical, coordinates are phi,dot phi and the ability to describe an effective phase space with these coordinates empowers the common usage of phi-dot phi as the space to define inflationary initial conditions. This paper extends the result to the full Horndeski action. The existence of a two-dimensional effective phase space is shown for the general case. Subsets of the Horndeski action, relevant to cosmology are considered as particular examples to highlight important aspects of the procedure.
NASA Astrophysics Data System (ADS)
Han, Muxin; Thiemann, T.
2010-11-01
Path integral formulations for gauge theories must start from the canonical formulation in order to obtain the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. In this paper we review this rather involved procedure in full generality. Moreover, we demonstrate that the reduced phase space path integral formulation formally agrees with the Dirac's operator constraint quantization and, more specifically, with the master constraint quantization for first-class constraints. For first-class constraints with nontrivial structure functions the equivalence can only be established by passing to Abelian(ized) constraints which is always possible locally in phase space. Generically, the correct configuration space path integral measure deviates from the exponential of the Lagrangian action. The corrections are especially severe if the theory suffers from second-class secondary constraints. In a companion paper we compute these corrections for the Holst and Plebanski formulations of GR on which current spin foam models are based.
Space observations of cold-cloud phase change.
Choi, Yong-Sang; Lindzen, Richard S; Ho, Chang-Hoi; Kim, Jinwon
2010-06-22
This study examines the vertically resolved cloud measurements from the cloud-aerosol lidar with orthogonal polarization instrument on Aqua satellite from June 2006 through May 2007 to estimate the extent to which the mixed cloud-phase composition can vary according to the ambient temperature, an important concern for the uncertainty in calculating cloud radiative effects. At -20 degrees C, the global average fraction of supercooled clouds in the total cloud population is found to be about 50% in the data period. Between -10 and -40 degrees C, the fraction is smaller at lower temperatures. However, there are appreciable regional and temporal deviations from the global mean (> +/- 20%) at the isotherm. In the analysis with coincident dust aerosol data from the same instrument, it appears that the variation in the supercooled cloud fraction is negatively correlated with the frequencies of dust aerosols at the -20 degrees C isotherm. This result suggests a possibility that dust particles lifted to the cold cloud layer effectively glaciate supercooled clouds. Observations of radiative flux from the clouds and earth's radiant energy system instrument aboard Terra satellite, as well as radiative transfer model simulations, show that the 20% variation in the supercooled cloud fraction is quantitatively important in cloud radiative effects, especially in shortwave, which are 10-20 W m(-2) for regions of mixed-phase clouds affected by dust. In particular, our results demonstrate that dust, by glaciating supercooled water, can decrease albedo, thus compensating for the increase in albedo due to the dust aerosols themselves. This has important implications for the determination of climate sensitivity.
Space observations of cold-cloud phase change
Choi, Yong-Sang; Lindzen, Richard S.; Ho, Chang-Hoi; Kim, Jinwon
2010-01-01
This study examines the vertically resolved cloud measurements from the cloud-aerosol lidar with orthogonal polarization instrument on Aqua satellite from June 2006 through May 2007 to estimate the extent to which the mixed cloud-phase composition can vary according to the ambient temperature, an important concern for the uncertainty in calculating cloud radiative effects. At -20 °C, the global average fraction of supercooled clouds in the total cloud population is found to be about 50% in the data period. Between -10 and -40 °C, the fraction is smaller at lower temperatures. However, there are appreciable regional and temporal deviations from the global mean (> ± 20%) at the isotherm. In the analysis with coincident dust aerosol data from the same instrument, it appears that the variation in the supercooled cloud fraction is negatively correlated with the frequencies of dust aerosols at the -20 °C isotherm. This result suggests a possibility that dust particles lifted to the cold cloud layer effectively glaciate supercooled clouds. Observations of radiative flux from the clouds and earth’s radiant energy system instrument aboard Terra satellite, as well as radiative transfer model simulations, show that the 20% variation in the supercooled cloud fraction is quantitatively important in cloud radiative effects, especially in shortwave, which are 10 - 20 W m-2 for regions of mixed-phase clouds affected by dust. In particular, our results demonstrate that dust, by glaciating supercooled water, can decrease albedo, thus compensating for the increase in albedo due to the dust aerosols themselves. This has important implications for the determination of climate sensitivity. PMID:20534562
g_permute: Permutation-reduced phase space density compaction
NASA Astrophysics Data System (ADS)
Reinhard, F.; Lange, O. F.; Hub, J. S.; Haas, J.; Grubmüller, H.
2009-03-01
Biomolecular processes are governed by free energy changes and thus depend on a fine-tuned interplay between entropy and enthalpy. To calculate accurate values for entropies from simulations is particularly challenging for the solvation shell of proteins, which contributes crucially to the total entropy of solvated proteins, due to the diffusive motion of the solvent molecules. Accordingly, for each frame of a Molecular dynamics (MD) trajectory, our software relabels the solvent molecules, such that the resulting configuration space volume is reduced by a factor of N! with N being the number of solvent molecules. The combinatorial explosion of a naive implementation is here overcome by transforming the task into a linear assignment problem, for which algorithms with complexity O(N) exist. We have shown in previous research that the solvent entropy can be estimated from such a compacted trajectory by established entropy estimation methods. In this paper, we describe the software implementation which also allows applications beyond entropy estimation, such as the permutation of lipids in membrane bilayers. Program summaryProgram title: g_permute Catalogue identifier: AECJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL No. of lines in distributed program, including test data, etc.: 45 173 No. of bytes in distributed program, including test data, etc.: 2 730 678 Distribution format: tar.gz Programming language: C Computer: PC-compatible running Linux Operating system: Linux RAM: Dependent on the number of solvent molecules, min 12 582 912 bytes Classification: 3, 4.8, 4.9 External routines: liblap (included); From GROMACS-3.3.1: libgmx (not included) Nature of problem: Estimating the entropy of solvent molecules from a molecular dynamics simulation trajectory cannot be performed on ordinary trajectories. Solution method: Compacting
Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund
2009-04-15
Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function {proportional_to}{delta}J{sup -1.6} in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.
Phase 1 Space Fission Propulsion System Testing and Development Progress
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)
2001-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.
NASA Technical Reports Server (NTRS)
Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa
1990-01-01
The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.
Phase-Stable Free-Space Optical Lattices for Trapped Ions
NASA Astrophysics Data System (ADS)
Schmiegelow, C. T.; Kaufmann, H.; Ruster, T.; Schulz, J.; Kaushal, V.; Hettrich, M.; Schmidt-Kaler, F.; Poschinger, U. G.
2016-01-01
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, and we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over the 157 μ m range along the trap axis at accuracies of better than 6 nm.
Phase-Stable Free-Space Optical Lattices for Trapped Ions.
Schmiegelow, C T; Kaufmann, H; Ruster, T; Schulz, J; Kaushal, V; Hettrich, M; Schmidt-Kaler, F; Poschinger, U G
2016-01-22
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, and we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over the 157 μm range along the trap axis at accuracies of better than 6 nm.
Performance evaluation of digital phase-locked loops for advanced deep space transponders
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.
1994-01-01
The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.
NASA Astrophysics Data System (ADS)
Ellison, James A.; Heinemann, Klaus
2007-10-01
A class of orbital motions with volume preserving flows and with vector fields periodic in the “time” parameter θ is defined. Spin motion coupled to the orbital dynamics is then defined, resulting in a class of spin-orbit motions which are important for storage rings. Phase space densities and polarization fields are introduced. It is important, in the context of storage rings, to understand the behavior of periodic polarization fields and phase space densities. Due to the 2π time periodicity of the spin-orbit equations of motion the polarization field, taken at a sequence of increasing time values θ,θ+2π,θ+4π,…, gives a sequence of polarization fields, called the stroboscopic sequence. We show, by using the Birkhoff ergodic theorem, that under very general conditions the Cesàro averages of that sequence converge almost everywhere on phase space to a polarization field which is 2π-periodic in time. This fulfills the main aim of this paper in that it demonstrates that the tracking algorithm for stroboscopic averaging, encoded in the program SPRINT and used in the study of spin motion in storage rings, is mathematically well-founded. The machinery developed is also shown to work for the stroboscopic average of phase space densities associated with the orbital dynamics. This yields a large family of periodic phase space densities and, as an example, a quite detailed analysis of the so-called betatron motion in a storage ring is presented.
Extremal rotating black holes in the near-horizon limit: Phase space and symmetry algebra
NASA Astrophysics Data System (ADS)
Compère, G.; Hajian, K.; Seraj, A.; Sheikh-Jabbari, M. M.
2015-10-01
We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to d dimensional Einstein gravity. Each element in the phase space is a geometry with SL (2 , R) × U(1) d - 3 isometries which has vanishing SL (2 , R) and constant U (1) charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d > 4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. The conserved charges are given by the Fourier decomposition of a Liouville-type stress-tensor which depends upon a single periodic function of d - 3 angular variables associated with the U (1) isometries. This phase space and in particular its symmetries can serve as a basis for a semiclassical description of extremal rotating black hole microstates.
Looking for phase-space structures in star-forming regions: an MST-based methodology
NASA Astrophysics Data System (ADS)
Alfaro, Emilio J.; González, Marta
2016-03-01
We present a method for analysing the phase space of star-forming regions. In particular we are searching for clumpy structures in the 3D sub-space formed by two position coordinates and radial velocity. The aim of the method is the detection of kinematic segregated radial velocity groups, that is, radial velocity intervals whose associated stars are spatially concentrated. To this end we define a kinematic segregation index, tilde{Λ }(RV), based on the Minimum Spanning Tree graph algorithm, which is estimated for a set of radial velocity intervals in the region. When tilde{Λ }(RV) is significantly greater than 1 we consider that this bin represents a grouping in the phase space. We split a star-forming region into radial velocity bins and calculate the kinematic segregation index for each bin, and then we obtain the spectrum of kinematic groupings, which enables a quick visualization of the kinematic behaviour of the region under study. We carried out numerical models of different configurations in the sub-space of the phase space formed by the coordinates and the that various case studies illustrate. The analysis of the test cases demonstrates the potential of the new methodology for detecting different kind of groupings in phase space.
Phase and Pupil Amplitude Recovery for JWST Space-Optics Control
NASA Technical Reports Server (NTRS)
Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.
2010-01-01
This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.
Quantum phase-space picture of Bose-Einstein condensates in a double well
Mahmud, Khan W.; Perry, Heidi; Reinhardt, William P.
2005-02-01
We present a quantum phase-space model of the Bose-Einstein condensate (BEC) in a double-well potential. In a quantum two-mode approximation we examine the eigenvectors and eigenvalues and find that the energy correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase-space information is extracted from the stationary quantum states using the Husimi distribution function. We show that the mean-field phase-space characteristics of a nonrigid physical pendulum arises from the exact quantum states, and that only 4-8 particles per well are needed to reach the semiclassical limit. For a driven double-well BEC, we show that the classical chaotic dynamics is manifest in the dynamics of the quantum states. Phase-space analogy also suggests that a {pi} phase-displaced wave packet put on the unstable fixed point on a separatrix bifurcates to create a superposition of two pendulum rotor states--a macroscopic superposition state of BEC. We show that the choice of initial barrier height and ramping, following a {pi} phase imprinting on the condensate, can be used to generate controlled entangled number states with tunable extremity and sharpness.
Spaced-antenna wind estimation using an X-band active phased-array weather radar
NASA Astrophysics Data System (ADS)
Venkatesh, Vijay
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and
Phase space structures in gyrokinetic simulations of fusion plasma turbulence
NASA Astrophysics Data System (ADS)
Ghendrih, Philippe; Norscini, Claudia; Cartier-Michaud, Thomas; Dif-Pradalier, Guilhem; Abiteboul, Jérémie; Dong, Yue; Garbet, Xavier; Gürcan, Ozgür; Hennequin, Pascale; Grandgirard, Virginie; Latu, Guillaume; Morel, Pierre; Sarazin, Yanick; Storelli, Alexandre; Vermare, Laure
2014-10-01
Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ∗c0 where ρ∗ = ρ0/a, a being the tokamak minor radius and ρ0 being the characteristic Larmor radius, ρ0 = c0/Ω0. c0 is the reference ion thermal velocity and Ω0 = qiB0/mi the reference
NASA Technical Reports Server (NTRS)
1971-01-01
The design plan requirements define the design implementation and control requirements for Phase C/D of the Modular Space Station Project and specifically address the Initial Space Station phase of the Space Station Program (modular). It is based primarily on the specific objective of translating the requirements of the Space Station Program, Project, Interface, and Support Requirements and preliminary contract end x item specifications into detail design of the operational systems which comprise the initial space station. This document is designed to guide aerospace contractors in the planning and bidding for Phase C/D.
The phase response and state space of slow wave contractions in the small intestine.
Parsons, Sean P; Huizinga, Jan D
2017-09-01
What is the central question of this study? What are the dynamical rules governing interstitial cell of Cajal (ICC)-generated slow wave contractions in the small intestine, as reflected in their phase response curve and state space? What is the main finding and its importance? The phase response curve has a region of phase advance surrounding a phase delay peak. This pattern is important in generating a stable synchrony within the ICC network and is related to the state space of the ICC; in particular, the phase delay peak corresponds to the unstable equilibrium point that threads the ICC's limit cycle. Interstitial cells of Cajal (ICCs) generate electrical oscillations in the gut. Synchronization of the ICC population is required for generation of coherent electrical waves ('slow waves') that cause muscular contraction and thereby move gut content. The phase response curve (PRC) is an experimental measure of the dynamical rules governing a population of oscillators that determine their synchrony and gives an experimental window onto the state space of the oscillator, its dynamical landscape. We measured the PRC of slow wave contractions in the mouse small intestine by the novel combination of diameter mapping and single pulse electrical field stimulation. Phase change (τ) was measured as a function of old phase (ϕ) and distance from the stimulation electrode (d). Plots of τ(ϕ, d) showed an arrowhead-shaped region of phase advance enclosing at its base a phase delay peak. The phase change mirrored the perturbed pattern of contraction waves in response to a pulse. The (ϕ, d) plane is the surface of a displacement tube extending from the limit cycle through state space. To visualize the state space vector field on this tube, latent phase (ϕlat ) was calculated from τ. At the transition from advance to delay, isochrons made boomerang turns before tightening and winding around the phase delay peak corresponding to the unstable equilibrium point that threads the
Note on the phase space of asymptotically flat gravity in Ashtekar-Barbero variables
NASA Astrophysics Data System (ADS)
Campiglia, Miguel
2015-07-01
We describe the canonical phase space of asymptotically flat gravity in Ashtekar-Barbero (AB) variables. We show that the Gauss constraint multiplier must fall off slower than previously considered in order to recover ADM phase space. The generators of the asymptotic Poincare group are derived within the AB phase space without reference to the ADM generators. The resulting expressions are shown to agree, modulo Gauss constraint terms, with those obtained from the ADM generators. A payoff of this procedure is a new expression for the generator of asymptotic rotations, which is polynomial in the triad and hence better suited for quantum theory. Our treatment complements an earlier description by Thiemann in the context of self-dual variables.
Formation and interaction of multiple coherent phase space structures in plasma
NASA Astrophysics Data System (ADS)
Kakad, Amar; Kakad, Bharati; Omura, Yoshiharu
2017-06-01
The head-on collision of multiple counter-propagating coherent phase space structures associated with the ion acoustic solitary waves (IASWs) in plasmas composed of hot electrons and cold ions is studied here by using one-dimensional Particle-in-Cell simulation. The chains of counter-propagating IASWs are generated in the plasma by injecting the Gaussian perturbations in the equilibrium electron and ion densities. The head-on collisions of the counter-propagating electron and ion phase space structures associated with IASWs are allowed by considering the periodic boundary condition in the simulation. Our simulation shows that the phase space structures are less significantly affected by their collision with each other. They emerge out from each other by retaining their characteristics, so that they follow soliton type behavior. We also find that the electrons trapped within these IASW potentials are accelerated, while the ions are decelerated during the course of their collisions.
A Phase Space for the Structure and Near-system Environment of Tropical Convective Systems
NASA Astrophysics Data System (ADS)
Helms, C. N.; Dunion, J. P.; Bosart, L. F.
2014-12-01
The dynamical and thermodynamical processes responsible for the evolution of a loosely-organized tropical convective system into a highly-organized, mature tropical cyclone are still poorly understood. Despite a number of advances in both research and operations, forecasting tropical cyclogenesis remains a challenge. The present study puts forth a specially designed phase space for tropical convective systems which quantifies the state of the system structure and the near-system environment. In a research setting, the phase space will be used to support a detailed composite study of tropical convective systems in two reanalysis datasets: CFSR and ERA-Interim. In a forecast application, the phase space algorithm processes operational model output and produces a diagram which visually summarizes the evolution of a number of key variables.
From time series to complex networks: The phase space coarse graining
NASA Astrophysics Data System (ADS)
Wang, Minggang; Tian, Lixin
2016-11-01
In this paper, we present a simple and fast computational method, the phase space coarse graining algorithm that converts a time series into a directed and weighted complex network. The constructed directed and weighted complex network inherits several properties of the series in its structure. Thereby, periodic series convert into regular networks, and random series do so into random networks. Moreover, chaotic series convert into scale-free networks. It is shown that the phase space coarse graining algorithm allows us to distinguish, identify and describe in detail various time series. Finally, we apply the phase space coarse graining algorithm to the practical observations series, international gasoline regular spot price series and identify its dynamic characteristics.
Measurement of Phase Space Structure of Fast Ions Interacting with Alfven Eigenmodes
NASA Astrophysics Data System (ADS)
Nagaoka, Kenichi; Osakabe, Masaki; Isobe, Mitsutaka; Ogawa, Kunihiro; Suzuki, Yasuhiro; Kobayashi, Shinji; Yamamoto, Satoshi; Miyoshi, Yoshizumi; Katoh, Yuto; Fontdecaba, Jose M.
2015-11-01
Experimentally observed Alfven eigenmodes (AEs) shows nonlinear behaviors such as intermittency, fast sweep in frequency and so on. In order to understand such nonlinear behaviors of AEs, it is widely recognized that the phase space structure have to be taken into account. However, there are few direct measurements of phase space structure in experiments so far. Here, we propose to apply the wave-particle interaction analyzer (WPIA) technique being developed for magnetosphere plasma physics (ERG project) to magnetically confinement fusion experiments. In the meeting, we present a high speed pulse analyzer system for WPIA using the field programmable gate array (FPGA) module and discuss the phase space structures observed in the LHD experiment. This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (A) 26709071.
High-order continuum kinetic method for modeling plasma dynamics in phase space
Vogman, G. V.; Colella, P.; Shumlak, U.
2014-12-15
Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volumemore » algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.« less
Phase-space model of a collisionless stellar cylinder embedded in a rotating halo
NASA Astrophysics Data System (ADS)
Kondratyev, B. P.; Kireeva, E. N.
The phase-space model of a stellar cylindrical bar embedded in a rotating triaxial halo is constructed. The equations of motion of an individual star in the bar are derived and solved. The model has three integrals of motion and the condition of the cylinder boundary conservation is derived. The model is found to represent a four-dimensional ellipsoid in six-dimensional phase space. The phase-space distribution function of stars is derived, which depends on isolating integrals of motion. The centroid velocity field describes longitudinal shear averaged flows in the cylinder. Two non-zero components of the velocity dispersion tensor depend quadratically on coordinates and vanish at the surface of the cylindrical bar.
NASA Astrophysics Data System (ADS)
Miksovsky, J.; Raidl, A.
Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.
Amateur Radio on the International Space Station - Phase 2 Hardware System
NASA Technical Reports Server (NTRS)
Bauer, F.; McFadin, L.; Bruninga, B.; Watarikawa, H.
2003-01-01
The International Space Station (ISS) ham radio system has been on-orbit for over 3 years. Since its first use in November 2000, the first seven expedition crews and three Soyuz taxi crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early on, the Amateur Radio on the International Space Station (ARISS) international team devised a multi-phased hardware development approach for the ISS ham radio station. Three internal development Phases. Initial Phase 1, Mobile Radio Phase 2 and Permanently Mounted Phase 3 plus an externally mounted system, were proposed and agreed to by the ARISS team. The Phase 1 system hardware development which was started in 1996 has since been delivered to ISS. It is currently operational on 2 meters. The 70 cm system is expected to be installed and operated later this year. Since 2001, the ARISS international team have worked to bring the second generation ham system, called Phase 2, to flight qualification status. At this time, major portions of the Phase 2 hardware system have been delivered to ISS and will soon be installed and checked out. This paper intends to provide an overview of the Phase 1 system for background and then describe the capabilities of the Phase 2 radio system. It will also describe the current plans to finalize the Phase 1 and Phase 2 testing in Russia and outlines the plans to bring the Phase 2 hardware system to full operation.
Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle
NASA Technical Reports Server (NTRS)
1971-01-01
The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.
The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1
NASA Technical Reports Server (NTRS)
Lee, S. C.
1989-01-01
The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.
Chiral invariant phase space event generator. Deep inelastic lepto-nucleon reactions
NASA Astrophysics Data System (ADS)
Kossov, M. V.
2007-12-01
The Geant4 quark level CHIPS (CHiral Invariant Phase Space) model simulates nuclear reactions assuming asymptotic freedom of massless quarks uniformly distributed over invariant phase space. Electro-nuclear reactions are simulated generating low-Q2 equivalent photons. In this paper generalisation of the model for high Q2 is made to describe neutrino-nuclear reactions, where the low-Q2 contribution is suppressed by the W -boson mass. The proposed non-perturbative approximation of structure functions fits high-energy lepto-nucleon reactions with high-Q2 and neutrino-nucleon reactions starting from the threshold.
GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.
Townson, Reid W; Jia, Xun; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B
2013-06-21
A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm
A Gaussian wave packet phase-space representation of quantum canonical statistics
NASA Astrophysics Data System (ADS)
Coughtrie, David J.; Tew, David P.
2015-07-01
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
High order surface aberration contributions from phase space analysis of differential rays.
Chen, Bo; Herkommer, Alois M
2016-03-21
Phase space methods are very popular for illumination systems or paraxial system analysis. In this paper it will be shown that it is also a promising tool to visualize and quantify surface aberration contributions, including all orders. The method is based on the calculation and propagation of a differential ray pair. In order to validate the method we compare to Aldis calculus, an exact method to determine high order aberrations in rotational symmetric systems. A triplet lens is used as an example to visualize the results. The analysis indicates that the phase space method is a very good approximation to Aldis calculus and moreover it is not limited to any symmetry assumptions.
The application of the phase space time evolution method to electron shielding
NASA Technical Reports Server (NTRS)
Cordaro, M. C.; Zucker, M. S.
1972-01-01
A computer technique for treating the motion of charged and neutral particles and called the phase space time evolution method was developed. This technique employs the computer's bookkeeping capacity to keep track of the time development of a phase space distribution of particles. This method was applied to a study of the penetration of electrons. A 1 MeV beam of electrons normally incident on a semi-infinite slab of aluminum was used. Results of the calculation were compared with Monte Carlo calculations and experimental results. Time-dependent PSTE electron penetration results for the same problem are presented.
A Gaussian wave packet phase-space representation of quantum canonical statistics
Coughtrie, David J.; Tew, David P.
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
Differential spectra and phase space densities of trapped electrons at Jupiter
NASA Technical Reports Server (NTRS)
Mcilwain, C. E.; Fillius, R. W.
1975-01-01
Using Pioneer 10 data, differential spectra and phase-space densities have been constructed for trapped electrons at Jupiter. These quantities should assist in calculating synchrotron radiation from these particles and in evaluating the diffusion mechanisms that accelerate the particles. Absorption by the moons Io and Europa is evident, and injection by Io is demonstrated by a density peak in phase space, which demands a local source. There is also a rapid decrease in density between the moons, which could call for either a local loss mechanism or nonlocal losses fed by diffusion.
Ion phase-space vortices and their relation to small amplitude double layers
NASA Technical Reports Server (NTRS)
Pecseli, Hans L.
1987-01-01
The properties of ion phase-space vortices are reviewed with particular attention to their role in the formation of small amplitude double layers in current-carrying plasmas. In a one-dimensional analysis, many such double layers simply add up to produce a large voltage drop. A laboratory experiment is carried out in order to investigate the properties of ion phase-space vortices in three dimensions. Their lifetime is significantly reduced as compared with similar results from one-dimensional numerical simulations of the problem.
Phase-space dynamics of ionization injection in plasma-based accelerators.
Xu, X L; Hua, J F; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Joshi, C; Mori, W B
2014-01-24
The evolution of beam phase space in ionization injection into plasma wakefields is studied using theory and particle-in-cell simulations. The injection process involves both longitudinal and transverse phase mixing, leading initially to a rapid emittance growth followed by oscillation, decay, and a slow growth to saturation. An analytic theory for this evolution is presented and verified through particle-in-cell simulations. This theory includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces, and it also shows how ultralow emittance beams can be produced using ionization injection methods.
Phase-space description of the coherent state dynamics in a small one-dimensional system
NASA Astrophysics Data System (ADS)
Kaczor, Urszula; Klimas, Bogusław; Szydłowski, Dominik; Wołoszyn, Maciej; Spisak, Bartłomiej J.
2016-10-01
The Wigner-Moyal approach is applied to investigate the dynamics of the Gaussian wave packet moving in a double-well potential in the `Mexican hat' form. Quantum trajectories in the phase space are computed for different kinetic energies of the initial wave packet in the Wigner form. The results are compared with the classical trajectories. Some additional information on the dynamics of the wave packet in the phase space is extracted from the analysis of the cross-correlation of the Wigner distribution function with itself at different points in time.
GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources
NASA Astrophysics Data System (ADS)
Townson, Reid W.; Jia, Xun; Tian, Zhen; Jiang Graves, Yan; Zavgorodni, Sergei; Jiang, Steve B.
2013-06-01
A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm
NASA Technical Reports Server (NTRS)
Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.
1990-01-01
A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.
A Gaussian wave packet phase-space representation of quantum canonical statistics.
Coughtrie, David J; Tew, David P
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
Phase-space methods for the spin dynamics in condensed matter systems.
Hurst, Jérôme; Hervieux, Paul-Antoine; Manfredi, Giovanni
2017-04-28
Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin-[Formula: see text] fermions (typically, electrons) including the Zeeman effect and the spin-orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Free space optical communication link using a silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.
2015-03-01
Many components for free space optical communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Non-mechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. In this paper a small-scale silicon photonic optical phased array is demonstrated for both the transmitter and receiver functions in a free space optical link. The device using an array of thermo-optically controlled waveguide phase shifters and demonstrates one-dimensional steering with a single control electrode. Transmission of a digitized video data stream over the link is shown.
Phase space interrogation of the empirical response modes for seismically excited structures
NASA Astrophysics Data System (ADS)
Paul, Bibhas; George, Riya C.; Mishra, Sudib K.
2017-07-01
Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.
Brokl, Michał; Bishop, Louise; Wright, Christopher G; Liu, Chuan; McAdam, Kevin; Focant, Jean-François
2014-11-28
A method involving headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry (TOFMS) was developed and applied to evaluate profiles of volatile compounds present in mainstream tobacco smoke particulate matter trapped on glass fiber filters. Six SPME fibers were tested for the extraction capacities toward selected compounds, showing the best results for the polyacrylate fiber. The optimization of the extraction conditions was carried out using multivariate response surface methodology. Two cigarette types differing in a filter design were analyzed using optimized conditions. A template was built in order to generate comprehensive chemical information, which conceded obtaining consistent information across 24 chromatograms. Principal component analysis (PCA) allowed a clear differentiation of the studied cigarette types. Fisher ratio analysis allowed identification of compounds responsible for the chemical differences between the cigarette samples. Of the selected 143 most important ones, 134 analytes were reduced by the active carbon filter, while for nine, classical cellulose acetate filter was more efficient.
Chemical potential driven phase transition of black holes in anti-de Sitter space
NASA Astrophysics Data System (ADS)
Galante, Mario; Giribet, Gaston; Goya, Andrés; Oliva, Julio
2015-11-01
Einstein-Maxwell theory conformally coupled to a scalar field in D dimensions may exhibit a phase transition at low temperature whose end point is an asymptotically anti-de Sitter black hole with a scalar field profile that is regular everywhere outside and on the horizon. This provides a tractable model to study the phase transition of hairy black holes in anti-de Sitter space in which the backreaction on the geometry can be solved analytically.
Performance considerations for the astrometric Telescope Facility on the Phase I Space Station
NASA Technical Reports Server (NTRS)
Nishioka, Kenji; Mascy, Alfred C.; Sobeck, Charles K.; Sperans, Joel; Gatewood, George D.
1988-01-01
The Astrometric Telescope Facility (ATF) is an optical telescope facility of extreme astrometric precision whose principal scientific purpose is the detection and study of planetary systems about nearby stars. With the recent change in the space station program to two phases, the suitability of initial operations from the phase 1 station need to be evaluated. This paper presents the results of such an evaluation for the Astrometric Telescope Facility.
Performance considerations for the astrometric telescope facility on the phase 1 space station
NASA Technical Reports Server (NTRS)
Nishioka, Kenji; Gatewood, George D.; Macsy, Alfred C.; Sobeck, Charles K.; Sperans, Joel
1987-01-01
The Astrometric Telescope Facility (ATF) is an optical telescope facility of extreme astrometric precision whose principle scientific purpose is the detection and study of planetary systems about nearby stars. With the recent change in the space station program to two phases, the suitability of initial operations from the phase 1 station need to be evaluated. This paper presents the results of such an evaluation for the Astrometric Telescope Facility.
Phased Array Ultrasonic Examination of Space Shuttle Main Engine Nozzle Weld
NASA Technical Reports Server (NTRS)
James, S.; Engel, J.; Kimbrough, D.; Suits, M.; McCool, Alex (Technical Monitor)
2001-01-01
This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle - Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.
Network structure of multivariate time series.
Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito
2015-10-21
Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.
Network structure of multivariate time series
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito
2015-10-01
Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.
Network structure of multivariate time series
Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito
2015-01-01
Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail. PMID:26487040
Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit
NASA Technical Reports Server (NTRS)
Elgradechi, Amine M.
1993-01-01
Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.
Extending the scanning angle of a phased array antenna by using a null-space medium
Sun, Fei; He, Sailing
2014-01-01
By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198
NASA Technical Reports Server (NTRS)
1974-01-01
The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.
Simulations of phase space distributions of storm time proton ring current
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael
1994-01-01
We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet
Simulations of phase space distributions of storm time proton ring current
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael
1994-01-01
We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet
NASA Technical Reports Server (NTRS)
Deuser, Mark S.; Vanalstine, James M.; Vellinger, John C.; Wessling, Francis C.; Lundquist, Charles A.
1992-01-01
Traditional separation techniques are inadequate for many new bioprocessing challenges. Innovative separation methods such as aqueous two phase partitioning are needed to perpetuate bioprocess commercialization. Aqueous two phase polymer partitioning systems provide a process for separating biological materials when combined with microgravity. An innovative space qualified apparatus developed for carrying out separations by partitioning in immiscible polymer systems under mirogravity conditions is described. The apparatus offers an innovative approach to low gravity bioseparations in general and phase partitioning in particular. These capabilities support NASA's interest in serving the biotechnology research community and providing quantitative data in the gravity dependent components of separation processes.
Phase-space structure of the Buckingham's two-body problem
NASA Astrophysics Data System (ADS)
Pricopi, D.; Popescu, E.
2016-06-01
In this paper, we study the global flow for the two-body problem associated to the Buckingham potential. For this, using McGehee-type transformations, we write the regularized equations of motion. Then, reducing the 4-dimensional phase space to a 2-dimension one, the global flow in the phase plane is described for all possible values of the parameters of the potential and those of the energy and angular momentum constants. Every phase trajectory is interpreted in terms of physical motion, our problem being depicted both geometrically and physically.
Real-Space and Reciprocal-Space Berry Phases in the Hall Effect of Mn1-xFexSi
NASA Astrophysics Data System (ADS)
Franz, C.; Freimuth, F.; Bauer, A.; Ritz, R.; Schnarr, C.; Duvinage, C.; Adams, T.; Blügel, S.; Rosch, A.; Mokrousov, Y.; Pfleiderer, C.
2014-05-01
We report an experimental and computational study of the Hall effect in Mn1-xFexSi, as complemented by measurements in Mn1-xCoxSi, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.
Direct-space methods in phase extension and phase refinement. IV. The double-histogram method.
Refaat, L S; Tate, C; Woolfson, M M
1996-03-01
In the conventional histogram-matching technique for phase extension and refinement for proteins a simple one-to-one transformation is made in the protein region to modify calculated density so that it will have some target histogram in addition to solvent flattening. This work describes an investigation where the density modification takes into account not only the current calculated density at a grid point but also some characteristic of the environment of the grid point within some distance R. This characteristic can be one of the local maximum density, the local minimum density or the local variance of density. The grid points are divided into ten groups, each containing the same number of grid points, for ten different ranges of value of the local characteristic. The ten groups are modified to give different histograms, each corresponding to that obtained under the same circumstances from a structure similar to the one under investigation. This process is referred to as the double-histogram matching method. Other processes which have been investigated are the weighting of structure factors when calculating maps with estimated phases and also the use of a factor to dampen the change of density and so control the refinement process. Two protein structures were used in numerical trials, RNApl [Bezborodova, Ermekbaeva, Shlyapnikov, Polyakov & Bezborodov (1988). Biokhimiya, 53, 965-973] and 2-Zn insulin [Baker, Blundell, Cutfield, Cutfield, Dodson, Dodson, Hodgkin, Hubbard, lsaacs, Reynolds, Sakabe, Sakabe & Vijayan (1988). Philos. Trans. R. Soc. London Ser. B, 319, 456--469]. Comparison of the proposed procedures with the normal histogram-matching technique without structure-factor weighting or damping gives mean phase errors reduced by up to 10 degrees with map correlation coefficients improved by as much as 0.14. Compared to the normal histogram used with weighting of structure factors and damping, the improvement due to the use of the double-histogram method is
Computational method for phase space transport with applications to lobe dynamics and rate of escape
NASA Astrophysics Data System (ADS)
Naik, Shibabrat; Lekien, Francois; Ross, Shane D.
2017-05-01
Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems.While the former approach studies how regions of phase space get transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing certain barriers. Lobe dynamics describes global transport in terms of lobes, parcels of phase space bounded by stable and unstable invariant manifolds associated to hyperbolic fixed points of the system. Escape from a potential well describes how the critical events occur and quantifies the rate of escape using the flux across the barriers. Both of these frameworks require computation of curves, intersection points, and the area bounded by the curves. We present a theory for classification of intersection points to compute the area bounded between the segments of the curves. This involves the partition of the intersection points into equivalence classes to apply the discrete form of Green's theorem. We present numerical implementation of the theory, and an alternate method for curves with nontransverse intersections is also presented along with a method to insert points in the curve for densification.
Quantum de Finetti theorems and mean-field theory from quantum phase space representations
NASA Astrophysics Data System (ADS)
Trimborn, F.; Werner, R. F.; Witthaut, D.
2016-04-01
We introduce the number-conserving quantum phase space description as a versatile tool to address fundamental aspects of quantum many-body systems. Using phase space methods we prove two alternative versions of the quantum de Finetti theorem for finite-dimensional bosonic quantum systems, which states that a reduced density matrix of a many-body quantum state can be approximated by a convex combination of product states where the error is proportional to the inverse particle number. This theorem provides a formal justification for the mean-field description of many-body quantum systems, as it shows that quantum correlations can be neglected for the calculation of few-body observables when the particle number is large. Furthermore we discuss methods to derive the exact evolution equations for quantum phase space distribution functions as well as upper and lower bounds for the ground state energy. As an important example, we consider the Bose-Hubbard model and show that the mean-field dynamics is given by a classical phase space flow equivalent to the discrete Gross-Pitaevskii equation.
ERIC Educational Resources Information Center
de Silva, Chamelle R.; Chigona, A.; Adendorff, S. A.
2016-01-01
Among its many affordances, the interactive whiteboard (IWB) as a digital space for children's dialogic engagement in the Foundation Phase classroom remains largely under-exploited. This paper emanates from a study which was undertaken in an attempt to understand how teachers acquire knowledge of emerging technologies and how this shapes their…
Phase Space Approach for S2 arrow S0 internal conversion in the benzene molecule.
NASA Astrophysics Data System (ADS)
Kallush, Shimshon; Segev, Bilha; Sergeev, Alexei; Heller, Eric J.
2000-06-01
The theoretical problem of finding propensity rules for the partition of energy between competing vibrations in a radiationless vibronic relaxation transition, is converted by the phase-space method of [1,2] to the simple mathematical problem of finding a maximum for a simple function under a constraint. The function is the Wigner function of the initial state and the constraint is energy conservation, defining an accepting energy surface in phase space. We apply this phase space method for finding propensity rules for vibronic transitions when the Frack-Condon factors are exponentially small to the classical example of the benzene molecule. We extend the method to forbidden transitions and include in the analysis non-harmonic force-field effects. Using the phase space analysis, we explain the non-classical behavior of the S_2arrow S0 relaxation of the benzene. Given the energy gap, reasonable displacements and recently calculated force fields [3] we show that almost all the energy must go to C-H stretching. Non-harmonic effects increase in this case the transition rate but do not change the partition of energy between the accepting vibrational modes. [1] E.J. Heller and D. Beck, Chem. Phys. Lett. 202, 350 (1993). [2] B. Segev and E.J. Heller, Journal of Chemical Physics, 112, 4004-4013 (2000). [3] A. Miani, E. Cane, P. Palmieri, A. Trombetti,N.C. Handy, J. Chem. Phys., 112, 248-259 (2000).
Phase space and jet definitions in soft-collinear effective theory
Cheung, William Man-Yin; Luke, Michael; Zuberi, Saba
2009-12-01
We discuss consistent power counting for integrating soft and collinear degrees of freedom over arbitrary regions of phase space in the soft-collinear effective theory, and illustrate our results at one-loop with several jet algorithms: JADE, Sterman-Weinberg and k{sub perpendicular}. Consistently applying soft-collinear effective theory power counting in phase space, along with nontrivial zero-bin subtractions, prevents double counting of final states. The resulting phase space integrals over soft and collinear regions are individually ultraviolet divergent, but the phase space ultraviolet divergences cancel in the sum. Whether the soft and collinear contributions are individually infrared safe depends on the jet definition. We show that while this is true at one-loop for JADE and Sterman-Weinberg, the k{sub perpendicular} algorithm does not factorize into individually infrared safe soft and collinear pieces in dimensional regularization. We point out that this statement depends on the ultraviolet regulator, and that in a cutoff scheme the soft functions are infrared safe.
Phase-space analysis of convection in a /sup 3/He - superfluid /sup 4/He solution
Haucke, H.; Maeno, Y.
1982-01-01
Observations have been made on thermal convection below 1K in a dilute solution of /sup 3/He in superfluid /sup 4/He contained in a cylindrical cell of aspect ratio GAMMA = 1.20. Complicated oscillatory phenomena were observed with a high degree of reproducibility using two temperature sensors. Phase-space analysis suggests a description in terms of strange-attractor dynamics.
A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers
NASA Astrophysics Data System (ADS)
Sivakumar, B.
2002-02-01
The use of phase-space reconstruction approach for understanding and predicting suspended sediment concentration dynamics in rivers is investigated. According to this approach, the dynamic changes of the suspended sediment concentration phenomenon are represented by reconstructing (or embedding) the single-dimensional (or variable) suspended sediment concentration series in a multi-dimensional phase-space. After representing the dynamics in the phase-space, a local approximation method is employed for making predictions. The approach is employed for representing and predicting the dynamics of the daily suspended sediment concentration observed in the Mississippi River basin (at St. Louis, MO) in the United States of America. The predicted suspended sediment concentrations are found to be in very good agreement with the observed ones; not only are the major trends well captured but the minor (noisy) fluctuations reasonably preserved as well. The near-accurate predictions indicate the appropriateness of the phase-space reconstruction approach for understanding the suspended sediment concentration phenomenon. The results (i.e. optimal embedding dimension) also reveal that the suspended sediment concentration dynamics are dominantly influenced by three variables, suggesting that the suspended sediment concentration (and other sediment transport related) phenomena could be viewed from a low-dimensional chaotic dynamic perspective.
A pilot study of river flow prediction in urban area based on phase space reconstruction
NASA Astrophysics Data System (ADS)
Adenan, Nur Hamiza; Hamid, Nor Zila Abd; Mohamed, Zulkifley; Noorani, Mohd Salmi Md
2017-08-01
River flow prediction is significantly related to urban hydrology impact which can provide information to solve any problems such as flood in urban area. The daily river flow of Klang River, Malaysia was chosen to be forecasted in this pilot study which based on phase space reconstruction. The reconstruction of phase space involves a single variable of river flow data to m-dimensional phase space in which the dimension (m) is based on the optimal values of Cao method. The results from the reconstruction of phase space have been used in the forecasting process using local linear approximation method. From our investigation, river flow at Klang River is chaotic based on the analysis from Cao method. The overall results provide good value of correlation coefficient. The value of correlation coefficient is acceptable since the area of the case study is influence by a lot of factors. Therefore, this pilot study may be proposed to forecast daily river flow data with the purpose of providing information about the flow of the river system in urban area.
Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Ray tracing method in phase space for two-dimensional optical systems.
Filosa, C; Ten Thije Boonkkamp, J H M; IJzerman, W L
2016-05-01
Ray tracing is a forward method to calculate the photometric variables at the target of a non-imaging optical system. In this paper, a new ray tracing technique is presented to improve the accuracy and to reduce the computational time of the classical ray tracing approach. The method is based on the phase space representation of the source and the target of the optical system, and it is applied to a two-dimensional TIR-collimator. The strength of the method lies in tracing fewer rays through the system. Only rays that lie in the meridional plane are considered. A procedure that disregards rays in smooth regions in phase space, where the luminance is continuous, is implemented and only the rays close to discontinuities are traced. The efficiency of the method is demonstrated by numerical simulations that compare the new method with Monte Carlo ray tracing. The results show that the phase space approach is faster and more accurate than the already existing ray tracing method; moreover the phase space method converges as one over the number of rays traced unlike Monte Carlo ray tracing in which the speed of convergence is proportional to one over the square root of the number of rays.
NASA Astrophysics Data System (ADS)
Endeve, Eirik; Hauck, Cory D.; Xing, Yulong; Mezzacappa, Anthony
2015-04-01
We extend the positivity-preserving method of Zhang and Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stability-preserving, Runge-Kutta (SSP-RK) time integration. Special care is taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ∈ [ 0 , 1 ]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is sufficient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergence-free property of the phase space flow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.
Kim, K.-J.; Accelerator Systems Division
2008-01-01
Emittance exchange and flat beam transform are two phase-space converting techniques being developed recently to enhance the performance of electron beams for various applications. We review these applications, the basic principles of the converters, and the status of experimental demonstration of these techniques.
Numerical method for estimating the size of chaotic regions of phase space
Henyey, F.S.; Pomphrey, N.
1987-10-01
A numerical method for estimating irregular volumes of phase space is derived. The estimate weights the irregular area on a surface of section with the average return time to the section. We illustrate the method by application to the stadium and oval billiard systems and also apply the method to the continuous Henon-Heiles system. 15 refs., 10 figs. (LSP)
NASA Astrophysics Data System (ADS)
Kurien, Binoy G.; Ashcom, Jonathan B.; Shah, Vinay N.; Rachlin, Yaron; Tarokh, Vahid
2017-01-01
Atmospheric turbulence presents a fundamental challenge to Fourier phase recovery in optical interferometry. Typical reconstruction algorithms employ Bayesian inference techniques which rely on prior knowledge of the scene under observation. In contrast, redundant spacing calibration (RSC) algorithms employ redundancy in the baselines of the interferometric array to directly expose the contribution of turbulence, thereby enabling phase recovery for targets of arbitrary and unknown complexity. Traditionally RSC algorithms have been applied directly to single-exposure measurements, which are reliable only at high photon flux in general. In scenarios of low photon flux, such as those arising in the observation of dim objects in space, one must instead rely on time-averaged, atmosphere-invariant quantities such as the bispectrum. In this paper, we develop a novel RSC-based algorithm for prior-less phase recovery in which we generalize the bispectrum to higher order atmosphere-invariants (n-spectra) for improved sensitivity. We provide a strategy for selection of a high-signal-to-noise ratio set of n-spectra using the graph-theoretic notion of the minimum cycle basis. We also discuss a key property of this set (wrap-invariance), which then enables reliable application of standard linear estimation techniques to recover the Fourier phases from the 2π-wrapped n-spectra phases. For validation, we analyse the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures, and corroborate this analysis with simulation results showing performance near an atmosphere-oracle Cramer-Rao bound. Lastly, we apply techniques from the field of compressed sensing to perform image reconstruction from the estimated complex visibilities.
A high-resolution multi-slit phase space measurement technique for low-emittance beams
Thangaraj, J. C. T.; Piot, P.
2012-12-21
Precise measurement of transverse phase space of a high-brightness electron beamis of fundamental importance in modern accelerators and free-electron lasers. Often, the transverse phase space of a high-brightness, space-charge-dominated electron beam is measured using a multi-slit method. In this method, a transverse mask (slit/pepperpot) samples the beaminto a set of beamlets, which are then analyzed on to a screen downstream. The resolution in this method is limited by the type of screen used which is typically around 20 {mu}m for a high-sensitivity Yttrium Aluminum Garnet screen. Accurate measurement of sub-micron transverse emittance using this method would require a long drift space between the multi-slit mask and observation screen. In this paper, we explore a variation of the technique that incorporates quadrupole magnets between the multi-slit mask and the screen. It is shown that this arrangement can improve the resolution of the transverse-phase-space measurement with in a short footprint.
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition.
Clark, Logan W; Feng, Lei; Chin, Cheng
2016-11-04
The dynamics of many-body systems spanning condensed matter, cosmology, and beyond are hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics are expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop antiferromagnetic spatial correlations resulting from the sub-Poisson distribution of the spacing between topological defects. The fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum critical dynamics.
Simulated response of top-hat electrostatic analysers - importance of phase-space resolution
NASA Astrophysics Data System (ADS)
De Marco, Rossana; Bruno, Roberto; D'Amicis, Raffaella; Federica Marcucci, Maria; Servidio, Sergio; Valentini, Francesco
2016-04-01
We use a numerical code able to reproduce the angular/energy response of a typical electrostatic analyzer of top-hat type starting from velocity distribution functions (VDFs) generated by numerical imulations.The simulations are based on the Hybrid Vlasov-Maxwell (HVM) numerical algorithm which integrates the Vlasov equation for the ion distribution function in multi-dimensional geometry in phase space, while the electrons are treated as a fluid. Virtual satellites launched through the simulation box measure the particle VDFs. Such VDFs are interpolated into a spacecraft reference frame and moved from the simulation Cartesian grid to energy-angular coordinates to mimic the response of a real electrostatic sensor in the solar wind and in the magnetosheath for different conditions. We discuss the results of this study with respect to the importance of phase-space resolution for a space plasma experiment meant to investigate kinetic plasma regime.
Decryption with incomplete cyphertext and multiple-information encryption in phase space.
Xu, Xiaobin; Wu, Quanying; Liu, Jun; Situ, Guohai
2016-01-25
Recently, we have demonstrated that information encryption in phase space offers security enhancement over the traditional encryption schemes operating in real space. However, there is also an important issue with this technique: increasing the cost for data transmitting and storage. To address this issue, here we investigate the problem of decryption using incomplete cyphertext. We show that the analytic solution under the traditional framework set the lower limit of decryption performance. More importantly, we demonstrate that one just needs a small amount of cyphertext to recover the plaintext signal faithfully using compressive sensing, meaning that the amount of data that needs to transmit and store can be significantly reduced. This leads to multiple information encryption so that we can use the system bandwidth more effectively. We also provide an optical experimental result to demonstrate the plaintext recovered in phase space.
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
NASA Astrophysics Data System (ADS)
Clark, Logan W.; Feng, Lei; Chin, Cheng
2016-11-01
The dynamics of many-body systems spanning condensed matter, cosmology, and beyond are hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics are expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop antiferromagnetic spatial correlations resulting from the sub-Poisson distribution of the spacing between topological defects. The fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum critical dynamics.
Phase space simulation of collisionless stellar systems on the massively parallel processor
NASA Technical Reports Server (NTRS)
White, Richard L.
1987-01-01
A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem.
The phase space of the focused cubic Schroedinger equation: A numerical study
Burlakov, Yuri O.
1998-05-01
In a paper of 1988 [41] on statistical mechanics of the nonlinear Schroedinger equation, it was observed that a Gibbs canonical ensemble associated with the nonlinear Schroedinger equation exhibits behavior reminiscent of a phase transition in classical statistical mechanics. The existence of a phase transition in the canonical ensemble of the nonlinear Schroedinger equation would be very interesting and would have important implications for the role of this equation in modeling physical phenomena; it would also have an important bearing on the theory of weak solutions of nonlinear wave equations. The cubic Schroedinger equation, as will be shown later, is equivalent to the self-induction approximation for vortices, which is a widely used equation of motion for a thin vortex filament in classical and superfluid mechanics. The existence of a phase transition in such a system would be very interesting and actually very surprising for the following reasons: in classical fluid mechanics it is believed that the turbulent regime is dominated by strong vortex stretching, while the vortex system described by the cubic Schroedinger equation does not allow for stretching. In superfluid mechanics the self-induction approximation and its modifications have been used to describe the motion of thin superfluid vortices, which exhibit a phase transition; however, more recently some authors concluded that these equations do not adequately describe superfluid turbulence, and the absence of a phase transition in the cubic Schroedinger equation would strengthen their argument. The self-induction approximation for vortices takes into account only very localized interactions, and the existence of a phase transition in such a simplified system would be very unexpected. In this thesis the authors present a numerical study of the phase transition type phenomena observed in [41]; in particular, they find that these phenomena are strongly related to the splitting of the phase space into
Hogendoorn, Hinze
2015-01-01
An important goal of cognitive neuroscience is understanding the neural underpinnings of conscious awareness. Although the low-level processing of sensory input is well understood in most modalities, it remains a challenge to understand how the brain translates such input into conscious awareness. Here, I argue that the application of multivariate pattern classification techniques to neuroimaging data acquired while observers experience perceptual illusions provides a unique way to dissociate sensory mechanisms from mechanisms underlying conscious awareness. Using this approach, it is possible to directly compare patterns of neural activity that correspond to the contents of awareness, independent from changes in sensory input, and to track these neural representations over time at high temporal resolution. I highlight five recent studies using this approach, and provide practical considerations and limitations for future implementations.
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2007-01-01
Though there are a few examples of scanning phased array antennas that have flown successfully in space, the quest for low-cost, high-efficiency, large aperture microwave phased arrays continues. Fixed and mobile applications that may be part of a heterogeneous exploration communication architecture will benefit from the agile (rapid) beam steering and graceful degradation afforded by phased array antennas. The reflectarray promises greater efficiency and economy compared to directly-radiating varieties. Implementing a practical scanning version has proven elusive. The ferroelectric reflectarray, under development and described herein, involves phase shifters based on coupled microstrip patterned on Ba(x)Sr(1-x)TiO3 films, that were laser ablated onto LaAlO3 substrates. These devices outperform their semiconductor counterparts from X- through and K-band frequencies. There are special issues associated with the implementation of a scanning reflectarray antenna, especially one realized with thin film ferroelectric phase shifters. This paper will discuss these issues which include: relevance of phase shifter loss; modulo 2(pi) effects and phase shifter transient effects on bit error rate; scattering from the ground plane; presentation of a novel hybrid ferroelectric-semiconductor phase shifter; and the effect of mild radiation exposure on phase shifter performance.
Optical authentication based on moiré effect of nonlinear gratings in phase space
NASA Astrophysics Data System (ADS)
Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang
2015-12-01
An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.
The effect of phase angle and wing spacing on tandem flapping wings
NASA Astrophysics Data System (ADS)
Broering, Timothy M.; Lian, Yong-Sheng
2012-12-01
In a tandem wing configuration, the hindwing often operates in the wake of the forewing and, hence, its performance is affected by the vortices shed by the forewing. Changes in the phase angle between the flapping motions of the fore and the hind wings, as well as the spacing between them, can affect the resulting vortex/wing and vortex/vortex interactions. This study uses 2D numerical simulations to investigate how these changes affect the leading dege vortexes (LEV) generated by the hindwing and the resulting effect on the lift and thrust coefficients as well as the efficiencies. The tandem wing configuration was simulated using an incompressible Navier-Stokes solver at a chord-based Reynolds number of 5 000. A harmonic single frequency sinusoidal oscillation consisting of a combined pitch and plunge motion was used for the flapping wing kinematics at a Strouhal number of 0.3. Four different spacings ranging from 0.1 chords to 1 chord were tested at three different phase angles, 0°, 90° and 180°. It was found that changes in the spacing and phase angle affected the timing of the interaction between the vortex shed from the forewing and the hindwing. Such an interaction affects the LEV formation on the hindwing and results in changes in aerodynamic force production and efficiencies of the hindwing. It is also observed that changing the phase angle has a similar effect as changing the spacing. The results further show that at different spacings the peak force generation occurs at different phase angles, as do the peak efficiencies.
NASA Astrophysics Data System (ADS)
Li, Yiming; Gao, Chao; Liang, Haodong; Miao, Maoke; Li, Xiaofeng
2017-04-01
This paper investigates an adaptive phase estimator for coherent free-space optical (FSO) communication systems. Closed-form solutions for variance of phase errors are derived when the optical beam is subjected to Gamma-Gamma distributed turbulence. The adaptive phase estimator has improved upon the phase error performance in comparison to conventional phase estimators. We also demonstrate notable improvement in BER performance when applying our adaptive phase estimator to coherent FSO communication systems.
Phase-space structures - I. A comparison of 6D density estimators
NASA Astrophysics Data System (ADS)
Maciejewski, M.; Colombi, S.; Alard, C.; Bouchet, F.; Pichon, C.
2009-03-01
In the framework of particle-based Vlasov systems, this paper reviews and analyses different methods recently proposed in the literature to identify neighbours in 6D space and estimate the corresponding phase-space density. Specifically, it compares smoothed particle hydrodynamics (SPH) methods based on tree partitioning to 6D Delaunay tessellation. This comparison is carried out on statistical and dynamical realizations of single halo profiles, paying particular attention to the unknown scaling, SG, used to relate the spatial dimensions to the velocity dimensions. It is found that, in practice, the methods with local adaptive metric provide the best phase-space estimators. They make use of a Shannon entropy criterion combined with a binary tree partitioning and with subsequent SPH interpolation using 10-40 nearest neighbours. We note that the local scaling SG implemented by such methods, which enforces local isotropy of the distribution function, can vary by about one order of magnitude in different regions within the system. It presents a bimodal distribution, in which one component is dominated by the main part of the halo and the other one is dominated by the substructures of the halo. While potentially better than SPH techniques, since it yields an optimal estimate of the local softening volume (and therefore the local number of neighbours required to perform the interpolation), the Delaunay tessellation in fact generally poorly estimates the phase-space distribution function. Indeed, it requires, prior to its implementation, the choice of a global scaling SG. We propose two simple but efficient methods to estimate SG that yield a good global compromise. However, the Delaunay interpolation still remains quite sensitive to local anisotropies in the distribution. To emphasize the advantages of 6D analysis versus traditional 3D analysis, we also compare realistic 6D phase-space density estimation with the proxy proposed earlier in the literature, Q = ρ/σ3
MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Ali, Fazal
1991-01-01
The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.
Stehr, René; Schöpflin, Robert; Ettig, Ramona; Kepper, Nick; Rippe, Karsten; Wedemann, Gero
2010-01-01
The three-dimensional structure of chromatin affects DNA accessibility and is therefore a key regulator of gene expression. However, the path of the DNA between consecutive nucleosomes, and the resulting chromatin fiber organization remain controversial. The conformational space available for the folding of the nucleosome chain has been analytically described by phase diagrams with a two-angle model, which describes the chain trajectory by a DNA entry-exit angle at the nucleosome and a torsion angle between consecutive nucleosomes. Here, a novel type of numerical phase diagrams is introduced that relates the geometric phase space to the energy associated with a given chromatin conformation. The resulting phase diagrams revealed differences in the energy landscape that reflect the probability of a given conformation to form in thermal equilibrium. Furthermore, we investigated the effects of entropy and additional degrees of freedom in the dynamic phase diagrams by performing Monte Carlo simulations of the initial chain trajectories. Using our approach, we were able to demonstrate that conformations that initially were geometrically impossible could evolve into energetically favorable states in thermal equilibrium due to DNA bending and torsion. In addition, dynamic phase diagrams were applied to identify chromatin fibers that reflect certain experimentally determined features. PMID:20303860
Ahn, Junyeong; Yang, Bohm-Jung
2017-04-14
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z_{2} topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe/CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe/CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.
NASA Astrophysics Data System (ADS)
Ahn, Junyeong; Yang, Bohm-Jung
2017-04-01
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.