Sample records for multivariate principal component

  1. Information extraction from multivariate images

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Kegley, K. A.; Schiess, J. R.

    1986-01-01

    An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.

  2. Estimation and Psychometric Analysis of Component Profile Scores via Multivariate Generalizability Theory

    ERIC Educational Resources Information Center

    Grochowalski, Joseph H.

    2015-01-01

    Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…

  3. An Introductory Application of Principal Components to Cricket Data

    ERIC Educational Resources Information Center

    Manage, Ananda B. W.; Scariano, Stephen M.

    2013-01-01

    Principal Component Analysis is widely used in applied multivariate data analysis, and this article shows how to motivate student interest in this topic using cricket sports data. Here, principal component analysis is successfully used to rank the cricket batsmen and bowlers who played in the 2012 Indian Premier League (IPL) competition. In…

  4. Principal Cluster Axes: A Projection Pursuit Index for the Preservation of Cluster Structures in the Presence of Data Reduction

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.; Henson, Robert

    2012-01-01

    A measure of "clusterability" serves as the basis of a new methodology designed to preserve cluster structure in a reduced dimensional space. Similar to principal component analysis, which finds the direction of maximal variance in multivariate space, principal cluster axes find the direction of maximum clusterability in multivariate space.…

  5. Introduction to uses and interpretation of principal component analyses in forest biology.

    Treesearch

    J. G. Isebrands; Thomas R. Crow

    1975-01-01

    The application of principal component analysis for interpretation of multivariate data sets is reviewed with emphasis on (1) reduction of the number of variables, (2) ordination of variables, and (3) applications in conjunction with multiple regression.

  6. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: a principal component analysis approach.

    PubMed

    Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G

    2012-11-13

    We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.

  7. Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Singh, Renu; Steinley, Douglas

    2009-01-01

    The selection of a subset of variables from a pool of candidates is an important problem in several areas of multivariate statistics. Within the context of principal component analysis (PCA), a number of authors have argued that subset selection is crucial for identifying those variables that are required for correct interpretation of the…

  8. [A novel method of multi-channel feature extraction combining multivariate autoregression and multiple-linear principal component analysis].

    PubMed

    Wang, Jinjia; Zhang, Yanna

    2015-02-01

    Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.

  9. Short communication: Discrimination between retail bovine milks with different fat contents using chemometrics and fatty acid profiling.

    PubMed

    Vargas-Bello-Pérez, Einar; Toro-Mujica, Paula; Enriquez-Hidalgo, Daniel; Fellenberg, María Angélica; Gómez-Cortés, Pilar

    2017-06-01

    We used a multivariate chemometric approach to differentiate or associate retail bovine milks with different fat contents and non-dairy beverages, using fatty acid profiles and statistical analysis. We collected samples of bovine milk (whole, semi-skim, and skim; n = 62) and non-dairy beverages (n = 27), and we analyzed them using gas-liquid chromatography. Principal component analysis of the fatty acid data yielded 3 significant principal components, which accounted for 72% of the total variance in the data set. Principal component 1 was related to saturated fatty acids (C4:0, C6:0, C8:0, C12:0, C14:0, C17:0, and C18:0) and monounsaturated fatty acids (C14:1 cis-9, C16:1 cis-9, C17:1 cis-9, and C18:1 trans-11); whole milk samples were clearly differentiated from the rest using this principal component. Principal component 2 differentiated semi-skim milk samples by n-3 fatty acid content (C20:3n-3, C20:5n-3, and C22:6n-3). Principal component 3 was related to C18:2 trans-9,trans-12 and C20:4n-6, and its lower scores were observed in skim milk and non-dairy beverages. A cluster analysis yielded 3 groups: group 1 consisted of only whole milk samples, group 2 was represented mainly by semi-skim milks, and group 3 included skim milk and non-dairy beverages. Overall, the present study showed that a multivariate chemometric approach is a useful tool for differentiating or associating retail bovine milks and non-dairy beverages using their fatty acid profile. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Use of multivariate statistics to identify unreliable data obtained using CASA.

    PubMed

    Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón

    2013-06-01

    In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.

  11. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  12. Multivariate analysis of light scattering spectra of liquid dairy products

    NASA Astrophysics Data System (ADS)

    Khodasevich, M. A.

    2010-05-01

    Visible light scattering spectra from the surface layer of samples of commercial liquid dairy products are recorded with a colorimeter. The principal component method is used to analyze these spectra. Vectors representing the samples of dairy products in a multidimensional space of spectral counts are projected onto a three-dimensional subspace of principal components. The magnitudes of these projections are found to depend on the type of dairy product.

  13. Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy.

    PubMed

    Smith, Zachary J; Strombom, Sven; Wachsmann-Hogiu, Sebastian

    2011-08-29

    A multivariate optical computer has been constructed consisting of a spectrograph, digital micromirror device, and photomultiplier tube that is capable of determining absolute concentrations of individual components of a multivariate spectral model. We present experimental results on ternary mixtures, showing accurate quantification of chemical concentrations based on integrated intensities of fluorescence and Raman spectra measured with a single point detector. We additionally show in simulation that point measurements based on principal component spectra retain the ability to classify cancerous from noncancerous T cells.

  14. Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students

    ERIC Educational Resources Information Center

    Valero-Mora, Pedro M.; Ledesma, Ruben D.

    2011-01-01

    This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…

  15. The Potential of Multivariate Analysis in Assessing Students' Attitude to Curriculum Subjects

    ERIC Educational Resources Information Center

    Gaotlhobogwe, Michael; Laugharne, Janet; Durance, Isabelle

    2011-01-01

    Background: Understanding student attitudes to curriculum subjects is central to providing evidence-based options to policy makers in education. Purpose: We illustrate how quantitative approaches used in the social sciences and based on multivariate analysis (categorical Principal Components Analysis, Clustering Analysis and General Linear…

  16. Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques

    NASA Technical Reports Server (NTRS)

    McDonald, G.; Storrie-Lombardi, M.; Nealson, K.

    1999-01-01

    The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.

  17. Principal components analysis in clinical studies.

    PubMed

    Zhang, Zhongheng; Castelló, Adela

    2017-09-01

    In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.

  18. Multivariate Analysis of Seismic Field Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Kathleen

    1999-06-01

    This report includes the details of the model building procedure and prediction of seismic field data. Principal Components Regression, a multivariate analysis technique, was used to model seismic data collected as two pieces of equipment were cycled on and off. Models built that included only the two pieces of equipment of interest had trouble predicting data containing signals not included in the model. Evidence for poor predictions came from the prediction curves as well as spectral F-ratio plots. Once the extraneous signals were included in the model, predictions improved dramatically. While Principal Components Regression performed well for the present datamore » sets, the present data analysis suggests further work will be needed to develop more robust modeling methods as the data become more complex.« less

  19. Multivariate analyses of salt stress and metabolite sensing in auto- and heterotroph Chenopodium cell suspensions.

    PubMed

    Wongchai, C; Chaidee, A; Pfeiffer, W

    2012-01-01

    Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Multivariate analysis for scanning tunneling spectroscopy data

    NASA Astrophysics Data System (ADS)

    Yamanishi, Junsuke; Iwase, Shigeru; Ishida, Nobuyuki; Fujita, Daisuke

    2018-01-01

    We applied principal component analysis (PCA) to two-dimensional tunneling spectroscopy (2DTS) data obtained on a Si(111)-(7 × 7) surface to explore the effectiveness of multivariate analysis for interpreting 2DTS data. We demonstrated that several components that originated mainly from specific atoms at the Si(111)-(7 × 7) surface can be extracted by PCA. Furthermore, we showed that hidden components in the tunneling spectra can be decomposed (peak separation), which is difficult to achieve with normal 2DTS analysis without the support of theoretical calculations. Our analysis showed that multivariate analysis can be an additional powerful way to analyze 2DTS data and extract hidden information from a large amount of spectroscopic data.

  1. Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts

    USGS Publications Warehouse

    Lent, R.M.; Waldron, M.C.; Rader, J.C.

    1998-01-01

    A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.

  2. A novel principal component analysis for spatially misaligned multivariate air pollution data.

    PubMed

    Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A

    2017-01-01

    We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.

  3. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  4. Discernment of lint trash in raw cotton using multivariate analysis of excitation-emission luminescence spectra

    USDA-ARS?s Scientific Manuscript database

    Excitation-Emission luminescence spectra of basic (pH 12.5) phosphate buffer solution extracts were used to distinguish among botanical components of trash within seed cotton. All components were separated from whole plants removed from a field in southern New Mexico. Unfolded Principal Component An...

  5. Differential use of fresh water environments by wintering waterfowl of coastal Texas

    USGS Publications Warehouse

    White, D.H.; James, D.

    1978-01-01

    A comparative study of the environmental relationships among 14 species of wintering waterfowl was conducted at the Welder Wildlife Foundation, San Patricia County, near Sinton, Texas during the fall and early winter of 1973. Measurements of 20 environmental factors (social, vegetational, physical, and chemical) were subjected to multivariate statistical methods to determine certain niche characteristics and environmental relationships of waterfowl wintering in the aquatic community.....Each waterfowl species occupied a unique realized niche by responding to distinct combinations of environmental factors identified by principal component analysis. One percent confidence ellipses circumscribing the mean scores plotted for the first and second principal components gave an indication of relative niche width for each species. The waterfowl environments were significantly different interspecifically and water depth at feeding site and % emergent vegetation were most important in the separation. This was shown by subjecting the transformed data to multivariate analysis of variance with an associated step-down procedure. The species were distributed along a community cline extending from shallow water with abundant emergent vegetation to open deep water with little emergent vegetation of any kind. Four waterfowl subgroups were significantly separated along the cline, as indicated by one-way analysis of variance with Duncan?s multiple range test. Clumping of the bird species toward the middle of the available habitat hyperspace was shown in a plot of the principal component scores for the random samples and individual species.....Naturally occurring relationships among waterfowl were clarified using principal comcomponent analysis and related multivariate procedures. These techniques may prove useful in wetland management for particular groups of waterfowl based on habitat preferences.

  6. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    PubMed

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  7. Effect of noise in principal component analysis with an application to ozone pollution

    NASA Astrophysics Data System (ADS)

    Tsakiri, Katerina G.

    This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction

  8. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging.

    PubMed

    Zuendorf, Gerhard; Kerrouche, Nacer; Herholz, Karl; Baron, Jean-Claude

    2003-01-01

    Principal component analysis (PCA) is a well-known technique for reduction of dimensionality of functional imaging data. PCA can be looked at as the projection of the original images onto a new orthogonal coordinate system with lower dimensions. The new axes explain the variance in the images in decreasing order of importance, showing correlations between brain regions. We used an efficient, stable and analytical method to work out the PCA of Positron Emission Tomography (PET) images of 74 normal subjects using [(18)F]fluoro-2-deoxy-D-glucose (FDG) as a tracer. Principal components (PCs) and their relation to age effects were investigated. Correlations between the projections of the images on the new axes and the age of the subjects were carried out. The first two PCs could be identified as being the only PCs significantly correlated to age. The first principal component, which explained 10% of the data set variance, was reduced only in subjects of age 55 or older and was related to loss of signal in and adjacent to ventricles and basal cisterns, reflecting expected age-related brain atrophy with enlarging CSF spaces. The second principal component, which accounted for 8% of the total variance, had high loadings from prefrontal, posterior parietal and posterior cingulate cortices and showed the strongest correlation with age (r = -0.56), entirely consistent with previously documented age-related declines in brain glucose utilization. Thus, our method showed that the effect of aging on brain metabolism has at least two independent dimensions. This method should have widespread applications in multivariate analysis of brain functional images. Copyright 2002 Wiley-Liss, Inc.

  9. Reconstruction Error and Principal Component Based Anomaly Detection in Hyperspectral Imagery

    DTIC Science & Technology

    2014-03-27

    2003), and (Jackson D. A., 1993). In 1933, Hotelling ( Hotelling , 1933), who coined the term ‘principal components,’ surmised that there was a...goodness of fit and multivariate quality control with the statistic Qi = (Xi(1×p) − X̂i(1×p) )(Xi(1×p) − X̂i(1×p) ) T (20) where, under the...sparsely targeted scenes through SNR or other methods. 5) Customize sorting and histogram construction methods in Multiple PCA to avoid redundancy

  10. Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals.

    PubMed

    Verma, Priyanka; Kumar, Manoj; Mishra, Girish; Sahoo, Dinabandhu

    2017-02-01

    In the present study bio prospecting of thirty seaweeds from Indian coasts was analyzed for their biochemical components including pigments, fatty acid and ash content. Multivariate analysis of biochemical components and fatty acids was done using Principal Component Analysis (PCA) and Agglomerative hierarchical clustering (AHC) to manifest chemotaxonomic relationship among various seaweeds. The overall analysis suggests that these seaweeds have multi-functional properties and can be utilized as promising bioresource for proteins, lipids, pigments and carbohydrates for the food/feed and biofuel industry. Copyright © 2016. Published by Elsevier Ltd.

  11. Experimental Researches on the Durability Indicators and the Physiological Comfort of Fabrics using the Principal Component Analysis (PCA) Method

    NASA Astrophysics Data System (ADS)

    Hristian, L.; Ostafe, M. M.; Manea, L. R.; Apostol, L. L.

    2017-06-01

    The work pursued the distribution of combed wool fabrics destined to manufacturing of external articles of clothing in terms of the values of durability and physiological comfort indices, using the mathematical model of Principal Component Analysis (PCA). Principal Components Analysis (PCA) applied in this study is a descriptive method of the multivariate analysis/multi-dimensional data, and aims to reduce, under control, the number of variables (columns) of the matrix data as much as possible to two or three. Therefore, based on the information about each group/assortment of fabrics, it is desired that, instead of nine inter-correlated variables, to have only two or three new variables called components. The PCA target is to extract the smallest number of components which recover the most of the total information contained in the initial data.

  12. Combinations of NIR, Raman spectroscopy and physicochemical measurements for improved monitoring of solvent extraction processes using hierarchical multivariate analysis models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nee, K.; Bryan, S.; Levitskaia, T.

    The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less

  13. Combinations of NIR, Raman spectroscopy and physicochemical measurements for improved monitoring of solvent extraction processes using hierarchical multivariate analysis models

    DOE PAGES

    Nee, K.; Bryan, S.; Levitskaia, T.; ...

    2017-12-28

    The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less

  14. Assessing Principal Component Regression Prediction of Neurochemicals Detected with Fast-Scan Cyclic Voltammetry

    PubMed Central

    2011-01-01

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586

  15. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    PubMed

    Keithley, Richard B; Wightman, R Mark

    2011-06-07

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.

  16. A first application of independent component analysis to extracting structure from stock returns.

    PubMed

    Back, A D; Weigend, A S

    1997-08-01

    This paper explores the application of a signal processing technique known as independent component analysis (ICA) or blind source separation to multivariate financial time series such as a portfolio of stocks. The key idea of ICA is to linearly map the observed multivariate time series into a new space of statistically independent components (ICs). We apply ICA to three years of daily returns of the 28 largest Japanese stocks and compare the results with those obtained using principal component analysis. The results indicate that the estimated ICs fall into two categories, (i) infrequent large shocks (responsible for the major changes in the stock prices), and (ii) frequent smaller fluctuations (contributing little to the overall level of the stocks). We show that the overall stock price can be reconstructed surprisingly well by using a small number of thresholded weighted ICs. In contrast, when using shocks derived from principal components instead of independent components, the reconstructed price is less similar to the original one. ICA is shown to be a potentially powerful method of analyzing and understanding driving mechanisms in financial time series. The application to portfolio optimization is described in Chin and Weigend (1998).

  17. Craters on Earth, Moon, and Mars: Multivariate classification and mode of origin

    USGS Publications Warehouse

    Pike, R.J.

    1974-01-01

    Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian "calderas," and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components. Although single topographic variables cannot confidently predict the genesis of individual extraterrestrial craters, multivariate statistical models constructed from several variables can distinguish consistently between large impact craters and volcanoes. ?? 1974.

  18. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices

    PubMed Central

    Meyer, Karin; Kirkpatrick, Mark

    2005-01-01

    Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566

  19. Comparative multivariate analysis of biometric traits of West African Dwarf and Red Sokoto goats.

    PubMed

    Yakubu, Abdulmojeed; Salako, Adebowale E; Imumorin, Ikhide G

    2011-03-01

    The population structure of 302 randomly selected West African Dwarf (WAD) and Red Sokoto (RS) goats was examined using multivariate morphometric analyses. This was to make the case for conservation, rational management and genetic improvement of these two most important Nigerian goat breeds. Fifteen morphometric measurements were made on each individual animal. RS goats were superior (P<0.05) to the WAD for the body size and skeletal proportions investigated. The phenotypic variability between the two breeds was revealed by their mutual responses in the principal components. While four principal components were extracted for WAD goats, three components were obtained for their RS counterparts with variation in the loading traits of each component for each breed. The Mahalanobis distance of 72.28 indicated a high degree of spatial racial separation in morphology between the genotypes. The Ward's option of the cluster analysis consolidated the morphometric distinctness of the two breeds. Application of selective breeding to genetic improvement would benefit from the detected phenotypic differentiation. Other implications for management and conservation of the goats are highlighted.

  20. Identification of Reliable Components in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS): a Data-Driven Approach across Metabolic Processes.

    PubMed

    Motegi, Hiromi; Tsuboi, Yuuri; Saga, Ayako; Kagami, Tomoko; Inoue, Maki; Toki, Hideaki; Minowa, Osamu; Noda, Tetsuo; Kikuchi, Jun

    2015-11-04

    There is an increasing need to use multivariate statistical methods for understanding biological functions, identifying the mechanisms of diseases, and exploring biomarkers. In addition to classical analyses such as hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis, various multivariate strategies, including independent component analysis, non-negative matrix factorization, and multivariate curve resolution, have recently been proposed. However, determining the number of components is problematic. Despite the proposal of several different methods, no satisfactory approach has yet been reported. To resolve this problem, we implemented a new idea: classifying a component as "reliable" or "unreliable" based on the reproducibility of its appearance, regardless of the number of components in the calculation. Using the clustering method for classification, we applied this idea to multivariate curve resolution-alternating least squares (MCR-ALS). Comparisons between conventional and modified methods applied to proton nuclear magnetic resonance ((1)H-NMR) spectral datasets derived from known standard mixtures and biological mixtures (urine and feces of mice) revealed that more plausible results are obtained by the modified method. In particular, clusters containing little information were detected with reliability. This strategy, named "cluster-aided MCR-ALS," will facilitate the attainment of more reliable results in the metabolomics datasets.

  1. A Multivariate Analysis of the Early Dropout Process

    ERIC Educational Resources Information Center

    Fiester, Alan R.; Rudestam, Kjell E.

    1975-01-01

    Principal-component factor analyses were performed on patient input (demographic and pretherapy expectations), therapist input (demographic), and patient perspective therapy process variables that significantly differentiated early dropout from nondropout outpatients at two community mental health centers. (Author)

  2. Subgroups Among Opiate Addicts

    ERIC Educational Resources Information Center

    Berzins, Juris I.; And Others

    1974-01-01

    The principal objective of the present investigation was to delineate homogeneous MMPI profile subgroups (types) through multivariate clustering procedures and to compare the derived (replicable) types on measures of the components of "sociopathy" as well as on other psychometric devices. (Author)

  3. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques

    PubMed Central

    Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934

  4. Portable XRF and principal component analysis for bill characterization in forensic science.

    PubMed

    Appoloni, C R; Melquiades, F L

    2014-02-01

    Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Classification of adulterated honeys by multivariate analysis.

    PubMed

    Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad

    2017-06-01

    In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Household Food Waste: Multivariate Regression and Principal Components Analyses of Awareness and Attitudes among U.S. Consumers

    PubMed Central

    2016-01-01

    We estimate models of consumer food waste awareness and attitudes using responses from a national survey of U.S. residents. Our models are interpreted through the lens of several theories that describe how pro-social behaviors relate to awareness, attitudes and opinions. Our analysis of patterns among respondents’ food waste attitudes yields a model with three principal components: one that represents perceived practical benefits households may lose if food waste were reduced, one that represents the guilt associated with food waste, and one that represents whether households feel they could be doing more to reduce food waste. We find our respondents express significant agreement that some perceived practical benefits are ascribed to throwing away uneaten food, e.g., nearly 70% of respondents agree that throwing away food after the package date has passed reduces the odds of foodborne illness, while nearly 60% agree that some food waste is necessary to ensure meals taste fresh. We identify that these attitudinal responses significantly load onto a single principal component that may represent a key attitudinal construct useful for policy guidance. Further, multivariate regression analysis reveals a significant positive association between the strength of this component and household income, suggesting that higher income households most strongly agree with statements that link throwing away uneaten food to perceived private benefits. PMID:27441687

  7. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.

  8. ECOPASS - a multivariate model used as an index of growth performance of poplar clones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceulemans, R.; Impens, I.

    The model (ECOlogical PASSport) reported was constructed by principal component analysis from a combination of biochemical, anatomical/morphological and ecophysiological gas exchange parameters measured on 5 fast growing poplar clones. Productivity data were 10 selected trees in 3 plantations in Belgium and given as m.a.i.(b.a.). The model is shown to be able to reflect not only genetic origin and the relative effects of the different parameters of the clones, but also their production potential. Multiple regression analysis of the 4 principal components showed a high cumulative correlation (96%) between the 3 components related to ecophysiological, biochemical and morphological parameters, and productivity;more » the ecophysiological component alone correlated 85% with productivity.« less

  9. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885

  10. Multivariate frequency domain analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori

    2009-03-01

    Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.

  11. Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure.

    PubMed

    Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C

    2018-06-29

    A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data

    PubMed Central

    Keithley, Richard B.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Principal component regression has been used in the past to separate current contributions from different neuromodulators measured with in vivo fast-scan cyclic voltammetry. Traditionally, a percent cumulative variance approach has been used to determine the rank of the training set voltammetric matrix during model development, however this approach suffers from several disadvantages including the use of arbitrary percentages and the requirement of extreme precision of training sets. Here we propose that Malinowski’s F-test, a method based on a statistical analysis of the variance contained within the training set, can be used to improve factor selection for the analysis of in vivo fast-scan cyclic voltammetric data. These two methods of rank estimation were compared at all steps in the calibration protocol including the number of principal components retained, overall noise levels, model validation as determined using a residual analysis procedure, and predicted concentration information. By analyzing 119 training sets from two different laboratories amassed over several years, we were able to gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study how differences in factor selection propagate throughout the entire principal component regression analysis procedure. Visualizing cyclic voltammetric representations of the data contained in the retained and discarded principal components showed that using Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be more accurately removed. Malinowski’s F-test also improved the robustness of our criterion for judging multivariate model validity, even though signal-to-noise ratios of the data varied. In addition, pH change was the majority noise carrier of in vivo training sets while dopamine prediction was more sensitive to noise. PMID:20527815

  13. Complex numbers in chemometrics: examples from multivariate impedance measurements on lipid monolayers.

    PubMed

    Geladi, Paul; Nelson, Andrew; Lindholm-Sethson, Britta

    2007-07-09

    Electrical impedance gives multivariate complex number data as results. Two examples of multivariate electrical impedance data measured on lipid monolayers in different solutions give rise to matrices (16x50 and 38x50) of complex numbers. Multivariate data analysis by principal component analysis (PCA) or singular value decomposition (SVD) can be used for complex data and the necessary equations are given. The scores and loadings obtained are vectors of complex numbers. It is shown that the complex number PCA and SVD are better at concentrating information in a few components than the naïve juxtaposition method and that Argand diagrams can replace score and loading plots. Different concentrations of Magainin and Gramicidin A give different responses and also the role of the electrolyte medium can be studied. An interaction of Gramicidin A in the solution with the monolayer over time can be observed.

  14. MORPHOLOGICAL VARIATION IN HATCHLING AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM THREE FLORIDA LAKES

    EPA Science Inventory

    Morphological variation of 508 hatchling alligators from three lakes in north central Florida (Lakes Woodruff, Apopka, and Orange) was analyzed using multivariate statistics. Morphological variation was found among clutches as well as among lakes. Principal components analysis wa...

  15. Improving Cluster Analysis with Automatic Variable Selection Based on Trees

    DTIC Science & Technology

    2014-12-01

    regression trees Daisy DISsimilAritY PAM partitioning around medoids PMA penalized multivariate analysis SPC sparse principal components UPGMA unweighted...unweighted pair-group average method ( UPGMA ). This method measures dissimilarities between all objects in two clusters and takes the average value

  16. Principal component analysis and neurocomputing-based models for total ozone concentration over different urban regions of India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi

    2012-07-01

    The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.

  17. Multivariate analysis of remote LIBS spectra using partial least squares, principal component analysis, and related techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C

    2008-01-01

    Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from whichmore » unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.« less

  18. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    NASA Astrophysics Data System (ADS)

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  19. Patient phenotypes associated with outcomes after aneurysmal subarachnoid hemorrhage: a principal component analysis.

    PubMed

    Ibrahim, George M; Morgan, Benjamin R; Macdonald, R Loch

    2014-03-01

    Predictors of outcome after aneurysmal subarachnoid hemorrhage have been determined previously through hypothesis-driven methods that often exclude putative covariates and require a priori knowledge of potential confounders. Here, we apply a data-driven approach, principal component analysis, to identify baseline patient phenotypes that may predict neurological outcomes. Principal component analysis was performed on 120 subjects enrolled in a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Correlation matrices were created using a combination of Pearson, polyserial, and polychoric regressions among 46 variables. Scores of significant components (with eigenvalues>1) were included in multivariate logistic regression models with incidence of severe angiographic vasospasm, delayed ischemic neurological deficit, and long-term outcome as outcomes of interest. Sixteen significant principal components accounting for 74.6% of the variance were identified. A single component dominated by the patients' initial hemodynamic status, World Federation of Neurosurgical Societies score, neurological injury, and initial neutrophil/leukocyte counts was significantly associated with poor outcome. Two additional components were associated with angiographic vasospasm, of which one was also associated with delayed ischemic neurological deficit. The first was dominated by the aneurysm-securing procedure, subarachnoid clot clearance, and intracerebral hemorrhage, whereas the second had high contributions from markers of anemia and albumin levels. Principal component analysis, a data-driven approach, identified patient phenotypes that are associated with worse neurological outcomes. Such data reduction methods may provide a better approximation of unique patient phenotypes and may inform clinical care as well as patient recruitment into clinical trials. http://www.clinicaltrials.gov. Unique identifier: NCT00111085.

  20. Multivariate analysis of molecular and morphological diversity in fig (Ficus carica L.)

    USDA-ARS?s Scientific Manuscript database

    Genetic polymorphism across 15 microsatellite loci among 194 fig accessions including Common, Smyrna, San Pedro, and Caprifig were analyzed using a cluster analysis (CA) and the principal components analysis (PCA). The collection was moderately variable with observed number of alleles per locus rang...

  1. Scientific Elitism and the Information System of Science

    ERIC Educational Resources Information Center

    Amick, Daniel James

    1973-01-01

    Scientific elitism must be viewed as a multidimensional phenomenon. Ten variables of elitism are considered and a principal components factor analysis is used to scale this multivariate domain. Two significant dimensions of elitism were found; one in basic and one in applied science. (20 references) (Author)

  2. Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings.

    PubMed

    Malaquias, José B; Ramalho, Francisco S; Dos S Dias, Carlos T; Brugger, Bruno P; S Lira, Aline Cristina; Wilcken, Carlos F; Pachú, Jéssica K S; Zanuncio, José C

    2017-02-09

    The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.

  3. Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings

    PubMed Central

    Malaquias, José B.; Ramalho, Francisco S.; dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.

    2017-01-01

    The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied. PMID:28181503

  4. Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings

    NASA Astrophysics Data System (ADS)

    Malaquias, José B.; Ramalho, Francisco S.; Dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.

    2017-02-01

    The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.

  5. Tailored multivariate analysis for modulated enhanced diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caliandro, Rocco; Guccione, Pietro; Nico, Giovanni

    2015-10-21

    Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited forin situandoperandostructural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed. The standard principal component analysis (PCA) is adapted to treat MED data: specific figures of merit based on their scoresmore » and loadings are found, and the directions of the principal components obtained by PCA are modified to maximize such figures of merit. As a result, a general method to decompose MED data, called optimum constrained components rotation (OCCR), is developed, which produces very precise results on simulated data, even in the case of nonperiodic stimuli and/or nonlinear responses. The multivariate analysis approach is able to supply in one shot both the diffraction pattern related to the active atoms (through the OCCR loadings) and the time dependence of the system response (through the OCCR scores). When applied to real data, OCCR was able to supply only the latter information, as the former was hindered by changes in abundances of different crystal phases, which occurred besides structural variations in the specific case considered. To develop a decomposition procedure able to cope with this combined effect represents the next challenge in MED analysis.« less

  6. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  7. Non-linear principal component analysis applied to Lorenz models and to North Atlantic SLP

    NASA Astrophysics Data System (ADS)

    Russo, A.; Trigo, R. M.

    2003-04-01

    A non-linear generalisation of Principal Component Analysis (PCA), denoted Non-Linear Principal Component Analysis (NLPCA), is introduced and applied to the analysis of three data sets. Non-Linear Principal Component Analysis allows for the detection and characterisation of low-dimensional non-linear structure in multivariate data sets. This method is implemented using a 5-layer feed-forward neural network introduced originally in the chemical engineering literature (Kramer, 1991). The method is described and details of its implementation are addressed. Non-Linear Principal Component Analysis is first applied to a data set sampled from the Lorenz attractor (1963). It is found that the NLPCA approximations are more representative of the data than are the corresponding PCA approximations. The same methodology was applied to the less known Lorenz attractor (1984). However, the results obtained weren't as good as those attained with the famous 'Butterfly' attractor. Further work with this model is underway in order to assess if NLPCA techniques can be more representative of the data characteristics than are the corresponding PCA approximations. The application of NLPCA to relatively 'simple' dynamical systems, such as those proposed by Lorenz, is well understood. However, the application of NLPCA to a large climatic data set is much more challenging. Here, we have applied NLPCA to the sea level pressure (SLP) field for the entire North Atlantic area and the results show a slight imcrement of explained variance associated. Finally, directions for future work are presented.%}

  8. Application of two tests of multivariate discordancy to fisheries data sets

    USGS Publications Warehouse

    Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.

    2008-01-01

    The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.

  9. NIR monitoring of in-service wood structures

    Treesearch

    Michela Zanetti; Timothy G. Rials; Douglas Rammer

    2005-01-01

    Near infrared spectroscopy (NIRS) was used to study a set of Southern Yellow Pine boards exposed to natural weathering for different periods of exposure time. This non-destructive spectroscopic technique is a very powerful tool to predict the weathering of wood when used in combination with multivariate analysis (Principal Component Analysis, PCA, and Projection to...

  10. Characterization of Organosolv Lignins using Thermal and FT-IR Spectroscopic Analysis

    Treesearch

    Rhea J. Sammons; David P. Harper; Nicole Labbe; Joseph J. Bozell; Thomas Elder; Timothy G. Rials

    2013-01-01

    A group of biomass-derived lignins isolated using organosolv fractionation was characterized by FT-IR spectral and thermal property analysis coupled with multivariate analysis. The principal component analysis indicated that there were significant variations between the hardwood, softwood, and grass lignins due to the differences in syringyl and guaiacyl units as well...

  11. Multivariate relationships between groundwater chemistry and toxicity in an urban aquifer.

    PubMed

    Dewhurst, Rachel E; Wells, N Claire; Crane, Mark; Callaghan, Amanda; Connon, Richard; Mather, John D

    2003-11-01

    Multivariate statistical methods were used to investigate the causes of toxicity and controls on groundwater chemistry from 274 boreholes in an urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations, and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoniacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.

  12. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  13. Watch what happens: using a web-based multimedia platform to enhance intraoperative learning and development of clinical reasoning.

    PubMed

    Fingeret, Abbey L; Martinez, Rebecca H; Hsieh, Christine; Downey, Peter; Nowygrod, Roman

    2016-02-01

    We aim to determine whether observed operations or internet-based video review predict improved performance in the surgery clerkship. A retrospective review of students' usage of surgical videos, observed operations, evaluations, and examination scores were used to construct an exploratory principal component analysis. Multivariate regression was used to determine factors predictive of clerkship performance. Case log data for 231 students revealed a median of 25 observed cases. Students accessed the web-based video platform a median of 15 times. Principal component analysis yielded 4 factors contributing 74% of the variability with a Kaiser-Meyer-Olkin coefficient of .83. Multivariate regression predicted shelf score (P < .0001), internal clinical skills examination score (P < .0001), subjective evaluations (P < .001), and video website utilization (P < .001) but not observed cases to be significantly associated with overall performance. Utilization of a web-based operative video platform during a surgical clerkship is an independently associated with improved clinical reasoning, fund of knowledge, and overall evaluation. Thus, this modality can serve as a useful adjunct to live observation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  15. Bayesian wavelet PCA methodology for turbomachinery damage diagnosis under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Shengli; Jiang, Xiaomo; Huang, Jinzhi; Yang, Shuhua; Wang, Xiaofang

    2016-12-01

    Centrifugal compressor often suffers various defects such as impeller cracking, resulting in forced outage of the total plant. Damage diagnostics and condition monitoring of such a turbomachinery system has become an increasingly important and powerful tool to prevent potential failure in components and reduce unplanned forced outage and further maintenance costs, while improving reliability, availability and maintainability of a turbomachinery system. This paper presents a probabilistic signal processing methodology for damage diagnostics using multiple time history data collected from different locations of a turbomachine, considering data uncertainty and multivariate correlation. The proposed methodology is based on the integration of three advanced state-of-the-art data mining techniques: discrete wavelet packet transform, Bayesian hypothesis testing, and probabilistic principal component analysis. The multiresolution wavelet analysis approach is employed to decompose a time series signal into different levels of wavelet coefficients. These coefficients represent multiple time-frequency resolutions of a signal. Bayesian hypothesis testing is then applied to each level of wavelet coefficient to remove possible imperfections. The ratio of posterior odds Bayesian approach provides a direct means to assess whether there is imperfection in the decomposed coefficients, thus avoiding over-denoising. Power spectral density estimated by the Welch method is utilized to evaluate the effectiveness of Bayesian wavelet cleansing method. Furthermore, the probabilistic principal component analysis approach is developed to reduce dimensionality of multiple time series and to address multivariate correlation and data uncertainty for damage diagnostics. The proposed methodology and generalized framework is demonstrated with a set of sensor data collected from a real-world centrifugal compressor with impeller cracks, through both time series and contour analyses of vibration signal and principal components.

  16. Investigation of cell wall composition related to stem lodging resistance in wheat (Triticum aestivum L.) by FTIR spectroscopy.

    PubMed

    Wang, Jian; Zhu, Jinmao; Huang, RuZhu; Yang, YuSheng

    2012-07-01

    We explored the rapid qualitative analysis of wheat cultivars with good lodging resistances by Fourier transform infrared resonance (FTIR) spectroscopy and multivariate statistical analysis. FTIR imaging showing that wheat stem cell walls were mainly composed of cellulose, pectin, protein, and lignin. Principal components analysis (PCA) was used to eliminate multicollinearity among multiple peak absorptions. PCA revealed the developmental internodes of wheat stems could be distributed from low to high along the load of the second principal component, which was consistent with the corresponding bands of cellulose in the FTIR spectra of the cell walls. Furthermore, four distinct stem populations could also be identified by spectral features related to their corresponding mechanical properties via PCA and cluster analysis. Histochemical staining of four types of wheat stems with various abilities to resist lodging revealed that cellulose contributed more than lignin to the ability to resist lodging. These results strongly suggested that the main cell wall component responsible for these differences was cellulose. Therefore, the combination of multivariate analysis and FTIR could rapidly screen wheat cultivars with good lodging resistance. Furthermore, the application of these methods to a much wider range of cultivars of unknown mechanical properties promises to be of interest.

  17. Rapid differentiation of Chinese hop varieties (Humulus lupulus) using volatile fingerprinting by HS-SPME-GC-MS combined with multivariate statistical analysis.

    PubMed

    Liu, Zechang; Wang, Liping; Liu, Yumei

    2018-01-18

    Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  18. Risk prediction for myocardial infarction via generalized functional regression models.

    PubMed

    Ieva, Francesca; Paganoni, Anna M

    2016-08-01

    In this paper, we propose a generalized functional linear regression model for a binary outcome indicating the presence/absence of a cardiac disease with multivariate functional data among the relevant predictors. In particular, the motivating aim is the analysis of electrocardiographic traces of patients whose pre-hospital electrocardiogram (ECG) has been sent to 118 Dispatch Center of Milan (the Italian free-toll number for emergencies) by life support personnel of the basic rescue units. The statistical analysis starts with a preprocessing of ECGs treated as multivariate functional data. The signals are reconstructed from noisy observations. The biological variability is then removed by a nonlinear registration procedure based on landmarks. Thus, in order to perform a data-driven dimensional reduction, a multivariate functional principal component analysis is carried out on the variance-covariance matrix of the reconstructed and registered ECGs and their first derivatives. We use the scores of the Principal Components decomposition as covariates in a generalized linear model to predict the presence of the disease in a new patient. Hence, a new semi-automatic diagnostic procedure is proposed to estimate the risk of infarction (in the case of interest, the probability of being affected by Left Bundle Brunch Block). The performance of this classification method is evaluated and compared with other methods proposed in literature. Finally, the robustness of the procedure is checked via leave-j-out techniques. © The Author(s) 2013.

  19. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    NASA Astrophysics Data System (ADS)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  20. Tailored multivariate analysis for modulated enhanced diffraction

    DOE PAGES

    Caliandro, Rocco; Guccione, Pietro; Nico, Giovanni; ...

    2015-10-21

    Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited forin situandoperandostructural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed. The standard principal component analysis (PCA) is adapted to treat MED data: specific figures of merit based on their scoresmore » and loadings are found, and the directions of the principal components obtained by PCA are modified to maximize such figures of merit. As a result, a general method to decompose MED data, called optimum constrained components rotation (OCCR), is developed, which produces very precise results on simulated data, even in the case of nonperiodic stimuli and/or nonlinear responses. Furthermore, the multivariate analysis approach is able to supply in one shot both the diffraction pattern related to the active atoms (through the OCCR loadings) and the time dependence of the system response (through the OCCR scores). Furthermore, when applied to real data, OCCR was able to supply only the latter information, as the former was hindered by changes in abundances of different crystal phases, which occurred besides structural variations in the specific case considered. In order to develop a decomposition procedure able to cope with this combined effect represents the next challenge in MED analysis.« less

  1. The application of near infrared (NIR) spectroscopy to inorganic preservative-treated wood

    Treesearch

    Chi-Leung So; Stan T. Lebow; Leslie H. Groom; Timothy G. Rials

    2004-01-01

    There is a growing need to find a rapid, inexpensive, and reliable method to distinguish between treated and untreated waste wood. This paper evaluates the ability of near infrared (NIR) spectroscopy with multivariate analysis (MVA) to distinguish preservative types and retentions. It is demonstrated that principal component analysis (PCA) can differentiate lumber...

  2. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    PubMed Central

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-01

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data. PMID:26761018

  3. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map.

    PubMed

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-08

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009-2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  4. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Statistical techniques applied to aerial radiometric surveys (STAARS): principal components analysis user's manual. [NURE program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.

    1981-01-01

    A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From thismore » analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.« less

  6. Rapid Elemental Analysis and Provenance Study of Blumea balsamifera DC Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera. PMID:25558999

  7. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Vítková, Gabriela; Prokeš, Lubomír; Novotný, Karel; Pořízka, Pavel; Novotný, Jan; Všianský, Dalibor; Čelko, Ladislav; Kaiser, Jozef

    2014-11-01

    Focusing on historical aspect, during archeological excavation or restoration works of buildings or different structures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin. Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant analysis (LDA) was applied in this case. LIBS was used to classify altogether the 29 brick samples from 7 different localities. Realizing comparative study using two different LIBS setups - stand-off and table-top it is shown that stand-off LIBS has a big potential for archeological in-field measurements.

  8. Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan

    2013-01-01

    The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.

  9. The bio-optical properties of CDOM as descriptor of lake stratification.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Martini, Silvia; Rossi, Claudio; Santinelli, Chiara; Seritti, Alfredo

    2006-11-01

    Multivariate statistical techniques are used to demonstrate the fundamental role of CDOM optical properties in the description of water masses during the summer stratification of a deep lake. PC1 was linked with dissolved species and PC2 with suspended particles. In the first principal component that the role of CDOM bio-optical properties give a better description of the stratification of the Salto Lake with respect to temperature. The proposed multivariate approach can be used for the analysis of different stratified aquatic ecosystems in relation to interaction between bio-optical properties and stratification of the water body.

  10. Component analysis and initial validity of the exercise fear avoidance scale.

    PubMed

    Wingo, Brooks C; Baskin, Monica; Ard, Jamy D; Evans, Retta; Roy, Jane; Vogtle, Laura; Grimley, Diane; Snyder, Scott

    2013-01-01

    To develop the Exercise Fear Avoidance Scale (EFAS) to measure fear of exercise-induced discomfort. We conducted principal component analysis to determine component structure and Cronbach's alpha to assess internal consistency of the EFAS. Relationships between EFAS scores, BMI, physical activity, and pain were analyzed using multivariate regression. The best fit was a 3-component structure: weight-specific fears, cardiorespiratory fears, and musculoskeletal fears. Cronbach's alpha for the EFAS was α=.86. EFAS scores significantly predicted BMI, physical activity, and PDI scores. Psychometric properties of this scale suggest it may be useful for tailoring exercise prescriptions to address fear of exercise-related discomfort.

  11. A single determinant dominates the rate of yeast protein evolution.

    PubMed

    Drummond, D Allan; Raval, Alpan; Wilke, Claus O

    2006-02-01

    A gene's rate of sequence evolution is among the most fundamental evolutionary quantities in common use, but what determines evolutionary rates has remained unclear. Here, we carry out the first combined analysis of seven predictors (gene expression level, dispensability, protein abundance, codon adaptation index, gene length, number of protein-protein interactions, and the gene's centrality in the interaction network) previously reported to have independent influences on protein evolutionary rates. Strikingly, our analysis reveals a single dominant variable linked to the number of translation events which explains 40-fold more variation in evolutionary rate than any other, suggesting that protein evolutionary rate has a single major determinant among the seven predictors. The dominant variable explains nearly half the variation in the rate of synonymous and protein evolution. We show that the two most commonly used methods to disentangle the determinants of evolutionary rate, partial correlation analysis and ordinary multivariate regression, produce misleading or spurious results when applied to noisy biological data. We overcome these difficulties by employing principal component regression, a multivariate regression of evolutionary rate against the principal components of the predictor variables. Our results support the hypothesis that translational selection governs the rate of synonymous and protein sequence evolution in yeast.

  12. Multivariate singular spectrum analysis and the road to phase synchronization

    NASA Astrophysics Data System (ADS)

    Groth, Andreas; Ghil, Michael

    2010-05-01

    Singular spectrum analysis (SSA) and multivariate SSA (M-SSA) are based on the classical work of Kosambi (1943), Loeve (1945) and Karhunen (1946) and are closely related to principal component analysis. They have been introduced into information theory by Bertero, Pike and co-workers (1982, 1984) and into dynamical systems analysis by Broomhead and King (1986a,b). Ghil, Vautard and associates have applied SSA and M-SSA to the temporal and spatio-temporal analysis of short and noisy time series in climate dynamics and other fields in the geosciences since the late 1980s. M-SSA provides insight into the unknown or partially known dynamics of the underlying system by decomposing the delay-coordinate phase space of a given multivariate time series into a set of data-adaptive orthonormal components. These components can be classified essentially into trends, oscillatory patterns and noise, and allow one to reconstruct a robust "skeleton" of the dynamical system's structure. For an overview we refer to Ghil et al. (Rev. Geophys., 2002). In this talk, we present M-SSA in the context of synchronization analysis and illustrate its ability to unveil information about the mechanisms behind the adjustment of rhythms in coupled dynamical systems. The focus of the talk is on the special case of phase synchronization between coupled chaotic oscillators (Rosenblum et al., PRL, 1996). Several ways of measuring phase synchronization are in use, and the robust definition of a reasonable phase for each oscillator is critical in each of them. We illustrate here the advantages of M-SSA in the automatic identification of oscillatory modes and in drawing conclusions about the transition to phase synchronization. Without using any a priori definition of a suitable phase, we show that M-SSA is able to detect phase synchronization in a chain of coupled chaotic oscillators (Osipov et al., PRE, 1996). Recently, Muller et al. (PRE, 2005) and Allefeld et al. (Intl. J. Bif. Chaos, 2007) have demonstrated the usefulness of principal component analysis in detecting phase synchronization from multivariate time series. The present talk provides a generalization of this idea and presents a robust implementation thereof via M-SSA.

  13. PM10 and gaseous pollutants trends from air quality monitoring networks in Bari province: principal component analysis and absolute principal component scores on a two years and half data set

    PubMed Central

    2014-01-01

    Background The chemical composition of aerosols and particle size distributions are the most significant factors affecting air quality. In particular, the exposure to finer particles can cause short and long-term effects on human health. In the present paper PM10 (particulate matter with aerodynamic diameter lower than 10 μm), CO, NOx (NO and NO2), Benzene and Toluene trends monitored in six monitoring stations of Bari province are shown. The data set used was composed by bi-hourly means for all parameters (12 bi-hourly means per day for each parameter) and it’s referred to the period of time from January 2005 and May 2007. The main aim of the paper is to provide a clear illustration of how large data sets from monitoring stations can give information about the number and nature of the pollutant sources, and mainly to assess the contribution of the traffic source to PM10 concentration level by using multivariate statistical techniques such as Principal Component Analysis (PCA) and Absolute Principal Component Scores (APCS). Results Comparing the night and day mean concentrations (per day) for each parameter it has been pointed out that there is a different night and day behavior for some parameters such as CO, Benzene and Toluene than PM10. This suggests that CO, Benzene and Toluene concentrations are mainly connected with transport systems, whereas PM10 is mostly influenced by different factors. The statistical techniques identified three recurrent sources, associated with vehicular traffic and particulate transport, covering over 90% of variance. The contemporaneous analysis of gas and PM10 has allowed underlining the differences between the sources of these pollutants. Conclusions The analysis of the pollutant trends from large data set and the application of multivariate statistical techniques such as PCA and APCS can give useful information about air quality and pollutant’s sources. These knowledge can provide useful advices to environmental policies in order to reach the WHO recommended levels. PMID:24555534

  14. Quantifying Burnout among Emergency Medicine Professionals

    PubMed Central

    Wilson, William; Raj, Jeffrey Pradeep; Narayan, Girish; Ghiya, Murtuza; Murty, Shakuntala; Joseph, Bobby

    2017-01-01

    Background: Burnout is a syndrome explained as serious emotional depletion with poor adaptation at work due to prolonged occupational stress. It has three principal components namely emotional exhaustion(EE), depersonalization(DP) and diminished feelings of personal accomplishment(PA). Thus, we aimed at measuring the degree of burnout in doctors and nurses working in emergency medicine department (EMD) of 4 select tertiary care teaching hospitals in South India. Methods: A cross sectional survey was conducted among EMD professionals using a 30-item standardized pilot tested questionnaire as well as the Maslach burnout inventory. Univariate and Multivariate analyses were conducted using binary logistic regression models to identify predictors of burnout. Results: Total number of professionals interviewed were 105 of which 71.5% were women and 51.4% were doctors. Majority (78.1%) belonged to the age group 20-30 years. Prevalence of moderate to severe burnout in the 3 principal components EE, DP and PA were 64.8%, 71.4% and 73.3% respectively. After multivariate analysis, the risk factors [adjusted odds ratio (95% confidence intervals) for DP included facing more criticism [3.57(1.25,10.19)], disturbed sleep [6.44(1.45,28.49)] and being short tempered [3.14(1.09,9.09)]. While there were no statistically significant risk factors for EE, being affected by mortality [2.35(1.12,3.94)] and fear of medication errors [3.61(1.26, 10.37)] appeared to be significant predictors of PA. Conclusion: Degree of burn out among doctors and nurses is moderately high in all of the three principal components and some of the predictors identified were criticism, disturbed sleep, short tempered nature, fear of committing errors and witnessing death in EMD. PMID:29097859

  15. Quantifying Burnout among Emergency Medicine Professionals.

    PubMed

    Wilson, William; Raj, Jeffrey Pradeep; Narayan, Girish; Ghiya, Murtuza; Murty, Shakuntala; Joseph, Bobby

    2017-01-01

    Burnout is a syndrome explained as serious emotional depletion with poor adaptation at work due to prolonged occupational stress. It has three principal components namely emotional exhaustion(EE), depersonalization(DP) and diminished feelings of personal accomplishment(PA). Thus, we aimed at measuring the degree of burnout in doctors and nurses working in emergency medicine department (EMD) of 4 select tertiary care teaching hospitals in South India. A cross sectional survey was conducted among EMD professionals using a 30-item standardized pilot tested questionnaire as well as the Maslach burnout inventory. Univariate and Multivariate analyses were conducted using binary logistic regression models to identify predictors of burnout. Total number of professionals interviewed were 105 of which 71.5% were women and 51.4% were doctors. Majority (78.1%) belonged to the age group 20-30 years. Prevalence of moderate to severe burnout in the 3 principal components EE, DP and PA were 64.8%, 71.4% and 73.3% respectively. After multivariate analysis, the risk factors [adjusted odds ratio (95% confidence intervals) for DP included facing more criticism [3.57(1.25,10.19)], disturbed sleep [6.44(1.45,28.49)] and being short tempered [3.14(1.09,9.09)]. While there were no statistically significant risk factors for EE, being affected by mortality [2.35(1.12,3.94)] and fear of medication errors [3.61(1.26, 10.37)] appeared to be significant predictors of PA. Degree of burn out among doctors and nurses is moderately high in all of the three principal components and some of the predictors identified were criticism, disturbed sleep, short tempered nature, fear of committing errors and witnessing death in EMD.

  16. Principal component analysis-based pattern analysis of dose-volume histograms and influence on rectal toxicity.

    PubMed

    Söhn, Matthias; Alber, Markus; Yan, Di

    2007-09-01

    The variability of dose-volume histogram (DVH) shapes in a patient population can be quantified using principal component analysis (PCA). We applied this to rectal DVHs of prostate cancer patients and investigated the correlation of the PCA parameters with late bleeding. PCA was applied to the rectal wall DVHs of 262 patients, who had been treated with a four-field box, conformal adaptive radiotherapy technique. The correlated changes in the DVH pattern were revealed as "eigenmodes," which were ordered by their importance to represent data set variability. Each DVH is uniquely characterized by its principal components (PCs). The correlation of the first three PCs and chronic rectal bleeding of Grade 2 or greater was investigated with uni- and multivariate logistic regression analyses. Rectal wall DVHs in four-field conformal RT can primarily be represented by the first two or three PCs, which describe approximately 94% or 96% of the DVH shape variability, respectively. The first eigenmode models the total irradiated rectal volume; thus, PC1 correlates to the mean dose. Mode 2 describes the interpatient differences of the relative rectal volume in the two- or four-field overlap region. Mode 3 reveals correlations of volumes with intermediate doses ( approximately 40-45 Gy) and volumes with doses >70 Gy; thus, PC3 is associated with the maximal dose. According to univariate logistic regression analysis, only PC2 correlated significantly with toxicity. However, multivariate logistic regression analysis with the first two or three PCs revealed an increased probability of bleeding for DVHs with more than one large PC. PCA can reveal the correlation structure of DVHs for a patient population as imposed by the treatment technique and provide information about its relationship to toxicity. It proves useful for augmenting normal tissue complication probability modeling approaches.

  17. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  18. Fast and simultaneously determination of light and heavy rare earth elements in monazite using combination of ultraviolet-visible spectrophotometry and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Anggraeni, Anni; Arianto, Fernando; Mutalib, Abdul; Pratomo, Uji; Bahti, Husein H.

    2017-05-01

    Rare Earth Elements (REE) are elements that a lot of function for life, such as metallurgy, optical devices, and manufacture of electronic devices. Sources of REE is present in the mineral, in which each element has similar properties. Currently, to determining the content of REE is used instruments such as ICP-OES, ICP-MS, XRF, and HPLC. But in each instruments, there are still have some weaknesses. Therefore we need an alternative analytical method for the determination of rare earth metal content, one of them is by a combination of UV-Visible spectrophotometry and multivariate analysis, including Principal Component Analysis (PCA), Principal Component Regression (PCR), and Partial Least Square Regression (PLS). The purpose of this experiment is to determine the content of light and medium rare earth elements in the mineral monazite without chemical separation by using a combination of multivariate analysis and UV-Visible spectrophotometric methods. Training set created 22 variations of concentration and absorbance was measured using a UV-Vis spectrophotometer, then the data is processed by PCA, PCR, and PLSR. The results were compared and validated to obtain the mathematical equation with the smallest percent error. From this experiment, mathematical equation used PLS methods was better than PCR after validated, which has RMSE value for La, Ce, Pr, Nd, Gd, Sm, Eu, and Tb respectively 0.095; 0.573; 0.538; 0.440; 3.387; 1.240; 1.870; and 0.639.

  19. Subjective Well-Being in a Multicultural Urban Population: Structural, and Multivariate Analyses of the Ontario Health Survey Well-Being Scale

    ERIC Educational Resources Information Center

    John, Lindsay Herbert

    2004-01-01

    The validity of a scale, from the Ontario Health Survey, measuring the subjective sense of well-being, for a large multicultural population in Metropolitan Toronto, is examined through principal components analysis with oblique rotation. Four factors are extracted. Factor 1, is a stress and strain factor, and consists of health worries, feeling…

  20. Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ford, T.; Sacco, E.; Black, J.; Kelley, T.; Goodacre, R.; Berkeley, R. C.; Mitchell, R.

    1991-01-01

    Exopolymers from a diverse collection of marine and freshwater bacteria were characterized by pyrolysis-mass spectrometry (Py-MS). Py-MS provides spectra of pyrolysis fragments that are characteristic of the original material. Analysis of the spectra by multivariate statistical techniques (principal component and canonical variate analysis) separated these exopolymers into distinct groups. Py-MS clearly distinguished characteristic fragments, which may be derived from components responsible for functional differences between polymers. The importance of these distinctions and the relevance of pyrolysis information to exopolysaccharide function in aquatic bacteria is discussed.

  1. A Multivariate Methodological Workflow for the Analysis of FTIR Chemical Mapping Applied on Historic Paint Stratigraphies

    PubMed Central

    Sciutto, Giorgia; Oliveri, Paolo; Catelli, Emilio; Bonacini, Irene

    2017-01-01

    In the field of applied researches in heritage science, the use of multivariate approach is still quite limited and often chemometric results obtained are often underinterpreted. Within this scenario, the present paper is aimed at disseminating the use of suitable multivariate methodologies and proposes a procedural workflow applied on a representative group of case studies, of considerable importance for conservation purposes, as a sort of guideline on the processing and on the interpretation of this FTIR data. Initially, principal component analysis (PCA) is performed and the score values are converted into chemical maps. Successively, the brushing approach is applied, demonstrating its usefulness for a deep understanding of the relationships between the multivariate map and PC score space, as well as for the identification of the spectral bands mainly involved in the definition of each area localised within the score maps. PMID:29333162

  2. Lipophilicity of oils and fats estimated by TLC.

    PubMed

    Naşcu-Briciu, Rodica D; Sârbu, Costel

    2013-04-01

    A representative series of natural toxins belonging to alkaloids and mycotoxins classes was investigated by TLC on classical chemically bonded plates and also on oils- and fats-impregnated plates. Their lipophilicity indices are employed in the characterization and comparison of oils and fats. The retention results allowed an accurate indirect estimation of oils and fats lipophilicity. The investigated fats and oils near classical chemically bonded phases are classified and compared by means of multivariate exploratory techniques, such as cluster analysis, principal component analysis, or fuzzy-principal component analysis. Additionally, a concrete hierarchy of oils and fats derived from the observed lipophilic character is suggested. Human fat seems to be very similar to animal fats, but also possess RP-18, RP-18W, and RP-8. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Principal variance component analysis of crop composition data: a case study on herbicide-tolerant cotton.

    PubMed

    Harrison, Jay M; Howard, Delia; Malven, Marianne; Halls, Steven C; Culler, Angela H; Harrigan, George G; Wolfinger, Russell D

    2013-07-03

    Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and environment contribute more to compositional variability than transgenic breeding. We propose that graphical and statistical approaches that can provide meaningful evaluations of the relative impact of different factors to compositional variability may offer advantages over traditional frequentist testing. A case study on the novel application of principal variance component analysis (PVCA) in a compositional assessment of herbicide-tolerant GM cotton is presented. Results of the traditional analysis of variance approach confirmed the compositional equivalence of the GM and non-GM cotton. The multivariate approach of PVCA provided further information on the impact of location and germplasm on compositional variability relative to GM.

  4. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    PubMed

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  5. Comparison of factor-analytic and reduced rank models for test-day milk yield in Gyr dairy cattle (Bos indicus).

    PubMed

    Pereira, R J; Ayres, D R; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G

    2013-09-27

    We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields.

  6. Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study

    PubMed Central

    Gribble, Matthew O.; Voruganti, Venkata Saroja; Cole, Shelley A.; Haack, Karin; Balakrishnan, Poojitha; Laston, Sandra L.; Tellez-Plaza, Maria; Francesconi, Kevin A.; Goessler, Walter; Umans, Jason G.; Thomas, Duncan C.; Gilliland, Frank; North, Kari E.; Franceschini, Nora; Navas-Acien, Ana

    2015-01-01

    Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ∼400 genome-wide microsatellite markers spaced ∼10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly. PMID:26209557

  7. Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-06-01

    Principal component analysis (PCA) was used to provide an overview of the distribution pattern of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in former manufactured gas plant (MGP) site soils. PCA is the powerful multivariate method to identify the patterns in data and expressing their similarities and differences. Ten PAHs (naphthalene, acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]pyrene) and four toxic heavy metals - lead (Pb), cadmium (Cd), chromium (Cr) and zinc (Zn) - were detected in the site soils. PAH contamination was contributed equally by both low and high molecular weight PAHs. PCA was performed using the varimax rotation method in SPSS, 17.0. Two principal components accounting for 91.7% of the total variance was retained using scree test. Principle component 1 (PC1) substantially explained the dominance of PAH contamination in the MGP site soils. All PAHs, except anthracene, were positively correlated in PC1. There was a common thread in high molecular weight PAHs loadings, where the loadings were inversely proportional to the hydrophobicity and molecular weight of individual PAHs. Anthracene, which was less correlated with other individual PAHs, deviated well from the origin which can be ascribed to its lower toxicity and different origin than its isomer phenanthrene. Among the four major heavy metals studied in MGP sites, Pb, Cd and Cr were negatively correlated in PC1 but showed strong positive correlation in principle component 2 (PC2). Although metals may not have originated directly from gaswork processes, the correlation between PAHs and metals suggests that the materials used in these sites may have contributed to high concentrations of Pb, Cd, Cr and Zn. Thus, multivariate analysis helped to identify the sources of PAHs, heavy metals and their association in MGP site, and thereby better characterise the site risk, which would not be possible if one uses chemical analysis alone.

  8. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.

    PubMed

    Friedman, David B

    2012-01-01

    All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.

  9. Discordance between net analyte signal theory and practical multivariate calibration.

    PubMed

    Brown, Christopher D

    2004-08-01

    Lorber's concept of net analyte signal is reviewed in the context of classical and inverse least-squares approaches to multivariate calibration. It is shown that, in the presence of device measurement error, the classical and inverse calibration procedures have radically different theoretical prediction objectives, and the assertion that the popular inverse least-squares procedures (including partial least squares, principal components regression) approximate Lorber's net analyte signal vector in the limit is disproved. Exact theoretical expressions for the prediction error bias, variance, and mean-squared error are given under general measurement error conditions, which reinforce the very discrepant behavior between these two predictive approaches, and Lorber's net analyte signal theory. Implications for multivariate figures of merit and numerous recently proposed preprocessing treatments involving orthogonal projections are also discussed.

  10. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  11. Genetic and Environmental Influences on Female Sexual Orientation, Childhood Gender Typicality and Adult Gender Identity

    PubMed Central

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939

  12. Multivariate analyses of crater parameters and the classification of craters

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Griffiths, J. C.

    1974-01-01

    Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.

  13. Principal component analysis for designed experiments.

    PubMed

    Konishi, Tomokazu

    2015-01-01

    Principal component analysis is used to summarize matrix data, such as found in transcriptome, proteome or metabolome and medical examinations, into fewer dimensions by fitting the matrix to orthogonal axes. Although this methodology is frequently used in multivariate analyses, it has disadvantages when applied to experimental data. First, the identified principal components have poor generality; since the size and directions of the components are dependent on the particular data set, the components are valid only within the data set. Second, the method is sensitive to experimental noise and bias between sample groups. It cannot reflect the experimental design that is planned to manage the noise and bias; rather, it estimates the same weight and independence to all the samples in the matrix. Third, the resulting components are often difficult to interpret. To address these issues, several options were introduced to the methodology. First, the principal axes were identified using training data sets and shared across experiments. These training data reflect the design of experiments, and their preparation allows noise to be reduced and group bias to be removed. Second, the center of the rotation was determined in accordance with the experimental design. Third, the resulting components were scaled to unify their size unit. The effects of these options were observed in microarray experiments, and showed an improvement in the separation of groups and robustness to noise. The range of scaled scores was unaffected by the number of items. Additionally, unknown samples were appropriately classified using pre-arranged axes. Furthermore, these axes well reflected the characteristics of groups in the experiments. As was observed, the scaling of the components and sharing of axes enabled comparisons of the components beyond experiments. The use of training data reduced the effects of noise and bias in the data, facilitating the physical interpretation of the principal axes. Together, these introduced options result in improved generality and objectivity of the analytical results. The methodology has thus become more like a set of multiple regression analyses that find independent models that specify each of the axes.

  14. Use of direct gradient analysis to uncover biological hypotheses in 16s survey data and beyond.

    PubMed

    Erb-Downward, John R; Sadighi Akha, Amir A; Wang, Juan; Shen, Ning; He, Bei; Martinez, Fernando J; Gyetko, Margaret R; Curtis, Jeffrey L; Huffnagle, Gary B

    2012-01-01

    This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved.

  15. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    PubMed

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.

  16. Multivariate Analysis of Solar Spectral Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Rabbette, M.

    2001-01-01

    Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.

  17. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.

    PubMed

    Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław

    2017-01-01

    Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).

  18. Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models

    NASA Astrophysics Data System (ADS)

    Makowski, Alexander J.; Pence, Isaac J.; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Huszagh, Meredith C.; Mahadevan-Jansen, Anita; Nyman, Jeffry S.

    2014-11-01

    Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In the selected mutant mice-activating transcription factor 4 (ATF4) or matrix metalloproteinase 9 (MMP9) knock-outs-toughness is reduced but differences in bone strength do not exist between knock-out and corresponding wild-type controls. To incorporate differences in the RS of bone occurring at peak shoulders, a multivariate approach was used. Full spectrum principal components analysis of two paired, orthogonal bone orientations (relative to laser polarization) improved genotype classification and correlation to bone toughness when compared to traditional peak ratios. When applied to femurs from wild-type mice at 8 and 20 weeks of age, the principal components of orthogonal bone orientations improved age classification but not the explanation of the maturation-related increase in strength. Overall, increasing polarization information by collecting spectra from two bone orientations improves the ability of multivariate RS to explain variance in bone toughness, likely due to polarization sensitivity to organizational changes in both mineral and collagen.

  19. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.

    PubMed

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  20. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin

    NASA Astrophysics Data System (ADS)

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  1. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil): interpretation of geochemical data with the aid of multivariate analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Campredon, R.; Abrao, J. J.; Bernat, M.; Latouche, C.

    1994-06-01

    In the last decade, the Atlantic coast of south-eastern Brazil has been affected by increasing deforestation and anthropogenic effluents. Sediments in the coastal lagoons have recorded the process of such environmental change. Thirty-seven sediment samples from three cores in Piratininga Lagoon, Rio de Janeiro, were analyzed for their major components and minor element concentrations in order to examine geochemical characteristics and the depositional environment and to investigate the variation of heavy metals of environmental concern. Two multivariate analysis methods, principal component analysis and cluster analysis, were performed on the analytical data set to help visualize the sample clusters and the element associations. On the whole, the sediment samples from each core are similar and the sample clusters corresponding to the three cores are clearly separated, as a result of the different conditions of sedimentation. Some changes in the depositional environment are recognized using the results of multivariate analysis. The enrichment of Pb, Cu, and Zn in the upper parts of cores is in agreement with increasing anthropogenic influx (pollution).

  2. Study of Chemical Intermediates by Means of ATR-IR Spectroscopy and Hybrid Hard- and Soft-Modelling Multivariate Curve Resolution-Alternating Least Squares

    PubMed Central

    Ma, Junxiu; Qi, Juan; Gao, Xinyu; Yan, Chunhua; Zhang, Tianlong; Tang, Hongsheng

    2017-01-01

    3,5-Diamino-1,2,4-triazole (DAT) became a significant energetic materials intermediate, and the study of its reaction mechanism has fundamental significance in chemistry. The aim of this study is to investigate the ability of online attenuated total reflection infrared (ATR-IR) spectroscopy combined with the novel approach of hybrid hard- and soft-modelling multivariate curve resolution-alternating least squares (HS-MCR) analysis to monitor and detect changes in structural properties of compound during 3,5-diamino-1,2,4-triazole (DAT) synthesis processes. The subspace comparison method (SCM) was used to obtain the principal components number, and then the pure IR spectra of each substance were obtained by independent component analysis (ICA) and HS-MCR. The extent of rotation ambiguity was estimated from the band boundaries of feasible solutions calculated using the MCR-BANDS procedure. There were five principal components including two intermediates in the process in the results. The reaction rate constants of DAT formation reaction were also obtained by HS-MCR. HS-MCR was used to analyze spectroscopy data in chemical synthesis process, which not only increase the information domain but also reduce the ambiguities of the obtained results. This study provides the theoretical basis for the optimization of synthesis process and technology of energetic materials and provides a strong technical support of research and development of energy material with extraordinary damage effects. PMID:28386512

  3. A data fusion-based drought index

    NASA Astrophysics Data System (ADS)

    Azmi, Mohammad; Rüdiger, Christoph; Walker, Jeffrey P.

    2016-03-01

    Drought and water stress monitoring plays an important role in the management of water resources, especially during periods of extreme climate conditions. Here, a data fusion-based drought index (DFDI) has been developed and analyzed for three different locations of varying land use and climate regimes in Australia. The proposed index comprehensively considers all types of drought through a selection of indices and proxies associated with each drought type. In deriving the proposed index, weekly data from three different data sources (OzFlux Network, Asia-Pacific Water Monitor, and MODIS-Terra satellite) were employed to first derive commonly used individual standardized drought indices (SDIs), which were then grouped using an advanced clustering method. Next, three different multivariate methods (principal component analysis, factor analysis, and independent component analysis) were utilized to aggregate the SDIs located within each group. For the two clusters in which the grouped SDIs best reflected the water availability and vegetation conditions, the variables were aggregated based on an averaging between the standardized first principal components of the different multivariate methods. Then, considering those two aggregated indices as well as the classifications of months (dry/wet months and active/non-active months), the proposed DFDI was developed. Finally, the symbolic regression method was used to derive mathematical equations for the proposed DFDI. The results presented here show that the proposed index has revealed new aspects in water stress monitoring which previous indices were not able to, by simultaneously considering both hydrometeorological and ecological concepts to define the real water stress of the study areas.

  4. Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis.

    PubMed

    da Silva, Fernando Bruno Vieira; do Nascimento, Clístenes Williams Araújo; Araújo, Paula Renata Muniz; da Silva, Luiz Henrique Vieira; da Silva, Roberto Felipe

    2016-08-01

    Brazil is the world's largest sugarcane producer and soils in the northeastern part of the country have been cultivated with the crop for over 450 years. However, so far, there has been no study on the status of heavy metal accumulation in these long-history cultivated soils. To fill the gap, we collect soil samples from 60 sugarcane fields in order to determine the contents of Cd, Cr, Cu, Ni, Pb, and Zn. We used multivariate analysis to distinguish between natural and anthropogenic sources of these metals in soils. Analytical determinations were performed in ICP-OES after microwave acid solution digestion. Mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 1.9, 18.8, 6.4, 4.9, 11.2, and 16.2 mg kg(-1), respectively. The principal component one was associated with lithogenic origin and comprised the metals Cr, Cu, Ni, and Zn. Cluster analysis confirmed that 68 % of the evaluated sites have soil heavy metal concentrations close to the natural background. The Cd concentration (principal component two) was clearly associated with anthropogenic sources with P fertilization being the most likely source of Cd to soils. On the other hand, the third component (Pb concentration) indicates a mixed origin for this metal (natural and anthropogenic); hence, Pb concentrations are probably related not only to the soil parent material but also to industrial emissions and urbanization in the vicinity of the agricultural areas.

  5. VizieR Online Data Catalog: RR Lyrae in SDSS Stripe 82 (Suveges+, 2012)

    NASA Astrophysics Data System (ADS)

    Suveges, M.; Sesar, B.; Varadi, M.; Mowlavi, N.; Becker, A. C.; Ivezic, Z.; Beck, M.; Nienartowicz, K.; Rimoldini, L.; Dubath, P.; Bartholdi, P.; Eyer, L.

    2013-05-01

    We propose a robust principal component analysis framework for the exploitation of multiband photometric measurements in large surveys. Period search results are improved using the time-series of the first principal component due to its optimized signal-to-noise ratio. The presence of correlated excess variations in the multivariate time-series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude delta Scuti variables. We also found 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample also comprises 25 multiperiodic or Blazhko RR Lyrae stars. (8 data files).

  6. Animal reservoir, natural and socioeconomic variations and the transmission of hemorrhagic fever with renal syndrome in Chenzhou, China, 2006-2010.

    PubMed

    Xiao, Hong; Tian, Huai-Yu; Gao, Li-Dong; Liu, Hai-Ning; Duan, Liang-Song; Basta, Nicole; Cazelles, Bernard; Li, Xiu-Jun; Lin, Xiao-Ling; Wu, Hong-Wei; Chen, Bi-Yun; Yang, Hui-Suo; Xu, Bing; Grenfell, Bryan

    2014-01-01

    China has the highest incidence of hemorrhagic fever with renal syndrome (HFRS) worldwide. Reported cases account for 90% of the total number of global cases. By 2010, approximately 1.4 million HFRS cases had been reported in China. This study aimed to explore the effect of the rodent reservoir, and natural and socioeconomic variables, on the transmission pattern of HFRS. Data on monthly HFRS cases were collected from 2006 to 2010. Dynamic rodent monitoring data, normalized difference vegetation index (NDVI) data, climate data, and socioeconomic data were also obtained. Principal component analysis was performed, and the time-lag relationships between the extracted principal components and HFRS cases were analyzed. Polynomial distributed lag (PDL) models were used to fit and forecast HFRS transmission. Four principal components were extracted. Component 1 (F1) represented rodent density, the NDVI, and monthly average temperature. Component 2 (F2) represented monthly average rainfall and monthly average relative humidity. Component 3 (F3) represented rodent density and monthly average relative humidity. The last component (F4) represented gross domestic product and the urbanization rate. F2, F3, and F4 were significantly correlated, with the monthly HFRS incidence with lags of 4 months (r = -0.289, P<0.05), 5 months (r = -0.523, P<0.001), and 0 months (r = -0.376, P<0.01), respectively. F1 was correlated with the monthly HFRS incidence, with a lag of 4 months (r = 0.179, P = 0.192). Multivariate PDL modeling revealed that the four principal components were significantly associated with the transmission of HFRS. The monthly trend in HFRS cases was significantly associated with the local rodent reservoir, climatic factors, the NDVI, and socioeconomic conditions present during the previous months. The findings of this study may facilitate the development of early warning systems for the control and prevention of HFRS and similar diseases.

  7. In Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X-Irradiated Alanine in the Solid State.

    PubMed

    Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M

    2017-09-28

    The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.

  8. Short communication: Principal components and factor analytic models for test-day milk yield in Brazilian Holstein cattle.

    PubMed

    Bignardi, A B; El Faro, L; Rosa, G J M; Cardoso, V L; Machado, P F; Albuquerque, L G

    2012-04-01

    A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Classification Techniques for Multivariate Data Analysis.

    DTIC Science & Technology

    1980-03-28

    analysis among biologists, botanists, and ecologists, while some social scientists may refer "typology". Other frequently encountered terms are pattern...the determinantal equation: lB -XW 0 (42) 49 The solutions X. are the eigenvalues of the matrix W-1 B 1 as in discriminant analysis. There are t non...Statistical Package for Social Sciences (SPSS) (14) subprogram FACTOR was used for the principal components analysis. It is designed both for the factor

  10. Multivariate Quality Control Procedures

    DTIC Science & Technology

    1988-10-01

    CLASSIFICATION OF THIS PAGE PREFACE The mathematical modeling work described in this report was authorized under Project No. IC162706A553, CB Defense and...the sum of the measurements. A CUSUM of the first principal component would detect changes in the overall thickness of the sheet. A linear trend could...develop- ment of a unique outlier rule for the specific application. 28 LITERATURE CITED 1. Mood, A.M., Graybill , F.A., and Boes, D.C., Introduction to

  11. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    PubMed

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Classification of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulphides by principal component analysis and artificial neural networks.

    PubMed

    Kalegowda, Yogesh; Harmer, Sarah L

    2013-01-08

    Artificial neural network (ANN) and a hybrid principal component analysis-artificial neural network (PCA-ANN) classifiers have been successfully implemented for classification of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) mass spectra collected from complex Cu-Fe sulphides (chalcopyrite, bornite, chalcocite and pyrite) at different flotation conditions. ANNs are very good pattern classifiers because of: their ability to learn and generalise patterns that are not linearly separable; their fault and noise tolerance capability; and high parallelism. In the first approach, fragments from the whole ToF-SIMS spectrum were used as input to the ANN, the model yielded high overall correct classification rates of 100% for feed samples, 88% for conditioned feed samples and 91% for Eh modified samples. In the second approach, the hybrid pattern classifier PCA-ANN was integrated. PCA is a very effective multivariate data analysis tool applied to enhance species features and reduce data dimensionality. Principal component (PC) scores which accounted for 95% of the raw spectral data variance, were used as input to the ANN, the model yielded high overall correct classification rates of 88% for conditioned feed samples and 95% for Eh modified samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Soft-assembled Multilevel Dynamics of Tactical Behaviors in Soccer

    PubMed Central

    Ric, Angel; Torrents, Carlota; Gonçalves, Bruno; Sampaio, Jaime; Hristovski, Robert

    2016-01-01

    This study aimed to identify the tactical patterns and the timescales of variables during a soccer match, allowing understanding the multilevel organization of tactical behaviors, and to determine the similarity of patterns performed by different groups of teammates during the first and second halves. Positional data from 20 professional male soccer players from the same team were collected using high frequency global positioning systems (5 Hz). Twenty-nine categories of tactical behaviors were determined from eight positioning-derived variables creating multivariate binary (Boolean) time-series matrices. Hierarchical principal component analysis (PCA) was used to identify the multilevel structure of tactical behaviors. The sequential reduction of each set level of principal components revealed a sole principal component as the slowest collective variable, forming the global basin of attraction of tactical patterns during each half of the match. In addition, the mean dwell time of each positioning-derived variable helped to understand the multilevel organization of collective tactical behavior during a soccer match. This approach warrants further investigations to analyze the influence of task constraints on the emergence of tactical behavior. Furthermore, PCA can help coaches to design representative training tasks according to those tactical patterns captured during match competitions and to compare them depending on situational variables. PMID:27761120

  14. Application of Fluorescence Spectrometry With Multivariate Calibration to the Enantiomeric Recognition of Fluoxetine in Pharmaceutical Preparations.

    PubMed

    Poláček, Roman; Májek, Pavel; Hroboňová, Katarína; Sádecká, Jana

    2016-04-01

    Fluoxetine is the most prescribed antidepressant chiral drug worldwide. Its enantiomers have a different duration of serotonin inhibition. A novel simple and rapid method for determination of the enantiomeric composition of fluoxetine in pharmaceutical pills is presented. Specifically, emission, excitation, and synchronous fluorescence techniques were employed to obtain the spectral data, which with multivariate calibration methods, namely, principal component regression (PCR) and partial least square (PLS), were investigated. The chiral recognition of fluoxetine enantiomers in the presence of β-cyclodextrin was based on diastereomeric complexes. The results of the multivariate calibration modeling indicated good prediction abilities. The obtained results for tablets were compared with those from chiral HPLC and no significant differences are shown by Fisher's (F) test and Student's t-test. The smallest residuals between reference or nominal values and predicted values were achieved by multivariate calibration of synchronous fluorescence spectral data. This conclusion is supported by calculated values of the figure of merit.

  15. Cluster-based exposure variation analysis

    PubMed Central

    2013-01-01

    Background Static posture, repetitive movements and lack of physical variation are known risk factors for work-related musculoskeletal disorders, and thus needs to be properly assessed in occupational studies. The aims of this study were (i) to investigate the effectiveness of a conventional exposure variation analysis (EVA) in discriminating exposure time lines and (ii) to compare it with a new cluster-based method for analysis of exposure variation. Methods For this purpose, we simulated a repeated cyclic exposure varying within each cycle between “low” and “high” exposure levels in a “near” or “far” range, and with “low” or “high” velocities (exposure change rates). The duration of each cycle was also manipulated by selecting a “small” or “large” standard deviation of the cycle time. Theses parameters reflected three dimensions of exposure variation, i.e. range, frequency and temporal similarity. Each simulation trace included two realizations of 100 concatenated cycles with either low (ρ = 0.1), medium (ρ = 0.5) or high (ρ = 0.9) correlation between the realizations. These traces were analyzed by conventional EVA, and a novel cluster-based EVA (C-EVA). Principal component analysis (PCA) was applied on the marginal distributions of 1) the EVA of each of the realizations (univariate approach), 2) a combination of the EVA of both realizations (multivariate approach) and 3) C-EVA. The least number of principal components describing more than 90% of variability in each case was selected and the projection of marginal distributions along the selected principal component was calculated. A linear classifier was then applied to these projections to discriminate between the simulated exposure patterns, and the accuracy of classified realizations was determined. Results C-EVA classified exposures more correctly than univariate and multivariate EVA approaches; classification accuracy was 49%, 47% and 52% for EVA (univariate and multivariate), and C-EVA, respectively (p < 0.001). All three methods performed poorly in discriminating exposure patterns differing with respect to the variability in cycle time duration. Conclusion While C-EVA had a higher accuracy than conventional EVA, both failed to detect differences in temporal similarity. The data-driven optimality of data reduction and the capability of handling multiple exposure time lines in a single analysis are the advantages of the C-EVA. PMID:23557439

  16. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  17. Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.

    PubMed

    Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.

  18. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.

  19. Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides.

    PubMed

    Kalegowda, Yogesh; Harmer, Sarah L

    2012-03-20

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of mineral samples are complex, comprised of large mass ranges and many peaks. Consequently, characterization and classification analysis of these systems is challenging. In this study, different chemometric and statistical data evaluation methods, based on monolayer sensitive TOF-SIMS data, have been tested for the characterization and classification of copper-iron sulfide minerals (chalcopyrite, chalcocite, bornite, and pyrite) at different flotation pulp conditions (feed, conditioned feed, and Eh modified). The complex mass spectral data sets were analyzed using the following chemometric and statistical techniques: principal component analysis (PCA); principal component-discriminant functional analysis (PC-DFA); soft independent modeling of class analogy (SIMCA); and k-Nearest Neighbor (k-NN) classification. PCA was found to be an important first step in multivariate analysis, providing insight into both the relative grouping of samples and the elemental/molecular basis for those groupings. For samples exposed to oxidative conditions (at Eh ~430 mV), each technique (PCA, PC-DFA, SIMCA, and k-NN) was found to produce excellent classification. For samples at reductive conditions (at Eh ~ -200 mV SHE), k-NN and SIMCA produced the most accurate classification. Phase identification of particles that contain the same elements but a different crystal structure in a mixed multimetal mineral system has been achieved.

  20. Multivariate classification of the infrared spectra of cell and tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haaland, D.M.; Jones, H.D.; Thomas, E.V.

    1997-03-01

    Infrared microspectroscopy of biopsied canine lymph cells and tissue was performed to investigate the possibility of using IR spectra coupled with multivariate classification methods to classify the samples as normal, hyperplastic, or neoplastic (malignant). IR spectra were obtained in transmission mode through BaF{sub 2} windows and in reflection mode from samples prepared on gold-coated microscope slides. Cytology and histopathology samples were prepared by a variety of methods to identify the optimal methods of sample preparation. Cytospinning procedures that yielded a monolayer of cells on the BaF{sub 2} windows produced a limited set of IR transmission spectra. These transmission spectra weremore » converted to absorbance and formed the basis for a classification rule that yielded 100{percent} correct classification in a cross-validated context. Classifications of normal, hyperplastic, and neoplastic cell sample spectra were achieved by using both partial least-squares (PLS) and principal component regression (PCR) classification methods. Linear discriminant analysis applied to principal components obtained from the spectral data yielded a small number of misclassifications. PLS weight loading vectors yield valuable qualitative insight into the molecular changes that are responsible for the success of the infrared classification. These successful classification results show promise for assisting pathologists in the diagnosis of cell types and offer future potential for {ital in vivo} IR detection of some types of cancer. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}« less

  1. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study.

    PubMed

    Catelani, Tiago A; Santos, João Rodrigo; Páscoa, Ricardo N M J; Pezza, Leonardo; Pezza, Helena R; Lopes, João A

    2018-03-01

    This work proposes the use of near infrared (NIR) spectroscopy in diffuse reflectance mode and multivariate statistical process control (MSPC) based on principal component analysis (PCA) for real-time monitoring of the coffee roasting process. The main objective was the development of a MSPC methodology able to early detect disturbances to the roasting process resourcing to real-time acquisition of NIR spectra. A total of fifteen roasting batches were defined according to an experimental design to develop the MSPC models. This methodology was tested on a set of five batches where disturbances of different nature were imposed to simulate real faulty situations. Some of these batches were used to optimize the model while the remaining was used to test the methodology. A modelling strategy based on a time sliding window provided the best results in terms of distinguishing batches with and without disturbances, resourcing to typical MSPC charts: Hotelling's T 2 and squared predicted error statistics. A PCA model encompassing a time window of four minutes with three principal components was able to efficiently detect all disturbances assayed. NIR spectroscopy combined with the MSPC approach proved to be an adequate auxiliary tool for coffee roasters to detect faults in a conventional roasting process in real-time. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multivariate analysis of chromatographic retention data as a supplementary means for grouping structurally related compounds.

    PubMed

    Fasoula, S; Zisi, Ch; Sampsonidis, I; Virgiliou, Ch; Theodoridis, G; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-03-27

    In the present study a series of 45 metabolite standards belonging to four chemically similar metabolite classes (sugars, amino acids, nucleosides and nucleobases, and amines) was subjected to LC analysis on three HILIC columns under 21 different gradient conditions with the aim to explore whether the retention properties of these analytes are determined from the chemical group they belong. Two multivariate techniques, principal component analysis (PCA) and discriminant analysis (DA), were used for statistical evaluation of the chromatographic data and extraction similarities between chemically related compounds. The total variance explained by the first two principal components of PCA was found to be about 98%, whereas both statistical analyses indicated that all analytes are successfully grouped in four clusters of chemical structure based on the retention obtained in four or at least three chromatographic runs, which, however should be performed on two different HILIC columns. Moreover, leave-one-out cross-validation of the above retention data set showed that the chemical group in which an analyte belongs can be 95.6% correctly predicted when the analyte is subjected to LC analysis under the same four or three experimental conditions as the all set of analytes was run beforehand. That, in turn, may assist with disambiguation of analyte identification in complex biological extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra

    NASA Astrophysics Data System (ADS)

    Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong

    2017-08-01

    Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.

  4. Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings

    NASA Astrophysics Data System (ADS)

    Elbayoumi, Maher; Ramli, Nor Azam; Md Yusof, Noor Faizah Fitri; Yahaya, Ahmad Shukri Bin; Al Madhoun, Wesam; Ul-Saufie, Ahmed Zia

    2014-09-01

    In this study the concentrations of PM10, PM2.5, CO and CO2 concentrations and meteorological variables (wind speed, air temperature, and relative humidity) were employed to predict the annual and seasonal indoor concentration of PM10 and PM2.5 using multivariate statistical methods. The data have been collected in twelve naturally ventilated schools in Gaza Strip (Palestine) from October 2011 to May 2012 (academic year). The bivariate correlation analysis showed that the indoor PM10 and PM2.5 were highly positive correlated with outdoor concentration of PM10 and PM2.5. Further, Multiple linear regression (MLR) was used for modelling and R2 values for indoor PM10 were determined as 0.62 and 0.84 for PM10 and PM2.5 respectively. The Performance indicators of MLR models indicated that the prediction for PM10 and PM2.5 annual models were better than seasonal models. In order to reduce the number of input variables, principal component analysis (PCA) and principal component regression (PCR) were applied by using annual data. The predicted R2 were 0.40 and 0.73 for PM10 and PM2.5, respectively. PM10 models (MLR and PCR) show the tendency to underestimate indoor PM10 concentrations as it does not take into account the occupant's activities which highly affect the indoor concentrations during the class hours.

  5. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  6. Estimation of surface curvature from full-field shape data using principal component analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Sameer; Vinuchakravarthy, S.; Subramanian, S. J.

    2017-01-01

    Three-dimensional digital image correlation (3D-DIC) is a popular image-based experimental technique for estimating surface shape, displacements and strains of deforming objects. In this technique, a calibrated stereo rig is used to obtain and stereo-match pairs of images of the object of interest from which the shapes of the imaged surface are then computed using the calibration parameters of the rig. Displacements are obtained by performing an additional temporal correlation of the shapes obtained at various stages of deformation and strains by smoothing and numerically differentiating the displacement data. Since strains are of primary importance in solid mechanics, significant efforts have been put into computation of strains from the measured displacement fields; however, much less attention has been paid to date to computation of curvature from the measured 3D surfaces. In this work, we address this gap by proposing a new method of computing curvature from full-field shape measurements using principal component analysis (PCA) along the lines of a similar work recently proposed to measure strains (Grama and Subramanian 2014 Exp. Mech. 54 913-33). PCA is a multivariate analysis tool that is widely used to reveal relationships between a large number of variables, reduce dimensionality and achieve significant denoising. This technique is applied here to identify dominant principal components in the shape fields measured by 3D-DIC and these principal components are then differentiated systematically to obtain the first and second fundamental forms used in the curvature calculation. The proposed method is first verified using synthetically generated noisy surfaces and then validated experimentally on some real world objects with known ground-truth curvatures.

  7. Procedures for using signals from one sensor as substitutes for signals of another

    NASA Technical Reports Server (NTRS)

    Suits, G.; Malila, W.; Weller, T.

    1988-01-01

    Long-term monitoring of surface conditions may require a transfer from using data from one satellite sensor to data from a different sensor having different spectral characteristics. Two general procedures for spectral signal substitution are described in this paper, a principal-components procedure and a complete multivariate regression procedure. They are evaluated through a simulation study of five satellite sensors (MSS, TM, AVHRR, CZCS, and HRV). For illustration, they are compared to another recently described procedure for relating AVHRR and MSS signals. The multivariate regression procedure is shown to be best. TM can accurately emulate the other sensors, but they, on the other hand, have difficulty in accurately emulating its shortwave infrared bands (TM5 and TM7).

  8. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    NASA Astrophysics Data System (ADS)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  9. Multivariate pattern dependence

    PubMed Central

    Saxe, Rebecca

    2017-01-01

    When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809

  10. Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt.

    PubMed

    El-Shahat, M F; Sadek, M A; Salem, W M; Embaby, A A; Mohamed, F A

    2017-08-01

    The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.

  11. Time-oriented hierarchical method for computation of principal components using subspace learning algorithm.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2004-10-01

    Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.

  12. Multivariate analysis of historical data (2004-2013) in assessing the possible environmental impact of the Bellolampo landfill (Palermo).

    PubMed

    Indelicato, Serena; Bongiorno, David; Tuzzolino, Nicola; Mannino, Maria Rosaria; Muscarella, Rosalia; Fradella, Pasquale; Gargano, Maria Elena; Nicosia, Salvatore; Ceraulo, Leopoldo

    2018-03-14

    Multivariate analysis was performed on a large data set of groundwater and leachate samples collected during 9 years of operation of the Bellolampo municipal solid waste landfill (located above Palermo, Italy). The aim was to obtain the most likely correlations among the data. The analysis results are presented. Groundwater samples were collected in the period 2004-2013, whereas the leachate analysis refers to the period 2006-2013. For groundwater, statistical data evaluation revealed notable differences among the samples taken from the numerous wells located around the landfill. Characteristic parameters revealed by principal component analysis (PCA) were more deeply investigated, and corresponding thematic maps were drawn. The composition of the leachate was also thoroughly investigated. Several chemical macro-descriptors were calculated, and the results are presented. A comparison of PCA results for the leachate and groundwater data clearly reveals that the groundwater's main components substantially differ from those of the leachate. This outcome strongly suggests excluding leachate permeation through the multiple landfill lining.

  13. Principal component analysis and analysis of variance on the effects of Entellan New on the Raman spectra of fibers.

    PubMed

    Yu, Marcia M L; Sandercock, P Mark L

    2012-01-01

    During the forensic examination of textile fibers, fibers are usually mounted on glass slides for visual inspection and identification under the microscope. One method that has the capability to accurately identify single textile fibers without subsequent demounting is Raman microspectroscopy. The effect of the mountant Entellan New on the Raman spectra of fibers was investigated to determine if it is suitable for fiber analysis. Raman spectra of synthetic fibers mounted in three different ways were collected and subjected to multivariate analysis. Principal component analysis score plots revealed that while spectra from different fiber classes formed distinct groups, fibers of the same class formed a single group regardless of the mounting method. The spectra of bare fibers and those mounted in Entellan New were found to be statistically indistinguishable by analysis of variance calculations. These results demonstrate that fibers mounted in Entellan New may be identified directly by Raman microspectroscopy without further sample preparation. © 2011 American Academy of Forensic Sciences.

  14. Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages.

    PubMed

    Gouvinhas, Irene; Machado, Nelson; Carvalho, Teresa; de Almeida, José M M M; Barros, Ana I R N A

    2015-01-01

    Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination (>0.933). Both the R(2), and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Establishing ¹H nuclear magnetic resonance based metabonomics fingerprinting profile for spinal cord injury: a pilot study.

    PubMed

    Jiang, Hua; Peng, Jin; Zhou, Zhi-yuan; Duan, Yu; Chen, Wei; Cai, Bin; Yang, Hao; Zhang, Wei

    2010-09-01

    Spinal cord injury (SCI) is a complex trauma that consists of multiple pathological mechanisms involving cytotoxic, oxidation stress and immune-endocrine. This study aimed to establish plasma metabonomics fingerprinting atlas for SCI using (1)H nuclear magnetic resonance (NMR) based metabonomics methodology and principal component analysis techniques. Nine Sprague-Dawley (SD) male rats were randomly divided into SCI, normal and sham-operation control groups. Plasma samples were collected for (1)H NMR spectroscopy 3 days after operation. The NMR data were analyzed using principal component analysis technique with Matlab software. Metabonomics analysis was able to distinguish the three groups (SCI, normal control, sham-operation). The fingerprinting atlas indicated that, compared with those without SCI, the SCI group demonstrated the following characteristics with regard to second principal component: it is made up of fatty acids, myc-inositol, arginine, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), triglyceride (TG), glucose, and 3-methyl-histamine. The data indicated that SCI results in several significant changes in plasma metabolism early on and that a metabonomics approach based on (1)H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes. The results also provided support for further development and application of metabonomics technologies for studying SCI and for the utilization of multivariate models for classifying the extent of trauma within an individual.

  16. Morphological analysis of Trichomycterus areolatus Valenciennes, 1846 from southern Chilean rivers using a truss-based system (Siluriformes, Trichomycteridae).

    PubMed

    Colihueque, Nelson; Corrales, Olga; Yáñez, Miguel

    2017-01-01

    Trichomycterus areolatus Valenciennes, 1846 is a small endemic catfish inhabiting the Andean river basins of Chile. In this study, the morphological variability of three T. areolatus populations, collected in two river basins from southern Chile, was assessed with multivariate analyses, including principal component analysis (PCA) and discriminant function analysis (DFA). It is hypothesized that populations must segregate morphologically from each other based on the river basin that they were sampled from, since each basin presents relatively particular hydrological characteristics. Significant morphological differences among the three populations were found with PCA (ANOSIM test, r = 0.552, p < 0.0001) and DFA (Wilks's λ = 0.036, p < 0.01). PCA accounted for a total variation of 56.16% by the first two principal components. The first Principal Component (PC1) and PC2 explained 34.72 and 21.44% of the total variation, respectively. The scatter-plot of the first two discriminant functions (DF1 on DF2) also validated the existence of three different populations. In group classification using DFA, 93.3% of the specimens were correctly-classified into their original populations. Of the total of 22 transformed truss measurements, 17 exhibited highly significant ( p < 0.01) differences among populations. The data support the existence of T. areolatus morphological variation across different rivers in southern Chile, likely reflecting the geographic isolation underlying population structure of the species.

  17. Infrared micro-spectroscopic studies of epithelial cells

    PubMed Central

    Romeo, Melissa; Mohlenhoff, Brian; Jennings, Michael; Diem, Max

    2009-01-01

    We report results from a study of human and canine mucosal cells, investigated by infrared micro-spectroscopy, and analyzed by methods of multivariate statistics. We demonstrate that the infrared spectra of individual cells are sensitive to the stage of maturation, and that a distinction between healthy and diseased cells will be possible. Since this report is written for an audience not familiar with infrared micro-spectroscopy, a short introduction into this field is presented along with a summary of principal component analysis. PMID:16797481

  18. Multivariate Statistical Analysis of MSL APXS Bulk Geochemical Data

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Edwards, C. S.; Thompson, L. M.; Schmidt, M. E.

    2014-12-01

    We apply cluster and factor analyses to bulk chemical data of 130 soil and rock samples measured by the Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory (MSL) rover Curiosity through sol 650. Multivariate approaches such as principal components analysis (PCA), cluster analysis, and factor analysis compliment more traditional approaches (e.g., Harker diagrams), with the advantage of simultaneously examining the relationships between multiple variables for large numbers of samples. Principal components analysis has been applied with success to APXS, Pancam, and Mössbauer data from the Mars Exploration Rovers. Factor analysis and cluster analysis have been applied with success to thermal infrared (TIR) spectral data of Mars. Cluster analyses group the input data by similarity, where there are a number of different methods for defining similarity (hierarchical, density, distribution, etc.). For example, without any assumptions about the chemical contributions of surface dust, preliminary hierarchical and K-means cluster analyses clearly distinguish the physically adjacent rock targets Windjana and Stephen as being distinctly different than lithologies observed prior to Curiosity's arrival at The Kimberley. In addition, they are separated from each other, consistent with chemical trends observed in variation diagrams but without requiring assumptions about chemical relationships. We will discuss the variation in cluster analysis results as a function of clustering method and pre-processing (e.g., log transformation, correction for dust cover) and implications for interpreting chemical data. Factor analysis shares some similarities with PCA, and examines the variability among observed components of a dataset so as to reveal variations attributable to unobserved components. Factor analysis has been used to extract the TIR spectra of components that are typically observed in mixtures and only rarely in isolation; there is the potential for similar results with data from APXS. These techniques offer new ways to understand the chemical relationships between the materials interrogated by Curiosity, and potentially their relation to materials observed by APXS instruments on other landed missions.

  19. Combination of multivariate curve resolution and multivariate classification techniques for comprehensive high-performance liquid chromatography-diode array absorbance detection fingerprints analysis of Salvia reuterana extracts.

    PubMed

    Hakimzadeh, Neda; Parastar, Hadi; Fattahi, Mohammad

    2014-01-24

    In this study, multivariate curve resolution (MCR) and multivariate classification methods are proposed to develop a new chemometric strategy for comprehensive analysis of high-performance liquid chromatography-diode array absorbance detection (HPLC-DAD) fingerprints of sixty Salvia reuterana samples from five different geographical regions. Different chromatographic problems occurred during HPLC-DAD analysis of S. reuterana samples, such as baseline/background contribution and noise, low signal-to-noise ratio (S/N), asymmetric peaks, elution time shifts, and peak overlap are handled using the proposed strategy. In this way, chromatographic fingerprints of sixty samples are properly segmented to ten common chromatographic regions using local rank analysis and then, the corresponding segments are column-wise augmented for subsequent MCR analysis. Extended multivariate curve resolution-alternating least squares (MCR-ALS) is used to obtain pure component profiles in each segment. In general, thirty-one chemical components were resolved using MCR-ALS in sixty S. reuterana samples and the lack of fit (LOF) values of MCR-ALS models were below 10.0% in all cases. Pure spectral profiles are considered for identification of chemical components by comparing their resolved spectra with the standard ones and twenty-four components out of thirty-one components were identified. Additionally, pure elution profiles are used to obtain relative concentrations of chemical components in different samples for multivariate classification analysis by principal component analysis (PCA) and k-nearest neighbors (kNN). Inspection of the PCA score plot (explaining 76.1% of variance accounted for three PCs) showed that S. reuterana samples belong to four clusters. The degree of class separation (DCS) which quantifies the distance separating clusters in relation to the scatter within each cluster is calculated for four clusters and it was in the range of 1.6-5.8. These results are then confirmed by kNN. In addition, according to the PCA loading plot and kNN dendrogram of thirty-one variables, five chemical constituents of luteolin-7-o-glucoside, salvianolic acid D, rosmarinic acid, lithospermic acid and trijuganone A are identified as the most important variables (i.e., chemical markers) for clusters discrimination. Finally, the effect of different chemical markers on samples differentiation is investigated using counter-propagation artificial neural network (CP-ANN) method. It is concluded that the proposed strategy can be successfully applied for comprehensive analysis of chromatographic fingerprints of complex natural samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol

    NASA Astrophysics Data System (ADS)

    Yehia, Ali M.; Mohamed, Heba M.

    2016-01-01

    Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.

  1. Influence factors and forecast of carbon emission in China: structure adjustment for emission peak

    NASA Astrophysics Data System (ADS)

    Wang, B.; Cui, C. Q.; Li, Z. P.

    2018-02-01

    This paper introduced Principal Component Analysis and Multivariate Linear Regression Model to verify long-term balance relationships between Carbon Emissions and the impact factors. The integrated model of improved PCA and multivariate regression analysis model is attainable to figure out the pattern of carbon emission sources. Main empirical results indicate that among all selected variables, the role of energy consumption scale was largest. GDP and Population follow and also have significant impacts on carbon emission. Industrialization rate and fossil fuel proportion, which is the indicator of reflecting the economic structure and energy structure, have a higher importance than the factor of urbanization rate and the dweller consumption level of urban areas. In this way, some suggestions are put forward for government to achieve the peak of carbon emissions.

  2. Phenotypic Characterization and Multivariate Analysis to Explain Body Conformation in Lesser Known Buffalo (Bubalus bubalis) from North India

    PubMed Central

    Vohra, V.; Niranjan, S. K.; Mishra, A. K.; Jamuna, V.; Chopra, A.; Sharma, Neelesh; Jeong, Dong Kee

    2015-01-01

    Phenotypic characterization and body biometric in 13 traits (height at withers, body length, chest girth, paunch girth, ear length, tail length, length of tail up to switch, face length, face width, horn length, circumference of horn at base, distances between pin bone and hip bone) were recorded in 233 adult Gojri buffaloes from Punjab and Himachal Pradesh states of India. Traits were analysed by using varimax rotated principal component analysis (PCA) with Kaiser Normalization to explain body conformation. PCA revealed four components which explained about 70.9% of the total variation. First component described the general body conformation and explained 31.5% of total variation. It was represented by significant positive high loading of height at wither, body length, heart girth, face length and face width. The communality ranged from 0.83 (hip bone distance) to 0.45 (horn length) and unique factors ranged from 0.16 to 0.55 for all these 13 different biometric traits. Present study suggests that first principal component can be used in the evaluation and comparison of body conformation in buffaloes and thus provides an opportunity to distinguish between early and late maturing to adult, based on a small group of biometric traits to explain body conformation in adult buffaloes. PMID:25656215

  3. [Determination of the Plant Origin of Licorice Oil Extract, a Natural Food Additive, by Principal Component Analysis Based on Chemical Components].

    PubMed

    Tada, Atsuko; Ishizuki, Kyoko; Sugimoto, Naoki; Yoshimatsu, Kayo; Kawahara, Nobuo; Suematsu, Takako; Arifuku, Kazunori; Fukai, Toshio; Tamura, Yukiyoshi; Ohtsuki, Takashi; Tahara, Maiko; Yamazaki, Takeshi; Akiyama, Hiroshi

    2015-01-01

    "Licorice oil extract" (LOE) (antioxidant agent) is described in the notice of Japanese food additive regulations as a material obtained from the roots and/or rhizomes of Glycyrrhiza uralensis, G. inflata or G. glabra. In this study, we aimed to identify the original Glycyrrhiza species of eight food additive products using LC/MS. Glabridin, a characteristic compound in G. glabra, was specifically detected in seven products, and licochalcone A, a characteristic compound in G. inflata, was detected in one product. In addition, Principal Component Analysis (PCA) (a kind of multivariate analysis) using the data of LC/MS or (1)H-NMR analysis was performed. The data of thirty-one samples, including LOE products used as food additives, ethanol extracts of various Glycyrrhiza species and commercially available Glycyrrhiza species-derived products were assessed. Based on the PCA results, the majority of LOE products was confirmed to be derived from G. glabra. This study suggests that PCA using (1)H-NMR analysis data is a simple and useful method to identify the plant species of origin of natural food additive products.

  4. Neutral Evolution of Multiple Quantitative Characters: A Genealogical Approach

    PubMed Central

    Griswold, Cortland K.; Logsdon, Benjamin; Gomulkiewicz, Richard

    2007-01-01

    The G matrix measures the components of phenotypic variation that are genetically heritable. The structure of G, that is, its principal components and their associated variances, determines, in part, the direction and speed of multivariate trait evolution. In this article we present a framework and results that give the structure of G under the assumption of neutrality. We suggest that a neutral expectation of the structure of G is important because it gives a null expectation for the structure of G from which the unique consequences of selection can be determined. We demonstrate how the processes of mutation, recombination, and drift shape the structure of G. Furthermore, we demonstrate how shared common ancestry between segregating alleles shapes the structure of G. Our results show that shared common ancestry, which manifests itself in the form of a gene genealogy, causes the structure of G to be nonuniform in that the variances associated with the principal components of G decline at an approximately exponential rate. Furthermore we show that the extent of the nonuniformity in the structure of G is enhanced with declines in mutation rates, recombination rates, and numbers of loci and is dependent on the pattern and modality of mutation. PMID:17339224

  5. Effect of Minerals on Intestinal IgA Production Using Deep Sea Water Drinks.

    PubMed

    Shiraishi, Hisashi; Fujino, Maho; Shirakawa, Naoki; Ishida, Nanao; Funato, Hiroki; Hirata, Ayumu; Abe, Noriaki; Iizuka, Michiro; Jobu, Kohei; Yokota, Junko; Miyamura, Mitsuhiko

    2017-01-01

    Minerals are essential for life, as they are a vital part of protein constituents, enzyme cofactors, and other components in living organisms. Deep sea water is characterized by its cleanliness and stable low temperature, and its possible health- and medical benefits are being studied. However, no study has yet evaluated the physical properties of the numerous commercially available deep sea water products, which have varying water sources and production methods. We analyzed these products' mineral content and investigated their effect on living organism, focusing on immune functions, and investigated the relation between physiological immunoactivities and mineral intake. We qualitatively analyzed the mineral compositions of the deep sea water drinks and evaluated the drinks' physical properties using principal component analysis, a type of multivariate analysis, of their mineral content. We create an iron and copper-deficient rat model and administered deep sea water drinks for 8 weeks. We then measured their fecal immunoglobulin A (IgA) to evaluate immune function. Principal component analysis suggested that physical properties of deep sea water drinks could be determined by their sources. Administration of deep sea water drinks increased fecal IgA, thus tending to stimulate immune function, but the extent of this effect varied by drink. Of the minerals contained in deep sea water, iron showed positive correlations with the fecal IgA. The principal component analysis used in this study is suitable for evaluating deep sea water containing many minerals, and our results form a useful basis for comparative evaluations of deep sea water's bioactivity.

  6. Discrimination between Bacillus and Alicyclobacillus isolates in apple juice by Fourier transform infrared spectroscopy and multivariate analysis.

    PubMed

    Al-Holy, Murad A; Lin, Mengshi; Alhaj, Omar A; Abu-Goush, Mahmoud H

    2015-02-01

    Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between 4 Alicyclobacillus strains and 4 Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm(-1) reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (for example, principal component analysis and soft independent modeling of class analogy) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these 2 genera. © 2015 Institute of Food Technologists®

  7. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    PubMed

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations

    NASA Astrophysics Data System (ADS)

    Chen, Quansheng; Qi, Shuai; Li, Huanhuan; Han, Xiaoyan; Ouyang, Qin; Zhao, Jiewen

    2014-10-01

    To rapidly and efficiently detect the presence of adulterants in honey, three-dimensional fluorescence spectroscopy (3DFS) technique was employed with the help of multivariate calibration. The data of 3D fluorescence spectra were compressed using characteristic extraction and the principal component analysis (PCA). Then, partial least squares (PLS) and back propagation neural network (BP-ANN) algorithms were used for modeling. The model was optimized by cross validation, and its performance was evaluated according to root mean square error of prediction (RMSEP) and correlation coefficient (R) in prediction set. The results showed that BP-ANN model was superior to PLS models, and the optimum prediction results of the mixed group (sunflower ± longan ± buckwheat ± rape) model were achieved as follow: RMSEP = 0.0235 and R = 0.9787 in the prediction set. The study demonstrated that the 3D fluorescence spectroscopy technique combined with multivariate calibration has high potential in rapid, nondestructive, and accurate quantitative analysis of honey adulteration.

  9. A Novel Approach to Detect Accelerated Aged and Surface-Mediated Degradation in Explosives by UPLC-ESI-MS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beppler, Christina L

    2015-12-01

    A new approach was created for studying energetic material degradation. This approach involved detecting and tentatively identifying non-volatile chemical species by liquid chromatography-mass spectrometry (LC-MS) with multivariate statistical data analysis that form as the CL-20 energetic material thermally degraded. Multivariate data analysis showed clear separation and clustering of samples based on sample group: either pristine or aged material. Further analysis showed counter-clockwise trends in the principal components analysis (PCA), a type of multivariate data analysis, Scores plots. These trends may indicate that there was a discrete shift in the chemical markers as the went from pristine to aged material, andmore » then again when the aged CL-20 mixed with a potentially incompatible material was thermally aged for 4, 6, or 9 months. This new approach to studying energetic material degradation should provide greater knowledge of potential degradation markers in these materials.« less

  10. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  11. FGWAS: Functional genome wide association analysis.

    PubMed

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Anthropometric profile of combat athletes via multivariate analysis.

    PubMed

    Burdukiewicz, Anna; Pietraszewska, Jadwiga; Stachoń, Aleksandra; Andrzejewska, Justyna

    2017-11-07

    Athletic success is a complex phenotype influenced by multiple factors, from sport-specific skills to anthropometric characteristics. Considering the latter, the literature has repeatedly indicated that athletes possess distinct physical characteristics depending on the practiced discipline. The aim of the present study was to apply univariate and multivariate methods to assess a wide range of morphometric and somatotypic characteristics in male combat athletes. Biometric data were obtained from 206 male university-level practitioners of judo, jiu-jitsu, karate, kickboxing, taekwondo, and wrestling. Measures included height- and length-based variables, breadths, circumferences, and skinfolds. Body proportions and somatotype, using Sheldon's method of somatotopy as modified by Heath and Carter, were then determined. Body fat percentage was assessed by bioelectrical impedance analysis using tetrapolar hand-to-foot electrodes. Data were subjected to a wide array of statistical analysis. The results show between-group differences in the magnitudes of the analyzed characteristics. While mesomorphy was the dominant component of each group somatotype, enhanced ectomorphy was observed in those disciplines that require a high level of agility. Principal component analysis reduced the multivariate dimensionality of the data to three components (characterizing body size, height-based measures, and the anthropometric structure of the upper extremities) that explained the majority of data variance. The development of a sport-specific anthropometric profile via height- and mass-based and morphometric and somatotypic variables can aid in the design of training protocols and the identification of athlete markers as well as serve as a diagnostic criterion in predicting combat athlete performance.

  13. Morphological analysis of Trichomycterus areolatus Valenciennes, 1846 from southern Chilean rivers using a truss-based system (Siluriformes, Trichomycteridae)

    PubMed Central

    Colihueque, Nelson; Corrales, Olga; Yáñez, Miguel

    2017-01-01

    Abstract Trichomycterus areolatus Valenciennes, 1846 is a small endemic catfish inhabiting the Andean river basins of Chile. In this study, the morphological variability of three T. areolatus populations, collected in two river basins from southern Chile, was assessed with multivariate analyses, including principal component analysis (PCA) and discriminant function analysis (DFA). It is hypothesized that populations must segregate morphologically from each other based on the river basin that they were sampled from, since each basin presents relatively particular hydrological characteristics. Significant morphological differences among the three populations were found with PCA (ANOSIM test, r = 0.552, p < 0.0001) and DFA (Wilks’s λ = 0.036, p < 0.01). PCA accounted for a total variation of 56.16% by the first two principal components. The first Principal Component (PC1) and PC2 explained 34.72 and 21.44% of the total variation, respectively. The scatter-plot of the first two discriminant functions (DF1 on DF2) also validated the existence of three different populations. In group classification using DFA, 93.3% of the specimens were correctly-classified into their original populations. Of the total of 22 transformed truss measurements, 17 exhibited highly significant (p < 0.01) differences among populations. The data support the existence of T. areolatus morphological variation across different rivers in southern Chile, likely reflecting the geographic isolation underlying population structure of the species. PMID:29134012

  14. How Does District Principal Evaluation Affect Learning-Centered Principal Leadership? Evidence from Michigan School Districts

    ERIC Educational Resources Information Center

    Sun, Min; Youngs, Peter

    2009-01-01

    This study used Hierarchical Multivariate Linear models to investigate relationships between principals' behaviors and district principal evaluation purpose, focus, and assessed leadership activities in 13 school districts in Michigan. The study found that principals were more likely to engage in learning-centered leadership behaviors when the…

  15. Foot anthropometry and morphology phenomena.

    PubMed

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  16. Differentiation of aflatoxigenic and non-aflatoxigenic strains of Aspergilli by FT-IR spectroscopy.

    PubMed

    Atkinson, Curtis; Pechanova, Olga; Sparks, Darrell L; Brown, Ashli; Rodriguez, Jose M

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) is a well-established and widely accepted methodology to identify and differentiate diverse microbial species. In this study, FT-IR was used to differentiate 20 strains of ubiquitous and agronomically important phytopathogens of Aspergillus flavus and Aspergillus parasiticus. By analyzing their spectral profiles via principal component and cluster analysis, differentiation was achieved between the aflatoxin-producing and nonproducing strains of both fungal species. This study thus indicates that FT-IR coupled to multivariate statistics can rapidly differentiate strains of Aspergilli based on their toxigenicity.

  17. Chemometric techniques on the analysis of Raman spectra of serum blood samples of breast cancer patients

    NASA Astrophysics Data System (ADS)

    Rocha-Osornio, L. N.; Pichardo-Molina, J. L.; Barbosa-Garcia, O.; Frausto-Reyes, C.; Araujo-Andrade, C.; Huerta-Franco, R.; Gutiérrez-Juárez, G.

    2008-02-01

    Raman spectroscopy and Multivariate methods were used to study serum blood samples of control and breast cancer patients. Blood samples were obtained from 11 patients and 12 controls from the central region of Mexico. Our results show that principal component analysis is able to discriminate serum sample of breast cancer patients from those of control group, also the loading vectors of PCA plotted as a function of Raman shift shown which bands permitted to make the maximum discrimination between both groups of samples.

  18. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Chang, Jianxia; Wang, Yimin; Li, Yunyun; Hu, Hui; Chen, Yutong; Huang, Qiang; Yao, Jun

    2018-02-01

    It is vital to identify drought events and to evaluate multivariate drought characteristics based on a composite drought index for better drought risk assessment and sustainable development of water resources. However, most composite drought indices are constructed by the linear combination, principal component analysis and entropy weight method assuming a linear relationship among different drought indices. In this study, the multidimensional copulas function was applied to construct a nonlinear multivariate drought index (NMDI) to solve the complicated and nonlinear relationship due to its dependence structure and flexibility. The NMDI was constructed by combining meteorological, hydrological, and agricultural variables (precipitation, runoff, and soil moisture) to better reflect the multivariate variables simultaneously. Based on the constructed NMDI and runs theory, drought events for a particular area regarding three drought characteristics: duration, peak, and severity were identified. Finally, multivariate drought risk was analyzed as a tool for providing reliable support in drought decision-making. The results indicate that: (1) multidimensional copulas can effectively solve the complicated and nonlinear relationship among multivariate variables; (2) compared with single and other composite drought indices, the NMDI is slightly more sensitive in capturing recorded drought events; and (3) drought risk shows a spatial variation; out of the five partitions studied, the Jing River Basin as well as the upstream and midstream of the Wei River Basin are characterized by a higher multivariate drought risk. In general, multidimensional copulas provides a reliable way to solve the nonlinear relationship when constructing a comprehensive drought index and evaluating multivariate drought characteristics.

  19. Multivariate assessment of event-related potentials with the t-CWT method.

    PubMed

    Bostanov, Vladimir

    2015-11-05

    Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.

  20. Comprehensive analysis of Polygoni Multiflori Radix of different geographical origins using ultra-high-performance liquid chromatography fingerprints and multivariate chemometric methods.

    PubMed

    Sun, Li-Li; Wang, Meng; Zhang, Hui-Jie; Liu, Ya-Nan; Ren, Xiao-Liang; Deng, Yan-Ru; Qi, Ai-Di

    2018-01-01

    Polygoni Multiflori Radix (PMR) is increasingly being used not just as a traditional herbal medicine but also as a popular functional food. In this study, multivariate chemometric methods and mass spectrometry were combined to analyze the ultra-high-performance liquid chromatograph (UPLC) fingerprints of PMR from six different geographical origins. A chemometric strategy based on multivariate curve resolution-alternating least squares (MCR-ALS) and three classification methods is proposed to analyze the UPLC fingerprints obtained. Common chromatographic problems, including the background contribution, baseline contribution, and peak overlap, were handled by the established MCR-ALS model. A total of 22 components were resolved. Moreover, relative species concentrations were obtained from the MCR-ALS model, which was used for multivariate classification analysis. Principal component analysis (PCA) and Ward's method have been applied to classify 72 PMR samples from six different geographical regions. The PCA score plot showed that the PMR samples fell into four clusters, which related to the geographical location and climate of the source areas. The results were then corroborated by Ward's method. In addition, according to the variance-weighted distance between cluster centers obtained from Ward's method, five components were identified as the most significant variables (chemical markers) for cluster discrimination. A counter-propagation artificial neural network has been applied to confirm and predict the effects of chemical markers on different samples. Finally, the five chemical markers were identified by UPLC-quadrupole time-of-flight mass spectrometer. Components 3, 12, 16, 18, and 19 were identified as 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-d-glucoside, emodin-8-O-β-d-glucopyranoside, emodin-8-O-(6'-O-acetyl)-β-d-glucopyranoside, emodin, and physcion, respectively. In conclusion, the proposed method can be applied for the comprehensive analysis of natural samples. Copyright © 2016. Published by Elsevier B.V.

  1. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  2. Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils.

    PubMed

    Wójcicki, Krzysztof; Khmelinskii, Igor; Sikorski, Marek; Sikorska, Ewa

    2015-11-15

    Infrared spectroscopic techniques and chemometric methods were used to study oxidation of olive, sunflower and rapeseed oils. Accelerated oxidative degradation of oils at 60°C was monitored using peroxide values and FT-MIR ATR and FT-NIR transmittance spectroscopy. Principal component analysis (PCA) facilitated visualization and interpretation of spectral changes occurring during oxidation. Multivariate curve resolution (MCR) method found three spectral components in the NIR and MIR spectral matrix, corresponding to the oxidation products, and saturated and unsaturated structures. Good quantitative relation was found between peroxide value and contribution of oxidation products evaluated using MCR--based on NIR (R(2) = 0.890), MIR (R(2) = 0.707) and combined NIR and MIR (R(2) = 0.747) data. Calibration models for prediction peroxide value established using partial least squares (PLS) regression were characterized for MIR (R(2) = 0.701, RPD = 1.7), NIR (R(2) = 0.970, RPD = 5.3), and combined NIR and MIR data (R(2) = 0.954, RPD = 3.1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dittrichia graveolens (L.) Greuter Essential Oil: Chemical Composition, Multivariate Analysis, and Antimicrobial Activity.

    PubMed

    Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana

    2016-01-01

    The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol.

    PubMed

    Yehia, Ali M; Mohamed, Heba M

    2016-01-05

    Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.

  6. Multivariate and geo-spatial approach for seawater quality of Chidiyatappu Bay, south Andaman Islands, India.

    PubMed

    Jha, Dilip Kumar; Vinithkumar, Nambali Valsalan; Sahu, Biraja Kumar; Dheenan, Palaiya Sukumaran; Das, Apurba Kumar; Begum, Mehmuna; Devi, Marimuthu Prashanthi; Kirubagaran, Ramalingam

    2015-07-15

    Chidiyatappu Bay is one of the least disturbed marine environments of Andaman & Nicobar Islands, the union territory of India. Oceanic flushing from southeast and northwest direction is prevalent in this bay. Further, anthropogenic activity is minimal in the adjoining environment. Considering the pristine nature of this bay, seawater samples collected from 12 sampling stations covering three seasons were analyzed. Principal Component Analysis (PCA) revealed 69.9% of total variance and exhibited strong factor loading for nitrite, chlorophyll a and phaeophytin. In addition, analysis of variance (ANOVA-one way), regression analysis, box-whisker plots and Geographical Information System based hot spot analysis further simplified and supported multivariate results. The results obtained are important to establish reference conditions for comparative study with other similar ecosystems in the region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-01

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties.

  8. Determination of five active compounds in Artemisia princeps and A. capillaris based on UPLC-DAD and discrimination of two species with multivariate analysis.

    PubMed

    Yang, Heejung; Lee, Dong Young; Jeon, Minji; Suh, Youngbae; Sung, Sang Hyun

    2014-05-01

    Five active compounds, chlorogenic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, jaceosidin, and eupatilin, in Artemisia princeps (Compositae) were simultaneously determined by ultra-performance liquid chromatography connected to diode array detector. The morphological resemblance between A. princeps and A. capillaris makes it difficult to properly identify species properly. It occasionally leads to misuse or misapplication in Korean traditional medicine. In the study, the discrimination between A. princeps and A. capillaris was optimally performed by the developed validation method, which resulted in definitely a difference between two species. Also, it was developed the most reliable markers contributing to the discrimination of two species by the multivariate analysis methods, such as a principal component analysis and a partial least squares discrimination analysis.

  9. Unsupervised pattern recognition methods in ciders profiling based on GCE voltammetric signals.

    PubMed

    Jakubowska, Małgorzata; Sordoń, Wanda; Ciepiela, Filip

    2016-07-15

    This work presents a complete methodology of distinguishing between different brands of cider and ageing degrees, based on voltammetric signals, utilizing dedicated data preprocessing procedures and unsupervised multivariate analysis. It was demonstrated that voltammograms recorded on glassy carbon electrode in Britton-Robinson buffer at pH 2 are reproducible for each brand. By application of clustering algorithms and principal component analysis visible homogenous clusters were obtained. Advanced signal processing strategy which included automatic baseline correction, interval scaling and continuous wavelet transform with dedicated mother wavelet, was a key step in the correct recognition of the objects. The results show that voltammetry combined with optimized univariate and multivariate data processing is a sufficient tool to distinguish between ciders from various brands and to evaluate their freshness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nonparametric regression applied to quantitative structure-activity relationships

    PubMed

    Constans; Hirst

    2000-03-01

    Several nonparametric regressors have been applied to modeling quantitative structure-activity relationship (QSAR) data. The simplest regressor, the Nadaraya-Watson, was assessed in a genuine multivariate setting. Other regressors, the local linear and the shifted Nadaraya-Watson, were implemented within additive models--a computationally more expedient approach, better suited for low-density designs. Performances were benchmarked against the nonlinear method of smoothing splines. A linear reference point was provided by multilinear regression (MLR). Variable selection was explored using systematic combinations of different variables and combinations of principal components. For the data set examined, 47 inhibitors of dopamine beta-hydroxylase, the additive nonparametric regressors have greater predictive accuracy (as measured by the mean absolute error of the predictions or the Pearson correlation in cross-validation trails) than MLR. The use of principal components did not improve the performance of the nonparametric regressors over use of the original descriptors, since the original descriptors are not strongly correlated. It remains to be seen if the nonparametric regressors can be successfully coupled with better variable selection and dimensionality reduction in the context of high-dimensional QSARs.

  11. ``Low-cost Electronic nose evaluated on Thai-herb of Northern-Thailand samples using multivariate analysis methods''

    NASA Astrophysics Data System (ADS)

    na ayudhaya, Paisarn Daungjak; Klinbumrung, Arrak; Jaroensutasinee, Krisanadej; Pratontep, Sirapat; Kerdcharoen, Teerakiat

    2009-05-01

    In case of species of natural and aromatic plant originated from the northern Thailand, sensory characteristics, especially odours, have unique identifiers of herbs. The instruments sensory analysis have performed by several of differential of sensing, so call `electronic nose', to be a significantly and rapidly for chemometrics. The signal responses of the low cost electronic nose were evaluated by principal component analysis (PCA). The aims of this paper evaluated various of Thai-herbs grown in Northern of Thailand as data preprocessing tools of the Low-cost electronic nose (enNU-PYO1). The essential oil groups of Thai herbs such as Garlic, Lemongrass, Shallot (potato onion), Onion, Zanthoxylum limonella (Dennst.) Alston (Thai name is Makaen), and Kaffir lime leaf were compared volatilized from selected fresh herbs. Principal component analysis of the original sensor responses did clearly distinguish either all samples. In all cases more than 97% for cross-validated group were classified correctly. The results demonstrated that it was possible to develop in a model to construct a low-cost electronic nose to provide measurement of odoriferous herbs.

  12. Multivariate Analysis of Remains of Molluscan Foods Consumed by Latest Pleistocene and Holocene Humans in Nerja Cave, Málaga, Spain

    NASA Astrophysics Data System (ADS)

    Serrano, Francisco; Guerra-Merchán, Antonio; Lozano-Francisco, Carmen; Vera-Peláez, José Luis

    1997-09-01

    Nerja Cave is a karstic cavity used by humans from Late Paleolithic to post-Chalcolithic times. Remains of molluscan foods in the uppermost Pleistocene and Holocene sediments were studied with cluster analysis and principal components analysis, in both Qand Rmodes. The results from cluster analysis distinguished interval groups mainly in accordance with chronology and distinguished assemblages of species mainly according to habitat. Significant changes in the shellfish diet through time were revealed. In the Late Magdalenian, most molluscs consumed consisted of pulmonate gastropods and species from sandy sea bottoms. The Epipaleolithic diet was more varied and included species from rocky shorelines. From the Neolithic onward most molluscs consumed were from rocky shorelines. From the principal components analysis in Qmode, the first factor reflected mainly changes in the predominant capture environment, probably because of major paleogeographic changes. The second factor may reflect selective capture along rocky coastlines during certain times. The third factor correlated well with the sea-surface temperature curve in the western Mediterranean (Alboran Sea) during the late Quaternary.

  13. Wealth and Its Associations with Enteric Parasitic Infections in a Low-Income Community in Peru: Use of Principal Component Analysis

    PubMed Central

    Nundy, Shantanu; Gilman, Robert H.; Xiao, Lihua; Cabrera, Lilia; Cama, Rosa; Ortega, Ynes R.; Kahn, Geoffrey; Cama, Vitaliano A.

    2011-01-01

    The association of wealth and infections with Giardia, Cryptosporidium, Cyclospora, and microsporidia were examined in a longitudinal cohort conducted in Peru from 2001 to 2006. Data from 492 participants were daily clinical manifestations, weekly copro-parasitological diagnosis, and housing characteristics and assets owned (48 variables), and these data were used to construct a global wealth index using principal component analysis. Data were analyzed using continuous and categorical (wealth tertiles) models. Participant's mean age was 3.43 years (range = 0–12 years), with average follow-up of 993 days. Univariate and multivariate analyses identified significant associations between wealth and infections with Giardia and microsporidia. Participants with greater wealth indexes were associated with protection against Giardia (P < 0.001) and persistent Giardia infections (> 14 days). For microsporidia, greater wealth was protective (P = 0.066 continuous and P = 0.042 by tertiles). Contrarily, infections with Cryptosporidium and Cyclospora were independent of wealth. Thus, subtle differences in wealth may affect the frequency of specific parasitic infections within low-income communities. PMID:21212198

  14. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry.

    PubMed

    Scampicchio, Matteo; Mimmo, Tanja; Capici, Calogero; Huck, Christian; Innocente, Nadia; Drusch, Stephan; Cesco, Stefano

    2012-11-14

    Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.

  15. TU-FG-201-05: Varian MPC as a Statistical Process Control Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, A; Rowbottom, C

    Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whethermore » or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity and beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.« less

  16. A Multi-Variable Approach to Diagnosing the Monthly Covariability of the Amazonian Radiative and Convective Diurnal Cycles

    NASA Astrophysics Data System (ADS)

    Dodson, J. B.; Taylor, P. C.

    2016-12-01

    The diurnal cycle of convection (CDC) greatly influences the water, radiative, and energy budgets in convectively active regions. For example, previous research of the Amazonian CDC has identified significant monthly covariability between the satellite-observed radiative and precipitation diurnal and multiple reanalysis-derived atmospheric state variables (ASVs) representing convective instability. However, disagreements between retrospective analysis products (reanalyses) over monthly ASV anomalies create significant uncertainty in the resulting covariability. Satellite observations of convective clouds can be used to characterize monthly anomalies in convective activity. CloudSat observes multiple properties of both deep convective cores and the associated anvils, and so is useful as an alternative to the use of reanalyses. CloudSat cannot observe the full diurnal cycle, but it can detect differences between daytime and nighttime convection. Initial efforts to use CloudSat data to characterize convective activity showed that the results are highly dependent on the choice of variable used to characterize the cloud. This is caused by a series of inverse relationships between convective frequency, cloud top height, radar reflectivity vertical profile, and other variables. A single, multi-variable index for convective activity based on CloudSat data may be useful to clarify the results. Principal component analysis (PCA) provides a method to create a multivariable index, where the first principal component (PC1) corresponds with convective instability. The time series of PC1 can then be used as a proxy for monthly variability in convective activity. The primary challenge presented involves determining the utility of PCA for creating a robust index for convective activity that accounts for the complex relationships of multiple convective cloud variables, and yields information about the interactions between convection, the convective environment, and radiation beyond the previous single-variable approaches. The choice of variables used to calculate PC1 may influence any results based on PC1, so it is necessary to test the sensitivity of the results to different variable combinations.

  17. A perspective on two chemometrics tools: PCA and MCR, and introduction of a new one: Pattern recognition entropy (PRE), as applied to XPS and ToF-SIMS depth profiles of organic and inorganic materials

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shiladitya; Singh, Bhupinder; Diwan, Anubhav; Lee, Zheng Rong; Engelhard, Mark H.; Terry, Jeff; Tolley, H. Dennis; Gallagher, Neal B.; Linford, Matthew R.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are much used analytical techniques that provide information about the outermost atomic and molecular layers of materials. In this work, we discuss the application of multivariate spectral techniques, including principal component analysis (PCA) and multivariate curve resolution (MCR), to the analysis of XPS and ToF-SIMS depth profiles. Multivariate analyses often provide insight into data sets that is not easily obtained in a univariate fashion. Pattern recognition entropy (PRE), which has its roots in Shannon's information theory, is also introduced. This approach is not the same as the mutual information/entropy approaches sometimes used in data processing. A discussion of the theory of each technique is presented. PCA, MCR, and PRE are applied to four different data sets obtained from: a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized C3F6 on Si, a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized PNIPAM (poly (N-isopropylacrylamide)) on Si, an XPS depth profile through a film of SiO2 on Si, and an XPS depth profile through a film of Ta2O5 on Ta. PCA, MCR, and PRE reveal the presence of interfaces in the films, and often indicate that the first few scans in the depth profiles are different from those that follow. PRE and backward difference PRE provide this information in a straightforward fashion. Rises in the PRE signals at interfaces suggest greater complexity to the corresponding spectra. Results from PCA, especially for the higher principal components, were sometimes difficult to understand. MCR analyses were generally more interpretable.

  18. Characterization of Interfacial Chemistry of Adhesive/Dentin Bond Using FTIR Chemical Imaging With Univariate and Multivariate Data Processing

    PubMed Central

    Wang, Yong; Yao, Xiaomei; Parthasarathy, Ranganathan

    2008-01-01

    Fourier transform infrared (FTIR) chemical imaging can be used to investigate molecular chemical features of the adhesive/dentin interfaces. However, the information is not straightforward, and is not easily extracted. The objective of this study was to use multivariate analysis methods, principal component analysis and fuzzy c-means clustering, to analyze spectral data in comparison with univariate analysis. The spectral imaging data collected from both the adhesive/healthy dentin and adhesive/caries-affected dentin specimens were used and compared. The univariate statistical methods such as mapping of intensities of specific functional group do not always accurately identify functional group locations and concentrations due to more or less band overlapping in adhesive and dentin. Apart from the ease with which information can be extracted, multivariate methods highlight subtle and often important changes in the spectra that are difficult to observe using univariate methods. The results showed that the multivariate methods gave more satisfactory, interpretable results than univariate methods and were conclusive in showing that they can discriminate and classify differences between healthy dentin and caries-affected dentin within the interfacial regions. It is demonstrated that the multivariate FTIR imaging approaches can be used in the rapid characterization of heterogeneous, complex structure. PMID:18980198

  19. Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era.

    PubMed

    Ferreira, Ana P; Tobyn, Mike

    2015-01-01

    In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.

  20. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo.

    PubMed

    Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E

    2016-07-01

    Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure.

    PubMed

    Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C

    2015-01-01

    We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Piecewise multivariate modelling of sequential metabolic profiling data.

    PubMed

    Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan

    2008-02-19

    Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.

  3. Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: A review.

    PubMed

    Maione, Camila; Barbosa, Rommel Melgaço

    2018-01-24

    Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.

  4. Atomic-scale phase composition through multivariate statistical analysis of atom probe tomography data.

    PubMed

    Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F

    2011-06-01

    We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.

  5. Multivariate Analysis As a Support for Diagnostic Flowcharts in Allergic Bronchopulmonary Aspergillosis: A Proof-of-Concept Study.

    PubMed

    Vitte, Joana; Ranque, Stéphane; Carsin, Ania; Gomez, Carine; Romain, Thomas; Cassagne, Carole; Gouitaa, Marion; Baravalle-Einaudi, Mélisande; Bel, Nathalie Stremler-Le; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Gaudart, Jean

    2017-01-01

    Molecular-based allergy diagnosis yields multiple biomarker datasets. The classical diagnostic score for allergic bronchopulmonary aspergillosis (ABPA), a severe disease usually occurring in asthmatic patients and people with cystic fibrosis, comprises succinct immunological criteria formulated in 1977: total IgE, anti- Aspergillus fumigatus ( Af ) IgE, anti- Af "precipitins," and anti- Af IgG. Progress achieved over the last four decades led to multiple IgE and IgG(4) Af biomarkers available with quantitative, standardized, molecular-level reports. These newly available biomarkers have not been included in the current diagnostic criteria, either individually or in algorithms, despite persistent underdiagnosis of ABPA. Large numbers of individual biomarkers may hinder their use in clinical practice. Conversely, multivariate analysis using new tools may bring about a better chance of less diagnostic mistakes. We report here a proof-of-concept work consisting of a three-step multivariate analysis of Af IgE, IgG, and IgG4 biomarkers through a combination of principal component analysis, hierarchical ascendant classification, and classification and regression tree multivariate analysis. The resulting diagnostic algorithms might show the way for novel criteria and improved diagnostic efficiency in Af -sensitized patients at risk for ABPA.

  6. Evaluation of the microscopic distribution of florfenicol in feed pellets for salmon by Fourier Transform infrared imaging and multivariate analysis.

    PubMed

    Bastidas, Camila Y; von Plessing, Carlos; Troncoso, José; Del P Castillo, Rosario

    2018-04-15

    Fourier Transform infrared imaging and multivariate analysis were used to identify, at the microscopic level, the presence of florfenicol (FF), a heavily-used antibiotic in the salmon industry, supplied to fishes in feed pellets for the treatment of salmonid rickettsial septicemia (SRS). The FF distribution was evaluated using Principal Component Analysis (PCA) and Augmented Multivariate Curve Resolution with Alternating Least Squares (augmented MCR-ALS) on the spectra obtained from images with pixel sizes of 6.25 μm × 6.25 μm and 1.56 μm × 1.56 μm, in different zones of feed pellets. Since the concentration of the drug was 3.44 mg FF/g pellet, this is the first report showing the powerful ability of the used of spectroscopic techniques and multivariate analysis, especially the augmented MCR-ALS, to describe the FF distribution in both the surface and inner parts of feed pellets at low concentration, in a complex matrix and at the microscopic level. The results allow monitoring the incorporation of the drug into the feed pellets. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Minia, Egypt: Principal Component Analysis

    PubMed

    Abdelrehim, Marwa G; Mahfouz, Eman M; Ewis, Ashraf A; Seedhom, Amany E; Afifi, Hassan M; Shebl, Fatma M

    2018-02-26

    Background: Pancreatic cancer (PC) is a serious and rapidly progressing malignancy. Identifying risk factors including dietary elements is important to develop preventive strategies. This study focused on possible links between diet and PC. Methods: We conducted a case-control study including all PC patients diagnosed at Minia Cancer Center and controls from general population from June 2014 to December 2015. Dietary data were collected directly through personal interviews. Principal component analysis (PCA) was performed to identify dietary groups. The data were analyzed using crude odds ratios (ORs) and multivariable logistic regression with adjusted ORs and 95% confidence intervals (CIs). Results: A total of 75 cases and 149 controls were included in the study. PCA identified six dietary groups, labeled as cereals and grains, vegetables, proteins, dairy products, fruits, and sugars. Bivariate analysis showed that consumption of vegetables, fruits, sugars, and total energy intake were associated with change in PC risk. In multivariable-adjusted models comparing highest versus lowest levels of intake, we observed significant lower odds of PC in association with vegetable intake (OR 0.24; 95% CI, 0.07-0.85, P=0.012) and a higher likelihood with the total energy intake (OR 9.88; 95% CI, 2.56-38.09, P<0.0001). There was also a suggested link between high fruit consumption and reduced odds of PC. Conclusions: The study supports the association between dietary factors and the odds of PC development in Egypt. It was found that higher energy intake is associated with an increase in likelihood of PC, while increased vegetable consumption is associated with a lower odds ratio. Creative Commons Attribution License

  8. Multivariate analysis of sexual size dimorphism in local turkeys (Meleagris gallopavo) in Nigeria.

    PubMed

    Ajayi, Oyeyemi O; Yakubu, Abdulmojeed; Jayeola, Oluwaseun O; Imumorin, Ikhide G; Takeet, Michael I; Ozoje, Michael O; Ikeobi, Christian O N; Peters, Sunday O

    2012-06-01

    Sexual size dimorphism is a key evolutionary feature that can lead to important biological insights. To improve methods of sexing live birds in the field, we assessed sexual size dimorphism in Nigerian local turkeys (Meleagris gallopavo) using multivariate techniques. Measurements were taken on 125 twenty-week-old birds reared under the intensive management system. The body parameters measured were body weight, body length, breast girth, thigh length, shank length, keel length, wing length and wing span. Univariate analysis revealed that toms (males) had significantly (P < 0.05) higher mean values than hens (females) in all the measured traits. Positive phenotypic correlations between body weight and body measurements ranged from 0.445 to 0.821 in toms and 0.053-0.660 in hens, respectively. Three principal components (PC1, PC2 and PC3) were extracted in toms, each accounting for 63.70%, 19.42% and 5.72% of the total variance, respectively. However, four principal components (PC1, PC2, PC3 and PC4) were extracted in hens, which explained 54.03%, 15.29%, 11.68% and 6.95%, respectively of the generalised variance. A stepwise discriminant function analysis of the eight morphological traits indicated that body weight, body length, tail length and wing span were the most discriminating variables in separating the sexes. The single discriminant function obtained was able to correctly classify 100% of the birds into their source population. The results obtained from the present study could aid future management decisions, ecological studies and conservation of local turkeys in a developing economy.

  9. Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance.

    PubMed

    Awai, Lea; Curt, Armin

    2016-08-01

    Recovery of locomotor function after incomplete spinal cord injury (iSCI) is clinically assessed through walking speed and distance, while improvements in these measures might not be in line with a normalization of gait quality and are, on their own, insensitive at revealing potential mechanisms underlying recovery. The objective of this study was to relate changes of gait parameters to the recovery of walking speed while distinguishing between parameters that rather reflect speed improvements from factors contributing to overall recovery. Kinematic data of 16 iSCI subjects were repeatedly recorded during in-patient rehabilitation. The responsiveness of gait parameters to walking speed was assessed by linear regression. Principal component analysis (PCA) was applied on the multivariate data across time to identify factors that contribute to recovery after iSCI. Parameters of gait cycle and movement dynamics were both responsive and closely related to the recovery of walking speed, which increased by 96%. Multivariate analysis revealed specific gait parameters (intralimb shape normality and consistency) that, although less related to speed increments, loaded highly on principal component one (PC1) (58.6%) explaining the highest proportion of variance (i.e., recovery of outcome over time). Interestingly, measures of hip, knee, and ankle range of motion showed varying degrees of responsiveness (from very high to very low) while not contributing to gait recovery as revealed by PCA. The conjunct application of two analysis methods distinguishes gait parameters that simply reflect increased walking speed from parameters that actually contribute to gait recovery in iSCI. This distinction may be of value for the evaluation of interventions for locomotor recovery.

  10. Resolving Identification Issues of Saraca asoca from Its Adulterant and Commercial Samples Using Phytochemical Markers

    PubMed Central

    Hegde, Satisha; Hegde, Harsha Vasudev; Jalalpure, Sunil Satyappa; Peram, Malleswara Rao; Pai, Sandeep Ramachandra; Roy, Subarna

    2017-01-01

    Saraca asoca (Roxb.) De Wilde (Ashoka) is a highly valued endangered medicinal tree species from Western Ghats of India. Besides treating cardiac and circulatory problems, S. asoca provides immense relief in gynecological disorders. Higher price and demand, in contrast to the smaller population size of the plant, have motivated adulteration with other plants such as Polyalthia longifolia (Sonnerat) Thwaites. The fundamental concerns in quality control of S. asoca arise due to its part of medicinal value (Bark) and the chemical composition. Phytochemical fingerprinting with proper selection of analytical markers is a promising method in addressing quality control issues. In the present study, high-performance liquid chromatography of phenolic compounds (gallic acid, catechin, and epicatechin) coupled to multivariate analysis was used. Five samples each of S. asoca, P. longifolia from two localities alongside five commercial market samples showed evidence of adulteration. Subsequently, multivariate hierarchical cluster analysis and principal component analysis was established to discriminate the adulterants of S. asoca. The proposed method ascertains identification of S. asoca from its putative adulterant P. longifolia and commercial market samples. The data generated may also serve as baseline data to form a quality standard for pharmacopoeias. SUMMARY Simultaneous quantification of gallic acid, catechin, epicatechin from Saraca asoca by high-performance liquid chromatographyDetection of S. asoca from adulterant and commercial samplesUse of analytical method along with a statistical tool for addressing quality issues. Abbreviations used: HPLC: High Performance Liquid Chromatography; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; CAT: Catechin; EPI: Epicatechin; GA: Gallic acid; PCA: Principal Component Analysis. PMID:28808391

  11. Multicomponent kinetic spectrophotometric determination of pefloxacin and norfloxacin in pharmaceutical preparations and human plasma samples with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Wang, Yong; Kokot, Serge

    2008-10-01

    A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.

  12. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe

    2016-11-01

    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-05-25

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  14. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-11-23

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  15. Using Structural Equation Modeling To Fit Models Incorporating Principal Components.

    ERIC Educational Resources Information Center

    Dolan, Conor; Bechger, Timo; Molenaar, Peter

    1999-01-01

    Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…

  16. Lithology and mineralogy recognition from geochemical logging tool data using multivariate statistical analysis.

    PubMed

    Konaté, Ahmed Amara; Ma, Huolin; Pan, Heping; Qin, Zhen; Ahmed, Hafizullah Abba; Dembele, N'dji Dit Jacques

    2017-10-01

    The availability of a deep well that penetrates deep into the Ultra High Pressure (UHP) metamorphic rocks is unusual and consequently offers a unique chance to study the metamorphic rocks. One such borehole is located in the southern part of Donghai County in the Sulu UHP metamorphic belt of Eastern China, from the Chinese Continental Scientific Drilling Main hole. This study reports the results obtained from the analysis of oxide log data. A geochemical logging tool provides in situ, gamma ray spectroscopy measurements of major and trace elements in the borehole. Dry weight percent oxide concentration logs obtained for this study were SiO 2 , K 2 O, TiO 2 , H 2 O, CO 2 , Na 2 O, Fe 2 O 3 , FeO, CaO, MnO, MgO, P 2 O 5 and Al 2 O 3 . Cross plot and Principal Component Analysis methods were applied for lithology characterization and mineralogy description respectively. Cross plot analysis allows lithological variations to be characterized. Principal Component Analysis shows that the oxide logs can be summarized by two components related to the feldspar and hydrous minerals. This study has shown that geochemical logging tool data is accurate and adequate to be tremendously useful in UHP metamorphic rocks analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap

    PubMed Central

    Metsalu, Tauno; Vilo, Jaak

    2015-01-01

    The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/. PMID:25969447

  18. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area

    PubMed Central

    Hao, Guozhu

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream. PMID:27391057

  19. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area.

    PubMed

    Jiang, Dan; Hao, Guozhu; Huang, Liwen; Zhang, Dan

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream.

  20. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China.

    PubMed

    Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying

    2012-05-15

    Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Fast classification of hazelnut cultivars through portable infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Manfredi, Marcello; Robotti, Elisa; Quasso, Fabio; Mazzucco, Eleonora; Calabrese, Giorgio; Marengo, Emilio

    2018-01-01

    The authentication and traceability of hazelnuts is very important for both the consumer and the food industry, to safeguard the protected varieties and the food quality. This study investigates the use of a portable FTIR spectrometer coupled to multivariate statistical analysis for the classification of raw hazelnuts. The method discriminates hazelnuts from different origins/cultivars based on differences of the signal intensities of their IR spectra. The multivariate classification methods, namely principal component analysis (PCA) followed by linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA), with or without variable selection, allowed a very good discrimination among the groups, with PLS-DA coupled to variable selection providing the best results. Due to the fast analysis, high sensitivity, simplicity and no sample preparation, the proposed analytical methodology could be successfully used to verify the cultivar of hazelnuts, and the analysis can be performed quickly and directly on site.

  2. Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins.

    PubMed

    Guo, Jing; Yuan, Yahong; Dou, Pei; Yue, Tianli

    2017-10-01

    Fifty-one kiwifruit juice samples of seven kiwifruit varieties from five regions in China were analyzed to determine their polyphenols contents and to trace fruit varieties and geographical origins by multivariate statistical analysis. Twenty-one polyphenols belonging to four compound classes were determined by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. (-)-Epicatechin, (+)-catechin, procyanidin B1 and caffeic acid derivatives were the predominant phenolic compounds in the juices. Principal component analysis (PCA) allowed a clear separation of the juices according to kiwifruit varieties. Stepwise linear discriminant analysis (SLDA) yielded satisfactory categorization of samples, provided 100% success rate according to kiwifruit varieties and 92.2% success rate according to geographical origins. The result showed that polyphenolic profiles of kiwifruit juices contain enough information to trace fruit varieties and geographical origins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel.

    PubMed

    Grapov, Dmitry; Newman, John W

    2012-09-01

    Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010).

  4. Drop coating deposition Raman spectroscopy of blood plasma for the detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Li, Pengpeng; Chen, Changshui; Deng, Xiaoyuan; Mao, Hua; Jin, Shaoqin

    2015-03-01

    We have recently applied the technique of drop coating deposition Raman (DCDR) spectroscopy for colorectal cancer (CRC) detection using blood plasma. The aim of this study was to develop a more convenient and stable method based on blood plasma for noninvasive CRC detection. Significant differences are observed in DCDR spectra between healthy (n=105) and cancer (n=75) plasma from 15 CRC patients and 21 volunteers, particularly in the spectra that are related to proteins, nucleic acids, and β-carotene. The multivariate analysis principal components analysis and the linear discriminate analysis, together with leave-one-out, cross validation were used on DCDR spectra and yielded a sensitivity of 100% (75/75) and specificity of 98.1% (103/105) for detection of CRC. This study demonstrates that DCDR spectroscopy of blood plasma associated with multivariate statistical algorithms has the potential for the noninvasive detection of CRC.

  5. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis.

    PubMed

    Grasel, Fábio dos Santos; Ferrão, Marco Flôres; Wolf, Carlos Rodolfo

    2016-01-15

    Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis. Through both principal component analysis (PCA) and hierarchical cluster analysis (HCA), we observed well-defined separation between condensed (quebracho and black wattle) and hydrolysable (valonea, chestnut, myrobalan, and tara) tannins. For hydrolysable tannins, it was also possible to observe the formation of two different subgroups between samples of chestnut and valonea and between samples of tara and myrobalan. Among all samples analysed, the chestnut and valonea showed the greatest similarity, indicating that these extracts contain equivalent chemical compositions and structure and, therefore, similar properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Analysis of laser printer and photocopier toners by spectral properties and chemometrics

    NASA Astrophysics Data System (ADS)

    Verma, Neha; Kumar, Raj; Sharma, Vishal

    2018-05-01

    The use of printers to generate falsified documents has become a common practice in today's world. The examination and identification of the printed matter in the suspected documents (civil or criminal cases) may provide important information about the authenticity of the document. In the present study, a total number of 100 black toner samples both from laser printers and photocopiers were examined using diffuse reflectance UV-Vis Spectroscopy. The present research is divided into two parts; visual discrimination and discrimination by using multivariate analysis. A comparison between qualitative and quantitative analysis showed that multivariate analysis (Principal component analysis) provides 99.59%pair-wise discriminating power for laser printer toners while 99.84% pair-wise discriminating power for photocopier toners. The overall results obtained confirm the applicability of UV-Vis spectroscopy and chemometrics, in the nondestructive analysis of toner printed documents while enhancing their evidential value for forensic applications.

  8. Comparative Study of Elemental Nutrients in Organic and Conventional Vegetables Using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Bhatt, Chet R; Alfarraj, Bader; Ghany, Charles T; Yueh, Fang Y; Singh, Jagdish P

    2017-04-01

    In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.

  9. Fast discrimination of hydroxypropyl methyl cellulose using portable Raman spectrometer and multivariate methods

    NASA Astrophysics Data System (ADS)

    Song, Biao; Lu, Dan; Peng, Ming; Li, Xia; Zou, Ye; Huang, Meizhen; Lu, Feng

    2017-02-01

    Raman spectroscopy is developed as a fast and non-destructive method for the discrimination and classification of hydroxypropyl methyl cellulose (HPMC) samples. 44 E series and 41 K series of HPMC samples are measured by a self-developed portable Raman spectrometer (Hx-Raman) which is excited by a 785 nm diode laser and the spectrum range is 200-2700 cm-1 with a resolution (FWHM) of 6 cm-1. Multivariate analysis is applied for discrimination of E series from K series. By methods of principal components analysis (PCA) and Fisher discriminant analysis (FDA), a discrimination result with sensitivity of 90.91% and specificity of 95.12% is achieved. The corresponding receiver operating characteristic (ROC) is 0.99, indicting the accuracy of the predictive model. This result demonstrates the prospect of portable Raman spectrometer for rapid, non-destructive classification and discrimination of E series and K series samples of HPMC.

  10. Classification of white wine aromas with an electronic nose.

    PubMed

    Lozano, J; Santos, J P; Horrillo, M C

    2005-09-15

    This paper reports the use of a tin dioxide multisensor array based electronic nose for recognition of 29 typical aromas in white wine. Headspace technique has been used to extract aroma of the wine. Multivariate analysis, including principal component analysis (PCA) as well as probabilistic neural networks (PNNs), has been used to identify the main aroma added to the wine. The results showed that in spite of the strong influence of ethanol and other majority compounds of wine, the system could discriminate correctly the aromatic compounds added to the wine with a minimum accuracy of 97.2%.

  11. Spectral discrimination of serum from liver cancer and liver cirrhosis using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Tianyue; Li, Xiaozhou; Yu, Ting; Sun, Ruomin; Li, Siqi

    2011-07-01

    In this paper, Raman spectra of human serum were measured using Raman spectroscopy, then the spectra was analyzed by multivariate statistical methods of principal component analysis (PCA). Then linear discriminant analysis (LDA) was utilized to differentiate the loading score of different diseases as the diagnosing algorithm. Artificial neural network (ANN) was used for cross-validation. The diagnosis sensitivity and specificity by PCA-LDA are 88% and 79%, while that of the PCA-ANN are 89% and 95%. It can be seen that modern analyzing method is a useful tool for the analysis of serum spectra for diagnosing diseases.

  12. Is a multivariate consensus representation of genetic relationships among populations always meaningful?

    PubMed Central

    Moazami-Goudarzi, K; Laloë, D

    2002-01-01

    To determine the relationships among closely related populations or species, two methods are commonly used in the literature: phylogenetic reconstruction or multivariate analysis. The aim of this article is to assess the reliability of multivariate analysis. We describe a method that is based on principal component analysis and Mantel correlations, using a two-step process: The first step consists of a single-marker analysis and the second step tests if each marker reveals the same typology concerning population differentiation. We conclude that if single markers are not congruent, the compromise structure is not meaningful. Our model is not based on any particular mutation process and it can be applied to most of the commonly used genetic markers. This method is also useful to determine the contribution of each marker to the typology of populations. We test whether our method is efficient with two real data sets based on microsatellite markers. Our analysis suggests that for closely related populations, it is not always possible to accept the hypothesis that an increase in the number of markers will increase the reliability of the typology analysis. PMID:12242255

  13. Effect of sexual steroids on boar kinematic sperm subpopulations.

    PubMed

    Ayala, E M E; Aragón, M A

    2017-11-01

    Here, we show the effects of sexual steroids, progesterone, testosterone, or estradiol on motility parameters of boar sperm. Sixteen commercial seminal doses, four each of four adult boars, were analyzed using computer assisted sperm analysis (CASA). Mean values of motility parameters were analyzed by bivariate and multivariate statistics. Principal component analysis (PCA), followed by hierarchical clustering, was applied on data of motility parameters, provided automatically as intervals by the CASA system. Effects of sexual steroids were described in the kinematic subpopulations identified from multivariate statistics. Mean values of motility parameters were not significantly changed after addition of sexual steroids. Multivariate graphics showed that sperm subpopulations were not sensitive to the addition of either testosterone or estradiol, but sperm subpopulations responsive to progesterone were found. Distribution of motility parameters were wide in controls but sharpened at distinct concentrations of progesterone. We conclude that kinematic sperm subpopulations responsive to progesterone are present in boar semen, and these subpopulations are masked in evaluations of mean values of motility parameters. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  14. Application of multivariate analysis to investigate the trace element contamination in top soil of coal mining district in Jorong, South Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.

    2018-02-01

    Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.

  15. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production

    PubMed Central

    Ragazzo-Sánchez, Juan Arturo; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (<6°GL) with potential to be produced at an industrial scale was obtained. Alcoholic fermentations were performed at 28°C, 200 rpm, and noncontrolled pH. The synergistic effect on the aromatic compounds production during fermentation in mixed culture was compared with those obtained by monoculture and physic mixture of spirits produced in monoculture. The aromatic composition was determined by HS-SPME-GC. The differences in aromatic profile principally rely on the proportions in aromatic compounds and not on the number of those compounds. The multivariance analysis, principal component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains. PMID:25506606

  16. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  17. PCA based clustering for brain tumor segmentation of T1w MRI images.

    PubMed

    Kaya, Irem Ersöz; Pehlivanlı, Ayça Çakmak; Sekizkardeş, Emine Gezmez; Ibrikci, Turgay

    2017-03-01

    Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low-dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 × 256, 128 × 128 and 64 × 64, were included in the study to examine their effect on the methods. The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of T1w MRI images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Authentication of virgin olive oil by a novel curve resolution approach combined with visible spectroscopy.

    PubMed

    Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús

    2017-04-01

    Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques.

    PubMed

    Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E

    2018-04-26

    Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants. Copyright © 2018. Published by Elsevier Ltd.

  20. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  1. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Characterization of Leaf Extracts of Schinus terebinthifolius Raddi by GC-MS and Chemometric Analysis

    PubMed Central

    Carneiro, Fabíola B.; Lopes, Pablo Q.; Ramalho, Ricardo C.; Scotti, Marcus T.; Santos, Sócrates G.; Soares, Luiz A. L.

    2017-01-01

    Background: Schinus terebinthifolius Raddi belongs to Anacardiacea family and is widely known as “aroeira.” This species originates from South America, and its extracts are used in folk medicine due to its therapeutic properties, which include antimicrobial, anti-inflammatory, and antipyretic effects. The complexity and variability of the chemical constitution of the herbal raw material establishes the quality of the respective herbal medicine products. Objective: Thus, the purpose of this study was to investigate the variability of the volatile compounds from leaves of S. terebinthifolius. Materials and Methods: The samples were collected from different states of the Northeast region of Brazil and analyzed with a gas chromatograph coupled to a mass spectrometer (GC-MS). The collected data were analyzed using multivariate data analysis. Results: The samples’ chromatograms, obtained by GC-MS, showed similar chemical profiles in a number of peaks, but some differences were observed in the intensity of these analytical markers. The chromatographic fingerprints obtained by GC-MS were suitable for discrimination of the samples; these results along with a statistical treatment (principal component analysis [PCA]) were used as a tool for comparative analysis between the different samples of S. terebinthifolius. Conclusion: The experimental data show that the PCA used in this study clustered the samples into groups with similar chemical profiles, which builds an appropriate approach to evaluate the similarity in the phytochemical pattern found in the different leaf samples. SUMMARY The leave extracts of Schinus terebinthifolius were obtained by turbo-extractionThe extracts were partitioned with hexane and analyzed by GC-MSThe chromatographic data were analyzed using the principal component analysis (PCA)The PCA plots showed the main compounds (phellandrene, limonene, and carene), which were used to group the samples from a different geographical location in accordance to their chemical similarity. Abbreviations used: AL: Alagoas, BA: Bahia, CE: Ceará, CPETEC: Center for Weather Forecasting and Climate Studies, GC-MS: Gas chromatograph coupled to a mass spectrometer, MA: Maranhão, MVA: Multivariate data analysis, PB: Paraíba, PC1: Direction that describes the maximum variance of the original data, PC2: Maximum direction variance of the data in the subspace orthogonal to PC1, PCA: Principal component analysis, PE: Pernambuco, PI: Piauí, RN: Rio Grande do Norte, SE: Sergipe. PMID:29142431

  3. Health behaviours, body weight and self-esteem among grade five students in Canada.

    PubMed

    Wu, Xiuyun; Kirk, Sara F L; Ohinmaa, Arto; Veugelers, Paul

    2016-01-01

    This study sought to identify the principal components of self-esteem and the health behavioural determinants of these components among grade five students. We analysed data from a population-based survey among 4918 grade five students, who are primarily 10 and 11 years of age, and their parents in the Canadian province of Nova Scotia. The survey comprised the Harvard Youth and Adolescent Questionnaire, parental reporting of students' physical activity (PA) and time spent watching television or using computer/video games. Students heights and weights were objectively measured. We applied principal component analysis (PCA) to derive the components of self-esteem, and multilevel, multivariable logistic regression to quantify associations of diet quality, PA, sedentary behaviour and body weight with these components of self-esteem. PCA identified four components for self-esteem: self-perception, externalizing problems, internalizing problems, social-perception. Influences of health behaviours and body weight on self-esteem varied across the components. Better diet quality was associated with higher self-perception and fewer externalizing problems. Less PA and more use of computer/video games were related to lower self-perception and social-perception. Excessive TV watching was associated with more internalizing problems. Students classified as obese were more likely to report low self- and social-perception, and to experience fewer externalizing problems relative to students classified as normal weight. This study demonstrates independent influences of diet quality, physical activity, sedentary behaviour and body weight on four aspects of self-esteem among children. These findings suggest that school programs and health promotion strategies that target health behaviours may benefit self-esteem in childhood, and mental health and quality of life later in life.

  4. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less

  5. Discrimination of a chestnut-oak forest unit for geologic mapping by means of a principal component enhancement of Landsat multispectral scanner data.

    USGS Publications Warehouse

    Krohn, M.D.; Milton, N.M.; Segal, D.; Enland, A.

    1981-01-01

    A principal component image enhancement has been effective in applying Landsat data to geologic mapping in a heavily forested area of E Virginia. The image enhancement procedure consists of a principal component transformation, a histogram normalization, and the inverse principal componnet transformation. The enhancement preserves the independence of the principal components, yet produces a more readily interpretable image than does a single principal component transformation. -from Authors

  6. A climatology of total ozone mapping spectrometer data using rotated principal component analysis

    NASA Astrophysics Data System (ADS)

    Eder, Brian K.; Leduc, Sharon K.; Sickles, Joseph E.

    1999-02-01

    The spatial and temporal variability of total column ozone (Ω) obtained from the total ozone mapping spectrometer (TOMS version 7.0) during the period 1980-1992 was examined through the use of a multivariate statistical technique called rotated principal component analysis. Utilization of Kaiser's varimax orthogonal rotation led to the identification of 14, mostly contiguous subregions that together accounted for more than 70% of the total Ω variance. Each subregion displayed statistically unique Ω characteristics that were further examined through time series and spectral density analyses, revealing significant periodicities on semiannual, annual, quasi-biennial, and longer term time frames. This analysis facilitated identification of the probable mechanisms responsible for the variability of Ω within the 14 homogeneous subregions. The mechanisms were either dynamical in nature (i.e., advection associated with baroclinic waves, the quasi-biennial oscillation, or El Niño-Southern Oscillation) or photochemical in nature (i.e., production of odd oxygen (O or O3) associated with the annual progression of the Sun). The analysis has also revealed that the influence of a data retrieval artifact, found in equatorial latitudes of version 6.0 of the TOMS data, has been reduced in version 7.0.

  7. Screening of oil sources by using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and multivariate statistical analysis.

    PubMed

    Zhang, Wanfeng; Zhu, Shukui; He, Sheng; Wang, Yanxin

    2015-02-06

    Using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOFMS), volatile and semi-volatile organic compounds in crude oil samples from different reservoirs or regions were analyzed for the development of a molecular fingerprint database. Based on the GC×GC/TOFMS fingerprints of crude oils, principal component analysis (PCA) and cluster analysis were used to distinguish the oil sources and find biomarkers. As a supervised technique, the geological characteristics of crude oils, including thermal maturity, sedimentary environment etc., are assigned to the principal components. The results show that tri-aromatic steroid (TAS) series are the suitable marker compounds in crude oils for the oil screening, and the relative abundances of individual TAS compounds have excellent correlation with oil sources. In order to correct the effects of some other external factors except oil sources, the variables were defined as the content ratio of some target compounds and 13 parameters were proposed for the screening of oil sources. With the developed model, the crude oils were easily discriminated, and the result is in good agreement with the practical geological setting. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Traceability of Opuntia ficus-indica L. Miller by ICP-MS multi-element profile and chemometric approach.

    PubMed

    Mottese, Antonio Francesco; Naccari, Clara; Vadalà, Rossella; Bua, Giuseppe Daniel; Bartolomeo, Giovanni; Rando, Rossana; Cicero, Nicola; Dugo, Giacomo

    2018-01-01

    Opuntia ficus-indica L. Miller fruits, particularly 'Ficodindia dell'Etna' of Biancavilla (POD), 'Fico d'india tradizionale di Roccapalumba' with protected brand and samples from an experimental field in Pezzolo (Sicily) were analyzed by inductively coupled plasma mass spectrometry in order to determine the multi-element profile. A multivariate chemometric approach, specifically principal component analysis (PCA), was applied to individuate how mineral elements may represent a marker of geographic origin, which would be useful for traceability. PCA has allowed us to verify that the geographical origin of prickly pear fruits is significantly influenced by trace element content, and the results found in Biancavilla PDO samples were linked to the geological composition of this volcanic areas. It was observed that two principal components accounted for 72.03% of the total variance in the data and, in more detail, PC1 explains 45.51% and PC2 26.52%, respectively. This study demonstrated that PCA is an integrated tool for the traceability of food products and, at the same time, a useful method of authentication of typical local fruits such as prickly pear. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. FT-IR spectroscopy and multivariate analysis as an auxiliary tool for diagnosis of mental disorders: Bipolar and schizophrenia cases

    NASA Astrophysics Data System (ADS)

    Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.

    2016-01-01

    In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.

  10. Application of Principal Component Analysis to NIR Spectra of Phyllosilicates: A Technique for Identifying Phyllosilicates on Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Lanza, N. L.

    2012-01-01

    Orbital near-infrared (NIR) reflectance spectra of the martian surface from the OMEGA and CRISM instruments have identified a variety of phyllosilicates in Noachian terrains. The types of phyllosilicates present on Mars have important implications for the aqueous environments in which they formed, and, thus, for recognizing locales that may have been habitable. Current identifications of phyllosilicates from martian NIR data are based on the positions of spectral absorptions relative to laboratory data of well-characterized samples and from spectral ratios; however, some phyllosilicates can be difficult to distinguish from one another with these methods (i.e. illite vs. muscovite). Here we employ a multivariate statistical technique, principal component analysis (PCA), to differentiate between spectrally similar phyllosilicate minerals. PCA is commonly used in a variety of industries (pharmaceutical, agricultural, viticultural) to discriminate between samples. Previous work using PCA to analyze raw NIR reflectance data from mineral mixtures has shown that this is a viable technique for identifying mineral types, abundances, and particle sizes. Here, we evaluate PCA of second-derivative NIR reflectance data as a method for classifying phyllosilicates and test whether this method can be used to identify phyllosilicates on Mars.

  11. Quantification of intensity variations in functional MR images using rotated principal components

    NASA Astrophysics Data System (ADS)

    Backfrieder, W.; Baumgartner, R.; Sámal, M.; Moser, E.; Bergmann, H.

    1996-08-01

    In functional MRI (fMRI), the changes in cerebral haemodynamics related to stimulated neural brain activity are measured using standard clinical MR equipment. Small intensity variations in fMRI data have to be detected and distinguished from non-neural effects by careful image analysis. Based on multivariate statistics we describe an algorithm involving oblique rotation of the most significant principal components for an estimation of the temporal and spatial distribution of the stimulated neural activity over the whole image matrix. This algorithm takes advantage of strong local signal variations. A mathematical phantom was designed to generate simulated data for the evaluation of the method. In simulation experiments, the potential of the method to quantify small intensity changes, especially when processing data sets containing multiple sources of signal variations, was demonstrated. In vivo fMRI data collected in both visual and motor stimulation experiments were analysed, showing a proper location of the activated cortical regions within well known neural centres and an accurate extraction of the activation time profile. The suggested method yields accurate absolute quantification of in vivo brain activity without the need of extensive prior knowledge and user interaction.

  12. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  13. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita

    2008-01-01

    This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.

  14. Molecular responses to recurrent drought in two contrasting rice genotypes.

    PubMed

    Auler, Priscila Ariane; do Amaral, Marcelo Nogueira; Rodrigues, Gabriela Dos Santos; Benitez, Letícia Carvalho; da Maia, Luciano Carlos; Souza, Gustavo Maia; Braga, Eugenia Jacira Bolacel

    2017-11-01

    The set of variables analyzed as integrated by multivariate analysis of principal components consistently showed a memory effect induced by the drought pre-treatment in AN Cambará plants. The effects of drought can vary ddepending on many factors. Among these the occurrence of a previous water stress may leave a residual effect (memory), influencing the future performance of a plant in response to a new drought event. This study tested the hypothesis that plants experiencing recurrent drought would show more active mechanisms of water deficit tolerance, mainly plants of the genotype that is cultivated often experiencing water shortages periods. Additionally, all the plants subjected to water deficit were rehydrated by 24 h and the expression of transcription factors related to drought responses was re-evaluated. To this end, the water status of two rice genotypes, BRS Querência (flooded) and AN Cambará (dryland), was evaluated to identify molecular alterations likely underpinning drought-memory. In growth stage V5, some plants were exposed to water stress (10% VWC soil moisture-pre-treatment). Thereafter, the pots were rehydrated at the same level as the control pots and maintained under this condition until drought was reapplied (10% VWC) at the reproductive stage (R1-R2). Then, the plants were rehydrated and maintained at pot capacity for 24 h. Overall, the set of variables analyzed integrally by multivariate analysis of principal components consistently showed a memory effect induced by the drought pre-treatment in AN Cambará plants (the dryland genotype). This conclusion, based on data of the biochemical and molecular analyses, was supported by the greater capacity of maintenance of the water status by stomatal regulation of the pre-treated and rehydrated plants after the second drought stimulus.

  15. ToF-SIMS and principal component analysis of lipids and amino acids from inflamed and dysplastic human colonic mucosa.

    PubMed

    Urbini, Marco; Petito, Valentina; de Notaristefani, Francesco; Scaldaferri, Franco; Gasbarrini, Antonio; Tortora, Luca

    2017-10-01

    Here, time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis were combined to study the role of ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), in the colon cancer progression. ToF-SIMS was used to obtain mass spectra and chemical maps from the mucosal surface of human normal (NC), inflamed (IC), and dysplastic (DC) colon tissues. Chemical mapping with a lateral resolution of ≈ 1 μm allowed to evaluate zonation of fatty acids and amino acids as well as the morphological condition of the intestinal glands. High mass resolution ToF-SIMS spectra showed chemical differences in lipid and amino acid composition as a function of pathological state. In positive ion mode, mono- (MAG), di- (DAG), and triacylglycerol (TAG) signals were detected in NC tissues, while in IC and DC tissues, the only cholesterol was present as lipid class representative. Signals from fatty acids, collected in negative ion mode, were subjected to principal component analysis (PCA). PCA showed a strict correlation between IC and DC samples, due to an increase of stearic, arachidonic, and linoleic acid. In the same way, differences in the amino acid composition were highlighted through multivariate analysis. PCA revealed that glutamic acid, leucine/isoleucine, and valine fragments are related to IC tissues. On the other hand, tyrosine, methionine, and tryptophan peaks contributed highly to the separation of DC tissues. Finally, a classification of NC, IC, and DC patients was also achieved through hierarchical cluster analysis of amino acid fragments. In this case, human colonic inflammation showed a stronger relationship with normal than dysplastic condition. Graphical Abstract ᅟ.

  16. Multivariate Analysis and Prediction of Dioxin-Furan ...

    EPA Pesticide Factsheets

    Peer Review Draft of Regional Methods Initiative Final Report Dioxins, which are bioaccumulative and environmentally persistent, pose an ongoing risk to human and ecosystem health. Fish constitute a significant source of dioxin exposure for humans and fish-eating wildlife. Current dioxin analytical methods are costly, time-consuming, and produce hazardous by-products. A Danish team developed a novel, multivariate statistical methodology based on the covariance of dioxin-furan congener Toxic Equivalences (TEQs) and fatty acid methyl esters (FAMEs) and applied it to North Atlantic Ocean fishmeal samples. The goal of the current study was to attempt to extend this Danish methodology to 77 whole and composite fish samples from three trophic groups: predator (whole largemouth bass), benthic (whole flathead and channel catfish) and forage fish (composite bluegill, pumpkinseed and green sunfish) from two dioxin contaminated rivers (Pocatalico R. and Kanawha R.) in West Virginia, USA. Multivariate statistical analyses, including, Principal Components Analysis (PCA), Hierarchical Clustering, and Partial Least Squares Regression (PLS), were used to assess the relationship between the FAMEs and TEQs in these dioxin contaminated freshwater fish from the Kanawha and Pocatalico Rivers. These three multivariate statistical methods all confirm that the pattern of Fatty Acid Methyl Esters (FAMEs) in these freshwater fish covaries with and is predictive of the WHO TE

  17. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  18. Multivariate analysis of cytokine profiles in pregnancy complications.

    PubMed

    Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali

    2018-03-01

    The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.

  19. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  20. Attitude of medical students towards occupational safety and health: a multi-national study.

    PubMed

    Bhardwaj, M; Arteta, M; Batmunkh, T; Briceno Leonardo, L; Caraballo, Y; Carvalho, D; Dan, W; Erdogan, S; Brborovic, H; Gudrun, K; Ilse, U; Ingle, G K; Joshi, S K; Kishore, J; Khan, Z; Retneswari, M; Menses, C; Moraga, D; Njan, A; Okonkwo, F O; Ozlem, K; Ravichandran, S; Rosales, J; Rybacki, M; Sainnyambuu, M; Shathanapriya, K; Radon, K

    2015-01-01

    Work-related diseases contribute immensely to the global burden of diseases. Better understanding of attitudes of health care workers towards occupational safety and health (OSH) is important for planning. To assess the attitude of medical students towards OSH around the globe. A questionnaire assessing the attitude towards OSH was administered to medical and paramedical students of 21 Medical Universities across the globe. In the current study 1895 students, aged 18-36 years, from 17 countries were included. After having performed a principal components analysis, the associations of interest between the identified components and other socio demographic characteristics were assessed by multivariate linear regression. Principal component analysis revealed 3 components. Students from lower and lower-middle-income countries had a more positive attitude towards OSH, but the importance of OSH was still rated higher by students from upper-income countries. Although students from Asian and African continents showed high interest for OSH, European and South-Central American students comparatively rated importance of OSH to be higher. Paramedical students had more positive attitude towards OSH than medical students. The attitude of students from lower-income and lower-middle-income towards importance of OSH is negative. This attitude could be changed by recommending modifications to OSH courses that reflect the importance of OSH. Since paramedical students showed more interest in OSH than medical students, modifications in existing health care system with major role of paramedics in OSH service delivery is recommended.

  1. Accuracy enhancement of a multivariate calibration for lead determination in soils by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaytsev, Sergey M.; Krylov, Ivan N.; Popov, Andrey M.; Zorov, Nikita B.; Labutin, Timur A.

    2018-02-01

    We have investigated matrix effects and spectral interferences on example of lead determination in different types of soils by laser induced breakdown spectroscopy (LIBS). Comparison between analytical performances of univariate and multivariate calibrations with the use of different laser wavelength for ablation (532, 355 and 266 nm) have been reported. A set of 17 soil samples (Ca-rich, Fe-rich, lean soils etc., 8.5-280 ppm of Pb) was involved into construction of the calibration models. Spectral interferences from main components (Ca, Fe, Ti, Mg) and trace components (Mn, Nb, Zr) were estimated by spectra modeling, and they were a reason for significant differences between the univariate calibration models obtained for a three different soil types (black, red, gray) separately. Implementation of 3rd harmonic of Nd:YAG laser in combination with multivariate calibration model based on PCR with 3 principal components provided the best analytical results: the RMSEC has been lowered down to 8 ppm. The sufficient improvement of the relative uncertainty (up to 5-10%) in comparison with univariate calibration was observed at the Pb concentration level > 50 ppm, while the problem of accuracy still remains for some samples with Pb concentration at the 20 ppm level. We have also discussed a few possible ways to estimate LOD without a blank sample. The most rigorous criterion has resulted in LOD of Pb in soils being 13 ppm. Finally, a good agreement between the values of lead content predicted by LIBS (46 ± 5 ppm) and XRF (42.1 ± 3.3 ppm) in the unknown soil sample from Lomonosov Moscow State University area was demonstrated.

  2. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures

    NASA Astrophysics Data System (ADS)

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH3 asymmetric, CH2 asymmetric, CH3 symmetric and CH2 symmetric groups, (ii) unsaturation (Cdbnd C) group, and (iii) carbonyl ester (Cdbnd O) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P < 0.05) in nutrient profile and lipid related molecular spectral intensity (CH2 asymmetric stretching peak height, CH2 symmetric stretching peak height, ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH2 to CH3 symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality.

  3. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuckfield, C; J V Mcarthur

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.« less

  4. Cone-Beam Computed Tomography Analysis of Mucosal Thickening in Unilateral Cleft Lip and Palate Maxillary Sinuses.

    PubMed

    Kula, Katherine; Hale, Lindsay N; Ghoneima, Ahmed; Tholpady, Sunil; Starbuck, John M

    2016-11-01

      To compare maxillary mucosal thickening and sinus volumes of unilateral cleft lip and palate subjects (UCLP) with noncleft (nonCLP) controls.   Randomized, retrospective study of cone-beam computed tomographs (CBCT).   University.   Fifteen UCLP subjects and 15 sex- and age-matched non-CLP controls, aged 8 to 14 years.   Following institutional review board approval and reliability tests, Dolphin three-dimensional imaging software was used to segment and slice maxillary sinuses on randomly selected CBCTs. The surface area (SA) of bony sinus and airspace on all sinus slices was determined using Dolphin and multiplied by slice thickness (0.4 mm) to calculate volume. Mucosal thickening was the difference between bony sinus and airspace volumes. The number of slices with bony sinus and airspace outlines was totaled. Right and left sinus values for each group were pooled (t tests, P > .05; n = 30 each group). All measures were compared (principal components analysis, multivariate analysis of variance, analysis of variance) by group and age (P ≤ .016 was considered significant).   Principal components analysis axis 1 and 2 explained 89.6% of sample variance. Principal components analysis showed complete separation based on the sample on axis 1 only. Age groups showed some separation on axis 2. Unilateral cleft lip and palate subjects had significantly smaller bony sinus and airspace volumes, fewer bony and airspace slices, and greater mucosal thickening and percentage mucosal thickening when compared with controls. Older subjects had significantly greater bony sinus and airspace volumes than younger subjects.   Children with UCLP have significantly more maxillary sinus mucosal thickening and smaller sinuses than controls.

  5. New predictor of aortic enlargement in uncomplicated type B aortic dissection based on elliptic Fourier analysis.

    PubMed

    Sato, Hiroshi; Ito, Toshiro; Kuroda, Yosuke; Uchiyama, Hiroki; Watanabe, Toshitaka; Yasuda, Naomi; Nakazawa, Junji; Harada, Ryo; Kawaharada, Nobuyoshi

    2017-12-01

    This study aimed to re-examine the conventional predictive factors for dissected aortic enlargement, such as the aortic and false lumen diameter and to consider whether the morphological elements of the dissected aorta could be predictors by quantifying the 'shape' of the true lumen based on elliptic Fourier analysis. A total of 80 patients with uncomplicated type B aortic dissection were included. The patients were divided into 'Enlargement group' and 'No Change group.' Between the 2 groups, the mean systolic blood pressure during follow-up, aortic and false lumen maximum diameters, and analysed morphological data were compared using each statistical method. The maximum aortic and false lumen diameters were significantly larger in the Enlargement group than in the No Change group (39.3 vs 35.9 mm; P = 0.0058) (23.5 vs 18.2 mm; P = 0.000095). The principal component 1, which is the data calculated by elliptic Fourier analysis, was significantly lower in the Enlargement group than in the No Change group (0.020 vs - 0.072; P = 0.000049). The mean systolic blood pressure ≥130 mmHg, aortic diameter, false lumen diameter and principal component 1 were included in the Cox proportional hazard model as covariates to determine the significant predictive variable. Principal component 1 demonstrated the only significance with aortic enlargement on multivariate analysis (odds ratio = 0.32; P = 0.048). The analysed and calculated morphological data of the shape of the true lumen can be more effective predictive factors of aortic enlargement of type B dissection than the conventional factors. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. Comparing and combining biomarkers as principle surrogates for time-to-event clinical endpoints.

    PubMed

    Gabriel, Erin E; Sachs, Michael C; Gilbert, Peter B

    2015-02-10

    Principal surrogate endpoints are useful as targets for phase I and II trials. In many recent trials, multiple post-randomization biomarkers are measured. However, few statistical methods exist for comparison of or combination of biomarkers as principal surrogates, and none of these methods to our knowledge utilize time-to-event clinical endpoint information. We propose a Weibull model extension of the semi-parametric estimated maximum likelihood method that allows for the inclusion of multiple biomarkers in the same risk model as multivariate candidate principal surrogates. We propose several methods for comparing candidate principal surrogates and evaluating multivariate principal surrogates. These include the time-dependent and surrogate-dependent true and false positive fraction, the time-dependent and the integrated standardized total gain, and the cumulative distribution function of the risk difference. We illustrate the operating characteristics of our proposed methods in simulations and outline how these statistics can be used to evaluate and compare candidate principal surrogates. We use these methods to investigate candidate surrogates in the Diabetes Control and Complications Trial. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Tracking Equilibrium and Nonequilibrium Shifts in Data with TREND.

    PubMed

    Xu, Jia; Van Doren, Steven R

    2017-01-24

    Principal component analysis (PCA) discovers patterns in multivariate data that include spectra, microscopy, and other biophysical measurements. Direct application of PCA to crowded spectra, images, and movies (without selecting peaks or features) was shown recently to identify their equilibrium or temporal changes. To enable the community to utilize these capabilities with a wide range of measurements, we have developed multiplatform software named TREND to Track Equilibrium and Nonequilibrium population shifts among two-dimensional Data frames. TREND can also carry this out by independent component analysis. We highlight a few examples of finding concurrent processes. TREND extracts dual phases of binding to two sites directly from the NMR spectra of the titrations. In a cardiac movie from magnetic resonance imaging, TREND resolves principal components (PCs) representing breathing and the cardiac cycle. TREND can also reconstruct the series of measurements from selected PCs, as illustrated for a biphasic, NMR-detected titration and the cardiac MRI movie. Fidelity of reconstruction of series of NMR spectra or images requires more PCs than needed to plot the largest population shifts. TREND reads spectra from many spectroscopies in the most common formats (JCAMP-DX and NMR) and multiple movie formats. The TREND package thus provides convenient tools to resolve the processes recorded by diverse biophysical methods. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Exploring Geographical Differentiation of the Hoelen Medicinal Mushroom, Wolfiporia extensa (Agaricomycetes), Using Fourier-Transform Infrared Spectroscopy Combined with Multivariate Analysis.

    PubMed

    Li, Yan; Zhang, Ji; Zhao, Yanli; Liu, Honggao; Wang, Yuanzhong; Jin, Hang

    2016-01-01

    In this study the geographical differentiation of dried sclerotia of the medicinal mushroom Wolfiporia extensa, obtained from different regions in Yunnan Province, China, was explored using Fourier-transform infrared (FT-IR) spectroscopy coupled with multivariate data analysis. The FT-IR spectra of 97 samples were obtained for wave numbers ranging from 4000 to 400 cm-1. Then, the fingerprint region of 1800-600 cm-1 of the FT-IR spectrum, rather than the full spectrum, was analyzed. Different pretreatments were applied on the spectra, and a discriminant analysis model based on the Mahalanobis distance was developed to select an optimal pretreatment combination. Two unsupervised pattern recognition procedures- principal component analysis and hierarchical cluster analysis-were applied to enhance the authenticity of discrimination of the specimens. The results showed that excellent classification could be obtained after optimizing spectral pretreatment. The tested samples were successfully discriminated according to their geographical locations. The chemical properties of dried sclerotia of W. extensa were clearly dependent on the mushroom's geographical origins. Furthermore, an interesting finding implied that the elevations of collection areas may have effects on the chemical components of wild W. extensa sclerotia. Overall, this study highlights the feasibility of FT-IR spectroscopy combined with multivariate data analysis in particular for exploring the distinction of different regional W. extensa sclerotia samples. This research could also serve as a basis for the exploitation and utilization of medicinal mushrooms.

  9. Principal component analysis of biometric traits to reveal body confirmation in local hill cattle of Himalayan state of Himachal Pradesh, India.

    PubMed

    Verma, Deepak; Sankhyan, Varun; Katoch, Sanjeet; Thakur, Yash Pal

    2015-12-01

    In the present study, biometric traits (body length [BL], heart girth [HG], paunch girth (PG), forelimb length (FLL), hind limb length (HLL), face length, forehead width, forehead length, height at hump, hump length (HL), hook to hook distance, pin to pin distance, tail length (TL), TL up to switch, horn length, horn circumference, and ear length were studied in 218 adult hill cattle of Himachal Pradesh for phenotypic characterization. Morphological and biometrical observations were recorded on 218 hill cattle randomly selected from different districts within the breeding tract. Multivariate statistics and principal component analysis are used to account for the maximum portion of variation present in the original set of variables with a minimum number of composite variables through Statistical software, SAS 9.2. Five components were extracted which accounted for 65.9% of variance. The first component explained general body confirmation and explained 34.7% variation. It was represented by significant loading for BL, HG, PG, FLL, and HLL. Communality estimate ranged from 0.41 (HL) to 0.88 (TL). Second, third, fourth, and fifth component had a high loading for tail characteristics, horn characteristics, facial biometrics, and rear body, respectively. The result of component analysis of biometric traits suggested that indigenous hill cattle of Himachal Pradesh are small and compact size cattle with a medium hump, horizontally placed short ears, and a long tail. The study also revealed that factors extracted from the present investigation could be used in breeding programs with sufficient reduction in the number of biometric traits to be recorded to explain the body confirmation.

  10. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory.

    PubMed

    Zhu, Guangxu; Guo, Qingjun; Xiao, Huayun; Chen, Tongbin; Yang, Jun

    2017-06-01

    Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.

  11. Characterization of Chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics

    NASA Astrophysics Data System (ADS)

    Xu, M. L.; Yu, Y.; Ramaswamy, H. S.; Zhu, S. M.

    2017-01-01

    Chinese liquor aroma components were characterized during the aging process using gas chromatography (GC). Principal component and cluster analysis (PCA, CA) were used to discriminate the Chinese liquor age which has a great economic value. Of a total of 21 major aroma components identified and quantified, 13 components which included several acids, alcohols, esters, aldehydes and furans decreased significantly in the first year of aging, maintained the same levels (p > 0.05) for next three years and decreased again (p < 0.05) in the fifth year. On the contrary, a significant increase was observed in propionic acid, furfural and phenylethanol. Ethyl lactate was found to be the most stable aroma component during aging process. Results of PCA and CA demonstrated that young liquor (fresh) and aged liquors were well separated from each other, which is in consistent with the evolution of aroma components along with the aging process. These findings provide a quantitative basis for discriminating the Chinese liquor age and a scientific basis for further research on elucidating the liquor aging process, and a possible tool to guard against counterfeit and defective products.

  12. Use of multivariate analysis for determining sources of solutes found in wet atmospheric deposition in the United States

    USGS Publications Warehouse

    Hooper, R.P.; Peters, N.E.

    1989-01-01

    A principal-components analysis was performed on the major solutes in wet deposition collected from 194 stations in the United States and its territories. Approximately 90% of the components derived could be interpreted as falling into one of three categories - acid, salt, or an agricultural/soil association. The total mass, or the mass of any one solute, was apportioned among these components by multiple linear regression techniques. The use of multisolute components for determining trends or spatial distribution represents a substantial improvement over single-solute analysis in that these components are more directly related to the sources of the deposition. The geographic patterns displayed by the components in this analysis indicate a far more important role for acid deposition in the Southeast and intermountain regions of the United States than would be indicated by maps of sulfate or nitrate deposition alone. In the Northeast and Midwest, the acid component is not declining at most stations, as would be expected from trends in sulfate deposition, but is holding constant or increasing. This is due, in part, to a decline in the agriculture/soil factor throughout this region, which would help to neutralize the acidity.

  13. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  14. 1 H NMR study and multivariate data analysis of reindeer skin tanning methods.

    PubMed

    Zhu, Lizheng; Ilott, Andrew J; Del Federico, Eleonora; Kehlet, Cindie; Klokkernes, Torunn; Jerschow, Alexej

    2017-04-01

    Reindeer skin clothing has been an essential component in the lives of indigenous people of the arctic and sub-arctic regions, keeping them warm during harsh winters. However, the skin processing technology, which often conveys the history and tradition of the indigenous group, has not been well documented. In this study, NMR spectra and relaxation behaviors of reindeer skin samples treated with a variety of vegetable tannin extracts, oils and fatty substances are studied and compared. With the assistance of principal component analysis (PCA), one can recognize patterns and identify groupings of differently treated samples. These methods could be important aids in efforts to conserve museum leather artifacts with unknown treatment methods and in the analysis of reindeer skin tanning processes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal

    2017-09-01

    The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.

  16. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion

    PubMed Central

    Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.

    2017-01-01

    Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Methods Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P <0.00022). Suggestive associations were found for centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. Conclusions Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. PMID:28257739

  17. Investigating the sex-related geometric variation of the human cranium.

    PubMed

    Bertsatos, Andreas; Papageorgopoulou, Christina; Valakos, Efstratios; Chovalopoulou, Maria-Eleni

    2018-01-29

    Accurate sexing methods are of great importance in forensic anthropology since sex assessment is among the principal tasks when examining human skeletal remains. The present study explores a novel approach in assessing the most accurate metric traits of the human cranium for sex estimation based on 80 ectocranial landmarks from 176 modern individuals of known age and sex from the Athens Collection. The purpose of the study is to identify those distance and angle measurements that can be most effectively used in sex assessment. Three-dimensional landmark coordinates were digitized with a Microscribe 3DX and analyzed in GNU Octave. An iterative linear discriminant analysis of all possible combinations of landmarks was performed for each unique set of the 3160 distances and 246,480 angles. Cross-validated correct classification as well as multivariate DFA on top performing variables reported 13 craniometric distances with over 85% classification accuracy, 7 angles over 78%, as well as certain multivariate combinations yielding over 95%. Linear regression of these variables with the centroid size was used to assess their relation to the size of the cranium. In contrast to the use of generalized procrustes analysis (GPA) and principal component analysis (PCA), which constitute the common analytical work flow for such data, our method, although computational intensive, produced easily applicable discriminant functions of high accuracy, while at the same time explored the maximum of cranial variability.

  18. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    PubMed

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  19. Understanding characteristics in multivariate traffic flow time series from complex network structure

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei

    2017-07-01

    Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.

  20. Combining microwave resonance technology to multivariate data analysis as a novel PAT tool to improve process understanding in fluid bed granulation.

    PubMed

    Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk

    2011-08-01

    A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.

  1. Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques

    NASA Astrophysics Data System (ADS)

    Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein

    2017-10-01

    The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.

  2. On the Fallibility of Principal Components in Research

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Li, Tenglong

    2017-01-01

    The measurement error in principal components extracted from a set of fallible measures is discussed and evaluated. It is shown that as long as one or more measures in a given set of observed variables contains error of measurement, so also does any principal component obtained from the set. The error variance in any principal component is shown…

  3. Assessing the impact of fishing in shallow rocky reefs: a multivariate approach to ecosystem management.

    PubMed

    Sangil, Carlos; Martín-García, Laura; Clemente, Sabrina

    2013-11-15

    In this paper we develop a tool to assess the impact of fishing on ecosystem functioning in shallow rocky reefs. The relationships between biological parameters (fishes, sea urchins, seaweeds), and fishing activities (fish traps, boats, land-based fishing, spearfishing) were tested in La Palma island (Canary Islands). Data from fishing activities and biological parameters were analyzed using principal component analyses. We produced two models using the first component of these analyses. This component was interpreted as a new variable that described the fishing pressure and the conservation status at each studied site. Subsequently the scores on the first axis were mapped using universal kriging methods and the models obtained were extrapolated across the whole island to display the expected fishing pressure and conservation status more widely. The fishing pressure and conservation status models were spatially related; zones where fishing pressure was high coincided with zones in the unhealthiest ecological state. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Interactions between macromolecule-bound antioxidants and Trolox during liposome autoxidation: A multivariate approach.

    PubMed

    Çelik, Ecem Evrim; Rubio, Jose Manuel Amigo; Andersen, Mogens L; Gökmen, Vural

    2017-12-15

    The interactions between free and macromolecule-bound antioxidants were investigated in order to evaluate their combined effects on the antioxidant environment. Dietary fiber (DF), protein and lipid-bound antioxidants, obtained from whole wheat, soybean and olive oil products, respectively and Trolox were used for this purpose. Experimental studies were carried out in autoxidizing liposome medium by monitoring the development of fluorescent products formed by lipid oxidation. Chemometric methods were used both at experimental design and multivariate data analysis stages. Comparison of the simple addition effects of Trolox and bound antioxidants with measured values on lipid oxidation revealed synergetic interactions for DF and refined olive oil-bound antioxidants, and antagonistic interactions for protein and extra virgin olive oil-bound antioxidants with Trolox. A generalized version of logistic function was successfully used for modelling the oxidation curve of liposomes. Principal component analysis revealed two separate phases of liposome autoxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sampling methods for the study of volatile profile of PDO wine vinegars. A comparison using multivariate data analysis.

    PubMed

    Ríos-Reina, Rocío; Morales, M Lourdes; García-González, Diego L; Amigo, José M; Callejón, Raquel M

    2018-03-01

    High-quality wine vinegars have been registered in Spain under protected designation of origin (PDO): "Vinagre de Jerez", "Vinagre de Condado de Huelva" and "Vinagre de Montilla-Moriles". The raw material, production and aging processes determine their quality and their aromatic composition. Vinegar volatile profile is usually analyzed by gas chromatography-mass spectrometry (GC-MS), being necessary a previous extraction step. Thus, three different sampling methods (Headspace solid phase microextraction "HS-SPME", Headspace stir bar sorptive extraction "HSSE" and Dynamic headspace extraction "DHS") were studied for the analysis of the volatile composition of Spanish PDO wine vinegars. Multivariate curve resolution (MCR) was used to solve chromatographic problems, improving the results obtained. Principal component analysis (PCA) showed that not all the sampling methods were equally suitable for the characterization and differentiation between PDOs and categories, being HSSE the technique that made able the best vinegar characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  7. Evaluation of drinking quality of groundwater through multivariate techniques in urban area.

    PubMed

    Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D

    2010-07-01

    Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.

  8. NMR Spectroscopy Identifies Metabolites Translocated from Powdery Mildew Resistant Rootstocks to Susceptible Watermelon Scions.

    PubMed

    Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F

    2015-09-16

    Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance.

  9. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel

    PubMed Central

    Grapov, Dmitry; Newman, John W.

    2012-01-01

    Summary: Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Availability and implementation: Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010). Contact: John.Newman@ars.usda.gov Supplementary Information: Installation instructions, tutorials and users manual are available at http://sourceforge.net/projects/imdev/. PMID:22815358

  10. Detecting subtle hydrochemical anomalies with multivariate statistics: an example from homogeneous groundwaters in the Great Artesian Basin, Australia

    NASA Astrophysics Data System (ADS)

    O'Shea, Bethany; Jankowski, Jerzy

    2006-12-01

    The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright

  11. Detection of Leukemia with Blood Samples Using Raman Spectroscopy and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Martínez-Espinosa, J. C.; González-Solís, J. L.; Frausto-Reyes, C.; Miranda-Beltrán, M. L.; Soria-Fregoso, C.; Medina-Valtierra, J.

    2009-06-01

    The use of Raman spectroscopy to analyze blood biochemistry and hence distinguish between normal and abnormal blood was investigated. Blood samples were obtained from 6 patients who were clinically diagnosed with leukemia and 6 healthy volunteers. The imprint was put under the microscope and several points were chosen for Raman measurement. All the spectra were collected by a confocal Raman micro-spectroscopy (Renishaw) with a NIR 830 nm laser. It is shown that the serum samples from patients with leukemia and from the control group can be discriminated when the multivariate statistical methods of principal component analysis (PCA) and linear discriminated analysis (LDA) are applied to their Raman spectra. The ratios of some band intensities were analyzed and some band ratios were significant and corresponded to proteins, phospholipids, and polysaccharides. The preliminary results suggest that Raman Spectroscopy could be a new technique to study the degree of damage to the bone marrow using just blood samples instead of biopsies, treatment very painful for patients.

  12. A cross-species socio-emotional behaviour development revealed by a multivariate analysis.

    PubMed

    Koshiba, Mamiko; Senoo, Aya; Mimura, Koki; Shirakawa, Yuka; Karino, Genta; Obara, Saya; Ozawa, Shinpei; Sekihara, Hitomi; Fukushima, Yuta; Ueda, Toyotoshi; Kishino, Hirohisa; Tanaka, Toshihisa; Ishibashi, Hidetoshi; Yamanouchi, Hideo; Yui, Kunio; Nakamura, Shun

    2013-01-01

    Recent progress in affective neuroscience and social neurobiology has been propelled by neuro-imaging technology and epigenetic approach in neurobiology of animal behaviour. However, quantitative measurements of socio-emotional development remains lacking, though sensory-motor development has been extensively studied in terms of digitised imaging analysis. Here, we developed a method for socio-emotional behaviour measurement that is based on the video recordings under well-defined social context using animal models with variously social sensory interaction during development. The behaviour features digitized from the video recordings were visualised in a multivariate statistic space using principal component analysis. The clustering of the behaviour parameters suggested the existence of species- and stage-specific as well as cross-species behaviour modules. These modules were used to characterise the behaviour of children with or without autism spectrum disorders (ASDs). We found that socio-emotional behaviour is highly dependent on social context and the cross-species behaviour modules may predict neurobiological basis of ASDs.

  13. Composting of cow dung and crop residues using termite mounds as bulking agent.

    PubMed

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Das, Sampa; Boruah, R K; Dutta, Amrit K; Das, Dilip K

    2014-10-01

    The present study reports the suitability of termite mounds as a bulking agent for composting with crop residues and cow dung in pit method. Use of 50 kg termite mound with the crop residues (stover of ground nut: 361.65 kg; soybean: 354.59 kg; potato: 357.67 kg and mustard: 373.19 kg) and cow dung (84.90 kg) formed a good quality compost within 70 days of composting having nitrogen, phosphorus and potassium as 20.19, 3.78 and 32.77 g kg(-1) respectively with a bulk density of 0.85 g cm(-3). Other physico-chemical and germination parameters of the compost were within Indian standard, which had been confirmed by the application of multivariate analysis of variance and multivariate contrast analysis. Principal component analysis was applied in order to gain insight into the characteristic variables. Four composting treatments formed two different groups when hierarchical cluster analysis was applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-01

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  15. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis.

    PubMed

    Corvucci, Francesca; Nobili, Lara; Melucci, Dora; Grillenzoni, Francesca-Vittoria

    2015-02-15

    Honey traceability to food quality is required by consumers and food control institutions. Melissopalynologists traditionally use percentages of nectariferous pollens to discriminate the botanical origin and the entire pollen spectrum (presence/absence, type and quantities and association of some pollen types) to determinate the geographical origin of honeys. To improve melissopalynological routine analysis, principal components analysis (PCA) was used. A remarkable and innovative result was that the most significant pollens for the traditional discrimination of the botanical and geographical origin of honeys were the same as those individuated with the chemometric model. The reliability of assignments of samples to honey classes was estimated through explained variance (85%). This confirms that the chemometric model properly describes the melissopalynological data. With the aim to improve honey discrimination, FT-microRaman spectrography and multivariate analysis were also applied. Well performing PCA models and good agreement with known classes were achieved. Encouraging results were obtained for botanical discrimination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Dermatoglyphic analysis of La Liébana (Cantabria, Spain). 2. Finger ridge counts.

    PubMed

    Martín, J; Gómez, P

    1993-06-01

    The results of univariate and multivariate analyses of the quantitative finger dermatoglyphic traits (i.e. ridge counts) of a sample of 109 males and 88 females from La Liébana (Cantabria, Spain) are reported. Univariate results follow the trends usually found in previous studies, e.g., ranking of finger ridge counts, bilateral asymmetry or shape of the distributions of the frequencies. However, sexual dimorphism is nearly inexistent concerning finger ridge counts. This lack of dimorphism could be related to certain characteristics of the distribution of finger dermatoglyphic patterns previously reported by the same authors. The multivariate description has been carried out by means of principal component analysis (with varimax rotation to obtain the final solution) of the correlation matrices computed from the 10 maximal finger ridge counts. Although the results do not necessarily prove the concept of developmental fields ("field theory" and later modifications), some precepts of the theory are present: field polarization and field overlapping.

  17. Study of archaeological coins of different dynasties using libs coupled with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.

    2016-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.

  18. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  19. Discrimination of three Pegaga (Centella) varieties and determination of growth-lighting effects on metabolites content based on the chemometry of 1H nuclear magnetic resonance spectroscopy.

    PubMed

    H, Maulidiani; Khatib, Alfi; Shaari, Khozirah; Abas, Faridah; Shitan, Mahendran; Kneer, Ralf; Neto, Victor; Lajis, Nordin H

    2012-01-11

    The metabolites of three species of Apiaceae, also known as Pegaga, were analyzed utilizing (1)H NMR spectroscopy and multivariate data analysis. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) resolved the species, Centella asiatica, Hydrocotyle bonariensis, and Hydrocotyle sibthorpioides, into three clusters. The saponins, asiaticoside and madecassoside, along with chlorogenic acids were the metabolites that contributed most to the separation. Furthermore, the effects of growth-lighting condition to metabolite contents were also investigated. The extracts of C. asiatica grown in full-day light exposure exhibited a stronger radical scavenging activity and contained more triterpenes (asiaticoside and madecassoside), flavonoids, and chlorogenic acids as compared to plants grown in 50% shade. This study established the potential of using a combination of (1)H NMR spectroscopy and multivariate data analyses in differentiating three closely related species and the effects of growth lighting, based on their metabolite contents and identification of the markers contributing to their differences.

  20. Multivariate Analysis of Electron Detachment Dissociation and Infrared Multiphoton Dissociation Mass Spectra of Heparan Sulfate Tetrasaccharides Differing Only in Hexuronic acid Stereochemistry

    NASA Astrophysics Data System (ADS)

    Oh, Han Bin; Leach, Franklin E.; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I. Jonathan

    2011-03-01

    The structural characterization of glycosaminoglycan (GAG) carbohydrates by mass spectrometry has been a long-standing analytical challenge due to the inherent heterogeneity of these biomolecules, specifically polydispersity, variability in sulfation, and hexuronic acid stereochemistry. Recent advances in tandem mass spectrometry methods employing threshold and electron-based ion activation have resulted in the ability to determine the location of the labile sulfate modification as well as assign the stereochemistry of hexuronic acid residues. To facilitate the analysis of complex electron detachment dissociation (EDD) spectra, principal component analysis (PCA) is employed to differentiate the hexuronic acid stereochemistry of four synthetic GAG epimers whose EDD spectra are nearly identical upon visual inspection. For comparison, PCA is also applied to infrared multiphoton dissociation spectra (IRMPD) of the examined epimers. To assess the applicability of multivariate methods in GAG mixture analysis, PCA is utilized to identify the relative content of two epimers in a binary mixture.

  1. Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches.

    PubMed

    Yang, Jun-Ho; Yoh, Jack J

    2018-01-01

    A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.

  2. Multivariate Classification of Original and Fake Perfumes by Ion Analysis and Ethanol Content.

    PubMed

    Gomes, Clêrton L; de Lima, Ari Clecius A; Loiola, Adonay R; da Silva, Abel B R; Cândido, Manuela C L; Nascimento, Ronaldo F

    2016-07-01

    The increased marketing of fake perfumes has encouraged us to investigate how to identify such products by their chemical characteristics and multivariate analysis. The aim of this study was to present an alternative approach to distinguish original from fake perfumes by means of the investigation of sodium, potassium, chloride ions, and ethanol contents by chemometric tools. For this, 50 perfumes were used (25 original and 25 counterfeit) for the analysis of ions (ion chromatography) and ethanol (gas chromatography). The results demonstrated that the fake perfume had low levels of ethanol and high levels of chloride compared to the original product. The data were treated by chemometric tools such as principal component analysis and linear discriminant analysis. This study proved that the analysis of ethanol is an effective method of distinguishing original from the fake products, and it may potentially be used to assist legal authorities in such cases. © 2016 American Academy of Forensic Sciences.

  3. Classification of Ilex species based on metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis.

    PubMed

    Choi, Young Hae; Sertic, Sarah; Kim, Hye Kyong; Wilson, Erica G; Michopoulos, Filippos; Lefeber, Alfons W M; Erkelens, Cornelis; Prat Kricun, Sergio D; Verpoorte, Robert

    2005-02-23

    The metabolomic analysis of 11 Ilex species, I. argentina, I. brasiliensis, I. brevicuspis, I. dumosavar. dumosa, I. dumosa var. guaranina, I. integerrima, I. microdonta, I. paraguariensis var. paraguariensis, I. pseudobuxus, I. taubertiana, and I. theezans, was carried out by NMR spectroscopy and multivariate data analysis. The analysis using principal component analysis and classification of the (1)H NMR spectra showed a clear discrimination of those samples based on the metabolites present in the organic and aqueous fractions. The major metabolites that contribute to the discrimination are arbutin, caffeine, phenylpropanoids, and theobromine. Among those metabolites, arbutin, which has not been reported yet as a constituent of Ilex species, was found to be a biomarker for I. argentina,I. brasiliensis, I. brevicuspis, I. integerrima, I. microdonta, I. pseudobuxus, I. taubertiana, and I. theezans. This reliable method based on the determination of a large number of metabolites makes the chemotaxonomical analysis of Ilex species possible.

  4. [A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition].

    PubMed

    Wang, Jinjia; Liu, Yuan

    2015-04-01

    This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

  5. Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis.

    PubMed

    Song, Seung Yeob; Lee, Young Koung; Kim, In-Jung

    2016-01-01

    A high-throughput screening system for Citrus lines were established with higher sugar and acid contents using Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. FT-IR spectra confirmed typical spectral differences between the frequency regions of 950-1100 cm(-1), 1300-1500 cm(-1), and 1500-1700 cm(-1). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate five Citrus lines into three separate clusters corresponding to their taxonomic relationships. The quantitative predictive modeling of sugar and acid contents from Citrus fruits was established using partial least square regression algorithms from FT-IR spectra. The regression coefficients (R(2)) between predicted values and estimated sugar and acid content values were 0.99. These results demonstrate that by using FT-IR spectra and applying quantitative prediction modeling to Citrus sugar and acid contents, excellent Citrus lines can be early detected with greater accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Metabolomic evaluation of ginsenosides distribution in Panax genus (Panax ginseng and Panax quinquefolius) using multivariate statistical analysis.

    PubMed

    Pace, Roberto; Martinelli, Ernesto Marco; Sardone, Nicola; D E Combarieu, Eric

    2015-03-01

    Ginseng is any one of the eleven species belonging to the genus Panax of the family Araliaceae and is found in North America and in eastern Asia. Ginseng is characterized by the presence of ginsenosides. Principally Panax ginseng and Panax quinquefolius are the adaptogenic herbs and are commonly distributed as health food markets. In the present study high performance liquid chromatography has been used to identify and quantify ginsenosides in the two subject species and the different parts of the plant (roots, neck, leaves, flowers, fruits). The power of this chromatographic technique to evaluate the identity of botanical material and to distinguishing different part of the plants has been investigated with metabolomic technique such as principal component analysis. Metabolomics provide a good opportunity for mining useful chemical information from the chromatographic data set resulting an important tool for quality evaluation of medicinal plants in the authenticity, consistency and efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Chemical information obtained from Auger depth profiles by means of advanced factor analysis (MLCFA)

    NASA Astrophysics Data System (ADS)

    De Volder, P.; Hoogewijs, R.; De Gryse, R.; Fiermans, L.; Vennik, J.

    1993-01-01

    The advanced multivariate statistical technique "maximum likelihood common factor analysis (MLCFA)" is shown to be superior to "principal component analysis (PCA)" for decomposing overlapping peaks into their individual component spectra of which neither the number of components nor the peak shape of the component spectra is known. An examination of the maximum resolving power of both techniques, MLCFA and PCA, by means of artificially created series of multicomponent spectra confirms this finding unambiguously. Substantial progress in the use of AES as a chemical-analysis technique is accomplished through the implementation of MLCFA. Chemical information from Auger depth profiles is extracted by investigating the variation of the line shape of the Auger signal as a function of the changing chemical state of the element. In particular, MLCFA combined with Auger depth profiling has been applied to problems related to steelcord-rubber tyre adhesion. MLCFA allows one to elucidate the precise nature of the interfacial layer of reaction products between natural rubber vulcanized on a thin brass layer. This study reveals many interesting chemical aspects of the oxi-sulfidation of brass undetectable with classical AES.

  8. Independent component analysis-based algorithm for automatic identification of Raman spectra applied to artistic pigments and pigment mixtures.

    PubMed

    González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio

    2015-03-01

    A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.

  9. Recovery of a spectrum based on a compressive-sensing algorithm with weighted principal component analysis

    NASA Astrophysics Data System (ADS)

    Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang

    2017-07-01

    The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.

  10. Rapid discrimination of sea buckthorn berries from different H. rhamnoides subspecies by multi-step IR spectroscopy coupled with multivariate data analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Zhang, Ying; Zhang, Jing; Fan, Gang; Tu, Ya; Sun, Suqin; Shen, Xudong; Li, Qingzhu; Zhang, Yi

    2018-03-01

    As an important ethnic medicine, sea buckthorn was widely used to prevent and treat various diseases due to its nutritional and medicinal properties. According to the Chinese Pharmacopoeia, sea buckthorn was originated from H. rhamnoides, which includes five subspecies distributed in China. Confusion and misidentification usually occurred due to their similar morphology, especially in dried and powdered forms. Additionally, these five subspecies have vital differences in quality and physiological efficacy. This paper focused on the quick classification and identification method of sea buckthorn berry powders from five H. rhamnoides subspecies using multi-step IR spectroscopy coupled with multivariate data analysis. The holistic chemical compositions revealed by the FT-IR spectra demonstrated that flavonoids, fatty acids and sugars were the main chemical components. Further, the differences in FT-IR spectra regarding their peaks, positions and intensities were used to identify H. rhamnoides subspecies samples. The discrimination was achieved using principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). The results showed that the combination of multi-step IR spectroscopy and chemometric analysis offered a simple, fast and reliable method for the classification and identification of the sea buckthorn berry powders from different H. rhamnoides subspecies.

  11. [Application of chemometrics in composition-activity relationship research of traditional Chinese medicine].

    PubMed

    Han, Sheng-Nan

    2014-07-01

    Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.

  12. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    PubMed Central

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  13. Chemometric methods for the simultaneous determination of some water-soluble vitamins.

    PubMed

    Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Mohamed, Niveen A; El-Zahery, Marwa R

    2011-01-01

    Two spectrophotometric methods, derivative and multivariate methods, were applied for the determination of binary, ternary, and quaternary mixtures of the water-soluble vitamins thiamine HCI (I), pyridoxine HCI (II), riboflavin (III), and cyanocobalamin (IV). The first method is divided into first derivative and first derivative of ratio spectra methods, and the second into classical least squares and principal components regression methods. Both methods are based on spectrophotometric measurements of the studied vitamins in 0.1 M HCl solution in the range of 200-500 nm for all components. The linear calibration curves were obtained from 2.5-90 microg/mL, and the correlation coefficients ranged from 0.9991 to 0.9999. These methods were applied for the analysis of the following mixtures: (I) and (II); (I), (II), and (III); (I), (II), and (IV); and (I), (II), (III), and (IV). The described methods were successfully applied for the determination of vitamin combinations in synthetic mixtures and dosage forms from different manufacturers. The recovery ranged from 96.1 +/- 1.2 to 101.2 +/- 1.0% for derivative methods and 97.0 +/- 0.5 to 101.9 +/- 1.3% for multivariate methods. The results of the developed methods were compared with those of reported methods, and gave good accuracy and precision.

  14. Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate

    PubMed Central

    Cox, Hannah C.; Bellis, Claire; Lea, Rod A.; Quinlan, Sharon; Hughes, Roger; Dyer, Thomas; Charlesworth, Jac; Blangero, John; Griffiths, Lyn R.

    2009-01-01

    Objective(s) An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. Methods This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. Results A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h2 = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h2 = 0.33) and 4 (h2 = 0.42), respectively. Conclusion(s): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels. PMID:19339786

  15. Local Geographic Variation of Public Services Inequality: Does the Neighborhood Scale Matter?

    PubMed Central

    Wei, Chunzhu; Cabrera-Barona, Pablo; Blaschke, Thomas

    2016-01-01

    This study aims to explore the effect of the neighborhood scale when estimating public services inequality based on the aggregation of social, environmental, and health-related indicators. Inequality analyses were carried out at three neighborhood scales: the original census blocks and two aggregated neighborhood units generated by the spatial “k”luster analysis by the tree edge removal (SKATER) algorithm and the self-organizing map (SOM) algorithm. Then, we combined a set of health-related public services indicators with the geographically weighted principal components analyses (GWPCA) and the principal components analyses (PCA) to measure the public services inequality across all multi-scale neighborhood units. Finally, a statistical test was applied to evaluate the scale effects in inequality measurements by combining all available field survey data. We chose Quito as the case study area. All of the aggregated neighborhood units performed better than the original census blocks in terms of the social indicators extracted from a field survey. The SKATER and SOM algorithms can help to define the neighborhoods in inequality analyses. Moreover, GWPCA performs better than PCA in multivariate spatial inequality estimation. Understanding the scale effects is essential to sustain a social neighborhood organization, which, in turn, positively affects social determinants of public health and public quality of life. PMID:27706072

  16. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    PubMed Central

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  17. Development of a multimetric index for integrated assessment of salt marsh ecosystem condition

    USGS Publications Warehouse

    Nagel, Jessica L.; Neckles, Hilary A.; Guntenspergen, Glenn R.; Rocks, Erika N.; Schoolmaster, Donald; Grace, James B.; Skidds, Dennis; Stevens, Sara

    2018-01-01

    Tools for assessing and communicating salt marsh condition are essential to guide decisions aimed at maintaining or restoring ecosystem integrity and services. Multimetric indices (MMIs) are increasingly used to provide integrated assessments of ecosystem condition. We employed a theory-based approach that considers the multivariate relationship of metrics with human disturbance to construct a salt marsh MMI for five National Parks in the northeastern USA. We quantified the degree of human disturbance for each marsh using the first principal component score from a principal components analysis of physical, chemical, and land use stressors. We then applied a metric selection algorithm to different combinations of about 45 vegetation and nekton metrics (e.g., species abundance, species richness, and ecological and functional classifications) derived from multi-year monitoring data. While MMIs derived from nekton or vegetation metrics alone were strongly correlated with human disturbance (r values from −0.80 to −0.93), an MMI derived from both vegetation and nekton metrics yielded an exceptionally strong correlation with disturbance (r = −0.96). Individual MMIs included from one to five metrics. The metric-assembly algorithm yielded parsimonious MMIs that exhibit the greatest possible correlations with disturbance in a way that is objective, efficient, and reproducible.

  18. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China.

    PubMed

    Zhang, Qianqian; Wang, Huiwei; Wang, Yanchao; Yang, Mingnan; Zhu, Liang

    2017-07-01

    Deterioration in groundwater quality has attracted wide social interest in China. In this study, groundwater quality was monitored during December 2014 at 115 sites in the Hutuo River alluvial-pluvial fan region of northern China. Results showed that 21.7% of NO 3 - and 51.3% of total hardness samples exceeded grade III of the national quality standards for Chinese groundwater. In addition, results of gray relationship analysis (GRA) show that 64.3, 10.4, 21.7, and 3.6% of samples were within the I, II, IV, and V grades of groundwater in the Hutuo River region, respectively. The poor water quality in the study region is due to intense anthropogenic activities as well as aquifer vulnerability to contamination. Results of principal component analysis (PCA) revealed three major factors: (1) domestic wastewater and agricultural runoff pollution (anthropogenic activities), (2) water-rock interactions (natural processes), and (3) industrial wastewater pollution (anthropogenic activities). Using PCA and absolute principal component scores-multivariate linear regression (APCS-MLR), results show that domestic wastewater and agricultural runoff are the main sources of groundwater pollution in the Hutuo River alluvial-pluvial fan area. Thus, the most appropriate methods to prevent groundwater quality degradation are to improve capacities for wastewater treatment and to optimize fertilization strategies.

  19. Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data.

    PubMed

    Johnson, Justin A; Rodeberg, Nathan T; Wightman, R Mark

    2016-03-16

    The use of principal component regression, a multivariate calibration method, in the analysis of in vivo fast-scan cyclic voltammetry data allows for separation of overlapping signal contributions, permitting evaluation of the temporal dynamics of multiple neurotransmitters simultaneously. To accomplish this, the technique relies on information about current-concentration relationships across the scan-potential window gained from analysis of training sets. The ability of the constructed models to resolve analytes depends critically on the quality of these data. Recently, the use of standard training sets obtained under conditions other than those of the experimental data collection (e.g., with different electrodes, animals, or equipment) has been reported. This study evaluates the analyte resolution capabilities of models constructed using this approach from both a theoretical and experimental viewpoint. A detailed discussion of the theory of principal component regression is provided to inform this discussion. The findings demonstrate that the use of standard training sets leads to misassignment of the current-concentration relationships across the scan-potential window. This directly results in poor analyte resolution and, consequently, inaccurate quantitation, which may lead to erroneous conclusions being drawn from experimental data. Thus, it is strongly advocated that training sets be obtained under the experimental conditions to allow for accurate data analysis.

  20. Enlightening discriminative network functional modules behind Principal Component Analysis separation in differential-omic science studies

    PubMed Central

    Ciucci, Sara; Ge, Yan; Durán, Claudio; Palladini, Alessandra; Jiménez-Jiménez, Víctor; Martínez-Sánchez, Luisa María; Wang, Yuting; Sales, Susanne; Shevchenko, Andrej; Poser, Steven W.; Herbig, Maik; Otto, Oliver; Androutsellis-Theotokis, Andreas; Guck, Jochen; Gerl, Mathias J.; Cannistraci, Carlo Vittorio

    2017-01-01

    Omic science is rapidly growing and one of the most employed techniques to explore differential patterns in omic datasets is principal component analysis (PCA). However, a method to enlighten the network of omic features that mostly contribute to the sample separation obtained by PCA is missing. An alternative is to build correlation networks between univariately-selected significant omic features, but this neglects the multivariate unsupervised feature compression responsible for the PCA sample segregation. Biologists and medical researchers often prefer effective methods that offer an immediate interpretation to complicated algorithms that in principle promise an improvement but in practice are difficult to be applied and interpreted. Here we present PC-corr: a simple algorithm that associates to any PCA segregation a discriminative network of features. Such network can be inspected in search of functional modules useful in the definition of combinatorial and multiscale biomarkers from multifaceted omic data in systems and precision biomedicine. We offer proofs of PC-corr efficacy on lipidomic, metagenomic, developmental genomic, population genetic, cancer promoteromic and cancer stem-cell mechanomic data. Finally, PC-corr is a general functional network inference approach that can be easily adopted for big data exploration in computer science and analysis of complex systems in physics. PMID:28287094

  1. Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet.

    PubMed

    Shiokawa, Yuka; Date, Yasuhiro; Kikuchi, Jun

    2018-02-21

    Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data derived from chemical and biological systems. From this perspective, use of a general "linear" multivariate analysis alone limits interpretations due to "non-linear" variations in metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-incorporated analytical approach for extracting useful information from metabolic profiling data. To overcome the limitation of important variable (metabolite) determinations, we incorporated a random forest conditional variable importance measure into our KPCA-based analytical approach to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, the most important variable detected in the importance measure, was associated with high levels of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-incorporated analytical approach described herein enabled us to capture input-output responses, and should be useful not only for metabolic profiling but also for profiling in other areas of biological and environmental systems.

  2. Identification of the isomers using principal component analysis (PCA) method

    NASA Astrophysics Data System (ADS)

    Kepceoǧlu, Abdullah; Gündoǧdu, Yasemin; Ledingham, Kenneth William David; Kilic, Hamdi Sukur

    2016-03-01

    In this work, we have carried out a detailed statistical analysis for experimental data of mass spectra from xylene isomers. Principle Component Analysis (PCA) was used to identify the isomers which cannot be distinguished using conventional statistical methods for interpretation of their mass spectra. Experiments have been carried out using a linear TOF-MS coupled to a femtosecond laser system as an energy source for the ionisation processes. We have performed experiments and collected data which has been analysed and interpreted using PCA as a multivariate analysis of these spectra. This demonstrates the strength of the method to get an insight for distinguishing the isomers which cannot be identified using conventional mass analysis obtained through dissociative ionisation processes on these molecules. The PCA results dependending on the laser pulse energy and the background pressure in the spectrometers have been presented in this work.

  3. Untargeted Identification of Wood Type-Specific Markers in Particulate Matter from Wood Combustion.

    PubMed

    Weggler, Benedikt A; Ly-Verdu, Saray; Jennerwein, Maximilian; Sippula, Olli; Reda, Ahmed A; Orasche, Jürgen; Gröger, Thomas; Jokiniemi, Jorma; Zimmermann, Ralf

    2016-09-20

    Residential wood combustion emissions are one of the major global sources of particulate and gaseous organic pollutants. However, the detailed chemical compositions of these emissions are poorly characterized due to their highly complex molecular compositions, nonideal combustion conditions, and sample preparation steps. In this study, the particulate organic emissions from a masonry heater using three types of wood logs, namely, beech, birch, and spruce, were chemically characterized using thermal desorption in situ derivatization coupled to a GCxGC-ToF/MS system. Untargeted data analyses were performed using the comprehensive measurements. Univariate and multivariate chemometric tools, such as analysis of variance (ANOVA), principal component analysis (PCA), and ANOVA simultaneous component analysis (ASCA), were used to reduce the data to highly significant and wood type-specific features. This study reveals substances not previously considered in the literature as meaningful markers for differentiation among wood types.

  4. SandiaMRCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-01-05

    SandiaMCR was developed to identify pure components and their concentrations from spectral data. This software efficiently implements the multivariate calibration regression alternating least squares (MCR-ALS), principal component analysis (PCA), and singular value decomposition (SVD). Version 3.37 also includes the PARAFAC-ALS Tucker-1 (for trilinear analysis) algorithms. The alternating least squares methods can be used to determine the composition without or with incomplete prior information on the constituents and their concentrations. It allows the specification of numerous preprocessing, initialization and data selection and compression options for the efficient processing of large data sets. The software includes numerous options including the definition ofmore » equality and non-negativety constraints to realistically restrict the solution set, various normalization or weighting options based on the statistics of the data, several initialization choices and data compression. The software has been designed to provide a practicing spectroscopist the tools required to routinely analysis data in a reasonable time and without requiring expert intervention.« less

  5. Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif

    2014-11-01

    Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less

  6. Discrimination of gender-, speed-, and shoe-dependent movement patterns in runners using full-body kinematics.

    PubMed

    Maurer, Christian; Federolf, Peter; von Tscharner, Vinzenz; Stirling, Lisa; Nigg, Benno M

    2012-05-01

    Changes in gait kinematics have often been analyzed using pattern recognition methods such as principal component analysis (PCA). It is usually just the first few principal components that are analyzed, because they describe the main variability within a dataset and thus represent the main movement patterns. However, while subtle changes in gait pattern (for instance, due to different footwear) may not change main movement patterns, they may affect movements represented by higher principal components. This study was designed to test two hypotheses: (1) speed and gender differences can be observed in the first principal components, and (2) small interventions such as changing footwear change the gait characteristics of higher principal components. Kinematic changes due to different running conditions (speed - 3.1m/s and 4.9 m/s, gender, and footwear - control shoe and adidas MicroBounce shoe) were investigated by applying PCA and support vector machine (SVM) to a full-body reflective marker setup. Differences in speed changed the basic movement pattern, as was reflected by a change in the time-dependent coefficient derived from the first principal. Gender was differentiated by using the time-dependent coefficient derived from intermediate principal components. (Intermediate principal components are characterized by limb rotations of the thigh and shank.) Different shoe conditions were identified in higher principal components. This study showed that different interventions can be analyzed using a full-body kinematic approach. Within the well-defined vector space spanned by the data of all subjects, higher principal components should also be considered because these components show the differences that result from small interventions such as footwear changes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  7. Secondary ion mass spectrometry imaging and multivariate data analysis reveal co-aggregation patterns of Populus trichocarpa leaf surface compounds on a micrometer scale.

    PubMed

    Kulkarni, Purva; Dost, Mina; Bulut, Özgül Demir; Welle, Alexander; Böcker, Sebastian; Boland, Wilhelm; Svatoš, Aleš

    2018-01-01

    Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advancement in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lateral resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging with a multivariate data analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicuticular waxes (EWs) found on the adaxial leaf surface of P. trichocarpa were blotted on silicon wafers and imaged using TOF-SIMS at 10 μm and 1 μm lateral resolution. Intense M +● and M -● molecular ions were clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of long-chain aliphatic saturated alcohols (C 21 -C 30 ), hydrocarbons (C 25 -C 33 ) and wax esters (WEs; C 44 -C 48 ) were clearly observed. These data correlated with the 7 Li-chelation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying hidden patterns on the leaf's surface based on its chemical profile. After the application of principal component analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain maximum variance in the data. To further confirm the contributions from pure components, a five-factor multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed 'crystals', were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were found to be formed by C 23 or C 29 alcohols. Other less obvious patterns observed in the PCs revealed that the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and WEs. The ultra-high-resolution TOF-SIMS imaging combined with the MVA approach helped to highlight the diverse patterns underlying the leaf's surface. Currently, the methods available to analyze the surface chemistry of waxes in conjunction with the spatial information related to the distribution of compounds are limited. This study uses tools that may provide important biological insights into the composition of the wax layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mechanisms are involved in deploying wax constituents to specific regions on the leaf surface. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.

    2009-09-01

    SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.

  9. Big-Data RHEED analysis for understanding epitaxial film growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence.more » This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.« less

  10. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures.

    PubMed

    Abeysekara, Saman; Damiran, Daalkhaijav; Yu, Peiqiang

    2013-02-01

    The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH(3) asymmetric, CH(2) asymmetric, CH(3) symmetric and CH(2) symmetric groups, (ii) unsaturation (CC) group, and (iii) carbonyl ester (CO) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P<0.05) in nutrient profile and lipid related molecular spectral intensity (CH(2) asymmetric stretching peak height, CH(2) symmetric stretching peak height, ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Shape variation in the human pelvis and limb skeleton: Implications for obstetric adaptation.

    PubMed

    Kurki, Helen K; Decrausaz, Sarah-Louise

    2016-04-01

    Under the obstetrical dilemma (OD) hypothesis, selection acts on the human female pelvis to ensure a sufficiently sized obstetric canal for birthing a large-brained, broad shouldered neonate, while bipedal locomotion selects for a narrower and smaller pelvis. Despite this female-specific stabilizing selection, variability of linear dimensions of the pelvic canal and overall size are not reduced in females, suggesting shape may instead be variable among females of a population. Female canal shape has been shown to vary among populations, while male canal shape does not. Within this context, we examine within-population canal shape variation in comparison with that of noncanal aspects of the pelvis and the limbs. Nine skeletal samples (total female n = 101, male n = 117) representing diverse body sizes and shapes were included. Principal components analysis was applied to size-adjusted variables of each skeletal region. A multivariate variance was calculated using the weighted PC scores for all components in each model and F-ratios used to assess differences in within-population variances between sexes and skeletal regions. Within both sexes, multivariate canal shape variance is significantly greater than noncanal pelvis and limb variances, while limb variance is greater than noncanal pelvis variance in some populations. Multivariate shape variation is not consistently different between the sexes in any of the skeletal regions. Diverse selective pressures, including obstetrics, locomotion, load carrying, and others may act on canal shape, as well as genetic drift and plasticity, thus increasing variation in morphospace while protecting obstetric sufficiency. © 2015 Wiley Periodicals, Inc.

  12. Principal Component Relaxation Mode Analysis of an All-Atom Molecular Dynamics Simulation of Human Lysozyme

    NASA Astrophysics Data System (ADS)

    Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi

    2013-02-01

    A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.

  13. Optical characteristics of fine and coarse particulates at Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Johnson, Christopher E.

    The relationship between airborne particulate matter and atmospheric light extinction was examined using the multivariate techniques of principal component analysis and multiple linear regression on data gathered at the Grand Canyon, Arizona, from December 1979 to November 1981. Results showed that, on the average, fine sulfates were most strongly associated with light attenuation in the atmosphere. Other fine mass (nitrates, organics, soot and carbonaceous material) and coarse mass (primarily windblown dust) were much less associated with atmospheric extinction. Fine sulfate mass at the Grand Canyon was responsible for 63% of atmospheric light extinction while other fine mass and coarse mass were responsible for 17 and 20% of atmospheric extinction, respectively.

  14. Study of jojoba oil aging by FTIR.

    PubMed

    Le Dréau, Y; Dupuy, N; Gaydou, V; Joachim, J; Kister, J

    2009-05-29

    As the jojoba oil was used in cosmetic, pharmaceutical, dietetic food, animal feeding, lubrication, polishing and bio-diesel fields, it was important to study its aging at high temperature by oxidative process. In this work a FT-MIR methodology was developed for monitoring accelerate oxidative degradation of jojoba oils. Principal component analysis (PCA) was used to differentiate various samples according to their origin and obtaining process, and to differentiate oxidative conditions applied on oils. Two spectroscopic indices were calculated to report simply the oxidation phenomenon. Results were confirmed and deepened by multivariate curve resolution-alternative least square method (MCR-ALS). It allowed identifying chemical species produced or degraded during the thermal treatment according to a SIMPLISMA pretreatment.

  15. The Raman spectrum character of skin tumor induced by UVB

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Hu, Liangjun; Wang, Yunxia; Li, Yongzeng

    2016-03-01

    In our study, the skin canceration processes induced by UVB were analyzed from the perspective of tissue spectrum. A home-made Raman spectral system with a millimeter order excitation laser spot size combined with a multivariate statistical analysis for monitoring the skin changed irradiated by UVB was studied and the discrimination were evaluated. Raman scattering signals of the SCC and normal skin were acquired. Spectral differences in Raman spectra were revealed. Linear discriminant analysis (LDA) based on principal component analysis (PCA) were employed to generate diagnostic algorithms for the classification of skin SCC and normal. The results indicated that Raman spectroscopy combined with PCA-LDA demonstrated good potential for improving the diagnosis of skin cancers.

  16. Measuring the Indonesian provinces competitiveness by using PCA technique

    NASA Astrophysics Data System (ADS)

    Runita, Ditha; Fajriyah, Rohmatul

    2017-12-01

    Indonesia is a country which has vast teritoty. It has 34 provinces. Building local competitiveness is critical to enhance the long-term national competitiveness especially for a country as diverse as Indonesia. A competitive local government can attract and maintain successful firms and increase living standards for its inhabitants, because investment and skilled workers gravitate from uncompetitive regions to more competitive ones. Altough there are other methods to measuring competitiveness, but here we have demonstrated a simple method using principal component analysis (PCA). It can directly be applied to correlated, multivariate data. The analysis on Indonesian provinces provides 3 clusters based on the competitiveness measurement and the clusters are Bad, Good and Best perform provinces.

  17. Functional principal component analysis of glomerular filtration rate curves after kidney transplant.

    PubMed

    Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo

    2017-01-01

    This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.

  18. Distribution of a low dose compound within pharmaceutical tablet by using multivariate curve resolution on Raman hyperspectral images.

    PubMed

    Boiret, Mathieu; de Juan, Anna; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel

    2015-01-25

    In this work, Raman hyperspectral images and multivariate curve resolution-alternating least squares (MCR-ALS) are used to study the distribution of actives and excipients within a pharmaceutical drug product. This article is mainly focused on the distribution of a low dose constituent. Different approaches are compared, using initially filtered or non-filtered data, or using a column-wise augmented dataset before starting the MCR-ALS iterative process including appended information on the low dose component. In the studied formulation, magnesium stearate is used as a lubricant to improve powder flowability. With a theoretical concentration of 0.5% (w/w) in the drug product, the spectral variance contained in the data is weak. By using a principal component analysis (PCA) filtered dataset as a first step of the MCR-ALS approach, the lubricant information is lost in the non-explained variance and its associated distribution in the tablet cannot be highlighted. A sufficient number of components to generate the PCA noise-filtered matrix has to be used in order to keep the lubricant variability within the data set analyzed or, otherwise, work with the raw non-filtered data. Different models are built using an increasing number of components to perform the PCA reduction. It is shown that the magnesium stearate information can be extracted from a PCA model using a minimum of 20 components. In the last part, a column-wise augmented matrix, including a reference spectrum of the lubricant, is used before starting MCR-ALS process. PCA reduction is performed on the augmented matrix, so the magnesium stearate contribution is included within the MCR-ALS calculations. By using an appropriate PCA reduction, with a sufficient number of components, or by using an augmented dataset including appended information on the low dose component, the distribution of the two actives, the two main excipients and the low dose lubricant are correctly recovered. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Wavelet decomposition based principal component analysis for face recognition using MATLAB

    NASA Astrophysics Data System (ADS)

    Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish

    2016-03-01

    For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.

  20. The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores

    ERIC Educational Resources Information Center

    Velicer, Wayne F.

    1976-01-01

    Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)

  1. The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.

    1996-03-01

    Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.

  2. Application of multivariate statistical analysis concepts for assessment of hydrogeochemistry of groundwater—a study in Suri I and II blocks of Birbhum District, West Bengal, India

    NASA Astrophysics Data System (ADS)

    Das, Shreya; Nag, S. K.

    2017-05-01

    Multivariate statistical techniques, cluster and principal component analysis were applied to the data on groundwater quality of Suri I and II Blocks of Birbhum District, West Bengal, India, to extract principal factors corresponding to the different sources of variation in the hydrochemistry as well as the main controls on the hydrochemistry. For this, bore well water samples have been collected in two phases, during Post-monsoon (November 2012) and Pre-monsoon (April 2013) from 26 sampling locations spread homogeneously over the two blocks. Excess fluoride in groundwater has been reported at two locations both in post- and in pre-monsoon sessions, with a rise observed in pre-monsoon. Localized presence of excess iron has also been observed during both sessions. The water is found to be mildly alkaline in post-monsoon but slightly acidic at some locations during pre-monsoon. Correlation and cluster analysis studies demonstrate that fluoride shares a moderately positive correlation with pH in post-monsoon and a very strong one with carbonate in pre-monsoon indicating dominance of rock water interaction and ion exchange activity in the study area. Certain locations in the study area have been reported with less than 0.6 mg/l fluoride in groundwater, leading to possibility of occurrence of severe dental caries especially in children. Low values of sulfate and phosphate in water indicate a meager chance of contamination of groundwater due to anthropogenic factors.

  3. The influence of iliotibial band syndrome history on running biomechanics examined via principal components analysis.

    PubMed

    Foch, Eric; Milner, Clare E

    2014-01-03

    Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided. © 2013 Published by Elsevier Ltd.

  4. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I + II + III supernatant in human albumin separation

    NASA Astrophysics Data System (ADS)

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-01

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.

  5. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I+II+III supernatant in human albumin separation.

    PubMed

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-15

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (R p 2 ), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A power analysis for multivariate tests of temporal trend in species composition.

    PubMed

    Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel

    2011-10-01

    Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.

  7. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.

    PubMed

    Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain

    2002-01-01

    The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.

  8. Multivariate Analysis of Combined Fourier Transform Near-Infrared Spectrometry (FT-NIR) and Raman Datasets for Improved Discrimination of Drying Oils.

    PubMed

    Carlesi, Serena; Ricci, Marilena; Cucci, Costanza; La Nasa, Jacopo; Lofrumento, Cristiana; Picollo, Marcello; Becucci, Maurizio

    2015-07-01

    This work explores the application of chemometric techniques to the analysis of lipidic paint binders (i.e., drying oils) by means of Raman and near-infrared spectroscopy. These binders have been widely used by artists throughout history, both individually and in mixtures. We prepared various model samples of the pure binders (linseed, poppy seed, and walnut oils) obtained from different manufacturers. These model samples were left to dry and then characterized by Raman and reflectance near-infrared spectroscopy. Multivariate analysis was performed by applying principal component analysis (PCA) on the first derivative of the corresponding Raman spectra (1800-750 cm(-1)), near-infrared spectra (6000-3900 cm(-1)), and their combination to test whether spectral differences could enable samples to be distinguished on the basis of their composition. The vibrational bands we found most useful to discriminate between the different products we studied are the fundamental ν(C=C) stretching and methylenic stretching and bending combination bands. The results of the multivariate analysis demonstrated the potential of chemometric approaches for characterizing and identifying drying oils, and also for gaining a deeper insight into the aging process. Comparison with high-performance liquid chromatography data was conducted to check the PCA results.

  9. Multivariate analysis of matrix-assisted laser desorption/ionization mass spectrometric data related to glycoxidation products of human globins in nephropathic patients.

    PubMed

    Lapolla, Annunziata; Ragazzi, Eugenio; Andretta, Barbara; Fedele, Domenico; Tubaro, Michela; Seraglia, Roberta; Molin, Laura; Traldi, Pietro

    2007-06-01

    To clarify the possible pathogenetic role of oxidation products originated from the glycation of proteins, human globins from nephropathic patients have been studied by matrix-assisted laser desorption/ionization mass spectrometry (MALDI), revealing not only unglycated and monoglycated globins, but also a series of different species. For the last ones, structural assignments were tentatively done on the basis of observed masses and expectations for the Maillard reaction pattern. Consequently, they must be considered only propositive, and the discussion which will follow must be considered in this view. In our opinion this approach does not seem to compromise the intended diagnostic use of the data because distinctions are valid even if the assignments are uncertain. We studied nine healthy subjects and 19 nephropathic patients and processed the data obtained from the MALDI spectra using a multivariate analysis. Our results showed that multivariate analytical techniques enable differential aspects of the profile of molecular species to be identified in the blood of end stage nephropathic patients. A correct grouping can be achieved by principal component analysis (PCA) and the results suggest that several products involved in carbonyl stress exist in nephropathic patients. These compounds may have a relevant role as specific markers of the pathological state.

  10. A principal components approach to parent-to-newborn body composition associations in South India

    PubMed Central

    Veena, Sargoor R; Krishnaveni, Ghattu V; Wills, Andrew K; Hill, Jacqueline C; Fall, Caroline HD

    2009-01-01

    Background Size at birth is influenced by environmental factors, like maternal nutrition and parity, and by genes. Birth weight is a composite measure, encompassing bone, fat and lean mass. These may have different determinants. The main purpose of this paper was to use anthropometry and principal components analysis (PCA) to describe maternal and newborn body composition, and associations between them, in an Indian population. We also compared maternal and paternal measurements (body mass index (BMI) and height) as predictors of newborn body composition. Methods Weight, height, head and mid-arm circumferences, skinfold thicknesses and external pelvic diameters were measured at 30 ± 2 weeks gestation in 571 pregnant women attending the antenatal clinic of the Holdsworth Memorial Hospital, Mysore, India. Paternal height and weight were also measured. At birth, detailed neonatal anthropometry was performed. Unrotated and varimax rotated PCA was applied to the maternal and neonatal measurements. Results Rotated PCA reduced maternal measurements to 4 independent components (fat, pelvis, height and muscle) and neonatal measurements to 3 components (trunk+head, fat, and leg length). An SD increase in maternal fat was associated with a 0.16 SD increase (β) in neonatal fat (p < 0.001, adjusted for gestation, maternal parity, newborn sex and socio-economic status). Maternal pelvis, height and (for male babies) muscle predicted neonatal trunk+head (β = 0. 09 SD; p = 0.017, β = 0.12 SD; p = 0.006 and β = 0.27 SD; p < 0.001). In the mother-baby and father-baby comparison, maternal BMI predicted neonatal fat (β = 0.20 SD; p < 0.001) and neonatal trunk+head (β = 0.15 SD; p = 0.001). Both maternal (β = 0.12 SD; p = 0.002) and paternal height (β = 0.09 SD; p = 0.030) predicted neonatal trunk+head but the associations became weak and statistically non-significant in multivariate analysis. Only paternal height predicted neonatal leg length (β = 0.15 SD; p = 0.003). Conclusion Principal components analysis is a useful method to describe neonatal body composition and its determinants. Newborn adiposity is related to maternal nutritional status and parity, while newborn length is genetically determined. Further research is needed to understand mechanisms linking maternal pelvic size to fetal growth and the determinants and implications of the components (trunk v leg length) of fetal skeletal growth. PMID:19236724

  11. Chemical Composition of Ballota macedonica Vandas and Ballota nigra L. ssp. foetida (Vis.) Hayek Essential Oils - The Chemotaxonomic Approach.

    PubMed

    Đorđević, Aleksandra S; Jovanović, Olga P; Zlatković, Bojan K; Stojanović, Gordana S

    2016-06-01

    The essential oils isolated from fresh aerial parts of Ballota macedonica (two populations) and Ballota nigra ssp. foetida were analyzed by GC and GC/MS. Eighty five components were identified in total; 60 components in B. macedonica oil (population from the Former Yugoslav Republic of Macedonia), 34 components in B. macedonica oil (population from the Republic of Serbia), and 33 components in the oil of B. nigra ssp. foetida accounting for 93.9%, 98.4%, and 95.8% of the total oils, respectively. The most abundant components in B. macedonica oils were carotol (13.7 - 52.1%), germacrene D (8.6 - 24.6%), and (E)-caryophyllene (6.5 - 16.5%), while B. nigra ssp. foetida oil was dominated by (E)-phytol (56.9%), germacrene D (10.0%), and (E)-caryophyllene (4.7%). Multivariate statistical analyses (agglomerative hierarchical cluster analysis and principal component analysis) were used to compare and discuss relationships among Ballota species examined so far based on their volatile profiles. The chemical compositions of B. macedonica essential oils are reported for the first time. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Biomarkers of furan exposure by metabolic profiling of rat urine with liquid chromatography-tandem mass spectrometry and principal component analysis.

    PubMed

    Kellert, Marco; Wagner, Silvia; Lutz, Ursula; Lutz, Werner K

    2008-03-01

    Furan has been found in a number of heated food items and is carcinogenic in the liver of rats and mice. Estimates of human exposure on the basis of concentrations measured in food are not reliable because of the volatility of furan. A biomarker approach is therefore indicated. We searched for metabolites excreted in the urine of male Fischer 344 rats treated by oral gavage with 40 mg of furan per kg of body weight. A control group received the vehicle oil only. Urine collected over two 24-h periods both before and after treatment was analyzed by a column-switching LC-MS/MS method. Data were acquired by a full scan survey scan in combination with information dependent acquisition of fragmentation spectra by the use of a linear ion trap. Areas of 449 peaks were extracted from the chromatograms and used for principal component analysis (PCA). The first principal component fully separated the samples of treated rats from the controls in the first post-treatment sampling period. Thirteen potential biomarkers selected from the corresponding loadings plot were reanalyzed using specific transitions in the MRM mode. Seven peaks that increased significantly upon treatment were further investigated as biomarkers of exposure. MS/MS information indicated conjugation with glutathione on the basis of the characteristic neutral loss of 129 for mercapturates. Adducts with the side chain amino group of lysine were characterized by a neutral loss of 171 for N-acetyl- l-lysine. Analysis of products of in vitro incubations of the reactive furan metabolite cis-2-butene-1,4-dial with the respective amino acid derivatives supported five structures, including a new 3-methylthio-pyrrole metabolite probably formed by beta-lyase reaction on a glutathione conjugate, followed by methylation of the thiol group. Our results demonstrate the potential of comprehensive mass spectrometric analysis of urine combined with multivariate analyses for metabolic profiling in search of biomarkers of exposure.

  13. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer.

    PubMed

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel

    2011-02-07

    Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, (1)H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Influence of Different Drying Treatments and Extraction Solvents on the Metabolite Profile and Nitric Oxide Inhibitory Activity of Ajwa Dates.

    PubMed

    Abdul-Hamid, Nur Ashikin; Abas, Faridah; Ismail, Intan Safinar; Shaari, Khozirah; Lajis, Nordin H

    2015-11-01

    This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity. The association between metabolite profiles and nitric oxide (NO) inhibitory activity of the various extracts of Ajwa dates was evaluated by utilizing partial least squares (PLS) model. The validated PLS model can be employed to predict the NO inhibitory activity of new samples of date fruits based on their NMR spectra which was important for assessing fruit quality. The information gained might be used as guidance for quality control, nutritional values and as a basis for the preparation of any food supplements for human health that employs date palm fruit as the raw material. © 2015 Institute of Food Technologists®

  15. Multivariate Statistical Approach Applied to Sediment Source Tracking Through Quantification and Mineral Identification, Cheyenne River, South Dakota

    NASA Astrophysics Data System (ADS)

    Valder, J.; Kenner, S.; Long, A.

    2008-12-01

    Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.

  16. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors.

    PubMed

    Burgués, Javier; Marco, Santiago

    2018-08-17

    Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)

    NASA Astrophysics Data System (ADS)

    Antunes, I. M.; Ribeiro, A. F.

    2012-04-01

    The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Th and U contents) decreases along SE direction and increases along NE and SW directions. The probability of expression for principal component 2 (explaining pH, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr and Pb contents), decreases from central points (inside mine influence) to peripheral points (outside mine influence) and gradually increases along N and SW directions. The spatial distribution of tailing materials did not allowed a consistent spatial distribution. In general, the stream sediments are classified as unpolluted and not polluted or moderately polluted, according to geoaccumulation Müller index with exception of local samples, located inside mine influence. The soils cannot be used for public, private or residential uses according to the Canadian soil legislation. However, almost samples can be used for commercial or industrial occupation. According to the target values and intervention values for soils remediation, these soils need intervention. Tailing materials samples are much polluted in thorium (Th) and uranium (U) and they cannot be used for public, private or residential uses.

  18. Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms.

    PubMed

    de Pinho, P Guedes; Ribeiro, Bárbara; Gonçalves, Rui F; Baptista, Paula; Valentão, Patrícia; Seabra, Rosa M; Andrade, Paula B

    2008-03-12

    Volatile and semivolatile components of 11 wild edible mushrooms, Suillus bellini, Suillus luteus, Suillus granulatus, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Fistulina hepatica, and Cantharellus cibarius, were determined by headspace solid-phase microextraction (HS-SPME) and by liquid extraction combined with gas chromatography-mass spectrometry (GC-MS). Fifty volatiles and nonvolatiles components were formally identified and 13 others were tentatively identified. Using sensorial analysis, the descriptors "mushroomlike", "farm-feed", "floral", "honeylike", "hay-herb", and "nutty" were obtained. A correlation between sensory descriptors and volatiles was observed by applying multivariate analysis (principal component analysis and agglomerative hierarchic cluster analysis) to the sensorial and chemical data. The studied edible mushrooms can be divided in three groups. One of them is rich in C8 derivatives, such as 3-octanol, 1-octen-3-ol, trans-2-octen-1-ol, 3-octanone, and 1-octen-3-one; another one is rich in terpenic volatile compounds; and the last one is rich in methional. The presence and contents of these compounds give a considerable contribution to the sensory characteristics of the analyzed species.

  19. Quality assessment of raw and processed Arctium lappa L. through multicomponent quantification, chromatographic fingerprint, and related chemometric analysis.

    PubMed

    Qin, Kunming; Wang, Bin; Li, Weidong; Cai, Hao; Chen, Danni; Liu, Xiao; Yin, Fangzhou; Cai, Baochang

    2015-05-01

    In traditional Chinese medicine, raw and processed herbs are used to treat different diseases. Suitable quality assessment methods are crucial for the discrimination between raw and processed herbs. The dried fruit of Arctium lappa L. and their processed products are widely used in traditional Chinese medicine, yet their therapeutic effects are different. In this study, a novel strategy using high-performance liquid chromatography and diode array detection coupled with multivariate statistical analysis to rapidly explore raw and processed Arctium lappa L. was proposed and validated. Four main components in a total of 30 batches of raw and processed Fructus Arctii samples were analyzed, and ten characteristic peaks were identified in the fingerprint common pattern. Furthermore, similarity evaluation, principal component analysis, and hierachical cluster analysis were applied to demonstrate the distinction. The results suggested that the relative amounts of the chemical components of raw and processed Fructus Arctii samples are different. This new method has been successfully applied to detect the raw and processed Fructus Arctii in marketed herbal medicinal products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Assessment of the Spatial Distribution of Metal(Oid)s in Soils Around an Abandoned Pb-Smelter Plant

    NASA Astrophysics Data System (ADS)

    dos Santos, Nielson Machado; do Nascimento, Clístenes Williams Araújo; Matschullat, Jörg; de Olinda, Ricardo Alves

    2017-03-01

    Todos os Santos (All Saints) Bay area, NE-Brazil, is known for one of the most important cases of urban lead (Pb) contamination in the world. The main objective of this work was to assess and interpret the spatial distribution of As, Cd, Hg, Pb, and Zn in "background" soils of this environmentally impacted bay area, using a combination of geostatistical and multivariate analytical methods to distinguish between natural and anthropogenic sources of those metal(oid)s in soils. We collected 114 topsoil samples (0.0-0.2 m depth) from 38 sites. The median values for trace metal concentrations in soils (mg kg-1) followed the order Pb (33.9) > Zn (8.8) > As (1.2) > Cd (0.2) > Hg (0.07), clearly reflecting a Pb-contamination issue. Principal component analysis linked Cd, Pb, and Zn to the same factor (F1), chiefly corroborating their anthropogenic origin; yet, both Pb and Zn are also influenced by natural lithogenic sources. Arsenic and Hg concentrations (F2) are likely related to the natural component alone; their parent material (igneous-metamorphic rocks) seemingly confirm this hypothesis. The heterogeneity of sources and the complexity of the spatial distribution of metals in large areas such as the Todos os Santos Bay warrant, the importance of multivariate and geostatistical analyses in the interpretation of environmental data.

  1. Mini-DIAL system measurements coupled with multivariate data analysis to identify TIC and TIM simulants: preliminary absorption database analysis.

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Malizia, A.; Gelfusa, M.; Martinelli, E.; Di Natale, C.; Poggi, L. A.; Bellecci, C.

    2017-01-01

    Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis.

  2. Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by (1)H-NMR spectroscopy.

    PubMed

    Pec, Jaroslav; Flores-Sanchez, Isvett Josefina; Choi, Young Hae; Verpoorte, Robert

    2010-07-01

    Cannabis sativa L. plants produce a diverse array of secondary metabolites. Cannabis cell cultures were treated with jasmonic acid (JA) and pectin as elicitors to evaluate their effect on metabolism from two cell lines using NMR spectroscopy and multivariate data analysis. According to principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA), the chloroform extract of the pectin-treated cultures were more different than control and JA-treated cultures; but in the methanol/water extract the metabolome of the JA-treated cells showed clear differences with control and pectin-treated cultures. Tyrosol, an antioxidant metabolite, was detected in cannabis cell cultures. The tyrosol content increased after eliciting with JA.

  3. The Classification of Ground Roasted Decaffeinated Coffee Using UV-VIS Spectroscopy and SIMCA Method

    NASA Astrophysics Data System (ADS)

    Yulia, M.; Asnaning, A. R.; Suhandy, D.

    2018-05-01

    In this work, an investigation on the classification between decaffeinated and non- decaffeinated coffee samples using UV-VIS spectroscopy and SIMCA method was investigated. Total 200 samples of ground roasted coffee were used (100 samples for decaffeinated coffee and 100 samples for non-decaffeinated coffee). After extraction and dilution, the spectra of coffee samples solution were acquired using a UV-VIS spectrometer (Genesys™ 10S UV-VIS, Thermo Scientific, USA) in the range of 190-1100 nm. The multivariate analyses of the spectra were performed using principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The SIMCA model showed that the classification between decaffeinated and non-decaffeinated coffee samples was detected with 100% sensitivity and specificity.

  4. Multivariate analysis of the immune response to a vaccine as an alternative to the repetition of animal challenge studies for vaccines with demonstrated efficacy.

    PubMed

    Chapat, Ludivine; Hilaire, Florence; Bouvet, Jérome; Pialot, Daniel; Philippe-Reversat, Corinne; Guiot, Anne-Laure; Remolue, Lydie; Lechenet, Jacques; Andreoni, Christine; Poulet, Hervé; Day, Michael J; De Luca, Karelle; Cariou, Carine; Cupillard, Lionel

    2017-07-01

    The assessment of vaccine combinations, or the evaluation of the impact of minor modifications of one component in well-established vaccines, requires animal challenges in the absence of previously validated correlates of protection. As an alternative, we propose conducting a multivariate analysis of the specific immune response to the vaccine. This approach is consistent with the principles of the 3Rs (Refinement, Reduction and Replacement) and avoids repeating efficacy studies based on infectious challenges in vivo. To validate this approach, a set of nine immunological parameters was selected in order to characterize B and T lymphocyte responses against canine rabies virus and to evaluate the compatibility between two canine vaccines, an inactivated rabies vaccine (RABISIN ® ) and a combined vaccine (EURICAN ® DAPPi-Lmulti) injected at two different sites in the same animals. The analysis was focused on the magnitude and quality of the immune response. The multi-dimensional picture given by this 'immune fingerprint' was used to assess the impact of the concomitant injection of the combined vaccine on the immunogenicity of the rabies vaccine. A principal component analysis fully discriminated the control group from the groups vaccinated with RABISIN ® alone or RABISIN ® +EURICAN ® DAPPi-Lmulti and confirmed the compatibility between the rabies vaccines. This study suggests that determining the immune fingerprint, combined with a multivariate statistical analysis, is a promising approach to characterizing the immunogenicity of a vaccine with an established record of efficacy. It may also avoid the need to repeat efficacy studies involving challenge infection in case of minor modifications of the vaccine or for compatibility studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Characterization of regional cold-hydrothermal inflows enriched in arsenic and associated trace-elements in the southern part of the Duero Basin (Spain), by multivariate statistical analysis.

    PubMed

    Giménez-Forcada, Elena; Vega-Alegre, Marisol; Timón-Sánchez, Susana

    2017-09-01

    Naturally occurring arsenic in groundwater exceeding the limit for potability has been reported along the southern edge of the Cenozoic Duero Basin (CDB) near its contact with the Spanish Central System (SCS). In this area, spatial variability of arsenic is high, peaking at 241μg/L. Forty-seven percent of samples collected contained arsenic above the maximum allowable concentration for drinking water (10μg/L). Correlations of As with other hydrochemical variables were investigated using multivariate statistical analysis (Hierarchical Cluster Analysis, HCA and Principal Component Analysis, PCA). It was found that As, V, Cr and pH are closely related and that there were also close correlations with temperature and Na + . The highest concentrations of arsenic and other associated Potentially Toxic Geogenic Trace Elements (PTGTE) are linked to alkaline NaHCO 3 waters (pH≈9), moderate oxic conditions and temperatures of around 18°C-19°C. The most plausible hypothesis to explain the high arsenic concentrations is the contribution of deeper regional flows with a significant hydrothermal component (cold-hydrothermal waters), flowing through faults in the basement rock. Water mixing and water-rock interactions occur both in the fissured aquifer media (igneous and metasedimentary bedrock) and in the sedimentary environment of the CDB, where agricultural pollution phenomena are also active. A combination of multivariate statistical tools and hydrochemical analysis enabled the distribution pattern of dissolved As and other PTGTE in groundwaters in the study area to be interpreted, and their most likely origin to be established. This methodology could be applied to other sedimentary areas with similar characteristics and problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California

    USGS Publications Warehouse

    Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.

    2013-01-01

    Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.

  7. Evaluating the efficiency of spectral resolution of univariate methods manipulating ratio spectra and comparing to multivariate methods: An application to ternary mixture in common cold preparation

    NASA Astrophysics Data System (ADS)

    Moustafa, Azza Aziz; Salem, Hesham; Hegazy, Maha; Ali, Omnia

    2015-02-01

    Simple, accurate, and selective methods have been developed and validated for simultaneous determination of a ternary mixture of Chlorpheniramine maleate (CPM), Pseudoephedrine HCl (PSE) and Ibuprofen (IBF), in tablet dosage form. Four univariate methods manipulating ratio spectra were applied, method A is the double divisor-ratio difference spectrophotometric method (DD-RD). Method B is double divisor-derivative ratio spectrophotometric method (DD-RD). Method C is derivative ratio spectrum-zero crossing method (DRZC), while method D is mean centering of ratio spectra (MCR). Two multivariate methods were also developed and validated, methods E and F are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods have the advantage of simultaneous determination of the mentioned drugs without prior separation steps. They were successfully applied to laboratory-prepared mixtures and to commercial pharmaceutical preparation without any interference from additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with the official methods where no significant difference was observed regarding both accuracy and precision.

  8. Multivariate statistical analysis strategy for multiple misfire detection in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Hu, Chongqing; Li, Aihua; Zhao, Xingyang

    2011-02-01

    This paper proposes a multivariate statistical analysis approach to processing the instantaneous engine speed signal for the purpose of locating multiple misfire events in internal combustion engines. The state of each cylinder is described with a characteristic vector extracted from the instantaneous engine speed signal following a three-step procedure. These characteristic vectors are considered as the values of various procedure parameters of an engine cycle. Therefore, determination of occurrence of misfire events and identification of misfiring cylinders can be accomplished by a principal component analysis (PCA) based pattern recognition methodology. The proposed algorithm can be implemented easily in practice because the threshold can be defined adaptively without the information of operating conditions. Besides, the effect of torsional vibration on the engine speed waveform is interpreted as the presence of super powerful cylinder, which is also isolated by the algorithm. The misfiring cylinder and the super powerful cylinder are often adjacent in the firing sequence, thus missing detections and false alarms can be avoided effectively by checking the relationship between the cylinders.

  9. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    PubMed

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Multivariate data analysis on historical IPV production data for better process understanding and future improvements.

    PubMed

    Thomassen, Yvonne E; van Sprang, Eric N M; van der Pol, Leo A; Bakker, Wilfried A M

    2010-09-01

    Historical manufacturing data can potentially harbor a wealth of information for process optimization and enhancement of efficiency and robustness. To extract useful data multivariate data analysis (MVDA) using projection methods is often applied. In this contribution, the results obtained from applying MVDA on data from inactivated polio vaccine (IPV) production runs are described. Data from over 50 batches at two different production scales (700-L and 1,500-L) were available. The explorative analysis performed on single unit operations indicated consistent manufacturing. Known outliers (e.g., rejected batches) were identified using principal component analysis (PCA). The source of operational variation was pinpointed to variation of input such as media. Other relevant process parameters were in control and, using this manufacturing data, could not be correlated to product quality attributes. The gained knowledge of the IPV production process, not only from the MVDA, but also from digitalizing the available historical data, has proven to be useful for troubleshooting, understanding limitations of available data and seeing the opportunity for improvements. 2010 Wiley Periodicals, Inc.

  11. An anthropometric study of Serbian metal industry workers.

    PubMed

    Omić, S; Brkić, V K Spasojevic; Golubović, T A; Brkić, A D; Klarin, M M

    2017-01-01

    There are recent studies using new industrial workers' anthropometric data in different countries, but for Serbia such data are not available. This study is the first anthropometric study of Serbian metal industry workers in the country, whose labor force is increasingly employed both on local and international markets. The metal industry is one of Serbia's most important economic sectors. To this end, we collected the basic static anthropometric dimensions of 122 industrial workers and used principal components analysis (PCA) to obtain multivariate anthropometric models. To confirm the results, the dimensions of an additional 50 workers were collected. The PCA methodology was also compared with the percentile method. Comparing both data samples, we found that 96% of the participants are within the tolerance ellipsoid. According to this study, multivariate modeling covers a larger extent of the intended population proportion compared to percentiles. The results of this research are useful for the designers of metal industry workstations. This information can be used in dimensioning the workplace, thus increasing job satisfaction, reducing the risk of injuries and fatalities, and consequently increasing productivity and safety.

  12. Characterization of monofloral honeys with multivariate analysis of their chemical profile and antioxidant activity.

    PubMed

    Sant'Ana, Luiza D'O; Sousa, Juliana P L M; Salgueiro, Fernanda B; Lorenzon, Maria Cristina Affonso; Castro, Rosane N

    2012-01-01

    Various bioactive chemical constituents were quantified for 21 honey samples obtained at Rio de Janeiro and Minas Gerais, Brazil. To evaluate their antioxidant activity, 3 different methods were used: the ferric reducing antioxidant power, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, and the 2,2'-azinobis (3-ethylbenzothiazolin)-6-sulfonate (ABTS) assays. Correlations between the parameters were statistically significant (-0.6684 ≤ r ≤-0.8410, P < 0.05). Principal component analysis showed that honey samples from the same floral origins had more similar profiles, which made it possible to group the eucalyptus, morrão de candeia, and cambara honey samples in 3 distinct areas, while cluster analysis could separate the artificial honey from the floral honeys. This research might aid in the discrimination of honey floral origin, by using simple analytical methods in association with multivariate analysis, which could also show a great difference among floral honeys and artificial honey, indicating a possible way to help with the identification of artificial honeys. © 2011 Institute of Food Technologists®

  13. Patient Safety Incidents and Nursing Workload 1

    PubMed Central

    Carlesi, Katya Cuadros; Padilha, Kátia Grillo; Toffoletto, Maria Cecília; Henriquez-Roldán, Carlos; Juan, Monica Andrea Canales

    2017-01-01

    ABSTRACT Objective: to identify the relationship between the workload of the nursing team and the occurrence of patient safety incidents linked to nursing care in a public hospital in Chile. Method: quantitative, analytical, cross-sectional research through review of medical records. The estimation of workload in Intensive Care Units (ICUs) was performed using the Therapeutic Interventions Scoring System (TISS-28) and for the other services, we used the nurse/patient and nursing assistant/patient ratios. Descriptive univariate and multivariate analysis were performed. For the multivariate analysis we used principal component analysis and Pearson correlation. Results: 879 post-discharge clinical records and the workload of 85 nurses and 157 nursing assistants were analyzed. The overall incident rate was 71.1%. It was found a high positive correlation between variables workload (r = 0.9611 to r = 0.9919) and rate of falls (r = 0.8770). The medication error rates, mechanical containment incidents and self-removal of invasive devices were not correlated with the workload. Conclusions: the workload was high in all units except the intermediate care unit. Only the rate of falls was associated with the workload. PMID:28403334

  14. Detection and discrimination of microorganisms on various substrates with quantum cascade laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Rios-Velazquez, Carlos; Vazquez-Ayala, Iris; Hernández-Rivera, Samuel P.

    2014-06-01

    Investigations focusing on devising rapid and accurate methods for developing signatures for microorganisms that could be used as biological warfare agents' detection, identification, and discrimination have recently increased significantly. Quantum cascade laser (QCL)-based spectroscopic systems have revolutionized many areas of defense and security including this area of research. In this contribution, infrared spectroscopy detection based on QCL was used to obtain the mid-infrared (MIR) spectral signatures of Bacillus thuringiensis, Escherichia coli, and Staphylococcus epidermidis. These bacteria were used as microorganisms that simulate biothreats (biosimulants) very truthfully. The experiments were conducted in reflection mode with biosimulants deposited on various substrates including cardboard, glass, travel bags, wood, and stainless steel. Chemometrics multivariate statistical routines, such as principal component analysis regression and partial least squares coupled to discriminant analysis, were used to analyze the MIR spectra. Overall, the investigated infrared vibrational techniques were useful for detecting target microorganisms on the studied substrates, and the multivariate data analysis techniques proved to be very efficient for classifying the bacteria and discriminating them in the presence of highly IR-interfering media.

  15. The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: An Assessment of Reliability and Validity

    PubMed Central

    Irvine, Karen-Amanda; Ferguson, Adam R.; Mitchell, Kathleen D.; Beattie, Stephanie B.; Lin, Amity; Stuck, Ellen D.; Huie, J. Russell; Nielson, Jessica L.; Talbott, Jason F.; Inoue, Tomoo; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2014-01-01

    The IBB scale is a recently developed forelimb scale for the assessment of fine control of the forelimb and digits after cervical spinal cord injury [SCI; (1)]. The present paper describes the assessment of inter-rater reliability and face, concurrent and construct validity of this scale following SCI. It demonstrates that the IBB is a reliable and valid scale that is sensitive to severity of SCI and to recovery over time. In addition, the IBB correlates with other outcome measures and is highly predictive of biological measures of tissue pathology. Multivariate analysis using principal component analysis (PCA) demonstrates that the IBB is highly predictive of the syndromic outcome after SCI (2), and is among the best predictors of bio-behavioral function, based on strong construct validity. Altogether, the data suggest that the IBB, especially in concert with other measures, is a reliable and valid tool for assessing neurological deficits in fine motor control of the distal forelimb, and represents a powerful addition to multivariate outcome batteries aimed at documenting recovery of function after cervical SCI in rats. PMID:25071704

  16. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices

    NASA Astrophysics Data System (ADS)

    Di Anibal, Carolina V.; Marsal, Lluís F.; Callao, M. Pilar; Ruisánchez, Itziar

    2012-02-01

    Raman spectroscopy combined with multivariate analysis was evaluated as a tool for detecting Sudan I dye in culinary spices. Three Raman modalities were studied: normal Raman, FT-Raman and SERS. The results show that SERS is the most appropriate modality capable of providing a proper Raman signal when a complex matrix is analyzed. To get rid of the spectral noise and background, Savitzky-Golay smoothing with polynomial baseline correction and wavelet transform were applied. Finally, to check whether unadulterated samples can be differentiated from samples adulterated with Sudan I dye, an exploratory analysis such as principal component analysis (PCA) was applied to raw data and data processed with the two mentioned strategies. The results obtained by PCA show that Raman spectra need to be properly treated if useful information is to be obtained and both spectra treatments are appropriate for processing the Raman signal. The proposed methodology shows that SERS combined with appropriate spectra treatment can be used as a practical screening tool to distinguish samples suspicious to be adulterated with Sudan I dye.

  17. Descriptor selection for banana accessions based on univariate and multivariate analysis.

    PubMed

    Brandão, L P; Souza, C P F; Pereira, V M; Silva, S O; Santos-Serejo, J A; Ledo, C A S; Amorim, E P

    2013-05-14

    Our objective was to establish a minimum number of morphological descriptors for the characterization of banana germplasm and evaluate the efficiency of removal of redundant characters, based on univariate and multivariate statistical analyses. Phenotypic characterization was made of 77 accessions from Bahia, Brazil, using 92 descriptors. The selection of the descriptors was carried out by principal components analysis (quantitative) and by entropy (multi-category). Efficiency of elimination was analyzed by a comparative study between the clusters formed, taking into consideration all 92 descriptors and smaller groups. The selected descriptors were analyzed with the Ward-MLM procedure and a combined matrix formed by the Gower algorithm. We were able to reduce the number of descriptors used for characterizing the banana germplasm (42%). The correlation between the matrices considering the 92 descriptors and the selected ones was 0.82, showing that the reduction in the number of descriptors did not influence estimation of genetic variability between the banana accessions. We conclude that removing these descriptors caused no loss of information, considering the groups formed from pre-established criteria, including subgroup/subspecies.

  18. Summer microhabitat use by adult and young-of-year snail darters (Percina tanasi) in two rivers

    USGS Publications Warehouse

    Ashton, M.J.; Layzer, James B.

    2010-01-01

    We characterised microhabitat availability and use by adult and young-of-year (YOY) snail darters (Percina tanasi Etnier 1976) while snorkelling in the French Broad and Hiwassee rivers, TN, USA. Both age groups of snail darters disproportionately used most microhabitat variables compared to their availability. Snail darters primarily occupied moderately deep, swift water over gravel substrates with little macrophyte coverage and no silt. Univariate comparisons indicated that adult and YOY darters occupied different habitat, but there was no marked differences between principal components analysis plots of multivariate microhabitat use within a river. Although the availability of microhabitat variables differed between the French Broad and Hiwassee rivers, univariate means and multivariate plots illustrated that the habitats used were generally similar by age groups of snail darters between rivers. Because our observations of habitat availability and use were constrained to low flow periods and depths <1 m, the transferability of our results to higher flow periods may be limited. However, the similarity in habitat use between rivers suggests that our results can be applied to low-normal flow conditions in other streams.

  19. Nonlinear Principal Components Analysis: Introduction and Application

    ERIC Educational Resources Information Center

    Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Koojj, Anita J.

    2007-01-01

    The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal…

  20. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    USDA-ARS?s Scientific Manuscript database

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  1. Similarities between principal components of protein dynamics and random diffusion

    NASA Astrophysics Data System (ADS)

    Hess, Berk

    2000-12-01

    Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.

  2. Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images

    PubMed Central

    Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali

    2015-01-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077

  3. Fertilizer nitrogen, soil chemical properties, and their determinacy on rice yield: Evidence from 92 paddy fields of a large-scale farm in the Kanto Region of Japan

    NASA Astrophysics Data System (ADS)

    Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S.

    2017-07-01

    Rice, a staple crop in Japan, is at risk of decreasing production and its yield highly depends on soil fertility. This study aimed to investigate determinants of rice yield, from the perspectives of fertilizer nitrogen and soil chemical properties. The data were sampled in 2014 and 2015 from 92 peat soil paddy fields on a large-scale farm located in the Kanto Region of Japan. The rice variety used was the most widely planted Koshihikari in Japan. Regression analysis indicated that fertilizer nitrogen significantly affected the yield, with a significant sustained effect to the subsequent year. Twelve soil chemical properties, including pH, cation exchange capacity, content of pyridine base elements, phosphoric acid, and silicic acid, were estimated. In addition to silicic acid, magnesia, in forms of its exchangeable content, saturation, and ratios to potassium and lime, positively affected the yield, while phosphoric acid negatively affected the yield. We assessed the soil chemical properties by soil quality index and principal component analysis. Positive effects were identified for both approaches, with the former performing better in explaining the rice yield. For soil quality index, the individual standardized soil properties and margins for improvement were indicated for each paddy field. Finally, multivariate regression on the principal components identified the most significant properties.

  4. Construction and comparison of gene co-expression networks shows complex plant immune responses

    PubMed Central

    López, Camilo; López-Kleine, Liliana

    2014-01-01

    Gene co-expression networks (GCNs) are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA). Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses. PMID:25320678

  5. Raman exfoliative cytology for oral precancer diagnosis

    NASA Astrophysics Data System (ADS)

    Sahu, Aditi; Gera, Poonam; Pai, Venkatesh; Dubey, Abhishek; Tyagi, Gunjan; Waghmare, Mandavi; Pagare, Sandeep; Mahimkar, Manoj; Murali Krishna, C.

    2017-11-01

    Oral premalignant lesions (OPLs) such as leukoplakia, erythroplakia, and oral submucous fibrosis, often precede oral cancer. Screening and management of these premalignant conditions can improve prognosis. Raman spectroscopy has previously demonstrated potential in the diagnosis of oral premalignant conditions (in vivo), detected viral infection, and identified cancer in both oral and cervical exfoliated cells (ex vivo). The potential of Raman exfoliative cytology (REC) in identifying premalignant conditions was investigated. Oral exfoliated samples were collected from healthy volunteers (n=20), healthy volunteers with tobacco habits (n=20), and oral premalignant conditions (n=27, OPL) using Cytobrush. Spectra were acquired using Raman microprobe. Spectral acquisition parameters were: λex: 785 nm, laser power: 40 mW, acquisition time: 15 s, and average: 3. Postspectral acquisition, cell pellet was subjected to Pap staining. Multivariate analysis was carried out using principal component analysis and principal component-linear discriminant analysis using both spectra- and patient-wise approaches in three- and two-group models. OPLs could be identified with ˜77% (spectra-wise) and ˜70% (patient-wise) sensitivity in the three-group model while with 86% (spectra-wise) and 83% (patient-wise) in the two-group model. Use of histopathologically confirmed premalignant cases and better sampling devices may help in development of improved standard models and also enhance the sensitivity of the method. Future longitudinal studies can help validate potential of REC in screening and monitoring high-risk populations and prognosis prediction of premalignant lesions.

  6. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Guo, Huaicheng; Liu, Lei

    2007-10-01

    Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.

  7. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil.

    PubMed

    Upadhyay, Rohit; Mishra, Hari Niwas

    2016-04-01

    The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p < 0.05) and lack of fit was insignificant (p > 0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources.

  8. Statistical process control of cocrystallization processes: A comparison between OPLS and PLS.

    PubMed

    Silva, Ana F T; Sarraguça, Mafalda Cruz; Ribeiro, Paulo R; Santos, Adenilson O; De Beer, Thomas; Lopes, João Almeida

    2017-03-30

    Orthogonal partial least squares regression (OPLS) is being increasingly adopted as an alternative to partial least squares (PLS) regression due to the better generalization that can be achieved. Particularly in multivariate batch statistical process control (BSPC), the use of OPLS for estimating nominal trajectories is advantageous. In OPLS, the nominal process trajectories are expected to be captured in a single predictive principal component while uncorrelated variations are filtered out to orthogonal principal components. In theory, OPLS will yield a better estimation of the Hotelling's T 2 statistic and corresponding control limits thus lowering the number of false positives and false negatives when assessing the process disturbances. Although OPLS advantages have been demonstrated in the context of regression, its use on BSPC was seldom reported. This study proposes an OPLS-based approach for BSPC of a cocrystallization process between hydrochlorothiazide and p-aminobenzoic acid monitored on-line with near infrared spectroscopy and compares the fault detection performance with the same approach based on PLS. A series of cocrystallization batches with imposed disturbances were used to test the ability to detect abnormal situations by OPLS and PLS-based BSPC methods. Results demonstrated that OPLS was generally superior in terms of sensibility and specificity in most situations. In some abnormal batches, it was found that the imposed disturbances were only detected with OPLS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Label-free monitoring of inflammatory tissue conditions using a carrageenan-induced acute inflammation rat model.

    PubMed

    Lee, Seung Ho; Lee, Sang Hwa; Shin, Jae-Ho; Choi, Samjin

    2018-06-01

    Although the confirmation of inflammatory changes within tissues at the onset of various diseases is critical for the early detection of disease and selection of appropriate treatment, most therapies are based on complex and time-consuming diagnostic procedures. Raman spectroscopy has the ability to provide non-invasive, real-time, chemical bonding analysis through the inelastic scattering of photons. In this study, we evaluate the feasibility of Raman spectroscopy as a new, easy, fast, and accurate diagnostic method to support diagnostic decisions. The molecular changes in carrageenan-induced acute inflammation rat tissues were assessed by Raman spectroscopy. Volumes of 0 (control), 100, 150, and 200 µL of 1% carrageenan were administered to rat hind paws to control the degree of inflammation. The prominent peaks at [1,062, 1,131] cm -1 and [2,847, 2,881] cm -1 were selected as characteristic measurements corresponding to the C-C stretching vibrational modes and the symmetric and asymmetric C-H (CH 2 ) stretching vibrational modes, respectively. Principal component analysis of the inflammatory Raman spectra enabled graphical representation of the degree of inflammation through principal component loading profiles of inflammatory tissues on a two-dimensional plot. Therefore, Raman spectroscopy with multivariate statistical analysis represents a promising method for detecting biomolecular responses based on different types of inflammatory tissues. © 2018 Wiley Periodicals, Inc.

  10. Integrating Multiple Correlated Phenotypes for Genetic Association Analysis by Maximizing Heritability

    PubMed Central

    Zhou, Jin J.; Cho, Michael H.; Lange, Christoph; Lutz, Sharon; Silverman, Edwin K.; Laird, Nan M.

    2015-01-01

    Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing power to detect causal genetic variants. One approach involves assessing the relationship between each phenotype and each single nucleotide polymorphism (SNP) individually and using a Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a multivariate regression or a dimension reduction technique, such as principal component analysis (PCA), and test for the association with the principal components (PC) of the phenotypes rather than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to maximize heritability at individual SNPs, in this paper, we propose to construct a maximally heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-heritability. The heritability and co-heritability only need to be estimated once, therefore our method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the individual phenotypes with increased heritability and power over the phenotypes being combined. Simulations show that the heritability and power achieved agree well with the theory for large samples and two phenotypes. We compare our approach with commonly used methods and assess both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for how to choose the phenotypes for combination. An application of our approach to a COPD genome-wide association study shows the practical relevance. PMID:26111731

  11. A gap-filling model for eddy covariance latent heat flux: Estimating evapotranspiration of a subtropical seasonal evergreen broad-leaved forest as an example

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ying; Chu, Chia-Ren; Li, Ming-Hsu

    2012-10-01

    SummaryIn this paper we present a semi-parametric multivariate gap-filling model for tower-based measurement of latent heat flux (LE). Two statistical techniques, the principal component analysis (PCA) and a nonlinear interpolation approach were integrated into this LE gap-filling model. The PCA was first used to resolve the multicollinearity relationships among various environmental variables, including radiation, soil moisture deficit, leaf area index, wind speed, etc. Two nonlinear interpolation methods, multiple regressions (MRS) and the K-nearest neighbors (KNNs) were examined with random selected flux gaps for both clear sky and nighttime/cloudy data to incorporate into this LE gap-filling model. Experimental results indicated that the KNN interpolation approach is able to provide consistent LE estimations while MRS presents over estimations during nighttime/cloudy. Rather than using empirical regression parameters, the KNN approach resolves the nonlinear relationship between the gap-filled LE flux and principal components with adaptive K values under different atmospheric states. The developed LE gap-filling model (PCA with KNN) works with a RMSE of 2.4 W m-2 (˜0.09 mm day-1) at a weekly time scale by adding 40% artificial flux gaps into original dataset. Annual evapotranspiration at this study site were estimated at 736 mm (1803 MJ) and 728 mm (1785 MJ) for year 2008 and 2009, respectively.

  12. Temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy field at Kelantan, Malaysia.

    PubMed

    Hussain, Hazilia; Yusoff, Mohd Kamil; Ramli, Mohd Firuz; Abd Latif, Puziah; Juahir, Hafizan; Zawawi, Mohamed Azwan Mohammed

    2013-11-15

    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.

  13. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes.

    PubMed

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  14. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.

    ERIC Educational Resources Information Center

    Olson, Jeffery E.

    Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…

  16. Identifying apple surface defects using principal components analysis and artifical neural networks

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...

  17. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).

    PubMed

    Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic

    2017-02-01

    Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A systematic review of the relationship factor between women and health professionals within the multivariant analysis of maternal satisfaction.

    PubMed

    Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio

    2016-10-01

    personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Finding Planets in K2: A New Method of Cleaning the Data

    NASA Astrophysics Data System (ADS)

    Currie, Miles; Mullally, Fergal; Thompson, Susan E.

    2017-01-01

    We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.

  20. A new technique for spectrophotometric determination of pseudoephedrine and guaifenesin in syrup and synthetic mixture.

    PubMed

    Riahi, Siavash; Hadiloo, Farshad; Milani, Seyed Mohammad R; Davarkhah, Nazila; Ganjali, Mohammad R; Norouzi, Parviz; Seyfi, Payam

    2011-05-01

    The accuracy in predicting different chemometric methods was compared when applied on ordinary UV spectra and first order derivative spectra. Principal component regression (PCR) and partial least squares with one dependent variable (PLS1) and two dependent variables (PLS2) were applied on spectral data of pharmaceutical formula containing pseudoephedrine (PDP) and guaifenesin (GFN). The ability to derivative in resolved overlapping spectra chloropheniramine maleate was evaluated when multivariate methods are adopted for analysis of two component mixtures without using any chemical pretreatment. The chemometrics models were tested on an external validation dataset and finally applied to the analysis of pharmaceuticals. Significant advantages were found in analysis of the real samples when the calibration models from derivative spectra were used. It should also be mentioned that the proposed method is a simple and rapid way requiring no preliminary separation steps and can be used easily for the analysis of these compounds, especially in quality control laboratories. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor), a nutritionally underutilised crop.

    PubMed

    Shukla, Sudhir; Bhargava, Atul; Chatterjee, Avijeet; Pandey, Avinash Chandra; Mishra, Brij K

    2010-01-15

    Assessment of genetic diversity in a crop-breeding programme helps in the identification of diverse parental combinations to create segregating progenies with maximum genetic variability and facilitates introgression of desirable genes from diverse germplasm into the available genetic base. In the present study, 39 strains of vegetable amaranth (Amaranthus tricolor) were evaluated for eight morphological and seven quality traits for two test seasons to study the extent of genetic divergence among the strains. Multivariate analysis showed that the first four principal components contributed 67.55% of the variability. Cluster analysis grouped the strains into six clusters that displayed a wide range of diversity for most of the traits. Cluster analysis has proved to be an effective method in grouping strains that may facilitate effective management and utilisation in crop-breeding programmes. The diverse strains falling in different clusters were identified, which can be utilised in different hybridisation programmes to develop high-foliage-yielding varieties rich in nutritional components. Copyright (c) 2009 Society of Chemical Industry.

  2. Multivariate Associations of Fluid Intelligence and NAA.

    PubMed

    Nikolaidis, Aki; Baniqued, Pauline L; Kranz, Michael B; Scavuzzo, Claire J; Barbey, Aron K; Kramer, Arthur F; Larsen, Ryan J

    2017-04-01

    Understanding the neural and metabolic correlates of fluid intelligence not only aids scientists in characterizing cognitive processes involved in intelligence, but it also offers insight into intervention methods to improve fluid intelligence. Here we use magnetic resonance spectroscopic imaging (MRSI) to measure N-acetyl aspartate (NAA), a biochemical marker of neural energy production and efficiency. We use principal components analysis (PCA) to examine how the distribution of NAA in the frontal and parietal lobes relates to fluid intelligence. We find that a left lateralized frontal-parietal component predicts fluid intelligence, and it does so independently of brain size, another significant predictor of fluid intelligence. These results suggest that the left motor regions play a key role in the visualization and planning necessary for spatial cognition and reasoning, and we discuss these findings in the context of the Parieto-Frontal Integration Theory of intelligence. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Partitioning the relative contributions of inorganic plant composition and soil characteristics to the quality of Helichrysum italicum subsp. italicum (Roth) G. Don fil. essential oil.

    PubMed

    Bianchini, Ange; Santoni, François; Paolini, Julien; Bernardini, Antoine-François; Mouillot, David; Costa, Jean

    2009-07-01

    Composition of Helichrysum italicum subsp. italicum essential oil showed chemical variability according to vegetation cycle, environment, and geographic origins. In the present work, 48 individuals of this plant at different development stages and the corresponding root soils were sampled: i) 28 volatile components were identified and measured in essential oil by using GC and GC/MS; ii) ten elements from plants and soils have been estimated using colorimetry in continuous flux, flame atomic absorption spectrometry, or emission spectrometry (FAAS/FAES); iii) texture and acidity (real and potential) of soil samples were also reported. Relationships between the essential-oil composition, the inorganic plant composition, and the soil characteristics (inorganic composition, texture, and acidity) have been established using multivariate analysis such as Principal Component Analysis (PCA) and partial Redundancy Analysis (RDA). This study demonstrates a high level of intraspecific differences in oil composition due to environmental factors and, more particularly, soil characteristics.

  4. Characterization of spatial and temporal variability in hydrochemistry of Johor Straits, Malaysia.

    PubMed

    Abdullah, Pauzi; Abdullah, Sharifah Mastura Syed; Jaafar, Othman; Mahmud, Mastura; Khalik, Wan Mohd Afiq Wan Mohd

    2015-12-15

    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Directly reconstructing principal components of heterogeneous particles from cryo-EM images.

    PubMed

    Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali

    2015-08-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that varymore » as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.« less

  7. 40 CFR 60.2998 - What are the principal components of the model rule?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule... management plan. (c) Operator training and qualification. (d) Emission limitations and operating limits. (e...

  8. 40 CFR 60.2570 - What are the principal components of the model rule?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... Construction On or Before November 30, 1999 Use of Model Rule § 60.2570 What are the principal components of... (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...

  9. Information Flow Between Resting-State Networks.

    PubMed

    Diez, Ibai; Erramuzpe, Asier; Escudero, Iñaki; Mateos, Beatriz; Cabrera, Alberto; Marinazzo, Daniele; Sanz-Arigita, Ernesto J; Stramaglia, Sebastiano; Cortes Diaz, Jesus M

    2015-11-01

    The resting brain dynamics self-organize into a finite number of correlated patterns known as resting-state networks (RSNs). It is well known that techniques such as independent component analysis can separate the brain activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully understood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs from resting-state magnetic resonance imaging. After hemodynamic response function blind deconvolution of all voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal component analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of transfer entropy) between the different RSNs by systematically increasing k (the number of principal components used in the calculation). When k=1, this method is equivalent to computing IF using the average of all voxel activities in each RSN. For k≥1, our method calculates the k multivariate IF between the different RSNs. We find that the average IF among RSNs is dimension dependent, increasing from k=1 (i.e., the average voxel activity) up to a maximum occurring at k=5 and to finally decay to zero for k≥10. This suggests that a small number of components (close to five) is sufficient to describe the IF pattern between RSNs. Our method--addressing differences in IF between RSNs for any generic data--can be used for group comparison in health or disease. To illustrate this, we have calculated the inter-RSN IF in a data set of Alzheimer's disease (AD) to find that the most significant differences between AD and controls occurred for k=2, in addition to AD showing increased IF w.r.t. The spatial localization of the k=2 component, within RSNs, allows the characterization of IF differences between AD and controls.

  10. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima.

    PubMed

    Maisuradze, Gia G; Leitner, David M

    2007-05-15

    Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.

  11. Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design.

    PubMed

    Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup

    2010-10-01

    We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Use of proxy measures in estimating socioeconomic inequalities in malaria prevalence.

    PubMed

    Somi, Masha F; Butler, James R; Vahid, Farshid; Njau, Joseph D; Kachur, S P; Abdulla, Salim

    2008-03-01

    To present and compare socioeconomic status (SES) rankings of households using consumption and an asset-based index as two alternative measures of SES; and to compare and evaluate the performance of these two measures in multivariate analyses of the socioeconomic gradient in malaria prevalence. Data for the study come from a survey of 557 households in 25 study villages in Tanzania in 2004. Household SES was determined using consumption and an asset-based index calculated using Principal Components Analysis on a set of household variables. In multivariate analyses of malaria prevalence, we also used two other measures of disease prevalence: parasitaemia and self-report of malaria or fever in the 2 weeks before interview. Household rankings based on the two measures of SES differ substantially. In multivariate analyses, there was a statistically significant negative association between both measures of SES and parasitaemia but not between either measure of SES and self-reported malaria. Age of individual, use of a mosquito net, and wall construction were negatively and significantly associated with parasitaemia, whilst roof construction was positively associated with parasitaemia. Only age remained significant when malaria self-report was used as the measure of disease prevalence. An asset index is an effective alternative to consumption in measuring the socioeconomic gradient in malaria parasitaemia, but self-report may be an unreliable measure of malaria prevalence for this purpose.

  13. Integrated Multivariate Analysis with Nondetects for the Development of Human Sewage Source-Tracking Tools Using Bacteriophages of Enterococcus faecalis.

    PubMed

    Wangkahad, Bencharong; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2017-02-21

    We developed sewage-specific microbial source tracking (MST) tools using enterococci bacteriophages and evaluated their performance with univariate and multivariate analyses involving data below detection limits. Newly isolated Enterococci faecalis bacterial strains AIM06 (DSM100702) and SR14 (DSM100701) demonstrated 100% specificity and 90% sensitivity to human sewage without detecting 68 animal manure pooled samples of cats, chickens, cows, dogs, ducks, pigs, and pigeons. AIM06 and SR14 bacteriophages were present in human sewage at 2-4 orders of magnitude. A principal component analysis confirmed the importance of both phages as main water quality parameters. The phages presented only in the polluted water, as classified by a cluster analysis, and at median concentrations of 1.71 × 10 2 and 4.27 × 10 2 PFU/100 mL, respectively, higher than nonhost specific RYC2056 phages and sewage-specific KS148 phages (p < 0.05). Interestingly, AIM06 and SR14 phages exhibited significant correlations with each other and with total coliforms, E. coli, enterococci, and biochemical oxygen demand (Kendall's tau = 0.348 to 0.605, p < 0.05), a result supporting their roles as water quality indicators. This research demonstrates the multiregional applicability of enterococci hosts in MST application and highlights the significance of multivariate analysis with nondetects in evaluating the performance of new MST host strains.

  14. The association of 83 plasma proteins with CHD mortality, BMI, HDL-, and total-cholesterol in men: applying multivariate statistics to identify proteins with prognostic value and biological relevance.

    PubMed

    Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M

    2009-06-01

    In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.

  15. Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis

    PubMed Central

    Kwon, Yong-Kook; Ahn, Myung Suk; Park, Jong Suk; Liu, Jang Ryol; In, Dong Su; Min, Byung Whan; Kim, Suk Weon

    2013-01-01

    To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng. PMID:24558311

  16. Fast, Exact Bootstrap Principal Component Analysis for p > 1 million

    PubMed Central

    Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim

    2015-01-01

    Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801

  17. Principal Workload: Components, Determinants and Coping Strategies in an Era of Standardization and Accountability

    ERIC Educational Resources Information Center

    Oplatka, Izhar

    2017-01-01

    Purpose: In order to fill the gap in theoretical and empirical knowledge about the characteristics of principal workload, the purpose of this paper is to explore the components of principal workload as well as its determinants and the coping strategies commonly used by principals to face this personal state. Design/methodology/approach:…

  18. Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study.

    PubMed

    Zhu, Hongxiao; Morris, Jeffrey S; Wei, Fengrong; Cox, Dennis D

    2017-07-01

    Many scientific studies measure different types of high-dimensional signals or images from the same subject, producing multivariate functional data. These functional measurements carry different types of information about the scientific process, and a joint analysis that integrates information across them may provide new insights into the underlying mechanism for the phenomenon under study. Motivated by fluorescence spectroscopy data in a cervical pre-cancer study, a multivariate functional response regression model is proposed, which treats multivariate functional observations as responses and a common set of covariates as predictors. This novel modeling framework simultaneously accounts for correlations between functional variables and potential multi-level structures in data that are induced by experimental design. The model is fitted by performing a two-stage linear transformation-a basis expansion to each functional variable followed by principal component analysis for the concatenated basis coefficients. This transformation effectively reduces the intra-and inter-function correlations and facilitates fast and convenient calculation. A fully Bayesian approach is adopted to sample the model parameters in the transformed space, and posterior inference is performed after inverse-transforming the regression coefficients back to the original data domain. The proposed approach produces functional tests that flag local regions on the functional effects, while controlling the overall experiment-wise error rate or false discovery rate. It also enables functional discriminant analysis through posterior predictive calculation. Analysis of the fluorescence spectroscopy data reveals local regions with differential expressions across the pre-cancer and normal samples. These regions may serve as biomarkers for prognosis and disease assessment.

  19. Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.

    PubMed

    Saccenti, Edoardo; Timmerman, Marieke E

    2017-03-01

    Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.

  20. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)

    NASA Astrophysics Data System (ADS)

    Han, H. W.; Yan, X. L.; Dong, R. X.; Ban, G.; Li, K.

    2009-03-01

    In this paper, we show surface-enhanced Raman spectra (SERS) of serums from type II diabetes mellitus and diabetic complication (coronary disease, glaucoma and cerebral infarction), and analyze the SERS through the multivariate statistical methods of principal component analysis (PCA). In particular, we find that there exist many adenines in these serums, which maybe come from DNA (RNA) damage. The relative intensity of the band at 725±2 cm-1 assigned to adenine is higher for patients than for the healthy volunteers; therefore, it can be used as an important ‘fingerprint’ in order to diagnose these diseases. It is also shown that serums from type II diabetes mellitus group, diabetic complication group and healthy volunteers group can be discriminated by PCA.

  1. Clustering of Variables for Mixed Data

    NASA Astrophysics Data System (ADS)

    Saracco, J.; Chavent, M.

    2016-05-01

    This chapter presents clustering of variables which aim is to lump together strongly related variables. The proposed approach works on a mixed data set, i.e. on a data set which contains numerical variables and categorical variables. Two algorithms of clustering of variables are described: a hierarchical clustering and a k-means type clustering. A brief description of PCAmix method (that is a principal component analysis for mixed data) is provided, since the calculus of the synthetic variables summarizing the obtained clusters of variables is based on this multivariate method. Finally, the R packages ClustOfVar and PCAmixdata are illustrated on real mixed data. The PCAmix and ClustOfVar approaches are first used for dimension reduction (step 1) before applying in step 2 a standard clustering method to obtain groups of individuals.

  2. A study of the comparative effects of various means of motion cueing during a simulated compensatory tracking task

    NASA Technical Reports Server (NTRS)

    Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.

    1980-01-01

    NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.

  3. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  4. Discerning some Tylenol brands using attenuated total reflection Fourier transform infrared data and multivariate analysis techniques.

    PubMed

    Msimanga, Huggins Z; Ollis, Robert J

    2010-06-01

    Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.

  5. The Influence Function of Principal Component Analysis by Self-Organizing Rule.

    PubMed

    Higuchi; Eguchi

    1998-07-28

    This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.

  6. EPH Receptor B4 (EPHB4) Gene Polymorphisms and Risk of Intracranial Hemorrhage in Patients with Brain Arteriovenous Malformations

    PubMed Central

    Weinsheimer, Shantel; Kim, Helen; Pawlikowska, Ludmila; Chen, Yongmei; Lawton, Michael T.; Sidney, Stephen; Kwok, Pui-Yan; McCulloch, Charles E.; Young, William L.

    2009-01-01

    Background Brain arteriovenous malformations (BAVM) are a tangle of abnormal vessels directly shunting blood from the arterial to venous circulation and an important cause of intracranial hemorrhage (ICH). EphB4 is involved in arterial-venous determination during embryogenesis; altered signaling could lead to vascular instability resulting in ICH. We investigated the association of single-nucleotide polymorphisms (SNPs) and haplotypes in EPHB4 with risk of ICH at clinical presentation in BAVM patients. Methods and Results Eight haplotype-tagging SNPs spanning ∼29 kb were tested for association with ICH presentation in 146 Caucasian BAVM patients (phase I: 56 ICH, 90 non-ICH) using allelic, haplotypic, and principal components analysis. Associated SNPs were then genotyped in 102 additional cases (phase II: 37 ICH, 65 non-ICH) and data combined for multivariable logistic regression. Minor alleles of 2 SNPs were associated with reduced risk of ICH presentation (rs314313 C, P=0.005; rs314308 T, P=0.0004). Overall, haplotypes were also significantly associated with ICH presentation (χ2=17.24, 6 df, P=0.008); 2 haplotypes containing the rs314308 T allele (GCCTGGGT, P=0.003; GTCTGGGC, P=0.036) were associated with reduced risk. In principal components analysis, 2 components explained 91% of the variance, and complemented haplotype results by implicating 4 SNPs at the 5′ end, including rs314308 and rs314313. These 2 SNPs were replicated in the phase II cohort, and combined data resulted in greater significance (rs314313, P=0.0007; rs314308, P=0.00008). SNP association with ICH presentation persisted after adjusting for age, sex, BAVM size, and deep venous drainage. Conclusions EPHB4 polymorphisms are associated with risk of ICH presentation in BAVM patients, warranting further study. PMID:20031623

  7. Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis

    PubMed Central

    Rahman, Md. Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D. W.; Labrique, Alain B.; Rashid, Mahbubur; Christian, Parul; West, Keith P.

    2017-01-01

    Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 − -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset. PMID:29261760

  8. Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis.

    PubMed

    Kabir, Alamgir; Rahman, Md Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D W; Labrique, Alain B; Rashid, Mahbubur; Christian, Parul; West, Keith P

    2017-01-01

    Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 - -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset.

  9. Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India.

    PubMed

    Ravisankar, R; Vanasundari, K; Suganya, M; Raghu, Y; Rajalakshmi, A; Chandrasekaran, A; Sivakumar, S; Chandramohan, J; Vijayagopal, P; Venkatraman, B

    2014-02-01

    Using γ spectrometry, the concentration of the naturally occurring radionuclides (226)Ra, (232)Th and (40)K has been measured in soil, sand, cement, clay and bricks, which are used as building materials in Tiruvannamalai, Tamilnadu, India. The radium equivalent activity (Raeq), the criterion formula (CF), indoor gamma absorbed dose rate (DR), annual effective dose (HR), activity utilization index (AUI), alpha index (Iα), gamma index (Iγ), external radiation hazard index (Hex), internal radiation hazard index (Hin), representative level index (RLI), excess lifetime cancer risk (ELCR) and annual gonadal dose equivalent (AGDE) associated with the natural radionuclides are calculated to assess the radiation hazard of the natural radioactivity in the building materials. From the analysis, it is found that these materials used for the construction of dwellings are safe for the inhabitants. The radiological data were processed using multivariate statistical methods to determine the similarities and correlation among the various samples. The frequency distributions for all radionuclides were analyzed. The data set consisted of 15 measured variables. The Pearson correlation coefficient reveals that the (226)Ra distribution in building materials is controlled by the variation of the (40)K concentration. Principal component analysis (PCA) yields a two-component representation of the acquired data from the building materials in Tiruvannamalai, wherein 94.9% of the total variance is explained. The resulting dendrogram of hierarchical cluster analysis (HCA) classified the 30 building materials into four major groups using 15 variables. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Chemical discrimination of lubricant marketing types using direct analysis in real time time-of-flight mass spectrometry.

    PubMed

    Maric, Mark; Harvey, Lauren; Tomcsak, Maren; Solano, Angelique; Bridge, Candice

    2017-06-30

    In comparison to other violent crimes, sexual assaults suffer from very low prosecution and conviction rates especially in the absence of DNA evidence. As a result, the forensic community needs to utilize other forms of trace contact evidence, like lubricant evidence, in order to provide a link between the victim and the assailant. In this study, 90 personal bottled and condom lubricants from the three main marketing types, silicone-based, water-based and condoms, were characterized by direct analysis in real time time of flight mass spectrometry (DART-TOFMS). The instrumental data was analyzed by multivariate statistics including hierarchal cluster analysis, principal component analysis, and linear discriminant analysis. By interpreting the mass spectral data with multivariate statistics, 12 discrete groupings were identified, indicating inherent chemical diversity not only between but within the three main marketing groups. A number of unique chemical markers, both major and minor, were identified, other than the three main chemical components (i.e. PEG, PDMS and nonoxynol-9) currently used for lubricant classification. The data was validated by a stratified 20% withheld cross-validation which demonstrated that there was minimal overlap between the groupings. Based on the groupings identified and unique features of each group, a highly discriminating statistical model was then developed that aims to provide the foundation for the development of a forensic lubricant database that may eventually be applied to casework. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Diagnosis of abnormal patterns in multivariate microclimate monitoring: a case study of an open-air archaeological site in Pompeii (Italy).

    PubMed

    Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel

    2014-08-01

    Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Classification of the medicinal plants of the genus Atractylodes using high-performance liquid chromatography with diode array and tandem mass spectrometry detection combined with multivariate statistical analysis.

    PubMed

    Cho, Hyun-Deok; Kim, Unyong; Suh, Joon Hyuk; Eom, Han Young; Kim, Junghyun; Lee, Seul Gi; Choi, Yong Seok; Han, Sang Beom

    2016-04-01

    Analytical methods using high-performance liquid chromatography with diode array and tandem mass spectrometry detection were developed for the discrimination of the rhizomes of four Atractylodes medicinal plants: A. japonica, A. macrocephala, A. chinensis, and A. lancea. A quantitative study was performed, selecting five bioactive components, including atractylenolide I, II, III, eudesma-4(14),7(11)-dien-8-one and atractylodin, on twenty-six Atractylodes samples of various origins. Sample extraction was optimized to sonication with 80% methanol for 40 min at room temperature. High-performance liquid chromatography with diode array detection was established using a C18 column with a water/acetonitrile gradient system at a flow rate of 1.0 mL/min, and the detection wavelength was set at 236 nm. Liquid chromatography with tandem mass spectrometry was applied to certify the reliability of the quantitative results. The developed methods were validated by ensuring specificity, linearity, limit of quantification, accuracy, precision, recovery, robustness, and stability. Results showed that cangzhu contained higher amounts of atractylenolide I and atractylodin than baizhu, and especially atractylodin contents showed the greatest variation between baizhu and cangzhu. Multivariate statistical analysis, such as principal component analysis and hierarchical cluster analysis, were also employed for further classification of the Atractylodes plants. The established method was suitable for quality control of the Atractylodes plants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis

    NASA Astrophysics Data System (ADS)

    Colao, F.; Fantoni, R.; Ortiz, P.; Vazquez, M. A.; Martin, J. M.; Ortiz, R.; Idris, N.

    2010-08-01

    To characterize historical building materials according to the geographic origin of the quarries from which they have been mined, the relative content of major and trace elements were determined by means of Laser Induced Breakdown Spectroscopy (LIBS) and X-ray Fluorescence (XRF) techniques. 48 different specimens were studied and the entire samples' set was divided in two different groups: the first, used as reference set, was composed by samples mined from eight different quarries located in Seville province; the second group was composed by specimens of unknown provenance collected in several historical buildings and churches in the city of Seville. Data reduction and analysis on laser induced breakdown spectroscopy and X-ray fluorescence measurements was performed using multivariate statistical approach, namely the Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA). A clear separation among reference sample materials mined from different quarries was observed in Principal Components (PC) score plots, then a supervised soft independent modeling of class analogy classification was trained and run, aiming to assess the provenance of unknown samples according to their elemental content. The obtained results were compared with the provenance assignments made on the basis of petrographical description. This work gives experimental evidence that laser induced breakdown spectroscopy measurements on a relatively small set of elements is a fast and effective method for the purpose of origin identification.

  14. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses.

    PubMed

    Bisele, Maria; Bencsik, Martin; Lewis, Martin G C; Barnett, Cleveland T

    2017-01-01

    Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors' knowledge, this is the first study to optimise the development of a machine learning algorithm.

  15. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    NASA Astrophysics Data System (ADS)

    Borowiak, Klaudia; Zbierska, Janina; Budka, Anna; Kayzer, Dariusz

    2014-06-01

    Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40) were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  16. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buyck, N.; Thomas, S.

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) atmore » the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.« less

  17. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.

    PubMed

    Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben

    2017-01-01

    Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r 2 values ranged between 0.46 and 0.90 and the secondary OA increased the r 2  values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r 2 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses

    PubMed Central

    Bisele, Maria; Bencsik, Martin; Lewis, Martin G. C.

    2017-01-01

    Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors’ knowledge, this is the first study to optimise the development of a machine learning algorithm. PMID:28886059

  19. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China.

    PubMed

    Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan

    2013-08-01

    Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.

  20. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    PubMed

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  1. Decoding and reconstructing color from responses in human visual cortex.

    PubMed

    Brouwer, Gijs Joost; Heeger, David J

    2009-11-04

    How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.

  2. Changes in element contents of four lichens over 11 years in the Boundary Waters Canoe Area Wilderness, northern Minnesota

    USGS Publications Warehouse

    Bennett, J.P.; Wetmore, C.M.

    1999-01-01

    Four species of lichen (Cladina rangiferina, Evernia mesomorpha, Hypogymnia physodes, and Parmelia sulcata) were sampled at six locations in the Boundary Waters Canoe Area Wilderness three times over a span of 11 years and analyzed for concentrations of 16 chemical elements to test the hypotheses that corticolous species would accumulate higher amounts of chemical elements than terricolous species, and that 11 years were sufficient to detect spatial patterns and temporal trends in element contents. Multivariate analyses of over 2770 data points revealed two principal components that accounted for 68% of the total variance in the data. These two components, the first highly loaded with Al, B, Cr, Fe, Ni and S, and the second loaded with Ca, Cd, Mg and Mn, were inversely related to each other over time and space. The first component was interpreted as consisting of an anthropogenic and a dust component, while the second, primarily a nutritional component. Cu, K, Na, P, Pb and Zn were not highly loaded on either component. Component 1 decreased significantly over the 11 years and from west to east, while component 2 increased. The corticolous species were more enriched in heavy metals than the terricolous species. All four elements in component 2 in H. physodes were above enrichment thresholds for this species. Species differences on the two components were greater than the effects of time and space, suggesting that biomonitoring with lichens is strongly species dependent. Some localities in the Boundary Waters Canoe Area Wilderness appear enriched in some anthropogenic elements for no obvious reasons.

  3. Use of principal-component, correlation, and stepwise multiple-regression analyses to investigate selected physical and hydraulic properties of carbonate-rock aquifers

    USGS Publications Warehouse

    Brown, C. Erwin

    1993-01-01

    Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.

  4. Investigating the composition characteristics of dissolved and particulate/colloidal organic matter in effluent-dominated stream using fluorescence spectroscopy combined with multivariable analysis.

    PubMed

    Yu, Min-Da; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhao, Xian-Wei; Zhang, Hui; Huang, Cai-Hong; Tan, Wenbing

    2018-03-01

    Fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to investigate the compositional characteristics of dissolved and particulate/colloidal organic matter and its correlations with nitrogen, phosphorus, and heavy metals in an effluent-dominated stream, Northern China. The results showed that dissolved organic matter (DOM) was comprised of fulvic-like, humic-like, and protein-like components in the water samples, and fulvic-like substances were the main fraction of DOM among them. Particulate/colloidal organic matter (PcOM) consisted of fulvic-like and protein-like matter. Fulvic-like substances existed in the larger molecular form in PcOM, and they comprised a large amount of nitrogen and polar functional groups. On the other hand, protein-like components in PcOM were low in benzene ring and bound to heavy metals. It could be concluded that nitrogen, phosphorus, and heavy metals in effluent had an effect on the compositional characteristics of natural DOM and PcOM, which may deepen our understanding about the environmental behaviors of organic matter in effluent.

  5. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous).

    PubMed

    Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba

    2003-01-01

    A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.

  6. Exploring functional data analysis and wavelet principal component analysis on ecstasy (MDMA) wastewater data.

    PubMed

    Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo

    2016-07-12

    Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.

  7. 40 CFR 62.14505 - What are the principal components of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What are the principal components of this subpart? 62.14505 Section 62.14505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... components of this subpart? This subpart contains the eleven major components listed in paragraphs (a...

  8. Validation of the conceptual research utilization scale: an application of the standards for educational and psychological testing in healthcare.

    PubMed

    Squires, Janet E; Estabrooks, Carole A; Newburn-Cook, Christine V; Gierl, Mark

    2011-05-19

    There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale). We used the Standards for Educational and Psychological Testing as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression. Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression. The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change.

  9. Contribution made by multivariate curve resolution applied to gel permeation chromatography-Fourier transform infrared data for an in-depth characterization of styrene-butadiene rubber blends.

    PubMed

    Ruckebusch, C; Vilmin, F; Coste, N; Huvenne, J P

    2008-07-01

    We evaluate the contribution made by multivariate curve resolution-alternating least squares (MCR-ALS) for resolving gel permeation chromatography-Fourier transform infrared (GPC-FT-IR) data collected on butadiene rubber (BR) and styrene butadiene rubber (SBR) blends in order to access in-depth knowledge of polymers along the molecular weight distribution (MWD). In the BR-SBR case, individual polymers differ in chemical composition but share almost the same MWD. Principal component analysis (PCA) gives a general overview of the data structure and attests to the feasibility of modeling blends as a binary system. MCR-ALS is then performed. It allows resolving the chromatographic coelution and validates the chosen methodology. For SBR-SBR blends, the problem is more challenging since the individual elastomers present the same chemical composition. Rank deficiency is detected from the PCA data structure analysis. MCR-ALS is thus performed on column-wise augmented matrices. It brings very useful insight into the composition of the analyzed blends. In particular, a weak change in the composition of individual SBR in the MWD's lowest mass region is revealed.

  10. Assessment of self-organizing maps to analyze sole-carbon source utilization profiles.

    PubMed

    Leflaive, Joséphine; Céréghino, Régis; Danger, Michaël; Lacroix, Gérard; Ten-Hage, Loïc

    2005-07-01

    The use of community-level physiological profiles obtained with Biolog microplates is widely employed to consider the functional diversity of bacterial communities. Biolog produces a great amount of data which analysis has been the subject of many studies. In most cases, after some transformations, these data were investigated with classical multivariate analyses. Here we provided an alternative to this method, that is the use of an artificial intelligence technique, the Self-Organizing Maps (SOM, unsupervised neural network). We used data from a microcosm study of algae-associated bacterial communities placed in various nutritive conditions. Analyses were carried out on the net absorbances at two incubation times for each substrates and on the chemical guild categorization of the total bacterial activity. Compared to Principal Components Analysis and cluster analysis, SOM appeared as a valuable tool for community classification, and to establish clear relationships between clusters of bacterial communities and sole-carbon sources utilization. Specifically, SOM offered a clear bidimensional projection of a relatively large volume of data and were easier to interpret than plots commonly obtained with multivariate analyses. They would be recommended to pattern the temporal evolution of communities' functional diversity.

  11. Application of Multivariable Analysis and FTIR-ATR Spectroscopy to the Prediction of Properties in Campeche Honey

    PubMed Central

    Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.

    2016-01-01

    Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445

  12. Human Adenocarcinoma Cell Line Sensitivity to Essential Oil Phytocomplexes from Pistacia Species: a Multivariate Approach.

    PubMed

    Buriani, Alessandro; Fortinguerra, Stefano; Sorrenti, Vincenzo; Dall'Acqua, Stefano; Innocenti, Gabbriella; Montopoli, Monica; Gabbia, Daniela; Carrara, Maria

    2017-08-11

    Principal component analysis (PCA) multivariate analysis was applied to study the cytotoxic activity of essential oils from various species of the Pistacia genus on human tumor cell lines. In particular, the cytotoxic activity of essential oils obtained from P. lentiscus , P. lentiscus var. chia (mastic gum), P. terebinthus , P. vera , and P. integerrima , was screened on three human adenocarcinoma cell lines: MCF-7 (breast), 2008 (ovarian), and LoVo (colon). The results indicate that all the Pistacia phytocomplexes, with the exception of mastic gum oil, induce cytotoxic effects on one or more of the three cell lines. PCA highlighted the presence of different cooperating clusters of bioactive molecules. Cluster variability among species, and even within the same species, could explain some of the differences seen among samples suggesting the presence of both common and species-specific mechanisms. Single molecules from one of the most significant clusters were tested, but only bornyl-acetate presented cytotoxic activity, although at much higher concentrations (IC 50 = 138.5 µg/mL) than those present in the essential oils, indicating that understanding of the full biological effect requires a holistic vision of the phytocomplexes with all its constituents.

  13. Tools based on multivariate statistical analysis for classification of soil and groundwater in Apulian agricultural sites.

    PubMed

    Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice

    2017-06-01

    In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.

  14. Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.

    PubMed

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D

    2015-05-08

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  15. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  16. Comparative evaluation of the powder and compression properties of various grades and brands of microcrystalline cellulose by multivariate methods.

    PubMed

    Haware, Rahul V; Bauer-Brandl, Annette; Tho, Ingunn

    2010-01-01

    The present work challenges a newly developed approach to tablet formulation development by using chemically identical materials (grades and brands of microcrystalline cellulose). Tablet properties with respect to process and formulation parameters (e.g. compression speed, added lubricant and Emcompress fractions) were evaluated by 2(3)-factorial designs. Tablets of constant true volume were prepared on a compaction simulator at constant pressure (approx. 100 MPa). The highly repeatable and accurate force-displacement data obtained was evaluated by simple 'in-die' Heckel method and work descriptors. Relationships and interactions between formulation, process and tablet parameters were identified and quantified by multivariate analysis techniques; principal component analysis (PCA) and partial least square regressions (PLS). The method proved to be able to distinguish between different grades of MCC and even between two different brands of the same grade (Avicel PH 101 and Vivapur 101). One example of interaction was studied in more detail by mixed level design: The interaction effect of lubricant and Emcompress on elastic recovery of Avicel PH 102 was demonstrated to be complex and non-linear using the development tool under investigation.

  17. Near-infrared confocal micro-Raman spectroscopy combined with PCA-LDA multivariate analysis for detection of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wang, Yue; Liu, Nenrong; Lin, Duo; Weng, Cuncheng; Zhang, Jixue; Zhu, Lihuan; Chen, Weisheng; Chen, Rong; Feng, Shangyuan

    2013-06-01

    The diagnostic capability of using tissue intrinsic micro-Raman signals to obtain biochemical information from human esophageal tissue is presented in this paper. Near-infrared micro-Raman spectroscopy combined with multivariate analysis was applied for discrimination of esophageal cancer tissue from normal tissue samples. Micro-Raman spectroscopy measurements were performed on 54 esophageal cancer tissues and 55 normal tissues in the 400-1750 cm-1 range. The mean Raman spectra showed significant differences between the two groups. Tentative assignments of the Raman bands in the measured tissue spectra suggested some changes in protein structure, a decrease in the relative amount of lactose, and increases in the percentages of tryptophan, collagen and phenylalanine content in esophageal cancer tissue as compared to those of a normal subject. The diagnostic algorithms based on principal component analysis (PCA) and linear discriminate analysis (LDA) achieved a diagnostic sensitivity of 87.0% and specificity of 70.9% for separating cancer from normal esophageal tissue samples. The result demonstrated that near-infrared micro-Raman spectroscopy combined with PCA-LDA analysis could be an effective and sensitive tool for identification of esophageal cancer.

  18. Multivariate statistical process control of a continuous pharmaceutical twin-screw granulation and fluid bed drying process.

    PubMed

    Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A

    2017-08-07

    A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin

    2014-11-01

    Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer׳s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Metabolic changes in different developmental stages of Vanilla planifolia pods.

    PubMed

    Palama, Tony Lionel; Khatib, Alfi; Choi, Young Hae; Payet, Bertrand; Fock, Isabelle; Verpoorte, Robert; Kodja, Hippolyte

    2009-09-09

    The metabolomic analysis of developing Vanilla planifolia green pods (between 3 and 8 months after pollination) was carried out by nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis. Multivariate data analysis of the (1)H NMR spectra, such as principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA), showed a trend of separation of those samples based on the metabolites present in the methanol/water (1:1) extract. Older pods had a higher content of glucovanillin, vanillin, p-hydroxybenzaldehyde glucoside, p-hydroxybenzaldehyde, and sucrose, while younger pods had more bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A), bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-(2-butyl)tartrate (glucoside B), glucose, malic acid, and homocitric acid. A liquid chromatography-mass spectrometry (LC-MS) analysis targeted at phenolic compound content was also performed on the developing pods and confirmed the NMR results. Ratios of aglycones/glucosides were estimated and thus allowed for detection of more minor metabolites in the green vanilla pods. Quantification of compounds based on both LC-MS and NMR analyses showed that free vanillin can reach 24% of the total vanillin content after 8 months of development in the vanilla green pods.

  1. Combination of near infrared spectroscopy and chemometrics for authentication of taro flour from wheat and sago flour

    NASA Astrophysics Data System (ADS)

    Rachmawati; Rohaeti, E.; Rafi, M.

    2017-05-01

    Taro flour on the market is usually sold at higher price than wheat and sago flour. This situation could be a cause for adulteration of taro flour from wheat and sago flour. For this reason, we will need an identification and authentication. Combination of near infrared (NIR) spectrum with multivariate analysis was used in this study to identify and authenticate taro flour from wheat and sago flour. The authentication model of taro flour was developed by using a mixture of 5%, 25%, and 50% of adulterated taro flour from wheat and sago flour. Before subjected to multivariate analysis, an initial preprocessing signal was used namely normalization and standard normal variate to the NIR spectrum. We used principal component analysis followed by discriminant analysis to make an identification and authentication model of taro flour. From the result obtained, about 90.48% of the taro flour mixed with wheat flour and 85% of taro flour mixed with sago flour were successfully classified into their groups. So the combination of NIR spectrum with chemometrics could be used for identification and authentication of taro flour from wheat and sago flour.

  2. Implementation of physicochemical and sensory analysis in conjunction with multivariate analysis towards assessing olive oil authentication/adulteration.

    PubMed

    Arvanitoyannis, Ioannis S; Vlachos, Antonios

    2007-01-01

    The authenticity of products labeled as olive oils, and in particular as virgin olive oils, stands for a very important issue both in terms of its health and commercial aspects. In view of the continuously increasing interest in virgin olive oil therapeutic properties, the traditional methods of characterization and physical and sensory analysis were further enriched with more advanced and sophisticated methods such as HPLC-MS, HPLC-GC/C/IRMS, RPLC-GC, DEPT, and CSIA among others. The results of both traditional and "novel" methods were treated both by means of classical multivariate analysis (cluster, principal component, correspondence, canonical, and discriminant) and artificial intelligence methods showing that nowadays the adulteration of virgin olive oil with seed oil is detectable at very low percentages, sometimes even at less than 1%. Furthermore, the detection of geographical origin of olive oil is equally feasible and much more accurate in countries like Italy and Spain where databases of physical/chemical properties exist. However, this geographical origin classification can also be accomplished in the absence of such databases provided that an adequate number of oil samples are used and the parameters studied have "discriminating power."

  3. Multivariate analysis of the geochemistry and mineralogy of soils along two continental-scale transects in North America

    USGS Publications Warehouse

    Drew, L.J.; Grunsky, E.C.; Sutphin, D.M.; Woodruff, L.G.

    2010-01-01

    Soils collected in 2004 along two North American continental-scale transects were subjected to geochemical and mineralogical analyses. In previous interpretations of these analyses, data were expressed in weight percent and parts per million, and thus were subject to the effect of the constant-sum phenomenon. In a new approach to the data, this effect was removed by using centered log-ratio transformations to 'open' the mineralogical and geochemical arrays. Multivariate analyses, including principal component and linear discriminant analyses, of the centered log-ratio data reveal the effects of soil-forming processes, including soil parent material, weathering, and soil age, at the continental-scale of the data arrays that were not readily apparent in the more conventionally presented data. Linear discriminant analysis of the data arrays indicates that the majority of the soil samples collected along the transects can be more successfully classified with Level 1 ecological regional-scale classification by the soil geochemistry than soil mineralogy. A primary objective of this study is to discover and describe, in a parsimonious way, geochemical processes that are both independent and inter-dependent and manifested through compositional data including estimates of the elements and corresponding mineralogy. ?? 2010.

  4. Summer microhabitat use by adult and young-of-year snail darters (Percina tanasi) in two rivers

    USGS Publications Warehouse

    Ashton, M.J.; Layzer, J.B.

    2010-01-01

    We characterised microhabitat availability and use by adult and young-of-year (YOY) snail darters (Percina tanasiEtnier 1976) while snorkelling in the French Broad and Hiwassee rivers, TN, USA. Both age groups of snail darters disproportionately used most microhabitat variables compared to their availability. Snail darters primarily occupied moderately deep, swift water over gravel substrates with little macrophyte coverage and no silt. Univariate comparisons indicated that adult and YOY darters occupied different habitat, but there was no marked differences between principal components analysis plots of multivariate microhabitat use within a river. Although the availability of microhabitat variables differed between the French Broad and Hiwassee rivers, univariate means and multivariate plots illustrated that the habitats used were generally similar by age groups of snail darters between rivers. Because our observations of habitat availability and use were constrained to low flow periods and depths <1 m, the transferability of our results to higher flow periods may be limited. However, the similarity in habitat use between rivers suggests that our results can be applied to low-normal flow conditions in other streams. ?? Published 2010. This article is a US Government work and is in the public domain in the USA.

  5. Elemental content of Vietnamese rice. Part 2. Multivariate data analysis.

    PubMed

    Kokot, S; Phuong, T D

    1999-04-01

    Rice samples were obtained from the Red River region and some other parts of Vietnam as well as from Yanco, Australia. These samples were analysed for 14 elements (P, K, Mg, Ca, Mn, Zn, Fe, Cu, Al, Na, Ni, As, Mo and Cd) by ICP-AES, ICP-MS and FAAS as described in Part 1. This data matrix was then submitted to multivariate data analysis by principal component analysis to investigate the influences of environmental and crop cultivation variables on the elemental content of rice. Results revealed that geographical location, grain variety, seasons and soil conditions are the most likely significant factors causing changes in the elemental content between the rice samples. To assess rice quality according to its elemental content and physio-biological properties, a multicriteria decision making method (PROMETHEE) was applied. With the Vietnamese rice, the sticky rice appeared to contain somewhat higher levels of nutritionally significant elements such as P, K and Mg than the non-sticky rice. Also, rice samples grown during the wet season have better levels of nutritionally significant mineral elements than those of the dry season, but in general, the wet season seemed to provide better overall elemental and physio-biological rice quality.

  6. TOF-SIMS imaging technique with information entropy

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Kawashima, Y.; Kudo, Masahiro

    2005-05-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples in principal. However, selection of specific peaks related to a particular protein, which are necessary for chemical imaging, out of numerous candidates had been difficult without an appropriate spectrum analysis technique. Therefore multivariate analysis techniques, such as principal component analysis (PCA), and analysis with mutual information defined by information theory, have been applied to interpret SIMS spectra of protein samples. In this study mutual information was applied to select specific peaks related to proteins in order to obtain chemical images. Proteins on insulated materials were measured with TOF-SIMS and then SIMS spectra were analyzed by means of the analysis method based on the comparison using mutual information. Chemical mapping of each protein was obtained using specific peaks related to each protein selected based on values of mutual information. The results of TOF-SIMS images of proteins on the materials provide some useful information on properties of protein adsorption, optimality of immobilization processes and reaction between proteins. Thus chemical images of proteins by TOF-SIMS contribute to understand interactions between material surfaces and proteins and to develop sophisticated biomaterials.

  7. Identifying Neural Patterns of Functional Dyspepsia Using Multivariate Pattern Analysis: A Resting-State fMRI Study

    PubMed Central

    Liu, Peng; Qin, Wei; Wang, Jingjing; Zeng, Fang; Zhou, Guangyu; Wen, Haixia; von Deneen, Karen M.; Liang, Fanrong; Gong, Qiyong; Tian, Jie

    2013-01-01

    Background Previous imaging studies on functional dyspepsia (FD) have focused on abnormal brain functions during special tasks, while few studies concentrated on the resting-state abnormalities of FD patients, which might be potentially valuable to provide us with direct information about the neural basis of FD. The main purpose of the current study was thereby to characterize the distinct patterns of resting-state function between FD patients and healthy controls (HCs). Methodology/Principal Findings Thirty FD patients and thirty HCs were enrolled and experienced 5-mintue resting-state scanning. Based on the support vector machine (SVM), we applied multivariate pattern analysis (MVPA) to investigate the differences of resting-state function mapped by regional homogeneity (ReHo). A classifier was designed by using the principal component analysis and the linear SVM. Permutation test was then employed to identify the significant contribution to the final discrimination. The results displayed that the mean classifier accuracy was 86.67%, and highly discriminative brain regions mainly included the prefrontal cortex (PFC), orbitofrontal cortex (OFC), supplementary motor area (SMA), temporal pole (TP), insula, anterior/middle cingulate cortex (ACC/MCC), thalamus, hippocampus (HIPP)/parahippocamus (ParaHIPP) and cerebellum. Correlation analysis revealed significant correlations between ReHo values in certain regions of interest (ROI) and the FD symptom severity and/or duration, including the positive correlations between the dmPFC, pACC and the symptom severity; whereas, the positive correlations between the MCC, OFC, insula, TP and FD duration. Conclusions These findings indicated that significantly distinct patterns existed between FD patients and HCs during the resting-state, which could expand our understanding of the neural basis of FD. Meanwhile, our results possibly showed potential feasibility of functional magnetic resonance imaging diagnostic assay for FD. PMID:23874543

  8. The evolution of cerebrotypes in birds.

    PubMed

    Iwaniuk, Andrew N; Hurd, Peter L

    2005-01-01

    Multivariate analyses of brain composition in mammals, amphibians and fish have revealed the evolution of 'cerebrotypes' that reflect specific niches and/or clades. Here, we present the first demonstration of similar cerebrotypes in birds. Using principal component analysis and hierarchical clustering methods to analyze a data set of 67 species, we demonstrate that five main cerebrotypes can be recognized. One type is dominated by galliforms and pigeons, among other species, that all share relatively large brainstems, but can be further differentiated by the proportional size of the cerebellum and telencephalic regions. The second cerebrotype contains a range of species that all share relatively large cerebellar and small nidopallial volumes. A third type is composed of two species, the tawny frogmouth (Podargus strigoides) and an owl, both of which share extremely large Wulst volumes. Parrots and passerines, the principal members of the fourth group, possess much larger nidopallial, mesopallial and striatopallidal proportions than the other groups. The fifth cerebrotype contains species such as raptors and waterfowl that are not found at the extremes for any of the brain regions and could therefore be classified as 'generalist' brains. Overall, the clustering of species does not directly reflect the phylogenetic relationships among species, but there is a tendency for species within an order to clump together. There may also be a weak relationship between cerebrotype and developmental differences, but two of the main clusters contained species with both altricial and precocial developmental patterns. As a whole, the groupings do agree with behavioral and ecological similarities among species. Most notably, species that share similarities in locomotor behavior, mode of prey capture or cognitive ability are clustered together. The relationship between cerebrotype and behavior/ecology in birds suggests that future comparative studies of brain-behavior relationships will benefit from adopting a multivariate approach. Copyright 2005 S. Karger AG, Basel.

  9. Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki

    2004-04-01

    We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.

  10. Principals' Perceptions Regarding Their Supervision and Evaluation

    ERIC Educational Resources Information Center

    Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann

    2015-01-01

    This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…

  11. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.

    PubMed

    Nguyen, Phuong H

    2007-05-15

    Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.

  12. [Assessment of the strength of tobacco control on creating smoke-free hospitals using principal components analysis].

    PubMed

    Liu, Hui-lin; Wan, Xia; Yang, Gong-huan

    2013-02-01

    To explore the relationship between the strength of tobacco control and the effectiveness of creating smoke-free hospital, and summarize the main factors that affect the program of creating smoke-free hospitals. A total of 210 hospitals from 7 provinces/municipalities directly under the central government were enrolled in this study using stratified random sampling method. Principle component analysis and regression analysis were conducted to analyze the strength of tobacco control and the effectiveness of creating smoke-free hospitals. Two principal components were extracted in the strength of tobacco control index, which respectively reflected the tobacco control policies and efforts, and the willingness and leadership of hospital managers regarding tobacco control. The regression analysis indicated that only the first principal component was significantly correlated with the progression in creating smoke-free hospital (P<0.001), i.e. hospitals with higher scores on the first principal component had better achievements in smoke-free environment creation. Tobacco control policies and efforts are critical in creating smoke-free hospitals. The principal component analysis provides a comprehensive and objective tool for evaluating the creation of smoke-free hospitals.

  13. Critical Factors Explaining the Leadership Performance of High-Performing Principals

    ERIC Educational Resources Information Center

    Hutton, Disraeli M.

    2018-01-01

    The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…

  14. Molecular dynamics in principal component space.

    PubMed

    Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L

    2012-07-26

    A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.

  15. Optimized principal component analysis on coronagraphic images of the fomalhaut system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshkat, Tiffany; Kenworthy, Matthew A.; Quanz, Sascha P.

    We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI) for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modeled. Using more principal components may decrease the number of speckles in the final image, but also increases themore » background noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M {sub Jup} from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.« less

  16. [A study of Boletus bicolor from different areas using Fourier transform infrared spectrometry].

    PubMed

    Zhou, Zai-Jin; Liu, Gang; Ren, Xian-Pei

    2010-04-01

    It is hard to differentiate the same species of wild growing mushrooms from different areas by macromorphological features. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis was used to identify 58 samples of boletus bicolor from five different areas. Based on the fingerprint infrared spectrum of boletus bicolor samples, principal component analysis was conducted on 58 boletus bicolor spectra in the range of 1 350-750 cm(-1) using the statistical software SPSS 13.0. According to the result, the accumulated contributing ratio of the first three principal components accounts for 88.87%. They included almost all the information of samples. The two-dimensional projection plot using first and second principal component is a satisfactory clustering effect for the classification and discrimination of boletus bicolor. All boletus bicolor samples were divided into five groups with a classification accuracy of 98.3%. The study demonstrated that wild growing boletus bicolor at species level from different areas can be identified by FTIR spectra combined with principal components analysis.

  17. Multielement geochemistry identifies the spatial pattern of soil and sediment contamination in an urban parkland, Western Australia.

    PubMed

    Rate, Andrew W

    2018-06-15

    Urban environments are dynamic and highly heterogeneous, and multiple additions of potential contaminants are likely on timescales which are short relative to natural processes. The likely sources and location of soil or sediment contamination in urban environment should therefore be detectable using multielement geochemical composition combined with rigorously applied multivariate statistical techniques. Soil, wetland sediment, and street dust was sampled along intersecting transects in Robertson Park in metropolitan Perth, Western Australia. Samples were analysed for near-total concentrations of multiple elements (including Cd, Ce, Co, Cr, Cu, Fe, Gd, La, Mn, Nd, Ni, Pb, Y, and Zn), as well as pH, and electrical conductivity. Samples at some locations within Robertson Park had high concentrations of potentially toxic elements (Pb above Health Investigation Limits; As, Ba, Cu, Mn, Ni, Pb, V, and Zn above Ecological Investigation Limits). However, these concentrations carry low risk due to the main land use as recreational open space, the low proportion of samples exceeding guideline values, and a tendency for the highest concentrations to be located within the less accessible wetland basin. The different spatial distributions of different groups of contaminants was consistent with different inputs of contaminants related to changes in land use and technology over the history of the site. Multivariate statistical analyses reinforced the spatial information, with principal component analysis identifying geochemical associations of elements which were also spatially related. A multivariate linear discriminant model was able to discriminate samples into a-priori types, and could predict sample type with 84% accuracy based on multielement composition. The findings suggest substantial advantages of characterising a site using multielement and multivariate analyses, an approach which could benefit investigations of other sites of concern. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. An efficient genome-wide association test for multivariate phenotypes based on the Fisher combination function.

    PubMed

    Yang, James J; Li, Jia; Williams, L Keoki; Buu, Anne

    2016-01-05

    In genome-wide association studies (GWAS) for complex diseases, the association between a SNP and each phenotype is usually weak. Combining multiple related phenotypic traits can increase the power of gene search and thus is a practically important area that requires methodology work. This study provides a comprehensive review of existing methods for conducting GWAS on complex diseases with multiple phenotypes including the multivariate analysis of variance (MANOVA), the principal component analysis (PCA), the generalizing estimating equations (GEE), the trait-based association test involving the extended Simes procedure (TATES), and the classical Fisher combination test. We propose a new method that relaxes the unrealistic independence assumption of the classical Fisher combination test and is computationally efficient. To demonstrate applications of the proposed method, we also present the results of statistical analysis on the Study of Addiction: Genetics and Environment (SAGE) data. Our simulation study shows that the proposed method has higher power than existing methods while controlling for the type I error rate. The GEE and the classical Fisher combination test, on the other hand, do not control the type I error rate and thus are not recommended. In general, the power of the competing methods decreases as the correlation between phenotypes increases. All the methods tend to have lower power when the multivariate phenotypes come from long tailed distributions. The real data analysis also demonstrates that the proposed method allows us to compare the marginal results with the multivariate results and specify which SNPs are specific to a particular phenotype or contribute to the common construct. The proposed method outperforms existing methods in most settings and also has great applications in GWAS on complex diseases with multiple phenotypes such as the substance abuse disorders.

  19. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis.

    PubMed

    Badran, M; Morsy, R; Soliman, H; Elnimr, T

    2016-01-01

    The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Spatio-temporal variability of hydro-chemical characteristics of coastal waters of Gulf of Mannar Marine Biosphere Reserve (GoMMBR), South India

    NASA Astrophysics Data System (ADS)

    Kathiravan, K.; Natesan, Usha; Vishnunath, R.

    2017-03-01

    The intention of this study was to appraise the spatial and temporal variations in the physico-chemical parameters of coastal waters of Rameswaram Island, Gulf of Mannar Marine Biosphere Reserve, south India, using multivariate statistical techniques, such as cluster analysis, factor analysis and principal component analysis. Spatio-temporal variations among the physico-chemical parameters are observed in the coastal waters of Gulf of Mannar, especially during northeast and post monsoon seasons. It is inferred that the high loadings of pH, temperature, suspended particulate matter, salinity, dissolved oxygen, biochemical oxygen demand, chlorophyll a, nutrient species of nitrogen and phosphorus strongly determine the discrimination of coastal water quality. Results highlight the important role of monsoonal variations to determine the coastal water quality around Rameswaram Island.

  1. Nutritional Evaluation of Non-Conventional Vegetables in Brazil.

    PubMed

    Silva, Luis Felipe Lima E; Souza, Douglas C DE; Resende, Luciane V; Nassur, Rita DE Cássia M R; Samartini, Carolina Q; Gonçalves, Wilson M

    2018-01-01

    The objective of this study was to characterize the nutritional compounds of interest present in vegetables known as non-conventional, in Brazil. The following evaluations were carried out: antioxidant activity, phenolic compounds, vitamin C, calories, carbohydrates, humidity, lipids, proteins, fiber, acidity and quantification of minerals (P, K, Ca, Mg, S, Cu, Fe, Mn, Zn and B). The species studied were Amaranthus hybridus L., Amaranthus viridis L., Basella alba L., Eryngium campestre L., Hibiscus sabdariffa L., Lactuca canadensis L., Rumex acetosa L., Stachys byzantina K. Koch, Tropaeolum majus L. and Xanthosoma sagittifolium L. Representative samples of plant structures of interest were harvested from each species suitable for human consumption such as leaves, flowers and flower buds. The results were submitted to multivariate analysis - principal components analysis (PCA). All the species present nutritional compounds of interest in different levels among the evaluated structures.

  2. REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, L G; Glaser, R E; Chin, H S

    2004-06-17

    The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less

  3. Method of determining the optimal dilution ratio for fluorescence fingerprint of food constituents.

    PubMed

    Trivittayasil, Vipavee; Tsuta, Mizuki; Kokawa, Mito; Yoshimura, Masatoshi; Sugiyama, Junichi; Fujita, Kaori; Shibata, Mario

    2015-01-01

    Quantitative determination by fluorescence spectroscopy is possible because of the linear relationship between the intensity of emitted fluorescence and the fluorophore concentration. However, concentration quenching may cause the relationship to become nonlinear, and thus, the optimal dilution ratio has to be determined. In the case of fluorescence fingerprint (FF) measurement, fluorescence is measured under multiple wavelength conditions and a method of determining the optimal dilution ratio for multivariate data such as FFs has not been reported. In this study, the FFs of mixed solutions of tryptophan and epicatechin of different concentrations and composition ratios were measured. Principal component analysis was applied, and the resulting loading plots were found to contain useful information about each constituent. The optimal concentration ranges could be determined by identifying the linear region of the PC score plotted against total concentration.

  4. Chemical profiling of guarana seeds (Paullinia cupana) from different geographical origins using UPLC-QTOF-MS combined with chemometrics.

    PubMed

    da Silva, Givaldo Souza; Canuto, Kirley Marques; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Nascimento, Madson Moreira; Zocolo, Guilherme Julião; Coutinho, Janclei Pereira; de Jesus, Raildo Mota

    2017-12-01

    Paullinia cupana, commonly known as guarana, is an Amazonian fruit whose seeds are used to produce the powdered guarana, which is rich in caffeine and consumed for its stimulating activity. The metabolic profile of guarana from the two largest producing regions was investigated using UPLC-MS combined with multivariate statistical analysis. The principal component analysis (PCA) showed significant differences between samples produced in the states of Bahia and Amazonas. The metabolites responsible for the differentiation were identified by orthogonal partial least squares discriminant analysis (OPLS-DA). Fourteen phenolic compounds were characterized in guarana powder samples, and catechin, epicatechin, B-type procyanidin dimer, A-type procyanidin trimer and A-type procyanidin dimer were the main compounds responsible for the geographical variation of the samples. Copyright © 2017. Published by Elsevier Ltd.

  5. Monitoring of an antigen manufacturing process.

    PubMed

    Zavatti, Vanessa; Budman, Hector; Legge, Raymond; Tamer, Melih

    2016-06-01

    Fluorescence spectroscopy in combination with multivariate statistical methods was employed as a tool for monitoring the manufacturing process of pertactin (PRN), one of the virulence factors of Bordetella pertussis utilized in whopping cough vaccines. Fluorophores such as amino acids and co-enzymes were detected throughout the process. The fluorescence data collected at different stages of the fermentation and purification process were treated employing principal component analysis (PCA). Through PCA, it was feasible to identify sources of variability in PRN production. Then, partial least square (PLS) was employed to correlate the fluorescence spectra obtained from pure PRN samples and the final protein content measured by a Kjeldahl test from these samples. In view that a statistically significant correlation was found between fluorescence and PRN levels, this approach could be further used as a method to predict the final protein content.

  6. Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal.

    PubMed

    Conlon, Anna S C; Taylor, Jeremy M G; Elliott, Michael R

    2014-04-01

    In clinical trials, a surrogate outcome variable (S) can be measured before the outcome of interest (T) and may provide early information regarding the treatment (Z) effect on T. Using the principal surrogacy framework introduced by Frangakis and Rubin (2002. Principal stratification in causal inference. Biometrics 58, 21-29), we consider an approach that has a causal interpretation and develop a Bayesian estimation strategy for surrogate validation when the joint distribution of potential surrogate and outcome measures is multivariate normal. From the joint conditional distribution of the potential outcomes of T, given the potential outcomes of S, we propose surrogacy validation measures from this model. As the model is not fully identifiable from the data, we propose some reasonable prior distributions and assumptions that can be placed on weakly identified parameters to aid in estimation. We explore the relationship between our surrogacy measures and the surrogacy measures proposed by Prentice (1989. Surrogate endpoints in clinical trials: definition and operational criteria. Statistics in Medicine 8, 431-440). The method is applied to data from a macular degeneration study and an ovarian cancer study.

  7. Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal

    PubMed Central

    Conlon, Anna S. C.; Taylor, Jeremy M. G.; Elliott, Michael R.

    2014-01-01

    In clinical trials, a surrogate outcome variable (S) can be measured before the outcome of interest (T) and may provide early information regarding the treatment (Z) effect on T. Using the principal surrogacy framework introduced by Frangakis and Rubin (2002. Principal stratification in causal inference. Biometrics 58, 21–29), we consider an approach that has a causal interpretation and develop a Bayesian estimation strategy for surrogate validation when the joint distribution of potential surrogate and outcome measures is multivariate normal. From the joint conditional distribution of the potential outcomes of T, given the potential outcomes of S, we propose surrogacy validation measures from this model. As the model is not fully identifiable from the data, we propose some reasonable prior distributions and assumptions that can be placed on weakly identified parameters to aid in estimation. We explore the relationship between our surrogacy measures and the surrogacy measures proposed by Prentice (1989. Surrogate endpoints in clinical trials: definition and operational criteria. Statistics in Medicine 8, 431–440). The method is applied to data from a macular degeneration study and an ovarian cancer study. PMID:24285772

  8. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.

    PubMed

    Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S

    2011-05-01

    Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.

  9. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification

    NASA Astrophysics Data System (ADS)

    Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng

    2013-10-01

    Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.

  10. Combining ANOVA-PCA with POCHEMON to analyse micro-organism development in a polymicrobial environment.

    PubMed

    Geurts, Brigitte P; Neerincx, Anne H; Bertrand, Samuel; Leemans, Manja A A P; Postma, Geert J; Wolfender, Jean-Luc; Cristescu, Simona M; Buydens, Lutgarde M C; Jansen, Jeroen J

    2017-04-22

    Revealing the biochemistry associated to micro-organismal interspecies interactions is highly relevant for many purposes. Each pathogen has a characteristic metabolic fingerprint that allows identification based on their unique multivariate biochemistry. When pathogen species come into mutual contact, their co-culture will display a chemistry that may be attributed both to mixing of the characteristic chemistries of the mono-cultures and to competition between the pathogens. Therefore, investigating pathogen development in a polymicrobial environment requires dedicated chemometric methods to untangle and focus upon these sources of variation. The multivariate data analysis method Projected Orthogonalised Chemical Encounter Monitoring (POCHEMON) is dedicated to highlight metabolites characteristic for the interaction of two micro-organisms in co-culture. However, this approach is currently limited to a single time-point, while development of polymicrobial interactions may be highly dynamic. A well-known multivariate implementation of Analysis of Variance (ANOVA) uses Principal Component Analysis (ANOVA-PCA). This allows the overall dynamics to be separated from the pathogen-specific chemistry to analyse the contributions of both aspects separately. For this reason, we propose to integrate ANOVA-PCA with the POCHEMON approach to disentangle the pathogen dynamics and the specific biochemistry in interspecies interactions. Two complementary case studies show great potential for both liquid and gas chromatography - mass spectrometry to reveal novel information on chemistry specific to interspecies interaction during pathogen development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Linking multimetric and multivariate approaches to assess the ecological condition of streams.

    PubMed

    Collier, Kevin J

    2009-10-01

    Few attempts have been made to combine multimetric and multivariate analyses for bioassessment despite recognition that an integrated method could yield powerful tools for bioassessment. An approach is described that integrates eight macroinvertebrate community metrics into a Principal Components Analysis to develop a Multivariate Condition Score (MCS) from a calibration dataset of 511 samples. The MCS is compared to an Index of Biotic Integrity (IBI) derived using the same metrics based on the ratio to the reference site mean. Both approaches were highly correlated although the MCS appeared to offer greater potential for discriminating a wider range of impaired conditions. Both the MCS and IBI displayed low temporal variability within reference sites, and were able to distinguish between reference conditions and low levels of catchment modification and local habitat degradation, although neither discriminated among three levels of low impact. Pseudosamples developed to test the response of the metric aggregation approaches to organic enrichment, urban, mining, pastoral and logging stressor scenarios ranked pressures in the same order, but the MCS provided a lower score for the urban scenario and a higher score for the pastoral scenario. The MCS was calculated for an independent test dataset of urban and reference sites, and yielded similar results to the IBI. Although both methods performed comparably, the MCS approach may have some advantages because it removes the subjectivity of assigning thresholds for scoring biological condition, and it appears to discriminate a wider range of degraded conditions.

  12. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface waters can be undertaken.

  13. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule

    NASA Astrophysics Data System (ADS)

    Hadad, Ghada M.; El-Gindy, Alaa; Mahmoud, Waleed M. M.

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C 18 analytical column with a mobile phase consisting of a mixture of 20 mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ( 1DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.

  14. Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage

    PubMed Central

    2016-01-01

    Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance. PMID:28058277

  15. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule.

    PubMed

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C(18) analytical column with a mobile phase consisting of a mixture of 20mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ((1)DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.

  16. Automated Classification and Analysis of Non-metallic Inclusion Data Sets

    NASA Astrophysics Data System (ADS)

    Abdulsalam, Mohammad; Zhang, Tongsheng; Tan, Jia; Webler, Bryan A.

    2018-05-01

    The aim of this study is to utilize principal component analysis (PCA), clustering methods, and correlation analysis to condense and examine large, multivariate data sets produced from automated analysis of non-metallic inclusions. Non-metallic inclusions play a major role in defining the properties of steel and their examination has been greatly aided by automated analysis in scanning electron microscopes equipped with energy dispersive X-ray spectroscopy. The methods were applied to analyze inclusions on two sets of samples: two laboratory-scale samples and four industrial samples from a near-finished 4140 alloy steel components with varying machinability. The laboratory samples had well-defined inclusions chemistries, composed of MgO-Al2O3-CaO, spinel (MgO-Al2O3), and calcium aluminate inclusions. The industrial samples contained MnS inclusions as well as (Ca,Mn)S + calcium aluminate oxide inclusions. PCA could be used to reduce inclusion chemistry variables to a 2D plot, which revealed inclusion chemistry groupings in the samples. Clustering methods were used to automatically classify inclusion chemistry measurements into groups, i.e., no user-defined rules were required.

  17. How multi segmental patterns deviate in spastic diplegia from typical developed.

    PubMed

    Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela

    2017-10-01

    The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A reduction in ag/residential signature conflict using principal components analysis of LANDSAT temporal data

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Borden, F. Y.

    1977-01-01

    Methods to accurately delineate the types of land cover in the urban-rural transition zone of metropolitan areas were considered. The application of principal components analysis to multidate LANDSAT imagery was investigated as a means of reducing the overlap between residential and agricultural spectral signatures. The statistical concepts of principal components analysis were discussed, as well as the results of this analysis when applied to multidate LANDSAT imagery of the Washington, D.C. metropolitan area.

  19. Constrained Principal Component Analysis: Various Applications.

    ERIC Educational Resources Information Center

    Hunter, Michael; Takane, Yoshio

    2002-01-01

    Provides example applications of constrained principal component analysis (CPCA) that illustrate the method on a variety of contexts common to psychological research. Two new analyses, decompositions into finer components and fitting higher order structures, are presented, followed by an illustration of CPCA on contingency tables and the CPCA of…

  20. Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.

    PubMed

    Katseanes, Chelsea K; Chappell, Mark A; Hopkins, Bryan G; Durham, Brian D; Price, Cynthia L; Porter, Beth E; Miller, Lesley F

    2016-11-01

    After nearly a century of use in numerous munition platforms, TNT and RDX contamination has turned up largely in the environment due to ammunition manufacturing or as part of releases from low-order detonations during training activities. Although the basic knowledge governing the environmental fate of TNT and RDX are known, accurate predictions of TNT and RDX persistence in soil remain elusive, particularly given the universal heterogeneity of pedomorphic soil types. In this work, we proposed a new solution for modeling the sorption and persistence of these munition constituents as multivariate mathematical functions correlating soil attribute data over a variety of taxonomically distinct soil types to contaminant behavior, instead of a single constant or parameter of a specific absolute value. To test this idea, we conducted experiments measuring the sorption of TNT and RDX on taxonomically different soil types that were extensively physical and chemically characterized. Statistical decomposition of the log-transformed, and auto-scaled soil characterization data using the dimension-reduction technique PCA (principal component analysis) revealed a strong latent structure based in the multiple pairwise correlations among the soil properties. TNT and RDX sorption partitioning coefficients (KD-TNT and KD-RDX) were regressed against this latent structure using partial least squares regression (PLSR), generating a 3-factor, multivariate linear functions. Here, PLSR models predicted KD-TNT and KD-RDX values based on attributes contributing to endogenous alkaline/calcareous and soil fertility criteria, respectively, exhibited among the different soil types: We hypothesized that the latent structure arising from the strong covariance of full multivariate geochemical matrix describing taxonomically distinguished soil types may provide the means for potentially predicting complex phenomena in soils. The development of predictive multivariate models tuned to a local soil's taxonomic designation would have direct benefit to military range managers seeking to anticipate the environmental risks of training activities on impact sites. Published by Elsevier Ltd.

Top