Sample records for multivariate regression tree

  1. Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw

    2006-01-01

    We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.

  2. Finding structure in data using multivariate tree boosting

    PubMed Central

    Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.

    2016-01-01

    Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183

  3. Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure.

    PubMed

    Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C

    2015-01-01

    We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Multivariate regression model for partitioning tree volume of white oak into round-product classes

    Treesearch

    Daniel A. Yaussy; David L. Sonderman

    1984-01-01

    Describes the development of multivariate equations that predict the expected cubic volume of four round-product classes from independent variables composed of individual tree-quality characteristics. Although the model has limited application at this time, it does demonstrate the feasibility of partitioning total tree cubic volume into round-product classes based on...

  5. Predicting Potential Changes in Suitable Habitat and Distribution by 2100 for Tree Species of the Eastern United States

    Treesearch

    Louis R Iverson; Anantha M. Prasad; Mark W. Schwartz; Mark W. Schwartz

    2005-01-01

    We predict current distribution and abundance for tree species present in eastern North America, and subsequently estimate potential suitable habitat for those species under a changed climate with 2 x CO2. We used a series of statistical models (i.e., Regression Tree Analysis (RTA), Multivariate Adaptive Regression Splines (MARS), Bagging Trees (...

  6. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupšys, P.

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.

  7. Improving Cluster Analysis with Automatic Variable Selection Based on Trees

    DTIC Science & Technology

    2014-12-01

    regression trees Daisy DISsimilAritY PAM partitioning around medoids PMA penalized multivariate analysis SPC sparse principal components UPGMA unweighted...unweighted pair-group average method ( UPGMA ). This method measures dissimilarities between all objects in two clusters and takes the average value

  8. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  9. Predicting volumes in four Hawaii hardwoods...first multivariate equations developed

    Treesearch

    David A. Sharpnack

    1966-01-01

    Multivariate regression equations were developed for predicting board-foot (Int. 1/ 4-inch log rule ) and cubic-foot volumes in each 8.15-foot section of trees of four Hawaii hardwood species. The species are koa (Acacia koa), ohia (Metrosideros polymorpha), robusta eucalyptus (Eucalyptus robusta), and...

  10. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Parmar, Kulwinder Singh

    2016-03-01

    This study investigates the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree) in modeling river water pollution. Various combinations of water quality parameters, Free Ammonia (AMM), Total Kjeldahl Nitrogen (TKN), Water Temperature (WT), Total Coliform (TC), Fecal Coliform (FC) and Potential of Hydrogen (pH) monitored at Nizamuddin, Delhi Yamuna River in India were used as inputs to the applied models. Results indicated that the LSSVM and MARS models had almost same accuracy and they performed better than the M5Tree model in modeling monthly chemical oxygen demand (COD). The average root mean square error (RMSE) of the LSSVM and M5Tree models was decreased by 1.47% and 19.1% using MARS model, respectively. Adding TC input to the models did not increase their accuracy in modeling COD while adding FC and pH inputs to the models generally decreased the accuracy. The overall results indicated that the MARS and LSSVM models could be successfully used in estimating monthly river water pollution level by using AMM, TKN and WT parameters as inputs.

  11. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei

    2017-02-01

    Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67-0.76)] and validation cohorts [0.73 (0.63-0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.

  12. Per capita community-level effects of an invasive grass, Microstegium vimineum, on vegetation in mesic forests in northern Mississippi (USA)

    Treesearch

    J. Stephen Brewer

    2010-01-01

    Quantifying per capita impacts of invasive species on resident communities requires integrating regression analyses with experiments under natural conditions. Using multivariate and univariate approaches, I regressed the abundance of 105 resident species of groundcover plants and tree seedlings against the abundance and height of an invasive grass, Microstegium...

  13. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.

    PubMed

    Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S

    2011-05-01

    Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.

  14. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree

    NASA Astrophysics Data System (ADS)

    Heddam, Salim; Kisi, Ozgur

    2018-04-01

    In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.

  15. Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Mfumu Kihumba, Antoine; Ndembo Longo, Jean; Vanclooster, Marnik

    2016-03-01

    A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.

  16. Disentangling Environmental and Anthropogenic Impacts on the Distribution of Unintentionally Introduced Invasive Alien Insects in Mainland China

    PubMed Central

    Zhao, Cai-Yun; Xu, Jing; Liu, Xiao-Yan

    2017-01-01

    Abstract Globalization increases the opportunities for unintentionally introduced invasive alien species, especially for insects, and most of these species could damage ecosystems and cause economic loss in China. In this study, we analyzed drivers of the distribution of unintentionally introduced invasive alien insects. Based on the number of unintentionally introduced invasive alien insects and their presence/absence records in each province in mainland China, regression trees were built to elucidate the roles of environmental and anthropogenic factors on the number distribution and similarity of species composition of these insects. Classification and regression trees indicated climatic suitability (the mean temperature in January) and human economic activity (sum of total freight) are primary drivers for the number distribution pattern of unintentionally introduced invasive alien insects at provincial scale, while only environmental factors (the mean January temperature, the annual precipitation and the areas of provinces) significantly affect the similarity of them based on the multivariate regression trees. PMID:28973576

  17. Disentangling Environmental and Anthropogenic Impacts on the Distribution of Unintentionally Introduced Invasive Alien Insects in Mainland China.

    PubMed

    Zhao, Cai-Yun; Li, Jun-Sheng; Xu, Jing; Liu, Xiao-Yan

    2017-05-01

    Globalization increases the opportunities for unintentionally introduced invasive alien species, especially for insects, and most of these species could damage ecosystems and cause economic loss in China. In this study, we analyzed drivers of the distribution of unintentionally introduced invasive alien insects. Based on the number of unintentionally introduced invasive alien insects and their presence/absence records in each province in mainland China, regression trees were built to elucidate the roles of environmental and anthropogenic factors on the number distribution and similarity of species composition of these insects. Classification and regression trees indicated climatic suitability (the mean temperature in January) and human economic activity (sum of total freight) are primary drivers for the number distribution pattern of unintentionally introduced invasive alien insects at provincial scale, while only environmental factors (the mean January temperature, the annual precipitation and the areas of provinces) significantly affect the similarity of them based on the multivariate regression trees. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  18. Association between split selection instability and predictive error in survival trees.

    PubMed

    Radespiel-Tröger, M; Gefeller, O; Rabenstein, T; Hothorn, T

    2006-01-01

    To evaluate split selection instability in six survival tree algorithms and its relationship with predictive error by means of a bootstrap study. We study the following algorithms: logrank statistic with multivariate p-value adjustment without pruning (LR), Kaplan-Meier distance of survival curves (KM), martingale residuals (MR), Poisson regression for censored data (PR), within-node impurity (WI), and exponential log-likelihood loss (XL). With the exception of LR, initial trees are pruned by using split-complexity, and final trees are selected by means of cross-validation. We employ a real dataset from a clinical study of patients with gallbladder stones. The predictive error is evaluated using the integrated Brier score for censored data. The relationship between split selection instability and predictive error is evaluated by means of box-percentile plots, covariate and cutpoint selection entropy, and cutpoint selection coefficients of variation, respectively, in the root node. We found a positive association between covariate selection instability and predictive error in the root node. LR yields the lowest predictive error, while KM and MR yield the highest predictive error. The predictive error of survival trees is related to split selection instability. Based on the low predictive error of LR, we recommend the use of this algorithm for the construction of survival trees. Unpruned survival trees with multivariate p-value adjustment can perform equally well compared to pruned trees. The analysis of split selection instability can be used to communicate the results of tree-based analyses to clinicians and to support the application of survival trees.

  19. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes

    PubMed Central

    2013-01-01

    Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704

  20. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.

    PubMed

    Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni

    2013-01-01

    Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.

  1. Uni- and multi-variable modelling of flood losses: experiences gained from the Secchia river inundation event.

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Kreibich, Heidi; Schröter, Kai; Castellarin, Attilio

    2017-04-01

    Flood risk is function of flood hazard and vulnerability, therefore its accurate assessment depends on a reliable quantification of both factors. The scientific literature proposes a number of objective and reliable methods for assessing flood hazard, yet it highlights a limited understanding of the fundamental damage processes. Loss modelling is associated with large uncertainty which is, among other factors, due to a lack of standard procedures; for instance, flood losses are often estimated based on damage models derived in completely different contexts (i.e. different countries or geographical regions) without checking its applicability, or by considering only one explanatory variable (i.e. typically water depth). We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused the inundation of nearly 200 km2 in Northern Italy. In the aftermath of this event, local authorities collected flood loss data, together with additional information on affected private households and industrial activities (e.g. buildings surface and economic value, number of company's employees and others). Based on these data we implemented and compared a quadratic-regression damage function, with water depth as the only explanatory variable, and a multi-variable model that combines multiple regression trees and considers several explanatory variables (i.e. bagging decision trees). Our results show the importance of data collection revealing that (1) a simple quadratic regression damage function based on empirical data from the study area can be significantly more accurate than literature damage-models derived for a different context and (2) multi-variable modelling may outperform the uni-variable approach, yet it is more difficult to develop and apply due to a much higher demand of detailed data.

  2. [Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].

    PubMed

    Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao

    2016-03-01

    Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.

  3. Trees grow on money: urban tree canopy cover and environmental justice.

    PubMed

    Schwarz, Kirsten; Fragkias, Michail; Boone, Christopher G; Zhou, Weiqi; McHale, Melissa; Grove, J Morgan; O'Neil-Dunne, Jarlath; McFadden, Joseph P; Buckley, Geoffrey L; Childers, Dan; Ogden, Laura; Pincetl, Stephanie; Pataki, Diane; Whitmer, Ali; Cadenasso, Mary L

    2015-01-01

    This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using Spearman's correlation, ordinary least squares regression (OLS), and a spatial autoregressive model (SAR). Across all cities there is a strong positive correlation between UTC cover and median household income. Negative correlations between race and UTC cover exist in bivariate models for some cities, but they are generally not observed using multivariate regressions that include additional variables on income, education, and housing age. SAR models result in higher r-square values compared to the OLS models across all cities, suggesting that spatial autocorrelation is an important feature of our data. Similarities among cities can be found based on shared characteristics of climate, race/ethnicity, and size. Our findings suggest that a suite of variables, including income, contribute to the distribution of UTC cover. These findings can help target simultaneous strategies for UTC goals and environmental justice concerns.

  4. A comparison of selected parametric and imputation methods for estimating snag density and snag quality attributes

    USGS Publications Warehouse

    Eskelson, Bianca N.I.; Hagar, Joan; Temesgen, Hailemariam

    2012-01-01

    Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags depends on size and decay stage, snag density estimation without any information about snag quality attributes is of little value for wildlife management decision makers. Little work has been done to develop models that allow multivariate estimation of snag density by snag quality class. Using climate, topography, Landsat TM data, stand age and forest type collected for 2356 forested Forest Inventory and Analysis plots in western Washington and western Oregon, we evaluated two multivariate techniques for their abilities to estimate density of snags by three decay classes. The density of live trees and snags in three decay classes (D1: recently dead, little decay; D2: decay, without top, some branches and bark missing; D3: extensive decay, missing bark and most branches) with diameter at breast height (DBH) ≥ 12.7 cm was estimated using a nonparametric random forest nearest neighbor imputation technique (RF) and a parametric two-stage model (QPORD), for which the number of trees per hectare was estimated with a Quasipoisson model in the first stage and the probability of belonging to a tree status class (live, D1, D2, D3) was estimated with an ordinal regression model in the second stage. The presence of large snags with DBH ≥ 50 cm was predicted using a logistic regression and RF imputation. Because of the more homogenous conditions on private forest lands, snag density by decay class was predicted with higher accuracies on private forest lands than on public lands, while presence of large snags was more accurately predicted on public lands, owing to the higher prevalence of large snags on public lands. RF outperformed the QPORD model in terms of percent accurate predictions, while QPORD provided smaller root mean square errors in predicting snag density by decay class. The logistic regression model achieved more accurate presence/absence classification of large snags than the RF imputation approach. Adjusting the decision threshold to account for unequal size for presence and absence classes is more straightforward for the logistic regression than for the RF imputation approach. Overall, model accuracies were poor in this study, which can be attributed to the poor predictive quality of the explanatory variables and the large range of forest types and geographic conditions observed in the data.

  5. Ultrasonographic Diagnosis of Biliary Atresia Based on a Decision-Making Tree Model.

    PubMed

    Lee, So Mi; Cheon, Jung-Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun-Hae; Cho, Hyun-Hye; Kim, In-One; You, Sun Kyoung

    2015-01-01

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.

  6. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping.

    PubMed

    Shafizadeh-Moghadam, Hossein; Valavi, Roozbeh; Shahabi, Himan; Chapi, Kamran; Shirzadi, Ataollah

    2018-07-01

    In this research, eight individual machine learning and statistical models are implemented and compared, and based on their results, seven ensemble models for flood susceptibility assessment are introduced. The individual models included artificial neural networks, classification and regression trees, flexible discriminant analysis, generalized linear model, generalized additive model, boosted regression trees, multivariate adaptive regression splines, and maximum entropy, and the ensemble models were Ensemble Model committee averaging (EMca), Ensemble Model confidence interval Inferior (EMciInf), Ensemble Model confidence interval Superior (EMciSup), Ensemble Model to estimate the coefficient of variation (EMcv), Ensemble Model to estimate the mean (EMmean), Ensemble Model to estimate the median (EMmedian), and Ensemble Model based on weighted mean (EMwmean). The data set covered 201 flood events in the Haraz watershed (Mazandaran province in Iran) and 10,000 randomly selected non-occurrence points. Among the individual models, the Area Under the Receiver Operating Characteristic (AUROC), which showed the highest value, belonged to boosted regression trees (0.975) and the lowest value was recorded for generalized linear model (0.642). On the other hand, the proposed EMmedian resulted in the highest accuracy (0.976) among all models. In spite of the outstanding performance of some models, nevertheless, variability among the prediction of individual models was considerable. Therefore, to reduce uncertainty, creating more generalizable, more stable, and less sensitive models, ensemble forecasting approaches and in particular the EMmedian is recommended for flood susceptibility assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: Seeing the forest for the trees.

    PubMed

    Shi, K-Q; Zhou, Y-Y; Yan, H-D; Li, H; Wu, F-L; Xie, Y-Y; Braddock, M; Lin, X-Y; Zheng, M-H

    2017-02-01

    At present, there is no ideal model for predicting the short-term outcome of patients with acute-on-chronic hepatitis B liver failure (ACHBLF). This study aimed to establish and validate a prognostic model by using the classification and regression tree (CART) analysis. A total of 1047 patients from two separate medical centres with suspected ACHBLF were screened in the study, which were recognized as derivation cohort and validation cohort, respectively. CART analysis was applied to predict the 3-month mortality of patients with ACHBLF. The accuracy of the CART model was tested using the area under the receiver operating characteristic curve, which was compared with the model for end-stage liver disease (MELD) score and a new logistic regression model. CART analysis identified four variables as prognostic factors of ACHBLF: total bilirubin, age, serum sodium and INR, and three distinct risk groups: low risk (4.2%), intermediate risk (30.2%-53.2%) and high risk (81.4%-96.9%). The new logistic regression model was constructed with four independent factors, including age, total bilirubin, serum sodium and prothrombin activity by multivariate logistic regression analysis. The performances of the CART model (0.896), similar to the logistic regression model (0.914, P=.382), exceeded that of MELD score (0.667, P<.001). The results were confirmed in the validation cohort. We have developed and validated a novel CART model superior to MELD for predicting three-month mortality of patients with ACHBLF. Thus, the CART model could facilitate medical decision-making and provide clinicians with a validated practical bedside tool for ACHBLF risk stratification. © 2016 John Wiley & Sons Ltd.

  8. Multivariate analysis of cytokine profiles in pregnancy complications.

    PubMed

    Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali

    2018-03-01

    The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.

  9. Determination of variability in leaf biomass densities of conifers and mixed conifers under different environmental conditions in the San Joaquin Valley air basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, P.J.; Mutters, R.J.; Adams, C.

    1995-06-01

    Biomass sampling plots were established at 29 locations within the dominant vegetation zones of the study area. Estimates of foliar biomass were made for each plot by three independent methods: regression analysis on the basis of tree diameter, calculation of the amount of light intercepted by the leaf canopy, and extrapolation from branch leaf area. Multivariate regression analysis was used to relate these foliar biomass estimates for oak plots and conifer plots to several independent predictor variables, including elevation, slope, aspect, temperature, precipitation, and soil chemical characteristics.

  10. Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health

    NASA Astrophysics Data System (ADS)

    Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.

    2002-12-01

    Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.

  11. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    NASA Astrophysics Data System (ADS)

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  12. Trees Grow on Money: Urban Tree Canopy Cover and Environmental Justice

    PubMed Central

    Schwarz, Kirsten; Fragkias, Michail; Boone, Christopher G.; Zhou, Weiqi; McHale, Melissa; Grove, J. Morgan; O’Neil-Dunne, Jarlath; McFadden, Joseph P.; Buckley, Geoffrey L.; Childers, Dan; Ogden, Laura; Pincetl, Stephanie; Pataki, Diane; Whitmer, Ali; Cadenasso, Mary L.

    2015-01-01

    This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using Spearman’s correlation, ordinary least squares regression (OLS), and a spatial autoregressive model (SAR). Across all cities there is a strong positive correlation between UTC cover and median household income. Negative correlations between race and UTC cover exist in bivariate models for some cities, but they are generally not observed using multivariate regressions that include additional variables on income, education, and housing age. SAR models result in higher r-square values compared to the OLS models across all cities, suggesting that spatial autocorrelation is an important feature of our data. Similarities among cities can be found based on shared characteristics of climate, race/ethnicity, and size. Our findings suggest that a suite of variables, including income, contribute to the distribution of UTC cover. These findings can help target simultaneous strategies for UTC goals and environmental justice concerns. PMID:25830303

  13. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.

  14. Using Time Series Analysis to Predict Cardiac Arrest in a PICU.

    PubMed

    Kennedy, Curtis E; Aoki, Noriaki; Mariscalco, Michele; Turley, James P

    2015-11-01

    To build and test cardiac arrest prediction models in a PICU, using time series analysis as input, and to measure changes in prediction accuracy attributable to different classes of time series data. Retrospective cohort study. Thirty-one bed academic PICU that provides care for medical and general surgical (not congenital heart surgery) patients. Patients experiencing a cardiac arrest in the PICU and requiring external cardiac massage for at least 2 minutes. None. One hundred three cases of cardiac arrest and 109 control cases were used to prepare a baseline dataset that consisted of 1,025 variables in four data classes: multivariate, raw time series, clinical calculations, and time series trend analysis. We trained 20 arrest prediction models using a matrix of five feature sets (combinations of data classes) with four modeling algorithms: linear regression, decision tree, neural network, and support vector machine. The reference model (multivariate data with regression algorithm) had an accuracy of 78% and 87% area under the receiver operating characteristic curve. The best model (multivariate + trend analysis data with support vector machine algorithm) had an accuracy of 94% and 98% area under the receiver operating characteristic curve. Cardiac arrest predictions based on a traditional model built with multivariate data and a regression algorithm misclassified cases 3.7 times more frequently than predictions that included time series trend analysis and built with a support vector machine algorithm. Although the final model lacks the specificity necessary for clinical application, we have demonstrated how information from time series data can be used to increase the accuracy of clinical prediction models.

  15. A multivariate model and statistical method for validating tree grade lumber yield equations

    Treesearch

    Donald W. Seegrist

    1975-01-01

    Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.

  16. Summer and winter habitat suitability of Marco Polo argali in southeastern Tajikistan: A modeling approach.

    PubMed

    Salas, Eric Ariel L; Valdez, Raul; Michel, Stefan

    2017-11-01

    We modeled summer and winter habitat suitability of Marco Polo argali in the Pamir Mountains in southeastern Tajikistan using these statistical algorithms: Generalized Linear Model, Random Forest, Boosted Regression Tree, Maxent, and Multivariate Adaptive Regression Splines. Using sheep occurrence data collected from 2009 to 2015 and a set of selected habitat predictors, we produced summer and winter habitat suitability maps and determined the important habitat suitability predictors for both seasons. Our results demonstrated that argali selected proximity to riparian areas and greenness as the two most relevant variables for summer, and the degree of slope (gentler slopes between 0° to 20°) and Landsat temperature band for winter. The terrain roughness was also among the most important variables in summer and winter models. Aspect was only significant for winter habitat, with argali preferring south-facing mountain slopes. We evaluated various measures of model performance such as the Area Under the Curve (AUC) and the True Skill Statistic (TSS). Comparing the five algorithms, the AUC scored highest for Boosted Regression Tree in summer (AUC = 0.94) and winter model runs (AUC = 0.94). In contrast, Random Forest underperformed in both model runs.

  17. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model

    NASA Astrophysics Data System (ADS)

    Deo, Ravinesh C.; Kisi, Ozgur; Singh, Vijay P.

    2017-02-01

    Drought forecasting using standardized metrics of rainfall is a core task in hydrology and water resources management. Standardized Precipitation Index (SPI) is a rainfall-based metric that caters for different time-scales at which the drought occurs, and due to its standardization, is well-suited for forecasting drought at different periods in climatically diverse regions. This study advances drought modelling using multivariate adaptive regression splines (MARS), least square support vector machine (LSSVM), and M5Tree models by forecasting SPI in eastern Australia. MARS model incorporated rainfall as mandatory predictor with month (periodicity), Southern Oscillation Index, Pacific Decadal Oscillation Index and Indian Ocean Dipole, ENSO Modoki and Nino 3.0, 3.4 and 4.0 data added gradually. The performance was evaluated with root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (r2). Best MARS model required different input combinations, where rainfall, sea surface temperature and periodicity were used for all stations, but ENSO Modoki and Pacific Decadal Oscillation indices were not required for Bathurst, Collarenebri and Yamba, and the Southern Oscillation Index was not required for Collarenebri. Inclusion of periodicity increased the r2 value by 0.5-8.1% and reduced RMSE by 3.0-178.5%. Comparisons showed that MARS superseded the performance of the other counterparts for three out of five stations with lower MAE by 15.0-73.9% and 7.3-42.2%, respectively. For the other stations, M5Tree was better than MARS/LSSVM with lower MAE by 13.8-13.4% and 25.7-52.2%, respectively, and for Bathurst, LSSVM yielded more accurate result. For droughts identified by SPI ≤ - 0.5, accurate forecasts were attained by MARS/M5Tree for Bathurst, Yamba and Peak Hill, whereas for Collarenebri and Barraba, M5Tree was better than LSSVM/MARS. Seasonal analysis revealed disparate results where MARS/M5Tree was better than LSSVM. The results highlight the importance of periodicity in drought forecasting and also ascertains that model accuracy scales with geographic/seasonal factors due to complexity of drought and its relationship with inputs and data attributes that can affect the evolution of drought events.

  18. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    NASA Astrophysics Data System (ADS)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  19. Using multiobjective tradeoff sets and Multivariate Regression Trees to identify critical and robust decisions for long term water utility planning

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Balaji, R.

    2017-12-01

    In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.

  20. Spatial properties of snow cover in the Upper Merced River Basin: implications for a distributed snow measurement network

    NASA Astrophysics Data System (ADS)

    Bouffon, T.; Rice, R.; Bales, R.

    2006-12-01

    The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.

  1. Early symptom burden predicts recovery after sport-related concussion

    PubMed Central

    Mannix, Rebekah; Monuteaux, Michael C.; Stein, Cynthia J.; Bachur, Richard G.

    2014-01-01

    Objective: To identify independent predictors of and use recursive partitioning to develop a multivariate regression tree predicting symptom duration greater than 28 days after a sport-related concussion. Methods: We conducted a prospective cohort study of patients in a sports concussion clinic. Participants completed questionnaires that included the Post-Concussion Symptom Scale (PCSS). Participants were asked to record the date on which they last experienced symptoms. Potential predictor variables included age, sex, score on symptom inventories, history of prior concussions, performance on computerized neurocognitive assessments, loss of consciousness and amnesia at the time of injury, history of prior medical treatment for headaches, history of migraines, and family history of concussion. We used recursive partitioning analysis to develop a multivariate prediction model for identifying athletes at risk for a prolonged recovery from concussion. Results: A total of 531 patients ranged in age from 7 to 26 years (mean 14.6 ± 2.9 years). The mean PCSS score at the initial visit was 26 ± 26; mean time to presentation was 12 ± 5 days. Only total score on symptom inventory was independently associated with symptoms lasting longer than 28 days (adjusted odds ratio 1.044; 95% confidence interval [CI] 1.034, 1.054 for PCSS). No other potential predictor variables were independently associated with symptom duration or useful in developing the optimal regression decision tree. Most participants (86%; 95% CI 80%, 90%) with an initial PCSS score of <13 had resolution of their symptoms within 28 days of injury. Conclusions: The only independent predictor of prolonged symptoms after sport-related concussion is overall symptom burden. PMID:25381296

  2. Early symptom burden predicts recovery after sport-related concussion.

    PubMed

    Meehan, William P; Mannix, Rebekah; Monuteaux, Michael C; Stein, Cynthia J; Bachur, Richard G

    2014-12-09

    To identify independent predictors of and use recursive partitioning to develop a multivariate regression tree predicting symptom duration greater than 28 days after a sport-related concussion. We conducted a prospective cohort study of patients in a sports concussion clinic. Participants completed questionnaires that included the Post-Concussion Symptom Scale (PCSS). Participants were asked to record the date on which they last experienced symptoms. Potential predictor variables included age, sex, score on symptom inventories, history of prior concussions, performance on computerized neurocognitive assessments, loss of consciousness and amnesia at the time of injury, history of prior medical treatment for headaches, history of migraines, and family history of concussion. We used recursive partitioning analysis to develop a multivariate prediction model for identifying athletes at risk for a prolonged recovery from concussion. A total of 531 patients ranged in age from 7 to 26 years (mean 14.6 ± 2.9 years). The mean PCSS score at the initial visit was 26 ± 26; mean time to presentation was 12 ± 5 days. Only total score on symptom inventory was independently associated with symptoms lasting longer than 28 days (adjusted odds ratio 1.044; 95% confidence interval [CI] 1.034, 1.054 for PCSS). No other potential predictor variables were independently associated with symptom duration or useful in developing the optimal regression decision tree. Most participants (86%; 95% CI 80%, 90%) with an initial PCSS score of <13 had resolution of their symptoms within 28 days of injury. The only independent predictor of prolonged symptoms after sport-related concussion is overall symptom burden. © 2014 American Academy of Neurology.

  3. Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database

    PubMed Central

    Liu, Rong; Li, Xi; Zhang, Wei; Zhou, Hong-Hao

    2015-01-01

    Objective Multiple linear regression (MLR) and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort. Methods MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20%) and the mean absolute error (MAE) were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling. Results BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84–8.96 mg/week, mean percentage within 20%: 45.88%–46.35%). In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05). In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly higher mean percentage within 20%, and lower MAE (all p values < 0.05) than MLR in the low- and high- dose ranges. Conclusion Overall, machine learning-based techniques, BART, MARS and SVR performed superior than MLR in warfarin pharmacogenetic dosing. Differences of algorithms’ performances exist among the races. Moreover, machine learning-based algorithms tended to perform better in the low- and high- dose ranges than MLR. PMID:26305568

  4. Classification and regression tree (CART) analysis of endometrial carcinoma: Seeing the forest for the trees.

    PubMed

    Barlin, Joyce N; Zhou, Qin; St Clair, Caryn M; Iasonos, Alexia; Soslow, Robert A; Alektiar, Kaled M; Hensley, Martee L; Leitao, Mario M; Barakat, Richard R; Abu-Rustum, Nadeem R

    2013-09-01

    The objectives of the study are to evaluate which clinicopathologic factors influenced overall survival (OS) in endometrial carcinoma and to determine if the surgical effort to assess para-aortic (PA) lymph nodes (LNs) at initial staging surgery impacts OS. All patients diagnosed with endometrial cancer from 1/1993-12/2011 who had LNs excised were included. PALN assessment was defined by the identification of one or more PALNs on final pathology. A multivariate analysis was performed to assess the effect of PALNs on OS. A form of recursive partitioning called classification and regression tree (CART) analysis was implemented. Variables included: age, stage, tumor subtype, grade, myometrial invasion, total LNs removed, evaluation of PALNs, and adjuvant chemotherapy. The cohort included 1920 patients, with a median age of 62 years. The median number of LNs removed was 16 (range, 1-99). The removal of PALNs was not associated with OS (P=0.450). Using the CART hierarchically, stage I vs. stages II-IV and grades 1-2 vs. grade 3 emerged as predictors of OS. If the tree was allowed to grow, further branching was based on age and myometrial invasion. Total number of LNs removed and assessment of PALNs as defined in this study were not predictive of OS. This innovative CART analysis emphasized the importance of proper stage assignment and a binary grading system in impacting OS. Notably, the total number of LNs removed and specific evaluation of PALNs as defined in this study were not important predictors of OS. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. [Statistical prediction methods in violence risk assessment and its application].

    PubMed

    Liu, Yuan-Yuan; Hu, Jun-Mei; Yang, Min; Li, Xiao-Song

    2013-06-01

    It is an urgent global problem how to improve the violence risk assessment. As a necessary part of risk assessment, statistical methods have remarkable impacts and effects. In this study, the predicted methods in violence risk assessment from the point of statistics are reviewed. The application of Logistic regression as the sample of multivariate statistical model, decision tree model as the sample of data mining technique, and neural networks model as the sample of artificial intelligence technology are all reviewed. This study provides data in order to contribute the further research of violence risk assessment.

  6. [Satellite remote sensing retrieval of canopy nitrogen nutritional status of apple trees at blossom stage].

    PubMed

    Wang, Ling; Zhao, Geng-Xing; Zhu, Xi-Cun; Wang, Rui-Yan; Chang, Chun-Yan

    2013-10-01

    Taking Qixia City of Shandong, China as the study area, and based on the Landsat-5 TM and ALOS AVNIR-2 images, the canopy retrieval reflectance of apple trees at blossom stage was acquired. In combining with the measured reflectance of sample trees, the nitrogen-sensitive spectral indices were constructed and selected. By using the sensitive spectral indices as the independent variables, the nitrogen retrieval models were established, and the model with the best accuracy was used for spatial retrieve. The correlations between the spectral indices and the nitrogen nutritional status were in the order of canopy > leaf > flower. The sensitive indices were mainly composed of green, red, and near infrared bands. The accuracy of the retrieval models was in the order of support vector regression > multi-variable stepwise regression > one-variable regression. The retrieval results based on different images were similar, and showed that the leaf nitrogen content was mainly of grades 3-4 (27-33 g x kg(-1)), and the canopy nitrogen nutrient indices were mainly of grades 2-4 (TM: 38-47 g x kg(-1); ALOS: 32-41 g x kg(-1)). The spatial distribution of the retrieval nitrogen nutritional status based on different images also showed the similar trend, i. e., the nitrogen nutritional status was higher in the north and south than that in the middle part of the study area, and the areas with the high grades of leaf nitrogen and canopy nitrogen were mainly located in Sujiadian Town and Songshan subdistrict in the northwest, Zangjiazhuang Town and Tingkou Town in the northeast, and Shewopo Town in the south, which were consistent with the distribution of the key towns for apple production in Qixia City. This study provided a feasible method for the acquisition of nitrogen nutritional status of apple trees on macroscopic scale, and also, provided reference for other similar remote sensing retrievals.

  7. Multivariate Analysis As a Support for Diagnostic Flowcharts in Allergic Bronchopulmonary Aspergillosis: A Proof-of-Concept Study.

    PubMed

    Vitte, Joana; Ranque, Stéphane; Carsin, Ania; Gomez, Carine; Romain, Thomas; Cassagne, Carole; Gouitaa, Marion; Baravalle-Einaudi, Mélisande; Bel, Nathalie Stremler-Le; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Mège, Jean-Louis; Gaudart, Jean

    2017-01-01

    Molecular-based allergy diagnosis yields multiple biomarker datasets. The classical diagnostic score for allergic bronchopulmonary aspergillosis (ABPA), a severe disease usually occurring in asthmatic patients and people with cystic fibrosis, comprises succinct immunological criteria formulated in 1977: total IgE, anti- Aspergillus fumigatus ( Af ) IgE, anti- Af "precipitins," and anti- Af IgG. Progress achieved over the last four decades led to multiple IgE and IgG(4) Af biomarkers available with quantitative, standardized, molecular-level reports. These newly available biomarkers have not been included in the current diagnostic criteria, either individually or in algorithms, despite persistent underdiagnosis of ABPA. Large numbers of individual biomarkers may hinder their use in clinical practice. Conversely, multivariate analysis using new tools may bring about a better chance of less diagnostic mistakes. We report here a proof-of-concept work consisting of a three-step multivariate analysis of Af IgE, IgG, and IgG4 biomarkers through a combination of principal component analysis, hierarchical ascendant classification, and classification and regression tree multivariate analysis. The resulting diagnostic algorithms might show the way for novel criteria and improved diagnostic efficiency in Af -sensitized patients at risk for ABPA.

  8. Using data mining to predict success in a weight loss trial.

    PubMed

    Batterham, M; Tapsell, L; Charlton, K; O'Shea, J; Thorne, R

    2017-08-01

    Traditional methods for predicting weight loss success use regression approaches, which make the assumption that the relationships between the independent and dependent (or logit of the dependent) variable are linear. The aim of the present study was to investigate the relationship between common demographic and early weight loss variables to predict weight loss success at 12 months without making this assumption. Data mining methods (decision trees, generalised additive models and multivariate adaptive regression splines), in addition to logistic regression, were employed to predict: (i) weight loss success (defined as ≥5%) at the end of a 12-month dietary intervention using demographic variables [body mass index (BMI), sex and age]; percentage weight loss at 1 month; and (iii) the difference between actual and predicted weight loss using an energy balance model. The methods were compared by assessing model parsimony and the area under the curve (AUC). The decision tree provided the most clinically useful model and had a good accuracy (AUC 0.720 95% confidence interval = 0.600-0.840). Percentage weight loss at 1 month (≥0.75%) was the strongest predictor for successful weight loss. Within those individuals losing ≥0.75%, individuals with a BMI (≥27 kg m -2 ) were more likely to be successful than those with a BMI between 25 and 27 kg m -2 . Data mining methods can provide a more accurate way of assessing relationships when conventional assumptions are not met. In the present study, a decision tree provided the most parsimonious model. Given that early weight loss cannot be predicted before randomisation, incorporating this information into a post randomisation trial design may give better weight loss results. © 2017 The British Dietetic Association Ltd.

  9. Multivariate prediction of upper limb prosthesis acceptance or rejection.

    PubMed

    Biddiss, Elaine A; Chau, Tom T

    2008-07-01

    To develop a model for prediction of upper limb prosthesis use or rejection. A questionnaire exploring factors in prosthesis acceptance was distributed internationally to individuals with upper limb absence through community-based support groups and rehabilitation hospitals. A total of 191 participants (59 prosthesis rejecters and 132 prosthesis wearers) were included in this study. A logistic regression model, a C5.0 decision tree, and a radial basis function neural network were developed and compared in terms of sensitivity (prediction of prosthesis rejecters), specificity (prediction of prosthesis wearers), and overall cross-validation accuracy. The logistic regression and neural network provided comparable overall accuracies of approximately 84 +/- 3%, specificity of 93%, and sensitivity of 61%. Fitting time-frame emerged as the predominant predictor. Individuals fitted within two years of birth (congenital) or six months of amputation (acquired) were 16 times more likely to continue prosthesis use. To increase rates of prosthesis acceptance, clinical directives should focus on timely, client-centred fitting strategies and the development of improved prostheses and healthcare for individuals with high-level or bilateral limb absence. Multivariate analyses are useful in determining the relative importance of the many factors involved in prosthesis acceptance and rejection.

  10. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    PubMed

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability.

  11. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes

    PubMed Central

    Yates, Katherine L.; Mellin, Camille; Caley, M. Julian; Radford, Ben T.; Meeuwig, Jessica J.

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability. PMID:27333202

  12. Coastal Fish Assemblages Reflect Geological and Oceanographic Gradients Within An Australian Zootone

    PubMed Central

    Harvey, Euan S.; Cappo, Mike; Kendrick, Gary A.; McLean, Dianne L.

    2013-01-01

    Distributions of mobile animals have been shown to be heavily influenced by habitat and climate. We address the historical and contemporary context of fish habitats within a major zootone: the Recherche Archipelago, southern western Australia. Baited remote underwater video systems were set in nine habitat types within three regions to determine the species diversity and relative abundance of bony fishes, sharks and rays. Constrained ordinations and multivariate prediction and regression trees were used to examine the effects of gradients in longitude, depth, distance from islands and coast, and epibenthic habitat on fish assemblage composition. A total of 90 species from 43 families were recorded from a wide range of functional groups. Ordination accounted for 19% of the variation in the assemblage composition when constrained by spatial and epibenthic covariates, and identified redundancy in the use of distance from the nearest emergent island as a predictor. A spatial hierarchy of fourteen fish assemblages was identified using multivariate prediction and regression trees, with the primary split between assemblages on macroalgal reefs, and those on bare or sandy habitats supporting seagrass beds. The characterisation of indicator species for assemblages within the hierarchy revealed important faunal break in fish assemblages at 122.30 East at Cape Le Grand and subtle niche partitioning amongst species within the labrids and monacanthids. For example, some species of monacanthids were habitat specialists and predominantly found on seagrass (Acanthaluteres vittiger, Scobinichthys granulatus), reef (Meuschenia galii, Meuschenia hippocrepis) or sand habitats (Nelusetta ayraudi). Predatory fish that consume molluscs, crustaceans and cephalopods were dominant with evidence of habitat generalisation in reef species to cope with local disturbances by wave action. Niche separation within major genera, and a sub-regional faunal break, indicate future zootone mapping should recognise both cross-shelf and longshore environmental gradients. PMID:24278353

  13. Pattern of oral-maxillofacial trauma from violence against women and its associated factors.

    PubMed

    da Nóbrega, Lorena Marques; Bernardino, Ítalo de Macedo; Barbosa, Kevan Guilherme Nóbrega; E Silva, Jéssica Antoniana Lira; Massoni, Andreza Cristina de Lima Targino; d'Avila, Sérgio

    2017-06-01

    Violence against women is a global public health problem. The aim of this study was to characterize the profile of women victims of violence and identify factors associated with maxillofacial injuries. A cross-sectional study was performed based on an evaluation of 884 medico-legal and social records of women victims of physical aggression treated at the Center of Forensic Medicine and Dentistry in Brazil. The variables investigated were related to the sociodemographic characteristics of victims, circumstances of aggressions, and patterns of trauma. Descriptive and multivariate statistics using decision tree analysis by the Chi-squared automatic interaction detector (CHAID) algorithm, as well as univariate and multivariate Poisson regression analyses were performed. The occurrence of maxillofacial trauma was 46.4%. The mean age of victims was 29.38 (SD=12.55 years). Based on decision tree, the profile of violence against women can be explained by the aggressor's gender (P<.001) and sociodemographic characteristics of victims, such as marital status (P=.001), place of residence (P=.019), and educational level (P=.014). Based on the final Poisson regression model, women living in suburban areas were more likely to suffer maxillofacial trauma (PR=1.752; CI 95%=1.153-2.662; P=.009) compared to those living in rural areas. Moreover, aggression using a weapon resulted in a lower occurrence of maxillofacial trauma (PR=0.476; CI 95%=0.284-0.799; P=.005) compared to cases of aggression using physical force. The prevalence of oral-maxillofacial trauma was high, and the main associated factors were place of residence and mechanism of aggression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Influence of shifting cultivation practices on soil-plant-beetle interactions.

    PubMed

    Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami

    2016-08-01

    Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P < 0.05) affected the beetle and tree species diversity as well as the soil nutrients as shown by univariate (one-way analysis of variance (ANOVA), correlation and regression, diversity indices) and multivariate (cluster analysis, principal component analysis (PCA), detrended correspondence analysis (DCA), canonical variate analysis (CVA), permutational multivariate analysis of variance (PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern. The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the near future.

  15. Integration of ecological indices in the multivariate evaluation of an urban inventory of street trees

    Treesearch

    J. Grabinsky; A. Aldama; A. Chacalo; H. J. Vazquez

    2000-01-01

    Inventory data of Mexico City's street trees were studied using classical statistical arboricultural and ecological statistical approaches. Multivariate techniques were applied to both. Results did not differ substantially and were complementary. It was possible to reduce inventory data and to group species, boroughs, blocks, and variables.

  16. MToS: A Tree of Shapes for Multivariate Images.

    PubMed

    Carlinet, Edwin; Géraud, Thierry

    2015-12-01

    The topographic map of a gray-level image, also called tree of shapes, provides a high-level hierarchical representation of the image contents. This representation, invariant to contrast changes and to contrast inversion, has been proved very useful to achieve many image processing and pattern recognition tasks. Its definition relies on the total ordering of pixel values, so this representation does not exist for color images, or more generally, multivariate images. Common workarounds, such as marginal processing, or imposing a total order on data, are not satisfactory and yield many problems. This paper presents a method to build a tree-based representation of multivariate images, which features marginally the same properties of the gray-level tree of shapes. Briefly put, we do not impose an arbitrary ordering on values, but we only rely on the inclusion relationship between shapes in the image definition domain. The interest of having a contrast invariant and self-dual representation of multivariate image is illustrated through several applications (filtering, segmentation, and object recognition) on different types of data: color natural images, document images, satellite hyperspectral imaging, multimodal medical imaging, and videos.

  17. Ensemble habitat mapping of invasive plant species

    USGS Publications Warehouse

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  18. Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure.

    PubMed

    Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C

    2018-06-29

    A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Chromosomal damage and EROD induction in tree swallows (Tachycineta bicolor) along the Upper Mississippi River, Minnesota, USA

    USGS Publications Warehouse

    Emilie Bigorgne,; Custer, Thomas W.; Dummer, Paul; Erickson, Richard A.; Karouna-Renier, Natalie K.; Schultz, Sandra; Custer, Christine M.; Thogmartin, Wayne E.; Cole W. Matson,

    2015-01-01

    The health of tree swallows, Tachycineta bicolor, on the Upper Mississippi River (UMR) was assessed in 2010 and 2011 using biomarkers at six sites downriver of Minneapolis/St. Paul, MN metropolitan area, a tributary into the UMR, and a nearby lake. Chromosomal damage was evaluated in nestling blood by measuring the coefficient of variation of DNA content (DNA CV) using flow cytometry. Cytochrome P450 1A activity in nestling liver was measured using the ethoxyresorufin-O-dealkylase (EROD) assay, and oxidative stress was estimated in nestling livers via determination of thiobarbituric acid reacting substances (TBARS), reduced glutathione (GSH), oxidized glutathione (GSSG), the ratio GSSG/GSH, total sulfhydryl, and protein bound sulfhydryl (PBSH). A multilevel regression model (DNA CV) and simple regressions (EROD and oxidative stress) were used to evaluate biomarker responses for each location. Chromosomal damage was significantly elevated at two sites on the UMR (Pigs Eye and Pool 2) relative to the Green Mountain Lake reference site, while the induction of EROD activity was only observed at Pigs Eye. No measures of oxidative stress differed among sites. Multivariate analysis confirmed an increased DNA CV at Pigs Eye and Pool 2, and elevated EROD activity at Pigs Eye. These results suggest that the health of tree swallows has been altered at the DNA level at Pigs Eye and Pool 2 sites, and at the physiological level at Pigs Eye site only.

  20. Tree Nuts Are Inversely Associated with Metabolic Syndrome and Obesity: The Adventist Health Study-2

    PubMed Central

    Jaceldo-Siegl, Karen; Haddad, Ella; Oda, Keiji; Fraser, Gary E.; Sabaté, Joan

    2014-01-01

    Objective To examine the relationships of nut consumption, metabolic syndrome (MetS), and obesity in the Adventist Health Study-2, a relatively healthy population with a wide range of nut intake. Research Design and Methods Cross-sectional analysis was conducted on clinical, dietary, anthropometric, and demographic data of 803 adults. MetS was defined according to the American Heart Association and the National Heart, Lung, and Blood Institute diagnostic criteria. We assessed intake of total nuts, tree nuts and peanuts, and also classified subjects into low tree nut/low peanut (LT/LP), low tree/high peanut (LT/HP), high tree nut/high peanut (HT/HP), and high tree/low peanut (HT/LP) consumers. Odds ratios were estimated using multivariable logistic regression. Results 32% of subjects had MetS. Compared to LT/LP consumers, obesity was lower in LT/HP (OR = 0.89; 95% CI = 0.53, 1.48), HT/HP (OR = 0.63; 95% CI = 0.40, 0.99) and HT/LP (OR = 0.54; 95% CI = 0.34, 0.88) consumers, p for trend = 0.006. For MetS, odds ratios (95% CI) were 0.77 (0.47, 1.28), 0.65 (0.42, 1.00) and 0.68 (0.43, 1.07), respectively (p for trend = 0.056). Frequency of nut intake (once/week) had significant inverse associations with MetS (3% less for tree nuts and 2% less for total nuts) and obesity (7% less for tree nuts and 3% less for total nuts). Conclusions Tree nuts appear to have strong inverse association with obesity, and favorable though weaker association with MetS independent of demographic, lifestyle and dietary factors. PMID:24416351

  1. Tree nuts are inversely associated with metabolic syndrome and obesity: the Adventist health study-2.

    PubMed

    Jaceldo-Siegl, Karen; Haddad, Ella; Oda, Keiji; Fraser, Gary E; Sabaté, Joan

    2014-01-01

    To examine the relationships of nut consumption, metabolic syndrome (MetS), and obesity in the Adventist Health Study-2, a relatively healthy population with a wide range of nut intake. Cross-sectional analysis was conducted on clinical, dietary, anthropometric, and demographic data of 803 adults. MetS was defined according to the American Heart Association and the National Heart, Lung, and Blood Institute diagnostic criteria. We assessed intake of total nuts, tree nuts and peanuts, and also classified subjects into low tree nut/low peanut (LT/LP), low tree/high peanut (LT/HP), high tree nut/high peanut (HT/HP), and high tree/low peanut (HT/LP) consumers. Odds ratios were estimated using multivariable logistic regression. 32% of subjects had MetS. Compared to LT/LP consumers, obesity was lower in LT/HP (OR = 0.89; 95% CI = 0.53, 1.48), HT/HP (OR = 0.63; 95% CI = 0.40, 0.99) and HT/LP (OR = 0.54; 95% CI = 0.34, 0.88) consumers, p for trend = 0.006. For MetS, odds ratios (95% CI) were 0.77 (0.47, 1.28), 0.65 (0.42, 1.00) and 0.68 (0.43, 1.07), respectively (p for trend = 0.056). Frequency of nut intake (once/week) had significant inverse associations with MetS (3% less for tree nuts and 2% less for total nuts) and obesity (7% less for tree nuts and 3% less for total nuts). Tree nuts appear to have strong inverse association with obesity, and favorable though weaker association with MetS independent of demographic, lifestyle and dietary factors.

  2. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Treesearch

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  3. Neighborhood greenspace and health in a large urban center

    NASA Astrophysics Data System (ADS)

    Kardan, Omid; Gozdyra, Peter; Misic, Bratislav; Moola, Faisal; Palmer, Lyle J.; Paus, Tomáš; Berman, Marc G.

    2015-07-01

    Studies have shown that natural environments can enhance health and here we build upon that work by examining the associations between comprehensive greenspace metrics and health. We focused on a large urban population center (Toronto, Canada) and related the two domains by combining high-resolution satellite imagery and individual tree data from Toronto with questionnaire-based self-reports of general health perception, cardio-metabolic conditions and mental illnesses from the Ontario Health Study. Results from multiple regressions and multivariate canonical correlation analyses suggest that people who live in neighborhoods with a higher density of trees on their streets report significantly higher health perception and significantly less cardio-metabolic conditions (controlling for socio-economic and demographic factors). We find that having 10 more trees in a city block, on average, improves health perception in ways comparable to an increase in annual personal income of $10,000 and moving to a neighborhood with $10,000 higher median income or being 7 years younger. We also find that having 11 more trees in a city block, on average, decreases cardio-metabolic conditions in ways comparable to an increase in annual personal income of $20,000 and moving to a neighborhood with $20,000 higher median income or being 1.4 years younger.

  4. The process and utility of classification and regression tree methodology in nursing research

    PubMed Central

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-01-01

    Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048

  5. The process and utility of classification and regression tree methodology in nursing research.

    PubMed

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  6. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    PubMed Central

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  7. Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival.

    PubMed

    Yang, Jia-Cheng; Risch, Eric; Zhang, Meiqin; Huang, Chan; Huang, Huatian; Lu, Lingeng

    2017-09-01

    To investigate the association between NSUN2/IGF-II signature and ovarian cancer survival. Using a publicly accessible dataset of RNA sequencing and clinical follow-up data, we performed Classification and Regression Tree and survival analyses. Patients with NSUN2 high IGF-II low had significantly superior overall and disease progression-free survival, followed by NSUN2 low IGF-II low , NSUN2 high IGF-II high and NSUN2 low IGF-II high (p < 0.0001 for overall, p = 0.0024 for progression-free survival, respectively). The associations of NSUN2/IGF-II signature with the risks of death and relapse remained significant in multivariate Cox regression models. Random-effects meta-analyses show the upregulated NSUN2 and IGF-II expression in ovarian cancer versus normal tissues. The NSUN2/IGF-II signature associates with heterogeneous outcome and may have clinical implications in managing ovarian cancer.

  8. Risk factors for amendment in type, duration and setting of prescribed outpatient parenteral antimicrobial therapy (OPAT) for adult patients with cellulitis: a retrospective cohort study and CART analysis.

    PubMed

    Quirke, Michael; Curran, Emma May; O'Kelly, Patrick; Moran, Ruth; Daly, Eimear; Aylward, Seamus; McElvaney, Gerry; Wakai, Abel

    2018-01-01

    To measure the percentage rate and risk factors for amendment in the type, duration and setting of outpatient parenteral antimicrobial therapy ( OPAT) for the treatment of cellulitis. A retrospective cohort study of adult patients receiving OPAT for cellulitis was performed. Treatment amendment (TA) was defined as hospital admission or change in antibiotic therapy in order to achieve clinical response. Multivariable logistic regression (MVLR) and classification and regression tree (CART) analysis were performed. There were 307 patients enrolled. TA occurred in 36 patients (11.7%). Significant risk factors for TA on MVLR were increased age, increased Numerical Pain Scale Score (NPSS) and immunocompromise. The median OPAT duration was 7 days. Increased age, heart rate and C reactive protein were associated with treatment prolongation. CART analysis selected age <64.5 years, female gender and NPSS <2.5 in the final model, generating a low-sensitivity (27.8%), high-specificity (97.1%) decision tree. Increased age, NPSS and immunocompromise were associated with OPAT amendment. These identified risk factors can be used to support an evidence-based approach to patient selection for OPAT in cellulitis. The CART algorithm has good specificity but lacks sensitivity and is shown to be inferior in this study to logistic regression modelling. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Post-wildfire summer greening depends on winter snowpack

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Nolin, A. W.

    2017-12-01

    Forested, mountain landscapes in the Pacific Northwest (PNW) are changing at an unprecedented rate, largely due to shifts in the regional climate regime. Documented climatic trends include increasing wildfire frequency and intensity and an increasingly ephemeral snowpack, especially at moderate elevations. One relationship that has yet to be studied thoroughly is the dependence of post-wildfire forest recovery on winter snowpack. This study will correlate winter snowpack with summer greenness in the context of 15 recent severe wildfires across the PNW. Winter snow water equivalent will be estimated using a new Snow Cover Frequency (SCF) metric derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover product. Summer forest greenness will be assessed using the Enhanced Vegetation Index (EVI), also derived from daily MODIS reflectance data. Regression tree analysis will be employed to characterize the relative importance of snowpack, elevation, slope, aspect, soil texture, and summer precipitation to summer greenness. Using findings from the regression tree analysis, the most critical physiographic factors will frame a multivariate time series spanning the 5 years pre-wildfire and 5 years post-wildfire in an effort to illustrate how the snowpack-revegetation relationship persists over time. As northwestern mountainous forests become more vulnerable to wildfire activity, it will be vital to continue deepening our understanding of how snowpack matters to post-wildfire forest recovery.

  10. Measuring urban tree loss dynamics across residential landscapes.

    PubMed

    Ossola, Alessandro; Hopton, Matthew E

    2018-01-15

    The spatial arrangement of urban vegetation depends on urban morphology and socio-economic settings. Urban vegetation changes over time because of human management. Urban trees are removed due to hazard prevention or aesthetic preferences. Previous research attributed tree loss to decreases in canopy cover. However, this provides little information about location and structural characteristics of trees lost, as well as environmental and social factors affecting tree loss dynamics. This is particularly relevant in residential landscapes where access to residential parcels for field surveys is limited. We tested whether multi-temporal airborne LiDAR and multi-spectral imagery collected at a 5-year interval can be used to investigate urban tree loss dynamics across residential landscapes in Denver, CO and Milwaukee, WI, covering 400,705 residential parcels in 444 census tracts. Position and stem height of trees lost were extracted from canopy height models calculated as the difference between final (year 5) and initial (year 0) vegetation height derived from LiDAR. Multivariate regression models were used to predict number and height of tree stems lost in residential parcels in each census tract based on urban morphological and socio-economic variables. A total of 28,427 stems were lost from residential parcels in Denver and Milwaukee over 5years. Overall, 7% of residential parcels lost one stem, averaging 90.87 stems per km 2 . Average stem height was 10.16m, though trees lost in Denver were taller compared to Milwaukee. The number of stems lost was higher in neighborhoods with higher canopy cover and developed before the 1970s. However, socio-economic characteristics had little effect on tree loss dynamics. The study provides a simple method for measuring urban tree loss dynamics within and across entire cities, and represents a further step toward high resolution assessments of the three-dimensional change of urban vegetation at large spatial scales. Published by Elsevier B.V.

  11. Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2017-01-01

    Intratumoral heterogeneity (ITH) is a prominent feature of kidney cancer. It is not known whether it has utility in finding associations between protein expression and clinical parameters. We used ITH that is detected by immunohistochemistry (IHC) to aid the association analysis between the loss of SWI/SNF components and clinical parameters.160 ccRCC tumors (40 per tumor stage) were used to generate tissue microarray (TMA). Four foci from different regions of each tumor were selected. IHC was performed against PBRM1, ARID1A, SETD2, SMARCA4, and SMARCA2. Statistical analyses were performed to correlate biomarker losses with patho-clinical parameters. Categorical variables were compared between groups using Fisher's exact tests. Univariate and multivariable analyses were used to correlate biomarker changes and patient survivals. Multivariable analyses were performed by constructing decision trees using the classification and regression trees (CART) methodology. IHC detected widespread ITH in ccRCC tumors. The statistical analysis of the “Truncal loss” (root loss) found additional correlations between biomarker losses and tumor stages than the traditional “Loss in tumor (total)”. Losses of SMARCA4 or SMARCA2 significantly improved prognosis for overall survival (OS). Losses of PBRM1, ARID1A or SETD2 had the opposite effect. Thus “Truncal Loss” analysis revealed hidden links between protein losses and patient survival in ccRCC. PMID:28445125

  12. Digital soil classification and elemental mapping using imaging Vis-NIR spectroscopy: How to explicitly quantify stagnic properties of a Luvisol under Norway spruce

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus

    2015-04-01

    Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining both techniques, detailed soil maps, elemental balances and a deeper understanding of soil forming processes at the microscale become feasible for complete soil profiles.

  13. A New Method to Compare Statistical Tree Growth Curves: The PL-GMANOVA Model and Its Application with Dendrochronological Data

    PubMed Central

    Ricker, Martin; Peña Ramírez, Víctor M.; von Rosen, Dietrich

    2014-01-01

    Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the adapted PL regression model Q = A·T+E, where for and for , A =  initial relative growth to be estimated, , and E is an error term for each tree and time point. Furthermore, Ei[–b·r]  = , , with TPR being the turning point radius in a sigmoid curve, and at is an estimated calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for the estimated initial relative growth . One site (at the Popocatépetl volcano) stood out, with being 3.9 times the value of the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within sites and over time. PMID:25402427

  14. Boosted regression tree, table, and figure data

    EPA Pesticide Factsheets

    Spreadsheets are included here to support the manuscript Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition. This dataset is associated with the following publication:Golden , H., C. Lane , A. Prues, and E. D'Amico. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition. JAWRA. American Water Resources Association, Middleburg, VA, USA, 52(5): 1251-1274, (2016).

  15. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers

    Treesearch

    Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen Fitzgerald

    2012-01-01

    Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...

  16. Impact of hyperglycemia on outcomes of patients with Pseudomonas aeruginosa bacteremia.

    PubMed

    Patel, Twisha S; Cottreau, Jessica M; Hirsch, Elizabeth B; Tam, Vincent H

    2016-02-01

    Bacteremia caused by Pseudomonas aeruginosa is associated with significant morbidity and mortality. In other bacterial infections, hyperglycemia has been identified as a risk factor for mortality in nondiabetic patients. The objective of this study was to determine the impact of early hyperglycemia on outcomes in diabetic and nondiabetic patients with P. aeruginosa bacteremia. A retrospective cohort study was performed in adult patients (≥18 years old) with P. aeruginosa bacteremia. Patients received at least 1 drug empirically to which the isolate was susceptible in vitro. Classification and regression tree analysis was used to determine the threshold breakpoint for average blood glucose concentration within 48 hours of positive blood culture (BG48). Logistic regression was used to explore independent risk factors for 30-day mortality. A total of 176 bacteremia episodes were identified; patients in 66 episodes were diabetic. Diabetic patients had higher BG48 (165.2±64.8 mg/dL versus 123.7±31.5 mg/dL, P<0.001) and lower 30-day mortality (10.7% versus 22.7%, P=0.046) than nondiabetic patients. Multivariate regression revealed 30-day mortality in nondiabetic patients was associated with Acute Physiology and Chronic Health Evaluation II score (odds ratio [OR] 1.1; 95% confidence interval [CI] 1.0-1.2) and BG48 >168 mg/dL (OR 6.3; 95% CI 1.7-23.3). However, blood glucose concentration was not identified as an independent risk factor for mortality in diabetic patients by multivariate regression analysis. Hyperglycemia did not appear to affect outcomes in diabetic patients, whereas nondiabetic patients had a higher risk of mortality from P. aeruginosa bacteremia. Prospective studies evaluating the impact of glycemic control in these patients are needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians

    PubMed Central

    Kim, Young-Jae; Lee, Chanam; Kim, Jun-Hyun

    2018-01-01

    Walking is being promoted for health and transportation purposes across all climatic regions in the US and beyond. Despite this, an uncomfortable microclimate condition along sidewalks is one of the major deterrents of walking, and more empirical research is needed to determine the risks of heat exposure to pedestrians while walking. This study examined the effect of street trees and grass along sidewalks on air temperatures. A series of thermal images were taken at the average heights of adults and children in the US to objectively measure the air temperatures of 10 sidewalk segments in College Station, TX, USA. After controlling the other key physical environmental conditions, sidewalks with more trees or wider grass buffer areas had lower air temperatures than those with less vegetation. Children were exposed to higher temperatures due to the greater exposure or proximity to the pavement surface, which tends to have higher radiant heat. Multivariate regression analysis suggested that the configuration of trees and grass buffers along the sidewalks helped to promote pleasant thermal conditions and reduced the differences in ambient air temperatures measured at child and adult heights. This study suggests that street trees and vegetated ground help reduce the air temperatures, leading to more thermally comfortable environments for both child and adult pedestrians in warm climates. The thermal implications of street landscape require further attention by researchers and policy makers that are interested in promoting outdoor walking. PMID:29346312

  18. Obesity as a risk factor for developing functional limitation among older adults: A conditional inference tree analysis.

    PubMed

    Cheng, Feon W; Gao, Xiang; Bao, Le; Mitchell, Diane C; Wood, Craig; Sliwinski, Martin J; Smiciklas-Wright, Helen; Still, Christopher D; Rolston, David D K; Jensen, Gordon L

    2017-07-01

    To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. The conditional inference tree analysis, a data mining approach, was used to construct a risk stratification algorithm for developing functional limitation based on BMI and other potential risk factors for disability in 1,951 older adults without functional limitations at baseline (baseline age 73.1 ± 4.2 y). We also analyzed the data with multivariate stepwise logistic regression and compared the two approaches (e.g., cross-validation). Over a mean of 9.2 ± 1.7 years of follow-up, 221 individuals developed functional limitation. Higher BMI, age, and comorbidity were consistently identified as significant risk factors for functional decline using both methods. Based on these factors, individuals were stratified into four risk groups via the conditional inference tree analysis. Compared to the low-risk group, all other groups had a significantly higher risk of developing functional limitation. The odds ratio comparing two extreme categories was 9.09 (95% confidence interval: 4.68, 17.6). Higher BMI, age, and comorbid disease were consistently identified as significant risk factors for functional decline among older individuals across all approaches and analyses. © 2017 The Obesity Society.

  19. Explaining Match Outcome During The Men’s Basketball Tournament at The Olympic Games

    PubMed Central

    Leicht, Anthony S.; Gómez, Miguel A.; Woods, Carl T.

    2017-01-01

    In preparation for the Olympics, there is a limited opportunity for coaches and athletes to interact regularly with team performance indicators providing important guidance to coaches for enhanced match success at the elite level. This study examined the relationship between match outcome and team performance indicators during men’s basketball tournaments at the Olympic Games. Twelve team performance indicators were collated from all men’s teams and matches during the basketball tournament of the 2004-2016 Olympic Games (n = 156). Linear and non-linear analyses examined the relationship between match outcome and team performance indicator characteristics; namely, binary logistic regression and a conditional interference (CI) classification tree. The most parsimonious logistic regression model retained ‘assists’, ‘defensive rebounds’, ‘field-goal percentage’, ‘fouls’, ‘fouls against’, ‘steals’ and ‘turnovers’ (delta AIC <0.01; Akaike weight = 0.28) with a classification accuracy of 85.5%. Conversely, four performance indicators were retained with the CI classification tree with an average classification accuracy of 81.4%. However, it was the combination of ‘field-goal percentage’ and ‘defensive rebounds’ that provided the greatest probability of winning (93.2%). Match outcome during the men’s basketball tournaments at the Olympic Games was identified by a unique combination of performance indicators. Despite the average model accuracy being marginally higher for the logistic regression analysis, the CI classification tree offered a greater practical utility for coaches through its resolution of non-linear phenomena to guide team success. Key points A unique combination of team performance indicators explained 93.2% of winning observations in men’s basketball at the Olympics. Monitoring of these team performance indicators may provide coaches with the capability to devise multiple game plans or strategies to enhance their likelihood of winning. Incorporation of machine learning techniques with team performance indicators may provide a valuable and strategic approach to explain patterns within multivariate datasets in sport science. PMID:29238245

  20. A spatially explicit approach to the study of socio-demographic inequality in the spatial distribution of trees across Boston neighborhoods.

    PubMed

    Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R

    2014-04-01

    The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.

  1. Predictors of condom use and refusal among the population of Free State province in South Africa

    PubMed Central

    2012-01-01

    Background This study investigated the extent and predictors of condom use and condom refusal in the Free State province in South Africa. Methods Through a household survey conducted in the Free Sate province of South Africa, 5,837 adults were interviewed. Univariate and multivariate survey logistic regressions and classification trees (CT) were used for analysing two response variables ‘ever used condom’ and ‘ever refused condom’. Results Eighty-three per cent of the respondents had ever used condoms, of which 38% always used them; 61% used them during the last sexual intercourse and 9% had ever refused to use them. The univariate logistic regression models and CT analysis indicated that a strong predictor of condom use was its perceived need. In the CT analysis, this variable was followed in importance by ‘knowledge of correct use of condom’, condom availability, young age, being single and higher education. ‘Perceived need’ for condoms did not remain significant in the multivariate analysis after controlling for other variables. The strongest predictor of condom refusal, as shown by the CT, was shame associated with condoms followed by the presence of sexual risk behaviour, knowing one’s HIV status, older age and lacking knowledge of condoms (i.e., ability to prevent sexually transmitted diseases and pregnancy, availability, correct and consistent use and existence of female condoms). In the multivariate logistic regression, age was not significant for condom refusal while affordability and perceived need were additional significant variables. Conclusions The use of complementary modelling techniques such as CT in addition to logistic regressions adds to a better understanding of condom use and refusal. Further improvement in correct and consistent use of condoms will require targeted interventions. In addition to existing social marketing campaigns, tailored approaches should focus on establishing the perceived need for condom-use and improving skills for correct use. They should also incorporate interventions to reduce the shame associated with condoms and individual counselling of those likely to refuse condoms. PMID:22639964

  2. A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines.

    PubMed

    Sánchez Lasheras, Fernando; García Nieto, Paulino José; de Cos Juez, Francisco Javier; Mayo Bayón, Ricardo; González Suárez, Victor Manuel

    2015-03-23

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  3. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    PubMed Central

    Lasheras, Fernando Sánchez; Nieto, Paulino José García; de Cos Juez, Francisco Javier; Bayón, Ricardo Mayo; Suárez, Victor Manuel González

    2015-01-01

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines. PMID:25806876

  4. Toward a Periodic Table of Niches, or Exploring the Lizard Niche Hypervolume.

    PubMed

    Pianka, Eric R; Vitt, Laurie J; Pelegrin, Nicolás; Fitzgerald, Daniel B; Winemiller, Kirk O

    2017-11-01

    Widespread niche convergence suggests that species can be organized according to functional trait combinations to create a framework analogous to a periodic table. We compiled ecological data for lizards to examine patterns of global and regional niche diversification, and we used multivariate statistical approaches to develop the beginnings for a periodic table of niches. Data (50+ variables) for five major niche dimensions (habitat, diet, life history, metabolism, defense) were compiled for 134 species of lizards representing 24 of the 38 extant families. Principal coordinates analyses were performed on niche dimensional data sets, and species scores for the first three axes were used as input for a principal components analysis to ordinate species in continuous niche space and for a regression tree analysis to separate species into discrete niche categories. Three-dimensional models facilitate exploration of species positions in relation to major gradients within the niche hypervolume. The first gradient loads on body size, foraging mode, and clutch size. The second was influenced by metabolism and terrestrial versus arboreal microhabitat. The third was influenced by activity time, life history, and diet. Natural dichotomies are activity time, foraging mode, parity mode, and habitat. Regression tree analysis identified 103 cases of extreme niche conservatism within clades and 100 convergences between clades. Extending this approach to other taxa should lead to a wider understanding of niche evolution.

  5. "Take the Volume Pledge" may result in disparity in access to care.

    PubMed

    Blanco, Barbara A; Kothari, Anai N; Blackwell, Robert H; Brownlee, Sarah A; Yau, Ryan M; Attisha, John P; Ezure, Yoshiki; Pappas, Sam; Kuo, Paul C; Abood, Gerard J

    2017-03-01

    "Take the Volume Pledge" proposes restricting pancreatectomies to hospitals that perform ≥20 per year. Our purpose was to identify those factors that characterize patients at risk for loss of access to pancreatic cancer care with enforcement of volume standards. Using the Healthcare Cost and Utilization Project State Inpatient Database from Florida, we identified patients who underwent pancreatectomy for pancreatic malignancy from 2007-2011. American Hospital Association and United States Census Bureau data were linked to patient-level data. High-volume hospitals were defined as performing ≥20 pancreatic resections per year. Univariable and multivariable statistics compared patient characteristics and utilization of high-volume hospitals. Classification and Regression Tree modeling was used to predict patients at risk for losing access to care. Our study included 1,663 patients. Five high-volume hospitals were identified, and they treated 1,056 (63.5%) patients. Patients residing far from high-volume hospitals, in areas with the highest population density, non-Caucasian ethnicity, and greater income had decreased odds of obtaining care at high-volume hospitals. Using these factors, we developed a Classification and Regression Tree-based predictive tool to identify these patients. Implementation of "Take the Volume Pledge" is an important step toward improving pancreatectomy outcomes; however, policymakers must consider the potential impact on limiting access and possible health disparities that may arise. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  7. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions

    Treesearch

    Charles E. Rose; Thomas B. Lynch

    2001-01-01

    A method was developed for estimating parameters in an individual tree basal area growth model using a system of equations based on dbh rank classes. The estimation method developed is a compromise between an individual tree and a stand level basal area growth model that accounts for the correlation between trees within a plot by using seemingly unrelated regression (...

  8. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Treesearch

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  9. Associations between regional moisture gradient, tree species dominance, and downed wood abundance

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Mills, J.

    2007-12-01

    Downed wood functions as a source of nurse logs, physical structure in streams, food, and carbon. Because downed wood is important in upland and aquatic habitats, an understanding of wood recruitment along a continuum from wet to dry landscapes is critical for both preservation of biodiversity and restoration of natural ecosystem structure and function. We assessed downed wood in public and private forests of Washington and Oregon by using a subset of the Forest Inventory and Analysis (FIA) database including 15,842 sampled conditions. Multivariate regression trees, ANOVA, and t-tests were used to discern environmental conditions most closely associated with abundance of woody debris. Of the 16 parameters included in the analysis, rainfall, forest ownership, number of damaged standing trees, and forest elevation were most indicative of woody debris abundance. The Hemlock/spruce Group, including hemlock, spruce, cedar, and white pine, most associated with wetter soils, had significantly more downed wood than 12 other forest groups. The Ponderosa Pine Group, indicative of drier sites with higher fire frequencies, included ponderosa pine, sugar pine, and incense cedar, and had significantly less downed wood volume. Overall, the amount of woody debris in either the Spruce/hemlock Group or the Ponderosa Pine Group did not change significantly as tree age increased from 5 to 350 years. Plots within the Hemlock/spruce with greater standing tree volume also had significantly greater downed wood volume. In contrast, greater downed wood volume was not associated with greater standing tree volume in the Ponderosa Pine Group. Knowledge of linkages among environmental variables and stand characteristics are useful in development of regional forest models aimed at understanding the effects of climate change and disturbance on forest succession.

  10. Diurnal and seasonal changes in stem increment and water use by yellow poplar trees in response to environmental stress.

    PubMed

    McLaughlin, Samuel B; Wullschleger, Stan D; Nosal, Miloslav

    2003-11-01

    To evaluate indicators of whole-tree physiological responses to climate stress, we determined seasonal, daily and diurnal patterns of growth and water use in 10 yellow poplar (Liriodendron tulipifera L.) trees in a stand recently released from competition. Precise measurements of stem increment and sap flow made with automated electronic dendrometers and thermal dissipation probes, respectively, indicated close temporal linkages between water use and patterns of stem shrinkage and swelling during daily cycles of water depletion and recharge of extensible outer-stem tissues. These cycles also determined net daily basal area increment. Multivariate regression models based on a 123-day data series showed that daily diameter increments were related negatively to vapor pressure deficit (VPD), but positively to precipitation and temperature. The same model form with slight changes in coefficients yielded coefficients of determination of about 0.62 (0.57-0.66) across data subsets that included widely variable growth rates and VPDs. Model R2 was improved to 0.75 by using 3-day running mean daily growth data. Rapid recovery of stem diameter growth following short-term, diurnal reductions in VPD indicated that water stored in extensible stem tissues was part of a fast recharge system that limited hydration changes in the cambial zone during periods of water stress. There were substantial differences in the seasonal dynamics of growth among individual trees, and analyses indicated that faster-growing trees were more positively affected by precipitation, solar irradiance and temperature and more negatively affected by high VPD than slower-growing trees. There were no negative effects of ozone on daily growth rates in a year of low ozone concentrations.

  11. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China.

    PubMed

    Zhong, Buqing; Liang, Tao; Wang, Lingqing; Li, Kexin

    2014-08-15

    An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Forest Edge Regrowth Typologies in Southern Sweden-Relationship to Environmental Characteristics and Implications for Management.

    PubMed

    Wiström, Björn; Busse Nielsen, Anders

    2017-07-01

    After two major storms, the Swedish Transport Administration was granted permission in 2008 to expand the railroad corridor from 10 to 20 m from the rail banks, and to clear the forest edges in the expanded area. In order to evaluate the possibilities for managers to promote and control the species composition of the woody regrowth so that a forest edge with a graded profile develops over time, this study mapped the woody regrowth and environmental variables at 78 random sites along the 610-km railroad between Stockholm and Malmö four growing seasons after the clearing was implemented. Through different clustering approaches, dominant tree species to be controlled and future building block species for management were identified. Using multivariate regression trees, the most decisive environmental variables were identified and used to develop a regrowth typology and to calculate species indicator values. Five regrowth types and ten indicator species were identified along the environmental gradients of soil moisture, soil fertility, and altitude. Six tree species dominated the regrowth across the regrowth types, but clustering showed that if these were controlled by selective thinning, lower tree and shrub species were generally present so they could form the "building blocks" for development of a graded edge. We concluded that selective thinning targeted at controlling a few dominant tree species, here named Functional Species Control, is a simple and easily implemented management concept to promote a wide range of suitable species, because it does not require field staff with specialist taxonomic knowledge.

  13. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    PubMed

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  14. Regression tree modeling of forest NPP using site conditions and climate variables across eastern USA

    NASA Astrophysics Data System (ADS)

    Kwon, Y.

    2013-12-01

    As evidence of global warming continue to increase, being able to predict forest response to climate changes, such as expected rise of temperature and precipitation, will be vital for maintaining the sustainability and productivity of forests. To map forest species redistribution by climate change scenario has been successful, however, most species redistribution maps lack mechanistic understanding to explain why trees grow under the novel conditions of chaining climate. Distributional map is only capable of predicting under the equilibrium assumption that the communities would exist following a prolonged period under the new climate. In this context, forest NPP as a surrogate for growth rate, the most important facet that determines stand dynamics, can lead to valid prediction on the transition stage to new vegetation-climate equilibrium as it represents changes in structure of forest reflecting site conditions and climate factors. The objective of this study is to develop forest growth map using regression tree analysis by extracting large-scale non-linear structures from both field-based FIA and remotely sensed MODIS data set. The major issue addressed in this approach is non-linear spatial patterns of forest attributes. Forest inventory data showed complex spatial patterns that reflect environmental states and processes that originate at different spatial scales. At broad scales, non-linear spatial trends in forest attributes and mixture of continuous and discrete types of environmental variables make traditional statistical (multivariate regression) and geostatistical (kriging) models inefficient. It calls into question some traditional underlying assumptions of spatial trends that uncritically accepted in forest data. To solve the controversy surrounding the suitability of forest data, regression tree analysis are performed using Software See5 and Cubist. Four publicly available data sets were obtained: First, field-based Forest Inventory and Analysis (USDA, Forest Service) data set for the 31 eastern most United States. Second, 8-day composite of MODIS Land Cover, FPAR, LAI and GPP/NPP data were obtained from Jan 2001 to Dec 2004 (total 182 composite) and each product were filtered by pixel-level quality assurance data to select best quality pixels. Third, 30-year averaged climate data were collected from National Oceanic and Atmospheric Administration (NOAA) and five climatic variables were obtained: Monthly temperature, precipitation, annual heating and cooling days, and annual frost-free days. Forth, topographic data were obtained from digital elevation model (1km by 1km). This research will provide a better understanding of large-scale forest responses to environmental factors that will be beneficial for the development of important forest management applications.

  15. ECOPASS - a multivariate model used as an index of growth performance of poplar clones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceulemans, R.; Impens, I.

    The model (ECOlogical PASSport) reported was constructed by principal component analysis from a combination of biochemical, anatomical/morphological and ecophysiological gas exchange parameters measured on 5 fast growing poplar clones. Productivity data were 10 selected trees in 3 plantations in Belgium and given as m.a.i.(b.a.). The model is shown to be able to reflect not only genetic origin and the relative effects of the different parameters of the clones, but also their production potential. Multiple regression analysis of the 4 principal components showed a high cumulative correlation (96%) between the 3 components related to ecophysiological, biochemical and morphological parameters, and productivity;more » the ecophysiological component alone correlated 85% with productivity.« less

  16. A spatially explicit approach to the study of socio-demographic inequality in the spatial distribution of trees across Boston neighborhoods

    PubMed Central

    Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.

    2017-01-01

    The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668

  17. Bayesian Estimation of Multivariate Latent Regression Models: Gauss versus Laplace

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew; Park, Trevor

    2017-01-01

    A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…

  18. A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.

    2003-01-01

    A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.

  19. Development and evaluation of height diameter at breast models for native Chinese Metasequoia.

    PubMed

    Liu, Mu; Feng, Zhongke; Zhang, Zhixiang; Ma, Chenghui; Wang, Mingming; Lian, Bo-Ling; Sun, Renjie; Zhang, Li

    2017-01-01

    Accurate tree height and diameter at breast height (dbh) are important input variables for growth and yield models. A total of 5503 Chinese Metasequoia trees were used in this study. We studied 53 fitted models, of which 7 were linear models and 46 were non-linear models. These models were divided into two groups of single models and multivariate models according to the number of independent variables. The results show that the allometry equation of tree height which has diameter at breast height as independent variable can better reflect the change of tree height; in addition the prediction accuracy of the multivariate composite models is higher than that of the single variable models. Although tree age is not the most important variable in the study of the relationship between tree height and dbh, the consideration of tree age when choosing models and parameters in model selection can make the prediction of tree height more accurate. The amount of data is also an important parameter what can improve the reliability of models. Other variables such as tree height, main dbh and altitude, etc can also affect models. In this study, the method of developing the recommended models for predicting the tree height of native Metasequoias aged 50-485 years is statistically reliable and can be used for reference in predicting the growth and production of mature native Metasequoia.

  20. Development and evaluation of height diameter at breast models for native Chinese Metasequoia

    PubMed Central

    Feng, Zhongke; Zhang, Zhixiang; Ma, Chenghui; Wang, Mingming; Lian, Bo-ling; Sun, Renjie; Zhang, Li

    2017-01-01

    Accurate tree height and diameter at breast height (dbh) are important input variables for growth and yield models. A total of 5503 Chinese Metasequoia trees were used in this study. We studied 53 fitted models, of which 7 were linear models and 46 were non-linear models. These models were divided into two groups of single models and multivariate models according to the number of independent variables. The results show that the allometry equation of tree height which has diameter at breast height as independent variable can better reflect the change of tree height; in addition the prediction accuracy of the multivariate composite models is higher than that of the single variable models. Although tree age is not the most important variable in the study of the relationship between tree height and dbh, the consideration of tree age when choosing models and parameters in model selection can make the prediction of tree height more accurate. The amount of data is also an important parameter what can improve the reliability of models. Other variables such as tree height, main dbh and altitude, etc can also affect models. In this study, the method of developing the recommended models for predicting the tree height of native Metasequoias aged 50–485 years is statistically reliable and can be used for reference in predicting the growth and production of mature native Metasequoia. PMID:28817600

  1. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  2. Tree Density and Species Decline in the African Sahel Attributable to Climate

    NASA Technical Reports Server (NTRS)

    Gonzalez, Patrick; Tucker, Compton J.; Sy, H.

    2012-01-01

    Increased aridity and human population have reduced tree cover in parts of the African Sahel and degraded resources for local people. Yet, tree cover trends and the relative importance of climate and population remain unresolved. From field measurements, aerial photos, and Ikonos satellite images, we detected significant 1954-2002 tree density declines in the western Sahel of 18 +/- 14% (P = 0.014, n = 204) and 17 +/- 13% (P = 0.0009, n = 187). From field observations, we detected a significant 1960-2000 species richness decline of 21 +/- 11% (P = 0.0028, n = 14) across the Sahel and a southward shift of the Sahel, Sudan, and Guinea zones. Multivariate analyses of climate, soil, and population showed that temperature most significantly (P < 0.001) explained tree cover changes. Multivariate and bivariate tests and field observations indicated the dominance of temperature and precipitation, supporting attribution of tree cover changes to climate variability. Climate change forcing of Sahel climate variability, particularly the significant (P < 0.05) 1901-2002 temperature increases and precipitation decreases in the research areas, connects Sahel tree cover changes to global climate change. This suggests roles for global action and local adaptation to address ecological change in the Sahel.

  3. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  4. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. MINER: exploratory analysis of gene interaction networks by machine learning from expression data.

    PubMed

    Kadupitige, Sidath Randeni; Leung, Kin Chun; Sellmeier, Julia; Sivieng, Jane; Catchpoole, Daniel R; Bain, Michael E; Gaëta, Bruno A

    2009-12-03

    The reconstruction of gene regulatory networks from high-throughput "omics" data has become a major goal in the modelling of living systems. Numerous approaches have been proposed, most of which attempt only "one-shot" reconstruction of the whole network with no intervention from the user, or offer only simple correlation analysis to infer gene dependencies. We have developed MINER (Microarray Interactive Network Exploration and Representation), an application that combines multivariate non-linear tree learning of individual gene regulatory dependencies, visualisation of these dependencies as both trees and networks, and representation of known biological relationships based on common Gene Ontology annotations. MINER allows biologists to explore the dependencies influencing the expression of individual genes in a gene expression data set in the form of decision, model or regression trees, using their domain knowledge to guide the exploration and formulate hypotheses. Multiple trees can then be summarised in the form of a gene network diagram. MINER is being adopted by several of our collaborators and has already led to the discovery of a new significant regulatory relationship with subsequent experimental validation. Unlike most gene regulatory network inference methods, MINER allows the user to start from genes of interest and build the network gene-by-gene, incorporating domain expertise in the process. This approach has been used successfully with RNA microarray data but is applicable to other quantitative data produced by high-throughput technologies such as proteomics and "next generation" DNA sequencing.

  6. Estimating tree biomass regressions and their error, proceedings of the workshop on tree biomass regression functions and their contribution to the error

    Treesearch

    Eric H. Wharton; Tiberius Cunia

    1987-01-01

    Proceedings of a workshop co-sponsored by the USDA Forest Service, the State University of New York, and the Society of American Foresters. Presented were papers on the methodology of sample tree selection, tree biomass measurement, construction of biomass tables and estimation of their error, and combining the error of biomass tables with that of the sample plots or...

  7. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    PubMed

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.

  8. Could the Chagas disease elimination programme in Venezuela be compromised by reinvasion of houses by sylvatic Rhodnius prolixus bug populations?

    PubMed

    Sanchez-Martin, Maria J; Feliciangeli, M Dora; Campbell-Lendrum, Diarmid; Davies, Clive R

    2006-10-01

    The Andean Pact Initiative (1997) committed Andean countries to eliminate vectorial transmission of Chagas disease by 2010 via widespread residual insecticide spraying. In Venezuela, this aim could be compromised by reinvasion of houses by palm tree populations of the major vector Rhodnius prolixus. To test this hypothesis, a multivariate logistic regression was undertaken of risk factors for triatomine infestation and colonization in 552 houses and 1068 peri-domestic outbuildings in Barinas State. After adjusting for other risk factors, including palm roofs, R. prolixus infestation and colonization of outbuildings (and, to some extent, houses) was significantly associated with proximity to high densities of Attalea butyracea palm trees. House infestation and/or colonization was also positively associated with bug density in peri-domestic outbuildings, the presence of pigsties and nests. Hence, R. prolixus populations in ineffectively sprayed outbuildings could also provide an important source of house re-infestations. The secondary vector Triatoma maculata was mainly found associated with the presence of hens nesting both indoors and outdoors.

  9. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches

    PubMed Central

    Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils’ carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms—including the model tuning and predictor selection—were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models’ predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction. PMID:27128736

  10. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.

    PubMed

    Ließ, Mareike; Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms-including the model tuning and predictor selection-were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models' predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction.

  11. Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases.

    PubMed

    Wendling, T; Jung, K; Callahan, A; Schuler, A; Shah, N H; Gallego, B

    2018-06-03

    There is growing interest in using routinely collected data from health care databases to study the safety and effectiveness of therapies in "real-world" conditions, as it can provide complementary evidence to that of randomized controlled trials. Causal inference from health care databases is challenging because the data are typically noisy, high dimensional, and most importantly, observational. It requires methods that can estimate heterogeneous treatment effects while controlling for confounding in high dimensions. Bayesian additive regression trees, causal forests, causal boosting, and causal multivariate adaptive regression splines are off-the-shelf methods that have shown good performance for estimation of heterogeneous treatment effects in observational studies of continuous outcomes. However, it is not clear how these methods would perform in health care database studies where outcomes are often binary and rare and data structures are complex. In this study, we evaluate these methods in simulation studies that recapitulate key characteristics of comparative effectiveness studies. We focus on the conditional average effect of a binary treatment on a binary outcome using the conditional risk difference as an estimand. To emulate health care database studies, we propose a simulation design where real covariate and treatment assignment data are used and only outcomes are simulated based on nonparametric models of the real outcomes. We apply this design to 4 published observational studies that used records from 2 major health care databases in the United States. Our results suggest that Bayesian additive regression trees and causal boosting consistently provide low bias in conditional risk difference estimates in the context of health care database studies. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Gap-filling a spatially explicit plant trait database: comparing imputation methods and different levels of environmental information

    NASA Astrophysics Data System (ADS)

    Poyatos, Rafael; Sus, Oliver; Badiella, Llorenç; Mencuccini, Maurizio; Martínez-Vilalta, Jordi

    2018-05-01

    The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and processes. Spatially explicit datasets with information on intraspecific trait variability are rare but offer great promise in improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data imputation. Here we compare statistical imputation approaches, using varying levels of environmental information, for five plant traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass per area and wood density) in a spatially explicit plant trait dataset of temperate and Mediterranean tree species (Ecological and Forest Inventory of Catalonia, IEFC, dataset for Catalonia, north-east Iberian Peninsula, 31 900 km2). We simulated gaps at different missingness levels (10-80 %) in a complete trait matrix, and we used overall trait means, species means, k nearest neighbours (kNN), ordinary and regression kriging, and multivariate imputation using chained equations (MICE) to impute missing trait values. We assessed these methods in terms of their accuracy and of their ability to preserve trait distributions, multi-trait correlation structure and bivariate trait relationships. The relatively good performance of mean and species mean imputations in terms of accuracy masked a poor representation of trait distributions and multivariate trait structure. Species identity improved MICE imputations for all traits, whereas forest structure and topography improved imputations for some traits. No method performed best consistently for the five studied traits, but, considering all traits and performance metrics, MICE informed by relevant ecological variables gave the best results. However, at higher missingness (> 30 %), species mean imputations and regression kriging tended to outperform MICE for some traits. MICE informed by relevant ecological variables allowed us to fill the gaps in the IEFC incomplete dataset (5495 plots) and quantify imputation uncertainty. Resulting spatial patterns of the studied traits in Catalan forests were broadly similar when using species means, regression kriging or the best-performing MICE application, but some important discrepancies were observed at the local level. Our results highlight the need to assess imputation quality beyond just imputation accuracy and show that including environmental information in statistical imputation approaches yields more plausible imputations in spatially explicit plant trait datasets.

  13. Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model.

    PubMed

    Suchetana, Bihu; Rajagopalan, Balaji; Silverstein, JoAnn

    2017-11-15

    A regression tree-based diagnostic approach is developed to evaluate factors affecting US wastewater treatment plant compliance with ammonia discharge permit limits using Discharge Monthly Report (DMR) data from a sample of 106 municipal treatment plants for the period of 2004-2008. Predictor variables used to fit the regression tree are selected using random forests, and consist of the previous month's effluent ammonia, influent flow rates and plant capacity utilization. The tree models are first used to evaluate compliance with existing ammonia discharge standards at each facility and then applied assuming more stringent discharge limits, under consideration in many states. The model predicts that the ability to meet both current and future limits depends primarily on the previous month's treatment performance. With more stringent discharge limits predicted ammonia concentration relative to the discharge limit, increases. In-sample validation shows that the regression trees can provide a median classification accuracy of >70%. The regression tree model is validated using ammonia discharge data from an operating wastewater treatment plant and is able to accurately predict the observed ammonia discharge category approximately 80% of the time, indicating that the regression tree model can be applied to predict compliance for individual treatment plants providing practical guidance for utilities and regulators with an interest in controlling ammonia discharges. The proposed methodology is also used to demonstrate how to delineate reliable sources of demand and supply in a point source-to-point source nutrient credit trading scheme, as well as how planners and decision makers can set reasonable discharge limits in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A new method to compare statistical tree growth curves: the PL-GMANOVA model and its application with dendrochronological data.

    PubMed

    Ricker, Martin; Peña Ramírez, Víctor M; von Rosen, Dietrich

    2014-01-01

    Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the adapted PL regression model Q = A · T+E, where for b ≠ 0 : Q = Ei[-b · r]-Ei[-b · r1] and for b = 0 : Q  = Ln[r/r1], A =  initial relative growth to be estimated, T = t-t1, and E is an error term for each tree and time point. Furthermore, Ei[-b · r]  = ∫(Exp[-b · r]/r)dr, b = -1/TPR, with TPR being the turning point radius in a sigmoid curve, and r1 at t1 is an estimated calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for the estimated initial relative growth A. One site (at the Popocatépetl volcano) stood out, with A being 3.9 times the value of the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within sites and over time.

  15. Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees.

    PubMed

    Chung, Yi-Shih

    2013-12-01

    Factor complexity is a characteristic of traffic crashes. This paper proposes a novel method, namely boosted regression trees (BRT), to investigate the complex and nonlinear relationships in high-variance traffic crash data. The Taiwanese 2004-2005 single-vehicle motorcycle crash data are used to demonstrate the utility of BRT. Traditional logistic regression and classification and regression tree (CART) models are also used to compare their estimation results and external validities. Both the in-sample cross-validation and out-of-sample validation results show that an increase in tree complexity provides improved, although declining, classification performance, indicating a limited factor complexity of single-vehicle motorcycle crashes. The effects of crucial variables including geographical, time, and sociodemographic factors explain some fatal crashes. Relatively unique fatal crashes are better approximated by interactive terms, especially combinations of behavioral factors. BRT models generally provide improved transferability than conventional logistic regression and CART models. This study also discusses the implications of the results for devising safety policies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran

    NASA Astrophysics Data System (ADS)

    Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran

    2018-03-01

    This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).

  17. Dynamic travel time estimation using regression trees.

    DOT National Transportation Integrated Search

    2008-10-01

    This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...

  18. Suspicion of respiratory tract infection with multidrug-resistant Enterobacteriaceae: epidemiology and risk factors from a Paediatric Intensive Care Unit.

    PubMed

    Renk, Hanna; Stoll, Lenja; Neunhoeffer, Felix; Hölzl, Florian; Kumpf, Matthias; Hofbeck, Michael; Hartl, Dominik

    2017-02-21

    Multidrug-resistant (MDR) infections are a serious concern for children admitted to the Paediatric Intensive Care Unit (PICU). Tracheal colonization with MDR Enterobacteriaceae predisposes to respiratory infection, but underlying risk factors are poorly understood. This study aims to determine the incidence of children with suspected infection during mechanical ventilation and analyses risk factors for the finding of MDR Enterobacteriaceae in tracheal aspirates. A retrospective single-centre analysis of Enterobacteriaceae isolates from the lower respiratory tract of ventilated PICU patients from 2005 to 2014 was performed. Resistance status was determined and clinical records were reviewed for potential risk factors. A classification and regression tree (CRT) to predict risk factors for infection with MDR Enterobacteriaceae was employed. The model was validated by simple and multivariable logistic regression. One hundred sixty-seven Enterobacteriaceae isolates in 123 children were identified. The most frequent isolates were Enterobacter spp., Klebsiella spp. and E.coli. Among these, 116 (69%) isolates were susceptible and 51 (31%) were MDR. In the CRT analysis, antibiotic exposure for ≥ 7 days and presence of gastrointestinal comorbidity were the most relevant predictors for an MDR isolate. Antibiotic exposure for ≥ 7 days was confirmed as a significant risk factor for infection with MDR Enterobacteriaceae by a multivariable logistic regression model. This study shows that critically-ill children with tracheal Enterobacteriaceae infection are at risk of carrying MDR isolates. Prior use of antibiotics for ≥ 7 days significantly increased the risk of finding MDR organisms in ventilated PICU patients with suspected infection. Our results imply that early identification of patients at risk, rapid microbiological diagnostics and tailored antibiotic therapy are essential to improve management of critically ill children infected with Enterobacteriaceae.

  19. [A strategy for assessing environmental influence on airway allergy using a regression binary tree-based method].

    PubMed

    Yoshioka, Fumi; Azuma, Emiko; Nakajima, Takae; Hashimoto, Masafumi; Toyoshima, Kyoichiro; Komachi, Yoshio

    2004-08-01

    To clarify the living environment factors that increase the risk of allergic sensitization to house dust mites, we applied a regression binary tree-based method (CART, Classification & Regression Trees) to an epidemiological study on airway allergy. The utility of the tree map in personal sanitary guidance for preventing allergic sensitization was examined with respect to feasibility and validity. A questionnaire was given to 386 healthy adult women, asking them about their individual living environments. Also, blood samples were collected to measure Dermatophagoides pteronyssinus (Dp)-specific IgE, the presence/absence of Dp-sensitization being expressed as positive/negative. The questionnaire consisted of nine items on (1) home ventilation by keeping windows open, (2) personal or family smoking habits, (3) use of air conditioners in hot weather, (4) type of flooring (tatami/wooden/carpet) in the living room, (5) visible mold proliferation in the kitchen, (6) type of housing (concrete/wooden), (7) residential area (heavy or light traffic area) (8) heating system (use of unventilated combustion appliances), and (9) frequency of cleaning (every day or less often). There also were queries on the past history of airway allergic diseases, such as bronchial asthma and allergic rhinitis. CART and a multivariate logistic regression analysis (MLRA) were performed. The subjects were first classified into two groups, with and without a history of airway allergic diseases (Groups WPH and WOPH). In each group, the involvement of living environment factors in Dp-sensitization was examined using CART and MLRA. In the MLRA study, individual living environment factors showed promotional or suppressive effects on Dp-sensitization with differences between the two groups. With respect to the CART results, the two groups were first split by the factor that had the most significant odds ratio for MLRA. In Group WPH, which had a Dp-sensitization risk of 19.5%, the first split was by the factor of visible mold proliferation in the kitchen into the factor-present group with a risk value of 45.5% and the factor-absent group with 13.5%. The mold proliferation group was split with reference to frequent cleaning, and the risk rose to 75% in the factor-absent group and to 100% when family smoking habits were reported. Group WOPH (the risk: 10.8%) was first split into two groups according to the use of air conditioners in hot weather for more than 6 hours a day or less, which showed risk values of 16.7% and 6.9%, respectively. The risk of the group that intensively used air conditioners fell to 8.3% with tatami as flooring in the living room, and, if others, rose to 20.8%. The risk of the factor-lacking group fell to 4.0% without wooden flooring. CART analysis enables us to express complex relationships between living environment factors and Dp-sensitization simply by a binary regression tree, pointing to preventive strategies that can be flexibly changed according to the individual living environments of the subjects.

  20. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado Front Range

    Treesearch

    Jose F. Negron

    1998-01-01

    Infested and uninfested areas within Douglas fir, Pseudotsuga menziesii Mirb.. Franco, stands affected by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. were sampled in the Colorado Front Range, CO. Classification tree models were built to predict probabilities of infestation. Regression trees and linear regression analysis were used to model amount of tree...

  1. Using nonlinear quantile regression to estimate the self-thinning boundary curve

    Treesearch

    Quang V. Cao; Thomas J. Dean

    2015-01-01

    The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...

  2. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Diagnostic and Prognostic Value of Long-Axis Strain and Myocardial Contraction Fraction Using Standard Cardiovascular MR Imaging in Patients with Nonischemic Dilated Cardiomyopathies.

    PubMed

    Arenja, Nisha; Riffel, Johannes H; Fritz, Thomas; André, Florian; Aus dem Siepen, Fabian; Mueller-Hennessen, Matthias; Giannitsis, Evangelos; Katus, Hugo A; Friedrich, Matthias G; Buss, Sebastian J

    2017-06-01

    Purpose To assess the utility of established functional markers versus two additional functional markers derived from standard cardiovascular magnetic resonance (MR) images for their incremental diagnostic and prognostic information in patients with nonischemic dilated cardiomyopathy (NIDCM). Materials and Methods Approval was obtained from the local ethics committee. MR images from 453 patients with NIDCM and 150 healthy control subjects were included between 2005 and 2013 and were analyzed retrospectively. Myocardial contraction fraction (MCF) was calculated by dividing left ventricular (LV) stroke volume by LV myocardial volume, and long-axis strain (LAS) was calculated from the distances between the epicardial border of the LV apex and the midpoint of a line connecting the origins of the mitral valve leaflets at end systole and end diastole. Receiver operating characteristic curve, Kaplan-Meier method, Cox regression, and classification and regression tree (CART) analyses were performed for diagnostic and prognostic performances. Results LAS (area under the receiver operating characteristic curve [AUC] = 0.93, P < .001) and MCF (AUC = 0.92, P < .001) can be used to discriminate patients with NIDCM from age- and sex-matched control subjects. A total of 97 patients reached the combined end point during a median follow-up of 4.8 years. In multivariate Cox regression analysis, only LV ejection fraction (EF) and LAS independently indicated the combined end point (hazard ratio = 2.8 and 1.9, respectively; P < .001 for both). In a risk stratification approach with classification and regression tree analysis, combined LV EF and LAS cutoff values were used to stratify patients into three risk groups (log-rank test, P < .001). Conclusion Cardiovascular MR-derived MCF and LAS serve as reliable diagnostic and prognostic markers in patients with NIDCM. LAS, as a marker for longitudinal contractile function, is an independent parameter for outcome and offers incremental information beyond LV EF and the presence of myocardial fibrosis. © RSNA, 2017 Online supplemental material is available for this article.

  4. Rapid assessment and mapping of tree cover in southern African savanna woodlands using a new iPhone App and Landsat 8 imagery

    NASA Astrophysics Data System (ADS)

    Fuller, D. O.

    2016-12-01

    Tree cover is a key parameter in climate modeling. It strongly influences CO2 exchanges between the land surface and atmosphere and surface energy balance. We measured percent woody canopy cover (PWCC) in the savanna woodlands of eastern Zambia over a 10-day period in May 2016 using a new iPhone App (CanopyApp) and related these field measurements to Landsat 8 (L8) Band 4 (red) imagery acquired approximately the same time. We then used parameters from the band 4 digital numbers (DNs)-PWCC linear regression to derive a new map of PWCC for the entire L8 scene. Consistent with theory and previous empirical studies, we found that the relationship between L8 band 4 DNs- PWCC was negative and linear (r2 = 0.61, p < 0.05). Interestingly, the relationship between PWCC and L8 band 4 surface reflectance was weaker (r2 = 0.46, p < 0.05) than that for DNs. This suggests that the scene model used in L8 atmospheric correction may not account well for within-pixel shadowing effects and other spatial inhomogeneities from variable soil and background reflectance. Our PWCC map agreed qualitatively with similar percent tree-cover maps based on Landsat level 1 products and past field studies in the area conducted using a hemispherical lens. Our results also compared favorably with other remote sensing studies that have used complex multivariate approaches to estimate tree cover, which suggests that use of a single L8 band 4 is sufficient to estimate PWCC when spectral contrast exists between the grass, soil and tree layers during the austral fall period in southern African savannas.

  5. Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report.

    PubMed

    Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho

    2018-04-23

    The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.

  6. Predicting the limits to tree height using statistical regressions of leaf traits.

    PubMed

    Burgess, Stephen S O; Dawson, Todd E

    2007-01-01

    Leaf morphology and physiological functioning demonstrate considerable plasticity within tree crowns, with various leaf traits often exhibiting pronounced vertical gradients in very tall trees. It has been proposed that the trajectory of these gradients, as determined by regression methods, could be used in conjunction with theoretical biophysical limits to estimate the maximum height to which trees can grow. Here, we examined this approach using published and new experimental data from tall conifer and angiosperm species. We showed that height predictions were sensitive to tree-to-tree variation in the shape of the regression and to the biophysical endpoints selected. We examined the suitability of proposed end-points and their theoretical validity. We also noted that site and environment influenced height predictions considerably. Use of leaf mass per unit area or leaf water potential coupled with vulnerability of twigs to cavitation poses a number of difficulties for predicting tree height. Photosynthetic rate and carbon isotope discrimination show more promise, but in the second case, the complex relationship between light, water availability, photosynthetic capacity and internal conductance to CO(2) must first be characterized.

  7. Impact of Resident Rotations on Critically Ill Patient Outcomes: Results of a French Multicenter Observational Study.

    PubMed

    Chousterman, Benjamin G; Pirracchio, Romain; Guidet, Bertrand; Aegerter, Philippe; Mentec, Hervé

    2016-01-01

    The impact of resident rotation on patient outcomes in the intensive care unit (ICU) has been poorly studied. The aim of this study was to address this question using a large ICU database. We retrospectively analyzed the French CUB-REA database. French residents rotate every six months. Two periods were compared: the first (POST) and fifth (PRE) months of the rotation. The primary endpoint was ICU mortality. The secondary endpoints were the length of ICU stay (LOS), the number of organ supports, and the duration of mechanical ventilation (DMV). The impact of resident rotation was explored using multivariate regression, classification tree and random forest models. 262,772 patients were included between 1996 and 2010 in the database. The patient characteristics were similar between the PRE (n = 44,431) and POST (n = 49,979) periods. Multivariate analysis did not reveal any impact of resident rotation on ICU mortality (OR = 1.01, 95% CI = 0.94; 1.07, p = 0.91). Based on the classification trees, the SAPS II and the number of organ failures were the strongest predictors of ICU mortality. In the less severe patients (SAPS II<24), the POST period was associated with increased mortality (OR = 1.65, 95%CI = 1.17-2.33, p = 0.004). After adjustment, no significant association was observed between the rotation period and the LOS, the number of organ supports, or the DMV. Resident rotation exerts no impact on overall ICU mortality at French teaching hospitals but might affect the prognosis of less severe ICU patients. Surveillance should be reinforced when treating those patients.

  8. Water conservation behavior in Australia.

    PubMed

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2012-08-30

    Ensuring a nation's long term water supply requires the use of both supply-sided approaches such as water augmentation through water recycling, and demand-sided approaches such as water conservation. Conservation behavior can only be increased if the key drivers of such behavior are understood. The aim of this study is to reveal the main drivers from a comprehensive pool of hypothesized factors. An empirical study was conducted with 3094 Australians. Data was analyzed using multivariate linear regression analysis and decision trees to determine which factors best predict self-reported water conservation behavior. Two key factors emerge: high level of pro-environmental behavior; and pro-actively seeking out information about water. A number of less influential factors are also revealed. Public communication strategy implications are derived. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression

    USDA-ARS?s Scientific Manuscript database

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly ...

  10. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis

    Treesearch

    L.R. Iverson; A.M. Prasad; A. Liaw

    2004-01-01

    More and better machine learning tools are becoming available for landscape ecologists to aid in understanding species-environment relationships and to map probable species occurrence now and potentially into the future. To thal end, we evaluated three statistical models: Regression Tree Analybib (RTA), Bagging Trees (BT) and Random Forest (RF) for their utility in...

  11. Equations for predicting biomass in 2- to 6-year-old Eucalyptus saligna in Hawaii

    Treesearch

    Craig D. Whitesell; Susan C. Miyasaka; Robert F. Strand; Thomas H. Schubert; Katharine E. McDuffie

    1988-01-01

    Eucalyptus saligna trees grown in short-rotation plantations on the island of Hawaii were measured, harvested, and weighed to provide data for developing regression equations using non-destructive stand measurements. Regression analysis of the data from 190 trees in the 2.0- to 3.5-year range and 96 trees in the 4- to 6-year range related stem-only...

  12. Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods

    Treesearch

    Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett

    2009-01-01

    Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....

  13. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    PubMed

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P < 0.01). A clinically useful classification tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  14. Data mining for rapid prediction of facility fit and debottlenecking of biomanufacturing facilities.

    PubMed

    Yang, Yang; Farid, Suzanne S; Thornhill, Nina F

    2014-06-10

    Higher titre processes can pose facility fit challenges in legacy biopharmaceutical purification suites with capacities originally matched to lower titre processes. Bottlenecks caused by mismatches in equipment sizes, combined with process fluctuations upon scale-up, can result in discarding expensive product. This paper describes a data mining decisional tool for rapid prediction of facility fit issues and debottlenecking of biomanufacturing facilities exposed to batch-to-batch variability and higher titres. The predictive tool comprised advanced multivariate analysis techniques to interrogate Monte Carlo stochastic simulation datasets that mimicked batch fluctuations in cell culture titres, step yields and chromatography eluate volumes. A decision tree classification method, CART (classification and regression tree) was introduced to explore the impact of these process fluctuations on product mass loss and reveal the root causes of bottlenecks. The resulting pictorial decision tree determined a series of if-then rules for the critical combinations of factors that lead to different mass loss levels. Three different debottlenecking strategies were investigated involving changes to equipment sizes, using higher capacity chromatography resins and elution buffer optimisation. The analysis compared the impact of each strategy on mass output, direct cost of goods per gram and processing time, as well as consideration of extra capital investment and space requirements. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Boosted Multivariate Trees for Longitudinal Data

    PubMed Central

    Pande, Amol; Li, Liang; Rajeswaran, Jeevanantham; Ehrlinger, John; Kogalur, Udaya B.; Blackstone, Eugene H.; Ishwaran, Hemant

    2017-01-01

    Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data. PMID:29249866

  16. Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods.

    PubMed

    Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi

    2017-06-01

    Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.

  17. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition

    EPA Science Inventory

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...

  18. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada.

    PubMed

    Peng, Xiaobang; Thevathasan, Naresh V; Gordon, Andrew M; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (< 3 m) to the tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol(-1), 4.2μmol·mol(-1) and 2.8μmol·mol(-1), respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate.

  19. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada

    PubMed Central

    Peng, Xiaobang; Thevathasan, Naresh V.; Gordon, Andrew M.; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (< 3 m) to the tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol-1, 4.2μmol·mol-1 and 2.8μmol·mol-1, respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate. PMID:26053375

  20. Differences in Risk Factors for Rotator Cuff Tears between Elderly Patients and Young Patients.

    PubMed

    Watanabe, Akihisa; Ono, Qana; Nishigami, Tomohiko; Hirooka, Takahiko; Machida, Hirohisa

    2018-02-01

    It has been unclear whether the risk factors for rotator cuff tears are the same at all ages or differ between young and older populations. In this study, we examined the risk factors for rotator cuff tears using classification and regression tree analysis as methods of nonlinear regression analysis. There were 65 patients in the rotator cuff tears group and 45 patients in the intact rotator cuff group. Classification and regression tree analysis was performed to predict rotator cuff tears. The target factor was rotator cuff tears; explanatory variables were age, sex, trauma, and critical shoulder angle≥35°. In the results of classification and regression tree analysis, the tree was divided at age 64. For patients aged≥64, the tree was divided at trauma. For patients aged<64, the tree was divided at critical shoulder angle≥35°. The odds ratio for critical shoulder angle≥35° was significant for all ages (5.89), and for patients aged<64 (10.3) while trauma was only a significant factor for patients aged≥64 (5.13). Age, trauma, and critical shoulder angle≥35° were related to rotator cuff tears in this study. However, these risk factors showed different trends according to age group, not a linear relationship.

  1. Calibrated Multivariate Regression with Application to Neural Semantic Basis Discovery.

    PubMed

    Liu, Han; Wang, Lie; Zhao, Tuo

    2015-08-01

    We propose a calibrated multivariate regression method named CMR for fitting high dimensional multivariate regression models. Compared with existing methods, CMR calibrates regularization for each regression task with respect to its noise level so that it simultaneously attains improved finite-sample performance and tuning insensitiveness. Theoretically, we provide sufficient conditions under which CMR achieves the optimal rate of convergence in parameter estimation. Computationally, we propose an efficient smoothed proximal gradient algorithm with a worst-case numerical rate of convergence O (1/ ϵ ), where ϵ is a pre-specified accuracy of the objective function value. We conduct thorough numerical simulations to illustrate that CMR consistently outperforms other high dimensional multivariate regression methods. We also apply CMR to solve a brain activity prediction problem and find that it is as competitive as a handcrafted model created by human experts. The R package camel implementing the proposed method is available on the Comprehensive R Archive Network http://cran.r-project.org/web/packages/camel/.

  2. Bayesian Ensemble Trees (BET) for Clustering and Prediction in Heterogeneous Data

    PubMed Central

    Duan, Leo L.; Clancy, John P.; Szczesniak, Rhonda D.

    2016-01-01

    We propose a novel “tree-averaging” model that utilizes the ensemble of classification and regression trees (CART). Each constituent tree is estimated with a subset of similar data. We treat this grouping of subsets as Bayesian Ensemble Trees (BET) and model them as a Dirichlet process. We show that BET determines the optimal number of trees by adapting to the data heterogeneity. Compared with the other ensemble methods, BET requires much fewer trees and shows equivalent prediction accuracy using weighted averaging. Moreover, each tree in BET provides variable selection criterion and interpretation for each subset. We developed an efficient estimating procedure with improved estimation strategies in both CART and mixture models. We demonstrate these advantages of BET with simulations and illustrate the approach with a real-world data example involving regression of lung function measurements obtained from patients with cystic fibrosis. Supplemental materials are available online. PMID:27524872

  3. Quantifying multi-dimensional functional trait spaces of trees: empirical versus theoretical approaches

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Fell, M.; Barber, J. J.

    2016-12-01

    Empirical, field studies of plant functional traits have revealed important trade-offs among pairs or triplets of traits, such as the leaf (LES) and wood (WES) economics spectra. Trade-offs include correlations between leaf longevity (LL) vs specific leaf area (SLA), LL vs mass-specific leaf respiration rate (RmL), SLA vs RmL, and resistance to breakage vs wood density. Ordination analyses (e.g., PCA) show groupings of traits that tend to align with different life-history strategies or taxonomic groups. It is unclear, however, what underlies such trade-offs and emergent spectra. Do they arise from inherent physiological constraints on growth, or are they more reflective of environmental filtering? The relative importance of these mechanisms has implications for predicting biogeochemical cycling, which is influenced by trait distributions of the plant community. We address this question using an individual-based model of tree growth (ACGCA) to quantify the theoretical trait space of trees that emerges from physiological constraints. ACGCA's inputs include 32 physiological, anatomical, and allometric traits, many of which are related to the LES and WES. We fit ACGCA to 1.6 million USFS FIA observations of tree diameters and heights to obtain vectors of trait values that produce realistic growth, and we explored the structure of this trait space. No notable correlations emerged among the 496 trait pairs, but stepwise regressions revealed complicated multi-variate structure: e.g., relationships between pairs of traits (e.g., RmL and SLA) are governed by other traits (e.g., LL, radiation-use efficiency [RUE]). We also simulated growth under various canopy gap scenarios that impose varying degrees of environmental filtering to explore the multi-dimensional trait space (hypervolume) of trees that died vs survived. The centroid and volume of the hypervolumes differed among dead and live trees, especially under gap conditions leading to low mortality. Traits most predictive of tree-level mortality were maximum tree height, RUE, xylem conducting area, and branch turn-over rate. We are using these hypervolumes as priors to an emulator that approximates the ACGCA, which we are fitting to the FIA data to quantify species-specific trait spectra and to explore factors giving rise to species differences.

  4. Individualized Prediction of Heat Stress in Firefighters: A Data-Driven Approach Using Classification and Regression Trees.

    PubMed

    Mani, Ashutosh; Rao, Marepalli; James, Kelley; Bhattacharya, Amit

    2015-01-01

    The purpose of this study was to explore data-driven models, based on decision trees, to develop practical and easy to use predictive models for early identification of firefighters who are likely to cross the threshold of hyperthermia during live-fire training. Predictive models were created for three consecutive live-fire training scenarios. The final predicted outcome was a categorical variable: will a firefighter cross the upper threshold of hyperthermia - Yes/No. Two tiers of models were built, one with and one without taking into account the outcome (whether a firefighter crossed hyperthermia or not) from the previous training scenario. First tier of models included age, baseline heart rate and core body temperature, body mass index, and duration of training scenario as predictors. The second tier of models included the outcome of the previous scenario in the prediction space, in addition to all the predictors from the first tier of models. Classification and regression trees were used independently for prediction. The response variable for the regression tree was the quantitative variable: core body temperature at the end of each scenario. The predicted quantitative variable from regression trees was compared to the upper threshold of hyperthermia (38°C) to predict whether a firefighter would enter hyperthermia. The performance of classification and regression tree models was satisfactory for the second (success rate = 79%) and third (success rate = 89%) training scenarios but not for the first (success rate = 43%). Data-driven models based on decision trees can be a useful tool for predicting physiological response without modeling the underlying physiological systems. Early prediction of heat stress coupled with proactive interventions, such as pre-cooling, can help reduce heat stress in firefighters.

  5. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  6. A self-trained classification technique for producing 30 m percent-water maps from Landsat data

    USGS Publications Warehouse

    Rover, Jennifer R.; Wylie, Bruce K.; Ji, Lei

    2010-01-01

    Small bodies of water can be mapped with moderate-resolution satellite data using methods where water is mapped as subpixel fractions using field measurements or high-resolution images as training datasets. A new method, developed from a regression-tree technique, uses a 30 m Landsat image for training the regression tree that, in turn, is applied to the same image to map subpixel water. The self-trained method was evaluated by comparing the percent-water map with three other maps generated from established percent-water mapping methods: (1) a regression-tree model trained with a 5 m SPOT 5 image, (2) a regression-tree model based on endmembers and (3) a linear unmixing classification technique. The results suggest that subpixel water fractions can be accurately estimated when high-resolution satellite data or intensively interpreted training datasets are not available, which increases our ability to map small water bodies or small changes in lake size at a regional scale.

  7. Scalable Regression Tree Learning on Hadoop using OpenPlanet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Wei; Simmhan, Yogesh; Prasanna, Viktor

    As scientific and engineering domains attempt to effectively analyze the deluge of data arriving from sensors and instruments, machine learning is becoming a key data mining tool to build prediction models. Regression tree is a popular learning model that combines decision trees and linear regression to forecast numerical target variables based on a set of input features. Map Reduce is well suited for addressing such data intensive learning applications, and a proprietary regression tree algorithm, PLANET, using MapReduce has been proposed earlier. In this paper, we describe an open source implement of this algorithm, OpenPlanet, on the Hadoop framework usingmore » a hybrid approach. Further, we evaluate the performance of OpenPlanet using realworld datasets from the Smart Power Grid domain to perform energy use forecasting, and propose tuning strategies of Hadoop parameters to improve the performance of the default configuration by 75% for a training dataset of 17 million tuples on a 64-core Hadoop cluster on FutureGrid.« less

  8. Polynomial reduction and evaluation of tree- and loop-level CHY amplitudes

    DOE PAGES

    Zlotnikov, Michael

    2016-08-24

    We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less

  9. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  10. Method for estimating potential tree-grade distributions for northeastern forest species

    Treesearch

    Daniel A. Yaussy; Daniel A. Yaussy

    1993-01-01

    Generalized logistic regression was used to distribute trees into four potential tree grades for 20 northeastern species groups. The potential tree grade is defined as the tree grade based on the length and amount of clear cuttings and defects only, disregarding minimum grading diameter. The algorithms described use site index and tree diameter as the predictive...

  11. Additivity of nonlinear biomass equations

    Treesearch

    Bernard R. Parresol

    2001-01-01

    Two procedures that guarantee the property of additivity among the components of tree biomass and total tree biomass utilizing nonlinear functions are developed. Procedure 1 is a simple combination approach, and procedure 2 is based on nonlinear joint-generalized regression (nonlinear seemingly unrelated regressions) with parameter restrictions. Statistical theory is...

  12. [Prediction of histological liver damage in asymptomatic alcoholic patients by means of clinical and laboratory data].

    PubMed

    Iturriaga, H; Hirsch, S; Bunout, D; Díaz, M; Kelly, M; Silva, G; de la Maza, M P; Petermann, M; Ugarte, G

    1993-04-01

    Looking for a noninvasive method to predict liver histologic alterations in alcoholic patients without clinical signs of liver failure, we studied 187 chronic alcoholics recently abstinent, divided in 2 series. In the model series (n = 94) several clinical variables and results of common laboratory tests were confronted to the findings of liver biopsies. These were classified in 3 groups: 1. Normal liver; 2. Moderate alterations; 3. Marked alterations, including alcoholic hepatitis and cirrhosis. Multivariate methods used were logistic regression analysis and a classification and regression tree (CART). Both methods entered gamma-glutamyltransferase (GGT), aspartate-aminotransferase (AST), weight and age as significant and independent variables. Univariate analysis with GGT and AST at different cutoffs were also performed. To predict the presence of any kind of damage (Groups 2 and 3), CART and AST > 30 IU showed the higher sensitivity, specificity and correct prediction, both in the model and validation series. For prediction of marked liver damage, a score based on logistic regression and GGT > 110 IU had the higher efficiencies. It is concluded that GGT and AST are good markers of alcoholic liver damage and that, using sample cutoffs, histologic diagnosis can be correctly predicted in 80% of recently abstinent asymptomatic alcoholics.

  13. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An optimal sample data usage strategy to minimize overfitting and underfitting effects in regression tree models based on remotely-sensed data

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Picotte, Joshua J.; Howard, Danny; Smith, Kelcy; Nelson, Kurtis

    2016-01-01

    Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0–200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.

  15. Nest-site selection analysis of hooded crane (Grus monacha) in Northeastern China based on a multivariate ensemble model.

    PubMed

    Jiao, Shengwu; Guo, Yumin; Huettmann, Falk; Lei, Guangchun

    2014-07-01

    Avian nest-site selection is an important research and management subject. The hooded crane (Grus monacha) is a vulnerable (VU) species according to the IUCN Red List. Here, we present the first long-term Chinese legacy nest data for this species (1993-2010) with publicly available metadata. Further, we provide the first study that reports findings on multivariate nest habitat preference using such long-term field data for this species. Our work was carried out in Northeastern China, where we found and measured 24 nests and 81 randomly selected control plots and their environmental parameters in a vast landscape. We used machine learning (stochastic boosted regression trees) to quantify nest selection. Our analysis further included varclust (R Hmisc) and (TreenNet) to address statistical correlations and two-way interactions. We found that from an initial list of 14 measured field variables, water area (+), water depth (+) and shrub coverage (-) were the main explanatory variables that contributed to hooded crane nest-site selection. Agricultural sites played a smaller role in the selection of these nests. Our results are important for the conservation management of cranes all over East Asia and constitute a defensible and quantitative basis for predictive models.

  16. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    USDA-ARS?s Scientific Manuscript database

    Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....

  17. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    USDA-ARS?s Scientific Manuscript database

    Missing meteorological data have to be estimated for agricultural and environmental modeling. The objective of this work was to develop a technique to reconstruct the missing daily precipitation data in the central part of the Chesapeake Bay Watershed using regression trees (RT) and artificial neura...

  18. An information-based network approach for protein classification

    PubMed Central

    Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.

    2017-01-01

    Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835

  19. Tree STEM and Canopy Biomass Estimates from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Olofsson, K.; Holmgren, J.

    2017-10-01

    In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10-15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.

  20. Transmission clustering among newly diagnosed HIV patients in Chicago, 2008 to 2011: using phylogenetics to expand knowledge of regional HIV transmission patterns

    PubMed Central

    Lubelchek, Ronald J.; Hoehnen, Sarah C.; Hotton, Anna L.; Kincaid, Stacey L.; Barker, David E.; French, Audrey L.

    2014-01-01

    Introduction HIV transmission cluster analyses can inform HIV prevention efforts. We describe the first such assessment for transmission clustering among HIV patients in Chicago. Methods We performed transmission cluster analyses using HIV pol sequences from newly diagnosed patients presenting to Chicago’s largest HIV clinic between 2008 and 2011. We compared sequences via progressive pairwise alignment, using neighbor joining to construct an un-rooted phylogenetic tree. We defined clusters as >2 sequences among which each sequence had at least one partner within a genetic distance of ≤ 1.5%. We used multivariable regression to examine factors associated with clustering and used geospatial analysis to assess geographic proximity of phylogenetically clustered patients. Results We compared sequences from 920 patients; median age 35 years; 75% male; 67% Black, 23% Hispanic; 8% had a Rapid Plasma Reagin (RPR) titer ≥ 1:16 concurrent with their HIV diagnosis. We had HIV transmission risk data for 54%; 43% identified as men who have sex with men (MSM). Phylogenetic analysis demonstrated 123 patients (13%) grouped into 26 clusters, the largest having 20 members. In multivariable regression, age < 25, Black race, MSM status, male gender, higher HIV viral load, and RPR ≥ 1:16 associated with clustering. We did not observe geographic grouping of genetically clustered patients. Discussion Our results demonstrate high rates of HIV transmission clustering, without local geographic foci, among young Black MSM in Chicago. Applied prospectively, phylogenetic analyses could guide prevention efforts and help break the cycle of transmission. PMID:25321182

  1. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest.

    PubMed

    Cabugao, Kristine G; Timm, Collin M; Carrell, Alyssa A; Childs, Joanne; Lu, Tse-Yuan S; Pelletier, Dale A; Weston, David J; Norby, Richard J

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability ( p -value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial community composition was chiefly influenced by P availability. Although the sample size is limited given the tremendous diversity of tropical forests, our study indicates the importance of roots and bacterial function to understanding phosphatase activity. Future work will broaden the diversity of tree species and microbial members sampled to provide insight into P mineralization and model representation of tropical forests.

  2. Methods for estimating population density in data-limited areas: evaluating regression and tree-based models in Peru.

    PubMed

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.

  3. Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru

    PubMed Central

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657

  4. Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph

    2010-01-01

    Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…

  5. Alternatives for using multivariate regression to adjust prospective payment rates

    PubMed Central

    Sheingold, Steven H.

    1990-01-01

    Multivariate regression analysis has been used in structuring three of the adjustments to Medicare's prospective payment rates. Because the indirect-teaching adjustment, the disproportionate-share adjustment, and the adjustment for large cities are responsible for distributing approximately $3 billion in payments each year, the specification of regression models for these adjustments is of critical importance. In this article, the application of regression for adjusting Medicare's prospective rates is discussed, and the implications that differing specifications could have for these adjustments are demonstrated. PMID:10113271

  6. Generalized and synthetic regression estimators for randomized branch sampling

    Treesearch

    David L. R. Affleck; Timothy G. Gregoire

    2015-01-01

    In felled-tree studies, ratio and regression estimators are commonly used to convert more readily measured branch characteristics to dry crown mass estimates. In some cases, data from multiple trees are pooled to form these estimates. This research evaluates the utility of both tactics in the estimation of crown biomass following randomized branch sampling (...

  7. Cloud-Free Satellite Image Mosaics with Regression Trees and Histogram Matching.

    Treesearch

    E.H. Helmer; B. Ruefenacht

    2005-01-01

    Cloud-free optical satellite imagery simplifies remote sensing, but land-cover phenology limits existing solutions to persistent cloudiness to compositing temporally resolute, spatially coarser imagery. Here, a new strategy for developing cloud-free imagery at finer resolution permits simple automatic change detection. The strategy uses regression trees to predict...

  8. Regression estimators for late-instar gypsy moth larvae at low pupulation densities

    Treesearch

    W.E. Wallnr; A.S. Devito; Stanley J. Zarnoch

    1989-01-01

    Two regression estimators were developed for determining densities of late-instar gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), larvae from burlap band and pyrethrin spray counts on oak trees in Vermont, Massachusetts, Connecticut, and New York. Studies were conducted by marking larvae on individual burlap banded trees within 15...

  9. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    2004-01-01

    To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

  10. Multivariate analysis of flow cytometric data using decision trees.

    PubMed

    Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver

    2012-01-01

    Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.

  11. Demographic predictors of peanut, tree nut, fish, shellfish, and sesame allergy in Canada.

    PubMed

    Ben-Shoshan, M; Harrington, D W; Soller, L; Fragapane, J; Joseph, L; Pierre, Y St; Godefroy, S B; Elliott, S J; Clarke, A E

    2012-01-01

    Background. Studies suggest that the rising prevalence of food allergy during recent decades may have stabilized. Although genetics undoubtedly contribute to the emergence of food allergy, it is likely that other factors play a crucial role in mediating such short-term changes. Objective. To identify potential demographic predictors of food allergies. Methods. We performed a cross-Canada, random telephone survey. Criteria for food allergy were self-report of convincing symptoms and/or physician diagnosis of allergy. Multivariate logistic regressions were used to assess potential determinants. Results. Of 10,596 households surveyed in 2008/2009, 3666 responded, representing 9667 individuals. Peanut, tree nut, and sesame allergy were more common in children (odds ratio (OR) 2.24 (95% CI, 1.40, 3.59), 1.73 (95% CI, 1.11, 2.68), and 5.63 (95% CI, 1.39, 22.87), resp.) while fish and shellfish allergy were less common in children (OR 0.17 (95% CI, 0.04, 0.72) and 0.29 (95% CI, 0.14, 0.61)). Tree nut and shellfish allergy were less common in males (OR 0.55 (95% CI, 0.36, 0.83) and 0.63 (95% CI, 0.43, 0.91)). Shellfish allergy was more common in urban settings (OR 1.55 (95% CI, 1.04, 2.31)). There was a trend for most food allergies to be more prevalent in the more educated (tree nut OR 1.90 (95% CI, 1.18, 3.04)) and less prevalent in immigrants (shellfish OR 0.49 (95% CI, 0.26, 0.95)), but wide CIs preclude definitive conclusions for most foods. Conclusions. Our results reveal that in addition to age and sex, place of residence, socioeconomic status, and birth place may influence the development of food allergy.

  12. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  13. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    PubMed

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  14. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis

    Treesearch

    Nicole Labbe; David Harper; Timothy Rials; Thomas Elder

    2006-01-01

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...

  15. Regression analysis using dependent Polya trees.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Comparison of modeling methods to predict the spatial distribution of deep-sea coral and sponge in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Rooper, Christopher N.; Zimmermann, Mark; Prescott, Megan M.

    2017-08-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. We compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance ( 50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with biological theory. For data with highly zero-inflated distributions and non-normal distributions such as the abundance data from this study, the tree-based methods performed better. Ensemble models that averaged predictions across the four model types, performed better than the GLM or GAM models but slightly poorer than the tree-based methods, suggesting ensemble models might be more robust to overfitting than tree methods, while mitigating some of the disadvantages in predictive performance of regression methods.

  17. DIF Trees: Using Classification Trees to Detect Differential Item Functioning

    ERIC Educational Resources Information Center

    Vaughn, Brandon K.; Wang, Qiu

    2010-01-01

    A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…

  18. Factors associated with success of telaprevir- and boceprevir-based triple therapy for hepatitis C virus infection

    PubMed Central

    Bichoupan, Kian; Tandon, Neeta; Martel-Laferriere, Valerie; Patel, Neal M; Sachs, David; Ng, Michel; Schonfeld, Emily A; Pappas, Alexis; Crismale, James; Stivala, Alicia; Khaitova, Viktoriya; Gardenier, Donald; Linderman, Michael; Olson, William; Perumalswami, Ponni V; Schiano, Thomas D; Odin, Joseph A; Liu, Lawrence U; Dieterich, Douglas T; Branch, Andrea D

    2017-01-01

    AIM To evaluate new therapies for hepatitis C virus (HCV), data about real-world outcomes are needed. METHODS Outcomes of 223 patients with genotype 1 HCV who started telaprevir- or boceprevir-based triple therapy (May 2011-March 2012) at the Mount Sinai Medical Center were analyzed. Human immunodeficiency virus-positive patients and patients who received a liver transplant were excluded. Factors associated with sustained virological response (SVR24) and relapse were analyzed by univariable and multivariable logistic regression as well as classification and regression trees. Fast virological response (FVR) was defined as undetectable HCV RNA at week-4 (telaprevir) or week-8 (boceprevir). RESULTS The median age was 57 years, 18% were black, 44% had advanced fibrosis/cirrhosis (FIB-4 ≥ 3.25). Only 42% (94/223) of patients achieved SVR24 on an intention-to-treat basis. In a model that included platelets, SVR24 was associated with white race [odds ratio (OR) = 5.92, 95% confidence interval (CI): 2.34-14.96], HCV sub-genotype 1b (OR = 2.81, 95%CI: 1.45-5.44), platelet count (OR = 1.10, per x 104 cells/μL, 95%CI: 1.05-1.16), and IL28B CC genotype (OR = 3.54, 95%CI: 1.19-10.53). Platelet counts > 135 x 103/μL were the strongest predictor of SVR by classification and regression tree. Relapse occurred in 25% (27/104) of patients with an end-of-treatment response and was associated with non-FVR (OR = 4.77, 95%CI: 1.68-13.56), HCV sub-genotype 1a (OR = 5.20; 95%CI: 1.40-18.97), and FIB-4 ≥ 3.25 (OR = 2.77; 95%CI: 1.07-7.22). CONCLUSION The SVR rate was 42% with telaprevir- or boceprevir-based triple therapy in real-world practice. Low platelets and advanced fibrosis were associated with treatment failure and relapse. PMID:28469811

  19. Factors associated with success of telaprevir- and boceprevir-based triple therapy for hepatitis C virus infection.

    PubMed

    Bichoupan, Kian; Tandon, Neeta; Martel-Laferriere, Valerie; Patel, Neal M; Sachs, David; Ng, Michel; Schonfeld, Emily A; Pappas, Alexis; Crismale, James; Stivala, Alicia; Khaitova, Viktoriya; Gardenier, Donald; Linderman, Michael; Olson, William; Perumalswami, Ponni V; Schiano, Thomas D; Odin, Joseph A; Liu, Lawrence U; Dieterich, Douglas T; Branch, Andrea D

    2017-04-18

    To evaluate new therapies for hepatitis C virus (HCV), data about real-world outcomes are needed. Outcomes of 223 patients with genotype 1 HCV who started telaprevir- or boceprevir-based triple therapy (May 2011-March 2012) at the Mount Sinai Medical Center were analyzed. Human immunodeficiency virus-positive patients and patients who received a liver transplant were excluded. Factors associated with sustained virological response (SVR24) and relapse were analyzed by univariable and multivariable logistic regression as well as classification and regression trees. Fast virological response (FVR) was defined as undetectable HCV RNA at week-4 (telaprevir) or week-8 (boceprevir). The median age was 57 years, 18% were black, 44% had advanced fibrosis/cirrhosis (FIB-4 ≥ 3.25). Only 42% (94/223) of patients achieved SVR24 on an intention-to-treat basis. In a model that included platelets, SVR24 was associated with white race [odds ratio (OR) = 5.92, 95% confidence interval (CI): 2.34-14.96], HCV sub-genotype 1b (OR = 2.81, 95%CI: 1.45-5.44), platelet count (OR = 1.10, per x 10 4 cells/μL, 95%CI: 1.05-1.16), and IL28B CC genotype (OR = 3.54, 95%CI: 1.19-10.53). Platelet counts > 135 x 10 3 /μL were the strongest predictor of SVR by classification and regression tree. Relapse occurred in 25% (27/104) of patients with an end-of-treatment response and was associated with non-FVR (OR = 4.77, 95%CI: 1.68-13.56), HCV sub-genotype 1a (OR = 5.20; 95%CI: 1.40-18.97), and FIB-4 ≥ 3.25 (OR = 2.77; 95%CI: 1.07-7.22). The SVR rate was 42% with telaprevir- or boceprevir-based triple therapy in real-world practice. Low platelets and advanced fibrosis were associated with treatment failure and relapse.

  20. Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction

    PubMed Central

    Rahman, Raziur; Haider, Saad; Ghosh, Souparno; Pal, Ranadip

    2015-01-01

    Random forests consisting of an ensemble of regression trees with equal weights are frequently used for design of predictive models. In this article, we consider an extension of the methodology by representing the regression trees in the form of probabilistic trees and analyzing the nature of heteroscedasticity. The probabilistic tree representation allows for analytical computation of confidence intervals (CIs), and the tree weight optimization is expected to provide stricter CIs with comparable performance in mean error. We approached the ensemble of probabilistic trees’ prediction from the perspectives of a mixture distribution and as a weighted sum of correlated random variables. We applied our methodology to the drug sensitivity prediction problem on synthetic and cancer cell line encyclopedia dataset and illustrated that tree weights can be selected to reduce the average length of the CI without increase in mean error. PMID:27081304

  1. Regression Trees Identify Relevant Interactions: Can This Improve the Predictive Performance of Risk Adjustment?

    PubMed

    Buchner, Florian; Wasem, Jürgen; Schillo, Sonja

    2017-01-01

    Risk equalization formulas have been refined since their introduction about two decades ago. Because of the complexity and the abundance of possible interactions between the variables used, hardly any interactions are considered. A regression tree is used to systematically search for interactions, a methodologically new approach in risk equalization. Analyses are based on a data set of nearly 2.9 million individuals from a major German social health insurer. A two-step approach is applied: In the first step a regression tree is built on the basis of the learning data set. Terminal nodes characterized by more than one morbidity-group-split represent interaction effects of different morbidity groups. In the second step the 'traditional' weighted least squares regression equation is expanded by adding interaction terms for all interactions detected by the tree, and regression coefficients are recalculated. The resulting risk adjustment formula shows an improvement in the adjusted R 2 from 25.43% to 25.81% on the evaluation data set. Predictive ratios are calculated for subgroups affected by the interactions. The R 2 improvement detected is only marginal. According to the sample level performance measures used, not involving a considerable number of morbidity interactions forms no relevant loss in accuracy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements

    PubMed Central

    Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338

  3. A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements.

    PubMed

    Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.

  4. Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA

    Treesearch

    Lisa M. Ganio; Robert A. Progar

    2017-01-01

    Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality but fire-injured trees can also survive. Land managers use logistic regression models that incorporate tree-injury variables to discriminate between fatally injured trees and those that will survive. We used data from 4024 ponderosa pine (Pinus ponderosa...

  5. Using Evidence-Based Decision Trees Instead of Formulas to Identify At-Risk Readers. REL 2014-036

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov; Foorman, Barbara R.

    2014-01-01

    This study examines whether the classification and regression tree (CART) model improves the early identification of students at risk for reading comprehension difficulties compared with the more difficult to interpret logistic regression model. CART is a type of predictive modeling that relies on nonparametric techniques. It presents results in…

  6. Identification of Sexually Abused Female Adolescents at Risk for Suicidal Ideations: A Classification and Regression Tree Analysis

    ERIC Educational Resources Information Center

    Brabant, Marie-Eve; Hebert, Martine; Chagnon, Francois

    2013-01-01

    This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression,…

  7. Forest type mapping of the Interior West

    Treesearch

    Bonnie Ruefenacht; Gretchen G. Moisen; Jock A. Blackard

    2004-01-01

    This paper develops techniques for the mapping of forest types in Arizona, New Mexico, and Wyoming. The methods involve regression-tree modeling using a variety of remote sensing and GIS layers along with Forest Inventory Analysis (FIA) point data. Regression-tree modeling is a fast and efficient technique of estimating variables for large data sets with high accuracy...

  8. What Satisfies Students? Mining Student-Opinion Data with Regression and Decision-Tree Analysis. AIR 2002 Forum Paper.

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…

  9. Using the PDD Behavior Inventory as a Level 2 Screener: A Classification and Regression Trees Analysis

    ERIC Educational Resources Information Center

    Cohen, Ira L.; Liu, Xudong; Hudson, Melissa; Gillis, Jennifer; Cavalari, Rachel N. S.; Romanczyk, Raymond G.; Karmel, Bernard Z.; Gardner, Judith M.

    2016-01-01

    In order to improve discrimination accuracy between Autism Spectrum Disorder (ASD) and similar neurodevelopmental disorders, a data mining procedure, Classification and Regression Trees (CART), was used on a large multi-site sample of PDD Behavior Inventory (PDDBI) forms on children with and without ASD. Discrimination accuracy exceeded 80%,…

  10. Dissecting the space-time structure of tree-ring datasets using the partial triadic analysis.

    PubMed

    Rossi, Jean-Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz-Diaz, Manuela; Sergent, Anne-Sophie; Martinez-Meier, Alejandro; Pâques, Luc; Rozenberg, Philippe

    2014-01-01

    Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967-2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967-2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.

  11. Over- and undersupply in home care: a representative multicenter correlational study.

    PubMed

    Lahmann, Nils A; Suhr, Ralf; Kuntz, Simone; Kottner, Jan

    2015-04-01

    Quality assurance and funding of care become a major challenge against the background of demographic changes in western societies. The primary aim of the study was to identify possible misclassification, respectively over and undersupply of care by comparing the Barthel Index of clients of home care service with the level of care (Stage 0, I, II, III) according to the statutory German long-term care insurance. In 2012, a multi-center point prevalence study of 878 randomly selected clients of 100 randomly selected home care services across Germany was conducted. According to a standardized study protocol, demographics, the Barthel Index and the nurses' professional judgment-whether a client requires more nursing care-were assessed. Associations of the Barthel items and professional judgment were analyzed using univariate (Chi-square) and multivariate (logistic regression and classification-regression-tree-models) statistics. In each level of care, the Barthel Index showed large variability e.g. in level II ranging from 0 to 100 points. Multivariate logistic regression regarding possible under- and oversupply revealed occasionally fecal incontinence (2.1; 95 % CI 1.2-3.7), urinary incontinence (2.0; 95 % CI 1.1-3.6), feeding (1.7; 95 % CI 1.0-2.9), immobility (0.2; 95 % CI 0.1-0.6) and to be female (1.8; 95 % CI 1.2-2.6) to be statistically significantly associated. The variability in Barthel Index in each level of care found in this study indicated a large general misclassification of home care clients according to their actual need of care. Professional caregivers identified occasional incontinence, help with eating and drinking and mobility (especially in female clients) as areas of possible under- and oversupply of care. The statutory German long-term care insurance classification should be modified according to the above finding to increase the quality of care in home care clients.

  12. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  13. Using crown condition variables as indicators of forest health

    Treesearch

    Stanley J. Zarnoch; William A. Bechtold; K.W. Stolte

    2004-01-01

    Indicators of forest health used in previous studies have focused on crown variables analyzed individually at the tree level by summarizing over all species. This approach has the virtue of simplicity but does not account for the three-dimensional attributes of a tree crown, the multivariate nature of the crown variables, or variability among species. To alleviate...

  14. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    PubMed

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  15. Effect of Contact Damage on the Strength of Ceramic Materials.

    DTIC Science & Technology

    1982-10-01

    variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F

  16. A financial network perspective of financial institutions' systemic risk contributions

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan

    2016-08-01

    This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.

  17. Comprehensive Chemical Fingerprinting of High-Quality Cocoa at Early Stages of Processing: Effectiveness of Combined Untargeted and Targeted Approaches for Classification and Discrimination.

    PubMed

    Magagna, Federico; Guglielmetti, Alessandro; Liberto, Erica; Reichenbach, Stephen E; Allegrucci, Elena; Gobino, Guido; Bicchi, Carlo; Cordero, Chiara

    2017-08-02

    This study investigates chemical information of volatile fractions of high-quality cocoa (Theobroma cacao L. Malvaceae) from different origins (Mexico, Ecuador, Venezuela, Columbia, Java, Trinidad, and Sao Tomè) produced for fine chocolate. This study explores the evolution of the entire pattern of volatiles in relation to cocoa processing (raw, roasted, steamed, and ground beans). Advanced chemical fingerprinting (e.g., combined untargeted and targeted fingerprinting) with comprehensive two-dimensional gas chromatography coupled with mass spectrometry allows advanced pattern recognition for classification, discrimination, and sensory-quality characterization. The entire data set is analyzed for 595 reliable two-dimensional peak regions, including 130 known analytes and 13 potent odorants. Multivariate analysis with unsupervised exploration (principal component analysis) and simple supervised discrimination methods (Fisher ratios and linear regression trees) reveal informative patterns of similarities and differences and identify characteristic compounds related to sample origin and manufacturing step.

  18. Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees

    PubMed Central

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L. Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R2 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R2 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R2 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R2 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method. PMID:23112620

  19. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  20. IND - THE IND DECISION TREE PACKAGE

    NASA Technical Reports Server (NTRS)

    Buntine, W.

    1994-01-01

    A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The generation routines are used to build classifiers. The test routines are used to evaluate classifiers and to classify data using a classifier. And the display routines are used to display classifiers in various formats. IND is written in C-language for Sun4 series computers. It consists of several programs with controlling shell scripts. Extensive UNIX man entries are included. IND is designed to be used on any UNIX system, although it has only been thoroughly tested on SUN platforms. The standard distribution medium for IND is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in PostScript format is included on the distribution medium. IND was developed in 1992.

  1. Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis

    ERIC Educational Resources Information Center

    Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John

    2012-01-01

    Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…

  2. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  3. Variable Selection in Logistic Regression.

    DTIC Science & Technology

    1987-06-01

    23 %. AUTIOR(.) S. CONTRACT OR GRANT NUMBE Rf.i %Z. D. Bai, P. R. Krishnaiah and . C. Zhao F49620-85- C-0008 " PERFORMING ORGANIZATION NAME AND AOORESS...d I7 IOK-TK- d 7 -I0 7’ VARIABLE SELECTION IN LOGISTIC REGRESSION Z. D. Bai, P. R. Krishnaiah and L. C. Zhao Center for Multivariate Analysis...University of Pittsburgh Center for Multivariate Analysis University of Pittsburgh Y !I VARIABLE SELECTION IN LOGISTIC REGRESSION Z- 0. Bai, P. R. Krishnaiah

  4. Distribution of cavity trees in midwestern old-growth and second-growth forests

    Treesearch

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen

    2003-01-01

    We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...

  5. Distribution of cavity trees in midwesternold-growth and second-growth forests

    Treesearch

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R., III Thompson; David R. Larsen

    2003-01-01

    We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...

  6. A hierarchical linear model for tree height prediction.

    Treesearch

    Vicente J. Monleon

    2003-01-01

    Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data...

  7. Modeling individual tree survial

    Treesearch

    Quang V. Cao

    2016-01-01

    Information provided by growth and yield models is the basis for forest managers to make decisions on how to manage their forests. Among different types of growth models, whole-stand models offer predictions at stand level, whereas individual-tree models give detailed information at tree level. The well-known logistic regression is commonly used to predict tree...

  8. Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.

    PubMed

    Levine, Matthew E; Albers, David J; Hripcsak, George

    2016-01-01

    Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.

  9. Effect of environmental molds on risk of death from asthma during the pollen season.

    PubMed

    Targonski, P V; Persky, V W; Ramekrishnan, V

    1995-05-01

    Many studies have noted an association of ambient aeroallergen levels with exacerbation of asthma. This study was undertaken to examine the relationship of aeroallergen levels with asthma-related mortality in Chicago. The association of environmental aeroallergen levels with death caused by asthma among 5- to 34-year-olds in Chicago was examined for the period of 1985 through 1989. Logistic regression analysis was used to compare the probability of a death caused by asthma occurring on the basis of environmental tree, grass, or ragweed pollen and mold spore levels. Mean mold spore levels but not tree, grass, or ragweed pollen levels were significantly higher for days on which asthma-related death occurred than for days on which no deaths occurred (z = 2.80, p < 0.005). The odds of a death caused by asthma occurring on days with mold spore counts of 1000 spores per cubic meter or greater was 2.16 times higher (95% confidence interval = 1.31, 3.56, p = 0.003) than on days on which mold spore counts were less than 1000 spores per cubic meter. The association with mold spore levels remained significant on multivariate logistic regression with mold spore counts measured as a continuous variable and controlling for pollens, with the odds of an asthma-related death occurring being 1.2 times higher (95% confidence interval = 1.07-1.34) for every increase of 1000 spores per cubic meter in daily mold spore levels. Although death caused by asthma also involves personal, social, and medical access factors, these data suggest that exposure to environmental molds may play a role in asthma-related mortality and should be considered in prevention strategies.

  10. Non-English speakers attend gastroenterology clinic appointments at higher rates than English speakers in a vulnerable patient population

    PubMed Central

    Sewell, Justin L.; Kushel, Margot B.; Inadomi, John M.; Yee, Hal F.

    2009-01-01

    Goals We sought to identify factors associated with gastroenterology clinic attendance in an urban safety net healthcare system. Background Missed clinic appointments reduce the efficiency and availability of healthcare, but subspecialty clinic attendance among patients with established healthcare access has not been studied. Study We performed an observational study using secondary data from administrative sources to study patients referred to, and scheduled for an appointment in, the adult gastroenterology clinic serving the safety net healthcare system of San Francisco, California. Our dependent variable was whether subjects attended or missed a scheduled appointment. Analysis included multivariable logistic regression and classification tree analysis. 1,833 patients were referred and scheduled for an appointment between 05/2005 and 08/2006. Prisoners were excluded. All patients had a primary care provider. Results 683 patients (37.3%) missed their appointment; 1,150 (62.7%) attended. Language was highly associated with attendance in the logistic regression; non-English speakers were less likely than English speakers to miss an appointment (adjusted odds ratio 0.42 [0.28,0.63] for Spanish, 0.56 [0.38,0.82] for Asian language, p < 0.001). Other factors were also associated with attendance, but classification tree analysis identified language to be the most highly associated variable. Conclusions In an urban safety net healthcare population, among patients with established healthcare access and a scheduled gastroenterology clinic appointment, not speaking English was most strongly associated with higher attendance rates. Patient related factors associated with not speaking English likely influence subspecialty clinic attendance rates, and these factors may differ from those affecting general healthcare access. PMID:19169147

  11. Landslide susceptibility mapping using decision-tree based CHi-squared automatic interaction detection (CHAID) and Logistic regression (LR) integration

    NASA Astrophysics Data System (ADS)

    Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin

    2014-06-01

    This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.

  12. Log and tree sawing times for hardwood mills

    Treesearch

    Everette D. Rast

    1974-01-01

    Data on 6,850 logs and 1,181 trees were analyzed to predict sawing times. For both logs and trees, regression equations were derived that express (in minutes) sawing time per log or tree and per Mbf. For trees, merchantable height is expressed in number of logs as well as in feet. One of the major uses for the tables of average sawing times is as a bench mark against...

  13. Logistic regression trees for initial selection of interesting loci in case-control studies

    PubMed Central

    Nickolov, Radoslav Z; Milanov, Valentin B

    2007-01-01

    Modern genetic epidemiology faces the challenge of dealing with hundreds of thousands of genetic markers. The selection of a small initial subset of interesting markers for further investigation can greatly facilitate genetic studies. In this contribution we suggest the use of a logistic regression tree algorithm known as logistic tree with unbiased selection. Using the simulated data provided for Genetic Analysis Workshop 15, we show how this algorithm, with incorporation of multifactor dimensionality reduction method, can reduce an initial large pool of markers to a small set that includes the interesting markers with high probability. PMID:18466557

  14. Improving multivariate Horner schemes with Monte Carlo tree search

    NASA Astrophysics Data System (ADS)

    Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.

    2013-11-01

    Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.

  15. Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral data

    Treesearch

    Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; Michael K. Falkowski; Alistair M. S. Smith; Paul E. Gessler; Penelope Morgan

    2006-01-01

    We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables derived...

  16. Assessing College Student Interest in Math and/or Computer Science in a Cross-National Sample Using Classification and Regression Trees

    ERIC Educational Resources Information Center

    Kitsantas, Anastasia; Kitsantas, Panagiota; Kitsantas, Thomas

    2012-01-01

    The purpose of this exploratory study was to assess the relative importance of a number of variables in predicting students' interest in math and/or computer science. Classification and regression trees (CART) were employed in the analysis of survey data collected from 276 college students enrolled in two U.S. and Greek universities. The results…

  17. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  18. Developing screening services for colorectal cancer on Android smartphones.

    PubMed

    Wu, Hui-Ching; Chang, Chiao-Jung; Lin, Chun-Che; Tsai, Ming-Chang; Chang, Che-Chia; Tseng, Ming-Hseng

    2014-08-01

    Colorectal cancer (CRC) is an important health problem in Western countries and also in Asia. It is the third leading cause of cancer deaths in both men and women in Taiwan. According to the well-known adenoma-to-carcinoma sequence, the majority of CRC develops from colorectal adenomatous polyps. This concept provides the rationale for screening and prevention of CRC. Removal of colorectal adenoma could reduce the mortality and incidence of CRC. Mobile phones are now playing an ever more crucial role in people's daily lives. The latest generation of smartphones is increasingly viewed as hand-held computers rather than as phones, because of their powerful on-board computing capability, capacious memories, large screens, and open operating systems that encourage development of applications (apps). If we can detect the potential CRC patients early and offer them appropriate treatments and services, this would not only promote the quality of life, but also reduce the possible serious complications and medical costs. In this study, an intelligent CRC screening app on Android™ (Google™, Mountain View, CA) smartphones has been developed based on a data mining approach using decision tree algorithms. For comparison, the stepwise backward multivariate logistic regression model and the fecal occult blood test were also used. Compared with the stepwise backward multivariate logistic regression model and the fecal occult blood test, the proposed app system not only provides an easy and efficient way to quickly detect high-risk groups of potential CRC patients, but also brings more information about CRC to customer-oriented services. We developed and implemented an app system on Android platforms for ubiquitous healthcare services for CRC screening. It can assist people in achieving early screening, diagnosis, and treatment purposes, prevent the occurrence of complications, and thus reach the goal of preventive medicine.

  19. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  20. SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation.

    PubMed

    Bayar, Belhassen; Bouaynaya, Nidhal; Shterenberg, Roman

    2017-03-01

    We consider a high-dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. The system is underdetermined as there are more parameters than samples. We show that the maximum likelihood approach with covariance estimation is senseless because the likelihood diverges. We subsequently propose a normalization of the likelihood function that guarantees convergence. We call this method small-sample multivariate regression with covariance (SMURC) estimation. We derive an optimization problem and its convex approximation to compute SMURC. Simulation results show that the proposed algorithm outperforms the regularized likelihood estimator with known covariance matrix and the sparse conditional Gaussian graphical model. We also apply SMURC to the inference of the wing-muscle gene network of the Drosophila melanogaster (fruit fly).

  1. Identification of extremely premature infants at high risk of rehospitalization.

    PubMed

    Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Yao, Qing; Das, Abhik; Higgins, Rosemary D

    2011-11-01

    Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002-2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%-42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge.

  2. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge. PMID:22007016

  3. Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal

    PubMed Central

    Yan, Xuedong; Zhang, Fan; Zeng, Chen; Zhang, Man; Devkota, Lochan Prasad; Yao, Tandong

    2012-01-01

    Transportation activities can contribute to accumulation of heavy metals in roadside soil and grass, which could potentially compromise public health and the environment if the roadways cross farmland areas. Particularly, heavy metals may enter the food chain as a result of their uptake by roadside edible grasses. This research was conducted to investigate heavy metal (Cu, Zn, Cd, and Pb) concentrations in roadside farmland soils and corresponding grasses around Kathmandu, Nepal. Four factors were considered for the experimental design, including sample type, sampling location, roadside distance, and tree protection. A total of 60 grass samples and 60 topsoil samples were collected under dry weather conditions. The Multivariate Analysis of Variance (MANOVA) results indicate that the concentrations of Cu, Zn, and Pb in the soil samples are significantly higher than those in the grass samples; the concentrations of Cu and Pb in the suburban roadside farmland are higher than those in the rural mountainous roadside farmland; and the concentrations of Cu and Zn at the sampling locations with roadside trees are significantly lower than those without tree protection. The analysis of transfer factor, which is calculated as the ratio of heavy-metal concentrations in grass to those in the corresponding soil, indicates that the uptake capabilities of heavy metals from soil to grass is in the order of Zn > Cu > Pb. Additionally, it is found that as the soils’ heavy-metal concentrations increase, the capability of heavy-metal transfer to the grass decreases, and this relationship can be characterized by an exponential regression model. PMID:23202679

  4. Modeling Tree Mortality Following Wildfire in Pinus ponderosa Forests in the Central Sierra Nevada of California

    Treesearch

    Jon C. Regelbrugge

    1993-01-01

    Abstract. We modeled tree mortality occurring two years following wildfire in Pinus ponderosa forests using data from 1275 trees in 25 stands burned during the 1987 Stanislaus Complex fires. We used logistic regression analysis to develop models relating the probability of wildfire-induced mortality with tree size and fire severity for Pinus ponderosa, Calocedrus...

  5. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  6. [Application of regression tree in analyzing the effects of climate factors on NDVI in loess hilly area of Shaanxi Province].

    PubMed

    Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding

    2010-05-01

    Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.

  7. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad-scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.

  8. Ensemble of trees approaches to risk adjustment for evaluating a hospital's performance.

    PubMed

    Liu, Yang; Traskin, Mikhail; Lorch, Scott A; George, Edward I; Small, Dylan

    2015-03-01

    A commonly used method for evaluating a hospital's performance on an outcome is to compare the hospital's observed outcome rate to the hospital's expected outcome rate given its patient (case) mix and service. The process of calculating the hospital's expected outcome rate given its patient mix and service is called risk adjustment (Iezzoni 1997). Risk adjustment is critical for accurately evaluating and comparing hospitals' performances since we would not want to unfairly penalize a hospital just because it treats sicker patients. The key to risk adjustment is accurately estimating the probability of an Outcome given patient characteristics. For cases with binary outcomes, the method that is commonly used in risk adjustment is logistic regression. In this paper, we consider ensemble of trees methods as alternatives for risk adjustment, including random forests and Bayesian additive regression trees (BART). Both random forests and BART are modern machine learning methods that have been shown recently to have excellent performance for prediction of outcomes in many settings. We apply these methods to carry out risk adjustment for the performance of neonatal intensive care units (NICU). We show that these ensemble of trees methods outperform logistic regression in predicting mortality among babies treated in NICU, and provide a superior method of risk adjustment compared to logistic regression.

  9. Usefulness of Beta2-Microglobulin as a Predictor of All-Cause and Nonculprit Lesion-Related Cardiovascular Events in Acute Coronary Syndromes (from the PROSPECT Study).

    PubMed

    Möckel, Martin; Muller, Reinhold; Searle, Julia; Slagman, Anna; De Bruyne, Bernard; Serruys, Patrick; Weisz, Giora; Xu, Ke; Holert, Fabian; Müller, Christian; Maehara, Akiko; Stone, Gregg W

    2015-10-01

    In the Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT) study, plaque burden, plaque composition, and minimal luminal area were associated with an increased risk of adverse cardiovascular events arising from untreated atherosclerotic lesions (vulnerable plaques) in patients with acute coronary syndromes (ACS). We sought to evaluate the utility of biomarker profiling and clinical risk factors to predict 3-year all-cause and nonculprit lesion-related major adverse cardiac events (MACEs). Of 697 patients who underwent successful percutaneous coronary intervention (PCI) for ACS, an array of 28 baseline biomarkers was analyzed. Median follow-up was 3.4 years. Beta2-microglobulin displayed the strongest predictive power of all variables assessed for all-cause and nonculprit lesion-related MACE. In a classification and regression tree analysis, patients with beta2-microglobulin >1.92 mg/L had an estimated 28.7% 3-year incidence of all-cause MACE; C-peptide <1.32 ng/ml was associated with a further increase in MACE to 51.2%. In a classification and regression tree analysis for untreated nonculprit lesion-related MACE, beta2-microglobulin >1.92 mg/L identified a cohort with a 3-year rate of 18.5%, and C-peptide <2.22 ng/ml was associated with a further increase to 25.5%. By multivariable analysis, beta2-microglobulin was the strongest predictor of all-cause and nonculprit MACE during follow-up. High-density lipoprotein (HDL), transferrin, and history of angina pectoris were also independent predictors of all-cause MACE, and HDL was an independent predictor of nonculprit MACE. In conclusion, in the PROSPECT study, beta2-microglobulin strongly predicted all-cause and nonculprit lesion-related MACE within 3 years after PCI in ACS. C-peptide and HDL provided further risk stratification to identify angiographically mild nonculprit lesions prone to future MACE. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    PubMed Central

    Cabugao, Kristine G.; Timm, Collin M.; Carrell, Alyssa A.; Childs, Joanne; Lu, Tse-Yuan S.; Pelletier, Dale A.; Weston, David J.; Norby, Richard J.

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability (p-value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial community composition was chiefly influenced by P availability. Although the sample size is limited given the tremendous diversity of tropical forests, our study indicates the importance of roots and bacterial function to understanding phosphatase activity. Future work will broaden the diversity of tree species and microbial members sampled to provide insight into P mineralization and model representation of tropical forests. PMID:29163572

  11. Multivariate regression model for predicting lumber grade volumes of northern red oak sawlogs

    Treesearch

    Daniel A. Yaussy; Robert L. Brisbin

    1983-01-01

    A multivariate regression model was developed to predict green board-foot yields for the seven common factory lumber grades processed from northern red oak (Quercus rubra L.) factory grade logs. The model uses the standard log measurements of grade, scaling diameter, length, and percent defect. It was validated with an independent data set. The model...

  12. Predictive and mechanistic multivariate linear regression models for reaction development

    PubMed Central

    Santiago, Celine B.; Guo, Jing-Yao

    2018-01-01

    Multivariate Linear Regression (MLR) models utilizing computationally-derived and empirically-derived physical organic molecular descriptors are described in this review. Several reports demonstrating the effectiveness of this methodological approach towards reaction optimization and mechanistic interrogation are discussed. A detailed protocol to access quantitative and predictive MLR models is provided as a guide for model development and parameter analysis. PMID:29719711

  13. Multivariate regression model for predicting yields of grade lumber from yellow birch sawlogs

    Treesearch

    Andrew F. Howard; Daniel A. Yaussy

    1986-01-01

    A multivariate regression model was developed to predict green board-foot yields for the common grades of factory lumber processed from yellow birch factory-grade logs. The model incorporates the standard log measurements of scaling diameter, length, proportion of scalable defects, and the assigned USDA Forest Service log grade. Differences in yields between band and...

  14. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  15. Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water

    USDA-ARS?s Scientific Manuscript database

    Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant cha...

  16. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  17. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    PubMed Central

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  18. Modeling Caribbean tree stem diameters from tree height and crown width measurements

    Treesearch

    Thomas Brandeis; KaDonna Randolph; Mike Strub

    2009-01-01

    Regression models to predict diameter at breast height (DBH) as a function of tree height and maximum crown radius were developed for Caribbean forests based on data collected by the U.S. Forest Service in the Commonwealth of Puerto Rico and Territory of the U.S. Virgin Islands. The model predicting DBH from tree height fit reasonably well (R2 = 0.7110), with...

  19. Perceived Organizational Support for Enhancing Welfare at Work: A Regression Tree Model

    PubMed Central

    Giorgi, Gabriele; Dubin, David; Perez, Javier Fiz

    2016-01-01

    When trying to examine outcomes such as welfare and well-being, research tends to focus on main effects and take into account limited numbers of variables at a time. There are a number of techniques that may help address this problem. For example, many statistical packages available in R provide easy-to-use methods of modeling complicated analysis such as classification and tree regression (i.e., recursive partitioning). The present research illustrates the value of recursive partitioning in the prediction of perceived organizational support in a sample of more than 6000 Italian bankers. Utilizing the tree function party package in R, we estimated a regression tree model predicting perceived organizational support from a multitude of job characteristics including job demand, lack of job control, lack of supervisor support, training, etc. The resulting model appears particularly helpful in pointing out several interactions in the prediction of perceived organizational support. In particular, training is the dominant factor. Another dimension that seems to influence organizational support is reporting (perceived communication about safety and stress concerns). Results are discussed from a theoretical and methodological point of view. PMID:28082924

  20. Prediction of strontium bromide laser efficiency using cluster and decision tree analysis

    NASA Astrophysics Data System (ADS)

    Iliev, Iliycho; Gocheva-Ilieva, Snezhana; Kulin, Chavdar

    2018-01-01

    Subject of investigation is a new high-powered strontium bromide (SrBr2) vapor laser emitting in multiline region of wavelengths. The laser is an alternative to the atom strontium lasers and electron free lasers, especially at the line 6.45 μm which line is used in surgery for medical processing of biological tissues and bones with minimal damage. In this paper the experimental data from measurements of operational and output characteristics of the laser are statistically processed by means of cluster analysis and tree-based regression techniques. The aim is to extract the more important relationships and dependences from the available data which influence the increase of the overall laser efficiency. There are constructed and analyzed a set of cluster models. It is shown by using different cluster methods that the seven investigated operational characteristics (laser tube diameter, length, supplied electrical power, and others) and laser efficiency are combined in 2 clusters. By the built regression tree models using Classification and Regression Trees (CART) technique there are obtained dependences to predict the values of efficiency, and especially the maximum efficiency with over 95% accuracy.

  1. Digression and Value Concatenation to Enable Privacy-Preserving Regression.

    PubMed

    Li, Xiao-Bai; Sarkar, Sumit

    2014-09-01

    Regression techniques can be used not only for legitimate data analysis, but also to infer private information about individuals. In this paper, we demonstrate that regression trees, a popular data-analysis and data-mining technique, can be used to effectively reveal individuals' sensitive data. This problem, which we call a "regression attack," has not been addressed in the data privacy literature, and existing privacy-preserving techniques are not appropriate in coping with this problem. We propose a new approach to counter regression attacks. To protect against privacy disclosure, our approach introduces a novel measure, called digression , which assesses the sensitive value disclosure risk in the process of building a regression tree model. Specifically, we develop an algorithm that uses the measure for pruning the tree to limit disclosure of sensitive data. We also propose a dynamic value-concatenation method for anonymizing data, which better preserves data utility than a user-defined generalization scheme commonly used in existing approaches. Our approach can be used for anonymizing both numeric and categorical data. An experimental study is conducted using real-world financial, economic and healthcare data. The results of the experiments demonstrate that the proposed approach is very effective in protecting data privacy while preserving data quality for research and analysis.

  2. Multivariate control of plant species richness and community biomass in blackland prairie

    USGS Publications Warehouse

    Weiher, E.; Forbes, S.; Schauwecker, T.; Grace, J.B.

    2004-01-01

    Recent studies have shown that patterns of plant species richness and community biomass are best understood in a multivariate context. The objective of this study was to develop and evaluate a multivariate hypothesis about how herbaceous biomass and richness relate to gradients in soil conditions and woody plant cover in blackland prairies. Structural equation modeling was used to investigate how soil characteristics and shade by scattered Juniperus virginiana trees relate to standing biomass and species richness in 99 0.25 m2 quadrats collected in eastern Mississippi, USA. Analysis proceeded in two stages. In the first stage, we evaluated the hypothesis that correlations among soil parameters could be represented by two underlying (latent) soil factors, mineral content and organic content. In the second stage, we evaluated the hypothesis that richness and biomass were related to (1) soil properties, (2) tree canopy extent, and (3) each other (i.e. reciprocal effects between richness and biomass). With some modification to the details of the original model, it was found that soil properties could be represented as two latent variables. In the overall model, 51% and 53% of the observed variation in richness and biomass were explained. The order of importance for variables explaining variations in richness was (1) soil organic content, (2) soil mineral content, (3) community biomass, and (4) tree canopy extent. The order of importance for variables explaining biomass was (1) tree canopy and (2) soil organic content, with neither soil mineral content nor species richness explaining significant variation in biomass. Based on these findings, we conclude that variations in richness are uniquely related to both variations in soil conditions and variations in herbaceous biomass. We further conclude that there is no evidence in these data for effects of species richness on biomass.

  3. Regression Models For Multivariate Count Data

    PubMed Central

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2016-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data. PMID:28348500

  4. Regression Models For Multivariate Count Data.

    PubMed

    Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei

    2017-01-01

    Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlotnikov, Michael

    We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less

  6. Decision trees in epidemiological research.

    PubMed

    Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone

    2017-01-01

    In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  7. Indicators of Terrorism Vulnerability in Africa

    DTIC Science & Technology

    2015-03-26

    the terror threat and vulnerabilities across Africa. Key words: Terrorism, Africa, Negative Binomial Regression, Classification Tree iv I would like...31 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Log -likelihood...70 viii Page 5.3 Classification Tree Description

  8. The effect of different distance measures in detecting outliers using clustering-based algorithm for circular regression model

    NASA Astrophysics Data System (ADS)

    Di, Nur Faraidah Muhammad; Satari, Siti Zanariah

    2017-05-01

    Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.

  9. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    PubMed

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based neural network IAQ models outperformed the traditional ANN methods of the back-propagation and the radial basis function networks. The novelty of this research is the development of a novel approach to modeling vehicular indoor air quality by integration of the advanced methods of genetic algorithms, regression trees, and the analysis of variance for the monitored in-vehicle gaseous and particulate matter contaminants, and comparing the results obtained from using the developed approach with conventional artificial intelligence techniques of back propagation networks and radial basis function networks. This study validated the newly developed approach using holdout and threefold cross-validation methods. These results are of great interest to scientists, researchers, and the public in understanding the various aspects of modeling an indoor microenvironment. This methodology can easily be extended to other fields of study also.

  10. Developing Models to Forcast Sales of Natural Christmas Trees

    Treesearch

    Lawrence D. Garrett; Thomas H. Pendleton

    1977-01-01

    A study of practices for marketing Christmas trees in Winston-Salem, North Carolina, and Denver, Colorado, revealed that such factors as retail lot competition, tree price, consumer traffic, and consumer income were very important in determining a particular retailer's sales. Analyses of 4 years of market data were used in developing regression models for...

  11. Comprehensive database of diameter-based biomass regressions for North American tree species

    Treesearch

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2004-01-01

    A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation,...

  12. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach

    Treesearch

    Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo

    2009-01-01

    We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...

  13. Analysis of occlusal variables, dental attrition, and age for distinguishing healthy controls from female patients with intracapsular temporomandibular disorders.

    PubMed

    Seligman, D A; Pullinger, A G

    2000-01-01

    Confusion about the relationship of occlusion to temporomandibular disorders (TMD) persists. This study attempted to identify occlusal and attrition factors plus age that would characterize asymptomatic normal female subjects. A total of 124 female patients with intracapsular TMD were compared with 47 asymptomatic female controls for associations to 9 occlusal factors, 3 attrition severity measures, and age using classification tree, multiple stepwise logistic regression, and univariate analyses. Models were tested for accuracy (sensitivity and specificity) and total contribution to the variance. The classification tree model had 4 terminal nodes that used only anterior attrition and age. "Normals" were mainly characterized by low attrition levels, whereas patients had higher attrition and tended to be younger. The tree model was only moderately useful (sensitivity 63%, specificity 94%) in predicting normals. The logistic regression model incorporated unilateral posterior crossbite and mediotrusive attrition severity in addition to the 2 factors in the tree, but was slightly less accurate than the tree (sensitivity 51%, specificity 90%). When only occlusal factors were considered in the analysis, normals were additionally characterized by a lack of anterior open bite, smaller overjet, and smaller RCP-ICP slides. The log likelihood accounted for was similar for both the tree (pseudo R(2) = 29.38%; mean deviance = 0.95) and the multiple logistic regression (Cox Snell R(2) = 30.3%, mean deviance = 0.84) models. The occlusal and attrition factors studied were only moderately useful in differentiating normals from TMD patients.

  14. Towards lidar-based mapping of tree age at the Arctic forest tundra ecotone.

    NASA Astrophysics Data System (ADS)

    Jensen, J.; Maguire, A.; Oelkers, R.; Andreu-Hayles, L.; Boelman, N.; D'Arrigo, R.; Griffin, K. L.; Jennewein, J. S.; Hiers, E.; Meddens, A. J.; Russell, M.; Vierling, L. A.; Eitel, J.

    2017-12-01

    Climate change may cause spatial shifts in the forest-tundra ecotone (FTE). To improve our ability to study these spatial shifts, information on tree demography along the FTE is needed. The objective of this study was to assess the suitability of lidar derived tree heights as a surrogate for tree age. We calculated individual tree age from 48 tree cores collected at basal height from white spruce (Picea glauca) within the FTE in northern Alaska. Tree height was obtained from terrestrial lidar scans (<1cm spatial resolution). The relationship between age and height was examined using a linear regression model forced through the origin. We found a very strong predictive relationship between tree height and age (R2 = 0.90, RMSE = 19.34 years) for trees that ranged between 14 to 230 years. Separate regression models were also developed for small (height < 3 m) and large trees (height >= 3 m), yielding strong predictive relationships between height and age (R2 = 0.86, RMSE 12.21 years, and R2 = 0.93, RMSE = 25.16 years, respectively). The slope coefficient for small and large tree models (16.83 and 12.98 years/m, respectively) indicate that small trees grow 1.3 times faster than large trees at these FTE study sites. Although a strong, predictive relationship between age and height is uncommon in light-limited forest environments, our findings suggest that the sparseness of trees within the FTE may explain the strong tree height-age relationships found herein. Further analysis of 36 additional tree cores recently collected within the FTE near Inuvik, Canada will be performed. Our preliminary analysis suggests that lidar derived tree height could be a reliable proxy for tree age at the FTE, thereby establishing a new technique for scaling tree structure and demographics across larger portions of this sensitive ecotone.

  15. Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation

    PubMed Central

    Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman

    2011-01-01

    This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626

  16. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  17. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon.

    PubMed

    Rifai, Sami W; Urquiza Muñoz, José D; Negrón-Juárez, Robinson I; Ramírez Arévalo, Fredy R; Tello-Espinoza, Rodil; Vanderwel, Mark C; Lichstein, Jeremy W; Chambers, Jeffrey Q; Bohlman, Stephanie A

    2016-10-01

    Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality between adult trees from a 300-ha blowdown event in the Peruvian region of the northwestern Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how incorporating both differential mortality and spatial dependence affect the landscape level estimation of necromass produced from the blowdown. Standard regression and spatial regression models were used to estimate how stem diameter, wood density, elevation, and a satellite-derived disturbance metric influenced the probability of tree death from the blowdown event. The model parameters regarding tree characteristics, topography, and spatial autocorrelation of the field data were then used to determine the consequences of non-random mortality for landscape production of necromass through a simulation model. Tree mortality was highly non-random within the blowdown, where tree mortality rates were highest for trees that were large, had low wood density, and were located at high elevation. Of the differential mortality models, the non-spatial models overpredicted necromass, whereas the spatial model slightly underpredicted necromass. When parameterized from the same field data, the spatial regression model with differential mortality estimated only 7.5% more dead trees across the entire blowdown than the random mortality model, yet it estimated 51% greater necromass. We suggest that predictions of forest carbon loss from wind disturbance are sensitive to not only the underlying spatial dependence of observations, but also the biological differences between individuals that promote differential levels of mortality. © 2016 by the Ecological Society of America.

  18. Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA

    PubMed Central

    O’Connor, Christopher D.; Lynch, Ann M.

    2016-01-01

    A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST. PMID:27391084

  19. Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA.

    PubMed

    Swetnam, Tyson L; O'Connor, Christopher D; Lynch, Ann M

    2016-01-01

    A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST.

  20. Using Boosting Decision Trees in Gravitational Wave Searches triggered by Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Zuraw, Sarah; LIGO Collaboration

    2015-04-01

    The search for gravitational wave bursts requires the ability to distinguish weak signals from background detector noise. Gravitational wave bursts are characterized by their transient nature, making them particularly difficult to detect as they are similar to non-Gaussian noise fluctuations in the detector. The Boosted Decision Tree method is a powerful machine learning algorithm which uses Multivariate Analysis techniques to explore high-dimensional data sets in order to distinguish between gravitational wave signal and background detector noise. It does so by training with known noise events and simulated gravitational wave events. The method is tested using waveform models and compared with the performance of the standard gravitational wave burst search pipeline for Gamma-ray Bursts. It is shown that the method is able to effectively distinguish between signal and background events under a variety of conditions and over multiple Gamma-ray Burst events. This example demonstrates the usefulness and robustness of the Boosted Decision Tree and Multivariate Analysis techniques as a detection method for gravitational wave bursts. LIGO, UMass, PREP, NEGAP.

  1. Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data

    PubMed Central

    Xiong, Lie; Kuan, Pei-Fen; Tian, Jianan; Keles, Sunduz; Wang, Sijian

    2015-01-01

    In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of high-dimensional genomic data. Particularly, we are interested in two applications: studying the influence of DNA copy number alterations on RNA transcript levels and investigating the association between DNA methylation and gene expression. For this purpose, we model the dependence of the RNA expression levels on DNA copy number alterations and the dependence of gene expression on DNA methylation through multivariate regression models and utilize boosting-type method to handle the high dimensionality as well as model the possible nonlinear associations. The performance of the proposed method is demonstrated through simulation studies. Finally, our multivariate boosting method is applied to two breast cancer studies. PMID:26609213

  2. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini

    2018-03-01

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

  3. Detecting the impact of bank and channel modification on invertebrate communities in Mediterranean temporary streams (Sardinia, SW Italy).

    PubMed

    Buffagni, Andrea; Tenchini, Roberta; Cazzola, Marcello; Erba, Stefania; Balestrini, Raffaella; Belfiore, Carlo; Pagnotta, Romano

    2016-09-15

    We hypothesized that reach-scale, bank and channel modification would impact benthic communities in temporary rivers of Sardinia, when pollution and water abstraction are not relevant. A range of variables were considered, which include both artificial structures/alterations and natural features observed in a stream reach. Multivariate regression trees (MRT) were used to assess the effects of the explanatory variables on invertebrate assemblages and five groups, characterized by different habitat modification and/or features, were recognized. Four node variables determined the splits in the MRT analysis: channel reinforcement, tree-related bank and channel habitats, channel modification and bank modification. Continuity of trees in the river corridor diverged among MRT groups and significant differences among groups include presence of alders, extent of channel shading and substrate diversity. Also, the percentage of in-stream organic substrates, in particular CPOM/Xylal, showed highly significant differences among groups. For practical applications, thresholds for the extent of channel reinforcement (40%) and modification (10%) and for bank alteration (≈30%) were provided, that can be used to guide the implementation of restoration measures. In moderately altered river reaches, a significant extent of tree-related habitats (≈5%) can noticeably mitigate the effects of morphological alteration on aquatic invertebrates. The outcomes highlight the importance of riparian zone management as an opportune, achievable prospect in the restoration of Mediterranean temporary streams. The impact of bank and channel modification on ecological status (sensu WFD) was investigated and the tested benthic metrics, especially those based on abundance data, showed legible differences among MRT groups. Finally, bank and channel modification appears to be a potential threat for the conservation of a few Sardo-Corsican endemic species. The introduction of management criteria that openly use information on endemic species seems crucial to reduce the risk of improving overall ecological status while depleting biodiversity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    PubMed

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  5. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    PubMed Central

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  6. Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Talbert, Marian; Morisette, Jeffrey T.; Aldridge, Cameron L.; Brown, Cynthia; Kumar, Sunil; Manier, Daniel; Talbert, Colin; Holcombe, Tracy R.

    2017-01-01

    Evaluating the conditions where a species can persist is an important question in ecology both to understand tolerances of organisms and to predict distributions across landscapes. Presence data combined with background or pseudo-absence locations are commonly used with species distribution modeling to develop these relationships. However, there is not a standard method to generate background or pseudo-absence locations, and method choice affects model outcomes. We evaluated combinations of both model algorithms (simple and complex generalized linear models, multivariate adaptive regression splines, Maxent, boosted regression trees, and random forest) and background methods (random, minimum convex polygon, and continuous and binary kernel density estimator (KDE)) to assess the sensitivity of model outcomes to choices made. We evaluated six questions related to model results, including five beyond the common comparison of model accuracy assessment metrics (biological interpretability of response curves, cross-validation robustness, independent data accuracy and robustness, and prediction consistency). For our case study with cheatgrass in the western US, random forest was least sensitive to background choice and the binary KDE method was least sensitive to model algorithm choice. While this outcome may not hold for other locations or species, the methods we used can be implemented to help determine appropriate methodologies for particular research questions.

  7. Multi-analytical Approaches Informing the Risk of Sepsis

    NASA Astrophysics Data System (ADS)

    Gwadry-Sridhar, Femida; Lewden, Benoit; Mequanint, Selam; Bauer, Michael

    Sepsis is a significant cause of mortality and morbidity and is often associated with increased hospital resource utilization, prolonged intensive care unit (ICU) and hospital stay. The economic burden associated with sepsis is huge. With advances in medicine, there are now aggressive goal oriented treatments that can be used to help these patients. If we were able to predict which patients may be at risk for sepsis we could start treatment early and potentially reduce the risk of mortality and morbidity. Analytic methods currently used in clinical research to determine the risk of a patient developing sepsis may be further enhanced by using multi-modal analytic methods that together could be used to provide greater precision. Researchers commonly use univariate and multivariate regressions to develop predictive models. We hypothesized that such models could be enhanced by using multiple analytic methods that together could be used to provide greater insight. In this paper, we analyze data about patients with and without sepsis using a decision tree approach and a cluster analysis approach. A comparison with a regression approach shows strong similarity among variables identified, though not an exact match. We compare the variables identified by the different approaches and draw conclusions about the respective predictive capabilities,while considering their clinical significance.

  8. Unravelling the limits to tree height: a major role for water and nutrient trade-offs.

    PubMed

    Cramer, Michael D

    2012-05-01

    Competition for light has driven forest trees to grow exceedingly tall, but the lack of a single universal limit to tree height indicates multiple interacting environmental limitations. Because soil nutrient availability is determined by both nutrient concentrations and soil water, water and nutrient availabilities may interact in determining realised nutrient availability and consequently tree height. In SW Australia, which is characterised by nutrient impoverished soils that support some of the world's tallest forests, total [P] and water availability were independently correlated with tree height (r = 0.42 and 0.39, respectively). However, interactions between water availability and each of total [P], pH and [Mg] contributed to a multiple linear regression model of tree height (r = 0.72). A boosted regression tree model showed that maximum tree height was correlated with water availability (24%), followed by soil properties including total P (11%), Mg (10%) and total N (9%), amongst others, and that there was an interaction between water availability and total [P] in determining maximum tree height. These interactions indicated a trade-off between water and P availability in determining maximum tree height in SW Australia. This is enabled by a species assemblage capable of growing tall and surviving (some) disturbances. The mechanism for this trade-off is suggested to be through water enabling mass-flow and diffusive mobility of P, particularly of relatively mobile organic P, although water interactions with microbial activity could also play a role.

  9. A way forward for fire-caused tree mortality prediction: Modeling a physiological consequence of fire

    Treesearch

    Kathleen L. Kavanaugh; Matthew B. Dickinson; Anthony S. Bova

    2010-01-01

    Current operational methods for predicting tree mortality from fire injury are regression-based models that only indirectly consider underlying causes and, thus, have limited generality. A better understanding of the physiological consequences of tree heating and injury are needed to develop biophysical process models that can make predictions under changing or novel...

  10. Height-age relationships for regeneration-size trees in the northern Rocky Mountains, USA

    Treesearch

    Dennis E. Ferguson; Clinton E. Carlson

    2010-01-01

    Regression equations were developed to predict heights of 10 conifer species inregenerating stands in central and northern Idaho, western Montana, and eastern Washington. Most sample trees were natural regeneration that became established after conventional harvest and site preparation methods. Heights are predicted as a function of tree age, residual overstory density...

  11. Potential redistribution of tree species habitat under five climate change scenarios in the eastern US

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    2002-01-01

    Global climate change could have profound effects on the Earth's biota, including large redistributions of tree species and forest types. We used DISTRIB, a deterministic regression tree analysis model, to examine environmental drivers related to current forest-species distributions and then model potential suitable habitat under five climate change scenarios...

  12. Nutrient limitation in soils and trees of a treeline ecotone in Rolwaling Himal, Nepal

    NASA Astrophysics Data System (ADS)

    Drollinger, Simon; Müller, Michael; Schickhoff, Udo; Böhner, Jürgen; Scholten, Thomas

    2015-04-01

    At a global scale, tree growth and thus the position of natural alpine treelines is limited by low temperatures. At landscape and local scales, however, the treeline position depends on multiple interactions of influencing factors and mechanisms. The aim of our research is to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors, in a near-natural alpine treeline ecotone of Rolwaling Himal, Nepal. In total 48 plots (20 m x 20 m) were investigated. Three north-facing slopes were separated in four different altitudinal zones with the characteristic vegetation of tree species Rhododendron campanulatum, Abies spectabilis, Betula utilis, Sorbus microphylla and Acer spec. We collected 151 soil horizon samples (Ah, Ae, Bh, Bs), 146 litter layer samples (L), and 146 decomposition layer samples (Of) in 2013, as well as 251 leaves from standing biomass (SB) in 2013 and 2014. All samples were analysed for exchangeable cations or nutrient concentrations of C, N, P, K, Mg, Ca, Mn, Fe and Al. Soil moisture, soil and surface air temperatures were measured by 34 installed sensors. Precipitation and air temperatures were measured by three climate stations. The main pedogenic process is leaching of dissolved organic carbon, aluminium and iron from topsoil to subsoil. Soil types are classified as podzols with generally low nutrient concentrations. Soil acidity is extremely high and humus quality of mineral soils is poor. Our results indicate multilateral interactions and a great spatial variability of essential nutrients within the treeline ecotone. Both, soil nutrients and leave macronutrient concentrations of nitrogen (N), magnesium (Mg), potassium (K) decrease significantly with elevation in the treeline ecotone. Besides, phosphorus (P) foliar concentrations decrease significantly with elevation. Based on regression analyses, low soil temperatures and malnutrition most likely affect tree growth in high altitudes. Thus, we assume a high influence of soil properties and nutrient supply on the position of alpine treeline at a local scale. In addition, a manganese (Mn) excess in foliage of woody species was determined above treeline. With the help of multivariate statistical approaches, potential determining factors of treeline position could be quantified.

  13. Is Heart Rate Variability Better Than Routine Vital Signs for Prehospital Identification of Major Hemorrhage

    DTIC Science & Technology

    2015-01-01

    different PRBC transfusion volumes. We performed multivariate regression analysis using HRV metrics and routine vital signs to test the hypothesis that...study sponsors did not have any role in the study design, data collection, analysis and interpretation of data, report writing, or the decision to...primary outcome was hemorrhagic injury plus different PRBC transfusion volumes. We performed multivariate regression analysis using HRV metrics and

  14. Biomarkers of Host Response Predict Primary End-Point Radiological Pneumonia in Tanzanian Children with Clinical Pneumonia: A Prospective Cohort Study

    PubMed Central

    Erdman, Laura K.; D’Acremont, Valérie; Hayford, Kyla; Kilowoko, Mary; Kyungu, Esther; Hongoa, Philipina; Alamo, Leonor; Streiner, David L.; Genton, Blaise; Kain, Kevin C.

    2015-01-01

    Background Diagnosing pediatric pneumonia is challenging in low-resource settings. The World Health Organization (WHO) has defined primary end-point radiological pneumonia for use in epidemiological and vaccine studies. However, radiography requires expertise and is often inaccessible. We hypothesized that plasma biomarkers of inflammation and endothelial activation may be useful surrogates for end-point pneumonia, and may provide insight into its biological significance. Methods We studied children with WHO-defined clinical pneumonia (n = 155) within a prospective cohort of 1,005 consecutive febrile children presenting to Tanzanian outpatient clinics. Based on x-ray findings, participants were categorized as primary end-point pneumonia (n = 30), other infiltrates (n = 31), or normal chest x-ray (n = 94). Plasma levels of 7 host response biomarkers at presentation were measured by ELISA. Associations between biomarker levels and radiological findings were assessed by Kruskal-Wallis test and multivariable logistic regression. Biomarker ability to predict radiological findings was evaluated using receiver operating characteristic curve analysis and Classification and Regression Tree analysis. Results Compared to children with normal x-ray, children with end-point pneumonia had significantly higher C-reactive protein, procalcitonin and Chitinase 3-like-1, while those with other infiltrates had elevated procalcitonin and von Willebrand Factor and decreased soluble Tie-2 and endoglin. Clinical variables were not predictive of radiological findings. Classification and Regression Tree analysis generated multi-marker models with improved performance over single markers for discriminating between groups. A model based on C-reactive protein and Chitinase 3-like-1 discriminated between end-point pneumonia and non-end-point pneumonia with 93.3% sensitivity (95% confidence interval 76.5–98.8), 80.8% specificity (72.6–87.1), positive likelihood ratio 4.9 (3.4–7.1), negative likelihood ratio 0.083 (0.022–0.32), and misclassification rate 0.20 (standard error 0.038). Conclusions In Tanzanian children with WHO-defined clinical pneumonia, combinations of host biomarkers distinguished between end-point pneumonia, other infiltrates, and normal chest x-ray, whereas clinical variables did not. These findings generate pathophysiological hypotheses and may have potential research and clinical utility. PMID:26366571

  15. Drivers of metacommunity structure diverge for common and rare Amazonian tree species.

    PubMed

    Bispo, Polyanna da Conceição; Balzter, Heiko; Malhi, Yadvinder; Slik, J W Ferry; Dos Santos, João Roberto; Rennó, Camilo Daleles; Espírito-Santo, Fernando D; Aragão, Luiz E O C; Ximenes, Arimatéa C; Bispo, Pitágoras da Conceição

    2017-01-01

    We analysed the flora of 46 forest inventory plots (25 m x 100 m) in old growth forests from the Amazonian region to identify the role of environmental (topographic) and spatial variables (obtained using PCNM, Principal Coordinates of Neighbourhood Matrix analysis) for common and rare species. For the analyses, we used multiple partial regression to partition the specific effects of the topographic and spatial variables on the univariate data (standardised richness, total abundance and total biomass) and partial RDA (Redundancy Analysis) to partition these effects on composition (multivariate data) based on incidence, abundance and biomass. The different attributes (richness, abundance, biomass and composition based on incidence, abundance and biomass) used to study this metacommunity responded differently to environmental and spatial processes. Considering standardised richness, total abundance (univariate) and composition based on biomass, the results for common species differed from those obtained for all species. On the other hand, for total biomass (univariate) and for compositions based on incidence and abundance, there was a correspondence between the data obtained for the total community and for common species. Our data also show that in general, environmental and/or spatial components are important to explain the variability in tree communities for total and common species. However, with the exception of the total abundance, the environmental and spatial variables measured were insufficient to explain the attributes of the communities of rare species. These results indicate that predicting the attributes of rare tree species communities based on environmental and spatial variables is a substantial challenge. As the spatial component was relevant for several community attributes, our results demonstrate the importance of using a metacommunities approach when attempting to understand the main ecological processes underlying the diversity of tropical forest communities.

  16. Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees

    NASA Astrophysics Data System (ADS)

    Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.

    2012-06-01

    In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).

  17. Predicting Diameter at Breast Height from Stump Diameters for Northeastern Tree Species

    Treesearch

    Eric H. Wharton; Eric H. Wharton

    1984-01-01

    Presents equations to predict diameter at breast height from stump diameter measurements for 17 northeastern tree species. Simple linear regression was used to develop the equations. Application of the equations is discussed.

  18. Expressive language development of children exposed to cocaine prenatally: literature review and report of a prospective cohort study.

    PubMed

    Delaney-Black, V; Covington, C; Templin, T; Kershaw, T; Nordstrom-Klee, B; Ager, J; Clark, N; Surendran, A; Martier, S; Sokol, R J

    2000-01-01

    It was hypothesized that prenatal exposure to cocaine and other substances would be related to delayed expressive language development. Speech and language data were available for 458 6-year olds (204 were exposed to cocaine). No significant univariate or multivariate differences by cocaine exposure group were observed. Classification and regression tree modeling was then used to identify language variable composites predictive of cocaine exposure status. Meaningful cut points for two language measures were identified and validated. Children with a type token ratio of less than 0.42 and with fewer than 97 word types were classified into a low language group. Low language children (n = 57) were more likely to be cocaine exposed (63.1%), with cocaine-exposed children 2.4 times more likely to be in the low language group compared with control children after adjustment for covariates. Prenatal cigarette, but not alcohol exposure, was also significantly related to expressive language delays.

  19. Combining logistic regression with classification and regression tree to predict quality of care in a home health nursing data set.

    PubMed

    Guo, Huey-Ming; Shyu, Yea-Ing Lotus; Chang, Her-Kun

    2006-01-01

    In this article, the authors provide an overview of a research method to predict quality of care in home health nursing data set. The results of this study can be visualized through classification an regression tree (CART) graphs. The analysis was more effective, and the results were more informative since the home health nursing dataset was analyzed with a combination of the logistic regression and CART, these two techniques complete each other. And the results more informative that more patients' characters were related to quality of care in home care. The results contributed to home health nurse predict patient outcome in case management. Improved prediction is needed for interventions to be appropriately targeted for improved patient outcome and quality of care.

  20. Is Susceptibility to Prenatal Methylmercury Exposure from Fish Consumption Non-Homogeneous? Tree-Structured Analysis for the Seychelles Child Development Study

    PubMed Central

    Huang, Li-Shan; Myers, Gary J.; Davidson, Philip W.; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W.; Cernichiari, Elsa; Shamlaye, Conrad F.; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W.

    2007-01-01

    Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age nine years. The analyses for the most recent nine-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated nonlinearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of twenty-one endpoints available at age nine years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other nine-year endpoints that in the linear analysis has a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels. PMID:17942158

  1. Is susceptibility to prenatal methylmercury exposure from fish consumption non-homogeneous? Tree-structured analysis for the Seychelles Child Development Study.

    PubMed

    Huang, Li-Shan; Myers, Gary J; Davidson, Philip W; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W; Cernichiari, Elsa; Shamlaye, Conrad F; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W

    2007-11-01

    Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age 9 years. The analyses for the most recent 9-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated non-linearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of 21 endpoints available at age 9 years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other 9-year endpoints that in the linear analysis had a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels.

  2. Estimation of carbon storage based on individual tree detection in Pinus densiflora stands using a fusion of aerial photography and LiDAR data.

    PubMed

    Kim, So-Ra; Kwak, Doo-Ahn; Lee, Woo-Kyun; oLee, Woo-Kyun; Son, Yowhan; Bae, Sang-Won; Kim, Choonsig; Yoo, Seongjin

    2010-07-01

    The objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging (LiDAR) data. A digital canopy model (DCM), generated from the LiDAR data, was combined with aerial photography for segmenting crowns of individual trees. To eliminate errors in over and under-segmentation, the combined image was smoothed using a Gaussian filtering method. The processed image was then segmented into individual trees using a marker-controlled watershed segmentation method. After measuring the crown area from the segmented individual trees, the individual tree diameter at breast height (DBH) was estimated using a regression function developed from the relationship observed between the field-measured DBH and crown area. The above ground biomass of individual trees could be calculated by an image-derived DBH using a regression function developed by the Korea Forest Research Institute. The carbon storage, based on individual trees, was estimated by simple multiplication using the carbon conversion index (0.5), as suggested in guidelines from the Intergovernmental Panel on Climate Change. The mean carbon storage per individual tree was estimated and then compared with the field-measured value. This study suggested that the biomass and carbon storage in a large forest area can be effectively estimated using aerial photographs and LiDAR data.

  3. Modeling potential future individual tree-species distributions in the eastern United States under a climate change scenario: a case study with Pinus virginiana

    Treesearch

    Louis R. Iverson; Anantha Prasad; Mark W. Schwartz; Mark W. Schwartz

    1999-01-01

    We are using a deterministic regression tree analysis model (DISTRIB) and a stochastic migration model (SHIFT) to examine potential distributions of ~66 individual species of eastern US trees under a 2 x CO2 climate change scenario. This process is demonstrated for Virginia pine (Pinus virginiana).

  4. Potential Changes in Tree Species Richness and Forest Community Types following Climate Change

    Treesearch

    Louis R. Iverson; Anantha M. Prasad

    2001-01-01

    Potential changes in tree species richness and forest community types were evaluated for the eastern United States according to five scenarios of future climate change resulting from a doubling of atmospheric carbon dioxide (CO2). DISTRIB, an empirical model that uses a regression tree analysis approach, was used to generate suitable habitat, or potential future...

  5. Estimating tree crown widths for the primary Acadian species in Maine

    Treesearch

    Matthew B. Russell; Aaron R. Weiskittel

    2012-01-01

    In this analysis, data for seven conifer and eight hardwood species were gathered from across the state of Maine for estimating tree crown widths. Maximum and largest crown width equations were developed using tree diameter at breast height as the primary predicting variable. Quantile regression techniques were used to estimate the maximum crown width and a constrained...

  6. [RS estimation of inventory parameters and carbon storage of moso bamboo forest based on synergistic use of object-based image analysis and decision tree].

    PubMed

    Du, Hua Qiang; Sun, Xiao Yan; Han, Ning; Mao, Fang Jie

    2017-10-01

    By synergistically using the object-based image analysis (OBIA) and the classification and regression tree (CART) methods, the distribution information, the indexes (including diameter at breast, tree height, and crown closure), and the aboveground carbon storage (AGC) of moso bamboo forest in Shanchuan Town, Anji County, Zhejiang Province were investigated. The results showed that the moso bamboo forest could be accurately delineated by integrating the multi-scale ima ge segmentation in OBIA technique and CART, which connected the image objects at various scales, with a pretty good producer's accuracy of 89.1%. The investigation of indexes estimated by regression tree model that was constructed based on the features extracted from the image objects reached normal or better accuracy, in which the crown closure model archived the best estimating accuracy of 67.9%. The estimating accuracy of diameter at breast and tree height was relatively low, which was consistent with conclusion that estimating diameter at breast and tree height using optical remote sensing could not achieve satisfactory results. Estimation of AGC reached relatively high accuracy, and accuracy of the region of high value achieved above 80%.

  7. Estimating irradiated nuclear fuel characteristics by nonlinear multivariate regression of simulated gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Håkansson, A.; Thulin, M.

    2018-07-01

    In addition to verifying operator declared parameters of spent nuclear fuel, the ability to experimentally infer such parameters with a minimum of intrusiveness is of great interest and has been long-sought after in the nuclear safeguards community. It can also be anticipated that such ability would be of interest for quality assurance in e.g. recycling facilities in future Generation IV nuclear fuel cycles. One way to obtain information regarding spent nuclear fuel is to measure various gamma-ray intensities using high-resolution gamma-ray spectroscopy. While intensities from a few isotopes obtained from such measurements have traditionally been used pairwise, the approach in this work is to simultaneously analyze correlations between all available isotopes, using multivariate analysis techniques. Based on this approach, a methodology for inferring burnup, cooling time, and initial fissile content of PWR fuels using passive gamma-ray spectroscopy data has been investigated. PWR nuclear fuels, of UOX and MOX type, and their gamma-ray emissions, were simulated using the Monte Carlo code Serpent. Data comprising relative isotope activities was analyzed with decision trees and support vector machines, for predicting fuel parameters and their associated uncertainties. From this work it may be concluded that up to a cooling time of twenty years, the 95% prediction intervals of burnup, cooling time and initial fissile content could be inferred to within approximately 7 MWd/kgHM, 8 months, and 1.4 percentage points, respectively. An attempt aiming to estimate the plutonium content in spent UOX fuel, using the developed multivariate analysis model, is also presented. The results for Pu mass estimation are promising and call for further studies.

  8. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  10. Industrial and occupational ergonomics in the petrochemical process industry: a regression trees approach.

    PubMed

    Bevilacqua, M; Ciarapica, F E; Giacchetta, G

    2008-07-01

    This work is an attempt to apply classification tree methods to data regarding accidents in a medium-sized refinery, so as to identify the important relationships between the variables, which can be considered as decision-making rules when adopting any measures for improvement. The results obtained using the CART (Classification And Regression Trees) method proved to be the most precise and, in general, they are encouraging concerning the use of tree diagrams as preliminary explorative techniques for the assessment of the ergonomic, management and operational parameters which influence high accident risk situations. The Occupational Injury analysis carried out in this paper was planned as a dynamic process and can be repeated systematically. The CART technique, which considers a very wide set of objective and predictive variables, shows new cause-effect correlations in occupational safety which had never been previously described, highlighting possible injury risk groups and supporting decision-making in these areas. The use of classification trees must not, however, be seen as an attempt to supplant other techniques, but as a complementary method which can be integrated into traditional types of analysis.

  11. Acid rain, air pollution, and tree growth in southeastern New York

    USGS Publications Warehouse

    Puckett, L.J.

    1982-01-01

    Whether dendroecological analyses could be used to detect changes in the relationship of tree growth to climate that might have resulted from chronic exposure to components of the acid rain-air pollution complex was determined. Tree-ring indices of white pine (Pinus strobus L.), eastern hemlock (Tsuga canadensis (L.) Cart.), pitch pine (Pinus rigida Mill.), and chestnut oak (Quercus prinus L.) were regressed against orthogonally transformed values of temperature and precipitation in order to derive a response-function relationship. Results of the regression analyses for three time periods, 1901–1920, 1926–1945, and 1954–1973 suggest that the relationship of tree growth to climate has been altered. Statistical tests of the temperature and precipitation data suggest that this change was nonclimatic. Temporally, the shift in growth response appears to correspond with the suspected increase in acid rain and air pollution in the Shawangunk Mountain area of southeastern New York in the early 1950's. This change could be the result of physiological stress induced by components of the acid rain-air pollution complex, causing climatic conditions to be more limiting to tree growth.

  12. Application of classification tree and logistic regression for the management and health intervention plans in a community-based study.

    PubMed

    Teng, Ju-Hsi; Lin, Kuan-Chia; Ho, Bin-Shenq

    2007-10-01

    A community-based aboriginal study was conducted and analysed to explore the application of classification tree and logistic regression. A total of 1066 aboriginal residents in Yilan County were screened during 2003-2004. The independent variables include demographic characteristics, physical examinations, geographic location, health behaviours, dietary habits and family hereditary diseases history. Risk factors of cardiovascular diseases were selected as the dependent variables in further analysis. The completion rate for heath interview is 88.9%. The classification tree results find that if body mass index is higher than 25.72 kg m(-2) and the age is above 51 years, the predicted probability for number of cardiovascular risk factors > or =3 is 73.6% and the population is 322. If body mass index is higher than 26.35 kg m(-2) and geographical latitude of the village is lower than 24 degrees 22.8', the predicted probability for number of cardiovascular risk factors > or =4 is 60.8% and the population is 74. As the logistic regression results indicate that body mass index, drinking habit and menopause are the top three significant independent variables. The classification tree model specifically shows the discrimination paths and interactions between the risk groups. The logistic regression model presents and analyses the statistical independent factors of cardiovascular risks. Applying both models to specific situations will provide a different angle for the design and management of future health intervention plans after community-based study.

  13. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran.

    PubMed

    Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Dixon, Barnali

    2016-01-01

    Groundwater is considered one of the most valuable fresh water resources. The main objective of this study was to produce groundwater spring potential maps in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran, using three machine learning models: boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF). Thirteen hydrological-geological-physiographical (HGP) factors that influence locations of springs were considered in this research. These factors include slope degree, slope aspect, altitude, topographic wetness index (TWI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Subsequently, groundwater spring potential was modeled and mapped using CART, RF, and BRT algorithms. The predicted results from the three models were validated using the receiver operating characteristics curve (ROC). From 864 springs identified, 605 (≈70 %) locations were used for the spring potential mapping, while the remaining 259 (≈30 %) springs were used for the model validation. The area under the curve (AUC) for the BRT model was calculated as 0.8103 and for CART and RF the AUC were 0.7870 and 0.7119, respectively. Therefore, it was concluded that the BRT model produced the best prediction results while predicting locations of springs followed by CART and RF models, respectively. Geospatially integrated BRT, CART, and RF methods proved to be useful in generating the spring potential map (SPM) with reasonable accuracy.

  14. A multivariate mixed model system for wood specific gravity and moisture content of planted loblolly pine stands in the southern United States

    Treesearch

    Finto Antony; Laurence R. Schimleck; Alex Clark; Richard F. Daniels

    2012-01-01

    Specific gravity (SG) and moisture content (MC) both have a strong influence on the quantity and quality of wood fiber. We proposed a multivariate mixed model system to model the two properties simultaneously. Disk SG and MC at different height levels were measured from 3 trees in 135 stands across the natural range of loblolly pine and the stand level values were used...

  15. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  16. Investigation of an artificial intelligence technology--Model trees. Novel applications for an immediate release tablet formulation database.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.

  17. Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods

    Treesearch

    Gretchen G. Moisen; Elizabeth A. Freeman; Jock A. Blackard; Tracey S. Frescino; Niklaus E. Zimmermann; Thomas C. Edwards

    2006-01-01

    Many efforts are underway to produce broad-scale forest attribute maps by modelling forest class and structure variables collected in forest inventories as functions of satellite-based and biophysical information. Typically, variants of classification and regression trees implemented in Rulequest's© See5 and Cubist (for binary and continuous responses,...

  18. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

    Treesearch

    E. Freeman; G. Moisen; J. Coulston; B. Wilson

    2014-01-01

    Random forests (RF) and stochastic gradient boosting (SGB), both involving an ensemble of classification and regression trees, are compared for modeling tree canopy cover for the 2011 National Land Cover Database (NLCD). The objectives of this study were twofold. First, sensitivity of RF and SGB to choices in tuning parameters was explored. Second, performance of the...

  19. Estimating probabilities of infestation and extent of damage by the roundheaded pine beetle in ponderosa pine in the Sacramento Mountains, New Mexico

    Treesearch

    Jose Negron

    1997-01-01

    Classification trees and linear regression analysis were used to build models to predict probabilities of infestation and amount of tree mortality in terms of basal area resulting from roundheaded pine beetle, Dendroctonus adjunctus Blandford, activity in ponderosa pine, Pinus ponderosa Laws., in the Sacramento Mountains, New Mexico. Classification trees were built for...

  20. An Extension of CART's Pruning Algorithm. Program Statistics Research Technical Report No. 91-11.

    ERIC Educational Resources Information Center

    Kim, Sung-Ho

    Among the computer-based methods used for the construction of trees such as AID, THAID, CART, and FACT, the only one that uses an algorithm that first grows a tree and then prunes the tree is CART. The pruning component of CART is analogous in spirit to the backward elimination approach in regression analysis. This idea provides a tool in…

  1. STX--Fortran-4 program for estimates of tree populations from 3P sample-tree-measurements

    Treesearch

    L. R. Grosenbaugh

    1967-01-01

    Describes how to use an improved and greatly expanded version of an earlier computer program (1964) that converts dendrometer measurements of 3P-sample trees to population values in terms of whatever units user desires. Many new options are available, including that of obtaining a product-yield and appraisal report based on regression coefficients supplied by user....

  2. Portable Language-Independent Adaptive Translation from OCR. Phase 1

    DTIC Science & Technology

    2009-04-01

    including brute-force k-Nearest Neighbors ( kNN ), fast approximate kNN using hashed k-d trees, classification and regression trees, and locality...achieved by refinements in ground-truthing protocols. Recent algorithmic improvements to our approximate kNN classifier using hashed k-D trees allows...recent years discriminative training has been shown to outperform phonetic HMMs estimated using ML for speech recognition. Standard ML estimation

  3. EXTENDING MULTIVARIATE DISTANCE MATRIX REGRESSION WITH AN EFFECT SIZE MEASURE AND THE ASYMPTOTIC NULL DISTRIBUTION OF THE TEST STATISTIC

    PubMed Central

    McArtor, Daniel B.; Lubke, Gitta H.; Bergeman, C. S.

    2017-01-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains. PMID:27738957

  4. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic.

    PubMed

    McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S

    2017-12-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

  5. Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.

    PubMed

    Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert

    2015-11-01

    Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination. © 2015 American Academy of Forensic Sciences.

  6. Logistic models--an odd(s) kind of regression.

    PubMed

    Jupiter, Daniel C

    2013-01-01

    The logistic regression model bears some similarity to the multivariable linear regression with which we are familiar. However, the differences are great enough to warrant a discussion of the need for and interpretation of logistic regression. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Implementation of Multivariable Logic Functions in Parallel by Electrically Addressing a Molecule of Three Dopants in Silicon.

    PubMed

    Fresch, Barbara; Bocquel, Juanita; Hiluf, Dawit; Rogge, Sven; Levine, Raphael D; Remacle, Françoise

    2017-07-05

    To realize low-power, compact logic circuits, one can explore parallel operation on single nanoscale devices. An added incentive is to use multivalued (as distinct from Boolean) logic. Here, we theoretically demonstrate that the computation of all the possible outputs of a multivariate, multivalued logic function can be implemented in parallel by electrical addressing of a molecule made up of three interacting dopant atoms embedded in Si. The electronic states of the dopant molecule are addressed by pulsing a gate voltage. By simulating the time evolution of the non stationary electronic density built by the gate voltage, we show that one can implement a molecular decision tree that provides in parallel all the outputs for all the inputs of the multivariate, multivalued logic function. The outputs are encoded in the populations and in the bond orders of the dopant molecule, which can be measured using an STM tip. We show that the implementation of the molecular logic tree is equivalent to a spectral function decomposition. The function that is evaluated can be field-programmed by changing the time profile of the pulsed gate voltage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Retro-regression--another important multivariate regression improvement.

    PubMed

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  9. Probabilistic, meso-scale flood loss modelling

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  10. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    NASA Technical Reports Server (NTRS)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  11. Predicting U.S. Army Reserve Unit Manning Using Market Demographics

    DTIC Science & Technology

    2015-06-01

    develops linear regression , classification tree, and logistic regression models to determine the ability of the location to support manning requirements... logistic regression model delivers predictive results that allow decision-makers to identify locations with a high probability of meeting unit...manning requirements. The recommendation of this thesis is that the USAR implement the logistic regression model. 14. SUBJECT TERMS U.S

  12. Elevation of B-Type Natriuretic Peptide at Discharge is Associated With 2-Year Mortality After Transcatheter Aortic Valve Replacement in Patients With Severe Aortic Stenosis: Insights From a Multicenter Prospective OCEAN-TAVI (Optimized Transcatheter Valvular Intervention-Transcatheter Aortic Valve Implantation) Registry.

    PubMed

    Mizutani, Kazuki; Hara, Masahiko; Iwata, Shinichi; Murakami, Takashi; Shibata, Toshihiko; Yoshiyama, Minoru; Naganuma, Toru; Yamanaka, Futoshi; Higashimori, Akihiro; Tada, Norio; Takagi, Kensuke; Araki, Motoharu; Ueno, Hiroshi; Tabata, Minoru; Shirai, Shinichi; Watanabe, Yusuke; Yamamoto, Masanori; Hayashida, Kentaro

    2017-07-14

    In this study, we sought to investigate the 2-year prognostic impact of B-type natriuretic peptide (BNP) levels at discharge, following transcatheter aortic valve replacement. We enrolled 1094 consecutive patients who underwent transcatheter aortic valve replacement between 2013 and 2016. Study patients were stratified into 2 groups according to survival classification and regression tree analysis (high versus low BNP groups). We evaluated the impact of high BNP on 2-year mortality compared with that of low BNP using a multivariable Cox model, and assessed whether this stratification would improve predictive accuracy for determining 2-year mortality by assessing time-dependent net reclassification improvement and integrated discrimination improvement. The median age of patients was 85 years (quartile 82-88), and 29.2% of the study population were men. The median Society of Thoracic Surgeons score was 6.8 (4.7-9.5), and BNP at discharge was 186 (93-378) pg/mL. All-cause mortality following discharge was 7.9% (95% CI, 5.8-9.9%) at 1 year and 15.4% (95% CI, 11.6-19.0%) at 2 years. The survival classification and regression tree analysis revealed that the discriminating BNP level to discern 2-year mortality was 202 pg/mL, and that elevated BNP had a statistically significant impact on outcomes, with an adjusted hazard ratio of 2.28 (1.36-3.82, P =0.002). The time-dependent net reclassification improvement ( P =0.047) and integrated discrimination improvement ( P =0.029) analysis revealed that the incorporation of BNP stratification with other clinical variables significantly improved predictive accuracy for 2-year mortality. Elevation of BNP at discharge is associated with 2-year mortality after transcatheter aortic valve replacement. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms.

    PubMed

    Barzegar, Rahim; Moghaddam, Asghar Asghari; Deo, Ravinesh; Fijani, Elham; Tziritis, Evangelos

    2018-04-15

    Constructing accurate and reliable groundwater risk maps provide scientifically prudent and strategic measures for the protection and management of groundwater. The objectives of this paper are to design and validate machine learning based-risk maps using ensemble-based modelling with an integrative approach. We employ the extreme learning machines (ELM), multivariate regression splines (MARS), M5 Tree and support vector regression (SVR) applied in multiple aquifer systems (e.g. unconfined, semi-confined and confined) in the Marand plain, North West Iran, to encapsulate the merits of individual learning algorithms in a final committee-based ANN model. The DRASTIC Vulnerability Index (VI) ranged from 56.7 to 128.1, categorized with no risk, low and moderate vulnerability thresholds. The correlation coefficient (r) and Willmott's Index (d) between NO 3 concentrations and VI were 0.64 and 0.314, respectively. To introduce improvements in the original DRASTIC method, the vulnerability indices were adjusted by NO 3 concentrations, termed as the groundwater contamination risk (GCR). Seven DRASTIC parameters utilized as the model inputs and GCR values utilized as the outputs of individual machine learning models were served in the fully optimized committee-based ANN-predictive model. The correlation indicators demonstrated that the ELM and SVR models outperformed the MARS and M5 Tree models, by virtue of a larger d and r value. Subsequently, the r and d metrics for the ANN-committee based multi-model in the testing phase were 0.8889 and 0.7913, respectively; revealing the superiority of the integrated (or ensemble) machine learning models when compared with the original DRASTIC approach. The newly designed multi-model ensemble-based approach can be considered as a pragmatic step for mapping groundwater contamination risks of multiple aquifer systems with multi-model techniques, yielding the high accuracy of the ANN committee-based model. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Simulation of land use change in the three gorges reservoir area based on CART-CA

    NASA Astrophysics Data System (ADS)

    Yuan, Min

    2018-05-01

    This study proposes a new method to simulate spatiotemporal complex multiple land uses by using classification and regression tree algorithm (CART) based CA model. In this model, we use classification and regression tree algorithm to calculate land class conversion probability, and combine neighborhood factor, random factor to extract cellular transformation rules. The overall Kappa coefficient is 0.8014 and the overall accuracy is 0.8821 in the land dynamic simulation results of the three gorges reservoir area from 2000 to 2010, and the simulation results are satisfactory.

  15. Assessing Principal Component Regression Prediction of Neurochemicals Detected with Fast-Scan Cyclic Voltammetry

    PubMed Central

    2011-01-01

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586

  16. Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys’ prior distribution

    NASA Astrophysics Data System (ADS)

    Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.

    2018-05-01

    Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.

  17. Field applications of stand-off sensing using visible/NIR multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Eastwood, DeLyle; Soyemi, Olusola O.; Karunamuni, Jeevanandra; Zhang, Lixia; Li, Hongli; Myrick, Michael L.

    2001-02-01

    12 A novel multivariate visible/NIR optical computing approach applicable to standoff sensing will be demonstrated with porphyrin mixtures as examples. The ultimate goal is to develop environmental or counter-terrorism sensors for chemicals such as organophosphorus (OP) pesticides or chemical warfare simulants in the near infrared spectral region. The mathematical operation that characterizes prediction of properties via regression from optical spectra is a calculation of inner products between the spectrum and the pre-determined regression vector. The result is scaled appropriately and offset to correspond to the basis from which the regression vector is derived. The process involves collecting spectroscopic data and synthesizing a multivariate vector using a pattern recognition method. Then, an interference coating is designed that reproduces the pattern of the multivariate vector in its transmission or reflection spectrum, and appropriate interference filters are fabricated. High and low refractive index materials such as Nb2O5 and SiO2 are excellent choices for the visible and near infrared regions. The proof of concept has now been established for this system in the visible and will later be extended to chemicals such as OP compounds in the near and mid-infrared.

  18. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    PubMed

    Keithley, Richard B; Wightman, R Mark

    2011-06-07

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.

  19. CADDIS Volume 4. Data Analysis: Basic Analyses

    EPA Pesticide Factsheets

    Use of statistical tests to determine if an observation is outside the normal range of expected values. Details of CART, regression analysis, use of quantile regression analysis, CART in causal analysis, simplifying or pruning resulting trees.

  20. Modifiable risk factors predicting major depressive disorder at four year follow-up: a decision tree approach.

    PubMed

    Batterham, Philip J; Christensen, Helen; Mackinnon, Andrew J

    2009-11-22

    Relative to physical health conditions such as cardiovascular disease, little is known about risk factors that predict the prevalence of depression. The present study investigates the expected effects of a reduction of these risks over time, using the decision tree method favoured in assessing cardiovascular disease risk. The PATH through Life cohort was used for the study, comprising 2,105 20-24 year olds, 2,323 40-44 year olds and 2,177 60-64 year olds sampled from the community in the Canberra region, Australia. A decision tree methodology was used to predict the presence of major depressive disorder after four years of follow-up. The decision tree was compared with a logistic regression analysis using ROC curves. The decision tree was found to distinguish and delineate a wide range of risk profiles. Previous depressive symptoms were most highly predictive of depression after four years, however, modifiable risk factors such as substance use and employment status played significant roles in assessing the risk of depression. The decision tree was found to have better sensitivity and specificity than a logistic regression using identical predictors. The decision tree method was useful in assessing the risk of major depressive disorder over four years. Application of the model to the development of a predictive tool for tailored interventions is discussed.

  1. A study of Solar-Enso correlation with southern Brazil tree ring index (1955- 1991)

    NASA Astrophysics Data System (ADS)

    Rigozo, N.; Nordemann, D.; Vieira, L.; Echer, E.

    The effects of solar activity and El Niño-Southern Oscillation on tree growth in Southern Brazil were studied by correlation analysis. Trees for this study were native Araucaria (Araucaria Angustifolia)from four locations in Rio Grande do Sul State, in Southern Brazil: Canela (29o18`S, 50o51`W, 790 m asl), Nova Petropolis (29o2`S, 51o10`W, 579 m asl), Sao Francisco de Paula (29o25`S, 50o24`W, 930 m asl) and Sao Martinho da Serra (29o30`S, 53o53`W, 484 m asl). From these four sites, an average tree ring Index for this region was derived, for the period 1955-1991. Linear correlations were made on annual and 10 year running averages of this tree ring Index, of sunspot number Rz and SOI. For annual averages, the correlation coefficients were low, and the multiple regression between tree ring and SOI and Rz indicates that 20% of the variance in tree rings was explained by solar activity and ENSO variability. However, when the 10 year running averages correlations were made, the coefficient correlations were much higher. A clear anticorrelation is observed between SOI and Index (r=-0.81) whereas Rz and Index show a positive correlation (r=0.67). The multiple regression of 10 year running averages indicates that 76% of the variance in tree ring INdex was explained by solar activity and ENSO. These results indicate that the effects of solar activity and ENSO on tree rings are better seen on long timescales.

  2. A refined method for multivariate meta-analysis and meta-regression.

    PubMed

    Jackson, Daniel; Riley, Richard D

    2014-02-20

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Developing Screening Services for Colorectal Cancer on Android Smartphones

    PubMed Central

    Wu, Hui-Ching; Chang, Chiao-Jung; Lin, Chun-Che; Tsai, Ming-Chang; Chang, Che-Chia

    2014-01-01

    Abstract Introduction: Colorectal cancer (CRC) is an important health problem in Western countries and also in Asia. It is the third leading cause of cancer deaths in both men and women in Taiwan. According to the well-known adenoma-to-carcinoma sequence, the majority of CRC develops from colorectal adenomatous polyps. This concept provides the rationale for screening and prevention of CRC. Removal of colorectal adenoma could reduce the mortality and incidence of CRC. Mobile phones are now playing an ever more crucial role in people's daily lives. The latest generation of smartphones is increasingly viewed as hand-held computers rather than as phones, because of their powerful on-board computing capability, capacious memories, large screens, and open operating systems that encourage development of applications (apps). Subjects and Methods: If we can detect the potential CRC patients early and offer them appropriate treatments and services, this would not only promote the quality of life, but also reduce the possible serious complications and medical costs. In this study, an intelligent CRC screening app on Android™ (Google™, Mountain View, CA) smartphones has been developed based on a data mining approach using decision tree algorithms. For comparison, the stepwise backward multivariate logistic regression model and the fecal occult blood test were also used. Results: Compared with the stepwise backward multivariate logistic regression model and the fecal occult blood test, the proposed app system not only provides an easy and efficient way to quickly detect high-risk groups of potential CRC patients, but also brings more information about CRC to customer-oriented services. Conclusions: We developed and implemented an app system on Android platforms for ubiquitous healthcare services for CRC screening. It can assist people in achieving early screening, diagnosis, and treatment purposes, prevent the occurrence of complications, and thus reach the goal of preventive medicine. PMID:24848873

  4. Forest inventory predictions from individual tree crowns: regression modeling within a sample framework

    Treesearch

    James W. Flewelling

    2009-01-01

    Remotely sensed data can be used to make digital maps showing individual tree crowns (ITC) for entire forests. Attributes of the ITCs may include area, shape, height, and color. The crown map is sampled in a way that provides an unbiased linkage between ITCs and identifiable trees measured on the ground. Methods of avoiding edge bias are given. In an example from a...

  5. The relationship between tree canopy and crime rates across an urban-rural gradient in the greater Baltimore region

    Treesearch

    Austin Troy; J. Morgan Grove; Jarlath O' Neill-Dunne

    2012-01-01

    The extent to which urban tree cover influences crime is in debate in the literature. This research took advantage of geocoded crime point data and high resolution tree canopy data to address this question in Baltimore City and County, MD, an area that includes a significant urban-rural gradient. Using ordinary least squares and spatially adjusted regression and...

  6. Extensions and applications of ensemble-of-trees methods in machine learning

    NASA Astrophysics Data System (ADS)

    Bleich, Justin

    Ensemble-of-trees algorithms have emerged to the forefront of machine learning due to their ability to generate high forecasting accuracy for a wide array of regression and classification problems. Classic ensemble methodologies such as random forests (RF) and stochastic gradient boosting (SGB) rely on algorithmic procedures to generate fits to data. In contrast, more recent ensemble techniques such as Bayesian Additive Regression Trees (BART) and Dynamic Trees (DT) focus on an underlying Bayesian probability model to generate the fits. These new probability model-based approaches show much promise versus their algorithmic counterparts, but also offer substantial room for improvement. The first part of this thesis focuses on methodological advances for ensemble-of-trees techniques with an emphasis on the more recent Bayesian approaches. In particular, we focus on extensions of BART in four distinct ways. First, we develop a more robust implementation of BART for both research and application. We then develop a principled approach to variable selection for BART as well as the ability to naturally incorporate prior information on important covariates into the algorithm. Next, we propose a method for handling missing data that relies on the recursive structure of decision trees and does not require imputation. Last, we relax the assumption of homoskedasticity in the BART model to allow for parametric modeling of heteroskedasticity. The second part of this thesis returns to the classic algorithmic approaches in the context of classification problems with asymmetric costs of forecasting errors. First we consider the performance of RF and SGB more broadly and demonstrate its superiority to logistic regression for applications in criminology with asymmetric costs. Next, we use RF to forecast unplanned hospital readmissions upon patient discharge with asymmetric costs taken into account. Finally, we explore the construction of stable decision trees for forecasts of violence during probation hearings in court systems.

  7. Spatial Assessment of Model Errors from Four Regression Techniques

    Treesearch

    Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove

    2005-01-01

    Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...

  8. Modeling brook trout presence and absence from landscape variables using four different analytical methods

    USGS Publications Warehouse

    Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.

    2006-01-01

    As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.

  9. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    PubMed

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  10. Functional Relationships and Regression Analysis.

    ERIC Educational Resources Information Center

    Preece, Peter F. W.

    1978-01-01

    Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…

  11. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    PubMed

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  12. Blood oxygen level dependent magnetic resonance imaging for detecting pathological patterns in lupus nephritis patients: a preliminary study using a decision tree model.

    PubMed

    Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-02-09

    Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.

  13. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations.

    PubMed

    Lin, Lei; Wang, Qian; Sadek, Adel W

    2016-06-01

    The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean absolute percentage error (MAPE). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Observed Methods for Felling Hardwood Trees with Chain Saws

    Treesearch

    Jerry L. Koger

    1983-01-01

    The angles and lengths of the cutting surfaces made by chain saw operators on hardwood tree stumps are described by means, standard deviations, ranges, and regression equations. Recommended felling guidelines are compared with observed felling methods used by experienced timber cutters in the southern Appalachian Mountains.

  15. Factors affecting the thermal environment of Agassiz’s Desert Tortoise (Gopherus agassizii) cover sites in the Central Mojave Desert during periods of temperature extremes

    USGS Publications Warehouse

    Mack, Jeremy S.; Berry, Kristin H.; Miller, David; Carlson, Andrea S.

    2015-01-01

    Agassiz's Desert Tortoises (Gopherus agassizii) spend >95% of their lives underground in cover sites that serve as thermal buffers from temperatures, which can fluctuate >40°C on a daily and seasonal basis. We monitored temperatures at 30 active tortoise cover sites within the Soda Mountains, San Bernardino County, California, from February 2004 to September 2006. Cover sites varied in type and structural characteristics, including opening height and width, soil cover depth over the opening, aspect, tunnel length, and surficial geology. We focused our analyses on periods of extreme temperature: in summer, between July 1 and September 1, and winter, between November 1 and February 15. With the use of multivariate regression tree analyses, we found cover-site temperatures were influenced largely by tunnel length and subsequently opening width and soil cover. Linear regression models further showed that increasing tunnel length increased temperature stability and dampened seasonal temperature extremes. Climate change models predict increased warming for southwestern North America. Cover sites that buffer temperature extremes and fluctuations will become increasingly important for survival of tortoises. In planning future translocation projects and conservation efforts, decision makers should consider habitats with terrain and underlying substrate that sustain cover sites with long tunnels and expanded openings for tortoises living under temperature extremes similar to those described here or as projected in the future.

  16. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    PubMed

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  17. Membrane Introduction Mass Spectrometry Combined with an Orthogonal Partial-Least Squares Calibration Model for Mixture Analysis.

    PubMed

    Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu

    2017-01-01

    The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.

  18. Use and Selection of Sleeping Sites by Proboscis Monkeys, Nasalislarvatus, along the Kinabatangan River, Sabah, Malaysia.

    PubMed

    Thiry, Valentine; Stark, Danica J; Goossens, Benoît; Slachmuylder, Jean-Louis; Vercauteren Drubbel, Régine; Vercauteren, Martine

    2016-01-01

    The choice of a sleeping site is crucial for primates and may influence their survival. In this study, we investigated several tree characteristics influencing the sleeping site selection by proboscis monkeys (Nasalis larvatus) along Kinabatangan River, in Sabah, Malaysia. We identified 81 sleeping trees used by one-male and all-male social groups from November 2011 to January 2012. We recorded 15 variables for each tree. Within sleeping sites, sleeping trees were taller, had a larger trunk, with larger and higher first branches than surrounding trees. The crown contained more mature leaves, ripe and unripe fruits but had vines less often than surrounding trees. In addition, in this study, we also focused on a larger scale, considering sleeping and non-sleeping sites. Multivariate analyses highlighted a combination of 6 variables that revealed the significance of sleeping trees as well as surrounding trees in the selection process. During our boat surveys, we observed that adult females and young individuals stayed higher in the canopy than adult males. This pattern may be driven by their increased vulnerability to predation. Finally, we suggest that the selection of particular sleeping tree features (i.e. tall, high first branch) by proboscis monkeys is mostly influenced by antipredation strategies. © 2016 S. Karger AG, Basel.

  19. Global Tree Range Shifts Under Forecasts from Two Alternative GCMs Using Two Future Scenarios

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Kumar, J.; Potter, K. M.; Hoffman, F. M.

    2013-12-01

    Global shifts in the environmentally suitable ranges of 215 tree species were predicted under forecasts from two GCMs (the Parallel Climate Model (PCM), and the Hadley Model), each under two IPCC future climatic scenarios (A1 and B1), each at two future dates (2050 and 2100). The analysis considers all global land surface at a resolution of 4 km2. A statistical multivariate clustering procedure was used to quantitatively delineate 30 thousand environmentally homogeneous ecoregions across present and 8 potential future global locations at once, using global maps of 17 environmental characteristics describing temperature, precipitation, soils, topography and solar insolation. Presence of each tree species on Forest Inventory Analysis (FIA) plots and in Global Biodiversity Information Facility (GBIF) samples was used to select a subset of suitable ecoregions from the full set of 30 thousand. Once identified, this suitable subset of ecoregions was compared to the known current range of the tree species under present conditions. Predicted present ranges correspond well with current understanding for all but a few of the 215 tree species. The subset of suitable ecoregions for each tree species can then be tracked into the future to determine whether the suitable home range for this species remains the same, moves, grows, shrinks, or disappears under each model/scenario combination. Occurrence and growth performance measurements for various tree species across the U.S. are limited to FIA plots. We present a new, general-purpose empirical imputation method which associates sparse measurements of dependent variables with particular multivariate clustered combinations of the independent variables, and then estimates values for unmeasured clusters, based on directional proximity in multidimensional data space, at both the cluster and map-cell levels of resolution. Using Associative Clustering, we scaled up the FIA point measurements into contonuous maps that show the expected growth and suitability for individual tree species across the continental US. Maps were generated for each tree species showing the Minimum Required Movement (MRM) straight-line distance from each currently suitable location to the geographically nearest "lifeboat" location having suitable conditions in the future. Locations that are the closest "lifeboats" for many MRM propagules originating from wide surrounding areas may constitute high-priority preservation targets as a refugium against climatic change.

  20. Grassland and cropland net ecosystem production of the U.S. Great Plains: Regression tree model development and comparative analysis

    USGS Publications Warehouse

    Wylie, Bruce K.; Howard, Daniel; Dahal, Devendra; Gilmanov, Tagir; Ji, Lei; Zhang, Li; Smith, Kelcy

    2016-01-01

    This paper presents the methodology and results of two ecological-based net ecosystem production (NEP) regression tree models capable of up scaling measurements made at various flux tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression tree models were trained using various remote sensing data and other biogeophysical data, along with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S. Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were spatially summarized and statistically compared. The results of this study indicate that grassland and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time series reveals the C fluctuation through time and space for each land cover type.

  1. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Šraj, Mojca

    2018-03-01

    Rainfall partitioning is an important part of the ecohydrological cycle, influenced by numerous variables. Rainfall partitioning for pine (Pinus nigra Arnold) and birch (Betula pendula Roth.) trees was measured from January 2014 to June 2017 in an urban area of Ljubljana, Slovenia. 180 events from more than three years of observations were analyzed, focusing on 13 meteorological variables, including the number of raindrops, their diameter, and velocity. Regression tree and boosted regression tree analyses were performed to evaluate the influence of the variables on rainfall interception loss, throughfall, and stemflow in different phenoseasons. The amount of rainfall was recognized as the most influential variable, followed by rainfall intensity and the number of raindrops. Higher rainfall amount, intensity, and the number of drops decreased percentage of rainfall interception loss. Rainfall amount and intensity were the most influential on interception loss by birch and pine trees during the leafed and leafless periods, respectively. Lower wind speed was found to increase throughfall, whereas wind direction had no significant influence. Consideration of drop size spectrum properties proved to be important, since the number of drops, drop diameter, and median volume diameter were often recognized as important influential variables.

  2. Regression models for estimating leaf area of seedlings and adult individuals of Neotropical rainforest tree species.

    PubMed

    Brito-Rocha, E; Schilling, A C; Dos Anjos, L; Piotto, D; Dalmolin, A C; Mielke, M S

    2016-01-01

    Individual leaf area (LA) is a key variable in studies of tree ecophysiology because it directly influences light interception, photosynthesis and evapotranspiration of adult trees and seedlings. We analyzed the leaf dimensions (length - L and width - W) of seedlings and adults of seven Neotropical rainforest tree species (Brosimum rubescens, Manilkara maxima, Pouteria caimito, Pouteria torta, Psidium cattleyanum, Symphonia globulifera and Tabebuia stenocalyx) with the objective to test the feasibility of single regression models to estimate LA of both adults and seedlings. In southern Bahia, Brazil, a first set of data was collected between March and October 2012. From the seven species analyzed, only two (P. cattleyanum and T. stenocalyx) had very similar relationships between LW and LA in both ontogenetic stages. For these two species, a second set of data was collected in August 2014, in order to validate the single models encompassing adult and seedlings. Our results show the possibility of development of models for predicting individual leaf area encompassing different ontogenetic stages for tropical tree species. The development of these models was more dependent on the species than the differences in leaf size between seedlings and adults.

  3. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three thresholds. The probability of a well with iron content higher than 5mg/L to contain greater than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be more than 91%, 85% and 51%, respectively, while the probability of a well from depth more than 160m to contain more than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be less than 38%, 25% and 14%, respectively.

  4. The photosynthesis - leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew G. Peterson; J. Timothy Ball; Yiqi Luo

    1998-09-25

    Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO{sub 2} but much less at elevated CO{sub 2}. This study was designed to (1) assess whether the A-N relationship was more similar for species within than between community and vegetation types, and (2) examine how growth at elevated CO{sub 2} affects the A-N relationship. Data were obtained for 39 C{sub 3} species grown at ambient CO{sub 2} and 10more » C{sub 3} species grown at ambient and elevated CO{sub 2}. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO{sub 2} did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO{sub 2} increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A-N relationship for deciduous trees expressed on a leaf-mass bask was not altered by elevated CO{sub 2}, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO{sub 2} increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO{sub 2}. Generalizations about the effect of elevated CO{sub 2} on the A-N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.« less

  5. Using LiDAR to Estimate Total Aboveground Biomass of Redwood Stands in the Jackson Demonstration State Forest, Mendocino, California

    NASA Astrophysics Data System (ADS)

    Rao, M.; Vuong, H.

    2013-12-01

    The overall objective of this study is to develop a method for estimating total aboveground biomass of redwood stands in Jackson Demonstration State Forest, Mendocino, California using airborne LiDAR data. LiDAR data owing to its vertical and horizontal accuracy are increasingly being used to characterize landscape features including ground surface elevation and canopy height. These LiDAR-derived metrics involving structural signatures at higher precision and accuracy can help better understand ecological processes at various spatial scales. Our study is focused on two major species of the forest: redwood (Sequoia semperirens [D.Don] Engl.) and Douglas-fir (Pseudotsuga mensiezii [Mirb.] Franco). Specifically, the objectives included linear regression models fitting tree diameter at breast height (dbh) to LiDAR derived height for each species. From 23 random points on the study area, field measurement (dbh and tree coordinate) were collected for more than 500 trees of Redwood and Douglas-fir over 0.2 ha- plots. The USFS-FUSION application software along with its LiDAR Data Viewer (LDV) were used to to extract Canopy Height Model (CHM) from which tree heights would be derived. Based on the LiDAR derived height and ground based dbh, a linear regression model was developed to predict dbh. The predicted dbh was used to estimate the biomass at the single tree level using Jenkin's formula (Jenkin et al 2003). The linear regression models were able to explain 65% of the variability associated with Redwood's dbh and 80% of that associated with Douglas-fir's dbh.

  6. Dispersion patterns and sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus.

    PubMed

    Sétamou, Mamoudou; Flores, Daniel; French, J Victor; Hall, David G

    2008-08-01

    The abundance and spatial dispersion of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) were studied in 34 grapefruit (Citrus paradisi Macfad.) and six sweet orange [Citrus sinensis (L.) Osbeck] orchards from March to August 2006 when the pest is more abundant in southern Texas. Although flush shoot infestation levels did not vary with host plant species, densities of D. citri eggs, nymphs, and adults were significantly higher on sweet orange than on grapefruit. D. citri immatures also were found in significantly higher numbers in the southeastern quadrant of trees than other parts of the canopy. The spatial distribution of D. citri nymphs and adults was analyzed using Iowa's patchiness regression and Taylor's power law. Taylor's power law fitted the data better than Iowa's model. Based on both regression models, the field dispersion patterns of D. citri nymphs and adults were aggregated among flush shoots in individual trees as indicated by the regression slopes that were significantly >1. For the average density of each life stage obtained during our surveys, the minimum number of flush shoots per tree needed to estimate D. citri densities varied from eight for eggs to four flush shoots for adults. Projections indicated that a sampling plan consisting of 10 trees and eight flush shoots per tree would provide density estimates of the three developmental stages of D. citri acceptable enough for population studies and management decisions. A presence-absence sampling plan with a fixed precision level was developed and can be used to provide a quick estimation of D. citri populations in citrus orchards.

  7. treespace: Statistical exploration of landscapes of phylogenetic trees.

    PubMed

    Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Colijn, Caroline

    2017-11-01

    The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low-dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group-specific consensus phylogenies. treespace also provides a user-friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  8. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  9. Flood-frequency prediction methods for unregulated streams of Tennessee, 2000

    USGS Publications Warehouse

    Law, George S.; Tasker, Gary D.

    2003-01-01

    Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.

  10. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  11. Climate Controls on Tree Growth Across Species and Sites in Northeastern Arizona

    NASA Astrophysics Data System (ADS)

    Schwan, M. R.; Guiterman, C. H.; Anchukaitis, K. J.

    2016-12-01

    Understanding how forests will respond to ongoing climate change is important for conservation and resource management. Conifer forests in the US Southwest are predicted to be particularly at risk from increased drought and higher temperatures projected to occur in the region. Tree-ring studies shed light on how trees respond to climate, but there remains considerable uncertainty as to which climate factors are most important, and which species are most at risk. Confounding climate and environmental factors, biological differences among species, and biogeography often complicate cross-species analysis. Here we present a multi-species, multivariate analysis of tree growth response to climate variability. We analyze data from three coexisting conifer tree species at two sites near Canyon de Chelly, Arizona. We use a high-resolution PRISM gridded climate dataset to determine the growth responses across species and sites to temperature and precipitation. We identify both common and differential responses in our data and use these to infer possible risks these forest communities may face under a changing climate.

  12. PARAMETRIC AND NON PARAMETRIC (MARS: MULTIVARIATE ADDITIVE REGRESSION SPLINES) LOGISTIC REGRESSIONS FOR PREDICTION OF A DICHOTOMOUS RESPONSE VARIABLE WITH AN EXAMPLE FOR PRESENCE/ABSENCE OF AMPHIBIANS

    EPA Science Inventory

    The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...

  13. CART (Classification and Regression Trees) Program: The Implementation of the CART Program and Its Application to Estimating Attrition Rates.

    DTIC Science & Technology

    1985-12-01

    consists of the node t and all descendants of t in T. (3) Definition 3. Pruning a branch Tt from a tree T con- sists of deleting from T all...The default is 1.0 so that actually, this keyword did not need to appear in the above file. (5) DELETE . This keyword does not appear in our example, but...when it is used associated with some variable names, it indicates that we want to delete these vari- ables from the regression. If this keyword is

  14. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.

    PubMed

    Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris

    2016-09-01

    Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have similar performances reaching AUC values 0.783 and 0.779 for traditional Lasso and Tree-Lasso, respectfully. However, information loss of Lasso models is 0.35 bits higher compared to Tree-Lasso model. We propose a method for building predictive models applicable for the detection of readmission risk based on Electronic Health records. Integration of domain knowledge (in the form of ICD-9-CM taxonomy) and a data-driven, sparse predictive algorithm (Tree-Lasso Logistic Regression) resulted in an increase of interpretability of the resulting model. The models are interpreted for the readmission prediction problem in general pediatric population in California, as well as several important subpopulations, and the interpretations of models comply with existing medical understanding of pediatric readmission. Finally, quantitative assessment of the interpretability of the models is given, that is beyond simple counts of selected low-level features. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Causal diagrams and multivariate analysis II: precision work.

    PubMed

    Jupiter, Daniel C

    2014-01-01

    In this Investigators' Corner, I continue my discussion of when and why we researchers should include variables in multivariate regression. My examination focuses on studies comparing treatment groups and situations for which we can either exclude variables from multivariate analyses or include them for reasons of precision. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Modelling tree dynamics to assess the implementation of EU policies related to afforestation in SW Spain rangelands

    NASA Astrophysics Data System (ADS)

    Herguido, Estela; Pulido, Manuel; Francisco Lavado Contador, Joaquín; Schnabel, Susanne

    2017-04-01

    In Iberian dehesas and montados, the lack of tree recruitment compromises its long-term sustainability. However, in marginal areas of dehesas shrub encroachment facilitates tree recruitment while altering the distinctive physiognomic and cultural characteristics of the system. These are ongoing processes that should be considered when designing afforestation measures and policies. Based on spatial variables, we modeled the proneness of a piece of land to undergo tree recruitment and the results were related with the afforestation measures carried out under the UE First Afforestation Agricultural Land Program between 1992 and 2008. We analyzed the temporal tree population dynamics in 800 randomly selected plots of 100 m radius (2,510 ha in total) in dehesas and treeless pasturelands of Extremadura (hereafter rangelands). Tree changes were revealed by comparing aerial images taken in 1956 with orthophotographs and infrared ones from 2012. Spatial models that predict the areas prone either to lack tree recruitment or with recruitment were developed and based on three data mining algorithms: MARS (Multivariate Adaptive Regression Splines), Random Forest (RF) and Stochastic Gradient Boosting (Tree-Net, TN). Recruited-tree locations (1) vs. locations of places with no recruitment (0) (randomly selected from the study areas) were used as the binary dependent variable. A 5% of the data were used as test data set. As candidate explanatory variables we used 51 different topographic, climatic, bioclimatic, land cover-related and edaphic ones. The statistical models developed were extrapolated to the spatial context of the afforested areas in the region and also to the whole Extremenian rangelands, and the percentage of area modelled as prone to tree recruitment was calculated for each case. A total of 46,674.63 ha were afforested with holm oak (Quercus ilex) or cork oak (Quercus suber) in the studied rangelands under the UE First Afforestation Agricultural Land Program. In the sampled plots, 16,747 trees were detected as recruited, while 47,058 and 12,803 were present in both dates and lost during the studied period, respectively. Based on the Area Under the ROC Curve (AUC), all the data mining models considered showed a high fitness (MARS AUC= 0.86; TN AUC= 0.92; RF AUC= 0.95) and low misclassification rates. Correctly predicted test samples for absence and presence of tree recruitment accounted respectively to 78.3% and 76.8% when using MARS, 90.8% and 90.8% using TN and 88.9% and 89.1% using RF. The spatial patterns of the different models were similar. However, attending only the percentage of area prone to tree recruitment, outstanding differences were observed among models considering the total surface of rangelands (36.03% in MARS, 22.88% in TN and 6.72 % in RF). Despite these differences, when comparing the results with those of the afforested surfaces (31.73% in MARS, 20.70% in TN and 5.63 % in RF) the three algorithms pointed to similar conclusions, i.e. the afforestations performed in rangelands of Extremadura under UE First Afforestation Agricultural Land Program, barely discriminate between areas with or without natural regeneration. In conclusion, data mining technics are suitable to develop high-performance spatial models of vegetation dynamics. These models could be useful for policy and decision makers aimed at assessing the implementation of afforestation measures and the selection of more adequate locations.

  17. Typology of Ohio, USA, Tree Farmers Based Upon Forestry Outreach Needs

    NASA Astrophysics Data System (ADS)

    Starr, SE; McConnell, TE; Bruskotter, JS; Williams, RA

    2015-02-01

    This study differentiated groups of Ohio tree farmers through multivariate clustering of their perceived needs for forest management outreach. Tree farmers were surveyed via a mailed questionnaire. Respondents were asked to rate, on a 1-7 scale, their informational needs for 26 outreach topics, which were reduced to six factors. Based on these factors, three clusters were identified—holistic managers, environmental stewards, and pragmatic tree farmers. Cluster assignment of individuals was dependent upon a tree farmer's age, acreage owned, and number of years enrolled in the American Tree Farm System. Holistic managers showed a greater interest in the outreach topics while pragmatic tree farmers displayed an overall lesser interest. Across clusters, print media and in-person workshops were preferred over emails and webinars for receiving forest management information. In-person workshops should be no more than 1 day events, held on a weekday, during the daytime, at a cost not exceeding 35. Programming related to environmental influences, which included managing for forest insects and diseases, was concluded to have the greater potential to impact clientele among all outreach factors due to the information being applicable across demographics and/or management objectives.

  18. Why are we regressing?

    PubMed

    Jupiter, Daniel C

    2012-01-01

    In this first of a series of statistical methodology commentaries for the clinician, we discuss the use of multivariate linear regression. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Error analysis of leaf area estimates made from allometric regression models

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H.; Chhikara, R. S.

    1986-01-01

    Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing).

  20. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales.

    PubMed

    Rieger, Isaak; Kowarik, Ingo; Cherubini, Paolo; Cierjacks, Arne

    2017-01-01

    Aboveground carbon (C) sequestration in trees is important in global C dynamics, but reliable techniques for its modeling in highly productive and heterogeneous ecosystems are limited. We applied an extended dendrochronological approach to disentangle the functioning of drivers from the atmosphere (temperature, precipitation), the lithosphere (sedimentation rate), the hydrosphere (groundwater table, river water level fluctuation), the biosphere (tree characteristics), and the anthroposphere (dike construction). Carbon sequestration in aboveground biomass of riparian Quercus robur L. and Fraxinus excelsior L. was modeled (1) over time using boosted regression tree analysis (BRT) on cross-datable trees characterized by equal annual growth ring patterns and (2) across space using a subsequent classification and regression tree analysis (CART) on cross-datable and not cross-datable trees. While C sequestration of cross-datable Q. robur responded to precipitation and temperature, cross-datable F. excelsior also responded to a low Danube river water level. However, CART revealed that C sequestration over time is governed by tree height and parameters that vary over space (magnitude of fluctuation in the groundwater table, vertical distance to mean river water level, and longitudinal distance to upstream end of the study area). Thus, a uniform response to climatic drivers of aboveground C sequestration in Q. robur was only detectable in trees of an intermediate height class and in taller trees (>21.8m) on sites where the groundwater table fluctuated little (≤0.9m). The detection of climatic drivers and the river water level in F. excelsior depended on sites at lower altitudes above the mean river water level (≤2.7m) and along a less dynamic downstream section of the study area. Our approach indicates unexploited opportunities of understanding the interplay of different environmental drivers in aboveground C sequestration. Results may support species-specific and locally adapted forest management plans to increase carbon dioxide sequestration from the atmosphere in trees. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  2. Modelling the ecological consequences of whole tree harvest for bioenergy production

    NASA Astrophysics Data System (ADS)

    Skår, Silje; Lange, Holger; Sogn, Trine

    2013-04-01

    There is an increasing demand for energy from biomass as a substitute to fossil fuels worldwide, and the Norwegian government plans to double the production of bioenergy to 9% of the national energy production or to 28 TWh per year by 2020. A large part of this increase may come from forests, which have a great potential with respect to biomass supply as forest growth increasingly has exceeded harvest in the last decades. One feasible option is the utilization of forest residues (needles, twigs and branches) in addition to stems, known as Whole Tree Harvest (WTH). As opposed to WTH, the residues are traditionally left in the forest with Conventional Timber Harvesting (CH). However, the residues contain a large share of the treés nutrients, indicating that WTH may possibly alter the supply of nutrients and organic matter to the soil and the forest ecosystem. This may potentially lead to reduced tree growth. Other implications can be nutrient imbalance, loss of carbon from the soil and changes in species composition and diversity. This study aims to identify key factors and appropriate strategies for ecologically sustainable WTH in Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) forest stands in Norway. We focus on identifying key factors driving soil organic matter, nutrients, biomass, biodiversity etc. Simulations of the effect on the carbon and nitrogen budget with the two harvesting methods will also be conducted. Data from field trials and long-term manipulation experiments are used to obtain a first overview of key variables. The relationships between the variables are hitherto unknown, but it is by no means obvious that they could be assumed as linear; thus, an ordinary multiple linear regression approach is expected to be insufficient. Here we apply two advanced and highly flexible modelling frameworks which hardly have been used in the context of tree growth, nutrient balances and biomass removal so far: Generalized Additive Models (GAMs) and Random Forests. Results obtained for GAMs so far show that there are differences between WTH and CH in two directions: both the significance of drivers and the shape of the response functions differ. GAMs turn out to be a flexible and powerful alternative to multivariate linear regression. The restriction to linear relationships seems to be unjustified in the present case. We use Random Forests as a highly efficient classifier which gives reliable estimates for the importance of each driver variable in determining the diameter growth for the two different harvesting treatments. Based on the final results of these two modelling approaches, the study contributes to find appropriate strategies and suitable regions (in Norway) where WTH may be sustainable performed.

  3. Inferring gene regression networks with model trees

    PubMed Central

    2010-01-01

    Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database) is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear regressions to separate areas of the search space favoring to infer localized similarities over a more global similarity. Furthermore, experimental results show the good performance of REGNET. PMID:20950452

  4. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the multivariate adaptive regression splines (MARS) technique, conclusions of this research work are exposed.

  5. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    PubMed

    Apgaua, Deborah M G; Ishida, Françoise Y; Tng, David Y P; Laidlaw, Melinda J; Santos, Rubens M; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A M; Laurance, Susan G W

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.

  6. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees

    PubMed Central

    Apgaua, Deborah M. G.; Ishida, Françoise Y.; Tng, David Y. P.; Laidlaw, Melinda J.; Santos, Rubens M.; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A. M.; Laurance, Susan G. W.

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  7. More Trees, More Poverty? The Socioeconomic Effects of Tree Plantations in Chile, 2001-2011

    NASA Astrophysics Data System (ADS)

    Andersson, Krister; Lawrence, Duncan; Zavaleta, Jennifer; Guariguata, Manuel R.

    2016-01-01

    Tree plantations play a controversial role in many nations' efforts to balance goals for economic development, ecological conservation, and social justice. This paper seeks to contribute to this debate by analyzing the socioeconomic impact of such plantations. We focus our study on Chile, a country that has experienced extraordinary growth of industrial tree plantations. Our analysis draws on a unique dataset with longitudinal observations collected in 180 municipal territories during 2001-2011. Employing panel data regression techniques, we find that growth in plantation area is associated with higher than average rates of poverty during this period.

  8. More Trees, More Poverty? The Socioeconomic Effects of Tree Plantations in Chile, 2001-2011.

    PubMed

    Andersson, Krister; Lawrence, Duncan; Zavaleta, Jennifer; Guariguata, Manuel R

    2016-01-01

    Tree plantations play a controversial role in many nations' efforts to balance goals for economic development, ecological conservation, and social justice. This paper seeks to contribute to this debate by analyzing the socioeconomic impact of such plantations. We focus our study on Chile, a country that has experienced extraordinary growth of industrial tree plantations. Our analysis draws on a unique dataset with longitudinal observations collected in 180 municipal territories during 2001-2011. Employing panel data regression techniques, we find that growth in plantation area is associated with higher than average rates of poverty during this period.

  9. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis.

    PubMed

    Koziol, James A; Feng, Anne C; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan

    2009-01-01

    Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors.

  10. Profile of male Brazilian injecting drug users who have sex with men.

    PubMed

    Ferreira, Aline Dayrell; Caiaffa, Waleska Teixeira; Bastos, Francisco I; Mingoti, Sueli Aparecida

    2006-04-01

    This study aims to characterize the profile of male injecting drug users who have sex with other men (MSM IDUs) recruited through a cross-sectional multi-city survey (AjUDE-Brasil II Project) in six Brazilian cities, in 2000-2001. MSM IDUs were compared to other male IDUs using bivariate and multivariate procedures (logistic regression and answer tree analysis with the CHAID algorithm). Among the 709 male IDUs, 187 (26.4%) reported ever having had sex with other men, while only 37 reported sex with other men in the previous six months. MSM IDUs were more likely to be unemployed (OR = 2.3), to have injected tranquilizers (OR = 3.6), and to be HIV-seropositive (OR = 2.1), compared to other male IDUs. Male same-sex relations in this subgroup appear to be associated with strategies to finance drug consuming habits, including sex for drugs with occasional female partners or obtaining injection paraphernalia from occasional sex partners. Further studies should focus on this especially vulnerable subgroup of IDUs, due to the bidirectional and complex interrelationships between their drug injecting habits and sexual risk behaviors.

  11. GDF15(MIC1) H6D Polymorphism Does Not Influence Cardiovascular Disease in a Latin American Population with Rheumatoid Arthritis

    PubMed Central

    Amaya-Amaya, Jenny; Rojas-Villarraga, Adriana; Molano-Gonzalez, Nicolas; Montoya-Sánchez, Laura; Nath, Swapan K.; Anaya, Juan-Manuel

    2015-01-01

    Objective. Rheumatoid arthritis (RA) is the most common autoimmune arthropathy worldwide. The increased prevalence of cardiovascular disease (CVD) in RA is not fully explained by classic risk factors. The aim of this study was to determine the influence of rs1058587 SNP within GDF15(MIC1) gene on the risk of CVD in a Colombian RA population. Methods. This was a cross-sectional analytical study in which 310 consecutive Colombian patients with RA and 228 age- and sex-matched controls were included and assessed for variables associated with CVD. The mixed cluster methodology based on multivariate descriptive methods such as principal components analysis and multiple correspondence analyses and regression tree (CART) predictive model were performed. Results. Of the 310 patients, 87.4% were women and CVD was reported in 69.5%. Significant differences concerning GDF15 polymorphism were not observed between patients and controls. Mean arterial pressure, current smoking, and some clusters were significantly associated with CVD. Conclusion. GDF15 (rs1058587) does not influence the development of CVD in the population studied. PMID:26090487

  12. A refined method for multivariate meta-analysis and meta-regression

    PubMed Central

    Jackson, Daniel; Riley, Richard D

    2014-01-01

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects’ standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:23996351

  13. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  14. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    PubMed

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  15. Access disparities to Magnet hospitals for patients undergoing neurosurgical operations

    PubMed Central

    Missios, Symeon; Bekelis, Kimon

    2017-01-01

    Background Centers of excellence focusing on quality improvement have demonstrated superior outcomes for a variety of surgical interventions. We investigated the presence of access disparities to hospitals recognized by the Magnet Recognition Program of the American Nurses Credentialing Center (ANCC) for patients undergoing neurosurgical operations. Methods We performed a cohort study of all neurosurgery patients who were registered in the New York Statewide Planning and Research Cooperative System (SPARCS) database from 2009–2013. We examined the association of African-American race and lack of insurance with Magnet status hospitalization for neurosurgical procedures. A mixed effects propensity adjusted multivariable regression analysis was used to control for confounding. Results During the study period, 190,535 neurosurgical patients met the inclusion criteria. Using a multivariable logistic regression, we demonstrate that African-Americans had lower admission rates to Magnet institutions (OR 0.62; 95% CI, 0.58–0.67). This persisted in a mixed effects logistic regression model (OR 0.77; 95% CI, 0.70–0.83) to adjust for clustering at the patient county level, and a propensity score adjusted logistic regression model (OR 0.75; 95% CI, 0.69–0.82). Additionally, lack of insurance was associated with lower admission rates to Magnet institutions (OR 0.71; 95% CI, 0.68–0.73), in a multivariable logistic regression model. This persisted in a mixed effects logistic regression model (OR 0.72; 95% CI, 0.69–0.74), and a propensity score adjusted logistic regression model (OR 0.72; 95% CI, 0.69–0.75). Conclusions Using a comprehensive all-payer cohort of neurosurgery patients in New York State we identified an association of African-American race and lack of insurance with lower rates of admission to Magnet hospitals. PMID:28684152

  16. Beating the Odds: Trees to Success in Different Countries

    ERIC Educational Resources Information Center

    Finch, W. Holmes; Marchant, Gregory J.

    2017-01-01

    A recursive partitioning model approach in the form of classification and regression trees (CART) was used with 2012 PISA data for five countries (Canada, Finland, Germany, Singapore-China, and the Unites States). The objective of the study was to determine demographic and educational variables that differentiated between low SES student that were…

  17. Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi

    Treesearch

    Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III

    2012-01-01

    Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...

  18. Using Classification Trees to Predict Alumni Giving for Higher Education

    ERIC Educational Resources Information Center

    Weerts, David J.; Ronca, Justin M.

    2009-01-01

    As the relative level of public support for higher education declines, colleges and universities aim to maximize alumni-giving to keep their programs competitive. Anchored in a utility maximization framework, this study employs the classification and regression tree methodology to examine characteristics of alumni donors and non-donors at a…

  19. Updated generalized biomass equations for North American tree species

    Treesearch

    David C. Chojnacky; Linda S. Heath; Jennifer C. Jenkins

    2014-01-01

    Historically, tree biomass at large scales has been estimated by applying dimensional analysis techniques and field measurements such as diameter at breast height (dbh) in allometric regression equations. Equations often have been developed using differing methods and applied only to certain species or isolated areas. We previously had compiled and combined (in meta-...

  20. The microcomputer scientific software series 5: the BIOMASS user's guide.

    Treesearch

    George E. Host; Stephen C. Westin; William G. Cole; Kurt S. Pregitzer

    1989-01-01

    BIOMASS is an interactive microcomputer program that uses allometric regression equations to calculate aboveground biomass of common tree species of the Lake States. The equations are species-specific and most use both diameter and height as independent variables. The program accommodates fixed area and variable radius sample designs and produces both individual tree...

  1. Northern Arkansas Spring Precipitation Reconstructed from Tree Rings, 1023-1992 A.D.

    Treesearch

    Malcolm K. Cleaveland

    2001-01-01

    Three baldcypress (Taxodium distichum (L.) Rich.) tree-ring chronologies in northeastern Arkansas and southeastern Missouri respond strongly to April-June (spring) rainfall in northern Arkansas. I used regression to reconstruct an average of spring rainfall in the three climatic divisions of northern Arkansas since 1023 A.D. The reconstruction was...

  2. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  3. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    NASA Astrophysics Data System (ADS)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  4. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.

  5. Serum dehydroepiandrosterone sulphate, psychosocial factors and musculoskeletal pain in workers.

    PubMed

    Marinelli, A; Prodi, A; Pesel, G; Ronchese, F; Bovenzi, M; Negro, C; Larese Filon, F

    2017-12-30

    The serum level of dehydroepiandrosterone sulphate (DHEA-S) has been suggested as a biological marker of stress. To assess the association between serum DHEA-S, psychosocial factors and musculoskeletal (MS) pain in university workers. The study population included voluntary workers at the scientific departments of the University of Trieste (Italy) who underwent periodical health surveillance from January 2011 to June 2012. DHEA-S level was analysed in serum. The assessment tools included the General Health Questionnaire (GHQ) and a modified Nordic musculoskeletal symptoms questionnaire. The relation between DHEA-S, individual characteristics, pain perception and psychological factors was assessed by means of multivariable linear regression analysis. There were 189 study participants. The study population was characterized by high reward and low effort. Pain perception in the neck, shoulder, upper limbs, upper back and lower back was reported by 42, 32, 19, 29 and 43% of people, respectively. In multivariable regression analysis, gender, age and pain perception in the shoulder and upper limbs were significantly related to serum DHEA-S. Effort and overcommitment were related to shoulder and neck pain but not to DHEA-S. The GHQ score was associated with pain perception in different body sites and inversely to DHEA-S but significance was lost in multivariable regression analysis. DHEA-S was associated with age, gender and perception of MS pain, while effort-reward imbalance dimensions and GHQ score failed to reach the statistical significance in multivariable regression analysis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Independent Prognostic Factors for Acute Organophosphorus Pesticide Poisoning.

    PubMed

    Tang, Weidong; Ruan, Feng; Chen, Qi; Chen, Suping; Shao, Xuebo; Gao, Jianbo; Zhang, Mao

    2016-07-01

    Acute organophosphorus pesticide poisoning (AOPP) is becoming a significant problem and a potential cause of human mortality because of the abuse of organophosphate compounds. This study aims to determine the independent prognostic factors of AOPP by using multivariate logistic regression analysis. The clinical data for 71 subjects with AOPP admitted to our hospital were retrospectively analyzed. This information included the Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, admission blood cholinesterase levels, 6-h post-admission blood cholinesterase levels, cholinesterase activity, blood pH, and other factors. Univariate analysis and multivariate logistic regression analyses were conducted to identify all prognostic factors and independent prognostic factors, respectively. A receiver operating characteristic curve was plotted to analyze the testing power of independent prognostic factors. Twelve of 71 subjects died. Admission blood lactate levels, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, blood pH, and APACHE II scores were identified as prognostic factors for AOPP according to the univariate analysis, whereas only 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, and blood pH were independent prognostic factors identified by multivariate logistic regression analysis. The receiver operating characteristic analysis suggested that post-admission 6-h lactate clearance rates were of moderate diagnostic value. High 6-h post-admission blood lactate levels, low blood pH, and low post-admission 6-h lactate clearance rates were independent prognostic factors identified by multivariate logistic regression analysis. Copyright © 2016 by Daedalus Enterprises.

  7. Quality Reporting of Multivariable Regression Models in Observational Studies: Review of a Representative Sample of Articles Published in Biomedical Journals.

    PubMed

    Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M

    2016-05-01

    Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.

  8. A novel prediction approach for antimalarial activities of Trimethoprim, Pyrimethamine, and Cycloguanil analogues using extremely randomized trees.

    PubMed

    Nattee, Cholwich; Khamsemanan, Nirattaya; Lawtrakul, Luckhana; Toochinda, Pisanu; Hannongbua, Supa

    2017-01-01

    Malaria is still one of the most serious diseases in tropical regions. This is due in part to the high resistance against available drugs for the inhibition of parasites, Plasmodium, the cause of the disease. New potent compounds with high clinical utility are urgently needed. In this work, we created a novel model using a regression tree to study structure-activity relationships and predict the inhibition constant, K i of three different antimalarial analogues (Trimethoprim, Pyrimethamine, and Cycloguanil) based on their molecular descriptors. To the best of our knowledge, this work is the first attempt to study the structure-activity relationships of all three analogues combined. The most relevant descriptors and appropriate parameters of the regression tree are harvested using extremely randomized trees. These descriptors are water accessible surface area, Log of the aqueous solubility, total hydrophobic van der Waals surface area, and molecular refractivity. Out of all possible combinations of these selected parameters and descriptors, the tree with the strongest coefficient of determination is selected to be our prediction model. Predicted K i values from the proposed model show a strong coefficient of determination, R 2 =0.996, to experimental K i values. From the structure of the regression tree, compounds with high accessible surface area of all hydrophobic atoms (ASA_H) and low aqueous solubility of inhibitors (Log S) generally possess low K i values. Our prediction model can also be utilized as a screening test for new antimalarial drug compounds which may reduce the time and expenses for new drug development. New compounds with high predicted K i should be excluded from further drug development. It is also our inference that a threshold of ASA_H greater than 575.80 and Log S less than or equal to -4.36 is a sufficient condition for a new compound to possess a low K i . Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The limits to tree height.

    PubMed

    Koch, George W; Sillett, Stephen C; Jennings, Gregory M; Davis, Stephen D

    2004-04-22

    Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.

  10. MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION

    EPA Science Inventory

    Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...

  11. Comparison of Sub-Pixel Classification Approaches for Crop-Specific Mapping

    EPA Science Inventory

    This paper examined two non-linear models, Multilayer Perceptron (MLP) regression and Regression Tree (RT), for estimating sub-pixel crop proportions using time-series MODIS-NDVI data. The sub-pixel proportions were estimated for three major crop types including corn, soybean, a...

  12. "Mad or bad?": burden on caregivers of patients with personality disorders.

    PubMed

    Bauer, Rita; Döring, Antje; Schmidt, Tanja; Spießl, Hermann

    2012-12-01

    The burden on caregivers of patients with personality disorders is often greatly underestimated or completely disregarded. Possibilities for caregiver support have rarely been assessed. Thirty interviews were conducted with caregivers of such patients to assess illness-related burden. Responses were analyzed with a mixed method of qualitative and quantitative analysis in a sequential design. Patient and caregiver data, including sociodemographic and disease-related variables, were evaluated with regression analysis and regression trees. Caregiver statements (n = 404) were summarized into 44 global statements. The most frequent global statements were worries about the burden on other family members (70.0%), poor cooperation with clinical centers and other institutions (60.0%), financial burden (56.7%), worry about the patient's future (53.3%), and dissatisfaction with the patient's treatment and rehabilitation (53.3%). Linear regression and regression tree analysis identified predictors for more burdened caregivers. Caregivers of patients with personality disorders experience a variety of burdens, some disorder specific. Yet these caregivers often receive little attention or support.

  13. Automatic localization of bifurcations and vessel crossings in digital fundus photographs using location regression

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Dumitrescu, Alina V.; van Ginneken, Bram; Abrámoff, Michael D.

    2011-03-01

    Parameters extracted from the vasculature on the retina are correlated with various conditions such as diabetic retinopathy and cardiovascular diseases such as stroke. Segmentation of the vasculature on the retina has been a topic that has received much attention in the literature over the past decade. Analysis of the segmentation result, however, has only received limited attention with most works describing methods to accurately measure the width of the vessels. Analyzing the connectedness of the vascular network is an important step towards the characterization of the complete vascular tree. The retinal vascular tree, from an image interpretation point of view, originates at the optic disc and spreads out over the retina. The tree bifurcates and the vessels also cross each other. The points where this happens form the key to determining the connectedness of the complete tree. We present a supervised method to detect the bifurcations and crossing points of the vasculature of the retina. The method uses features extracted from the vasculature as well as the image in a location regression approach to find those locations of the segmented vascular tree where the bifurcation or crossing occurs (from here, POI, points of interest). We evaluate the method on the publicly available DRIVE database in which an ophthalmologist has marked the POI.

  14. A multivariate model of plant species richness in forested systems: Old-growth montane forests with a long history of fire

    USGS Publications Warehouse

    Laughlin, D.C.; Grace, J.B.

    2006-01-01

    Recently, efforts to develop multivariate models of plant species richness have been extended to include systems where trees play important roles as overstory elements mediating the influences of environment and disturbance on understory richness. We used structural equation modeling to examine the relationship of understory vascular plant species richness to understory abundance, forest structure, topographic slope, and surface fire history in lower montane forests on the North Rim of Grand Canyon National Park, USA based on data from eighty-two 0.1 ha plots. The questions of primary interest in this analysis were: (1) to what degree are influences of trees on understory richness mediated by effects on understory abundance? (2) To what degree are influences of fire history on richness mediated by effects on trees and/or understory abundance? (3) Can the influences of fire history on this system be related simply to time-since-fire or are there unique influences associated with long-term fire frequency? The results we obtained are consistent with the following inferences. First, it appears that pine trees had a strong inhibitory effect on the abundance of understory plants, which in turn led to lower understory species richness. Second, richness declined over time since the last fire. This pattern appears to result from several processes, including (1) a post-fire stimulation of germination, (2) a decline in understory abundance, and (3) an increase over time in pine abundance (which indirectly leads to reduced richness). Finally, once time-since-fire was statistically controlled, it was seen that areas with higher fire frequency have lower richness than expected, which appears to result from negative effects on understory abundance, possibly by depletions of soil nutrients from repeated surface fire. Overall, it appears that at large temporal and spatial scales, surface fire plays an important and complex role in structuring understory plant communities in old-growth montane forests. These results show how multivariate models of herbaceous richness can be expanded to apply to forested systems. Copyright ?? Oikos 2006.

  15. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development

    PubMed Central

    Hayes, Mark A.; Cryan, Paul M.; Wunder, Michael B.

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn—the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as ‘risk from turbines is highest in habitats between hoary bat summering and wintering grounds’. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution. PMID:26208098

  16. Characterizing the Intersection of Co-Occurring Risk Factors for Illicit Drug Abuse and Dependence in a U.S. Nationally Representative Sample

    PubMed Central

    Kurti, Allison N.; Keith, Diana R.; Noble, Alyssa; Priest, Jeff S.; Sprague, Brian; Higgins, Stephen T.

    2016-01-01

    Few studies have attempted to characterize how co-occurring risk factors for substance use disorders intersect. A recent study examined this question regarding cigarette smoking and demonstrated that co-occurring risk factors generally act independently. The present study examines whether that same pattern of independent intersection of risk factors extends to illicit drug abuse/dependence using a U.S. nationally representative sample (National Survey on Drug Use and Health, 2011–2013). Logistic regression and classification and regression tree (CART) modeling were used to examine risk of past-year drug abuse/dependence associated with a well-established set of risk factors for substance use (age, gender, race/ethnicity, education, poverty, smoking status, alcohol abuse/dependence, mental illness). Each of these risk factors was associated with significant increases in the odds of drug abuse/dependence in univariate logistic regressions. Each remained significant in a multivariate model examining all eight risk factors simultaneously. CART modeling of these 8 risk factors identified subpopulation risk profiles wherein drug abuse/dependence prevalence varied from < 1% to > 80% corresponding to differing combinations of risk factors present. Alcohol abuse/dependence and cigarette smoking had the strongest associations with drug abuse/dependence risk. These results demonstrate that co-occurring risk factors for illicit drug/abuse dependence generally intersect in the same independent manner as risk factors for cigarette smoking, underscoring further fundamental commonalities across these different types of substance use disorders. These results also underscore the fundamental importance of differences in the presence of co-occurring risk factors when considering the often strikingly different prevalence rates of illicit drug abuse/dependence in U.S. population subgroups. PMID:27687534

  17. Seasonally-dynamic presence-only species distribution models for a cryptic migratory bat impacted by wind energy development

    USGS Publications Warehouse

    Hayes, Mark A.; Cryan, Paul M.; Wunder, Michael B.

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn—the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as ‘risk from turbines is highest in habitats between hoary bat summering and wintering grounds’. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  18. Cell cycle-related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients.

    PubMed

    Chen, Jinyun; Pande, Mala; Huang, Yu-Jing; Wei, Chongjuan; Amos, Christopher I; Talseth-Palmer, Bente A; Meldrum, Cliff J; Chen, Wei V; Gorlov, Ivan P; Lynch, Patrick M; Scott, Rodney J; Frazier, Marsha L

    2013-02-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle-related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle-related genes and 31 DNA repair-related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan-Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P < 5 × 10(-4)). Furthermore, risk modeling using CART analysis defined combinations of genotypes for these SNPs with which subjects could be classified into low-risk, moderate-risk and high-risk groups that had median ages of colorectal cancer onset of 63, 50 and 42 years, respectively. The age-associated risk of colorectal cancer in the high-risk group was more than four times the risk in the low-risk group (hazard ratio = 4.67, 95% CI = 3.16-6.92). The additional genetic markers identified may help in refining risk groups for more tailored screening and follow-up of non-Hispanic white patients with Lynch syndrome.

  19. Cell cycle–related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients

    PubMed Central

    Chen, Jinyun; Pande, Mala

    2013-01-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle–related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle–related genes and 31 DNA repair–related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan–Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P < 5×10–4). Furthermore, risk modeling using CART analysis defined combinations of genotypes for these SNPs with which subjects could be classified into low-risk, moderate-risk and high-risk groups that had median ages of colorectal cancer onset of 63, 50 and 42 years, respectively. The age-associated risk of colorectal cancer in the high-risk group was more than four times the risk in the low-risk group (hazard ratio = 4.67, 95% CI = 3.16–6.92). The additional genetic markers identified may help in refining risk groups for more tailored screening and follow-up of non-Hispanic white patients with Lynch syndrome. PMID:23125224

  20. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development.

    PubMed

    Hayes, Mark A; Cryan, Paul M; Wunder, Michael B

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn-the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as 'risk from turbines is highest in habitats between hoary bat summering and wintering grounds'. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  1. Semi-automatic digital image impact assessments of Maize Lethal Necrosis (MLN) at the leaf, whole plant and plot levels

    NASA Astrophysics Data System (ADS)

    Kefauver, S. C.; Vergara-Diaz, O.; El-Haddad, G.; Das, B.; Suresh, L. M.; Cairns, J.; Araus, J. L.

    2016-12-01

    Maize is the top staple crop for low-income populations in Sub-Saharan Africa and is currently suffering from the appearance of new diseases, which, together with increased abiotic stresses from climate change, are challenging the very sustainability of African societies. Current constraints in field phenotyping remain a major bottleneck for future breeding advances, but RGB-based High-Throughput Phenotyping Platforms (HTPPs) have demonstrated promise for rapidly developing both disease-resistant and weather-resilient crops. RGB HTTPs have proven cost-effective in studies assessing the effect of abiotic stresses, but have yet to be fully exploited to phenotype disease resistance. RGB image quantification using different alternate color space transforms, including BreedPix indices, were produced as part of a FIJI plug-in (http://fiji.sc/Fiji; http://github.com/george-haddad/CIMMYT). For validation, Maize Lethal Necrosis (MLN) visual scale impact assessments from 1 to 5 were scored by the resident CIMMYT plant pathologist, with 1 being MLN resistant (healthy plants with no visual symptoms) and 5 being totally susceptible (entirely necrotic with no green tissue). Individual RGB vegetation indexes outperformed NDVI (Normalized Difference Vegetation Index), with correlation values up to 0.72, compared to 0.56 for NDVI. Specifically, Hue, Green Area (GA), and the Normalized Green Red Difference Index (NGRDI) consistently outperformed NDVI in estimating MLN disease severity. In multivariate linear and various decision tree models, Necrosis Area (NA) and Chlorosis Area (CA), calculated similar to GA and GGA from Breedpix, also contributed significantly to estimating MLN impact scores. Results using UAS (Unmanned Aerial Systems), proximal field photography of plants and plots and flatbed scanners of individual leaves have produced similar results, demonstrating the robustness of these cost-effective RGB indexes. Furthermore, the application of the indices using classification and regression trees and conditional inference trees allows for their immediate implementation within the same open-source plugin for providing real time tools to crop breeders.

  2. Salting-out assisted liquid-liquid extraction and partial least squares regression to assay low molecular weight polycyclic aromatic hydrocarbons leached from soils and sediments

    NASA Astrophysics Data System (ADS)

    Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise

    2017-02-01

    A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.

  3. Elevated amniotic fluid lactate predicts labor disorders and cesarean delivery in nulliparous women at term.

    PubMed

    Murphy, Martina; Butler, Michelle; Coughlan, Barbara; Brennan, Donal; O'Herlihy, Colm; Robson, Michael

    2015-11-01

    We sought to assess amniotic fluid lactate (AFL) at diagnosis of spontaneous labor at term (≥37 weeks) as a predictor of labor disorders (dystocia) and cesarean delivery (CD). This was a single-institution, prospective cohort study of 905 singleton, cephalic, term (≥37 weeks) nulliparous women in spontaneous labor. A standard management of labor (active management of labor) including a standard oxytocin regimen up to a maximum dose of 30 mU/min was applied. AFL was measured using a point-of-care device (LMU061; ObsteCare, Stockholm, Sweden). Labor arrest in the first stage of labor was defined as the need for oxytocin when cervical dilatation was <1 cm/h over 2 hours and in the second stage of labor by poor descent and rotation over 1 hour. Standard statistical analysis included analysis of variance, Pearson correlations, and binary logistic regression. Unsupervised decision tree analysis with 10-fold cross-validation was used to identify AFL thresholds. AFL was normally distributed and did not correlate with age, body mass index, or gestation. Unsupervised decision tree analysis demonstrated that AFL could be divided into 3 groups: 0-4.9 mmol/L (n = 118), 5.0-9.9 mmol/L (n = 707), and ≥10.0 mmol/L (n = 80). Increasing AFL was associated with higher total oxytocin dose (P = .001), labor disorders (P = .005), and CD (P ≤ .001). Multivariable regression analysis demonstrated that women with AFL ≥5.0-9.9 mmol/L (odds ratio [OR], 1.6; 95% confidence interval [CI], 1.06-2.39) and AFL ≥10.0 mmol/L (OR, 1.72; 95% CI, 1.01-2.93) were independent predictors of a labor disorder. AFL ≥5.0-9.9 mmol/L did not predict CD but multivariable analysis confirmed that AFL ≥10.0 mmol/L was an independent predictor of CD (OR, 3.35; 95% CI, 1.73-6.46). AFL ≥5.0-9.9 mmol/L had a sensitivity of 89% in predicting a labor disorder and a sensitivity of 93% in predicting CD with a 97% negative predictive value. AFL ≥10.0 mmol/L was highly specific but lacked sensitivity for CD. There was no difference in birthweight of infants according to labor disorder and delivery method. AFL at diagnosis of labor in spontaneously laboring single cephalic nulliparous term women is an independent predictor of a labor disorder and CD. These data suggest that women with AFL between 5.0-9.9 mmol/L with a labor disorder may be amenable to correction using the active management of labor protocol. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A Multivariate Test of the Bott Hypothesis in an Urban Irish Setting

    ERIC Educational Resources Information Center

    Gordon, Michael; Downing, Helen

    1978-01-01

    Using a sample of 686 married Irish women in Cork City the Bott hypothesis was tested, and the results of a multivariate regression analysis revealed that neither network connectedness nor the strength of the respondent's emotional ties to the network had any explanatory power. (Author)

  5. Estimating forest crown area removed by selection cutting: a linked regression-GIS approach based on stump diameters

    USGS Publications Warehouse

    Anderson, S.C.; Kupfer, J.A.; Wilson, R.R.; Cooper, R.J.

    2000-01-01

    The purpose of this research was to develop a model that could be used to provide a spatial representation of uneven-aged silvicultural treatments on forest crown area. We began by developing species-specific linear regression equations relating tree DBH to crown area for eight bottomland tree species at White River National Wildlife Refuge, Arkansas, USA. The relationships were highly significant for all species, with coefficients of determination (r(2)) ranging from 0.37 for Ulmus crassifolia to nearly 0.80 for Quercus nuttalliii and Taxodium distichum. We next located and measured the diameters of more than 4000 stumps from a single tree-group selection timber harvest. Stump locations were recorded with respect to an established gl id point system and entered into a Geographic Information System (ARC/INFO). The area occupied by the crown of each logged individual was then estimated by using the stump dimensions (adjusted to DBHs) and the regression equations relating tree DBH to crown area. Our model projected that the selection cuts removed roughly 300 m(2) of basal area from the logged sites resulting in the loss of approximate to 55 000 m(2) of crown area. The model developed in this research represents a tool that can be used in conjunction with remote sensing applications to assist in forest inventory and management, as well as to estimate the impacts of selective timber harvest on wildlife.

  6. A cross-sectional study for predicting tail biting risk in pig farms using classification and regression tree analysis.

    PubMed

    Scollo, Annalisa; Gottardo, Flaviana; Contiero, Barbara; Edwards, Sandra A

    2017-10-01

    Tail biting in pigs has been an identified behavioural, welfare and economic problem for decades, and requires appropriate but sometimes difficult on-farm interventions. The aim of the paper is to introduce the Classification and Regression Tree (CRT) methodologies to develop a tool for prevention of acute tail biting lesions in pigs on-farm. A sample of 60 commercial farms rearing heavy pigs were involved; an on-farm visit and an interview with the farmer collected data on general management, herd health, disease prevention, climate control, feeding and production traits. Results suggest a value for the CRT analysis in managing the risk factors behind tail biting on a farm-specific level, showing 86.7% sensitivity for the Classification Tree and a correlation of 0.7 between observed and predicted prevalence of tail biting obtained with the Regression Tree. CRT analysis showed five main variables (stocking density, ammonia levels, number of pigs per stockman, type of floor and timeliness in feed supply) as critical predictors of acute tail biting lesions, which demonstrate different importance in different farms subgroups. The model might have reliable and practical applications for the support and implementation of tail biting prevention interventions, especially in case of subgroups of pigs with higher risk, helping farmers and veterinarians to assess the risk in their own farm and to manage their predisposing variables in order to reduce acute tail biting lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Annual Tree Growth Predictions From Periodic Measurements

    Treesearch

    Quang V. Cao

    2004-01-01

    Data from annual measurements of a loblolly pine (Pinus taeda L.) plantation were available for this study. Regression techniques were employed to model annual changes of individual trees in terms of diameters, heights, and survival probabilities. Subsets of the data that include measurements every 2, 3, 4, 5, and 6 years were used to fit the same...

  8. Understory response following varying levels of overstory removal in mixed conifer stands

    Treesearch

    Fabian C.C. Uzoh; Leroy K. Dolph; John R. Anstead

    1997-01-01

    Diameter growth rates of understory trees were measured for periods both before and after overstory removal on six study areas in northern California. All the species responded with increased diameter growth after adjusting to their new environments. Linear regression equations that predict post treatment diameter growth increment of the residual trees are presented...

  9. Delayed conifer tree mortality following fire in California

    Treesearch

    Sharon M. Hood; Sheri L. Smith; Daniel R. Cluck

    2007-01-01

    Fire injury was characterized and survival monitored for 5,246 trees from five wildfires in California that occurred between 1999 and 2002. Logistic regression models for predicting the probability of mortality were developed for incense-cedar, Jeffrey pine, ponderosa pine, red fir and white fir. Two-year post-fire preliminary models were developed for incense-cedar,...

  10. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  11. Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USA

    Treesearch

    Kirk M. Stueve; Dawna L. Cerney; Regina M. Rochefort; Laurie L. Kurth

    2009-01-01

    We performed classification analysis of 1970 satellite imagery and 2003 aerial photography to delineate establishment. Local site conditions were calculated from a LIDAR-based DEM, ancillary climate data, and 1970 tree locations in a GIS. We used logistic regression on a spatially weighted landscape matrix to rank variables.

  12. Biomass of Yellow-Poplar in Natural Stands in Western North Carolina

    Treesearch

    Alexander Clark; James G. Schroeder

    1977-01-01

    Aboveground biomass was determined for yellow-poplar(Liriodendron tulipifera L.) trees 6 to 28 inches d. b. h. growingin natural, uneven-aged mountaincovestandsin western North Carolina.Specific gravity, moisture content, and green weight per cubic foot are presented for the total tree and its components. Tables developed from regression equations show weight and...

  13. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis

    PubMed Central

    Koziol, James A.; Feng, Anne C.; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan

    2009-01-01

    Motivation: Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Results: Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors. Contact: dmercola@uci.edu PMID:18628288

  14. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  15. Estimating extent of mortality associated with the Douglas-fir beetle in the Central and Northern Rockies

    Treesearch

    Jose F. Negron; Willis C. Schaupp; Kenneth E. Gibson; John Anhold; Dawn Hansen; Ralph Thier; Phil Mocettini

    1999-01-01

    Data collected from Douglas-fir stands infected by the Douglas-fir beetle in Wyoming, Montana, Idaho, and Utah, were used to develop models to estimate amount of mortality in terms of basal area killed. Models were built using stepwise linear regression and regression tree approaches. Linear regression models using initial Douglas-fir basal area were built for all...

  16. Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit.

    PubMed

    Acosta-Quezada, Pablo G; Raigón, María D; Riofrío-Cuenca, Tania; García-Martínez, María D; Plazas, Mariola; Burneo, Juan I; Figueroa, Jorge G; Vilanova, Santiago; Prohens, Jaime

    2015-02-15

    We evaluated 23 tree tomato (Solanum betaceum) accessions from five cultivar groups and one wild relative (Solanum cajanumense) for 26 composition traits. For all traits we found highly significant differences (P<0.001) among the materials studied. The high diversity found within S. betaceum for composition traits was matched by a high diversity within each of the cultivar groups. We found that sucrose and citric acid were the most important soluble sugar and organic acid, respectively, in tree tomato. Fruit in the anthocyanin pigmented (purple) group had a carotenoid content similar to that in the yellow-orange cultivar groups. Total phenolic content was significantly correlated (r=0.8607) with antioxidant activity. Analyses of mineral content showed that tree tomato is a good source of K, Mg, and Cu. Multivariate principal components analysis (PCA) confirmed that an important diversity exists within each cultivar group. The results we have obtained indicate that the high diversity found within the tree tomato could be exploited for selection and breeding for developing the tree tomato as a commercial crop. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil.

    PubMed

    Sanquetta, Carlos R; Corte, Ana Pd; da Silva, Fernando

    2011-09-24

    The Biomass Expansion Factor (BEF) and the Root-to-Shoot Ratio (R) are variables used to quantify carbon stock in forests. They are often considered as constant or species/area specific values in most studies. This study aimed at showing tree size and age dependence upon BEF and R and proposed equations to improve forest biomass and carbon stock. Data from 70 sample Pinus spp. grown in southern Brazil trees in different diameter classes and ages were used to demonstrate the correlation between BEF and R, and forest inventory data, such as DBH, tree height and age. Total dry biomass, carbon stock and CO2 equivalent were simulated using the IPCC default values of BEF and R, corresponding average calculated from data used in this study, as well as the values estimated by regression equations. The mean values of BEF and R calculated in this study were 1.47 and 0.17, respectively. The relationship between BEF and R and the tree measurement variables were inversely related with negative exponential behavior. Simulations indicated that use of fixed values of BEF and R, either IPCC default or current average data, may lead to unreliable estimates of carbon stock inventories and CDM projects. It was concluded that accounting for the variations in BEF and R and using regression equations to relate them to DBH, tree height and age, is fundamental in obtaining reliable estimates of forest tree biomass, carbon sink and CO2 equivalent.

  18. Risk factors associated with gastric cancer in Mexico: education, breakfast and chili.

    PubMed

    Trujillo Rivera, Alejandro; Sampieri, Clara Luz; Morales Romero, Jaime; Montero, Hilda; Acosta Mesa, Héctor Gabriel; Cruz Ramírez, Nicandro; Novoa Del Toro, Elva María; León Córdoba, Kenneth

    2018-06-01

    the aim of the study was to use a validated questionnaire to identify factors associated with the development of gastric cancer (GC) in the Mexican population. the study included cases and controls that were paired by sex and ± 10 years of age at diagnosis. In relation to cases, 46 patients with a confirmed histopathological diagnosis of adenocarcinoma-type GC, as reported in the hospital records, were selected, and 46 blood bank donors from the same hospital were included as controls. The previously validated Questionnaire to Find Factors Associated with Gastric Cancer (QUFA-GC©) was used to collect data. Odds ratio (OR) and 95% confidence interval (IC) were estimated via univariate analysis (paired OR). Multivariate analysis was performed by logistic regression. A decision tree was constructed using the J48 algorithm. an association was found by univariate analysis between GC risk and a lack of formal education, having smoked for ≥ 10 years, eating rapidly, consuming very hot food and drinks, a non-suitable breakfast within two hours of waking, pickled food and capsaicin. In contrast, a protective association against GC was found with taking recreational exercise and consuming fresh fruit and vegetables. No association was found between the development of GC and having an income that reflected poverty, using a refrigerator, perception of the omission of breakfast and time period of alcoholism. In the final multivariate analysis model, having no formal education (OR = 17.47, 95% CI = 5.17-76.69), consuming a non-suitable breakfast within two hours of waking (OR = 8.99, 95% CI = 2.85-35.50) and the consumption of capsaicin ˃ 29.9 mg capsaicin per day (OR = 3.77, 95% CI = 1.21-13.11) were factors associated with GC. an association was found by multivariate analysis between the presence of GC and education, type of breakfast and the consumption of capsaicin. These variables are susceptible to intervention and can be identified via the QUFA-GC ©.

  19. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.

  20. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    PubMed

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  1. High-resolution analyses reveal structural diversity patterns of microbial communities in Chromite Ore Processing Residue (COPR) contaminated soils.

    PubMed

    Min, Xiaobo; Wang, Yangyang; Chai, Liyuan; Yang, Zhihui; Liao, Qi

    2017-09-01

    To explore how heavy metal contamination in Chromite Ore Processing Residue (COPR) disposal sites determine the dissimilarities of indigenous microbial communities, 16S rRNA gene MiSeq sequencing and advanced statistical methods were applied. 13 soil samples were collected from three COPR disposal sites in Mouding of southwestern, Shangnan of northwestern and Yima of central China. The results of analyses of variance (ANOVA), similarities (ANOSIM), and non-metric multidimensional scaling (NMDS) showed that the structural diversity of the microbial communities in the samples with high total chromium (Cr) content (more than 300 mg kg -1 ; High group) were significantly lesser than in the Low group (less than 90 mg kg -1 ) regardless of their geographical distribution. But their diversity had virtually rehabilitated under the pressures of long-term metal contamination. Furthermore, the similarity percentage (SIMPER) analysis indicated that the major dissimilarity contributors Micrococcaceae, Delftia, and Streptophyta, possibly having Cr(VI)-resistant and/or Cr(VI)-reducing capability, were dominant in the High group, while Ramlibacter and Gemmatimonas with potential resistances to other heavy metals were prevalent in the Low group. In addition, the multivariate regression tree (MRT), aggregated boosted tree (ABT), and Mantel test revealed that total Cr content affiliated with Cr(VI) was the principal factor shaping the dissimilarities between the soil microbial communities in the COPR sites. Our findings provide a deep insight of the influence of these heavy metals on the microbial communities in the COPR disposal sites and will facilitate bioremediation on such site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Shifts in indigenous culture relate to forest tree diversity: a case study from the Tsimane', Bolivian Amazon.

    PubMed

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-06-01

    Understanding how indigenous peoples' management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples' way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane', and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane' values, our proxy for cultural change. We estimated tree diversity (Fisher's Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane' communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way.

  3. Shifts in indigenous culture relate to forest tree diversity: a case study from the Tsimane’, Bolivian Amazon

    PubMed Central

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-01-01

    Understanding how indigenous peoples’ management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples’ way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane’, and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane’ values, our proxy for cultural change. We estimated tree diversity (Fisher’s Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane’ communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way. PMID:26097240

  4. Fire frequency in the Interior Columbia River Basin: Building regional models from fire history data

    USGS Publications Warehouse

    McKenzie, D.; Peterson, D.L.; Agee, James K.

    2000-01-01

    Fire frequency affects vegetation composition and successional pathways; thus it is essential to understand fire regimes in order to manage natural resources at broad spatial scales. Fire history data are lacking for many regions for which fire management decisions are being made, so models are needed to estimate past fire frequency where local data are not yet available. We developed multiple regression models and tree-based (classification and regression tree, or CART) models to predict fire return intervals across the interior Columbia River basin at 1-km resolution, using georeferenced fire history, potential vegetation, cover type, and precipitation databases. The models combined semiqualitative methods and rigorous statistics. The fire history data are of uneven quality; some estimates are based on only one tree, and many are not cross-dated. Therefore, we weighted the models based on data quality and performed a sensitivity analysis of the effects on the models of estimation errors that are due to lack of cross-dating. The regression models predict fire return intervals from 1 to 375 yr for forested areas, whereas the tree-based models predict a range of 8 to 150 yr. Both types of models predict latitudinal and elevational gradients of increasing fire return intervals. Examination of regional-scale output suggests that, although the tree-based models explain more of the variation in the original data, the regression models are less likely to produce extrapolation errors. Thus, the models serve complementary purposes in elucidating the relationships among fire frequency, the predictor variables, and spatial scale. The models can provide local managers with quantitative information and provide data to initialize coarse-scale fire-effects models, although predictions for individual sites should be treated with caution because of the varying quality and uneven spatial coverage of the fire history database. The models also demonstrate the integration of qualitative and quantitative methods when requisite data for fully quantitative models are unavailable. They can be tested by comparing new, independent fire history reconstructions against their predictions and can be continually updated, as better fire history data become available.

  5. National scale biomass estimators for United States tree species

    Treesearch

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2003-01-01

    Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...

  6. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  7. Rex fortran 4 system for combinatorial screening or conventional analysis of multivariate regressions

    Treesearch

    L.R. Grosenbaugh

    1967-01-01

    Describes an expansible computerized system that provides data needed in regression or covariance analysis of as many as 50 variables, 8 of which may be dependent. Alternatively, it can screen variously generated combinations of independent variables to find the regression with the smallest mean-squared-residual, which will be fitted if desired. The user can easily...

  8. Multivariate logistic regression for predicting total culturable virus presence at the intake of a potable-water treatment plant: novel application of the atypical coliform/total coliform ratio.

    PubMed

    Black, L E; Brion, G M; Freitas, S J

    2007-06-01

    Predicting the presence of enteric viruses in surface waters is a complex modeling problem. Multiple water quality parameters that indicate the presence of human fecal material, the load of fecal material, and the amount of time fecal material has been in the environment are needed. This paper presents the results of a multiyear study of raw-water quality at the inlet of a potable-water plant that related 17 physical, chemical, and biological indices to the presence of enteric viruses as indicated by cytopathic changes in cell cultures. It was found that several simple, multivariate logistic regression models that could reliably identify observations of the presence or absence of total culturable virus could be fitted. The best models developed combined a fecal age indicator (the atypical coliform [AC]/total coliform [TC] ratio), the detectable presence of a human-associated sterol (epicoprostanol) to indicate the fecal source, and one of several fecal load indicators (the levels of Giardia species cysts, coliform bacteria, and coprostanol). The best fit to the data was found when the AC/TC ratio, the presence of epicoprostanol, and the density of fecal coliform bacteria were input into a simple, multivariate logistic regression equation, resulting in 84.5% and 78.6% accuracies for the identification of the presence and absence of total culturable virus, respectively. The AC/TC ratio was the most influential input variable in all of the models generated, but producing the best prediction required additional input related to the fecal source and the fecal load. The potential for replacing microbial indicators of fecal load with levels of coprostanol was proposed and evaluated by multivariate logistic regression modeling for the presence and absence of virus.

  9. A hydraulic-photosynthetic model based on extended HLH and its application to Coast redwood (Sequoia sempervirens).

    PubMed

    Du, Ning; Fan, Jintu; Chen, Shuo; Liu, Yang

    2008-07-21

    Although recent investigations [Ryan, M.G., Yoder, B.J., 1997. Hydraulic limits to tree height and tree growth. Bioscience 47, 235-242; Koch, G.W., Sillett, S.C.,Jennings, G.M.,Davis, S.D., 2004. The limits to tree height. Nature 428, 851-854; Niklas, K.J., Spatz, H., 2004. Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc. Natl Acad. Sci. 101, 15661-15663; Ryan, M.G., Phillips, N., Bond, B.J., 2006. Hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367-381; Niklas, K.J., 2007. Maximum plant height and the biophysical factors that limit it. Tree Physiol. 27, 433-440; Burgess, S.S.O., Dawson, T.E., 2007. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol. 174, 626-636] suggested that the hydraulic limitation hypothesis (HLH) is the most plausible theory to explain the biophysical limits to maximum tree height and the decline in tree growth rate with age, the analysis is largely qualitative or based on statistical regression. Here we present an integrated biophysical model based on the principle that trees develop physiological compensations (e.g. the declined leaf water potential and the tapering of conduits with heights [West, G.B., Brown, J.H., Enquist, B.J., 1999. A general model for the structure and allometry of plant vascular systems. Nature 400, 664-667]) to resist the increasing water stress with height, the classical HLH and the biochemical limitations on photosynthesis [von Caemmerer, S., 2000. Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Australia]. The model has been applied to the tallest trees in the world (viz. Coast redwood (Sequoia sempervirens)). Xylem water potential, leaf carbon isotope composition, leaf mass to area ratio at different heights derived from the model show good agreements with the experimental measurements of Koch et al. [2004. The limits to tree height. Nature 428, 851-854]. The model also well explains the universal trend of declining growth rate with age.

  10. Estimating tree species diversity in the savannah using NDVI and woody canopy cover

    NASA Astrophysics Data System (ADS)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo; Naidoo, Laven

    2018-04-01

    Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference vegetation index (NDVI) to estimate tree species diversity on the basis that it is sensitive to primary productivity which defines spatial variation in plant diversity. The NDVI signal is influenced by photosynthetically active vegetation which, in the savannah, includes woody canopy foliage and grasses. The question is whether the relationship between NDVI and tree species diversity in the savanna depends on the woody cover percentage. This study explored the relationship between woody canopy cover (WCC) and tree species diversity in the savannah woodland of southern Africa and also investigated whether there is a significant interaction between seasonal NDVI and WCC in the factorial model when estimating tree species diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed tree species in 68 plots of 90 m × 90 m across the study area. Within each plot, all trees with diameter at breast height of >10 cm were sampled and Shannon index - a common measure of species diversity which considers both species richness and abundance - was used to quantify tree species diversity. We then extracted WCC in each plot from existing fractional woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial regression model was used to determine the interaction effect between NDVI and WCC when estimating tree species diversity. Results from regression analysis showed that (i) WCC has a highly significant relationship with tree species diversity (r2 = 0.21; p < 0.01), (ii) the interaction between the NDVI and WCC is not significant, however, the factorial model significantly reduced the error of prediction (RMSE = 0.47, p < 0.05) compared to NDVI (RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result justifies our assertion that combining NDVI with WCC will be optimal for biodiversity estimation during the senescence period.

  11. Crown area equations for 13 species of trees and shrubs in northern California and southwestern Oregon

    Treesearch

    Fabian C.C. Uzoh; Martin W. Ritchie

    1996-01-01

    The equations presented predict crown area for 13 species of trees and shrubs which may be found growing in competition with commercial conifers during early stages of stand development. The equations express crown area as a function of basal area and height. Parameters were estimated for each species individually using weighted nonlinear least square regression.

  12. Biomass equations for major tree species of the Northeast

    Treesearch

    Louise M. Tritton; James W. Hornbeck

    1982-01-01

    Regression equations are used in both forestry and ecosystem studies to estimate tree biomass from field measurements of dbh (diameter at breast height) or a combination of dbh and height. Literature on biomass is reviewed, and 178 sets of publish equation for 25 species common to the Northeastern Unites States are listed. On the basis of these equations, estimates of...

  13. Stand basal-area and tree-diameter growth in red spruce-fir forests in Maine, 1960-80

    Treesearch

    S.J. Zarnoch; D.A. Gansner; D.S. Powell; T.A. Birch; T.A. Birch

    1990-01-01

    Stand basal-area change and individual surviving red spruce d.b.h. growth from 1960 to 1980 were analyzed for red spruce-fir stands in Maine. Regression modeling was used to relate these measures of growth to stand and tree conditions and to compare growth throughout the period. Results indicate a decline in growth.

  14. Examination of the Arborsonic Decay Detector for Detecting Bacterial Wetwood in Red Oaks

    Treesearch

    Zicai Xu; Theodor D. Leininger; James G. Williams; Frank H. Tainter

    2000-01-01

    The Arborsonic Decay Detector (ADD; Fujikura Europe Limited, Wiltshire, England) was used to measure the time it took an ultrasound wave to cross 280 diameters in red oak trees with varying degrees of bacterial wetwood or heartwood decay. Linear regressions derived from the ADD readings of trees in Mississippi and South Carolina with wetwood and heartwood decay...

  15. Enhanced ID Pit Sizing Using Multivariate Regression Algorithm

    NASA Astrophysics Data System (ADS)

    Krzywosz, Kenji

    2007-03-01

    EPRI is funding a program to enhance and improve the reliability of inside diameter (ID) pit sizing for balance-of plant heat exchangers, such as condensers and component cooling water heat exchangers. More traditional approaches to ID pit sizing involve the use of frequency-specific amplitude or phase angles. The enhanced multivariate regression algorithm for ID pit depth sizing incorporates three simultaneous input parameters of frequency, amplitude, and phase angle. A set of calibration data sets consisting of machined pits of various rounded and elongated shapes and depths was acquired in the frequency range of 100 kHz to 1 MHz for stainless steel tubing having nominal wall thickness of 0.028 inch. To add noise to the acquired data set, each test sample was rotated and test data acquired at 3, 6, 9, and 12 o'clock positions. The ID pit depths were estimated using a second order and fourth order regression functions by relying on normalized amplitude and phase angle information from multiple frequencies. Due to unique damage morphology associated with the microbiologically-influenced ID pits, it was necessary to modify the elongated calibration standard-based algorithms by relying on the algorithm developed solely from the destructive sectioning results. This paper presents the use of transformed multivariate regression algorithm to estimate ID pit depths and compare the results with the traditional univariate phase angle analysis. Both estimates were then compared with the destructive sectioning results.

  16. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Quantitative analysis of American woodcock nest and brood habitat

    USGS Publications Warehouse

    Bourgeois, A.; Keppie, Daniel M.; Owen, Ray B.

    1977-01-01

    Sixteen nest and 19 brood sites of American woodcock (Philohela minoI) were examined in northern lower Michigan between 15 April and 15 June 1974 to determine habitat structure associated with these sites. Woodcock hens utilized young, second-growth forest stands which were similar in species composition for both nesting and brood rearing. A multi-varIate discriminant function analysis revealed a significant (P< 0.05) difference, however, in habitat structure. Nest habitat was characterized by lower tree density (2176 trees/ha) and basal area (8.6 m2/ha), by being close to forest openings (7 m) and by being situated on dry, relatively well drained sites. In contrast, woodcock broods were located in sites that had nearly twice the tree density (3934 trees/hal and basal area (16.5 m2/ha), was located over twice as far from forest openings (18 m) and generally occurred on damp sites, near (8 m) standing water. Importance of the habitat features to the species and possible management implications are discussed.

  18. Topography and crop management are key factors for the development of american leaf spot epidemics on coffee in costa rica.

    PubMed

    Avelino, Jacques; Cabut, Sandrine; Barboza, Bernardo; Barquero, Miguel; Alfaro, Ronny; Esquivel, César; Durand, Jean-François; Cilas, Christian

    2007-12-01

    ABSTRACT We monitored the development of American leaf spot of coffee, a disease caused by the gemmiferous fungus Mycena citricolor, in 57 plots in Costa Rica for 1 or 2 years in order to gain a clearer understanding of conditions conducive to the disease and improve its control. During the investigation, characteristics of the coffee trees, crop management, and the environment were recorded. For the analyses, we used partial least-squares regression via the spline functions (PLSS), which is a nonlinear extension to partial least-squares regression (PLS). The fungus developed well in areas located between approximately 1,100 and 1,550 m above sea level. Slopes were conducive to its development, but eastern-facing slopes were less affected than the others, probably because they were more exposed to sunlight, especially in the rainy season. The distance between planting rows, the shade percentage, coffee tree height, the type of shade, and the pruning system explained disease intensity due to their effects on coffee tree shading and, possibly, on the humidity conditions in the plot. Forest trees and fruit trees intercropped with coffee provided particularly propitious conditions. Apparently, fertilization was unfavorable for the disease, probably due to dilution phenomena associated with faster coffee tree growth. Finally, series of wet spells interspersed with dry spells, which were frequent in the middle of the rainy season, were critical for the disease, probably because they affected the production and release of gemmae and their viability. These results could be used to draw up a map of epidemic risks taking topographical factors into account. To reduce those risks and improve chemical control, our results suggested that farmers should space planting rows further apart, maintain light shading in the plantation, and prune their coffee trees.

  19. Ensemble classification of individual Pinus crowns from multispectral satellite imagery and airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Kukunda, Collins B.; Duque-Lazo, Joaquín; González-Ferreiro, Eduardo; Thaden, Hauke; Kleinn, Christoph

    2018-03-01

    Distinguishing tree species is relevant in many contexts of remote sensing assisted forest inventory. Accurate tree species maps support management and conservation planning, pest and disease control and biomass estimation. This study evaluated the performance of applying ensemble techniques with the goal of automatically distinguishing Pinus sylvestris L. and Pinus uncinata Mill. Ex Mirb within a 1.3 km2 mountainous area in Barcelonnette (France). Three modelling schemes were examined, based on: (1) high-density LiDAR data (160 returns m-2), (2) Worldview-2 multispectral imagery, and (3) Worldview-2 and LiDAR in combination. Variables related to the crown structure and height of individual trees were extracted from the normalized LiDAR point cloud at individual-tree level, after performing individual tree crown (ITC) delineation. Vegetation indices and the Haralick texture indices were derived from Worldview-2 images and served as independent spectral variables. Selection of the best predictor subset was done after a comparison of three variable selection procedures: (1) Random Forests with cross validation (AUCRFcv), (2) Akaike Information Criterion (AIC) and (3) Bayesian Information Criterion (BIC). To classify the species, 9 regression techniques were combined using ensemble models. Predictions were evaluated using cross validation and an independent dataset. Integration of datasets and models improved individual tree species classification (True Skills Statistic, TSS; from 0.67 to 0.81) over individual techniques and maintained strong predictive power (Relative Operating Characteristic, ROC = 0.91). Assemblage of regression models and integration of the datasets provided more reliable species distribution maps and associated tree-scale mapping uncertainties. Our study highlights the potential of model and data assemblage at improving species classifications needed in present-day forest planning and management.

  20. Inference for multivariate regression model based on multiply imputed synthetic data generated via posterior predictive sampling

    NASA Astrophysics Data System (ADS)

    Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.

    2017-06-01

    The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.

  1. Chilling and heat requirements for flowering in temperate fruit trees

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  2. Chilling and heat requirements for flowering in temperate fruit trees.

    PubMed

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  3. Multivariate random-parameters zero-inflated negative binomial regression model: an application to estimate crash frequencies at intersections.

    PubMed

    Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan

    2014-09-01

    Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Learning investment indicators through data extension

    NASA Astrophysics Data System (ADS)

    Dvořák, Marek

    2017-07-01

    Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.

  5. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  6. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis.

    PubMed

    Liu, Fei; Ye, Lanhan; Peng, Jiyu; Song, Kunlin; Shen, Tingting; Zhang, Chu; He, Yong

    2018-02-27

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

  7. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    PubMed Central

    Ye, Lanhan; Song, Kunlin; Shen, Tingting

    2018-01-01

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445

  8. [Use of multiple regression models in observational studies (1970-2013) and requirements of the STROBE guidelines in Spanish scientific journals].

    PubMed

    Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M

    In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  9. The microbiological profile and presence of bloodstream infection influence mortality rates in necrotizing fasciitis

    PubMed Central

    2011-01-01

    Introduction Necrotizing fasciitis (NF) is a life threatening infectious disease with a high mortality rate. We carried out a microbiological characterization of the causative pathogens. We investigated the correlation of mortality in NF with bloodstream infection and with the presence of co-morbidities. Methods In this retrospective study, we analyzed 323 patients who presented with necrotizing fasciitis at two different institutions. Bloodstream infection (BSI) was defined as a positive blood culture result. The patients were categorized as survivors and non-survivors. Eleven clinically important variables which were statistically significant by univariate analysis were selected for multivariate regression analysis and a stepwise logistic regression model was developed to determine the association between BSI and mortality. Results Univariate logistic regression analysis showed that patients with hypotension, heart disease, liver disease, presence of Vibrio spp. in wound cultures, presence of fungus in wound cultures, and presence of Streptococcus group A, Aeromonas spp. or Vibrio spp. in blood cultures, had a significantly higher risk of in-hospital mortality. Our multivariate logistic regression analysis showed a higher risk of mortality in patients with pre-existing conditions like hypotension, heart disease, and liver disease. Multivariate logistic regression analysis also showed that presence of Vibrio spp in wound cultures, and presence of Streptococcus Group A in blood cultures were associated with a high risk of mortality while debridement > = 3 was associated with improved survival. Conclusions Mortality in patients with necrotizing fasciitis was significantly associated with the presence of Vibrio in wound cultures and Streptococcus group A in blood cultures. PMID:21693053

  10. Predictors of adherence with self-care guidelines among persons with type 2 diabetes: results from a logistic regression tree analysis.

    PubMed

    Yamashita, Takashi; Kart, Cary S; Noe, Douglas A

    2012-12-01

    Type 2 diabetes is known to contribute to health disparities in the U.S. and failure to adhere to recommended self-care behaviors is a contributing factor. Intervention programs face difficulties as a result of patient diversity and limited resources. With data from the 2005 Behavioral Risk Factor Surveillance System, this study employs a logistic regression tree algorithm to identify characteristics of sub-populations with type 2 diabetes according to their reported frequency of adherence to four recommended diabetes self-care behaviors including blood glucose monitoring, foot examination, eye examination and HbA1c testing. Using Andersen's health behavior model, need factors appear to dominate the definition of which sub-groups were at greatest risk for low as well as high adherence. Findings demonstrate the utility of easily interpreted tree diagrams to design specific culturally appropriate intervention programs targeting sub-populations of diabetes patients who need to improve their self-care behaviors. Limitations and contributions of the study are discussed.

  11. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Labbe, Nicole; Wagner, Rebekah J.

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before andmore » after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.« less

  12. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  13. Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees

    NASA Astrophysics Data System (ADS)

    Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu

    2018-02-01

    A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.

  14. Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research

    ERIC Educational Resources Information Center

    He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne

    2018-01-01

    In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…

  15. Tree allometry and improved estimation of carbon stocks and balance in tropical forests.

    PubMed

    Chave, J; Andalo, C; Brown, S; Cairns, M A; Chambers, J Q; Eamus, D; Fölster, H; Fromard, F; Higuchi, N; Kira, T; Lescure, J-P; Nelson, B W; Ogawa, H; Puig, H; Riéra, B; Yamakura, T

    2005-08-01

    Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees >or= 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.

  16. Using Redwood Tree Ring Chronologies to Obtain the Long-View on California's Coastal Climate

    NASA Astrophysics Data System (ADS)

    Dawson, T. E.; Roden, J. S.; Voelker, S. L.; Johnstone, J. A.; Ambrose, A.

    2014-12-01

    Coast redwood (Sequoia sempervirens) occupies a long and narrow range at the land-sea interface from the southern Big Bur region to the California-Oregon boarder. Since mature trees can live in excess of 2000 years, using the interannual variability in the oxygen and carbon stable isotope composition of tree rings obtained from trees growing in different parts of the redwood range holds the potential for obtaining a long-term record of California's coastal climate, including the history of temperatures, low cloud / fog, rainfall and associated climatic drivers of their variation. We analyzed the oxygen and carbon stable isotope composition of tree ring cellulose from both tree cores and whole cross-sectional slabs and compared these data to several regional climate indicies and to published growth chronologies to obtain the long-view on California's coastal climate. Several highlights will be presented and discussed. These include: (1) redwoods faithfully record water sources they use in the oxygen stable isotope composition of their tree ring cellulose; (2) these is both strong watershed- and regional-scale coherence; (3) redwood tree ring carbon isotope composition shows its strongest correlations to tree water status, stand-scale humidity, and at the regional scale to what we term "summer precipitation" anomalies (lack of rain with presence of fog); also (4) that carbon stable isotope composition is very sensitive to within tree and stand microclimate while oxygen stable isotope composition seems to be sensitive to topographic site factors like slope position and proximity to riparian / gully habitats; (5) multivariate climatic analyses reveal that summertime drought recorded in the isotope excursions are most strongly linked to atmospheric circulation anomalies; and (6) that redwood tree rings and their isotope composition provide great potential for reconstructing high-resolution paleo-climate along the California coast.

  17. Vegetation Continuous Fields--Transitioning from MODIS to VIIRS

    NASA Astrophysics Data System (ADS)

    DiMiceli, C.; Townshend, J. R.; Sohlberg, R. A.; Kim, D. H.; Kelly, M.

    2015-12-01

    Measurements of fractional vegetation cover are critical for accurate and consistent monitoring of global deforestation rates. They also provide important parameters for land surface, climate and carbon models and vital background data for research into fire, hydrological and ecosystem processes. MODIS Vegetation Continuous Fields (VCF) products provide four complementary layers of fractional cover: tree cover, non-tree vegetation, bare ground, and surface water. MODIS VCF products are currently produced globally and annually at 250m resolution for 2000 to the present. Additionally, annual VCF products at 1/20° resolution derived from AVHRR and MODIS Long-Term Data Records are in development to provide Earth System Data Records of fractional vegetation cover for 1982 to the present. In order to provide continuity of these valuable products, we are extending the VCF algorithms to create Suomi NPP/VIIRS VCF products. This presentation will highlight the first VIIRS fractional cover product: global percent tree cover at 1 km resolution. To create this product, phenological and physiological metrics were derived from each complete year of VIIRS 8-day surface reflectance products. A supervised regression tree method was applied to the metrics, using training derived from Landsat data supplemented by high-resolution data from Ikonos, RapidEye and QuickBird. The regression tree model was then applied globally to produce fractional tree cover. In our presentation we will detail our methods for creating the VIIRS VCF product. We will compare the new VIIRS VCF product to our current MODIS VCF products and demonstrate continuity between instruments. Finally, we will outline future VIIRS VCF development plans.

  18. Decision tree analysis to stratify risk of de novo non-melanoma skin cancer following liver transplantation.

    PubMed

    Tanaka, Tomohiro; Voigt, Michael D

    2018-03-01

    Non-melanoma skin cancer (NMSC) is the most common de novo malignancy in liver transplant (LT) recipients; it behaves more aggressively and it increases mortality. We used decision tree analysis to develop a tool to stratify and quantify risk of NMSC in LT recipients. We performed Cox regression analysis to identify which predictive variables to enter into the decision tree analysis. Data were from the Organ Procurement Transplant Network (OPTN) STAR files of September 2016 (n = 102984). NMSC developed in 4556 of the 105984 recipients, a mean of 5.6 years after transplant. The 5/10/20-year rates of NMSC were 2.9/6.3/13.5%, respectively. Cox regression identified male gender, Caucasian race, age, body mass index (BMI) at LT, and sirolimus use as key predictive or protective factors for NMSC. These factors were entered into a decision tree analysis. The final tree stratified non-Caucasians as low risk (0.8%), and Caucasian males > 47 years, BMI < 40 who did not receive sirolimus, as high risk (7.3% cumulative incidence of NMSC). The predictions in the derivation set were almost identical to those in the validation set (r 2  = 0.971, p < 0.0001). Cumulative incidence of NMSC in low, moderate and high risk groups at 5/10/20 year was 0.5/1.2/3.3, 2.1/4.8/11.7 and 5.6/11.6/23.1% (p < 0.0001). The decision tree model accurately stratifies the risk of developing NMSC in the long-term after LT.

  19. Improved estimation of PM2.5 using Lagrangian satellite-measured aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Olivas Saunders, Rolando

    Suspended particulate matter (aerosols) with aerodynamic diameters less than 2.5 mum (PM2.5) has negative effects on human health, plays an important role in climate change and also causes the corrosion of structures by acid deposition. Accurate estimates of PM2.5 concentrations are thus relevant in air quality, epidemiology, cloud microphysics and climate forcing studies. Aerosol optical depth (AOD) retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument has been used as an empirical predictor to estimate ground-level concentrations of PM2.5 . These estimates usually have large uncertainties and errors. The main objective of this work is to assess the value of using upwind (Lagrangian) MODIS-AOD as predictors in empirical models of PM2.5. The upwind locations of the Lagrangian AOD were estimated using modeled backward air trajectories. Since the specification of an arrival elevation is somewhat arbitrary, trajectories were calculated to arrive at four different elevations at ten measurement sites within the continental United States. A systematic examination revealed trajectory model calculations to be sensitive to starting elevation. With a 500 m difference in starting elevation, the 48-hr mean horizontal separation of trajectory endpoints was 326 km. When the difference in starting elevation was doubled and tripled to 1000 m and 1500m, the mean horizontal separation of trajectory endpoints approximately doubled and tripled to 627 km and 886 km, respectively. A seasonal dependence of this sensitivity was also found: the smallest mean horizontal separation of trajectory endpoints was exhibited during the summer and the largest separations during the winter. A daily average AOD product was generated and coupled to the trajectory model in order to determine AOD values upwind of the measurement sites during the period 2003-2007. Empirical models that included in situ AOD and upwind AOD as predictors of PM2.5 were generated by multivariate linear regressions using the least squares method. The multivariate models showed improved performance over the single variable regression (PM2.5 and in situ AOD) models. The statistical significance of the improvement of the multivariate models over the single variable regression models was tested using the extra sum of squares principle. In many cases, even when the R-squared was high for the multivariate models, the improvement over the single models was not statistically significant. The R-squared of these multivariate models varied with respect to seasons, with the best performance occurring during the summer months. A set of seasonal categorical variables was included in the regressions to exploit this variability. The multivariate regression models that included these categorical seasonal variables performed better than the models that didn't account for seasonal variability. Furthermore, 71% of these regressions exhibited improvement over the single variable models that was statistically significant at a 95% confidence level.

  20. Multivariate decoding of brain images using ordinal regression.

    PubMed

    Doyle, O M; Ashburner, J; Zelaya, F O; Williams, S C R; Mehta, M A; Marquand, A F

    2013-11-01

    Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations - whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds - lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection. Copyright © 2013. Published by Elsevier Inc.

  1. Downscaling soil moisture over East Asia through multi-sensor data fusion and optimization of regression trees

    NASA Astrophysics Data System (ADS)

    Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung

    2017-04-01

    Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.

  2. Diameter-growth model across shortleaf pine range using regression tree analysis

    Treesearch

    Daniel Yaussy; Louis Iverson; Anantha Prasad

    1999-01-01

    Diameter growth of a tree in most gap-phase models is limited by light, nutrients, moisture, and temperature. Growing-season temperature is represented by growing degree days (gdd), which is the sum of the average daily temperatures above a baseline temperature. Gap-phase models determine the north-south range of a species by the gdd limits at the north and south...

  3. Applicability of predictive models of drought-induced tree mortality between the midwest and northeast United States

    Treesearch

    Eric J. Gustafson

    2014-01-01

    Regression models developed in the upper Midwest (United States) to predict drought-induced tree mortality from measures of drought (Palmer Drought Severity Index) were tested in the northeastern United States and found inadequate. The most likely cause of this result is that long drought events were rare in the Northeast during the period when inventory data were...

  4. A Pilot Test of Indicator Species to Assess Uniqueness of Oak-Dominated Ecoregions in Central Tennessee

    Treesearch

    W. Henry McNab; David L. Loftis; Callie J. Schweitzer; Raymond Sheffield

    2004-01-01

    We used tree indicator species occurring on 438 plots in the Plateau counties of Tennessee to test the uniqueness of four conterminous ecoregions. Multinomial logistic regression indicated that the presence of 14 tree species allowed classification of sample plots according to ecoregion with an average overall accuracy of 75 percent (range 45 to 94 percent). Additional...

  5. Dating tree mortality using log decay in the White Mountains of New Hampshire

    Treesearch

    Andrew J. Fast; Mark J. Ducey; Jeffrey H. Gove; William B. Leak

    2008-01-01

    Coarse woody material (CWM) is an important component of forest ecosystems. To meet specific CWM management objectives, it is important to understand rates of decay. We present results from a silvicultural trial at the Bartlett Experimental Forest, in which time of death is known for a large sample of trees. Either a simple table or regression equations that use...

  6. Development of post-fire crown damage mortality thresholds in ponderosa pine

    Treesearch

    James F. Fowler; Carolyn Hull Sieg; Joel McMillin; Kurt K. Allen; Jose F. Negron; Linda L. Wadleigh; John A. Anhold; Ken E. Gibson

    2010-01-01

    Previous research has shown that crown scorch volume and crown consumption volume are the major predictors of post-fire mortality in ponderosa pine. In this study, we use piecewise logistic regression models of crown scorch data from 6633 trees in five wildfires from the Intermountain West to locate a mortality threshold at 88% scorch by volume for trees with no crown...

  7. Equations relating compacted and uncompacted live crown ratio for common tree species in the South

    Treesearch

    KaDonna C. Randolph

    2010-01-01

    Species-specific equations to predict uncompacted crown ratio (UNCR) from compacted live crown ratio (CCR), tree length, and stem diameter were developed for 24 species and 12 genera in the southern United States. Using data from the US Forest Service Forest Inventory and Analysis program, nonlinear regression was used to model UNCR with a logistic function. Model...

  8. Patterns of tree species diversity and composition in old-field successional forests in central Illinois

    Treesearch

    Scott M. Bretthauer; George Z. Gertner; Gary L. Rolfe; Jeffery O. Dawson

    2003-01-01

    Tree species diversity increases and dominance decreases with proximity to forest border in two 60-year-old successional forest stands developed on abandoned agricultural land in Piatt County, Illinois. A regression equation allowed us to quantify an increase in diversity with closeness to forest border for one of the forest stands. Shingle oak is the most dominant...

  9. Regeneration of Douglas-fir cutblocks on the Six Rivers National Forest in northwestern California

    Treesearch

    R. O. Strothmann

    1979-01-01

    A survey of 61 cutblocks planted since 1964 evaluated stocking of conifers (trees 1 foot tall or taller) on 2-milacre quadrats. Overall stocking percentage averaged 42.2 and ranged from 15 to 8 1. Overall number of trees per acre averaged 396. In the regression model, based on 36 cutblocks, better stocking was associated with high site class, northerly aspect,...

  10. Protection of individual ash trees from emerald ash borer (Coleoptera: Buprestidae) with basal soil applications of imidacloprid.

    PubMed

    Smitley, D R; Rebek, E J; Royalty, R N; Davis, T W; Newhouse, K F

    2010-02-01

    We conducted field trials at five different locations over a period of 6 yr to investigate the efficacy of imidacloprid applied each spring as a basal soil drench for protection against emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Canopy thinning and emerald ash borer larval density were used to evaluate efficacy for 3-4 yr at each location while treatments continued. Test sites included small urban trees (5-15 cm diameter at breast height [dbh]), medium to large (15-65 cm dbh) trees at golf courses, and medium to large street trees. Annual basal drenches with imidacloprid gave complete protection of small ash trees for three years. At three sites where the size of trees ranged from 23 to 37 cm dbh, we successfully protected all ash trees beginning the test with <60% canopy thinning. Regression analysis of data from two sites reveals that tree size explains 46% of the variation in efficacy of imidacloprid drenches. The smallest trees (<30 cm dbh) remained in excellent condition for 3 yr, whereas most of the largest trees (>38 cm dbh) declined to a weakened state and undesirable appearance. The five-fold increase in trunk and branch surface area of ash trees as the tree dbh doubles may account for reduced efficacy on larger trees, and suggests a need to increase treatment rates for larger trees.

  11. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    PubMed

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants.

    PubMed

    Rodríguez López, Carlos M; Wetten, Andrew C; Wilkinson, Michael J

    2010-06-01

    *Relatively little is known about the timing of genetic and epigenetic forms of somaclonal variation arising from callus growth. We surveyed for both types of change in cocoa (Theobroma cacao) plants regenerated from calli of various ages, and also between tissues from the source trees. *For genetic change, we used 15 single sequence repeat (SSR) markers from four source trees and from 233 regenerated plants. For epigenetic change, we used 386 methylation-sensitive amplified polymorphism (MSAP) markers on leaf and explant (staminode) DNA from two source trees and on leaf DNA from 114 regenerants. *Genetic variation within source trees was limited to one slippage mutation in one leaf. Regenerants were far more variable, with 35% exhibiting at least one mutation. Genetic variation initially accumulated with culture age but subsequently declined. MSAP (epigenetic) profiles diverged between leaf and staminode samples from source trees. Multivariate analysis revealed that leaves from regenerants occupied intermediate eigenspace between leaves and staminodes of source plants but became progressively more similar to source tree leaves with culture age. *Statistical analysis confirmed this rather counterintuitive finding that leaves of 'late regenerants' exhibited significantly less genetic and epigenetic divergence from source leaves than those exposed to short periods of callus growth.

  13. DENBRAN: A basic program for a significance test for multivariate normality of clusters from branching patterns in dendrograms

    NASA Astrophysics Data System (ADS)

    Sneath, P. H. A.

    A BASIC program is presented for significance tests to determine whether a dendrogram is derived from clustering of points that belong to a single multivariate normal distribution. The significance tests are based on statistics of the Kolmogorov—Smirnov type, obtained by comparing the observed cumulative graph of branch levels with a graph for the hypothesis of multivariate normality. The program also permits testing whether the dendrogram could be from a cluster of lower dimensionality due to character correlations. The program makes provision for three similarity coefficients, (1) Euclidean distances, (2) squared Euclidean distances, and (3) Simple Matching Coefficients, and for five cluster methods (1) WPGMA, (2) UPGMA, (3) Single Linkage (or Minimum Spanning Trees), (4) Complete Linkage, and (5) Ward's Increase in Sums of Squares. The program is entitled DENBRAN.

  14. A Millennial-length Reconstruction of the Western Pacific Pattern with Associated Paleoclimate

    NASA Astrophysics Data System (ADS)

    Wright, W. E.; Guan, B. T.; Wei, K.

    2010-12-01

    The Western Pacific Pattern (WP) is a lesser known 500 hPa pressure pattern similar to the NAO or PNA. As defined, the poles of the WP index are centered on 60°N over the Kamchatka peninsula and the neighboring Pacific and on 32.5°N over the western north Pacific. However, the area of influence for the southern half of the dipole includes a wide swath from East Asia, across Taiwan, through the Philippine Sea, to the western north Pacific. Tree rings of Taiwanese Chamaecyparis obtusa var. formosana in this extended region show significant correlation with the WP, and with local temperature. The WP is also significantly correlated with atmospheric temperatures over Taiwan, especially at 850hPa and 700 hPa, pressure levels that bracket the tree site. Spectral analysis indicates that variations in the WP occur at relatively high frequency, with most power at less than 5 years. Simple linear regression against high frequency variants of the tree-ring chronology yielded the most significant correlation coefficients. Two reconstructions are presented. The first uses a tree-ring time series produced as the first intrinsic mode function (IMF) from an Ensemble Empirical Mode Decomposition (EEMD), based on the Hilbert-Huang Transform. The significance of the regression using the EEMD-derived time series was much more significant than time series produced using traditional high pass filtering. The second also uses the first IMF of a tree-ring time series, but the dataset was first sorted and partitioned at a specified quantile prior to EEMD decomposition, with the mean of the partitioned data forming the input to the EEMD. The partitioning was done to filter out the less climatically sensitive tree rings, a common problem with shade tolerant trees. Time series statistics indicate that the first reconstruction is reliable to 1241 of the Common Era. Reliability of the second reconstruction is dependent on the development of statistics related to the quantile partitioning, and the consequent reduction in sample depth. However, the correlation coefficients from regressions over the instrumental period greatly exceed those from any other method of chronology generation, and so the technique holds promise. Additional atmospheric parameters having significant correlations against the WPO and tree ring time series with similar spatial patterns are also presented. These include vertical wind shear (850hPa-700hPa) over the northern Philippines and the Philippine Sea, surface Omega and 850hPa v-winds over the East China Sea, Japan and Taiwan. Possible links to changes in the subtropical jet stream will also be discussed.

  15. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol lowering drugs

    PubMed Central

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin

    2013-01-01

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436

  16. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs.

    PubMed

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin

    2013-10-15

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Prediction of Baseflow Index of Catchments using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Yadav, B.; Hatfield, K.

    2017-12-01

    We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Considering both the accuracy and the computational complexity of these algorithms, we identify the extremely randomized trees as the best performing algorithm for BFI prediction in ungauged basins.

  18. Current and Potential Tree Locations in Tree Line Ecotone of Changbai Mountains, Northeast China: The Controlling Effects of Topography

    PubMed Central

    Zong, Shengwei; Wu, Zhengfang; Xu, Jiawei; Li, Ming; Gao, Xiaofeng; He, Hongshi; Du, Haibo; Wang, Lei

    2014-01-01

    Tree line ecotone in the Changbai Mountains has undergone large changes in the past decades. Tree locations show variations on the four sides of the mountains, especially on the northern and western sides, which has not been fully explained. Previous studies attributed such variations to the variations in temperature. However, in this study, we hypothesized that topographic controls were responsible for causing the variations in the tree locations in tree line ecotone of the Changbai Mountains. To test the hypothesis, we used IKONOS images and WorldView-1 image to identify the tree locations and developed a logistic regression model using topographical variables to identify the dominant controls of the tree locations. The results showed that aspect, wetness, and slope were dominant controls for tree locations on western side of the mountains, whereas altitude, SPI, and aspect were the dominant factors on northern side. The upmost altitude a tree can currently reach was 2140 m asl on the northern side and 2060 m asl on western side. The model predicted results showed that habitats above the current tree line on the both sides were available for trees. Tree recruitments under the current tree line may take advantage of the available habitats at higher elevations based on the current tree location. Our research confirmed the controlling effects of topography on the tree locations in the tree line ecotone of Changbai Mountains and suggested that it was essential to assess the tree response to topography in the research of tree line ecotone. PMID:25170918

  19. Current and potential tree locations in tree line ecotone of Changbai Mountains, Northeast China: the controlling effects of topography.

    PubMed

    Zong, Shengwei; Wu, Zhengfang; Xu, Jiawei; Li, Ming; Gao, Xiaofeng; He, Hongshi; Du, Haibo; Wang, Lei

    2014-01-01

    Tree line ecotone in the Changbai Mountains has undergone large changes in the past decades. Tree locations show variations on the four sides of the mountains, especially on the northern and western sides, which has not been fully explained. Previous studies attributed such variations to the variations in temperature. However, in this study, we hypothesized that topographic controls were responsible for causing the variations in the tree locations in tree line ecotone of the Changbai Mountains. To test the hypothesis, we used IKONOS images and WorldView-1 image to identify the tree locations and developed a logistic regression model using topographical variables to identify the dominant controls of the tree locations. The results showed that aspect, wetness, and slope were dominant controls for tree locations on western side of the mountains, whereas altitude, SPI, and aspect were the dominant factors on northern side. The upmost altitude a tree can currently reach was 2140 m asl on the northern side and 2060 m asl on western side. The model predicted results showed that habitats above the current tree line on the both sides were available for trees. Tree recruitments under the current tree line may take advantage of the available habitats at higher elevations based on the current tree location. Our research confirmed the controlling effects of topography on the tree locations in the tree line ecotone of Changbai Mountains and suggested that it was essential to assess the tree response to topography in the research of tree line ecotone.

  20. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert M.

    2013-01-01

    A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.

  1. Classification and regression tree (CART) analyses of genomic signatures reveal sets of tetramers that discriminate temperature optima of archaea and bacteria

    PubMed Central

    Dyer, Betsey D.; Kahn, Michael J.; LeBlanc, Mark D.

    2008-01-01

    Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results. PMID:19054742

  2. Identification of sexually abused female adolescents at risk for suicidal ideations: a classification and regression tree analysis.

    PubMed

    Brabant, Marie-Eve; Hébert, Martine; Chagnon, François

    2013-01-01

    This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression, posttraumatic stress symptoms, and hopelessness discriminated profiles of suicidal and nonsuicidal survivors. The elevated prevalence of suicidal ideations among adolescent survivors of sexual abuse underscores the importance of investigating the presence of suicidal ideations in sexual abuse survivors. However, suicidal ideation is not the sole variable that needs to be investigated; depression, hopelessness and posttraumatic stress symptoms are also related to suicidal ideations in survivors and could therefore guide interventions.

  3. A spline-based regression parameter set for creating customized DARTEL MRI brain templates from infancy to old age.

    PubMed

    Wilke, Marko

    2018-02-01

    This dataset contains the regression parameters derived by analyzing segmented brain MRI images (gray matter and white matter) from a large population of healthy subjects, using a multivariate adaptive regression splines approach. A total of 1919 MRI datasets ranging in age from 1-75 years from four publicly available datasets (NIH, C-MIND, fCONN, and IXI) were segmented using the CAT12 segmentation framework, writing out gray matter and white matter images normalized using an affine-only spatial normalization approach. These images were then subjected to a six-step DARTEL procedure, employing an iterative non-linear registration approach and yielding increasingly crisp intermediate images. The resulting six datasets per tissue class were then analyzed using multivariate adaptive regression splines, using the CerebroMatic toolbox. This approach allows for flexibly modelling smoothly varying trajectories while taking into account demographic (age, gender) as well as technical (field strength, data quality) predictors. The resulting regression parameters described here can be used to generate matched DARTEL or SHOOT templates for a given population under study, from infancy to old age. The dataset and the algorithm used to generate it are publicly available at https://irc.cchmc.org/software/cerebromatic.php.

  4. [Influences of environmental factors and interaction of several chemokines gene-environmental on systemic lupus erythematosus].

    PubMed

    Ye, Dong-qing; Hu, Yi-song; Li, Xiang-pei; Huang, Fen; Yang, Shi-gui; Hao, Jia-hu; Yin, Jing; Zhang, Guo-qing; Liu, Hui-hui

    2004-11-01

    To explore the impact of environmental factors, daily lifestyle, psycho-social factors and the interactions between environmental factors and chemokines genes on systemic lupus erythematosus (SLE). Case-control study was carried out and environmental factors for SLE were analyzed by univariate and multivariate unconditional logistic regression. Interactions between environmental factors and chemokines polymorphism contributing to systemic lupus erythematosus were also analyzed by logistic regression model. There were nineteen factors associated with SLE when univariate unconditional logistic regression was used. However, when multivariate unconditional logistic regression was used, only five factors showed having impacts on the disease, in which drinking well water (OR=0.099) was protective factor for SLE, and multiple drug allergy (OR=8.174), over-exposure to sunshine (OR=18.339), taking antibiotics (OR=9.630) and oral contraceptives were risk factors for SLE. When unconditional logistic regression model was used, results showed that there was interaction between eating irritable food and -2518MCP-1G/G genotype (OR=4.387). No interaction between environmental factors was found that contributing to SLE in this study. Many environmental factors were related to SLE, and there was an interaction between -2518MCP-1G/G genotype and eating irritable food.

  5. Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data.

    PubMed

    Abram, Samantha V; Helwig, Nathaniel E; Moodie, Craig A; DeYoung, Colin G; MacDonald, Angus W; Waller, Niels G

    2016-01-01

    Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks.

  6. Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data

    PubMed Central

    Abram, Samantha V.; Helwig, Nathaniel E.; Moodie, Craig A.; DeYoung, Colin G.; MacDonald, Angus W.; Waller, Niels G.

    2016-01-01

    Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks. PMID:27516732

  7. Evaluation and prediction of shrub cover in coastal Oregon forests (USA)

    Treesearch

    Becky K. Kerns; Janet L. Ohmann

    2004-01-01

    We used data from regional forest inventories and research programs, coupled with mapped climatic and topographic information, to explore relationships and develop multiple linear regression (MLR) and regression tree models for total and deciduous shrub cover in the Oregon coastal province. Results from both types of models indicate that forest structure variables were...

  8. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests

    ERIC Educational Resources Information Center

    Strobl, Carolin; Malley, James; Tutz, Gerhard

    2009-01-01

    Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…

  9. Weighted linear regression using D2H and D2 as the independent variables

    Treesearch

    Hans T. Schreuder; Michael S. Williams

    1998-01-01

    Several error structures for weighted regression equations used for predicting volume were examined for 2 large data sets of felled and standing loblolly pine trees (Pinus taeda L.). The generally accepted model with variance of error proportional to the value of the covariate squared ( D2H = diameter squared times height or D...

  10. An Intelligent Decision Support System for Workforce Forecast

    DTIC Science & Technology

    2011-01-01

    ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models

  11. Which sociodemographic factors are important on smoking behaviour of high school students? The contribution of classification and regression tree methodology in a broad epidemiological survey.

    PubMed

    Ozge, C; Toros, F; Bayramkaya, E; Camdeviren, H; Sasmaz, T

    2006-08-01

    The purpose of this study is to evaluate the most important sociodemographic factors on smoking status of high school students using a broad randomised epidemiological survey. Using in-class, self administered questionnaire about their sociodemographic variables and smoking behaviour, a representative sample of total 3304 students of preparatory, 9th, 10th, and 11th grades, from 22 randomly selected schools of Mersin, were evaluated and discriminative factors have been determined using appropriate statistics. In addition to binary logistic regression analysis, the study evaluated combined effects of these factors using classification and regression tree methodology, as a new statistical method. The data showed that 38% of the students reported lifetime smoking and 16.9% of them reported current smoking with a male predominancy and increasing prevalence by age. Second hand smoking was reported at a 74.3% frequency with father predominance (56.6%). The significantly important factors that affect current smoking in these age groups were increased by household size, late birth rank, certain school types, low academic performance, increased second hand smoking, and stress (especially reported as separation from a close friend or because of violence at home). Classification and regression tree methodology showed the importance of some neglected sociodemographic factors with a good classification capacity. It was concluded that, as closely related with sociocultural factors, smoking was a common problem in this young population, generating important academic and social burden in youth life and with increasing data about this behaviour and using new statistical methods, effective coping strategies could be composed.

  12. Tree biomass in the Swiss landscape: nationwide modelling for improved accounting for forest and non-forest trees.

    PubMed

    Price, B; Gomez, A; Mathys, L; Gardi, O; Schellenberger, A; Ginzler, C; Thürig, E

    2017-03-01

    Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R 2 of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates.

  13. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    USGS Publications Warehouse

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  14. Nonlinearities, scale-dependence, and individualism of boreal forest trees to climate forcing

    NASA Astrophysics Data System (ADS)

    Wolken, J. M.; Mann, D. H.; Grant, T. A., III; Lloyd, A. H.; Hollingsworth, T. N.

    2013-12-01

    Our understanding of the climate-growth relationships of trees are complicated by the nonlinearity and variability of these responses through space and time. Furthermore, trees growing at the same site may exhibit opposing growth responses to climate, a phenomenon termed growth divergence. To date the majority of dendrochronological studies in Interior Alaska have involved white spruce growing at treeline, even though black spruce is the most abundant tree species. Although changing climate-growth relationships have been observed in black spruce, there is little known about the multivariate responses of individual trees to temperature and precipitation and whether or not black spruce exhibits growth divergences similar to those documented for white spruce. To evaluate the occurrence of growth divergences in black spruce, we collected cores from trees growing on a steep, north-facing toposequence having a gradient in environmental parameters. Our overall goal was to assess how the climate-growth relationships of black spruce change over space and time. Specifically, we evaluated how topography influences the climate-growth relationships of black spruce and if the growth responses to climate are homogeneous. At the site-level most trees responded negatively to temperature and positively to precipitation, while at the tree-level black spruce exhibited heterogenous growth responses to climate that varied in both space (i.e., between sites) and time (i.e., seasonally and annually). There was a dominant response-type at each site, but there was also considerable variability in the proportion of trees exhibiting each response-type combination. Even in a climatically extreme setting like Alaska's boreal forest, tree responses to climate variability are spatially and temporally complex, as well as highly nonlinear.

  15. Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)

    PubMed Central

    Churchill, Morgan; Clementz, Mark T; Kohno, Naoki

    2014-01-01

    Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814

  16. [Correlation between gaseous exchange rate, body temperature, and mitochondrial protein content in the liver of mice].

    PubMed

    Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E

    2002-01-01

    Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.

  17. An imputed forest composition map for New England screened by species range boundaries

    Treesearch

    Matthew J. Duveneck; Jonathan R. Thompson; B. Tyler Wilson

    2015-01-01

    Initializing forest landscape models (FLMs) to simulate changes in tree species composition requires accurate fine-scale forest attribute information mapped continuously over large areas. Nearest-neighbor imputation maps, maps developed from multivariate imputation of field plots, have high potential for use as the initial condition within FLMs, but the tendency for...

  18. The influence of tree morphology on stemflow generation in a tropical lowland rainforest

    NASA Astrophysics Data System (ADS)

    Uber, Magdalena; Levia, Delphis F.; Zimmermann, Beate; Zimmermann, Alexander

    2014-05-01

    Even though stemflow usually accounts for only a small proportion of rainfall, it is an important point source of water and ion input to forest floors and may, for instance, influence soil moisture patterns and groundwater recharge. Previous studies showed that the generation of stemflow depends on a multitude of meteorological and biological factors. Interestingly, despite the tremendous progress in stemflow research during the last decades it is still largely unknown which combination of tree characteristics determines stemflow volumes in species-rich tropical forests. This knowledge gap motivated us to analyse the influence of tree characteristics on stemflow volumes in a 1 hectare plot located in a Panamanian lowland rainforest. Our study comprised stemflow measurements in six randomly selected 10 m by 10 m subplots. In each subplot we measured stemflow of all trees with a diameter at breast height (DBH) > 5 cm on an event-basis for a period of six weeks. Additionally, we identified all tree species and determined a set of tree characteristics including DBH, crown diameter, bark roughness, bark furrowing, epiphyte coverage, tree architecture, stem inclination, and crown position. During the sampling period, we collected 985 L of stemflow (0.98 % of total rainfall). Based on regression analyses and comparisons among plant functional groups we show that palms were most efficient in yielding stemflow due to their large inclined fronds. Trees with large emergent crowns also produced relatively large amounts of stemflow. Due to their abundance, understory trees contribute much to stemflow yield not on individual but on the plot scale. Even though parameters such as crown diameter, branch inclination and position of the crown influence stemflow generation to some extent, these parameters explain less than 30 % of the variation in stemflow volumes. In contrast to published results from temperate forests, we did not detect a negative correlation between bark roughness and stemflow volume. This is because other parameters such as crown diameter obscured this relationship. Due to multicollinearity and poor correlations between single tree characteristics with stemflow volume, an assessment of stemflow volumes based on forest characteristics remains cumbersome in highly diverse ecosystems. Instead of relying on regression relationships, we therefore advocate a total sampling of trees in several plots to determine stand-scale stemflow yield in tropical forests.

  19. A High-Dimensional, Multivariate Copula Approach to Modeling Multivariate Agricultural Price Relationships and Tail Dependencies

    Treesearch

    Xuan Chi; Barry Goodwin

    2012-01-01

    Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...

  20. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top