Sample records for multivariate statistical procedures

  1. A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2014-01-01

    Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…

  2. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  3. Problems with Multivariate Normality: Can the Multivariate Bootstrap Help?

    ERIC Educational Resources Information Center

    Thompson, Bruce

    Multivariate normality is required for some statistical tests. This paper explores the implications of violating the assumption of multivariate normality and illustrates a graphical procedure for evaluating multivariate normality. The logic for using the multivariate bootstrap is presented. The multivariate bootstrap can be used when distribution…

  4. Analyzing Faculty Salaries When Statistics Fail.

    ERIC Educational Resources Information Center

    Simpson, William A.

    The role played by nonstatistical procedures, in contrast to multivariant statistical approaches, in analyzing faculty salaries is discussed. Multivariant statistical methods are usually used to establish or defend against prima facia cases of gender and ethnic discrimination with respect to faculty salaries. These techniques are not applicable,…

  5. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    PubMed

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. A multivariate model and statistical method for validating tree grade lumber yield equations

    Treesearch

    Donald W. Seegrist

    1975-01-01

    Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.

  7. On Some Multiple Decision Problems

    DTIC Science & Technology

    1976-08-01

    parameter space. Some recent results in the area of subset selection formulation are Gnanadesikan and Gupta [28], Gupta and Studden [43], Gupta and...York, pp. 363-376. [27) Gnanadesikan , M. (1966). Some Selection and Ranking Procedures for Multivariate Normal Populations. Ph.D. Thesis. Dept. of...Statist., Purdue Univ., West Lafayette, Indiana 47907. [28) Gnanadesikan , M. and Gupta, S. S. (1970). Selection procedures for multivariate normal

  8. Using SPSS to Analyze Book Collection Data.

    ERIC Educational Resources Information Center

    Townley, Charles T.

    1981-01-01

    Describes and illustrates Statistical Package for the Social Sciences (SPSS) procedures appropriate for book collection data analysis. Several different procedures for univariate, bivariate, and multivariate analysis are discussed, and applications of procedures for book collection studies are presented. Included are 24 tables illustrating output…

  9. Statistical analysis of multivariate atmospheric variables. [cloud cover

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.

    1979-01-01

    Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.

  10. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  11. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.

    PubMed

    Ma, Yan; Mazumdar, Madhu

    2011-10-30

    Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials

    PubMed Central

    Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo

    2018-01-01

    This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555

  13. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data.

    PubMed

    Adams, Dean C

    2014-09-01

    Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (K(mult)) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of K(mult) remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on K(mult) and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-dimensional data. Statistical properties of K(mult) were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that K(mult) provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Multivariate assessment of event-related potentials with the t-CWT method.

    PubMed

    Bostanov, Vladimir

    2015-11-05

    Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.

  15. Application of multivariate statistical techniques in microbial ecology

    PubMed Central

    Paliy, O.; Shankar, V.

    2016-01-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure. PMID:26786791

  16. Optimal False Discovery Rate Control for Dependent Data

    PubMed Central

    Xie, Jichun; Cai, T. Tony; Maris, John; Li, Hongzhe

    2013-01-01

    This paper considers the problem of optimal false discovery rate control when the test statistics are dependent. An optimal joint oracle procedure, which minimizes the false non-discovery rate subject to a constraint on the false discovery rate is developed. A data-driven marginal plug-in procedure is then proposed to approximate the optimal joint procedure for multivariate normal data. It is shown that the marginal procedure is asymptotically optimal for multivariate normal data with a short-range dependent covariance structure. Numerical results show that the marginal procedure controls false discovery rate and leads to a smaller false non-discovery rate than several commonly used p-value based false discovery rate controlling methods. The procedure is illustrated by an application to a genome-wide association study of neuroblastoma and it identifies a few more genetic variants that are potentially associated with neuroblastoma than several p-value-based false discovery rate controlling procedures. PMID:23378870

  17. Statistical methods in personality assessment research.

    PubMed

    Schinka, J A; LaLone, L; Broeckel, J A

    1997-06-01

    Emerging models of personality structure and advances in the measurement of personality and psychopathology suggest that research in personality and personality assessment has entered a stage of advanced development, in this article we examine whether researchers in these areas have taken advantage of new and evolving statistical procedures. We conducted a review of articles published in the Journal of Personality, Assessment during the past 5 years. Of the 449 articles that included some form of data analysis, 12.7% used only descriptive statistics, most employed only univariate statistics, and fewer than 10% used multivariate methods of data analysis. We discuss the cost of using limited statistical methods, the possible reasons for the apparent reluctance to employ advanced statistical procedures, and potential solutions to this technical shortcoming.

  18. Finding Groups Using Model-Based Cluster Analysis: Heterogeneous Emotional Self-Regulatory Processes and Heavy Alcohol Use Risk

    ERIC Educational Resources Information Center

    Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2008-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…

  19. The study of combining Latin Hypercube Sampling method and LU decomposition method (LULHS method) for constructing spatial random field

    NASA Astrophysics Data System (ADS)

    WANG, P. T.

    2015-12-01

    Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.

  20. Application of multivariate statistical techniques in microbial ecology.

    PubMed

    Paliy, O; Shankar, V

    2016-03-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.

  1. Applying the multivariate time-rescaling theorem to neural population models

    PubMed Central

    Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon

    2011-01-01

    Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436

  2. Characterizations of linear sufficient statistics

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Reoner, R.; Decell, H. P., Jr.

    1977-01-01

    A surjective bounded linear operator T from a Banach space X to a Banach space Y must be a sufficient statistic for a dominated family of probability measures defined on the Borel sets of X. These results were applied, so that they characterize linear sufficient statistics for families of the exponential type, including as special cases the Wishart and multivariate normal distributions. The latter result was used to establish precisely which procedures for sampling from a normal population had the property that the sample mean was a sufficient statistic.

  3. Comparison of Dissolution Similarity Assessment Methods for Products with Large Variations: f2 Statistics and Model-Independent Multivariate Confidence Region Procedure for Dissolution Profiles of Multiple Oral Products.

    PubMed

    Yoshida, Hiroyuki; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2017-01-01

    The current Japanese Ministry of Health Labour and Welfare (MHLW)'s Guideline for Bioequivalence Studies of Generic Products uses averaged dissolution rates for the assessment of dissolution similarity between test and reference formulations. This study clarifies how the application of model-independent multivariate confidence region procedure (Method B), described in the European Medical Agency and U.S. Food and Drug Administration guidelines, affects similarity outcomes obtained empirically from dissolution profiles with large variations in individual dissolution rates. Sixty-one datasets of dissolution profiles for immediate release, oral generic, and corresponding innovator products that showed large variation in individual dissolution rates in generic products were assessed on their similarity by using the f 2 statistics defined in the MHLW guidelines (MHLW f 2 method) and two different Method B procedures, including a bootstrap method applied with f 2 statistics (BS method) and a multivariate analysis method using the Mahalanobis distance (MV method). The MHLW f 2 and BS methods provided similar dissolution similarities between reference and generic products. Although a small difference in the similarity assessment may be due to the decrease in the lower confidence interval for expected f 2 values derived from the large variation in individual dissolution rates, the MV method provided results different from those obtained through MHLW f 2 and BS methods. Analysis of actual dissolution data for products with large individual variations would provide valuable information towards an enhanced understanding of these methods and their possible incorporation in the MHLW guidelines.

  4. TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies

    PubMed Central

    van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.

    2013-01-01

    To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524

  5. Robust tests for multivariate factorial designs under heteroscedasticity.

    PubMed

    Vallejo, Guillermo; Ato, Manuel

    2012-06-01

    The question of how to analyze several multivariate normal mean vectors when normality and covariance homogeneity assumptions are violated is considered in this article. For the two-way MANOVA layout, we address this problem adapting results presented by Brunner, Dette, and Munk (BDM; 1997) and Vallejo and Ato (modified Brown-Forsythe [MBF]; 2006) in the context of univariate factorial and split-plot designs and a multivariate version of the linear model (MLM) to accommodate heterogeneous data. Furthermore, we compare these procedures with the Welch-James (WJ) approximate degrees of freedom multivariate statistics based on ordinary least squares via Monte Carlo simulation. Our numerical studies show that of the methods evaluated, only the modified versions of the BDM and MBF procedures were robust to violations of underlying assumptions. The MLM approach was only occasionally liberal, and then by only a small amount, whereas the WJ procedure was often liberal if the interactive effects were involved in the design, particularly when the number of dependent variables increased and total sample size was small. On the other hand, it was also found that the MLM procedure was uniformly more powerful than its most direct competitors. The overall success rate was 22.4% for the BDM, 36.3% for the MBF, and 45.0% for the MLM.

  6. Deterministic annealing for density estimation by multivariate normal mixtures

    NASA Astrophysics Data System (ADS)

    Kloppenburg, Martin; Tavan, Paul

    1997-03-01

    An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.

  7. A direct-gradient multivariate index of biotic condition

    USGS Publications Warehouse

    Miranda, Leandro E.; Aycock, J.N.; Killgore, K. J.

    2012-01-01

    Multimetric indexes constructed by summing metric scores have been criticized despite many of their merits. A leading criticism is the potential for investigator bias involved in metric selection and scoring. Often there is a large number of competing metrics equally well correlated with environmental stressors, requiring a judgment call by the investigator to select the most suitable metrics to include in the index and how to score them. Data-driven procedures for multimetric index formulation published during the last decade have reduced this limitation, yet apprehension remains. Multivariate approaches that select metrics with statistical algorithms may reduce the level of investigator bias and alleviate a weakness of multimetric indexes. We investigated the suitability of a direct-gradient multivariate procedure to derive an index of biotic condition for fish assemblages in oxbow lakes in the Lower Mississippi Alluvial Valley. Although this multivariate procedure also requires that the investigator identify a set of suitable metrics potentially associated with a set of environmental stressors, it is different from multimetric procedures because it limits investigator judgment in selecting a subset of biotic metrics to include in the index and because it produces metric weights suitable for computation of index scores. The procedure, applied to a sample of 35 competing biotic metrics measured at 50 oxbow lakes distributed over a wide geographical region in the Lower Mississippi Alluvial Valley, selected 11 metrics that adequately indexed the biotic condition of five test lakes. Because the multivariate index includes only metrics that explain the maximum variability in the stressor variables rather than a balanced set of metrics chosen to reflect various fish assemblage attributes, it is fundamentally different from multimetric indexes of biotic integrity with advantages and disadvantages. As such, it provides an alternative to multimetric procedures.

  8. Multivariate methods to visualise colour-space and colour discrimination data.

    PubMed

    Hastings, Gareth D; Rubin, Alan

    2015-01-01

    Despite most modern colour spaces treating colour as three-dimensional (3-D), colour data is usually not visualised in 3-D (and two-dimensional (2-D) projection-plane segments and multiple 2-D perspective views are used instead). The objectives of this article are firstly, to introduce a truly 3-D percept of colour space using stereo-pairs, secondly to view colour discrimination data using that platform, and thirdly to apply formal statistics and multivariate methods to analyse the data in 3-D. This is the first demonstration of the software that generated stereo-pairs of RGB colour space, as well as of a new computerised procedure that investigated colour discrimination by measuring colour just noticeable differences (JND). An initial pilot study and thorough investigation of instrument repeatability were performed. Thereafter, to demonstrate the capabilities of the software, five colour-normal and one colour-deficient subject were examined using the JND procedure and multivariate methods of data analysis. Scatter plots of responses were meaningfully examined in 3-D and were useful in evaluating multivariate normality as well as identifying outliers. The extent and direction of the difference between each JND response and the stimulus colour point was calculated and appreciated in 3-D. Ellipsoidal surfaces of constant probability density (distribution ellipsoids) were fitted to response data; the volumes of these ellipsoids appeared useful in differentiating the colour-deficient subject from the colour-normals. Hypothesis tests of variances and covariances showed many statistically significant differences between the results of the colour-deficient subject and those of the colour-normals, while far fewer differences were found when comparing within colour-normals. The 3-D visualisation of colour data using stereo-pairs, as well as the statistics and multivariate methods of analysis employed, were found to be unique and useful tools in the representation and study of colour. Many additional studies using these methods along with the JND and other procedures have been identified and will be reported in future publications. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  9. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  10. Inference for multivariate regression model based on multiply imputed synthetic data generated via posterior predictive sampling

    NASA Astrophysics Data System (ADS)

    Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.

    2017-06-01

    The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.

  11. Adjustment of geochemical background by robust multivariate statistics

    USGS Publications Warehouse

    Zhou, D.

    1985-01-01

    Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.

  12. Multivariate probability distribution for sewer system vulnerability assessment under data-limited conditions.

    PubMed

    Del Giudice, G; Padulano, R; Siciliano, D

    2016-01-01

    The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements.

  13. FGWAS: Functional genome wide association analysis.

    PubMed

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Does speed matter? The impact of operative time on outcome in laparoscopic surgery

    PubMed Central

    Jackson, Timothy D.; Wannares, Jeffrey J.; Lancaster, R. Todd; Rattner, David W.

    2012-01-01

    Introduction Controversy exists concerning the importance of operative time on patient outcomes. It is unclear whether faster is better or haste makes waste or similarly whether slower procedures represent a safe, meticulous approach or inexperienced dawdling. The objective of the present study was to determine the effect of operative time on 30-day outcomes in laparoscopic surgery. Methods Patients who underwent laparoscopic general surgery procedures (colectomy, cholecystectomy, Nissen fundoplication, inguinal hernia, and gastric bypass) from the ACS-NSQIP 2005–2008 participant use file were identified. Exclusion criteria were defined a priori to identify same-day admission, elective procedures. Operative time was divided into deciles and summary statistics were analyzed. Univariate analyses using a Cochran-Armitage test for trend were completed. The effect of operative time on 30-day morbidity was further analyzed for each procedure type using multivariate regression controlling for case complexity and additional patient factors. Patients within the highest deciles were excluded to reduce outlier effect. Results A total of 76,748 elective general surgical patients who underwent laparoscopic procedures were analyzed. Univariate analyses of deciles of operative time demonstrated a statistically significant trend (p \\ 0.0001) toward increasing odds of complications with increasing operative time for laparoscopic colectomy (n = 10,135), cholecystectomy (n = 37,407), Nissen fundoplication (n = 4,934), and gastric bypass (n = 17,842). The trend was not found to be significant for laparoscopic inguinal hernia repair (n = 6,430; p = 0.14). Multivariate modeling revealed the effect of operative time to remain significant after controlling for additional patient factors. Conclusion Increasing operative time was associated with increased odds of complications and, therefore, it appears that speed may matter in laparoscopic surgery. These analyses are limited in their inability to adjust for all patient factors, potential confounders, and case complexities. Additional hierarchical multivariate analyses at the surgeon level would be important to examine this relationship further. PMID:21298533

  15. Does speed matter? The impact of operative time on outcome in laparoscopic surgery.

    PubMed

    Jackson, Timothy D; Wannares, Jeffrey J; Lancaster, R Todd; Rattner, David W; Hutter, Matthew M

    2011-07-01

    Controversy exists concerning the importance of operative time on patient outcomes. It is unclear whether faster is better or haste makes waste or similarly whether slower procedures represent a safe, meticulous approach or inexperienced dawdling. The objective of the present study was to determine the effect of operative time on 30-day outcomes in laparoscopic surgery. Patients who underwent laparoscopic general surgery procedures (colectomy, cholecystectomy, Nissen fundoplication, inguinal hernia, and gastric bypass) from the ACS-NSQIP 2005-2008 participant use file were identified. Exclusion criteria were defined a priori to identify same-day admission, elective procedures. Operative time was divided into deciles and summary statistics were analyzed. Univariate analyses using a Cochran-Armitage test for trend were completed. The effect of operative time on 30-day morbidity was further analyzed for each procedure type using multivariate regression controlling for case complexity and additional patient factors. Patients within the highest deciles were excluded to reduce outlier effect. A total of 76,748 elective general surgical patients who underwent laparoscopic procedures were analyzed. Univariate analyses of deciles of operative time demonstrated a statistically significant trend (p<0.0001) toward increasing odds of complications with increasing operative time for laparoscopic colectomy (n=10,135), cholecystectomy (n=37,407), Nissen fundoplication (n=4,934), and gastric bypass (n=17,842). The trend was not found to be significant for laparoscopic inguinal hernia repair (n=6,430; p=0.14). Multivariate modeling revealed the effect of operative time to remain significant after controlling for additional patient factors. Increasing operative time was associated with increased odds of complications and, therefore, it appears that speed may matter in laparoscopic surgery. These analyses are limited in their inability to adjust for all patient factors, potential confounders, and case complexities. Additional hierarchical multivariate analyses at the surgeon level would be important to examine this relationship further.

  16. A Review of Structural Equation Modeling Applications in Turkish Educational Science Literature, 2010-2015

    ERIC Educational Resources Information Center

    Karakaya-Ozyer, Kubra; Aksu-Dunya, Beyza

    2018-01-01

    Structural equation modeling (SEM) is one of the most popular multivariate statistical techniques in Turkish educational research. This study elaborates the SEM procedures employed by 75 educational research articles which were published from 2010 to 2015 in Turkey. After documenting and coding 75 academic papers, categorical frequencies and…

  17. Multivariate statistical analysis strategy for multiple misfire detection in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Hu, Chongqing; Li, Aihua; Zhao, Xingyang

    2011-02-01

    This paper proposes a multivariate statistical analysis approach to processing the instantaneous engine speed signal for the purpose of locating multiple misfire events in internal combustion engines. The state of each cylinder is described with a characteristic vector extracted from the instantaneous engine speed signal following a three-step procedure. These characteristic vectors are considered as the values of various procedure parameters of an engine cycle. Therefore, determination of occurrence of misfire events and identification of misfiring cylinders can be accomplished by a principal component analysis (PCA) based pattern recognition methodology. The proposed algorithm can be implemented easily in practice because the threshold can be defined adaptively without the information of operating conditions. Besides, the effect of torsional vibration on the engine speed waveform is interpreted as the presence of super powerful cylinder, which is also isolated by the algorithm. The misfiring cylinder and the super powerful cylinder are often adjacent in the firing sequence, thus missing detections and false alarms can be avoided effectively by checking the relationship between the cylinders.

  18. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. This report deals with the selection of the best channels from the 24-channel aircraft data to represent crop and soil conditions. A three-step procedure has been developed that involves using univariate statistics and an F-ratio test to indicate the best 14 channels. From the 14, the 10 best channels are selected by a multivariate stochastic process. The third step involves the pattern recognition procedures developed in the data analysis plan. Indications are that the procedures in use are satsifactory and will extract the desired information from the data.

  19. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method

    NASA Astrophysics Data System (ADS)

    Cheong, Youjin; Kim, Young Jin; Kang, Heeyoon; Choi, Samjin; Lee, Hee Joo

    2017-08-01

    Although many methodologies have been developed to identify unknown bacteria, bacterial identification in clinical microbiology remains a complex and time-consuming procedure. To address this problem, we developed a label-free method for rapidly identifying clinically relevant multilocus sequencing typing-verified quinolone-resistant Klebsiella pneumoniae strains. We also applied the method to identify three strains from colony samples, ATCC70063 (control), ST11 and ST15; these are the prevalent quinolone-resistant K. pneumoniae strains in East Asia. The colonies were identified using a drop-coating deposition surface-enhanced Raman scattering (DCD-SERS) procedure coupled with a multivariate statistical method. Our workflow exhibited an enhancement factor of 11.3 × 106 to Raman intensities, high reproducibility (relative standard deviation of 7.4%), and a sensitive limit of detection (100 pM rhodamine 6G), with a correlation coefficient of 0.98. All quinolone-resistant K. pneumoniae strains showed similar spectral Raman shifts (high correlations) regardless of bacterial type, as well as different Raman vibrational modes compared to Escherichia coli strains. Our proposed DCD-SERS procedure coupled with the multivariate statistics-based identification method achieved excellent performance in discriminating similar microbes from one another and also in subtyping of K. pneumoniae strains. Therefore, our label-free DCD-SERS procedure coupled with the computational decision supporting method is a potentially useful method for the rapid identification of clinically relevant K. pneumoniae strains.

  20. Statistical methods and neural network approaches for classification of data from multiple sources

    NASA Technical Reports Server (NTRS)

    Benediktsson, Jon Atli; Swain, Philip H.

    1990-01-01

    Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.

  1. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  2. Docking and multivariate methods to explore HIV-1 drug-resistance: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Almerico, Anna Maria; Tutone, Marco; Lauria, Antonino

    2008-05-01

    In this paper we describe a comparative analysis between multivariate and docking methods in the study of the drug resistance to the reverse transcriptase and the protease inhibitors. In our early papers we developed a simple but efficient method to evaluate the features of compounds that are less likely to trigger resistance or are effective against mutant HIV strains, using the multivariate statistical procedures PCA and DA. In the attempt to create a more solid background for the prediction of susceptibility or resistance, we carried out a comparative analysis between our previous multivariate approach and molecular docking study. The intent of this paper is not only to find further support to the results obtained by the combined use of PCA and DA, but also to evidence the structural features, in terms of molecular descriptors, similarity, and energetic contributions, derived from docking, which can account for the arising of drug-resistance against mutant strains.

  3. Multivariate statistical analysis of diffusion imaging parameters using partial least squares: Application to white matter variations in Alzheimer's disease.

    PubMed

    Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H; Fischl, Bruce

    2016-07-01

    Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: "are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?" and "are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?" Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Multivariate Statistical Analysis of Diffusion Imaging Parameters using Partial Least Squares: Application to White Matter Variations in Alzheimer’s Disease

    PubMed Central

    Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H.; Fischl, Bruce

    2016-01-01

    Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer’s and Huntington’s diseases1,2. The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as Diffusion Tensor Imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer’s disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: “are there regions in the white matter where Alzheimer’s disease has a different effect than aging or similar effect as aging?” and “are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer’s disease but with differing multivariate effects?” PMID:27103138

  5. Statistical inferences for data from studies conducted with an aggregated multivariate outcome-dependent sample design

    PubMed Central

    Lu, Tsui-Shan; Longnecker, Matthew P.; Zhou, Haibo

    2016-01-01

    Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data and the general ODS design for a continuous response. While substantial work has been done for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome dependent sampling (Multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the Multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the Multivariate-ODS or the estimator from a simple random sample with the same sample size. The Multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of PCB exposure to hearing loss in children born to the Collaborative Perinatal Study. PMID:27966260

  6. Risk factors for early post-operative neurological deterioration in dogs undergoing a cervical dorsal laminectomy or hemilaminectomy: 100 cases (2002-2014).

    PubMed

    Taylor-Brown, F E; Cardy, T J A; Liebel, F X; Garosi, L; Kenny, P J; Volk, H A; De Decker, S

    2015-12-01

    Early post-operative neurological deterioration is a well-known complication following dorsal cervical laminectomies and hemilaminectomies in dogs. This study aimed to evaluate potential risk factors for early post-operative neurological deterioration following these surgical procedures. Medical records of 100 dogs that had undergone a cervical dorsal laminectomy or hemilaminectomy between 2002 and 2014 were assessed retrospectively. Assessed variables included signalment, bodyweight, duration of clinical signs, neurological status before surgery, diagnosis, surgical site, type and extent of surgery and duration of procedure. Outcome measures were neurological status immediately following surgery and duration of hospitalisation. Univariate statistical analysis was performed to identify variables to be included in a multivariate model. Diagnoses included osseous associated cervical spondylomyelopathy (OACSM; n = 41), acute intervertebral disk extrusion (IVDE; 31), meningioma (11), spinal arachnoid diverticulum (10) and vertebral arch anomalies (7). Overall 54% (95% CI 45.25-64.75) of dogs were neurologically worse 48 h post-operatively. Multivariate statistical analysis identified four factors significantly related to early post-operative neurological outcome. Diagnoses of OACSM or meningioma were considered the strongest variables to predict early post-operative neurological deterioration, followed by higher (more severely affected) neurological grade before surgery and longer surgery time. This information can aid in the management of expectations of clinical staff and owners with dogs undergoing these surgical procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Multi-response permutation procedure as an alternative to the analysis of variance: an SPSS implementation.

    PubMed

    Cai, Li

    2006-02-01

    A permutation test typically requires fewer assumptions than does a comparable parametric counterpart. The multi-response permutation procedure (MRPP) is a class of multivariate permutation tests of group difference useful for the analysis of experimental data. However, psychologists seldom make use of the MRPP in data analysis, in part because the MRPP is not implemented in popular statistical packages that psychologists use. A set of SPSS macros implementing the MRPP test is provided in this article. The use of the macros is illustrated by analyzing example data sets.

  8. Forensic analysis of Salvia divinorum using multivariate statistical procedures. Part I: discrimination from related Salvia species.

    PubMed

    Willard, Melissa A Bodnar; McGuffin, Victoria L; Smith, Ruth Waddell

    2012-01-01

    Salvia divinorum is a hallucinogenic herb that is internationally regulated. In this study, salvinorin A, the active compound in S. divinorum, was extracted from S. divinorum plant leaves using a 5-min extraction with dichloromethane. Four additional Salvia species (Salvia officinalis, Salvia guaranitica, Salvia splendens, and Salvia nemorosa) were extracted using this procedure, and all extracts were analyzed by gas chromatography-mass spectrometry. Differentiation of S. divinorum from other Salvia species was successful based on visual assessment of the resulting chromatograms. To provide a more objective comparison, the total ion chromatograms (TICs) were subjected to principal components analysis (PCA). Prior to PCA, the TICs were subjected to a series of data pretreatment procedures to minimize non-chemical sources of variance in the data set. Successful discrimination of S. divinorum from the other four Salvia species was possible based on visual assessment of the PCA scores plot. To provide a numerical assessment of the discrimination, a series of statistical procedures such as Euclidean distance measurement, hierarchical cluster analysis, Student's t tests, Wilcoxon rank-sum tests, and Pearson product moment correlation were also applied to the PCA scores. The statistical procedures were then compared to determine the advantages and disadvantages for forensic applications.

  9. Impact of resident participation on morbidity and mortality in neurosurgical procedures: an analysis of 16,098 patients.

    PubMed

    Bydon, Mohamad; Abt, Nicholas B; De la Garza-Ramos, Rafael; Macki, Mohamed; Witham, Timothy F; Gokaslan, Ziya L; Bydon, Ali; Huang, Judy

    2015-04-01

    The authors sought to determine the impact of resident participation on overall 30-day morbidity and mortality following neurosurgical procedures. The American College of Surgeons National Surgical Quality Improvement Program database was queried for all patients who had undergone neurosurgical procedures between 2006 and 2012. The operating surgeon(s), whether an attending only or attending plus resident, was assessed for his or her influence on morbidity and mortality. Multivariate logistic regression, was used to estimate odds ratios for 30-day postoperative morbidity and mortality outcomes for the attending-only compared with the attending plus resident cohorts (attending group and attending+resident group, respectively). The study population consisted of 16,098 patients who had undergone elective or emergent neurosurgical procedures. The mean patient age was 56.8 ± 15.0 years, and 49.8% of patients were women. Overall, 15.8% of all patients had at least one postoperative complication. The attending+resident group demonstrated a complication rate of 20.12%, while patients with an attending-only surgeon had a statistically significantly lower complication rate at 11.70% (p < 0.001). In the total population, 263 patients (1.63%) died within 30 days of surgery. Stratified by operating surgeon status, 162 patients (2.07%) in the attending+resident group died versus 101 (1.22%) in the attending group, which was statistically significant (p < 0.001). Regression analyses compared patients who had resident participation to those with only attending surgeons, the referent group. Following adjustment for preoperative patient characteristics and comorbidities, multivariate regression analysis demonstrated that patients with resident participation in their surgery had the same odds of 30-day morbidity (OR = 1.05, 95% CI 0.94-1.17) and mortality (OR = 0.92, 95% CI 0.66-1.28) as their attending only counterparts. Cases with resident participation had higher rates of mortality and morbidity; however, these cases also involved patients with more comorbidities initially. On multivariate analysis, resident participation was not an independent risk factor for postoperative 30-day morbidity or mortality following elective or emergent neurosurgical procedures.

  10. Effects of Covariance Heterogeneity on Three Procedures for Analyzing Multivariate Repeated Measures Designs.

    ERIC Educational Resources Information Center

    Vallejo, Guillermo; Fidalgo, Angel; Fernandez, Paula

    2001-01-01

    Estimated empirical Type I error rate and power rate for three procedures for analyzing multivariate repeated measures designs: (1) the doubly multivariate model; (2) the Welch-James multivariate solution (H. Keselman, M. Carriere, a nd L. Lix, 1993); and (3) the multivariate version of the modified Brown-Forsythe procedure (M. Brown and A.…

  11. The effect of normalization of Partial Directed Coherence on the statistical assessment of connectivity patterns: a simulation study.

    PubMed

    Toppi, J; Petti, M; Vecchiato, G; Cincotti, F; Salinari, S; Mattia, D; Babiloni, F; Astolfi, L

    2013-01-01

    Partial Directed Coherence (PDC) is a spectral multivariate estimator for effective connectivity, relying on the concept of Granger causality. Even if its original definition derived directly from information theory, two modifies were introduced in order to provide better physiological interpretations of the estimated networks: i) normalization of the estimator according to rows, ii) squared transformation. In the present paper we investigated the effect of PDC normalization on the performances achieved by applying the statistical validation process on investigated connectivity patterns under different conditions of Signal to Noise ratio (SNR) and amount of data available for the analysis. Results of the statistical analysis revealed an effect of PDC normalization only on the percentages of type I and type II errors occurred by using Shuffling procedure for the assessment of connectivity patterns. No effects of the PDC formulation resulted on the performances achieved during the validation process executed instead by means of Asymptotic Statistic approach. Moreover, the percentages of both false positives and false negatives committed by Asymptotic Statistic are always lower than those achieved by Shuffling procedure for each type of normalization.

  12. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  13. Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.

    2009-09-01

    SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.

  14. Statistical inferences for data from studies conducted with an aggregated multivariate outcome-dependent sample design.

    PubMed

    Lu, Tsui-Shan; Longnecker, Matthew P; Zhou, Haibo

    2017-03-15

    Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data, and the general ODS design for a continuous response. While substantial work has been carried out for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome-dependent sampling (multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the multivariate-ODS or the estimator from a simple random sample with the same sample size. The multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of polychlorinated biphenyl exposure to hearing loss in children born to the Collaborative Perinatal Study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.

    PubMed

    Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin

    2015-04-01

    Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  16. Effect of Flexible Duty Hour Policies on Length of Stay for Complex Intra-Abdominal Operations: A Flexibility in Duty Hour Requirements for Surgical Trainees (FIRST) Trial Analysis.

    PubMed

    Stulberg, Jonah J; Pavey, Emily S; Cohen, Mark E; Ko, Clifford Y; Hoyt, David B; Bilimoria, Karl Y

    2017-02-01

    Changes to resident duty hour policies in the Flexibility in Duty Hour Requirements for Surgical Trainees (FIRST) trial could impact hospitalized patients' length of stay (LOS) by altering care coordination. Length of stay can also serve as a reflection of all complications, particularly those not captured in the FIRST trial (eg pneumothorax from central line). Programs were randomized to either maintaining current ACGME duty hour policies (Standard arm) or more flexible policies waiving rules on maximum shift lengths and time off between shifts (Flexible arm). Our objective was to determine whether flexibility in resident duty hours affected LOS in patients undergoing high-risk surgical operations. Patients were identified who underwent hepatectomy, pancreatectomy, laparoscopic colectomy, open colectomy, or ventral hernia repair (2014-2015 academic year) at 154 hospitals participating in the FIRST trial. Two procedure-stratified evaluations of LOS were undertaken: multivariable negative binomial regression analysis on LOS and a multivariable logistic regression analysis on the likelihood of a prolonged LOS (>75 th percentile). Before any adjustments, there was no statistically significant difference in overall mean LOS between study arms (Flexible Policy: mean [SD] LOS 6.03 [5.78] days vs Standard Policy: mean LOS 6.21 [5.82] days; p = 0.74). In adjusted analyses, there was no statistically significant difference in LOS between study arms overall (incidence rate ratio for Flexible vs Standard: 0.982; 95% CI, 0.939-1.026; p = 0.41) or for any individual procedures. In addition, there was no statistically significant difference in the proportion of patients with prolonged LOS between study arms overall (Flexible vs Standard: odds ratio = 1.028; 95% CI, 0.871-1.212) or for any individual procedures. Duty hour flexibility had no statistically significant effect on LOS in patients undergoing complex intra-abdominal operations. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  17. PROMISE: a tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables.

    PubMed

    Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C; Downing, James R; Lamba, Jatinder

    2009-08-15

    In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org.

  18. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    PubMed

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  19. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    PubMed Central

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  20. Risk prediction for myocardial infarction via generalized functional regression models.

    PubMed

    Ieva, Francesca; Paganoni, Anna M

    2016-08-01

    In this paper, we propose a generalized functional linear regression model for a binary outcome indicating the presence/absence of a cardiac disease with multivariate functional data among the relevant predictors. In particular, the motivating aim is the analysis of electrocardiographic traces of patients whose pre-hospital electrocardiogram (ECG) has been sent to 118 Dispatch Center of Milan (the Italian free-toll number for emergencies) by life support personnel of the basic rescue units. The statistical analysis starts with a preprocessing of ECGs treated as multivariate functional data. The signals are reconstructed from noisy observations. The biological variability is then removed by a nonlinear registration procedure based on landmarks. Thus, in order to perform a data-driven dimensional reduction, a multivariate functional principal component analysis is carried out on the variance-covariance matrix of the reconstructed and registered ECGs and their first derivatives. We use the scores of the Principal Components decomposition as covariates in a generalized linear model to predict the presence of the disease in a new patient. Hence, a new semi-automatic diagnostic procedure is proposed to estimate the risk of infarction (in the case of interest, the probability of being affected by Left Bundle Brunch Block). The performance of this classification method is evaluated and compared with other methods proposed in literature. Finally, the robustness of the procedure is checked via leave-j-out techniques. © The Author(s) 2013.

  1. Bayesian multivariate Poisson abundance models for T-cell receptor data.

    PubMed

    Greene, Joshua; Birtwistle, Marc R; Ignatowicz, Leszek; Rempala, Grzegorz A

    2013-06-07

    A major feature of an adaptive immune system is its ability to generate B- and T-cell clones capable of recognizing and neutralizing specific antigens. These clones recognize antigens with the help of the surface molecules, called antigen receptors, acquired individually during the clonal development process. In order to ensure a response to a broad range of antigens, the number of different receptor molecules is extremely large, resulting in a huge clonal diversity of both B- and T-cell receptor populations and making their experimental comparisons statistically challenging. To facilitate such comparisons, we propose a flexible parametric model of multivariate count data and illustrate its use in a simultaneous analysis of multiple antigen receptor populations derived from mammalian T-cells. The model relies on a representation of the observed receptor counts as a multivariate Poisson abundance mixture (m PAM). A Bayesian parameter fitting procedure is proposed, based on the complete posterior likelihood, rather than the conditional one used typically in similar settings. The new procedure is shown to be considerably more efficient than its conditional counterpart (as measured by the Fisher information) in the regions of m PAM parameter space relevant to model T-cell data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  3. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

  4. Analysis of the procedures used to evaluate suicide crime scenes in Brazil: a statistical approach to interpret reports.

    PubMed

    Bruni, Aline Thaís; Velho, Jesus Antonio; Ferreira, Arthur Serra Lopes; Tasso, Maria Júlia; Ferrari, Raíssa Santos; Yoshida, Ricardo Luís; Dias, Marcos Salvador; Leite, Vitor Barbanti Pereira

    2014-08-01

    This study uses statistical techniques to evaluate reports on suicide scenes; it utilizes 80 reports from different locations in Brazil, randomly collected from both federal and state jurisdictions. We aimed to assess a heterogeneous group of cases in order to obtain an overall perspective of the problem. We evaluated variables regarding the characteristics of the crime scene, such as the detected traces (blood, instruments and clothes) that were found and we addressed the methodology employed by the experts. A qualitative approach using basic statistics revealed a wide distribution as to how the issue was addressed in the documents. We examined a quantitative approach involving an empirical equation and we used multivariate procedures to validate the quantitative methodology proposed for this empirical equation. The methodology successfully identified the main differences in the information presented in the reports, showing that there is no standardized method of analyzing evidences. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. [Retrospective statistical analysis of clinical factors of recurrence in chronic subdural hematoma: correlation between univariate and multivariate analysis].

    PubMed

    Takayama, Motoharu; Terui, Keita; Oiwa, Yoshitsugu

    2012-10-01

    Chronic subdural hematoma is common in elderly individuals and surgical procedures are simple. The recurrence rate of chronic subdural hematoma, however, varies from 9.2 to 26.5% after surgery. The authors studied factors of the recurrence using univariate and multivariate analyses in patients with chronic subdural hematoma We retrospectively reviewed 239 consecutive cases of chronic subdural hematoma who received burr-hole surgery with irrigation and closed-system drainage. We analyzed the relationships between recurrence of chronic subdural hematoma and factors such as sex, age, laterality, bleeding tendency, other complicated diseases, density on CT, volume of the hematoma, residual air in the hematoma cavity, use of artificial cerebrospinal fluid. Twenty-one patients (8.8%) experienced a recurrence of chronic subdural hematoma. Multiple logistic regression found that the recurrence rate was higher in patients with a large volume of the residual air, and was lower in patients using artificial cerebrospinal fluid. No statistical differences were found in bleeding tendency. Techniques to reduce the air in the hematoma cavity are important for good outcome in surgery of chronic subdural hematoma. Also, the use of artificial cerebrospinal fluid reduces recurrence of chronic subdural hematoma. The surgical procedures can be the same for patients with bleeding tendencies.

  6. Harnessing Multivariate Statistics for Ellipsoidal Data in Structural Geology

    NASA Astrophysics Data System (ADS)

    Roberts, N.; Davis, J. R.; Titus, S.; Tikoff, B.

    2015-12-01

    Most structural geology articles do not state significance levels, report confidence intervals, or perform regressions to find trends. This is, in part, because structural data tend to include directions, orientations, ellipsoids, and tensors, which are not treatable by elementary statistics. We describe a full procedural methodology for the statistical treatment of ellipsoidal data. We use a reconstructed dataset of deformed ooids in Maryland from Cloos (1947) to illustrate the process. Normalized ellipsoids have five degrees of freedom and can be represented by a second order tensor. This tensor can be permuted into a five dimensional vector that belongs to a vector space and can be treated with standard multivariate statistics. Cloos made several claims about the distribution of deformation in the South Mountain fold, Maryland, and we reexamine two particular claims using hypothesis testing: 1) octahedral shear strain increases towards the axial plane of the fold; 2) finite strain orientation varies systematically along the trend of the axial trace as it bends with the Appalachian orogen. We then test the null hypothesis that the southern segment of South Mountain is the same as the northern segment. This test illustrates the application of ellipsoidal statistics, which combine both orientation and shape. We report confidence intervals for each test, and graphically display our results with novel plots. This poster illustrates the importance of statistics in structural geology, especially when working with noisy or small datasets.

  7. PROMISE: a tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables

    PubMed Central

    Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R.; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C.; Downing, James R.; Lamba, Jatinder

    2009-01-01

    Motivation: In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Results: Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Availability: Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org. Contact: stanley.pounds@stjude.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19528086

  8. Metrically adjusted questionnaires can provide more information for scientists- an example from the tourism.

    PubMed

    Sindik, Joško; Miljanović, Maja

    2017-03-01

    The article deals with the issue of research methodology, illustrating the use of known research methods for new purposes. Questionnaires that originally do not have metric characteristics can be called »handy questionnaires«. In this article, the author is trying to consider the possibilities of their improved scientific usability, which can be primarily ensured by improving their metric characteristics, consequently using multivariate instead of univariate statistical methods. In order to establish the base for the application of multivariate statistical procedures, the main idea is to develop strategies to design measurement instruments from parts of the handy questionnaires. This can be accomplished in two ways: before deciding upon the methods for data collection (redesigning the handy questionnaires) and before the collection of the data (a priori) or after the data has been collected, without modifying the questionnaire (a posteriori). The basic principles of applying these two strategies of the metrical adaptation of handy questionnaires are described.

  9. Handwriting Examination: Moving from Art to Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, K.H.; Hanlen, R.C.; Manzolillo, P.A.

    In this document, we present a method for validating the premises and methodology of forensic handwriting examination. This method is intuitively appealing because it relies on quantitative measurements currently used qualitatively by FDE's in making comparisons, and it is scientifically rigorous because it exploits the power of multivariate statistical analysis. This approach uses measures of both central tendency and variation to construct a profile for a given individual. (Central tendency and variation are important for characterizing an individual's writing and both are currently used by FDE's in comparative analyses). Once constructed, different profiles are then compared for individuality using clustermore » analysis; they are grouped so that profiles within a group cannot be differentiated from one another based on the measured characteristics, whereas profiles between groups can. The cluster analysis procedure used here exploits the power of multivariate hypothesis testing. The result is not only a profile grouping but also an indication of statistical significance of the groups generated.« less

  10. The use of logistic regression to enhance risk assessment and decision making by mental health administrators.

    PubMed

    Menditto, Anthony A; Linhorst, Donald M; Coleman, James C; Beck, Niels C

    2006-04-01

    Development of policies and procedures to contend with the risks presented by elopement, aggression, and suicidal behaviors are long-standing challenges for mental health administrators. Guidance in making such judgments can be obtained through the use of a multivariate statistical technique known as logistic regression. This procedure can be used to develop a predictive equation that is mathematically formulated to use the best combination of predictors, rather than considering just one factor at a time. This paper presents an overview of logistic regression and its utility in mental health administrative decision making. A case example of its application is presented using data on elopements from Missouri's long-term state psychiatric hospitals. Ultimately, the use of statistical prediction analyses tempered with differential qualitative weighting of classification errors can augment decision-making processes in a manner that provides guidance and flexibility while wrestling with the complex problem of risk assessment and decision making.

  11. Multivariate normality

    NASA Technical Reports Server (NTRS)

    Crutcher, H. L.; Falls, L. W.

    1976-01-01

    Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.

  12. Multivariate analysis of fears in dental phobic patients according to a reduced FSS-II scale.

    PubMed

    Hakeberg, M; Gustafsson, J E; Berggren, U; Carlsson, S G

    1995-10-01

    This study analyzed and assessed dimensions of a questionnaire developed to measure general fears and phobias. A previous factor analysis among 109 dental phobics had revealed a five-factor structure with 22 items and an explained total variance of 54%. The present study analyzed the same material using a multivariate statistical procedure (LISREL) to reveal structural latent variables. The LISREL analysis, based on the correlation matrix, yielded a chi-square of 216.6 with 195 degrees of freedom (P = 0.138) and showed a model with seven latent variables. One was a general fear factor correlated to all 22 items. The other six factors concerned "Illness & Death" (5 items), "Failures & Embarrassment" (5 items), "Social situations" (5 items), "Physical injuries" (4 items), "Animals & Natural phenomena" (4 items). One item (opposite sex) was included in both "Failures & Embarrassment" and "Social situations". The last factor, "Social interaction", combined all the items in "Failures & Embarrassment" and "Social situations" (9 items). In conclusion, this multivariate statistical analysis (LISREL) revealed and confirmed a factor structure similar to our previous study, but added two important dimensions not shown with a traditional factor analysis. This reduced FSS-II version measures general fears and phobias and may be used on a routine clinical basis as well as in dental phobia research.

  13. Simultaneous grouping and ranking with combination of SOM and TOPSIS for selection of preferable analytical procedure for furan determination in food.

    PubMed

    Jędrkiewicz, Renata; Tsakovski, Stefan; Lavenu, Aurore; Namieśnik, Jacek; Tobiszewski, Marek

    2018-02-01

    Novel methodology for grouping and ranking with application of self-organizing maps and multicriteria decision analysis is presented. The dataset consists of 22 objects that are analytical procedures applied to furan determination in food samples. They are described by 10 variables, referred to their analytical performance, environmental and economic aspects. Multivariate statistics analysis allows to limit the amount of input data for ranking analysis. Assessment results show that the most beneficial procedures are based on microextraction techniques with GC-MS final determination. It is presented how the information obtained from both tools complement each other. The applicability of combination of grouping and ranking is also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models.

    PubMed

    Van Esbroeck, Alexander; Rubinfeld, Ilan; Hall, Bruce; Syed, Zeeshan

    2014-11-01

    To investigate the use of machine learning to empirically determine the risk of individual surgical procedures and to improve surgical models with this information. American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) data from 2005 to 2009 were used to train support vector machine (SVM) classifiers to learn the relationship between textual constructs in current procedural terminology (CPT) descriptions and mortality, morbidity, Clavien 4 complications, and surgical-site infections (SSI) within 30 days of surgery. The procedural risk scores produced by the SVM classifiers were validated on data from 2010 in univariate and multivariate analyses. The procedural risk scores produced by the SVM classifiers achieved moderate-to-high levels of discrimination in univariate analyses (area under receiver operating characteristic curve: 0.871 for mortality, 0.789 for morbidity, 0.791 for SSI, 0.845 for Clavien 4 complications). Addition of these scores also substantially improved multivariate models comprising patient factors and previously proposed correlates of procedural risk (net reclassification improvement and integrated discrimination improvement: 0.54 and 0.001 for mortality, 0.46 and 0.011 for morbidity, 0.68 and 0.022 for SSI, 0.44 and 0.001 for Clavien 4 complications; P < .05 for all comparisons). Similar improvements were noted in discrimination and calibration for other statistical measures, and in subcohorts comprising patients with general or vascular surgery. Machine learning provides clinically useful estimates of surgical risk for individual procedures. This information can be measured in an entirely data-driven manner and substantially improves multifactorial models to predict postoperative complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Multivariate Cluster Analysis.

    ERIC Educational Resources Information Center

    McRae, Douglas J.

    Procedures for grouping students into homogeneous subsets have long interested educational researchers. The research reported in this paper is an investigation of a set of objective grouping procedures based on multivariate analysis considerations. Four multivariate functions that might serve as criteria for adequate grouping are given and…

  16. Factors that influence length of stay for in-patient gynaecology surgery: is the Case Mix Group (CMG) or type of procedure more important?

    PubMed

    Carey, Mark S; Victory, Rahi; Stitt, Larry; Tsang, Nicole

    2006-02-01

    To compare the association between the Case Mix Group (CMG) code and length of stay (LOS) with the association between the type of procedure and LOS in patients admitted for gynaecology surgery. We examined the records of women admitted for surgery in CMG 579 (major uterine/adnexal procedure, no malignancy) or 577 (major surgery ovary/adnexa with malignancy) between April 1997 and March 1999. Factors thought to influence LOS included age, weight, American Society of Anesthesiologists (ASA) score, physician, day of the week on which surgery was performed, and procedure type. Procedures were divided into six categories, four for CMG 579 and two for CMG 577. Data were abstracted from the hospital information costing system (T2 system) and by retrospective chart review. Multivariable analysis was performed using linear regression with backwards elimination. There were 606 patients in CMG 579 and 101 patients in CMG 577, and the corresponding median LOS was four days (range 1-19) for CMG 579 and nine days (range 3-30) for CMG 577. Combined analysis of both CMGs 577 and 579 revealed the following factors as highly significant determinants of LOS: procedure, age, physician, and ASA score. Although confounded by procedure type, the CMG did not significantly account for differences in LOS in the model if procedure was considered. Pairwise comparisons of procedure categories were all found to be statistically significant, even when controlled for other important variables. The type of procedure better accounts for differences in LOS by describing six statistically distinct procedure groups rather than the traditional two CMGs. It is reasonable therefore to consider changing the current CMG codes for gynaecology to a classification based on the type of procedure.

  17. Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods.

    PubMed

    Dong, Jian-Jun; Li, Qing-Liang; Yin, Hua; Zhong, Cheng; Hao, Jun-Guang; Yang, Pan-Fei; Tian, Yu-Hong; Jia, Shi-Ru

    2014-10-15

    Sensory evaluation is regarded as a necessary procedure to ensure a reproducible quality of beer. Meanwhile, high-throughput analytical methods provide a powerful tool to analyse various flavour compounds, such as higher alcohol and ester. In this study, the relationship between flavour compounds and sensory evaluation was established by non-linear models such as partial least squares (PLS), genetic algorithm back-propagation neural network (GA-BP), support vector machine (SVM). It was shown that SVM with a Radial Basis Function (RBF) had a better performance of prediction accuracy for both calibration set (94.3%) and validation set (96.2%) than other models. Relatively lower prediction abilities were observed for GA-BP (52.1%) and PLS (31.7%). In addition, the kernel function of SVM played an essential role of model training when the prediction accuracy of SVM with polynomial kernel function was 32.9%. As a powerful multivariate statistics method, SVM holds great potential to assess beer quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Non-targeted 1H NMR fingerprinting and multivariate statistical analyses for the characterisation of the geographical origin of Italian sweet cherries.

    PubMed

    Longobardi, F; Ventrella, A; Bianco, A; Catucci, L; Cafagna, I; Gallo, V; Mastrorilli, P; Agostiano, A

    2013-12-01

    In this study, non-targeted (1)H NMR fingerprinting was used in combination with multivariate statistical techniques for the classification of Italian sweet cherries based on their different geographical origins (Emilia Romagna and Puglia). As classification techniques, Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Linear Discriminant Analysis (LDA) were carried out and the results were compared. For LDA, before performing a refined selection of the number/combination of variables, two different strategies for a preliminary reduction of the variable number were tested. The best average recognition and CV prediction abilities (both 100.0%) were obtained for all the LDA models, although PLS-DA also showed remarkable performances (94.6%). All the statistical models were validated by observing the prediction abilities with respect to an external set of cherry samples. The best result (94.9%) was obtained with LDA by performing a best subset selection procedure on a set of 30 principal components previously selected by a stepwise decorrelation. The metabolites that mostly contributed to the classification performances of such LDA model, were found to be malate, glucose, fructose, glutamine and succinate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  20. Comparative Robustness of Recent Methods for Analyzing Multivariate Repeated Measures Designs

    ERIC Educational Resources Information Center

    Seco, Guillermo Vallejo; Gras, Jaime Arnau; Garcia, Manuel Ato

    2007-01-01

    This study evaluated the robustness of two recent methods for analyzing multivariate repeated measures when the assumptions of covariance homogeneity and multivariate normality are violated. Specifically, the authors' work compares the performance of the modified Brown-Forsythe (MBF) procedure and the mixed-model procedure adjusted by the…

  1. The importance of extent of choroid plexus cauterization in addition to endoscopic third ventriculostomy for infantile hydrocephalus: a retrospective North American observational study using propensity score-adjusted analysis.

    PubMed

    Fallah, Aria; Weil, Alexander G; Juraschka, Kyle; Ibrahim, George M; Wang, Anthony C; Crevier, Louis; Tseng, Chi-Hong; Kulkarni, Abhaya V; Ragheb, John; Bhatia, Sanjiv

    2017-12-01

    OBJECTIVE Combined endoscopic third ventriculostomy (ETC) and choroid plexus cauterization (CPC)-ETV/CPC- is being investigated to increase the rate of shunt independence in infants with hydrocephalus. The degree of CPC necessary to achieve improved rates of shunt independence is currently unknown. METHODS Using data from a single-center, retrospective, observational cohort study involving patients who underwent ETV/CPC for treatment of infantile hydrocephalus, comparative statistical analyses were performed to detect a difference in need for subsequent CSF diversion procedure in patients undergoing partial CPC (describes unilateral CPC or bilateral CPC that only extended from the foramen of Monro [FM] to the atrium on one side) or subtotal CPC (describes CPC extending from the FM to the posterior temporal horn bilaterally) using a rigid neuroendoscope. Propensity scores for extent of CPC were calculated using age and etiology. Propensity scores were used to perform 1) case-matching comparisons and 2) Cox multivariable regression, adjusting for propensity score in the unmatched cohort. Cox multivariable regression adjusting for age and etiology, but not propensity score was also performed as a third statistical technique. RESULTS Eighty-four patients who underwent ETV/CPC had sufficient data to be included in the analysis. Subtotal CPC was performed in 58 patients (69%) and partial CPC in 26 (31%). The ETV/CPC success rates at 6 and 12 months, respectively, were 49% and 41% for patients undergoing subtotal CPC and 35% and 31% for those undergoing partial CPC. Cox multivariate regression in a 48-patient cohort case-matched by propensity score demonstrated no added effect of increased extent of CPC on ETV/CPC survival (HR 0.868, 95% CI 0.422-1.789, p = 0.702). Cox multivariate regression including all patients, with adjustment for propensity score, demonstrated no effect of extent of CPC on ETV/CPC survival (HR 0.845, 95% CI 0.462-1.548, p = 0.586). Cox multivariate regression including all patients, with adjustment for age and etiology, but not propensity score, demonstrated no effect of extent of CPC on ETV/CPC survival (HR 0.908, 95% CI 0.495-1.664, p = 0.755). CONCLUSIONS Using multiple comparative statistical analyses, no difference in need for subsequent CSF diversion procedure was detected between patients in this cohort who underwent partial versus subtotal CPC. Further investigation regarding whether there is truly no difference between partial versus subtotal extent of CPC in larger patient populations and whether further gain in CPC success can be achieved with complete CPC is warranted.

  2. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.

  3. The Fibroid Registry for outcomes data (FIBROID) for uterine embolization: short-term outcomes.

    PubMed

    Worthington-Kirsch, Robert; Spies, James B; Myers, Evan R; Mulgund, Jyotsna; Mauro, Matthew; Pron, Gaylene; Peterson, Eric D; Goodwin, Scott

    2005-07-01

    To investigate the short-term safety of uterine embolization for leiomyomata in a large cohort of patients treated in a variety of clinical settings. Examining the FIBROID Registry, a multicenter prospective voluntary registry of patients undergoing uterine embolization for leiomyomata, we studied the frequency of adverse events and predictors of adverse events within 30 days of the procedure. We also report on the technical aspects of the procedure, including details of periprocedural care, technique, and short-term recovery. All adverse events were recorded and classified using standard definitions, both in terms of type and severity. Summary statistics were used to describe the data set, and univariate and multivariate analyses were used to determine which factors might influence the incidence of adverse events. Of the 3,160 patients enrolled at 72 contributing sites, major in-hospital complications occurred in 0.66%, and postdischarge major events occurred in 4.8% within the first 30 days. The most common adverse event after discharge was inadequate pain relief requiring additional hospital treatment (2.4%). Thirty-one patients required additional surgical intervention within 30 days after treatment, 3 of whom required hysterectomy (0.1%). There were no deaths. Multivariate analysis showed modest increased odds for an adverse event for African Americans, smokers, and those with prior leiomyoma procedures. There were no differences in outcome based on the practice site experience, practice type, or any procedure-related factors. Uterine embolization for leiomyomata is a low-risk procedure with little variability in short-term outcome based on either patient demographics or practice setting. II-3.

  4. Comparison of Patient Outcomes in 3725 Overlapping vs 3633 Nonoverlapping Neurosurgical Procedures Using a Single Institution's Clinical and Administrative Database.

    PubMed

    Zygourakis, Corinna C; Keefe, Malla; Lee, Janelle; Barba, Julio; McDermott, Michael W; Mummaneni, Praveen V; Lawton, Michael T

    2017-02-01

    Overlapping surgery is a common practice to improve surgical efficiency, but there are limited data on its safety. To analyze the patient outcomes of overlapping vs nonoverlapping surgeries performed by multiple neurosurgeons. Retrospective review of 7358 neurosurgical procedures, 2012 to 2015, at an urban academic hospital. Collected variables: patient age, gender, insurance, American Society of Anesthesiologists score, severity of illness, mortality risk, admission type, transfer source, procedure type, surgery date, number of cosurgeons, presence of neurosurgery resident/fellow/another attending, and overlapping vs nonoverlapping surgery. Outcomes: procedure time, length of stay, estimated blood loss, discharge location, 30-day mortality, 30-day readmission, return to operating room, acute respiratory failure, and severe sepsis. Statistics: univariate, then multivariate mixed-effect models. Overlapping surgery patients (n = 3725) were younger and had lower American Society of Anesthesiologists scores, severity of illness, and mortality risk (P < .0001) than nonoverlapping surgery patients (n = 3633). Overlapping surgeries had longer procedure times (214 vs 172 min; P < .0001), but shorter length of stay (7.3 vs 7.9 d; P = .010) and lower estimated blood loss (312 vs 363 mL’s; P = .003). Overlapping surgery patients were more likely to be discharged home (73.6% vs 66.2%; P < .0001), and had lower mortality rates (1.3% vs 2.5%; P = .0005) and acute respiratory failure (1.8% vs 2.6%; P = .021). In multivariate models, there was no significant difference between overlapping and nonoverlapping surgeries for any patient outcomes, except for procedure duration, which was longer in overlapping surgery (estimate = 23.03; P < .001). When planned appropriately, overlapping surgery can be performed safely within the infrastructure at our academic institution. Copyright © 2017 by the Congress of Neurological Surgeons

  5. Statistical Learning Analysis in Neuroscience: Aiming for Transparency

    PubMed Central

    Hanke, Michael; Halchenko, Yaroslav O.; Haxby, James V.; Pollmann, Stefan

    2009-01-01

    Encouraged by a rise of reciprocal interest between the machine learning and neuroscience communities, several recent studies have demonstrated the explanatory power of statistical learning techniques for the analysis of neural data. In order to facilitate a wider adoption of these methods, neuroscientific research needs to ensure a maximum of transparency to allow for comprehensive evaluation of the employed procedures. We argue that such transparency requires “neuroscience-aware” technology for the performance of multivariate pattern analyses of neural data that can be documented in a comprehensive, yet comprehensible way. Recently, we introduced PyMVPA, a specialized Python framework for machine learning based data analysis that addresses this demand. Here, we review its features and applicability to various neural data modalities. PMID:20582270

  6. Multivariate statistical analysis: Principles and applications to coorbital streams of meteorite falls

    NASA Technical Reports Server (NTRS)

    Wolf, S. F.; Lipschutz, M. E.

    1993-01-01

    Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.

  7. Reporting Practices and Use of Quantitative Methods in Canadian Journal Articles in Psychology.

    PubMed

    Counsell, Alyssa; Harlow, Lisa L

    2017-05-01

    With recent focus on the state of research in psychology, it is essential to assess the nature of the statistical methods and analyses used and reported by psychological researchers. To that end, we investigated the prevalence of different statistical procedures and the nature of statistical reporting practices in recent articles from the four major Canadian psychology journals. The majority of authors evaluated their research hypotheses through the use of analysis of variance (ANOVA), t -tests, and multiple regression. Multivariate approaches were less common. Null hypothesis significance testing remains a popular strategy, but the majority of authors reported a standardized or unstandardized effect size measure alongside their significance test results. Confidence intervals on effect sizes were infrequently employed. Many authors provided minimal details about their statistical analyses and less than a third of the articles presented on data complications such as missing data and violations of statistical assumptions. Strengths of and areas needing improvement for reporting quantitative results are highlighted. The paper concludes with recommendations for how researchers and reviewers can improve comprehension and transparency in statistical reporting.

  8. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    PubMed

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Statistical Analyses of Raw Material Data for MTM45-1/CF7442A-36% RW: CMH Cure Cycle

    NASA Technical Reports Server (NTRS)

    Coroneos, Rula; Pai, Shantaram, S.; Murthy, Pappu

    2013-01-01

    This report describes statistical characterization of physical properties of the composite material system MTM45-1/CF7442A, which has been tested and is currently being considered for use on spacecraft structures. This composite system is made of 6K plain weave graphite fibers in a highly toughened resin system. This report summarizes the distribution types and statistical details of the tests and the conditions for the experimental data generated. These distributions will be used in multivariate regression analyses to help determine material and design allowables for similar material systems and to establish a procedure for other material systems. Additionally, these distributions will be used in future probabilistic analyses of spacecraft structures. The specific properties that are characterized are the ultimate strength, modulus, and Poisson??s ratio by using a commercially available statistical package. Results are displayed using graphical and semigraphical methods and are included in the accompanying appendixes.

  10. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface waters can be undertaken.

  11. Quantifying opportunities for hospital cost control: medical device purchasing and patient discharge planning.

    PubMed

    Robinson, James C; Brown, Timothy T

    2014-09-01

    To quantify the potential reduction in hospital costs from adoption of best local practices in supply chain management and discharge planning. We performed multivariate statistical analyses of the association between total variable cost per procedure and medical device price and length of stay, controlling for patient and hospital characteristics. Ten hospitals in 1 major metropolitan area supplied patient-level administrative data on 9778 patients undergoing joint replacement, spine fusion, or cardiac rhythm management (CRM) procedures in 2008 and 2010. The impact on each hospital of matching lowest local market device prices and lowest patient length of stay (LOS) was calculated using multivariate regression analysis controlling for patient demographics, diagnoses, comorbidities, and implications. Average variable costs ranged from $11,315 for joint replacement to $16,087 for CRM and $18,413 for spine fusion. Implantable medical devices accounted for a large share of each procedure's variable costs: 44% for joint replacement, 39% for spine fusion, and 59% for CRM. Device prices and patient length-of-stay exhibited wide variation across hospitals. Total potential hospital cost savings from achieving best local practices in device prices and patient length of stay are 14.5% for joint replacement, 18.8% for spine fusion;,and 29.1% for CRM. Hospitals have opportunities for cost reduction from adoption of best local practices in supply chain management and discharge planning.

  12. Models and analysis for multivariate failure time data

    NASA Astrophysics Data System (ADS)

    Shih, Joanna Huang

    The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the performance of these two methods using actual and computer generated data.

  13. Multivariate statistical analysis of stream-sediment geochemistry in the Grazer Paläozoikum, Austria

    USGS Publications Warehouse

    Weber, L.; Davis, J.C.

    1990-01-01

    The Austrian reconnaissance study of stream-sediment composition — more than 30000 clay-fraction samples collected over an area of 40000 km2 — is summarized in an atlas of regional maps that show the distributions of 35 elements. These maps, rich in information, reveal complicated patterns of element abundance that are difficult to compare on more than a small number of maps at one time. In such a study, multivariate procedures such as simultaneous R-Q mode components analysis may be helpful. They can compress a large number of variables into a much smaller number of independent linear combinations. These composite variables may be mapped and relationships sought between them and geological properties. As an example, R-Q mode components analysis is applied here to the Grazer Paläozoikum, a tectonic unit northeast of the city of Graz, which is composed of diverse lithologies and contains many mineral deposits.

  14. Multivariate Relationships between Statistics Anxiety and Motivational Beliefs

    ERIC Educational Resources Information Center

    Baloglu, Mustafa; Abbassi, Amir; Kesici, Sahin

    2017-01-01

    In general, anxiety has been found to be associated with motivational beliefs and the current study investigated multivariate relationships between statistics anxiety and motivational beliefs among 305 college students (60.0% women). The Statistical Anxiety Rating Scale, the Motivated Strategies for Learning Questionnaire, and a set of demographic…

  15. Optimal statistical damage detection and classification in an experimental wind turbine blade using minimum instrumentation

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2017-04-01

    The increasing demand for carbon neutral energy in a challenging economic environment is a driving factor for erecting ever larger wind turbines in harsh environments using novel wind turbine blade (WTBs) designs characterized by high flexibilities and lower buckling capacities. To counteract resulting increasing of operation and maintenance costs, efficient structural health monitoring systems can be employed to prevent dramatic failures and to schedule maintenance actions according to the true structural state. This paper presents a novel methodology for classifying structural damages using vibrational responses from a single sensor. The method is based on statistical classification using Bayes' theorem and an advanced statistic, which allows controlling the performance by varying the number of samples which represent the current state. This is done for multivariate damage sensitive features defined as partial autocorrelation coefficients (PACCs) estimated from vibrational responses and principal component analysis scores from PACCs. Additionally, optimal DSFs are composed not only for damage classification but also for damage detection based on binary statistical hypothesis testing, where features selections are found with a fast forward procedure. The method is applied to laboratory experiments with a small scale WTB with wind-like excitation and non-destructive damage scenarios. The obtained results demonstrate the advantages of the proposed procedure and are promising for future applications of vibration-based structural health monitoring in WTBs.

  16. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis.

    PubMed

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-07-01

    A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  17. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis

    PubMed Central

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-01-01

    Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689

  18. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  19. Basic principles of Hasse diagram technique in chemistry.

    PubMed

    Brüggemann, Rainer; Voigt, Kristina

    2008-11-01

    Principles of partial order applied to ranking are explained. The Hasse diagram technique (HDT) is the application of partial order theory based on a data matrix. In this paper, HDT is introduced in a stepwise procedure, and some elementary theorems are exemplified. The focus is to show how the multivariate character of a data matrix is realized by HDT and in which cases one should apply other mathematical or statistical methods. Many simple examples illustrate the basic theoretical ideas. Finally, it is shown that HDT is a useful alternative for the evaluation of antifouling agents, which was originally performed by amoeba diagrams.

  20. Statistical interpretation of machine learning-based feature importance scores for biomarker discovery.

    PubMed

    Huynh-Thu, Vân Anh; Saeys, Yvan; Wehenkel, Louis; Geurts, Pierre

    2012-07-01

    Univariate statistical tests are widely used for biomarker discovery in bioinformatics. These procedures are simple, fast and their output is easily interpretable by biologists but they can only identify variables that provide a significant amount of information in isolation from the other variables. As biological processes are expected to involve complex interactions between variables, univariate methods thus potentially miss some informative biomarkers. Variable relevance scores provided by machine learning techniques, however, are potentially able to highlight multivariate interacting effects, but unlike the p-values returned by univariate tests, these relevance scores are usually not statistically interpretable. This lack of interpretability hampers the determination of a relevance threshold for extracting a feature subset from the rankings and also prevents the wide adoption of these methods by practicians. We evaluated several, existing and novel, procedures that extract relevant features from rankings derived from machine learning approaches. These procedures replace the relevance scores with measures that can be interpreted in a statistical way, such as p-values, false discovery rates, or family wise error rates, for which it is easier to determine a significance level. Experiments were performed on several artificial problems as well as on real microarray datasets. Although the methods differ in terms of computing times and the tradeoff, they achieve in terms of false positives and false negatives, some of them greatly help in the extraction of truly relevant biomarkers and should thus be of great practical interest for biologists and physicians. As a side conclusion, our experiments also clearly highlight that using model performance as a criterion for feature selection is often counter-productive. Python source codes of all tested methods, as well as the MATLAB scripts used for data simulation, can be found in the Supplementary Material.

  1. Risk prediction models for major adverse cardiac event (MACE) following percutaneous coronary intervention (PCI): A review

    NASA Astrophysics Data System (ADS)

    Manan, Norhafizah A.; Abidin, Basir

    2015-02-01

    Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.

  2. Two models for evaluating landslide hazards

    USGS Publications Warehouse

    Davis, J.C.; Chung, C.-J.; Ohlmacher, G.C.

    2006-01-01

    Two alternative procedures for estimating landslide hazards were evaluated using data on topographic digital elevation models (DEMs) and bedrock lithologies in an area adjacent to the Missouri River in Atchison County, Kansas, USA. The two procedures are based on the likelihood ratio model but utilize different assumptions. The empirical likelihood ratio model is based on non-parametric empirical univariate frequency distribution functions under an assumption of conditional independence while the multivariate logistic discriminant model assumes that likelihood ratios can be expressed in terms of logistic functions. The relative hazards of occurrence of landslides were estimated by an empirical likelihood ratio model and by multivariate logistic discriminant analysis. Predictor variables consisted of grids containing topographic elevations, slope angles, and slope aspects calculated from a 30-m DEM. An integer grid of coded bedrock lithologies taken from digitized geologic maps was also used as a predictor variable. Both statistical models yield relative estimates in the form of the proportion of total map area predicted to already contain or to be the site of future landslides. The stabilities of estimates were checked by cross-validation of results from random subsamples, using each of the two procedures. Cell-by-cell comparisons of hazard maps made by the two models show that the two sets of estimates are virtually identical. This suggests that the empirical likelihood ratio and the logistic discriminant analysis models are robust with respect to the conditional independent assumption and the logistic function assumption, respectively, and that either model can be used successfully to evaluate landslide hazards. ?? 2006.

  3. Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure.

    PubMed

    D'Amico, E J; Neilands, T B; Zambarano, R

    2001-11-01

    Although power analysis is an important component in the planning and implementation of research designs, it is often ignored. Computer programs for performing power analysis are available, but most have limitations, particularly for complex multivariate designs. An SPSS procedure is presented that can be used for calculating power for univariate, multivariate, and repeated measures models with and without time-varying and time-constant covariates. Three examples provide a framework for calculating power via this method: an ANCOVA, a MANOVA, and a repeated measures ANOVA with two or more groups. The benefits and limitations of this procedure are discussed.

  4. A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area

    USGS Publications Warehouse

    McCabe, Gregory J.

    1990-01-01

    A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.

  5. Differential use of fresh water environments by wintering waterfowl of coastal Texas

    USGS Publications Warehouse

    White, D.H.; James, D.

    1978-01-01

    A comparative study of the environmental relationships among 14 species of wintering waterfowl was conducted at the Welder Wildlife Foundation, San Patricia County, near Sinton, Texas during the fall and early winter of 1973. Measurements of 20 environmental factors (social, vegetational, physical, and chemical) were subjected to multivariate statistical methods to determine certain niche characteristics and environmental relationships of waterfowl wintering in the aquatic community.....Each waterfowl species occupied a unique realized niche by responding to distinct combinations of environmental factors identified by principal component analysis. One percent confidence ellipses circumscribing the mean scores plotted for the first and second principal components gave an indication of relative niche width for each species. The waterfowl environments were significantly different interspecifically and water depth at feeding site and % emergent vegetation were most important in the separation. This was shown by subjecting the transformed data to multivariate analysis of variance with an associated step-down procedure. The species were distributed along a community cline extending from shallow water with abundant emergent vegetation to open deep water with little emergent vegetation of any kind. Four waterfowl subgroups were significantly separated along the cline, as indicated by one-way analysis of variance with Duncan?s multiple range test. Clumping of the bird species toward the middle of the available habitat hyperspace was shown in a plot of the principal component scores for the random samples and individual species.....Naturally occurring relationships among waterfowl were clarified using principal comcomponent analysis and related multivariate procedures. These techniques may prove useful in wetland management for particular groups of waterfowl based on habitat preferences.

  6. A Hierarchical Multivariate Bayesian Approach to Ensemble Model output Statistics in Atmospheric Prediction

    DTIC Science & Technology

    2017-09-01

    efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components

  7. Multivariate statistics of the Jacobian matrices in tensor based morphometry and their application to HIV/AIDS.

    PubMed

    Lepore, Natasha; Brun, Caroline A; Chiang, Ming-Chang; Chou, Yi-Yu; Dutton, Rebecca A; Hayashi, Kiralee M; Lopez, Oscar L; Aizenstein, Howard J; Toga, Arthur W; Becker, James T; Thompson, Paul M

    2006-01-01

    Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in anatomy. However, the differences are usually computed solely from the determinants of the Jacobian matrices that are associated with the deformation fields computed by the registration procedure. Thus, much of the information contained within those matrices gets thrown out in the process. Only the magnitude of the expansions or contractions is examined, while the anisotropy and directional components of the changes are ignored. Here we remedy this problem by computing multivariate shape change statistics using the strain matrices. As the latter do not form a vector space, means and covariances are computed on the manifold of positive-definite matrices to which they belong. We study the brain morphology of 26 HIV/AIDS patients and 14 matched healthy control subjects using our method. The images are registered using a high-dimensional 3D fluid registration algorithm, which optimizes the Jensen-Rényi divergence, an information-theoretic measure of image correspondence. The anisotropy of the deformation is then computed. We apply a manifold version of Hotelling's T2 test to the strain matrices. Our results complement those found from the determinants of the Jacobians alone and provide greater power in detecting group differences in brain structure.

  8. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  10. Integrated HPTLC-based Methodology for the Tracing of Bioactive Compounds in Herbal Extracts Employing Multivariate Chemometrics. A Case Study on Morus alba.

    PubMed

    Chaita, Eliza; Gikas, Evagelos; Aligiannis, Nektarios

    2017-03-01

    In drug discovery, bioassay-guided isolation is a well-established procedure, and still the basic approach for the discovery of natural products with desired biological properties. However, in these procedures, the most laborious and time-consuming step is the isolation of the bioactive constituents. A prior identification of the compounds that contribute to the demonstrated activity of the fractions would enable the selection of proper chromatographic techniques and lead to targeted isolation. The development of an integrated HPTLC-based methodology for the rapid tracing of the bioactive compounds during bioassay-guided processes, using multivariate statistics. Materials and Methods - The methanol extract of Morus alba was fractionated employing CPC. Subsequently, fractions were assayed for tyrosinase inhibition and analyzed with HPTLC. PLS-R algorithm was performed in order to correlate the analytical data with the biological response of the fractions and identify the compounds with the highest contribution. Two methodologies were developed for the generation of the dataset; one based on manual peak picking and the second based on chromatogram binning. Results and Discussion - Both methodologies afforded comparable results and were able to trace the bioactive constituents (e.g. oxyresveratrol, trans-dihydromorin, 2,4,3'-trihydroxydihydrostilbene). The suggested compounds were compared in terms of R f values and UV spectra with compounds isolated from M. alba using typical bioassay-guided process. Chemometric tools supported the development of a novel HPTLC-based methodology for the tracing of tyrosinase inhibitors in M. alba extract. All steps of the experimental procedure implemented techniques that afford essential key elements for application in high-throughput screening procedures for drug discovery purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.

  12. mvMapper: statistical and geographical data exploration and visualization of multivariate analysis of population structure

    USDA-ARS?s Scientific Manuscript database

    Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...

  13. Improving the sampling strategy of the Joint Danube Survey 3 (2013) by means of multivariate statistical techniques applied on selected physico-chemical and biological data.

    PubMed

    Hamchevici, Carmen; Udrea, Ion

    2013-11-01

    The concept of basin-wide Joint Danube Survey (JDS) was launched by the International Commission for the Protection of the Danube River (ICPDR) as a tool for investigative monitoring under the Water Framework Directive (WFD), with a frequency of 6 years. The first JDS was carried out in 2001 and its success in providing key information for characterisation of the Danube River Basin District as required by WFD lead to the organisation of the second JDS in 2007, which was the world's biggest river research expedition in that year. The present paper presents an approach for improving the survey strategy for the next planned survey JDS3 (2013) by means of several multivariate statistical techniques. In order to design the optimum structure in terms of parameters and sampling sites, principal component analysis (PCA), factor analysis (FA) and cluster analysis were applied on JDS2 data for 13 selected physico-chemical and one biological element measured in 78 sampling sites located on the main course of the Danube. Results from PCA/FA showed that most of the dataset variance (above 75%) was explained by five varifactors loaded with 8 out of 14 variables: physical (transparency and total suspended solids), relevant nutrients (N-nitrates and P-orthophosphates), feedback effects of primary production (pH, alkalinity and dissolved oxygen) and algal biomass. Taking into account the representation of the factor scores given by FA versus sampling sites and the major groups generated by the clustering procedure, the spatial network of the next survey could be carefully tailored, leading to a decreasing of sampling sites by more than 30%. The approach of target oriented sampling strategy based on the selected multivariate statistics can provide a strong reduction in dimensionality of the original data and corresponding costs as well, without any loss of information.

  14. Multivariate Strategies in Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Hansen, Lars Kai

    2007-01-01

    We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.

  15. Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    2001-01-01

    Proposes a special rotation procedure for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average.…

  16. Analyzing Multivariate Repeated Measures Designs: A Comparison of Two Approximate Degrees of Freedom Procedures

    ERIC Educational Resources Information Center

    Lix, Lisa M.; Algina, James; Keselman, H. J.

    2003-01-01

    The approximate degrees of freedom Welch-James (WJ) and Brown-Forsythe (BF) procedures for testing within-subjects effects in multivariate groups by trials repeated measures designs were investigated under departures from covariance homogeneity and normality. Empirical Type I error and power rates were obtained for least-squares estimators and…

  17. Adaptive graph-based multiple testing procedures

    PubMed Central

    Klinglmueller, Florian; Posch, Martin; Koenig, Franz

    2016-01-01

    Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well-known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph-based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid-trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations. PMID:25319733

  18. Testing Multivariate Adaptive Regression Splines (MARS) as a Method of Land Cover Classification of TERRA-ASTER Satellite Images.

    PubMed

    Quirós, Elia; Felicísimo, Angel M; Cuartero, Aurora

    2009-01-01

    This work proposes a new method to classify multi-spectral satellite images based on multivariate adaptive regression splines (MARS) and compares this classification system with the more common parallelepiped and maximum likelihood (ML) methods. We apply the classification methods to the land cover classification of a test zone located in southwestern Spain. The basis of the MARS method and its associated procedures are explained in detail, and the area under the ROC curve (AUC) is compared for the three methods. The results show that the MARS method provides better results than the parallelepiped method in all cases, and it provides better results than the maximum likelihood method in 13 cases out of 17. These results demonstrate that the MARS method can be used in isolation or in combination with other methods to improve the accuracy of soil cover classification. The improvement is statistically significant according to the Wilcoxon signed rank test.

  19. Nano-metrology and terrain modelling - convergent practice in surface characterisation

    USGS Publications Warehouse

    Pike, R.J.

    2000-01-01

    The quantification of magnetic-tape and disk topography has a macro-scale counterpart in the Earth sciences - terrain modelling, the numerical representation of relief and pattern of the ground surface. The two practices arose independently and continue to function separately. This methodological paper introduces terrain modelling, discusses its similarities to and differences from industrial surface metrology, and raises the possibility of a unified discipline of quantitative surface characterisation. A brief discussion of an Earth-science problem, subdividing a heterogeneous terrain surface from a set of sample measurements, exemplifies a multivariate statistical procedure that may transfer to tribological applications of 3-D metrological height data.

  20. A Civilian/Military Trauma Institute: National Trauma Coordinating Center

    DTIC Science & Technology

    2015-12-01

    zip codes was used in “proximity to violence” analysis. Data were analyzed using SPSS (version 20.0, SPSS Inc., Chicago, IL). Multivariable linear...number of adverse events and serious events was not statistically higher in one group, the incidence of deep venous thrombosis (DVT) was statistically ...subjects the lack of statistical difference on multivariate analysis may be related to an underpowered sample size. It was recommended that the

  1. A new test of multivariate nonlinear causality

    PubMed Central

    Bai, Zhidong; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong

    2018-01-01

    The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power. PMID:29304085

  2. A new test of multivariate nonlinear causality.

    PubMed

    Bai, Zhidong; Hui, Yongchang; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong

    2018-01-01

    The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power.

  3. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  4. Application of multivariate Gaussian detection theory to known non-Gaussian probability density functions

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.

    1995-06-01

    A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.

  5. An Evaluation of the Euroncap Crash Test Safety Ratings in the Real World

    PubMed Central

    Segui-Gomez, Maria; Lopez-Valdes, Francisco J.; Frampton, Richard

    2007-01-01

    We investigated whether the rating obtained in the EuroNCAP test procedures correlates with injury protection to vehicle occupants in real crashes using data in the UK Cooperative Crash Injury Study (CCIS) database from 1996 to 2005. Multivariate Poisson regression models were developed, using the Abbreviated Injury Scale (AIS) score by body region as the dependent variable and the EuroNCAP score for that particular body region, seat belt use, mass ratio and Equivalent Test Speed (ETS) as independent variables. Our models identified statistically significant relationships between injury severity and safety belt use, mass ratio and ETS. We could not identify any statistically significant relationships between the EuroNCAP body region scores and real injury outcome except for the protection to pelvis-femur-knee in frontal impacts where scoring “green” is significantly better than scoring “yellow” or “red”.

  6. FREQ: A computational package for multivariable system loop-shaping procedures

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Armstrong, Ernest S.

    1989-01-01

    Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.

  7. Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2D2) bias correction

    NASA Astrophysics Data System (ADS)

    Vrac, Mathieu

    2018-06-01

    Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell × number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure - making it possible to deal with a high number of statistical dimensions - that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071-2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.

  8. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    PubMed

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (<0.1µm) may contribute to acute cardiorespiratory morbidity. However, few studies have examined the long-term health effects of these pollutants owing in part to a need for exposure surfaces that can be applied in large population-based studies. To address this need, we developed a land use regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  9. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  10. Integration of ecological indices in the multivariate evaluation of an urban inventory of street trees

    Treesearch

    J. Grabinsky; A. Aldama; A. Chacalo; H. J. Vazquez

    2000-01-01

    Inventory data of Mexico City's street trees were studied using classical statistical arboricultural and ecological statistical approaches. Multivariate techniques were applied to both. Results did not differ substantially and were complementary. It was possible to reduce inventory data and to group species, boroughs, blocks, and variables.

  11. Procedures for using signals from one sensor as substitutes for signals of another

    NASA Technical Reports Server (NTRS)

    Suits, G.; Malila, W.; Weller, T.

    1988-01-01

    Long-term monitoring of surface conditions may require a transfer from using data from one satellite sensor to data from a different sensor having different spectral characteristics. Two general procedures for spectral signal substitution are described in this paper, a principal-components procedure and a complete multivariate regression procedure. They are evaluated through a simulation study of five satellite sensors (MSS, TM, AVHRR, CZCS, and HRV). For illustration, they are compared to another recently described procedure for relating AVHRR and MSS signals. The multivariate regression procedure is shown to be best. TM can accurately emulate the other sensors, but they, on the other hand, have difficulty in accurately emulating its shortwave infrared bands (TM5 and TM7).

  12. Forensic discrimination of blue ballpoint pens on documents by laser ablation inductively coupled plasma mass spectrometry and multivariate analysis.

    PubMed

    Alamilla, Francisco; Calcerrada, Matías; García-Ruiz, Carmen; Torre, Mercedes

    2013-05-10

    The differentiation of blue ballpoint pen inks written on documents through an LA-ICP-MS methodology is proposed. Small common office paper portions containing ink strokes from 21 blue pens of known origin were cut and measured without any sample preparation. In a first step, Mg, Ca and Sr were proposed as internal standards (ISs) and used in order to normalize elemental intensities and subtract background signals from the paper. Then, specific criteria were designed and employed to identify target elements (Li, V, Mn, Co, Ni, Cu, Zn, Zr, Sn, W and Pb) which resulted independent of the IS chosen in a 98% of the cases and allowed a qualitative clustering of the samples. In a second step, an elemental-related ratio (ink ratio) based on the targets previously identified was used to obtain mass independent intensities and perform pairwise comparisons by means of multivariate statistical analyses (MANOVA, Tukey's HSD and T2 Hotelling). This treatment improved the discrimination power (DP) and provided objective results, achieving a complete differentiation among different brands and a partial differentiation within pen inks from the same brands. The designed data treatment, together with the use of multivariate statistical tools, represents an easy and useful tool for differentiating among blue ballpoint pen inks, with hardly sample destruction and without the need for methodological calibrations, being its use potentially advantageous from a forensic-practice standpoint. To test the procedure, it was applied to analyze real handwritten questioned contracts, previously studied by the Department of Forensic Document Exams of the Criminalistics Service of Civil Guard (Spain). The results showed that all questioned ink entries were clustered in the same group, being those different from the remaining ink on the document. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. The Effect of the Multivariate Box-Cox Transformation on the Power of MANOVA.

    ERIC Educational Resources Information Center

    Kirisci, Levent; Hsu, Tse-Chi

    Most of the multivariate statistical techniques rely on the assumption of multivariate normality. The effects of non-normality on multivariate tests are assumed to be negligible when variance-covariance matrices and sample sizes are equal. Therefore, in practice, investigators do not usually attempt to remove non-normality. In this simulation…

  14. Inversion of ground-motion data from a seismometer array for rotation using a modification of Jaeger's method

    USGS Publications Warehouse

    Chi, Wu-Cheng; Lee, W.H.K.; Aston, J.A.D.; Lin, C.J.; Liu, C.-C.

    2011-01-01

    We develop a new way to invert 2D translational waveforms using Jaeger's (1969) formula to derive rotational ground motions about one axis and estimate the errors in them using techniques from statistical multivariate analysis. This procedure can be used to derive rotational ground motions and strains using arrayed translational data, thus providing an efficient way to calibrate the performance of rotational sensors. This approach does not require a priori information about the noise level of the translational data and elastic properties of the media. This new procedure also provides estimates of the standard deviations of the derived rotations and strains. In this study, we validated this code using synthetic translational waveforms from a seismic array. The results after the inversion of the synthetics for rotations were almost identical with the results derived using a well-tested inversion procedure by Spudich and Fletcher (2009). This new 2D procedure can be applied three times to obtain the full, three-component rotations. Additional modifications can be implemented to the code in the future to study different features of the rotational ground motions and strains induced by the passage of seismic waves.

  15. Predictors of outcome after elective endovascular abdominal aortic aneurysm repair and external validation of a risk prediction model.

    PubMed

    Wisniowski, Brendan; Barnes, Mary; Jenkins, Jason; Boyne, Nicholas; Kruger, Allan; Walker, Philip J

    2011-09-01

    Endovascular abdominal aortic aneurysm (AAA) repair (EVAR) has been associated with lower operative mortality and morbidity than open surgery but comparable long-term mortality and higher delayed complication and reintervention rates. Attention has therefore been directed to identifying preoperative and operative variables that influence outcomes after EVAR. Risk-prediction models, such as the EVAR Risk Assessment (ERA) model, have also been developed to help surgeons plan EVAR procedures. The aims of this study were (1) to describe outcomes of elective EVAR at the Royal Brisbane and Women's Hospital (RBWH), (2) to identify preoperative and operative variables predictive of outcomes after EVAR, and (3) to externally validate the ERA model. All elective EVAR procedures at the RBWH before July 1, 2009, were reviewed. Descriptive analyses were performed to determine the outcomes. Univariate and multivariate analyses were performed to identify preoperative and operative variables predictive of outcomes after EVAR. Binomial logistic regression analyses were used to externally validate the ERA model. Before July 1, 2009, 197 patients (172 men), who were a mean age of 72.8 years, underwent elective EVAR at the RBWH. Operative mortality was 1.0%. Survival was 81.1% at 3 years and 63.2% at 5 years. Multivariate analysis showed predictors of survival were age (P = .0126), American Society of Anesthesiologists (ASA) score (P = .0180), and chronic obstructive pulmonary disease (P = .0348) at 3 years and age (P = .0103), ASA score (P = .0006), renal failure (P = .0048), and serum creatinine (P = .0022) at 5 years. Aortic branch vessel score was predictive of initial (30-day) type II endoleak (P = .0015). AAA tortuosity was predictive of midterm type I endoleak (P = .0251). Female sex was associated with lower rates of initial clinical success (P = .0406). The ERA model fitted RBWH data well for early death (C statistic = .906), 3-year survival (C statistic = .735), 5-year survival (C statistic = .800), and initial type I endoleak (C statistic = .850). The outcomes of elective EVAR at the RBWH are broadly consistent with those of a nationwide Australian audit and recent randomized trials. Age and ASA score are independent predictors of midterm survival after elective EVAR. The ERA model predicts mortality-related outcomes and initial type I endoleak well for RBWH elective EVAR patients. Copyright © 2011 Society for Vascular Surgery. All rights reserved.

  16. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  17. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing.

    PubMed

    Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel

    2015-01-01

    The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.

  18. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing

    PubMed Central

    STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL

    2015-01-01

    Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749

  19. Parental Opinions and Attitudes about Children's Vaccination Safety in Silesian Voivodeship, Poland.

    PubMed

    Braczkowska, Bogumiła; Kowalska, Małgorzata; Barański, Kamil; Gajda, Maksymilian; Kurowski, Tomasz; Zejda, Jan E

    2018-04-15

    Despite mandatory vaccinations in Poland, the final decision on vaccination in children is taken by their parents or legal guardians. Understanding parents' attitudes and opinions regarding vaccinations is essential for planning and undertaking extensive and properly targeted educational actions aimed at preventing their hesitancy. In 2016, a cross-sectional study was conducted in the Silesian Voivodeship (Poland) in 11 randomly selected educational institutions. The authors' self-administered questionnaire contained 24 mixed-type questions. It was distributed among 3000 parents or legal guardians of children aged 6-13 years; prior consent of the relevant bioethics committee had been obtained. The response rate was 41.3% ( N = 1239). Data were analysed using descriptive and analytical statistics, and focused on parental opinions regarding the safety of vaccines. Results of simple and multivariable analyses showed that perceived risk of adverse vaccine reaction (AVR), contraindications and perception of the qualification procedure for vaccination as substandard were significant factors associated with the rating of children's vaccination as unsafe ( p < 0.001). Respondents with a lower level of education, compared with those with higher, more often declared vaccinations to be safe ( p = 0.03); however, results of multivariable analysis did not confirm that effect. AVR occurrence, finding of contraindication to vaccinations and perception of qualification procedure for vaccination were found to be the most important factors responsible for influencing general public opinions in the field of vaccination safety.

  20. A revision of chiggers of the minuta species-group (Acari: Trombiculidae: Neotrombicula Hirst, 1925) using multivariate morphometrics.

    PubMed

    Stekolnikov, Alexandr A; Klimov, Pavel B

    2010-09-01

    We revise chiggers belonging to the minuta-species group (genus Neotrombicula Hirst, 1925) from the Palaearctic using size-free multivariate morphometrics. This approach allowed us to resolve several diagnostic problems. We show that the widely distributed Neotrombicula scrupulosa Kudryashova, 1993 forms three spatially and ecologically isolated groups different from each other in size or shape (morphometric property) only: specimens from the Caucasus are distinct from those from Asia in shape, whereas the Asian specimens from plains and mountains are different from each other in size. We developed a multivariate classification model to separate three closely related species: N. scrupulosa, N. lubrica Kudryashova, 1993 and N. minuta Schluger, 1966. This model is based on five shape variables selected from an initial 17 variables by a best subset analysis using a custom size-correction subroutine. The variable selection procedure slightly improved the predictive power of the model, suggesting that it not only removed redundancy but also reduced 'noise' in the dataset. The overall classification accuracy of this model is 96.2, 96.2 and 95.5%, as estimated by internal validation, external validation and jackknife statistics, respectively. Our analyses resulted in one new synonymy: N. dimidiata Stekolnikov, 1995 is considered to be a synonym of N. lubrica. Both N. scrupulosa and N. lubrica are recorded from new localities. A key to species of the minuta-group incorporating results from our multivariate analyses is presented.

  1. Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing disease resistance data

    USDA-ARS?s Scientific Manuscript database

    The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...

  2. Functional Path Analysis as a Multivariate Technique in Developing a Theory of Participation in Adult Education.

    ERIC Educational Resources Information Center

    Martin, James L.

    This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…

  3. The interprocess NIR sampling as an alternative approach to multivariate statistical process control for identifying sources of product-quality variability.

    PubMed

    Marković, Snežana; Kerč, Janez; Horvat, Matej

    2017-03-01

    We are presenting a new approach of identifying sources of variability within a manufacturing process by NIR measurements of samples of intermediate material after each consecutive unit operation (interprocess NIR sampling technique). In addition, we summarize the development of a multivariate statistical process control (MSPC) model for the production of enteric-coated pellet product of the proton-pump inhibitor class. By developing provisional NIR calibration models, the identification of critical process points yields comparable results to the established MSPC modeling procedure. Both approaches are shown to lead to the same conclusion, identifying parameters of extrusion/spheronization and characteristics of lactose that have the greatest influence on the end-product's enteric coating performance. The proposed approach enables quicker and easier identification of variability sources during manufacturing process, especially in cases when historical process data is not straightforwardly available. In the presented case the changes of lactose characteristics are influencing the performance of the extrusion/spheronization process step. The pellet cores produced by using one (considered as less suitable) lactose source were on average larger and more fragile, leading to consequent breakage of the cores during subsequent fluid bed operations. These results were confirmed by additional experimental analyses illuminating the underlying mechanism of fracture of oblong pellets during the pellet coating process leading to compromised film coating.

  4. Quality control for quantitative PCR based on amplification compatibility test.

    PubMed

    Tichopad, Ales; Bar, Tzachi; Pecen, Ladislav; Kitchen, Robert R; Kubista, Mikael; Pfaffl, Michael W

    2010-04-01

    Quantitative qPCR is a routinely used method for the accurate quantification of nucleic acids. Yet it may generate erroneous results if the amplification process is obscured by inhibition or generation of aberrant side-products such as primer dimers. Several methods have been established to control for pre-processing performance that rely on the introduction of a co-amplified reference sequence, however there is currently no method to allow for reliable control of the amplification process without directly modifying the sample mix. Herein we present a statistical approach based on multivariate analysis of the amplification response data generated in real-time. The amplification trajectory in its most resolved and dynamic phase is fitted with a suitable model. Two parameters of this model, related to amplification efficiency, are then used for calculation of the Z-score statistics. Each studied sample is compared to a predefined reference set of reactions, typically calibration reactions. A probabilistic decision for each individual Z-score is then used to identify the majority of inhibited reactions in our experiments. We compare this approach to univariate methods using only the sample specific amplification efficiency as reporter of the compatibility. We demonstrate improved identification performance using the multivariate approach compared to the univariate approach. Finally we stress that the performance of the amplification compatibility test as a quality control procedure depends on the quality of the reference set. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Academic performance, educational aspiration and birth outcomes among adolescent mothers: a national longitudinal study

    PubMed Central

    2014-01-01

    Background Maternal educational attainment has been associated with birth outcomes among adult mothers. However, limited research explores whether academic performance and educational aspiration influence birth outcomes among adolescent mothers. Methods Data from Waves I and IV of the National Longitudinal Study of Adolescent Health (Add Health) were used. Adolescent girls whose first pregnancy occurred after Wave I, during their adolescence, and ended with a singleton live birth were included. Adolescents’ grade point average (GPA), experience of ever skipping a grade and ever repeating a grade, and their aspiration to attend college were examined as predictors of birth outcomes (birthweight and gestational age; n = 763). Univariate statistics, bivariate analyses and multivariable models were run stratified on race using survey procedures. Results Among Black adolescents, those who ever skipped a grade had higher offspring’s birthweight. Among non-Black adolescents, ever skipping a grade and higher educational aspiration were associated with higher offspring’s birthweight; ever skipping a grade was also associated with higher gestational age. GPA was not statistically significantly associated with either birth outcome. The addition of smoking during pregnancy and prenatal care visit into the multivariable models did not change these associations. Conclusions Some indicators of higher academic performance and aspiration are associated with better birth outcomes among adolescents. Investing in improving educational opportunities may improve birth outcomes among teenage mothers. PMID:24422664

  6. Computerized recognition of persons by EEG spectral patterns.

    PubMed

    Stassen, H H

    1980-07-01

    Modified techniques of communication theory in connection with multivariate statistical procedures were applied to a sample of 82 patients for the purpose of defining EEG spectral patterns and for solving the relevant classification problems. Ten measurements per patient were made and it could be shown that a subject can be characterized and be recognized by his EEG spectral pattern with high reliability and a confidence probability of almost 90%. This result is valid not only for normal adults but also for schizophrenic patients, implying a close relationship between the EEG spectral pattern and the individual person. At the moment the nature of this relationship is not clear; in particular the supposed relationship to psychopathology could not be proved.

  7. Atrial Electrogram Fractionation Distribution before and after Pulmonary Vein Isolation in Human Persistent Atrial Fibrillation-A Retrospective Multivariate Statistical Analysis.

    PubMed

    Almeida, Tiago P; Chu, Gavin S; Li, Xin; Dastagir, Nawshin; Tuan, Jiun H; Stafford, Peter J; Schlindwein, Fernando S; Ng, G André

    2017-01-01

    Purpose: Complex fractionated atrial electrograms (CFAE)-guided ablation after pulmonary vein isolation (PVI) has been used for persistent atrial fibrillation (persAF) therapy. This strategy has shown suboptimal outcomes due to, among other factors, undetected changes in the atrial tissue following PVI. In the present work, we investigate CFAE distribution before and after PVI in patients with persAF using a multivariate statistical model. Methods: 207 pairs of atrial electrograms (AEGs) were collected before and after PVI respectively, from corresponding LA regions in 18 persAF patients. Twelve attributes were measured from the AEGs, before and after PVI. Statistical models based on multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) have been used to characterize the atrial regions and AEGs. Results: PVI significantly reduced CFAEs in the LA (70 vs. 40%; P < 0.0001). Four types of LA regions were identified, based on the AEGs characteristics: (i) fractionated before PVI that remained fractionated after PVI (31% of the collected points); (ii) fractionated that converted to normal (39%); (iii) normal prior to PVI that became fractionated (9%) and; (iv) normal that remained normal (21%). Individually, the attributes failed to distinguish these LA regions, but multivariate statistical models were effective in their discrimination ( P < 0.0001). Conclusion: Our results have unveiled that there are LA regions resistant to PVI, while others are affected by it. Although, traditional methods were unable to identify these different regions, the proposed multivariate statistical model discriminated LA regions resistant to PVI from those affected by it without prior ablation information.

  8. Multivariate analysis in thoracic research.

    PubMed

    Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego

    2015-03-01

    Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.

  9. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments

    PubMed Central

    Avalappampatty Sivasamy, Aneetha; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668

  10. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments.

    PubMed

    Sivasamy, Aneetha Avalappampatty; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.

  11. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  12. Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.

    1980-01-01

    A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.

  13. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    PubMed

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  14. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  15. A single pre-operative antibiotic dose is as effective as continued antibiotic prophylaxis in implant-based breast reconstruction: A matched cohort study.

    PubMed

    Townley, William A; Baluch, Narges; Bagher, Shaghayegh; Maass, Saskia W M C; O'Neill, Anne; Zhong, Toni; Hofer, Stefan O P

    2015-05-01

    Infections following implant-based breast reconstruction can lead to devastating consequences. There is currently no consensus on the need for post-operative antibiotics in preventing immediate infection. This study compared two different methods of infection prevention in this group of patients. A retrospective matched cohort study was performed on consecutive women undergoing implant-based breast reconstruction at University Health Network, Toronto (November 2008-December 2012). All patients received a single pre-operative intravenous antibiotic dose. Group A received minimal interventions and Group B underwent maximal prophylactic measures. Patient (age, smoking, diabetes, co-morbidities), oncologic and procedural variables (timing and laterality) were collected. Univariate and multivariate logistic regression were performed to compare outcomes between the two groups. Two hundred and eight patients underwent 647 implant procedures. After matching the two treatment groups by BMI, 94 patients in each treatment group yielding a total of 605 implant procedures were selected for analysis. The two groups were comparable in terms of patient and disease variables. Post-operative wound infection was similar in Group A (n = 11, 12%) compared with Group B (n = 9, 10%; p = 0.8). Univariate analysis revealed only pre-operative radiotherapy to be associated with the development of infection (0.004). Controlling for the effect of radiotherapy, multivariate analysis demonstrated that there was no statistically significant difference between the two methods for infection prevention. Our findings suggest that a single pre-operative dose of intravenous antibiotics is equally as effective as continued antibiotic prophylaxis in preventing immediate infection in patients undergoing implant-based breast reconstructions. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Predictors of Arterial Blood Pressure Control During Deliberate Hypotension with Sodium Nitroprusside in Children

    PubMed Central

    Spielberg, David R; Barrett, Jeffrey S; Hammer, Gregory B; Drover, David R; Reece, Tammy; Cohane, Carol A; Schulman, Scott R

    2014-01-01

    Background Sodium nitroprusside (SNP) is used to decrease arterial blood pressure (BP) during certain surgical procedures. There are limited data regarding efficacy of BP control with SNP. There are no data on patient and clinician factors that affect BP control. We evaluated the dose-response relationship of SNP in infants and children undergoing major surgery and performed a quantitative assessment of BP control. Methods One hundred fifty-three subjects at 7 sites received a blinded infusion followed by open-label SNP during operative procedures requiring controlled hypotension. SNP was administered by continuous infusion and titrated to maintain BP control (mean arterial BP [MAP] within ±10% of clinician-defined target). BP was recorded using an arterial catheter. Statistical Process Control methodology was used to quantify BP control. A multivariable model assessed the effects of patient and procedural factors. Results BP was controlled an average 45.4% (SD 23.9%, 95% CI 41.5%-49.18%) of the time. Larger changes in infusion rate were associated with worse BP control (7.99% less control for 1 mcg•kg−•min− increase in average titration size, p=0.0009). A larger difference between a patient's baseline and target MAP predicted worse BP control (0.93% worse control per 1 mmHg increase in MAP difference, p=0.0013). Both effects persisted in multivariable models. Conclusions : SNP was effective in reducing BP. However, BP was within the target range less than half of the time. No clinician or patient factors were predictive of BP control, although two inverse relationships were identified. These relationships require additional study and may be best coupled with exposure-response modeling to propose improved dosing strategies when using SNP for controlled hypotension in the pediatric population. PMID:25099924

  17. Predictors of arterial blood pressure control during deliberate hypotension with sodium nitroprusside in children.

    PubMed

    Spielberg, David R; Barrett, Jeffrey S; Hammer, Gregory B; Drover, David R; Reece, Tammy; Cohane, Carol A; Schulman, Scott R

    2014-10-01

    Sodium nitroprusside (SNP) is used to decrease arterial blood pressure (BP) during certain surgical procedures. There are limited data regarding efficacy of BP control with SNP. There are no data on patient and clinician factors that affect BP control. We evaluated the dose-response relationship of SNP in infants and children undergoing major surgery and performed a quantitative assessment of BP control. One hundred fifty-three subjects at 7 sites received a blinded infusion followed by open-label SNP during operative procedures requiring controlled hypotension. SNP was administered by continuous infusion and titrated to maintain BP control (mean arterial BP [MAP] within ±10% of clinician-defined target). BP was recorded using an arterial catheter. Statistical process control methodology was used to quantify BP control. A multivariable model assessed the effects of patient and procedural factors. BP was controlled an average 45.4% (SD 23.9%; 95% CI, 41.5%-49.18%) of the time. Larger changes in infusion rate were associated with worse BP control (7.99% less control for 1 μg·kg·min increase in average titration size, P = 0.0009). A larger difference between a patient's baseline and target MAP predicted worse BP control (0.93% worse control per 1-mm Hg increase in MAP difference, P = 0.0013). Both effects persisted in multivariable models. SNP was effective in reducing BP. However, BP was within the target range less than half of the time. No clinician or patient factors were predictive of BP control, although 2 inverse relationships were identified. These relationships require additional study and may be best coupled with exposure-response modeling to propose improved dosing strategies when using SNP for controlled hypotension in the pediatric population.

  18. Determinants of job satisfaction for novice nurse managers employed in hospitals.

    PubMed

    Djukic, Maja; Jun, Jin; Kovner, Christine; Brewer, Carol; Fletcher, Jason

    Numbering close to 300,000 nurse managers represent the largest segment of the health care management workforce. Their effectiveness is, in part, influenced by their job satisfaction. We examined factors associated with job satisfaction of novice frontline nurse managers. We used a cross-sectional, correlational survey design. The sample consisted of responders to the fifth wave of a multiyear study of new nurses in 2013 (N = 1,392; response rate of 69%) who reported working as managers (n = 209). The parent study sample consisted of registered nurses who were licensed for the first time by exam 6-18 months prior in 1 of 51 selected metropolitan statistical areas and 9 rural areas across 34 U.S. states and the District of Columbia. We examined bivariate correlations between job satisfaction and 31 personal and structural variables. All variables significantly related to job satisfaction in bivariate analysis were included in a multivariate linear regression model. In addition, we tested the interaction effects of procedural justice and negative affectivity, autonomy, and organizational constraints on job satisfaction. The Cronbach's alphas for all multi-item scales ranged from .74 to .96. In the multivariate analysis, negative affectivity (β = -.169; p = .006) and procedural justice (β = .210; p = .016) were significantly correlated with job satisfaction. The combination of predictors in the model accounted for half of the variability in job satisfaction ratings (R = .51, adjusted R = .47; p <. 001). Health care executives who want to cultivate an effective novice frontline nurse manager workforce can best ensure their satisfaction by creating an organization with strong procedural justice. This could be achieved by involving managers in decision-making processes and ensuring transparency about how decisions that affect nursing are made.

  19. Transport modeling and multivariate adaptive regression splines for evaluating performance of ASR systems in freshwater aquifers

    NASA Astrophysics Data System (ADS)

    Forghani, Ali; Peralta, Richard C.

    2017-10-01

    The study presents a procedure using solute transport and statistical models to evaluate the performance of aquifer storage and recovery (ASR) systems designed to earn additional water rights in freshwater aquifers. The recovery effectiveness (REN) index quantifies the performance of these ASR systems. REN is the proportion of the injected water that the same ASR well can recapture during subsequent extraction periods. To estimate REN for individual ASR wells, the presented procedure uses finely discretized groundwater flow and contaminant transport modeling. Then, the procedure uses multivariate adaptive regression splines (MARS) analysis to identify the significant variables affecting REN, and to identify the most recovery-effective wells. Achieving REN values close to 100% is the desire of the studied 14-well ASR system operator. This recovery is feasible for most of the ASR wells by extracting three times the injectate volume during the same year as injection. Most of the wells would achieve RENs below 75% if extracting merely the same volume as they injected. In other words, recovering almost all the same water molecules that are injected requires having a pre-existing water right to extract groundwater annually. MARS shows that REN most significantly correlates with groundwater flow velocity, or hydraulic conductivity and hydraulic gradient. MARS results also demonstrate that maximizing REN requires utilizing the wells located in areas with background Darcian groundwater velocities less than 0.03 m/d. The study also highlights the superiority of MARS over regular multiple linear regressions to identify the wells that can provide the maximum REN. This is the first reported application of MARS for evaluating performance of an ASR system in fresh water aquifers.

  20. Comparative study of the efficiency of computed univariate and multivariate methods for the estimation of the binary mixture of clotrimazole and dexamethasone using two different spectral regions

    NASA Astrophysics Data System (ADS)

    Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Lotfy, Hayam Mahmoud; Shehata, Mostafa Abdel-Aty

    2018-04-01

    Three methods of analysis are conducted that need computational procedures by the Matlab® software. The first is the univariate mean centering method which eliminates the interfering signal of the one component at a selected wave length leaving the amplitude measured to represent the component of interest only. The other two multivariate methods named PLS and PCR depend on a large number of variables that lead to extraction of the maximum amount of information required to determine the component of interest in the presence of the other. Good accurate and precise results are obtained from the three methods for determining clotrimazole in the linearity range 1-12 μg/mL and 75-550 μg/mL with dexamethasone acetate 2-20 μg/mL in synthetic mixtures and pharmaceutical formulation using two different spectral regions 205-240 nm and 233-278 nm. The results obtained are compared statistically to each other and to the official methods.

  1. Descriptor selection for banana accessions based on univariate and multivariate analysis.

    PubMed

    Brandão, L P; Souza, C P F; Pereira, V M; Silva, S O; Santos-Serejo, J A; Ledo, C A S; Amorim, E P

    2013-05-14

    Our objective was to establish a minimum number of morphological descriptors for the characterization of banana germplasm and evaluate the efficiency of removal of redundant characters, based on univariate and multivariate statistical analyses. Phenotypic characterization was made of 77 accessions from Bahia, Brazil, using 92 descriptors. The selection of the descriptors was carried out by principal components analysis (quantitative) and by entropy (multi-category). Efficiency of elimination was analyzed by a comparative study between the clusters formed, taking into consideration all 92 descriptors and smaller groups. The selected descriptors were analyzed with the Ward-MLM procedure and a combined matrix formed by the Gower algorithm. We were able to reduce the number of descriptors used for characterizing the banana germplasm (42%). The correlation between the matrices considering the 92 descriptors and the selected ones was 0.82, showing that the reduction in the number of descriptors did not influence estimation of genetic variability between the banana accessions. We conclude that removing these descriptors caused no loss of information, considering the groups formed from pre-established criteria, including subgroup/subspecies.

  2. [Biases in the study of prognostic factors].

    PubMed

    Delgado-Rodríguez, M

    1999-01-01

    The main objective is to detail the main biases in the study of prognostic factors. Confounding bias is illustrated with social class, a prognostic factor still discussed. Within selection bias several cases are commented: response bias, specially frequent when the patients of a clinical trial are used; the shortcomings in the formation of an inception cohort; the fallacy of Neyman (bias due to the duration of disease) when the study begins with a cross-sectional study; the selection bias in the treatment of survivors for the different treatment opportunity of those living longer; the bias due to the inclusion of heterogeneous diagnostic groups; and the selection bias due to differential information losses and the use of statistical multivariate procedures. Within the biases during follow-up, an empiric rule to value the impact of the number of losses is given. In information bias the Will Rogers' phenomenon and the usefulness of clinical databases are discussed. Lastly, a recommendation against the use of cutoff points yielded by bivariate analyses to select the variable to be included in multivariate analysis is given.

  3. Time Series Model Identification by Estimating Information.

    DTIC Science & Technology

    1982-11-01

    principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R

  4. Perceived justice and popular support for public health laws: a case study around comprehensive smoke-free legislation in Mexico City.

    PubMed

    Thrasher, James F; Besley, John C; González, Wendy

    2010-03-01

    The World Health Organization's Framework Convention on Tobacco Control promotes comprehensive smoke-free laws. The effective implementation of these laws requires citizen participation and support. Risk communication research suggests that citizens' perceptions of the fairness of smoke-free laws would help explain their support for the law. This study aimed to assess the factors that correlate with citizens' perceptions of the distributive, procedural and interpersonal justice of smoke-free laws, as well as how these perceptions are related to support for and intention to help enforce these laws. Study data came from a cross-sectional, population-based survey of 800 Mexico City inhabitants before a comprehensive smoke-free policy was implemented there in 2008. Structural equation modeling was used to estimate the bivariate and multivariate adjusted paths relating study variables. In the final multivariate model, the three justice concepts mediated the influence of smoking status, perceived dangers of secondhand smoke exposure, strength of home smoking ban, and perceived rights of smokers on the two distal constructs of support for smoke-free policy and intention to help enforce it. Statistically significant paths were estimated from distributive and procedural justice to support for the law and intention help enforce it. The path from interpersonal justice to support for the law was not significant, but the path to intention to help enforce the law was. Finally, the path from support for the law to the intention to enforce it was statistically significant. These results suggest that three distinct dimensions of perceived justice help explain citizen support for smoke-free policies. These dimensions of perceived justice may explain the conditions under which smoke-free policies are effectively implemented and could help shape the focus for communication strategies that aim to ensure effective implementation of this and other public health policies. 2009 Elsevier Ltd. All rights reserved.

  5. Evaluation and standardization of different purification procedures for fish bile and liver metallothionein quantification by spectrophotometry and SDS-PAGE analyses.

    PubMed

    Tenório-Daussat, Carolina Lyrio; Resende, Marcia Carolina Martinho; Ziolli, Roberta L; Hauser-Davis, Rachel Ann; Schaumloffel, Dirk; Saint'Pierre, Tatiana D

    2014-03-01

    Fish bile metallothioneins (MT) have been recently reported as biomarkers for environmental metal contamination; however, no studies regarding standardizations for their purification are available. Therefore, different procedures (varying centrifugation times and heat-treatment temperatures) and reducing agents (DTT, β-mercaptoethanol and TCEP) were applied to purify MT isolated from fish (Oreochromis niloticus) bile and liver. Liver was also analyzed, since these two organs are intrinsically connected and show the same trend regarding MT expression. Spectrophotometrical analyses were used to quantify the resulting MT samples, and SDS-PAGE gels were used to qualitatively assess the different procedure results. Each procedure was then statistically evaluated and a multivariate statistical analysis was then applied. A response surface methodology was also applied for bile samples, in order to further evaluate the responses for this matrix. Heat treatment effectively removes most undesired proteins from the samples, however results indicate that temperatures above 70 °C are not efficient since they also remove MTs from both bile and liver samples. Our results also indicate that the centrifugation times described in the literature can be decreased in order to analyze more samples in the same timeframe, of importance in environmental monitoring contexts where samples are usually numerous. In an environmental context, biliary MT was lower than liver MT, as expected, since liver accumulates MT with slower detoxification rates than bile, which is released from the gallbladder during feeding, and then diluted by water. Therefore, bile MT seems to be more adequate in environmental monitoring scopes regarding recent exposure to xenobiotics that may affect the proteomic and metalloproteomic expression of this biological matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Risk factors for superficial surgical site infection after elective rectal cancer resection: a multivariate analysis of 8880 patients from the American College of Surgeons National Surgical Quality Improvement Program database.

    PubMed

    Sutton, Elie; Miyagaki, Hiromichi; Bellini, Geoffrey; Shantha Kumara, H M C; Yan, Xiaohong; Howe, Brett; Feigel, Amanda; Whelan, Richard L

    2017-01-01

    Superficial surgical site infection (sSSI) is one of the most common complications after colorectal resection. The goal of this study was to determine the comorbidities and operative characteristics that place patients at risk for sSSI in patients who underwent rectal cancer resection. The American College of Surgeons National Surgical Quality Improvement Program database was queried (via diagnosis and Current Procedural Terminology codes) for patients with rectal cancer who underwent elective resection between 2005 and 2012. Patients for whom data concerning 27 demographic factors, comorbidities, and operative characteristics were available were eligible. A univariate and multivariate analysis was performed to identify possible risk factors for sSSI. A total of 8880 patients met the entry criteria and were included. sSSIs were diagnosed in 861 (9.7%) patients. Univariate analysis found 14 patients statistically significant risk factors for sSSI. Multivariate analysis revealed the following risk factors: male gender, body mass index (BMI) >30, current smoking, history of chronic obstructive pulmonary disease (COPD), American Society of Anesthesiologists III/IV, abdominoperineal resection (APR), stoma formation, open surgery (versus laparoscopic), and operative time >217 min. The greatest difference in sSSI rates was noted in patients with COPD (18.9 versus 9.5%). Of note, 54.2% of sSSIs was noted after hospital discharge. With regard to the timing of presentation, univariate analysis revealed a statistically significant delay in sSSI presentation in patients with the following factors and/or characteristics: BMI <30, previous radiation therapy (RT), APR, minimally invasive surgery, and stoma formation. Multivariate analysis suggested that only laparoscopic surgery (versus open) and preoperative RT were risk factors for delay. Rectal cancer resections are associated with a high incidence of sSSIs, over half of which are noted after discharge. Nine patient and operative characteristics, including smoking, BMI, COPD, APR, and open surgery were found to be significant risk factors for SSI on multivariate analysis. Furthermore, sSSI presentation in patients who had laparoscopic surgery and those who had preoperative RT is significantly delayed for unclear reasons. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Lithium and neuroleptics in combination: is there enhancement of neurotoxicity leading to permanent sequelae?

    PubMed

    Goldman, S A

    1996-10-01

    Neurotoxicity in relation to concomitant administration of lithium and neuroleptic drugs, particularly haloperidol, has been an ongoing issue. This study examined whether use of lithium with neuroleptic drugs enhances neurotoxicity leading to permanent sequelae. The Spontaneous Reporting System database of the United States Food and Drug Administration and extant literature were reviewed for spectrum cases of lithium/neuroleptic neurotoxicity. Groups taking lithium alone (Li), lithium/haloperidol (LiHal) and lithium/ nonhaloperidol neuroleptics (LiNeuro), each paired for recovery and sequelae, were established for 237 cases. Statistical analyses included pairwise comparisons of lithium levels using the Wilcoxon Rank Sum procedure and logistic regression to analyze the relationship between independent variables and development of sequelae. The Li and Li-Neuro groups showed significant statistical differences in median lithium levels between recovery and sequelae pairs, whereas the LiHal pair did not differ significantly. Lithium level was associated with sequelae development overall and within the Li and LiNeuro groups; no such association was evident in the LiHal group. On multivariable logistic regression analysis, lithium level and taking lithium/haloperidol were significant factors in the development of sequelae, with multiple possibly confounding factors (e.g., age, sex) not statistically significant. Multivariable logistic regression analyses with neuroleptic dose as five discrete dose ranges or actual dose did not show an association between development of sequelae and dose. Database limitations notwithstanding, the lack of apparent impact of serum lithium level on the development of sequelae in patients treated with haloperidol contrasts notably with results in the Li and LiNeuro groups. These findings may suggest a possible effect of pharmacodynamic factors in lithium/neuroleptic combination therapy.

  8. Some Integrated Squared Error Procedures for Multivariate Normal Data,

    DTIC Science & Technology

    1986-01-01

    a lnear regresmion or experimental design model). Our procedures have &lSO been usned wcelyOn non -linear models but we do not addres nan-lnear...of fit, outliers, influence functions, experimental design , cluster analysis, robustness 24L A =TO ACT (VCefme - pvre alli of magsy MW identif by...structured data such as multivariate experimental designs . Several illustrations are provided. * 0 %41 %-. 4.’. * " , -.--, ,. -,, ., -, ’v ’ , " ,,- ,, . -,-. . ., * . - tAma- t

  9. On the interpretation of weight vectors of linear models in multivariate neuroimaging.

    PubMed

    Haufe, Stefan; Meinecke, Frank; Görgen, Kai; Dähne, Sven; Haynes, John-Dylan; Blankertz, Benjamin; Bießmann, Felix

    2014-02-15

    The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via brain-computer interfaces, it is most important to accurately extract the neural processes specific to a certain mental state. These equally important but complementary objectives require different analysis methods. Determining the origin of neural processes in time or space from the parameters of a data-driven model requires what we call a forward model of the data; such a model explains how the measured data was generated from the neural sources. Examples are general linear models (GLMs). Methods for the extraction of neural information from data can be considered as backward models, as they attempt to reverse the data generating process. Examples are multivariate classifiers. Here we demonstrate that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study. In contrast, the interpretation of backward model parameters can lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since significant nonzero weights may also be observed at channels the activity of which is statistically independent of the brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward models into forward models. This procedure enables the neurophysiological interpretation of the parameters of linear backward models. We hope that this work raises awareness for an often encountered problem and provides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: Review and evaluation

    NASA Astrophysics Data System (ADS)

    Lowe, David J.; Pearce, Nicholas J. G.; Jorgensen, Murray A.; Kuehn, Stephen C.; Tryon, Christian A.; Hayward, Chris L.

    2017-11-01

    We define tephras and cryptotephras and their components (mainly ash-sized particles of glass ± crystals in distal deposits) and summarize the basis of tephrochronology as a chronostratigraphic correlational and dating tool for palaeoenvironmental, geological, and archaeological research. We then document and appraise recent advances in analytical methods used to determine the major, minor, and trace elements of individual glass shards from tephra or cryptotephra deposits to aid their correlation and application. Protocols developed recently for the electron probe microanalysis of major elements in individual glass shards help to improve data quality and standardize reporting procedures. A narrow electron beam (diameter ∼3-5 μm) can now be used to analyze smaller glass shards than previously attainable. Reliable analyses of 'microshards' (defined here as glass shards <32 μm in diameter) using narrow beams are useful for fine-grained samples from distal or ultra-distal geographic locations, and for vesicular or microlite-rich glass shards or small melt inclusions. Caveats apply, however, in the microprobe analysis of very small microshards (≤∼5 μm in diameter), where particle geometry becomes important, and of microlite-rich glass shards where the potential problem of secondary fluorescence across phase boundaries needs to be recognised. Trace element analyses of individual glass shards using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), with crater diameters of 20 μm and 10 μm, are now effectively routine, giving detection limits well below 1 ppm. Smaller ablation craters (<10 μm) can be subject to significant element fractionation during analysis, but the systematic relationship of such fractionation with glass composition suggests that analyses for some elements at these resolutions may be quantifiable. In undertaking analyses, either by microprobe or LA-ICP-MS, reference material data acquired using the same procedure, and preferably from the same analytical session, should be presented alongside new analytical data. In part 2 of the review, we describe, critically assess, and recommend ways in which tephras or cryptotephras can be correlated (in conjunction with other information) using numerical or statistical analyses of compositional data. Statistical methods provide a less subjective means of dealing with analytical data pertaining to tephra components (usually glass or crystals/phenocrysts) than heuristic alternatives. They enable a better understanding of relationships among the data from multiple viewpoints to be developed and help quantify the degree of uncertainty in establishing correlations. In common with other scientific hypothesis testing, it is easier to infer using such analysis that two or more tephras are different rather than the same. Adding stratigraphic, chronological, spatial, or palaeoenvironmental data (i.e. multiple criteria) is usually necessary and allows for more robust correlations to be made. A two-stage approach is useful, the first focussed on differences in the mean composition of samples, or their range, which can be visualised graphically via scatterplot matrices or bivariate plots coupled with the use of statistical tools such as distance measures, similarity coefficients, hierarchical cluster analysis (informed by distance measures or similarity or cophenetic coefficients), and principal components analysis (PCA). Some statistical methods (cluster analysis, discriminant analysis) are referred to as 'machine learning' in the computing literature. The second stage examines sample variance and the degree of compositional similarity so that sample equivalence or otherwise can be established on a statistical basis. This stage may involve discriminant function analysis (DFA), support vector machines (SVMs), canonical variates analysis (CVA), and ANOVA or MANOVA (or its two-sample special case, the Hotelling two-sample T2 test). Randomization tests can be used where distributional assumptions such as multivariate normality underlying parametric tests are doubtful. Compositional data may be transformed and scaled before being subjected to multivariate statistical procedures including calculation of distance matrices, hierarchical cluster analysis, and PCA. Such transformations may make the assumption of multivariate normality more appropriate. A sequential procedure using Mahalanobis distance and the Hotelling two-sample T2 test is illustrated using glass major element data from trachytic to phonolitic Kenyan tephras. All these methods require a broad range of high-quality compositional data which can be used to compare 'unknowns' with reference (training) sets that are sufficiently complete to account for all possible correlatives, including tephras with heterogeneous glasses that contain multiple compositional groups. Currently, incomplete databases are tending to limit correlation efficacy. The development of an open, online global database to facilitate progress towards integrated, high-quality tephrostratigraphic frameworks for different regions is encouraged.

  11. Identifying factors that predict the choice and success rate of radial artery catheterisation in contemporary real world cardiology practice: a sub-analysis of the PREVAIL study data.

    PubMed

    Pristipino, Christian; Roncella, Adriana; Trani, Carlo; Nazzaro, Marco S; Berni, Andrea; Di Sciascio, Germano; Sciahbasi, Alessandro; Musarò, Salvatore Donato; Mazzarotto, Pietro; Gioffrè, Gaetano; Speciale, Giulio

    2010-06-01

    To assess: the reasons behind an operator choosing to perform radial artery catheterisation (RAC) as against femoral arterial catheterisation, and to explore why RAC may fail in the real world. A pre-determined analysis of PREVAIL study database was performed. Relevant data were collected in a prospective, observational survey of 1,052 consecutive patients undergoing invasive cardiovascular procedures at nine Italian hospitals over a one month observation period. By multivariate analysis, the independent predictors of RAC choice were having the procedure performed: (1) at a high procedural volume centre; and (2) by an operator who performs a high volume of radial procedures; clinical variables played no statistically significant role. RAC failure was predicted independently by (1) a lower operator propensity to use RAC; and (2) the presence of obstructive peripheral artery disease. A 10-fold lower rate of RAC failure was observed among operators who perform RAC for > 85% of their personal caseload than among those who use RAC < 25% of the time (3.8% vs. 33.0%, respectively); by receiver operator characteristic (ROC) analysis, no threshold value for operator RAC volume predicted RAC failure. A routine RAC in all-comers is superior to a selective strategy in terms of feasibility and success rate.

  12. GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies

    PubMed Central

    Jia, Erik; Chen, Tianlu

    2018-01-01

    Left-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, observation distribution, univariate and multivariate analyses, and statistical sensitivity. Additionally, a parallel version of GSimp was developed for dealing with large scale metabolomics datasets. The R code for GSimp, evaluation pipeline, tutorial, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp. PMID:29385130

  13. Epidemiologic programs for computers and calculators. A microcomputer program for multiple logistic regression by unconditional and conditional maximum likelihood methods.

    PubMed

    Campos-Filho, N; Franco, E L

    1989-02-01

    A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.

  14. A Statistical Discrimination Experiment for Eurasian Events Using a Twenty-Seven-Station Network

    DTIC Science & Technology

    1980-07-08

    to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...the weight assigned to each variable whenever a new one is added. Jennrich, R. I. (1977). Stepwise discriminant analysis , in Statistical Methods for

  15. Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study, Rhizophora mangle from four neotropical mangroves in Brazil.

    PubMed

    Souza, Iara da Costa; Morozesk, Mariana; Duarte, Ian Drumond; Bonomo, Marina Marques; Rocha, Lívia Dorsch; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso

    2014-08-01

    Roots of mangrove trees have an important role in depurating water and sediments by retaining metals that may accumulate in different plant tissues, affecting physiological processes and anatomy. The present study aimed to evaluate adaptive changes in root of Rhizophora mangle in response to different levels of chemical elements (metals/metalloids) in interstitial water and sediments from four neotropical mangroves in Brazil. What sets this study apart from other studies is that we not only investigate adaptive modifications in R. mangle but also changes in environments where this plant grows, evaluating correspondence between physical, chemical and biological issues by a combined set of multivariate statistical methods (pattern recognition). Thus, we looked to match changes in the environment with adaptations in plants. Multivariate statistics highlighted that the lignified periderm and the air gaps are directly related to the environmental contamination. Current results provide new evidences of root anatomical strategies to deal with contaminated environments. Multivariate statistics greatly contributes to extrapolate results from complex data matrixes obtained when analyzing environmental issues, pointing out parameters involved in environmental changes and also evidencing the adaptive response of the exposed biota. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines)

    NASA Astrophysics Data System (ADS)

    Clerici, Aldo; Perego, Susanna; Tellini, Claudio; Vescovi, Paolo

    2006-08-01

    Among the many GIS based multivariate statistical methods for landslide susceptibility zonation, the so called “Conditional Analysis method” holds a special place for its conceptual simplicity. In fact, in this method landslide susceptibility is simply expressed as landslide density in correspondence with different combinations of instability-factor classes. To overcome the operational complexity connected to the long, tedious and error prone sequence of commands required by the procedure, a shell script mainly based on the GRASS GIS was created. The script, starting from a landslide inventory map and a number of factor maps, automatically carries out the whole procedure resulting in the construction of a map with five landslide susceptibility classes. A validation procedure allows to assess the reliability of the resulting model, while the simple mean deviation of the density values in the factor class combinations, helps to evaluate the goodness of landslide density distribution. The procedure was applied to a relatively small basin (167 km2) in the Italian Northern Apennines considering three landslide types, namely rotational slides, flows and complex landslides, for a total of 1,137 landslides, and five factors, namely lithology, slope angle and aspect, elevation and slope/bedding relations. The analysis of the resulting 31 different models obtained combining the five factors, confirms the role of lithology, slope angle and slope/bedding relations in influencing slope stability.

  17. Evaluating change in attitude towards mathematics using the 'then-now' procedure in a cooperative learning programme.

    PubMed

    Townsend, Michael; Wilton, Keri

    2003-12-01

    Tertiary students' attitudes to mathematics are frequently negative and resistant to change, reflecting low self-efficacy. Some educators believe that greater use should be made of small group, collaborative teaching. However, the results of such interventions should be subject to assessments of bias caused by a shift in the frame of reference used by students in reporting their attitudes. This study was designed to assess whether traditional pretest-post-test procedures would indicate positive changes in mathematics attitude during a programme of cooperative learning, and whether an examination of any attitudinal change using the 'then-now' procedure would indicate bias in the results due to a shift in the internal standards for expressing attitude. Participants were 141 undergraduate students enrolled in a 12-week statistics and research design component of a course in educational psychology. Using multivariate procedures, pretest, post-test, and then-test measures of mathematics self-concept and anxiety were examined in conjunction with a cooperative learning approach to teaching. Significant positive changes between pretest and post-test were found for both mathematics self-concept and mathematics anxiety. There were no significant differences between the actual pretest and retrospective pretest measures of attitude. The results were not moderated by prior level of mathematics study. Conclusions about the apparent effectiveness of a cooperative learning programme were strengthened by the use of the retrospective pretest procedure.

  18. Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)

    ERIC Educational Resources Information Center

    Steyn, H. S., Jr.; Ellis, S. M.

    2009-01-01

    When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…

  19. Root Cause Analysis of Quality Defects Using HPLC-MS Fingerprint Knowledgebase for Batch-to-batch Quality Control of Herbal Drugs.

    PubMed

    Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin

    2015-01-01

    The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Constructing networks from a dynamical system perspective for multivariate nonlinear time series.

    PubMed

    Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael

    2016-03-01

    We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.

  1. Angular reconstitution-based 3D reconstructions of nanomolecular structures from superresolution light-microscopy images

    PubMed Central

    Salas, Desirée; Le Gall, Antoine; Fiche, Jean-Bernard; Valeri, Alessandro; Ke, Yonggang; Bron, Patrick; Bellot, Gaetan

    2017-01-01

    Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions. PMID:28811371

  2. Development of a quantitative multivariable radiographic method to evaluate anatomic changes associated with laminitis in the forefeet of donkeys.

    PubMed

    Collins, Simon N; Dyson, Sue J; Murray, Rachel C; Newton, J Richard; Burden, Faith; Trawford, Andrew F

    2012-08-01

    To establish and validate an objective method of radiographic diagnosis of anatomic changes in laminitic forefeet of donkeys on the basis of data from a comprehensive series of radiographic measurements. 85 donkeys with and 85 without forelimb laminitis for baseline data determination; a cohort of 44 donkeys with and 18 without forelimb laminitis was used for validation analyses. For each donkey, lateromedial radiographic views of 1 weight-bearing forelimb were obtained; images from 11 laminitic and 2 nonlaminitic donkeys were excluded (motion artifact) from baseline data determination. Data from an a priori selection of 19 measurements of anatomic features of laminitic and nonlaminitic donkey feet were analyzed by use of a novel application of multivariate statistical techniques. The resultant diagnostic models were validated in a blinded manner with data from the separate cohort of laminitic and nonlaminitic donkeys. Data were modeled, and robust statistical rules were established for the diagnosis of anatomic changes within laminitic donkey forefeet. Component 1 scores ≤ -3.5 were indicative of extreme anatomic change, and scores from -2.0 to 0.0 denoted modest change. Nonlaminitic donkeys with a score from 0.5 to 1.0 should be considered as at risk for laminitis. Results indicated that the radiographic procedures evaluated can be used for the identification, assessment, and monitoring of anatomic changes associated with laminitis. Screening assessments by use of this method may enable early detection of mild anatomic change and identification of at-risk donkeys.

  3. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  4. Late-presenting dural tear: incidence, risk factors, and associated complications.

    PubMed

    Durand, Wesley M; DePasse, J Mason; Kuris, Eren O; Yang, JaeWon; Daniels, Alan H

    2018-04-18

    Unrecognized and inadequately repaired intraoperative durotomies may lead to cerebrospinal fluid leak, pseudomeningocele, and other complications. Few studies have investigated durotomy that is unrecognized intraoperatively and requires additional postoperative management (hereafter, late-presenting dural tear [LPDT]), although estimates of LPDT range from 0.6 to 8.3 per 1,000 spinal surgeries. These single-center studies are based on relatively small sample sizes for an event of this rarity, all with <10 patients experiencing LPDT. This investigation is the largest yet conducted on LPDT, and sought to identify incidence, risk factors for, and complications associated with LPDT. This observational cohort study employed the American College of Surgeons National Surgical Quality Improvement Program dataset (years 2012-2015). Patients who underwent spine surgery were identified based on presence of primary listed Current Procedural Terminology (CPT) codes corresponding to spinal fusion or isolated posterior decompression without fusion. The primary variable in this study was occurrence of LPDT, identified as reoperation or readmission with durotomy-specific CPT or International Classification of Diseases, Ninth Revision, Clinical Modification codes but without durotomy codes present for the index procedure. Descriptive statistics were generated. Bivariate and multivariate analyses were conducted using chi-square tests and multiple logistic regression, respectively, generating both risk factors for LPDT and independent association of LPDT with postoperative complications. Statistical significance was defined as p<.05. In total, 86,212 patients were analyzed. The overall rate of reoperation or readmission without reoperation for LPDT was 2.0 per 1,000 patients (n=174). Of LPDT patients, 97.7% required one or more unplanned reoperations (n=170), and 5.7% of patients (n=10) required two reoperations. On multivariate analysis, lumbar procedures (odds ratio [OR] 2.79, p<.0001, vs. cervical), procedures involving both cervical and lumbar levels (OR 3.78, p=.0338, vs. cervical only), procedures with decompression only (OR 1.72, p=.0017, vs. fusion and decompression), and operative duration ≥250 minutes (OR 1.70, p=.0058, vs. <250 minutes) were associated with increased likelihood of LPDT. Late-presenting dural tear was significantly associated with surgical site infection (SSI) (OR 2.54, p<.0001), wound disruption (OR 2.24, p<.0001), sepsis (OR 2.19, p<.0001), thromboembolism (OR 1.71, p<.0001), acute kidney injury (OR 1.59, p=.0281), pneumonia (OR 1.14, p=.0269), and urinary tract infection (UTI) (OR 1.08, p=.0057). Late-presenting dural tears occurred in 2.0 per 1,000 patients who underwent spine surgery. Patients who underwent lumbar procedures, decompression procedures, and procedures with operative duration ≥250 minutes were at increased risk for LPDT. Further, LPDT was independently associated with increased likelihood of SSI, sepsis, pneumonia, UTI, wound dehiscence, thromboembolism, and acute kidney injury. As LPDT is associated with markedly increased morbidity and potential liability risk, spine surgeons should be aware of best-practice management for LPDT and consider it a rare, but possible etiology for developing postoperative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  6. An iterative technique to stabilize a linear time invariant multivariable system with output feedback

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1974-01-01

    An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.

  7. Design of multivariable feedback control systems via spectral assignment. [as applied to aircraft flight control

    NASA Technical Reports Server (NTRS)

    Liberty, S. R.; Mielke, R. R.; Tung, L. J.

    1981-01-01

    Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.

  8. Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts - A Hydrologic Model Output Statistics (HMOS) approach

    NASA Astrophysics Data System (ADS)

    Regonda, Satish Kumar; Seo, Dong-Jun; Lawrence, Bill; Brown, James D.; Demargne, Julie

    2013-08-01

    We present a statistical procedure for generating short-term ensemble streamflow forecasts from single-valued, or deterministic, streamflow forecasts produced operationally by the U.S. National Weather Service (NWS) River Forecast Centers (RFCs). The resulting ensemble streamflow forecast provides an estimate of the predictive uncertainty associated with the single-valued forecast to support risk-based decision making by the forecasters and by the users of the forecast products, such as emergency managers. Forced by single-valued quantitative precipitation and temperature forecasts (QPF, QTF), the single-valued streamflow forecasts are produced at a 6-h time step nominally out to 5 days into the future. The single-valued streamflow forecasts reflect various run-time modifications, or "manual data assimilation", applied by the human forecasters in an attempt to reduce error from various sources in the end-to-end forecast process. The proposed procedure generates ensemble traces of streamflow from a parsimonious approximation of the conditional multivariate probability distribution of future streamflow given the single-valued streamflow forecast, QPF, and the most recent streamflow observation. For parameter estimation and evaluation, we used a multiyear archive of the single-valued river stage forecast produced operationally by the NWS Arkansas-Red River Basin River Forecast Center (ABRFC) in Tulsa, Oklahoma. As a by-product of parameter estimation, the procedure provides a categorical assessment of the effective lead time of the operational hydrologic forecasts for different QPF and forecast flow conditions. To evaluate the procedure, we carried out hindcasting experiments in dependent and cross-validation modes. The results indicate that the short-term streamflow ensemble hindcasts generated from the procedure are generally reliable within the effective lead time of the single-valued forecasts and well capture the skill of the single-valued forecasts. For smaller basins, however, the effective lead time is significantly reduced by short basin memory and reduced skill in the single-valued QPF.

  9. Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.

    PubMed

    Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.

  10. Application of multivariate statistical techniques for differentiation of ripe banana flour based on the composition of elements.

    PubMed

    Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat

    2009-01-01

    Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.

  11. Testing for qualitative heterogeneity: An application to composite endpoints in survival analysis.

    PubMed

    Oulhaj, Abderrahim; El Ghouch, Anouar; Holman, Rury R

    2017-01-01

    Composite endpoints are frequently used in clinical outcome trials to provide more endpoints, thereby increasing statistical power. A key requirement for a composite endpoint to be meaningful is the absence of the so-called qualitative heterogeneity to ensure a valid overall interpretation of any treatment effect identified. Qualitative heterogeneity occurs when individual components of a composite endpoint exhibit differences in the direction of a treatment effect. In this paper, we develop a general statistical method to test for qualitative heterogeneity, that is to test whether a given set of parameters share the same sign. This method is based on the intersection-union principle and, provided that the sample size is large, is valid whatever the model used for parameters estimation. We propose two versions of our testing procedure, one based on a random sampling from a Gaussian distribution and another version based on bootstrapping. Our work covers both the case of completely observed data and the case where some observations are censored which is an important issue in many clinical trials. We evaluated the size and power of our proposed tests by carrying out some extensive Monte Carlo simulations in the case of multivariate time to event data. The simulations were designed under a variety of conditions on dimensionality, censoring rate, sample size and correlation structure. Our testing procedure showed very good performances in terms of statistical power and type I error. The proposed test was applied to a data set from a single-center, randomized, double-blind controlled trial in the area of Alzheimer's disease.

  12. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Arnab; Karki, Vijay; Aggarwal, Suresh K.; Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K.; Mao, Xianglei; Russo, Richard E.

    2015-06-01

    Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with "NORM" parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4-9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ).

  13. R package MVR for Joint Adaptive Mean-Variance Regularization and Variance Stabilization

    PubMed Central

    Dazard, Jean-Eudes; Xu, Hua; Rao, J. Sunil

    2015-01-01

    We present an implementation in the R language for statistical computing of our recent non-parametric joint adaptive mean-variance regularization and variance stabilization procedure. The method is specifically suited for handling difficult problems posed by high-dimensional multivariate datasets (p ≫ n paradigm), such as in ‘omics’-type data, among which are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom. The implementation offers a complete set of features including: (i) normalization and/or variance stabilization function, (ii) computation of mean-variance-regularized t and F statistics, (iii) generation of diverse diagnostic plots, (iv) synthetic and real ‘omics’ test datasets, (v) computationally efficient implementation, using C interfacing, and an option for parallel computing, (vi) manual and documentation on how to setup a cluster. To make each feature as user-friendly as possible, only one subroutine per functionality is to be handled by the end-user. It is available as an R package, called MVR (‘Mean-Variance Regularization’), downloadable from the CRAN. PMID:26819572

  14. Information trimming: Sufficient statistics, mutual information, and predictability from effective channel states

    NASA Astrophysics Data System (ADS)

    James, Ryan G.; Mahoney, John R.; Crutchfield, James P.

    2017-06-01

    One of the most basic characterizations of the relationship between two random variables, X and Y , is the value of their mutual information. Unfortunately, calculating it analytically and estimating it empirically are often stymied by the extremely large dimension of the variables. One might hope to replace such a high-dimensional variable by a smaller one that preserves its relationship with the other. It is well known that either X (or Y ) can be replaced by its minimal sufficient statistic about Y (or X ) while preserving the mutual information. While intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that this is in fact possible: the information X 's minimal sufficient statistic preserves about Y is exactly the information that Y 's minimal sufficient statistic preserves about X . We call this procedure information trimming. As an important corollary, we consider the case where one variable is a stochastic process' past and the other its future. In this case, the mutual information is the channel transmission rate between the channel's effective states. That is, the past-future mutual information (the excess entropy) is the amount of information about the future that can be predicted using the past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual information between the forward- and reverse-time causal states of computational mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.

  15. Self-Regulated Learning Strategies in Relation with Statistics Anxiety

    ERIC Educational Resources Information Center

    Kesici, Sahin; Baloglu, Mustafa; Deniz, M. Engin

    2011-01-01

    Dealing with students' attitudinal problems related to statistics is an important aspect of statistics instruction. Employing the appropriate learning strategies may have a relationship with anxiety during the process of statistics learning. Thus, the present study investigated multivariate relationships between self-regulated learning strategies…

  16. EXTENDING MULTIVARIATE DISTANCE MATRIX REGRESSION WITH AN EFFECT SIZE MEASURE AND THE ASYMPTOTIC NULL DISTRIBUTION OF THE TEST STATISTIC

    PubMed Central

    McArtor, Daniel B.; Lubke, Gitta H.; Bergeman, C. S.

    2017-01-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains. PMID:27738957

  17. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic.

    PubMed

    McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S

    2017-12-01

    Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

  18. Multivariate analyses of Erzgebirge granite and rhyolite composition: Implications for classification of granites and their genetic relations

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.

    1999-01-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.

  19. qFeature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.

  20. Asymptotic Distribution of the Likelihood Ratio Test Statistic for Sphericity of Complex Multivariate Normal Distribution.

    DTIC Science & Technology

    1981-08-01

    RATIO TEST STATISTIC FOR SPHERICITY OF COMPLEX MULTIVARIATE NORMAL DISTRIBUTION* C. Fang P. R. Krishnaiah B. N. Nagarsenker** August 1981 Technical...and their applications in time sEries, the reader is referred to Krishnaiah (1976). Motivated by the applications in the area of inference on multiple...for practical purposes. Here, we note that Krishnaiah , Lee and Chang (1976) approxi- mated the null distribution of certain power of the likeli

  1. QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1.

    PubMed

    Comelli, Nieves C; Duchowicz, Pablo R; Castro, Eduardo A

    2014-10-01

    The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1 (PLK1) expressed as pIC50 (-logIC50) was predicted by QSAR modeling. Multivariate linear regression (MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological activities of molecules using the replacement method (MR) as variable selection tool. The 136 compounds were separated into several training and test sets. Two splitting approaches, distribution of biological data and structural diversity, and the statistical experimental design procedure D-optimal distance were applied to the dataset. The significance of the training set models was confirmed by statistically higher values of the internal leave one out cross-validated coefficient of determination (Q2) and external predictive coefficient of determination for the test set (Rtest2). The model developed from a training set, obtained with the D-optimal distance protocol and using 3D descriptor space along with activity values, separated chemical features that allowed to distinguish high and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and accurately predict the activity of external diverse structures. The model robustness was properly characterized by means of standard procedures and their applicability domain (AD) was analyzed by leverage method. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  3. GAISE 2016 Promotes Statistical Literacy

    ERIC Educational Resources Information Center

    Schield, Milo

    2017-01-01

    In the 2005 Guidelines for Assessment and Instruction in Statistics Education (GAISE), statistical literacy featured as a primary goal. The 2016 revision eliminated statistical literacy as a stated goal. Although this looks like a rejection, this paper argues that by including multivariate thinking and--more importantly--confounding as recommended…

  4. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  5. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Resemblance profiles as clustering decision criteria: Estimating statistical power, error, and correspondence for a hypothesis test for multivariate structure.

    PubMed

    Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F

    2017-04-01

    Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.

  7. Learning investment indicators through data extension

    NASA Astrophysics Data System (ADS)

    Dvořák, Marek

    2017-07-01

    Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.

  8. An efficient genome-wide association test for multivariate phenotypes based on the Fisher combination function.

    PubMed

    Yang, James J; Li, Jia; Williams, L Keoki; Buu, Anne

    2016-01-05

    In genome-wide association studies (GWAS) for complex diseases, the association between a SNP and each phenotype is usually weak. Combining multiple related phenotypic traits can increase the power of gene search and thus is a practically important area that requires methodology work. This study provides a comprehensive review of existing methods for conducting GWAS on complex diseases with multiple phenotypes including the multivariate analysis of variance (MANOVA), the principal component analysis (PCA), the generalizing estimating equations (GEE), the trait-based association test involving the extended Simes procedure (TATES), and the classical Fisher combination test. We propose a new method that relaxes the unrealistic independence assumption of the classical Fisher combination test and is computationally efficient. To demonstrate applications of the proposed method, we also present the results of statistical analysis on the Study of Addiction: Genetics and Environment (SAGE) data. Our simulation study shows that the proposed method has higher power than existing methods while controlling for the type I error rate. The GEE and the classical Fisher combination test, on the other hand, do not control the type I error rate and thus are not recommended. In general, the power of the competing methods decreases as the correlation between phenotypes increases. All the methods tend to have lower power when the multivariate phenotypes come from long tailed distributions. The real data analysis also demonstrates that the proposed method allows us to compare the marginal results with the multivariate results and specify which SNPs are specific to a particular phenotype or contribute to the common construct. The proposed method outperforms existing methods in most settings and also has great applications in GWAS on complex diseases with multiple phenotypes such as the substance abuse disorders.

  9. Impact of lesion morphology and associated procedures for left main coronary stenting on angiographic outcome after intervention: sub-analysis of Heart Research Group of Kanazawa, HERZ, Study.

    PubMed

    Kawashiri, Masa-aki; Sakata, Kenji; Uchiyama, Katsuharru; Konno, Tetsuo; Namura, Masanobu; Mizuno, Sumio; Tatami, Ryozo; Kanaya, Honin; Nitta, Yutaka; Michishita, Ichiro; Hirase, Hiroaki; Ueda, Kosei; Aoyama, Takashi; Okeie, Kazuyasu; Haraki, Tatsuo; Mori, Kiyoo; Araki, Tsutomu; Minamoto, Masaharu; Oiwake, Hisanori; Ino, Hidekazu; Hayashi, Kenshi; Yamagishi, Masakazu

    2014-04-01

    Whether the lesion morphology and associated interventional procedures for the left main coronary artery disease (LMCA) could affect clinical outcome is still controversial. Therefore, we examined the impact of lesion morphology and associated procedures on clinical and angiographic outcomes of stenting for the LMCA. Among 7,660 patients with coronary intervention registered, we analyzed early angiographic results of 228 patients (179 men, mean age 69.4 years) concerned with LMCA lesions. In 121 out of 228 patients having long-term angiographic results, we examined the occurrence of major adverse coronary events (MACE) particularly in terms of the presence of acute coronary syndrome (ACS), the kind of stents, bear metal or drug eluting, the lesion morphology and associated procedures. Early angiographic success rate of LMCA stenting was 100 %, and clinical success rate was 94.3 %. During follow-up period for 3 years, MACE was observed in 17 patients. Under these conditions, multiple stenting (p < 0.01) and complicated procedures such as such as Y-stent, T-stent and crush stent (p < 0.01) were listed as risks for MACE, although there was no statistical difference in kinds of stent. Multivariate analysis demonstrated the significant disadvantage of complicated procedures using the bear metal stent on the occurrence of MACE (p < 0.01). These results demonstrate that the complicated procedures have great impact on clinical and angiographic outcomes after stenting for LMCA lesions, and suggest the simple procedure with a single stent for LMCA lesions in the present cohort. Whether the presence of ACS can affect the prognosis should further be sought.

  10. Multivariate statistical analysis of low-voltage EDS spectrum images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, I.M.

    1998-03-01

    Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.

  11. Factors Influencing Cecal Intubation Time during Retrograde Approach Single-Balloon Enteroscopy

    PubMed Central

    Chen, Peng-Jen; Shih, Yu-Lueng; Huang, Hsin-Hung; Hsieh, Tsai-Yuan

    2014-01-01

    Background and Aim. The predisposing factors for prolonged cecal intubation time (CIT) during colonoscopy have been well identified. However, the factors influencing CIT during retrograde SBE have not been addressed. The aim of this study was to determine the factors influencing CIT during retrograde SBE. Methods. We investigated patients who underwent retrograde SBE at a medical center from January 2011 to March 2014. The medical charts and SBE reports were reviewed. The patients' characteristics and procedure-associated data were recorded. These data were analyzed with univariate analysis as well as multivariate logistic regression analysis to identify the possible predisposing factors. Results. We enrolled 66 patients into this study. The median CIT was 17.4 minutes. With univariate analysis, there was no statistical difference in age, sex, BMI, or history of abdominal surgery, except for bowel preparation (P = 0.021). Multivariate logistic regression analysis showed that inadequate bowel preparation (odds ratio 30.2, 95% confidence interval 4.63–196.54; P < 0.001) was the independent predisposing factors for prolonged CIT during retrograde SBE. Conclusions. For experienced endoscopist, inadequate bowel preparation was the independent predisposing factor for prolonged CIT during retrograde SBE. PMID:25505904

  12. Quick Overview Scout 2008 Version 1.0

    EPA Science Inventory

    The Scout 2008 version 1.0 statistical software package has been updated from past DOS and Windows versions to provide classical and robust univariate and multivariate graphical and statistical methods that are not typically available in commercial or freeware statistical softwar...

  13. Impact of structural and economic factors on hospitalization costs, inpatient mortality, and treatment type of traumatic hip fractures in Switzerland.

    PubMed

    Mehra, Tarun; Moos, Rudolf M; Seifert, Burkhardt; Bopp, Matthias; Senn, Oliver; Simmen, Hans-Peter; Neuhaus, Valentin; Ciritsis, Bernhard

    2017-12-01

    The assessment of structural and potentially economic factors determining cost, treatment type, and inpatient mortality of traumatic hip fractures are important health policy issues. We showed that insurance status and treatment in university hospitals were significantly associated with treatment type (i.e., primary hip replacement), cost, and lower inpatient mortality respectively. The purpose of this study was to determine the influence of the structural level of hospital care and patient insurance type on treatment, hospitalization cost, and inpatient mortality in cases with traumatic hip fractures in Switzerland. The Swiss national medical statistic 2011-2012 was screened for adults with hip fracture as primary diagnosis. Gender, age, insurance type, year of discharge, hospital infrastructure level, length-of-stay, case weight, reason for discharge, and all coded diagnoses and procedures were extracted. Descriptive statistics and multivariate logistic regression with treatment by primary hip replacement as well as inpatient mortality as dependent variables were performed. We obtained 24,678 inpatient case records from the medical statistic. Hospitalization costs were calculated from a second dataset, the Swiss national cost statistic (7528 cases with hip fractures, discharged in 2012). Average inpatient costs per case were the highest for discharges from university hospitals (US$21,471, SD US$17,015) and the lowest in basic coverage hospitals (US$18,291, SD US$12,635). Controlling for other variables, higher costs for hip fracture treatment at university hospitals were significant in multivariate regression (p < 0.001). University hospitals had a lower inpatient mortality rate than full and basic care providers (2.8% vs. both 4.0%); results confirmed in our multivariate logistic regression analysis (odds ratio (OR) 1.434, 95% CI 1.127-1.824 and OR 1.459, 95% confidence interval (CI) 1.139-1.870 for full and basic coverage hospitals vs. university hospitals respectively). The proportion of privately insured varied between 16.0% in university hospitals and 38.9% in specialized hospitals. Private insurance had an OR of 1.419 (95% CI 1.306-1.542) in predicting treatment of a hip fracture with primary hip replacement. The seeming importance of insurance type on hip fracture treatment and the large inequity in the distribution of privately insured between provider types would be worth a closer look by the regulatory authorities. Better outcomes, i.e., lower mortality rates for hip fracture treatment in hospitals with a higher structural care level advocate centralization of care.

  14. A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects.

    PubMed

    Henschel, Volkmar; Engel, Jutta; Hölzel, Dieter; Mansmann, Ulrich

    2009-02-10

    Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.

  15. Low-dimensional approximation searching strategy for transfer entropy from non-uniform embedding

    PubMed Central

    2018-01-01

    Transfer entropy from non-uniform embedding is a popular tool for the inference of causal relationships among dynamical subsystems. In this study we present an approach that makes use of low-dimensional conditional mutual information quantities to decompose the original high-dimensional conditional mutual information in the searching procedure of non-uniform embedding for significant variables at different lags. We perform a series of simulation experiments to assess the sensitivity and specificity of our proposed method to demonstrate its advantage compared to previous algorithms. The results provide concrete evidence that low-dimensional approximations can help to improve the statistical accuracy of transfer entropy in multivariate causality analysis and yield a better performance over other methods. The proposed method is especially efficient as the data length grows. PMID:29547669

  16. Machine processing for remotely acquired data. [using multivariate statistical analysis

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1974-01-01

    This paper is a general discussion of earth resources information systems which utilize airborne and spaceborne sensors. It points out that information may be derived by sensing and analyzing the spectral, spatial and temporal variations of electromagnetic fields emanating from the earth surface. After giving an overview system organization, the two broad categories of system types are discussed. These are systems in which high quality imagery is essential and those more numerically oriented. Sensors are also discussed with this categorization of systems in mind. The multispectral approach and pattern recognition are described as an example data analysis procedure for numerically-oriented systems. The steps necessary in using a pattern recognition scheme are described and illustrated with data obtained from aircraft and the Earth Resources Technology Satellite (ERTS-1).

  17. Discordance between net analyte signal theory and practical multivariate calibration.

    PubMed

    Brown, Christopher D

    2004-08-01

    Lorber's concept of net analyte signal is reviewed in the context of classical and inverse least-squares approaches to multivariate calibration. It is shown that, in the presence of device measurement error, the classical and inverse calibration procedures have radically different theoretical prediction objectives, and the assertion that the popular inverse least-squares procedures (including partial least squares, principal components regression) approximate Lorber's net analyte signal vector in the limit is disproved. Exact theoretical expressions for the prediction error bias, variance, and mean-squared error are given under general measurement error conditions, which reinforce the very discrepant behavior between these two predictive approaches, and Lorber's net analyte signal theory. Implications for multivariate figures of merit and numerous recently proposed preprocessing treatments involving orthogonal projections are also discussed.

  18. The use of multivariate statistics in studies of wildlife habitat

    Treesearch

    David E. Capen

    1981-01-01

    This report contains edited and reviewed versions of papers presented at a workshop held at the University of Vermont in April 1980. Topics include sampling avian habitats, multivariate methods, applications, examples, and new approaches to analysis and interpretation.

  19. Rejection of Multivariate Outliers.

    DTIC Science & Technology

    1983-05-01

    available in Gnanadesikan (1977). 2 The motivation for the present investigation lies in a recent paper of Schvager and Margolin (1982) who derive a... Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York. [7] Hawkins, D.M. (1980). Identification of

  20. Multivariate analysis: greater insights into complex systems

    USDA-ARS?s Scientific Manuscript database

    Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...

  1. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  2. Outcomes of Inpatients With and Without Sickle Cell Disease After High-Volume Surgical Procedures

    PubMed Central

    Dinan, Michaela A.; Chou, Chia-Hung; Hammill, Bradley G.; Graham, Felicia L.; Schulman, Kevin A.; Telen, Marilyn J.; Reed, Shelby D.

    2009-01-01

    In this study, we examined differences in inpatient costs, length of stay, and in-hospital mortality between hospitalizations for patients with and without sickle cell disease (SCD) undergoing high-volume surgical procedures. We used Clinical Classification Software (CCS) codes to identify discharges in the 2002–2005 Nationwide Inpatient Sample of the Healthcare Cost and Utilization Project for patients who had undergone either cholecystectomy or hip replacement. We limited the non-SCD cohort to hospitals where patients with SCD had undergone the same procedure. We compared inpatient outcomes using summary statistics and generalized linear regression analysis to adjust for patient, hospital, and procedural characteristics. Overall, the median age of surgical patients with SCD was more than 3 decades less than the median age of patients without SCD undergoing the same procedure. In recognition of the age disparity, we limited the analyses to patients aged 18 to 64 years. Nonetheless, patients with SCD undergoing cholecystectomy or hip replacement were 12.1 and 14.4 years younger, had inpatient stays that were 73% and 82% longer, and incurred costs that were 46% and 40% higher per discharge than patients without SCD, respectively. Inpatient mortality for these procedures was low, approximately 0.6% for cholecystectomy and 0.2% for hip replacement, and did not differ significantly between patients with and without SCD. Multivariable regression analyses revealed that higher inpatient costs among patients with SCD were primarily attributable to longer hospital stays. Patients with SCD who underwent cholecystectomy or hip replacement required more health care resources than patients without SCD. PMID:19787790

  3. Profiling and analysis of multiple constituents in Baizhu Shaoyao San before and after processing by stir-frying using UHPLC/Q-TOF-MS/MS coupled with multivariate statistical analysis.

    PubMed

    Xu, Yangyang; Cai, Hao; Cao, Gang; Duan, Yu; Pei, Ke; Tu, Sicong; Zhou, Jia; Xie, Li; Sun, Dongdong; Zhao, Jiayu; Liu, Jing; Wang, Xiaoqi; Shen, Lin

    2018-04-15

    Baizhu Shaoyao San (BSS) is a famous traditional Chinese medicinal formula widely used for the treatment of painful diarrhea, intestinal inflammation, and diarrhea-predominant irritable bowel syndrome. According to clinical medication, three medicinal herbs (Atractylodis Macrocephalae Rhizoma, Paeoniae Radix Alba, and Citri Reticulatae Pericarpium) included in BSS must be processed using some specific methods of stir-frying. On the basis of the classical theories of traditional Chinese medicine, the therapeutic effects of BSS would be significantly enhanced after processing. Generally, the changes of curative effects mainly result from the variations of inside chemical basis caused by the processing procedure. To find out the corresponding changes of chemical compositions in BSS after processing and to elucidate the material basis of the changed curative effects, an optimized ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry in positive and negative ion modes coupled with multivariate statistical analyses were developed. As a result, a total of 186 compounds were ultimately identified in crude and processed BSS, in which 62 marker compounds with significant differences between crude and processed BSS were found by principal component analysis and t-test. Compared with crude BSS, the contents of 23 compounds were remarkably decreased and the contents of 39 compounds showed notable increase in processed BSS. The transformation mechanisms of some changed compounds were appropriately inferred from the results. Furthermore, compounds with extremely significant differences might strengthen the effects of the whole herbal formula. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Clinical features and risk factors for development of urinary tract infections in cats.

    PubMed

    Martinez-Ruzafa, Ivan; Kruger, John M; Miller, RoseAnn; Swenson, Cheryl L; Bolin, Carole A; Kaneene, John B

    2012-10-01

    The clinical and diagnostic features of 155 cats with urinary tract infection (UTI) and 186 controls with negative urine culture/s were characterized retrospectively (signalment, clinical signs, urinalysis, urine culture, concurrent diseases, lower urinary tract diagnostic/therapeutic procedures). Multivariable logistic regression was used to identify risk factors associated with UTI. Cats of all ages were affected by UTI with no sex/breed predisposition. Lower urinary tract signs were absent in 35.5% of cats with UTI. Pyuria and bacteriuria had sensitivities of 52.9% and 72.9%, and specificities of 85.5% and 67.7% for detection of UTI, respectively. Risk factors significantly associated with increased odds of UTI were urinary incontinence [odds ratio (OR)=10.78, P=0.0331], transurethral procedures (OR=8.37, P<0.0001), urogenital surgery (OR=6.03, P=0.0385), gastrointestinal disease (OR=2.62, P=0.0331), decreased body weight (OR=0.81, P=0.0259) and decreased urine specific gravity (OR=0.78, P=0.0055). Whilst not independently significant, renal disease and lower urinary tract anatomic abnormalities improved statistical model performance and contributed to UTI.

  5. Is a high initial World Federation of Neurosurgery (WFNS) grade really associated with a poor clinical outcome in elderly patients with ruptured intracranial aneurysms treated with coiling?

    PubMed

    Iosif, Christina; Di Maria, Federico; Sourour, Nader; Degos, Vincent; Bonneville, Fabrice; Biondi, Alessandra; Jean, Betty; Colonne, Chantal; Nouet, Aurelien; Chiras, Jacques; Clarençon, Frédéric

    2014-05-01

    Coiling of ruptured intracranial aneurysms in elderly patients remains debatable in terms of technical feasibility and clinical outcome. In this observational cohort study we aimed to assess the technical feasibility, complication profile and clinical outcomes of elderly patients with subarachnoid hemorrhage (SAH) treated with endovascular therapy. The study included 59 consecutive patients (47 women) aged ≥70 years (mean age 76 years, range 71-84) admitted to our institution with SAH from January 2002 to July 2011. The patients were treated for 66 aneurysms (regular coiling: n=62 (94%), balloon-assisted technique: n=2 (3%), stent and coil technique: n=2 (3%)). World Federation of Neurosurgery (WFNS) grade at admission was 1 in 13 patients, 2 in 23 patients, 3 in 8 patients, 4 in 11 patients and 5 in 4 patients. We analysed data by univariate and multivariate statistical analyses with an emphasis on the initial clinical situation, complications and clinical outcome. The technical success rate was 98% with a procedure-related deficit rate of 10% and procedure-related death rate of 5%. The Glasgow Outcome Scale score at 6 months was 1 in 15 patients (25.4%), 2 in 8 patients (13.6%), 3 in 14 patients (23.7%), 4 in 11 patients (18.6%) and 5 in 11 patients (18.6%). Patients admitted with a high initial WFNS grade did not differ statistically in terms of clinical outcome. The final clinical outcome was not significantly correlated with age, initial Fisher score or procedure-related complications. Endovascular treatment of elderly patients with ruptured cerebral aneurysms is feasible, safe and beneficial regardless of the presenting WFNS score.

  6. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  7. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis.

    PubMed

    Badran, M; Morsy, R; Soliman, H; Elnimr, T

    2016-01-01

    The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Laryngospasm during emergency department ketamine sedation: a case-control study.

    PubMed

    Green, Steven M; Roback, Mark G; Krauss, Baruch

    2010-11-01

    The objective of this study was to assess predictors of emergency department (ED) ketamine-associated laryngospasm using case-control techniques. We performed a matched case-control analysis of a sample of 8282 ED ketamine sedations (including 22 occurrences of laryngospasm) assembled from 32 prior published series. We sequentially studied the association of each of 7 clinical variables with laryngospasm by assigning 4 controls to each case while matching for the remaining 6 variables. We then used univariate statistics and conditional logistic regression to analyze the matched sets. We found no statistical association of age, dose, oropharyngeal procedure, underlying physical illness, route, or coadministered anticholinergics with laryngospasm. Coadministered benzodiazepines showed a borderline association in the multivariate but not univariate analysis that was considered anomalous. This case-control analysis of the largest available sample of ED ketamine-associated laryngospasm did not demonstrate evidence of association with age, dose, or other clinical factors. Such laryngospasm seems to be idiosyncratic, and accordingly, clinicians administering ketamine must be prepared for its rapid identification and management. Given no evidence that they decrease the risk of laryngospasm, coadministered anticholinergics seem unnecessary.

  9. Live weight, carcass ultrasound images, and visual scores in Angus cattle under feeding regimes in Brazil.

    PubMed

    Pinto, Luís Fernando Batista; Tarouco, Jaime Urdapilleta; Pedrosa, Victor Breno; de Farias Jucá, Adriana; Leão, André Gustavo; Moita, Antonia Kécya França

    2013-08-01

    This study aimed to evaluate visual precocity, muscling, conformation, skeletal, and breed scores; live weights at birth, at 205, and at 550 days of age; and, besides, rib eye area and fat thickness between the 12th and 13th ribs obtained by ultrasound. Those traits were evaluated in 1,645 Angus cattle kept in five feeding conditions as follows: supplemented or non-supplemented, grazing native pasture or grazing cultivated pasture, and feedlot. Descriptive statistics, Pearson's correlations, and principal component analysis were carried out. Gender and feeding conditions were fixed effects, while animal's age and mother's weight at weaning were the covariates analyzed. Gender and feeding conditions were very significant for the studied traits, but visual scores were not influenced by gender. Animal's age and mother's weight at weaning influenced many traits and must be appropriately adjusted in the statistical models. An important correlation between visual scores, live weights, and carcass traits obtained by ultrasound was found, which can be analyzed by univariate procedure. However, the multivariate approach revealed some information that cannot be neglected in order to ensure a more detailed assessment.

  10. Significance of Urinary Tract Involvement in Patients Treated with Cytoreductive Surgery (CRS) and Hyperthermic Intraperitoneal Chemotherapy (HIPEC)

    PubMed Central

    Randle, Reese W.; Craven, Brandon; Swett, Katrina R.; Levine, Edward A.; Shen, Perry; Stewart, John H.; Mirzazadeh, Majid

    2014-01-01

    Background Urinary tract involvement in patients with peritoneal surface disease treated with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) often requires complex urologic resections and reconstruction to achieve optimal cytoreduction. The impact of these combined procedures on surgical outcomes is not well defined. Methods A prospective database of CRS/HIPEC procedures was analyzed retrospectively. Type of malignancy, performance status, resection status, hospital and intensive care unit stay, morbidity, mortality, and overall survival were reviewed. Results A total of 864 patients underwent 933 CRS/HI-PEC procedures, while 64 % (550) had preoperative ureteral stent placement. A total of 7.3 % had an additional urologic procedure without an increase in 30-day (p = 0.4) or 90-day (p = 1.0) mortality. Urologic procedures correlated with increased length of operating time (p < 0.001), blood loss (p < 0.001), and length of hospitalization (p = 0.003), yet were not associated with increased overall 30-day major morbidity (grade III/IV, p = 0.14). In multivariate analysis, independent predictors of additional urologic procedures were prior surgical score (p < 0.001), number of resected organs (p = 0.001), and low anterior resection (p = 0.03). Long-term survival was not statistically different between patients with and without urologic resection for low-grade appendiceal primary lesions (p = 0.23), high-grade appendiceal primary lesions (p = 0.40), or colorectal primary lesions (p = 0.14). Conclusions Urinary tract involvement in patients with peritoneal surface disease does not increase overall surgical morbidity. Patients with urologic procedures demonstrate survival patterns with meaningful prolongation of life. Urologic involvement should not be considered a contraindication for CRS/HIPEC in patients with resectable peritoneal surface disease. PMID:24217789

  11. Significance of urinary tract involvement in patients treated with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC).

    PubMed

    Votanopoulos, Konstantinos I; Randle, Reese W; Craven, Brandon; Swett, Katrina R; Levine, Edward A; Shen, Perry; Stewart, John H; Mirzazadeh, Majid

    2014-03-01

    Urinary tract involvement in patients with peritoneal surface disease treated with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) often requires complex urologic resections and reconstruction to achieve optimal cytoreduction. The impact of these combined procedures on surgical outcomes is not well defined. A prospective database of CRS/HIPEC procedures was analyzed retrospectively. Type of malignancy, performance status, resection status, hospital and intensive care unit stay, morbidity, mortality, and overall survival were reviewed. A total of 864 patients underwent 933 CRS/HIPEC procedures, while 64 % (550) had preoperative ureteral stent placement. A total of 7.3 % had an additional urologic procedure without an increase in 30-day (p = 0.4) or 90-day (p = 1.0) mortality. Urologic procedures correlated with increased length of operating time (p < 0.001), blood loss (p < 0.001), and length of hospitalization (p = 0.003), yet were not associated with increased overall 30-day major morbidity (grade III/IV, p = 0.14). In multivariate analysis, independent predictors of additional urologic procedures were prior surgical score (p < 0.001), number of resected organs (p = 0.001), and low anterior resection (p = 0.03). Long-term survival was not statistically different between patients with and without urologic resection for low-grade appendiceal primary lesions (p = 0.23), high-grade appendiceal primary lesions (p = 0.40), or colorectal primary lesions (p = 0.14). Urinary tract involvement in patients with peritoneal surface disease does not increase overall surgical morbidity. Patients with urologic procedures demonstrate survival patterns with meaningful prolongation of life. Urologic involvement should not be considered a contraindication for CRS/HIPEC in patients with resectable peritoneal surface disease.

  12. Univariate Analysis of Multivariate Outcomes in Educational Psychology.

    ERIC Educational Resources Information Center

    Hubble, L. M.

    1984-01-01

    The author examined the prevalence of multiple operational definitions of outcome constructs and an estimate of the incidence of Type I error rates when univariate procedures were applied to multiple variables in educational psychology. Multiple operational definitions of constructs were advocated and wider use of multivariate analysis was…

  13. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression

    USDA-ARS?s Scientific Manuscript database

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly ...

  14. Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators.

    PubMed

    Huang, Yen-Tsung; Pan, Wen-Chi

    2016-06-01

    Causal mediation modeling has become a popular approach for studying the effect of an exposure on an outcome through a mediator. However, current methods are not applicable to the setting with a large number of mediators. We propose a testing procedure for mediation effects of high-dimensional continuous mediators. We characterize the marginal mediation effect, the multivariate component-wise mediation effects, and the L2 norm of the component-wise effects, and develop a Monte-Carlo procedure for evaluating their statistical significance. To accommodate the setting with a large number of mediators and a small sample size, we further propose a transformation model using the spectral decomposition. Under the transformation model, mediation effects can be estimated using a series of regression models with a univariate transformed mediator, and examined by our proposed testing procedure. Extensive simulation studies are conducted to assess the performance of our methods for continuous and dichotomous outcomes. We apply the methods to analyze genomic data investigating the effect of microRNA miR-223 on a dichotomous survival status of patients with glioblastoma multiforme (GBM). We identify nine gene ontology sets with expression values that significantly mediate the effect of miR-223 on GBM survival. © 2015, The International Biometric Society.

  15. Effect of high up front charges on access to surgery for poor patients at a public hospital in New Mexico.

    PubMed

    Kaufman, Will; Chavez, Augustine S; Skipper, Betty; Kaufman, Arthur

    2006-06-23

    A public hospital in New Mexico required collection of 50% of estimated costs prior to elective surgeries for self-pay patients. This study assesses the impact of this policy on access to elective surgical procedures. Chi-square tests determined if there was a statistically significant difference between the number of self-pay and insured patient cancellations for financial reasons. A multivariate binomial regression model was used to calculate risk ratios and confidence limits for effects of race/ethnicity, and insurance status, controlling for gender, on these cancellations. Of the 667 cancellations, there were 99 self-pay and 568 insured patients. Cancellations for financial reasons occurred in 55.6% of self-pay and 9.3% of insured patients (p < 0.0001). Inability to pay 50% up front accounted for 76.4% of self-pay patient cancellations for financial reasons. Self-pay, non-Hispanic whites and minority race/ethnicities were 8.76 and 8.61 times more likely to cancel for financial reasons, respectively, than insured non-Hispanic whites. Self-pay patients, regardless of race/ethnicity, have elective surgical procedures cancelled for financial reasons significantly more often than insured patients. The hospital's 50% up-front payment policy represents a significant financial barrier to accessing elective surgical procedures for self-pay patients.

  16. Multivariate Analysis and Prediction of Dioxin-Furan ...

    EPA Pesticide Factsheets

    Peer Review Draft of Regional Methods Initiative Final Report Dioxins, which are bioaccumulative and environmentally persistent, pose an ongoing risk to human and ecosystem health. Fish constitute a significant source of dioxin exposure for humans and fish-eating wildlife. Current dioxin analytical methods are costly, time-consuming, and produce hazardous by-products. A Danish team developed a novel, multivariate statistical methodology based on the covariance of dioxin-furan congener Toxic Equivalences (TEQs) and fatty acid methyl esters (FAMEs) and applied it to North Atlantic Ocean fishmeal samples. The goal of the current study was to attempt to extend this Danish methodology to 77 whole and composite fish samples from three trophic groups: predator (whole largemouth bass), benthic (whole flathead and channel catfish) and forage fish (composite bluegill, pumpkinseed and green sunfish) from two dioxin contaminated rivers (Pocatalico R. and Kanawha R.) in West Virginia, USA. Multivariate statistical analyses, including, Principal Components Analysis (PCA), Hierarchical Clustering, and Partial Least Squares Regression (PLS), were used to assess the relationship between the FAMEs and TEQs in these dioxin contaminated freshwater fish from the Kanawha and Pocatalico Rivers. These three multivariate statistical methods all confirm that the pattern of Fatty Acid Methyl Esters (FAMEs) in these freshwater fish covaries with and is predictive of the WHO TE

  17. Identifying Pleiotropic Genes in Genome-Wide Association Studies for Multivariate Phenotypes with Mixed Measurement Scales

    PubMed Central

    Williams, L. Keoki; Buu, Anne

    2017-01-01

    We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206

  18. Borrowing of strength and study weights in multivariate and network meta-analysis.

    PubMed

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2017-12-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).

  19. Borrowing of strength and study weights in multivariate and network meta-analysis

    PubMed Central

    Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D

    2016-01-01

    Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254

  20. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.

    PubMed

    Friedman, David B

    2012-01-01

    All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.

  1. Applying Sociocultural Theory to Teaching Statistics for Doctoral Social Work Students

    ERIC Educational Resources Information Center

    Mogro-Wilson, Cristina; Reeves, Michael G.; Charter, Mollie Lazar

    2015-01-01

    This article describes the development of two doctoral-level multivariate statistics courses utilizing sociocultural theory, an integrative pedagogical framework. In the first course, the implementation of sociocultural theory helps to support the students through a rigorous introduction to statistics. The second course involves students…

  2. A review on the multivariate statistical methods for dimensional reduction studies

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Kiang, Lam Chee; Mohamed, Zulkifley Bin; Hong, Tan Wei

    2017-05-01

    In this research study we have discussed multivariate statistical methods for dimensional reduction, which has been done by various researchers. The reduction of dimensionality is valuable to accelerate algorithm progression, as well as really may offer assistance with the last grouping/clustering precision. A lot of boisterous or even flawed info information regularly prompts a not exactly alluring algorithm progression. Expelling un-useful or dis-instructive information segments may for sure help the algorithm discover more broad grouping locales and principles and generally speaking accomplish better exhibitions on new data set.

  3. Generating an Empirical Probability Distribution for the Andrews-Pregibon Statistic.

    ERIC Educational Resources Information Center

    Jarrell, Michele G.

    A probability distribution was developed for the Andrews-Pregibon (AP) statistic. The statistic, developed by D. F. Andrews and D. Pregibon (1978), identifies multivariate outliers. It is a ratio of the determinant of the data matrix with an observation deleted to the determinant of the entire data matrix. Although the AP statistic has been used…

  4. Are studies reporting significant results more likely to be published?

    PubMed

    Koletsi, Despina; Karagianni, Anthi; Pandis, Nikolaos; Makou, Margarita; Polychronopoulou, Argy; Eliades, Theodore

    2009-11-01

    Our objective was to assess the hypothesis that there are variations of the proportion of articles reporting a significant effect, with a higher percentage of those articles published in journals with impact factors. The contents of 5 orthodontic journals (American Journal of Orthodontics and Dentofacial Orthopedics, Angle Orthodontist, European Journal of Orthodontics, Journal of Orthodontics, and Orthodontics and Craniofacial Research), published between 2004 and 2008, were hand-searched. Articles with statistical analysis of data were included in the study and classified into 4 categories: behavior and psychology, biomaterials and biomechanics, diagnostic procedures and treatment, and craniofacial growth, morphology, and genetics. In total, 2622 articles were examined, with 1785 included in the analysis. Univariate and multivariate logistic regression analyses were applied with statistical significance as the dependent variable, and whether the journal had an impact factor, the subject, and the year were the independent predictors. A higher percentage of articles showed significant results relative to those without significant associations (on average, 88% vs 12%) for those journals. Overall, these journals published significantly more studies with significant results, ranging from 75% to 90% (P = 0.02). Multivariate modeling showed that journals with impact factors had a 100% increased probability of publishing a statistically significant result compared with journals with no impact factor (odds ratio [OR], 1.99; 95% CI, 1.19-3.31). Compared with articles on biomaterials and biomechanics, all other subject categories showed lower probabilities of significant results. Nonsignificant findings in behavior and psychology and diagnosis and treatment were 1.8 (OR, 1.75; 95% CI, 1.51-2.67) and 3.5 (OR, 3.50; 95% CI, 2.27-5.37) times more likely to be published, respectively. Journals seem to prefer reporting significant results; this might be because of authors' perceptions of the importance of their findings and editors' and reviewers' preferences for significant results. The implication of this factor in the reliability of systematic reviews is discussed.

  5. Short-term Outcomes After Open and Laparoscopic Colostomy Creation.

    PubMed

    Ivatury, Srinivas Joga; Bostock Rosenzweig, Ian C; Holubar, Stefan D

    2016-06-01

    Colostomy creation is a common procedure performed in colon and rectal surgery. Outcomes by technique have not been well studied. This study evaluated outcomes related to open versus laparoscopic colostomy creation. This was a retrospective review of patients undergoing colostomy creation using univariate and multivariate propensity score analyses. Hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program database were included. Data on patients were obtained from the American College of Surgeons National Surgical Quality Improvement Program 2005-2011 Participant Use Data Files. We measured 30-day mortality, 30-day complications, and predictors of 30-day mortality. A total of 2179 subjects were in the open group and 1132 in the laparoscopic group. The open group had increased age (open, 64 years vs laparoscopic, 60 years), admission from facility (17.0% vs 14.9%), and disseminated cancer (26.1% vs 21.4%). All were statistically significant. The open group had a significantly higher percentage of emergency operations (24.9% vs 7.9%). Operative time was statistically different (81 vs 86 minutes). Thirty-day mortality was significantly higher in the open group (8.7% vs 3.5%), as was any 30-day complication (25.4% vs 17.0%). Propensity-matching analysis on elective patients only revealed that postoperative length of stay and rate of any wound complication were statistically higher in the open group. Multivariate analysis for mortality was performed on the full, elective, and propensity-matched cohorts; age >65 years and dependent functional status were associated with an increased risk of mortality in all of the models. This study has the potential for selection bias and limited generalizability. Colostomy creation at American College of Surgeons National Surgical Quality Improvement Program hospitals is more commonly performed open rather than laparoscopically. Patient age >65 years and dependent functional status are associated with an increased risk of 30-day mortality.

  6. 78 FR 43002 - Proposed Collection; Comment Request for Revenue Procedure 2004-29

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... comments concerning statistical sampling in Sec. 274 Context. DATES: Written comments should be received on... INFORMATION: Title: Statistical Sampling in Sec. 274 Contest. OMB Number: 1545-1847. Revenue Procedure Number: Revenue Procedure 2004-29. Abstract: Revenue Procedure 2004-29 prescribes the statistical sampling...

  7. Superiority of artificial neural networks for a genetic classification procedure.

    PubMed

    Sant'Anna, I C; Tomaz, R S; Silva, G N; Nascimento, M; Bhering, L L; Cruz, C D

    2015-08-19

    The correct classification of individuals is extremely important for the preservation of genetic variability and for maximization of yield in breeding programs using phenotypic traits and genetic markers. The Fisher and Anderson discriminant functions are commonly used multivariate statistical techniques for these situations, which allow for the allocation of an initially unknown individual to predefined groups. However, for higher levels of similarity, such as those found in backcrossed populations, these methods have proven to be inefficient. Recently, much research has been devoted to developing a new paradigm of computing known as artificial neural networks (ANNs), which can be used to solve many statistical problems, including classification problems. The aim of this study was to evaluate the feasibility of ANNs as an evaluation technique of genetic diversity by comparing their performance with that of traditional methods. The discriminant functions were equally ineffective in discriminating the populations, with error rates of 23-82%, thereby preventing the correct discrimination of individuals between populations. The ANN was effective in classifying populations with low and high differentiation, such as those derived from a genetic design established from backcrosses, even in cases of low differentiation of the data sets. The ANN appears to be a promising technique to solve classification problems, since the number of individuals classified incorrectly by the ANN was always lower than that of the discriminant functions. We envisage the potential relevant application of this improved procedure in the genomic classification of markers to distinguish between breeds and accessions.

  8. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, George

    1993-01-01

    The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.

  9. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, Stanislav

    1992-01-01

    The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.

  10. Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM

    ERIC Educational Resources Information Center

    Mair, Patrick; Satorra, Albert; Bentler, Peter M.

    2012-01-01

    This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…

  11. Model transformations for state-space self-tuning control of multivariable stochastic systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.

    1988-01-01

    The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.

  12. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    PubMed

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  13. One-stage closure of isolated cleft palate with the Veau-Wardill-Kilner V to Y pushback procedure or the Cronin modification. IV. Cephalometric comparison of transverse dentofacial morphology.

    PubMed

    Heliövaara, A

    1994-02-01

    The transverse dentofacial morphology of 116 consecutive patients with isolated cleft palate was studied by PA-headfilms at 17-20 years of age. One-stage soft and hard palate closure had been carried out at the mean age of 1.8 years using the Veau-Wardill-Kilner or the Cronin mucoperiosteal palatal V-Y pushback technique. In multivariate statistical analyses no significant findings were observed with regard to craniofacial measurements and operation method, additional palate operations, cleft extent at birth or associated minor anomalies. The effect of sex was consistently in the same direction with males having larger values. The bizygomatic width (Zydx-Zysin) was greater for those who had familial disposition for clefts. No asymmetries were detected.

  14. A Multivariate Solution of the Multivariate Ranking and Selection Problem

    DTIC Science & Technology

    1980-02-01

    Taneja (1972)), a ’a for a vector of constants c (Krishnaiah and Rizvi (1966)), the generalized variance ( Gnanadesikan and Gupta (1970)), iegier (1976...Olk-in, I. and Sobel, M. (1977). Selecting and Ordering Populations: A New Statistical Methodology, John Wiley & Sons, Inc., New York. Gnanadesikan

  15. Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques

    NASA Technical Reports Server (NTRS)

    McDonald, G.; Storrie-Lombardi, M.; Nealson, K.

    1999-01-01

    The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.

  16. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca; Champagne, Pascale, E-mail: champagne@civil.queensu.ca; Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr

    Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system,more » followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling the five criteria parameters (set as dependent variables), on a statistically significant level: conductivity, dissolved oxygen (DO), nitrite (NO{sub 2}{sup −}), organic nitrogen (N), oxidation reduction potential (ORP), pH, sulfate and total volatile solids (TVS). The criteria parameters and the significant explanatory parameters were most important in modeling the dynamics of the passive treatment system during the study period. Such techniques and procedures were found to be highly valuable and could be applied to other sites to determine parameters of interest in similar naturalized engineered systems.« less

  17. 28 CFR Appendix D to Part 61 - Office of Justice Assistance, Research, and Statistics Procedures Relating to the Implementation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Statistics Procedures Relating to the Implementation of the National Environmental Policy Act D... Assistance, Research, and Statistics Procedures Relating to the Implementation of the National Environmental... Statistics (OJARS) assists State and local units of government in strengthening and improving law enforcement...

  18. 28 CFR Appendix D to Part 61 - Office of Justice Assistance, Research, and Statistics Procedures Relating to the Implementation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Statistics Procedures Relating to the Implementation of the National Environmental Policy Act D... Assistance, Research, and Statistics Procedures Relating to the Implementation of the National Environmental... Statistics (OJARS) assists State and local units of government in strengthening and improving law enforcement...

  19. Visual classification of very fine-grained sediments: Evaluation through univariate and multivariate statistics

    USGS Publications Warehouse

    Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.

    1980-01-01

    Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.

  20. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses.

    PubMed

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-12-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  1. Ensembles of radial basis function networks for spectroscopic detection of cervical precancer

    NASA Technical Reports Server (NTRS)

    Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.

    1998-01-01

    The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.

  2. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  3. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series.

    PubMed

    Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel activity.

  4. Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.

    PubMed

    Zakrzewski, Martha; Proietti, Carla; Ellis, Jonathan J; Hasan, Shihab; Brion, Marie-Jo; Berger, Bernard; Krause, Lutz

    2017-03-01

    Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. The web-interface is accessible via http://cgenome.net/calypso/ . The software is programmed in Java, PERL and R and the source code is available from Zenodo ( https://zenodo.org/record/50931 ). The software is freely available for non-commercial users. l.krause@uq.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  5. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  6. After-hour Versus Daytime Shifts in Non-Operating Room Anesthesia Environments: National Distribution of Case Volume, Patient Characteristics, and Procedures.

    PubMed

    Gabriel, Rodney A; Burton, Brittany N; Tsai, Mitchell H; Ehrenfeld, Jesse M; Dutton, Richard P; Urman, Richard D

    2017-09-01

    The objective of this study was to characterize workload during all hours of the day in the non-operating room anesthesia (NORA) environment and identify what type of patients and procedures were more likely to occur during after-hours. By investigating data from the National Anesthesia Clinical Outcomes Registry, we characterized the total number of ongoing NORA cases per hour of the day (0 - 23 h). Results were presented as the mean hour and standard error (SE). Multivariable logistic regression was applied to assess the association of various patient, procedural, and facility characteristics with time of day (after-hours = 17:01-06:59 local time versus day-time). Included in this analysis, there were a total of 4,948,634 cases performed on non-holiday weekdays. The mean hour for ongoing cases for gastroenterology, cardiac, radiology and "other" were: 10.8 with standard error (SE) of 0.002, 11.5 (SE of 0.005), 11.2 (SE of 0.005), and 10.8 (SE of 0.002), respectively. Pairwise differences between means for each NORA specialty were all statistically significant (p < 0.0001). During after-hour shifts (4.3% of cases), patients with higher American Society of Anesthesiologists physical status classification scores had increased odds for undergoing a NORA procedure, while procedures that were more physiologically complex had decreased odds. With the increasing demand for NORA services, it is prudent that we fully understand the challenges of providing safe and efficient anesthetic services particularly in locations where fewer resources are available.

  7. Multivariable control altitude demonstration on the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.

    1979-01-01

    The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.

  8. Detecting subtle hydrochemical anomalies with multivariate statistics: an example from homogeneous groundwaters in the Great Artesian Basin, Australia

    NASA Astrophysics Data System (ADS)

    O'Shea, Bethany; Jankowski, Jerzy

    2006-12-01

    The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright

  9. Multiple Versus Single Set Validation of Multivariate Models to Avoid Mistakes.

    PubMed

    Harrington, Peter de Boves

    2018-01-02

    Validation of multivariate models is of current importance for a wide range of chemical applications. Although important, it is neglected. The common practice is to use a single external validation set for evaluation. This approach is deficient and may mislead investigators with results that are specific to the single validation set of data. In addition, no statistics are available regarding the precision of a derived figure of merit (FOM). A statistical approach using bootstrapped Latin partitions is advocated. This validation method makes an efficient use of the data because each object is used once for validation. It was reviewed a decade earlier but primarily for the optimization of chemometric models this review presents the reasons it should be used for generalized statistical validation. Average FOMs with confidence intervals are reported and powerful, matched-sample statistics may be applied for comparing models and methods. Examples demonstrate the problems with single validation sets.

  10. Comparison of 21-Gauge and 22-Gauge Aspiration Needle in Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

    PubMed Central

    Akulian, Jason; Lechtzin, Noah; Yasin, Faiza; Kamdar, Biren; Ernst, Armin; Ost, David E.; Ray, Cynthia; Greenhill, Sarah R.; Jimenez, Carlos A.; Filner, Joshua; Feller-Kopman, David

    2013-01-01

    Background: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive procedure originally performed using a 22-gauge (22G) needle. A recently introduced 21-gauge (21G) needle may improve the diagnostic yield and sample adequacy of EBUS-TBNA, but prior smaller studies have shown conflicting results. To our knowledge, this is the largest study undertaken to date to determine whether the 21G needle adds diagnostic benefit. Methods: We retrospectively evaluated the results of 1,299 patients from the American College of Chest Physicians Quality Improvement Registry, Education, and Evaluation (AQuIRE) Diagnostic Registry who underwent EBUS-TBNA between February 2009 and September 2010 at six centers throughout the United States. Data collection included patient demographics, sample adequacy, and diagnostic yield. Analysis consisted of univariate and multivariate hierarchical logistic regression comparing diagnostic yield and sample adequacy of EBUS-TBNA specimens by needle gauge. Results: A total of 1,235 patients met inclusion criteria. Sample adequacy was obtained in 94.9% of the 22G needle group and in 94.6% of the 21G needle group (P = .81). A diagnosis was made in 51.4% of the 22G and 51.3% of the 21G groups (P = .98). Multivariate hierarchical logistic regression showed no statistical difference in sample adequacy or diagnostic yield between the two groups. The presence of rapid onsite cytologic evaluation was associated with significantly fewer needle passes per procedure when using the 21G needle (P < .001). Conclusions: There is no difference in specimen adequacy or diagnostic yield between the 21G and 22G needle groups. EBUS-TBNA in conjunction with rapid onsite cytologic evaluation and a 21G needle is associated with fewer needle passes compared with a 22G needle. PMID:23632441

  11. Paraplegia-quadriplegia Independently Increases All Percutaneous Nephrolithotomy Complications: A Comparative Study Using the Modified Clavien System.

    PubMed

    Danawala, Zeeshan A; Singh, Dinesh

    2015-05-01

    To investigate the perioperative complication rates for paraplegic-quadriplegic patients (PQPs) undergoing percutaneous nephrolithotomy (PCNL) as compared with non-PQPs using a standardized method of complication reporting via the Clavien system. Two hundred thirteen consecutive PCNLs performed by a single surgeon were analyzed. There were 31 and 115 patients separated into PQP and non-PQP groups, respectively. Data collection included demographic and clinical factors, as well as perioperative and delayed complications. Complications were organized by the Clavien grade. All- and initial-procedure complications were analyzed. The rate of adverse events for each Clavien grade was calculated, and statistical comparisons were made. The relationship between PQP and complication severity was investigated using univariate and multivariate analyses. There were 38 and 43 initial-procedure complications in the PQP and non-PQP groups, respectively. The rate of adverse events was higher across the spectrum of Clavien grades for the PQP group, specifically grade 1 (48.4% vs 20.2%; P = .002), grade 2 (22.6% vs 5.3%; P = .004), grade 3b (12.9% vs 2.6%; P = .038), grade 4a (6.5% vs 0%), and grade 4b (9.7% vs 1.8%; P = .066). Approximately 51.6% and 31.5% of PQPs and non-PQPs experienced ≥ 1 complications, respectively (odds ratio = 2.34; P = .05). Multivariate analysis demonstrated paraplegia or quadriplegia status to be an independent risk factor for the development of perioperative complications after adjusting for confounding factors (odds ratio = 2.91; P = .040). PCNL complication rates are higher in PQPs compared with non-PQPs. This study is one of the first in PCNL to use a standardized reporting system to highlight high-risk individuals within the stone population. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data

    PubMed Central

    Keithley, Richard B.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Principal component regression has been used in the past to separate current contributions from different neuromodulators measured with in vivo fast-scan cyclic voltammetry. Traditionally, a percent cumulative variance approach has been used to determine the rank of the training set voltammetric matrix during model development, however this approach suffers from several disadvantages including the use of arbitrary percentages and the requirement of extreme precision of training sets. Here we propose that Malinowski’s F-test, a method based on a statistical analysis of the variance contained within the training set, can be used to improve factor selection for the analysis of in vivo fast-scan cyclic voltammetric data. These two methods of rank estimation were compared at all steps in the calibration protocol including the number of principal components retained, overall noise levels, model validation as determined using a residual analysis procedure, and predicted concentration information. By analyzing 119 training sets from two different laboratories amassed over several years, we were able to gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study how differences in factor selection propagate throughout the entire principal component regression analysis procedure. Visualizing cyclic voltammetric representations of the data contained in the retained and discarded principal components showed that using Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be more accurately removed. Malinowski’s F-test also improved the robustness of our criterion for judging multivariate model validity, even though signal-to-noise ratios of the data varied. In addition, pH change was the majority noise carrier of in vivo training sets while dopamine prediction was more sensitive to noise. PMID:20527815

  13. Understanding Preprocedure Patient Flow in IR.

    PubMed

    Zafar, Abdul Mueed; Suri, Rajeev; Nguyen, Tran Khanh; Petrash, Carson Cope; Fazal, Zanira

    2016-08-01

    To quantify preprocedural patient flow in interventional radiology (IR) and to identify potential contributors to preprocedural delays. An administrative dataset was used to compute time intervals required for various preprocedural patient-flow processes. These time intervals were compared across on-time/delayed cases and inpatient/outpatient cases by Mann-Whitney U test. Spearman ρ was used to assess any correlation of the rank of a procedure on a given day and the procedure duration to the preprocedure time. A linear-regression model of preprocedure time was used to further explore potential contributing factors. Any identified reason(s) for delay were collated. P < .05 was considered statistically significant. Of the total 1,091 cases, 65.8% (n = 718) were delayed. Significantly more outpatient cases started late compared with inpatient cases (81.4% vs 45.0%; P < .001, χ(2) test). The multivariate linear regression model showed outpatient status, length of delay in arrival, and longer procedure times to be significantly associated with longer preprocedure times. Late arrival of patients (65.9%), unavailability of physicians (18.4%), and unavailability of procedure room (13.0%) were the three most frequently identified reasons for delay. The delay was multifactorial in 29.6% of cases (n = 213). Objective measurement of preprocedural IR patient flow demonstrated considerable waste and highlighted high-yield areas of possible improvement. A data-driven approach may aid efficient delivery of IR care. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  14. Readmissions, unplanned emergency room visits, and surgical retreatment rates after anti-reflux procedures.

    PubMed

    Wang, Hsin-Hsiao S; Tejwani, Rohit; Wolf, Steven; Wiener, John S; Routh, Jonathan C

    2017-10-01

    The choice between endoscopic injection (EI) and ureteroneocystotomy (UNC) for surgical correction of vesicoureteral reflux (VUR) is controversial. To compare postoperative outcomes of EI vs UNC. This study reviewed linked inpatient (SID), ambulatory surgery (SASD), and emergency department (SEDD) data from five states in the United States (2007-10) to identify pediatric patients with primary VUR undergoing EI or UNC as an initial surgical intervention. Unplanned readmissions, additional procedures, and emergency room (ER) visits were extracted. Statistical analysis was performed using multivariate logistic regression using generalized estimating equation (GEE) to adjust for hospital-level clustering. The study identified 2556 UNC and 1997 EI procedures. Compared with patients undergoing EI, those who underwent UNC were more likely to be younger (4.6 vs 6.0 years, P < 0.001), male (30 vs 20%, P < 0.001), and publicly insured (34 vs 29%, P < 0.001). As shown in Summary Figure, compared with EI, UNC patients had lower rates of additional anti-reflux procedures within 12 months (25 (1.0) vs 121 (6.1%), P < 0.001), but a higher rate of 30-day and 90-day readmissions and ER visits. On multivariate analysis, patients treated by UNC remained at higher odds of being readmitted (OR = 4.45; 2.69 in 30 days; 90 days, P < 0.001) and to have postoperative ER visits (OR = 3.33; 2.26 in 30 days; 90 days, P < 0.001); however, EI had significantly higher odds of repeat anti-reflux procedures in the subsequent year (OR = 7.12, P < 0.001). Endoscopic injection constituted nearly half of initial anti-reflux procedures in children. However, patients treated with UNC had significantly lower odds of requiring re-treatment in the first year relative to those treated with EI. By contrast, patients treated with UNC had more than twice the odds of being readmitted or visiting an ER postoperatively. Although the available data were amongst the largest and most well validated, the major limitation was the retrospective nature of the administrative database. The practice setting may not be generalizable to states not included in the analysis. Postoperative readmissions and ER visits were uncommon after any surgical intervention for VUR, but were more common among children undergoing UNC. The EI patients had a more than seven-fold increased risk of surgical re-treatment within 1 year. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  15. The classification of secondary colorectal liver cancer in human biopsy samples using angular dispersive x-ray diffraction and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Theodorakou, Chrysoula; Farquharson, Michael J.

    2009-08-01

    The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.

  16. SOCR Motion Charts: An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    PubMed Central

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2011-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108

  17. A Descriptive Study of Individual and Cross-Cultural Differences in Statistics Anxiety

    ERIC Educational Resources Information Center

    Baloglu, Mustafa; Deniz, M. Engin; Kesici, Sahin

    2011-01-01

    The present study investigated individual and cross-cultural differences in statistics anxiety among 223 Turkish and 237 American college students. A 2 x 2 between-subjects factorial multivariate analysis of covariance (MANCOVA) was performed on the six dependent variables which are the six subscales of the Statistical Anxiety Rating Scale.…

  18. Comparison of measurement methods with a mixed effects procedure accounting for replicated evaluations (COM3PARE): method comparison algorithm implementation for head and neck IGRT positional verification.

    PubMed

    Roy, Anuradha; Fuller, Clifton D; Rosenthal, David I; Thomas, Charles R

    2015-08-28

    Comparison of imaging measurement devices in the absence of a gold-standard comparator remains a vexing problem; especially in scenarios where multiple, non-paired, replicated measurements occur, as in image-guided radiotherapy (IGRT). As the number of commercially available IGRT presents a challenge to determine whether different IGRT methods may be used interchangeably, an unmet need conceptually parsimonious and statistically robust method to evaluate the agreement between two methods with replicated observations. Consequently, we sought to determine, using an previously reported head and neck positional verification dataset, the feasibility and utility of a Comparison of Measurement Methods with the Mixed Effects Procedure Accounting for Replicated Evaluations (COM3PARE), a unified conceptual schema and analytic algorithm based upon Roy's linear mixed effects (LME) model with Kronecker product covariance structure in a doubly multivariate set-up, for IGRT method comparison. An anonymized dataset consisting of 100 paired coordinate (X/ measurements from a sequential series of head and neck cancer patients imaged near-simultaneously with cone beam CT (CBCT) and kilovoltage X-ray (KVX) imaging was used for model implementation. Software-suggested CBCT and KVX shifts for the lateral (X), vertical (Y) and longitudinal (Z) dimensions were evaluated for bias, inter-method (between-subject variation), intra-method (within-subject variation), and overall agreement using with a script implementing COM3PARE with the MIXED procedure of the statistical software package SAS (SAS Institute, Cary, NC, USA). COM3PARE showed statistically significant bias agreement and difference in inter-method between CBCT and KVX was observed in the Z-axis (both p - value<0.01). Intra-method and overall agreement differences were noted as statistically significant for both the X- and Z-axes (all p - value<0.01). Using pre-specified criteria, based on intra-method agreement, CBCT was deemed preferable for X-axis positional verification, with KVX preferred for superoinferior alignment. The COM3PARE methodology was validated as feasible and useful in this pilot head and neck cancer positional verification dataset. COM3PARE represents a flexible and robust standardized analytic methodology for IGRT comparison. The implemented SAS script is included to encourage other groups to implement COM3PARE in other anatomic sites or IGRT platforms.

  19. Resection of isolated pelvic recurrences after colorectal surgery: long-term results and predictors of improved clinical outcome.

    PubMed

    Henry, Leonard R; Sigurdson, Elin; Ross, Eric A; Lee, John S; Watson, James C; Cheng, Jonathan D; Freedman, Gary M; Konski, Andre; Hoffman, John P

    2007-07-01

    Recurrence in the pelvis after resection of a rectal or rectosigmoid cancer presents a dilemma. Resection offers the only reasonable probability for cure, but at the cost of perioperative morbidity and potential mortality. Clinical decision making remains difficult. Patients resected with curative intent for isolated pelvic recurrences after curative colorectal surgery from 1988 through 2003 were reviewed retrospectively. Clinical and pathologic factors, salvage operations, and complications were recorded. The primary measured outcome was overall survival. Univariate and multivariate analyses were conducted to identify prognostic factors of improved outcome. Ninety patients underwent an attempt at curative resection of a pelvic recurrence with median follow-up of 31 months. Complications occurred in 53% of patients. Operative mortality was 4.4% (4 of 90). Median overall survival was 38 months, and estimated 5-year survival was 40%. A total of 51 of 86 patients had known recurrences (15 local, 16 distant, 20 both). Multivariate analysis revealed that preoperative carcinoembryonic antigen level and final margin status were statistically significant predictors of outcome. The resection of pelvic recurrences after colorectal surgery for cancer can be performed with low mortality and good long-term outcome; however, morbidity from such procedures is high. Low preoperative carcinoembryonic antigen and negative margin of resection predict improved survival.

  20. Resection of isolated pelvic recurrences after colorectal surgery: long-term results and predictors of improved clinical outcome.

    PubMed

    Henry, Leonard R; Sigurdson, Elin; Ross, Eric A; Lee, John S; Watson, James C; Cheng, Jonathan D; Freedman, Gary M; Konski, Andre; Hoffman, John P

    2007-03-01

    Recurrence in the pelvis after resection of a rectal or rectosigmoid cancer presents a dilemma. Resection offers the only reasonable probability for cure, but at the cost of marked perioperative morbidity and potential mortality. Clinical decision making remains difficult. Patients who underwent resection with curative intent for isolated pelvic recurrences after curative colorectal surgery from 1988 through 2003 were reviewed retrospectively. Clinical and pathological factors, salvage operations, and complications were recorded. The primary measured outcome was overall survival. Univariate and multivariate analyses were conducted to identify prognostic factors of improved outcome. Ninety patients underwent an attempt at curative resection of a pelvic recurrence; median follow-up was 31 months. Complications occurred in 53% of patients. Operative mortality occurred in 4 (4.4%) of 90 patients. Median overall survival was 38 months, and estimated 5-year survival was 40%. A total of 51 of 86 patients had known recurrences (15 local, 16 distant, 20 both). Multivariate analysis revealed that preoperative carcinoembryonic antigen level and final margin status were statistically significant predictors of outcome. The resection of pelvic recurrences after colorectal surgery for cancer can be performed with low mortality and good long-term outcome; however, morbidity from such procedures is high. Low preoperative carcinoembryonic antigen and negative margin of resection predict improved survival.

  1. Simultaneous determination of potassium guaiacolsulfonate, guaifenesin, diphenhydramine HCl and carbetapentane citrate in syrups by using HPLC-DAD coupled with partial least squares multivariate calibration.

    PubMed

    Dönmez, Ozlem Aksu; Aşçi, Bürge; Bozdoğan, Abdürrezzak; Sungur, Sidika

    2011-02-15

    A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Dynamics of the development of multiple follicles by early versus late hCG administration in ART program.

    PubMed

    Falagario, Maddalena; Trerotoli, Paolo; Chincoli, Annarosa; Cobuzzi, Isabella; Vacca, Margherita P; Falagario, Doriana; Nardelli, Claudia; Depalo, Raffaella

    2017-02-01

    To evaluate, in patients stimulated with recombinant FSH and GnRH antagonists, whether triggering the final maturation of oocytes affects IVF outcomes. Five hundred and six IVF procedures were divided into three groups according to the timing of hCG administration: when at least 2 follicles reached the diameter of 17 mm, at least 2 follicles reached 18 mm and at least 2 follicles reached 20 mm. The main outcome was the number of mature oocyte that was the dependent variable of a multivariate model whose independents were, age, AFC, hCG timing, E2 levels at hCG day, number of follicles in different categories of dimension. Secondary endpoints were to compare fertilization, implantation and pregnancy rates in a multilevel multivariate model whose covariates were age, BMI, AFC, embryo quality and cause of infertility. Timing did not result a statistically significant factor influencing the number of oocytes collected, which was influenced by age, AFC, number of follicles between 12.1 and 15.9 mm and E2 levels. Implantation rate and pregnancy rate appear to be affected only by embryo quality. The number of oocytes collected and the probability of pregnancy are not associated with the time of hCG administration.

  3. A New Approach in Generating Meteorological Forecasts for Ensemble Streamflow Forecasting using Multivariate Functions

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Madadgar, S.; Moradkhani, H.

    2014-12-01

    The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).

  4. Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.

    PubMed

    Sztepanacz, Jacqueline L; Blows, Mark W

    2017-07-01

    The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.

  5. Classification of Malaysia aromatic rice using multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-05-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  6. Iterative procedures for space shuttle main engine performance models

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1989-01-01

    Performance models of the Space Shuttle Main Engine (SSME) contain iterative strategies for determining approximate solutions to nonlinear equations reflecting fundamental mass, energy, and pressure balances within engine flow systems. Both univariate and multivariate Newton-Raphson algorithms are employed in the current version of the engine Test Information Program (TIP). Computational efficiency and reliability of these procedures is examined. A modified trust region form of the multivariate Newton-Raphson method is implemented and shown to be superior for off nominal engine performance predictions. A heuristic form of Broyden's Rank One method is also tested and favorable results based on this algorithm are presented.

  7. Multivariate geomorphic analysis of forest streams: Implications for assessment of land use impacts on channel condition

    Treesearch

    Richard. D. Wood-Smith; John M. Buffington

    1996-01-01

    Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...

  8. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  9. Preliminary Multi-Variable Parametric Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.

  10. Application and validation of Cox regression models in a single-center series of double kidney transplantation.

    PubMed

    Santori, G; Fontana, I; Bertocchi, M; Gasloli, G; Magoni Rossi, A; Tagliamacco, A; Barocci, S; Nocera, A; Valente, U

    2010-05-01

    A useful approach to reduce the number of discarded marginal kidneys and to increase the nephron mass is double kidney transplantation (DKT). In this study, we retrospectively evaluated the potential predictors for patient and graft survival in a single-center series of 59 DKT procedures performed between April 21, 1999, and September 21, 2008. The kidney recipients of mean age 63.27 +/- 5.17 years included 16 women (27%) and 43 men (73%). The donors of mean age 69.54 +/- 7.48 years included 32 women (54%) and 27 men (46%). The mean posttransplant dialysis time was 2.37 +/- 3.61 days. The mean hospitalization was 20.12 +/- 13.65 days. Average serum creatinine (SCr) at discharge was 1.5 +/- 0.59 mg/dL. In view of the limited numbers of recipient deaths (n = 4) and graft losses (n = 8) that occurred in our series, the proportional hazards assumption for each Cox regression model with P < .05 was tested by using correlation coefficients between transformed survival times and scaled Schoenfeld residuals, and checked with smoothed plots of Schoenfeld residuals. For patient survival, the variables that reached statistical significance were donor SCr (P = .007), donor creatinine cleararance (P = .023), and recipient age (P = .047). Each significant model passed the Schoenfeld test. By entering these variables into a multivariate Cox model for patient survival, no further significance was observed. In the univariate Cox models performed for graft survival, statistical significance was noted for donor SCr (P = .027), SCr 3 months post-DKT (P = .043), and SCr 6 months post-DKT (P = .017). All significant univariate models for graft survival passed the Schoenfeld test. A final multivariate model retained SCr at 6 months (beta = 1.746, P = .042) and donor SCr (beta = .767, P = .090). In our analysis, SCr at 6 months seemed to emerge from both univariate and multivariate Cox models as a potential predictor of graft survival among DKT. Multicenter studies with larger recipient populations and more graft losses should be performed to confirm our findings. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Facilitating the Transition from Bright to Dim Environments

    DTIC Science & Technology

    2016-03-04

    For the parametric data, a multivariate ANOVA was used in determining the systematic presence of any statistically significant performance differences...performed. All significance levels were p < 0.05, and statistical analyses were performed with the Statistical Package for Social Sciences ( SPSS ...1950. Age changes in rate and level of visual dark adaptation. Journal of Applied Physiology, 2, 407–411. Field, A. 2009. Discovering statistics

  12. 75 FR 38871 - Proposed Collection; Comment Request for Revenue Procedure 2004-29

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... comments concerning Revenue Procedure 2004-29, Statistical Sampling in Sec. 274 Context. DATES: Written... Internet, at [email protected] . SUPPLEMENTARY INFORMATION: Title: Statistical Sampling in Sec...: Revenue Procedure 2004-29 prescribes the statistical sampling methodology by which taxpayers under...

  13. Super-delta: a new differential gene expression analysis procedure with robust data normalization.

    PubMed

    Liu, Yuhang; Zhang, Jinfeng; Qiu, Xing

    2017-12-21

    Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. As a new pipeline, super-delta provides new insights to the area of differential gene expression analysis. Solid theoretical foundation supports its asymptotic unbiasedness and technical noise-free properties. Implementation on real and simulated datasets demonstrates its decent performance compared with state-of-art procedures. It also has the potential of expansion to be incorporated with other data type and/or more general between-group comparison problems.

  14. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula

    PubMed Central

    Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.

    2016-01-01

    Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095

  15. 75 FR 53738 - Proposed Collection; Comment Request for Rev. Proc. 2007-35

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... Revenue Procedure Revenue Procedure 2007-35, Statistical Sampling for purposes of Section 199. DATES... through the Internet, at [email protected] . SUPPLEMENTARY INFORMATION: Title: Statistical Sampling...: This revenue procedure provides for determining when statistical sampling may be used in purposes of...

  16. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  17. Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.

  18. Predicting trauma patient mortality: ICD [or ICD-10-AM] versus AIS based approaches.

    PubMed

    Willis, Cameron D; Gabbe, Belinda J; Jolley, Damien; Harrison, James E; Cameron, Peter A

    2010-11-01

    The International Classification of Diseases Injury Severity Score (ICISS) has been proposed as an International Classification of Diseases (ICD)-10-based alternative to mortality prediction tools that use Abbreviated Injury Scale (AIS) data, including the Trauma and Injury Severity Score (TRISS). To date, studies have not examined the performance of ICISS using Australian trauma registry data. This study aimed to compare the performance of ICISS with other mortality prediction tools in an Australian trauma registry. This was a retrospective review of prospectively collected data from the Victorian State Trauma Registry. A training dataset was created for model development and a validation dataset for evaluation. The multiplicative ICISS model was compared with a worst injury ICISS approach, Victorian TRISS (V-TRISS, using local coefficients), maximum AIS severity and a multivariable model including ICD-10-AM codes as predictors. Models were investigated for discrimination (C-statistic) and calibration (Hosmer-Lemeshow statistic). The multivariable approach had the highest level of discrimination (C-statistic 0.90) and calibration (H-L 7.65, P= 0.468). Worst injury ICISS, V-TRISS and maximum AIS had similar performance. The multiplicative ICISS produced the lowest level of discrimination (C-statistic 0.80) and poorest calibration (H-L 50.23, P < 0.001). The performance of ICISS may be affected by the data used to develop estimates, the ICD version employed, the methods for deriving estimates and the inclusion of covariates. In this analysis, a multivariable approach using ICD-10-AM codes was the best-performing method. A multivariable ICISS approach may therefore be a useful alternative to AIS-based methods and may have comparable predictive performance to locally derived TRISS models. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  19. NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES

    PubMed Central

    He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.

    2017-01-01

    Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225

  20. Reexamining Sample Size Requirements for Multivariate, Abundance-Based Community Research: When Resources are Limited, the Research Does Not Have to Be.

    PubMed

    Forcino, Frank L; Leighton, Lindsey R; Twerdy, Pamela; Cahill, James F

    2015-01-01

    Community ecologists commonly perform multivariate techniques (e.g., ordination, cluster analysis) to assess patterns and gradients of taxonomic variation. A critical requirement for a meaningful statistical analysis is accurate information on the taxa found within an ecological sample. However, oversampling (too many individuals counted per sample) also comes at a cost, particularly for ecological systems in which identification and quantification is substantially more resource consuming than the field expedition itself. In such systems, an increasingly larger sample size will eventually result in diminishing returns in improving any pattern or gradient revealed by the data, but will also lead to continually increasing costs. Here, we examine 396 datasets: 44 previously published and 352 created datasets. Using meta-analytic and simulation-based approaches, the research within the present paper seeks (1) to determine minimal sample sizes required to produce robust multivariate statistical results when conducting abundance-based, community ecology research. Furthermore, we seek (2) to determine the dataset parameters (i.e., evenness, number of taxa, number of samples) that require larger sample sizes, regardless of resource availability. We found that in the 44 previously published and the 220 created datasets with randomly chosen abundances, a conservative estimate of a sample size of 58 produced the same multivariate results as all larger sample sizes. However, this minimal number varies as a function of evenness, where increased evenness resulted in increased minimal sample sizes. Sample sizes as small as 58 individuals are sufficient for a broad range of multivariate abundance-based research. In cases when resource availability is the limiting factor for conducting a project (e.g., small university, time to conduct the research project), statistically viable results can still be obtained with less of an investment.

  1. Attitudes toward Advanced and Multivariate Statistics When Using Computers.

    ERIC Educational Resources Information Center

    Kennedy, Robert L.; McCallister, Corliss Jean

    This study investigated the attitudes toward statistics of graduate students who studied advanced statistics in a course in which the focus of instruction was the use of a computer program in class. The use of the program made it possible to provide an individualized, self-paced, student-centered, and activity-based course. The three sections…

  2. Statistics Anxiety and Worry: The Roles of Worry Beliefs, Negative Problem Orientation, and Cognitive Avoidance

    ERIC Educational Resources Information Center

    Williams, Amanda S.

    2015-01-01

    Statistics anxiety is a common problem for graduate students. This study explores the multivariate relationship between a set of worry-related variables and six types of statistics anxiety. Canonical correlation analysis indicates a significant relationship between the two sets of variables. Findings suggest that students who are more intolerant…

  3. Data evaluation of trace elements determined in Nigerian coal using cluster procedures.

    PubMed

    Ewa, I O B

    2004-05-01

    Large data-sets of elements determined by instrumental neutron activation analysis (INAA) require meaningful interpretation in order to determine the pattern of their existence in host matrices. This could be achieved using cluster procedures. Element abundances (Al, As, Ba, Br, Ca, Ce, Cs, Dy, Eu, Fe, Ga, Gd, Hf, K, La, Lu, Mg, Mn, Na, O, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, V, Yb, Zn and Zr) of prepared and run-of-mine coals from eight principal mines (Onyeama, Ogbete, Enugu, Gombe, Asaba-Ugwashi, Okaba, Afikpo and Lafia ) in Nigeria were determined by INAA. Quality control of the measurements was assured by the re-determination of a standard reference material, NIST 1632a. These data-sets were then tested for multi-variate statistics using METHOD = SINGLE in the cluster procedure. The computer-assisted package SAS was used to generate the dendrograms while the algorithm used was stored Euclidean distances. The results showed a recognition pattern, useful for the interpretation of coalification histories and the prediction of fuel ranking for Nigerian coals. High segregation of coal fly ash was observed, while metallurgical coal grouped together with high-ranking coals of Okaba, Enugu and Obi (Lafia). Further work revealed some of these coals as having high gross calorific value (7908 kcal kg(-1) for Enugu coal; 7200 kcal kg(-1) for Okaba) and low sulphur thereby making them efficient fuel materials.

  4. Finding Groups Using Model-based Cluster Analysis: Heterogeneous Emotional Self-regulatory Processes and Heavy Alcohol Use Risk

    PubMed Central

    Mun, Eun-Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2010-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of non-nested models using the Bayesian Information Criterion (BIC) to compare multiple models and identify the optimum number of clusters. The current study clustered 36 young men and women based on their baseline heart rate (HR) and HR variability (HRV), chronic alcohol use, and reasons for drinking. Two cluster groups were identified and labeled High Alcohol Risk and Normative groups. Compared to the Normative group, individuals in the High Alcohol Risk group had higher levels of alcohol use and more strongly endorsed disinhibition and suppression reasons for use. The High Alcohol Risk group showed significant HRV changes in response to positive and negative emotional and appetitive picture cues, compared to neutral cues. In contrast, the Normative group showed a significant HRV change only to negative cues. Findings suggest that the individuals with autonomic self-regulatory difficulties may be more susceptible to heavy alcohol use and use alcohol for emotional regulation. PMID:18331138

  5. Template matching for auditing hospital cost and quality.

    PubMed

    Silber, Jeffrey H; Rosenbaum, Paul R; Ross, Richard N; Ludwig, Justin M; Wang, Wei; Niknam, Bijan A; Mukherjee, Nabanita; Saynisch, Philip A; Even-Shoshan, Orit; Kelz, Rachel R; Fleisher, Lee A

    2014-10-01

    Develop an improved method for auditing hospital cost and quality. Medicare claims in general, gynecologic and urologic surgery, and orthopedics from Illinois, Texas, and New York between 2004 and 2006. A template of 300 representative patients was constructed and then used to match 300 patients at hospitals that had a minimum of 500 patients over a 3-year study period. From each of 217 hospitals we chose 300 patients most resembling the template using multivariate matching. The matching algorithm found close matches on procedures and patient characteristics, far more balanced than measured covariates would be in a randomized clinical trial. These matched samples displayed little to no differences across hospitals in common patient characteristics yet found large and statistically significant hospital variation in mortality, complications, failure-to-rescue, readmissions, length of stay, ICU days, cost, and surgical procedure length. Similar patients at different hospitals had substantially different outcomes. The template-matched sample can produce fair, directly standardized audits that evaluate hospitals on patients with similar characteristics, thereby making benchmarking more believable. Through examining matched samples of individual patients, administrators can better detect poor performance at their hospitals and better understand why these problems are occurring. © Health Research and Educational Trust.

  6. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Yueh, Herng-Aung; Han, Hsiu C.; Lim, Harold H.; Arnold, David V.

    1990-01-01

    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images.

  7. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  8. Interfaces between statistical analysis packages and the ESRI geographic information system

    NASA Technical Reports Server (NTRS)

    Masuoka, E.

    1980-01-01

    Interfaces between ESRI's geographic information system (GIS) data files and real valued data files written to facilitate statistical analysis and display of spatially referenced multivariable data are described. An example of data analysis which utilized the GIS and the statistical analysis system is presented to illustrate the utility of combining the analytic capability of a statistical package with the data management and display features of the GIS.

  9. Single-variant and multi-variant trend tests for genetic association with next-generation sequencing that are robust to sequencing error.

    PubMed

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek

    2012-01-01

    As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci. Copyright © 2013 S. Karger AG, Basel.

  10. Single variant and multi-variant trend tests for genetic association with next generation sequencing that are robust to sequencing error

    PubMed Central

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Andrew; Musolf, Anthony; Matise, Tara C.; Finch, Stephen J.; Gordon, Derek

    2013-01-01

    As with any new technology, next generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model, based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to that data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p-value, no matter how many loci. PMID:23594495

  11. Statistical methodology for the analysis of dye-switch microarray experiments

    PubMed Central

    Mary-Huard, Tristan; Aubert, Julie; Mansouri-Attia, Nadera; Sandra, Olivier; Daudin, Jean-Jacques

    2008-01-01

    Background In individually dye-balanced microarray designs, each biological sample is hybridized on two different slides, once with Cy3 and once with Cy5. While this strategy ensures an automatic correction of the gene-specific labelling bias, it also induces dependencies between log-ratio measurements that must be taken into account in the statistical analysis. Results We present two original statistical procedures for the statistical analysis of individually balanced designs. These procedures are compared with the usual ML and REML mixed model procedures proposed in most statistical toolboxes, on both simulated and real data. Conclusion The UP procedure we propose as an alternative to usual mixed model procedures is more efficient and significantly faster to compute. This result provides some useful guidelines for the analysis of complex designs. PMID:18271965

  12. Assessing Principal Component Regression Prediction of Neurochemicals Detected with Fast-Scan Cyclic Voltammetry

    PubMed Central

    2011-01-01

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586

  13. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    PubMed

    Keithley, Richard B; Wightman, R Mark

    2011-06-07

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.

  14. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

    Treesearch

    Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave

    2014-01-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...

  15. Departure from Normality in Multivariate Normative Comparison: The Cramer Alternative for Hotelling's "T[squared]"

    ERIC Educational Resources Information Center

    Grasman, Raoul P. P. P.; Huizenga, Hilde M.; Geurts, Hilde M.

    2010-01-01

    Crawford and Howell (1998) have pointed out that the common practice of z-score inference on cognitive disability is inappropriate if a patient's performance on a task is compared with relatively few typical control individuals. Appropriate univariate and multivariate statistical tests have been proposed for these studies, but these are only valid…

  16. Applied statistics in agricultural, biological, and environmental sciences.

    USDA-ARS?s Scientific Manuscript database

    Agronomic research often involves measurement and collection of multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate statistical methods encompass the simultaneous analysis of all random variables measured on each experimental or s...

  17. Circum-Arctic petroleum systems identified using decision-tree chemometrics

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.; Gautier, D.L.

    2007-01-01

    Source- and age-related biomarker and isotopic data were measured for more than 1000 crude oil samples from wells and seeps collected above approximately 55??N latitude. A unique, multitiered chemometric (multivariate statistical) decision tree was created that allowed automated classification of 31 genetically distinct circumArctic oil families based on a training set of 622 oil samples. The method, which we call decision-tree chemometrics, uses principal components analysis and multiple tiers of K-nearest neighbor and SIMCA (soft independent modeling of class analogy) models to classify and assign confidence limits for newly acquired oil samples and source rock extracts. Geochemical data for each oil sample were also used to infer the age, lithology, organic matter input, depositional environment, and identity of its source rock. These results demonstrate the value of large petroleum databases where all samples were analyzed using the same procedures and instrumentation. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  18. The relationship between volatile sulphur compounds, tongue coating and periodontal disease.

    PubMed

    Calil, C; Liberato, F L; Pereira, A C; de Castro Meneghim, M; Goodson, J M; Groppo, F C

    2009-11-01

    The purpose of the present study was to observe the casual levels of volatile sulphur compounds (VSC) in volunteers with different clinical scores of tongue coating, periodontal pockets depth and Gingival Bleeding Index. Seventy-two subjects who attended for the first time at the dental clinic of the University were randomly selected for intra-oral and periodontal examinations. Systemic and dental histories were also obtained. The subjects were unaware of all procedures. The level of VSC was assessed by using a portable sulphide monitor (Halimeter; Interscan Co., Chatsworth, CA, USA). High tongue coating levels were related with more VSC counts (multivariate anova, P = 0.01). No statistically significant relation (multiple linear regression, P > 0.05) was observed among the VSC levels considering age, bleeding and periodontal pockets sites (depth > 4 mm). We concluded that the tongue coating was one of the main factors influencing the VSC levels.

  19. Differentiating clinical groups using the serial color-word test (S-CWT).

    PubMed

    Hentschel, Uwe; Rubino, I Alex; Bijleveld, Catrien

    2011-04-01

    The present study attempted to differentiate 11 diagnostic groups by means of the Serial Color-Word Test (S-CWT), using multivariate discriminant analysis. Two alternative scoring systems of the S-CWT were outlined. Asample of 514 individuals who had clinical diagnoses of various types and 397 controls who had no diagnostic findings comprised the sample. The first discriminant analysis failed to differentiate the groups adequately. The groups were consequently reduced to four (schizophrenia, bipolar disorders, temporo-mandibular joint pain dysfunction syndrome, and eating disturbances), which gave better reclassification findings for a clinical application of the test. This classification gave over 55% correct assignments. The final four groups had a statistically significant discrimination on the test, which remained stable also in a bootstrap procedure. Implications for treatment indications and outcomes as well as strategies for further studies using the S-CWT are discussed.

  20. Abdominoplasty: Risk Factors, Complication Rates, and Safety of Combined Procedures.

    PubMed

    Winocour, Julian; Gupta, Varun; Ramirez, J Roberto; Shack, R Bruce; Grotting, James C; Higdon, K Kye

    2015-11-01

    Among aesthetic surgery procedures, abdominoplasty is associated with a higher complication rate, but previous studies are limited by small sample sizes or single-institution experience. A cohort of patients who underwent abdominoplasty between 2008 and 2013 was identified from the CosmetAssure database. Major complications were recorded. Univariate and multivariate analysis was performed evaluating risk factors, including age, smoking, body mass index, sex, diabetes, type of surgical facility, and combined procedures. The authors identified 25,478 abdominoplasties from 183,914 procedures in the database. Of these, 8,975 patients had abdominoplasty alone and 16,503 underwent additional procedures. The number of complications recorded was 1,012 (4.0 percent overall rate versus 1.4 percent in other aesthetic surgery procedures). Of these, 31.5 percent were hematomas, 27.2 percent were infections and 20.2 percent were suspected or confirmed venous thromboembolism. On multivariate analysis, significant risk factors (p < 0.05) included male sex (relative risk, 1.8), age 55 years or older (1.4), body mass index greater than or equal to 30 (1.3), multiple procedures (1.5), and procedure performance in a hospital or surgical center versus office-based surgical suite (1.6). Combined procedures increased the risk of complication (abdominoplasty alone, 3.1 percent; with liposuction, 3.8 percent; breast procedure, 4.3 percent; liposuction and breast procedure, 4.6 percent; body-contouring procedure, 6.8 percent; liposuction and body-contouring procedure, 10.4 percent). Abdominoplasty is associated with a higher complication rate compared with other aesthetic procedures. Combined procedures can significantly increase complication rates and should be considered carefully in higher risk patients. Risk, II.

  1. A reply to Zigler and Seitz.

    PubMed

    Neman, R

    1975-03-01

    The Zigler and Seitz (1975) critique was carefully examined with respect to the conclusions of the Neman et al. (1975) study. Particular attention was given to the following questions: (a) did experimenter bias or commitment account for the results, (b) were unreliable and invalid psychometric instruments used, (c) were the statistical analyses insufficient or incorrect, (d) did the results reflect no more than the operation of chance, and (e) were the results biased by artifactually inflated profile scores. Experimenter bias and commitment were shown to be insufficient to account for the results; a further review of Buros (1972) showed that there was no need for apprehension about the testing instruments; the statistical analyses were shown to exceed prevailing standards for research reporting; the results were shown to reflect valid findings at the .05 probability level; and the Neman et al. (1975) results for the profile measure were equally significant using either "raw" neurological scores or "scales" neurological age scores. Zigler, Seitz, and I agreed on the needs for (a) using multivariate analyses, where applicable, in studies having more than one dependent variable; (b) defining the population for which sensorimotor training procedures may be appropriately prescribed; and (c) validating the profile measure as a tool to assess neurological disorganization.

  2. The same analysis approach: Practical protection against the pitfalls of novel neuroimaging analysis methods.

    PubMed

    Görgen, Kai; Hebart, Martin N; Allefeld, Carsten; Haynes, John-Dylan

    2017-12-27

    Standard neuroimaging data analysis based on traditional principles of experimental design, modelling, and statistical inference is increasingly complemented by novel analysis methods, driven e.g. by machine learning methods. While these novel approaches provide new insights into neuroimaging data, they often have unexpected properties, generating a growing literature on possible pitfalls. We propose to meet this challenge by adopting a habit of systematic testing of experimental design, analysis procedures, and statistical inference. Specifically, we suggest to apply the analysis method used for experimental data also to aspects of the experimental design, simulated confounds, simulated null data, and control data. We stress the importance of keeping the analysis method the same in main and test analyses, because only this way possible confounds and unexpected properties can be reliably detected and avoided. We describe and discuss this Same Analysis Approach in detail, and demonstrate it in two worked examples using multivariate decoding. With these examples, we reveal two sources of error: A mismatch between counterbalancing (crossover designs) and cross-validation which leads to systematic below-chance accuracies, and linear decoding of a nonlinear effect, a difference in variance. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design.

    PubMed

    Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup

    2010-10-01

    We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Multivariate model of female black bear habitat use for a Geographic Information System

    USGS Publications Warehouse

    Clark, Joseph D.; Dunn, James E.; Smith, Kimberly G.

    1993-01-01

    Simple univariate statistical techniques may not adequately assess the multidimensional nature of habitats used by wildlife. Thus, we developed a multivariate method to model habitat-use potential using a set of female black bear (Ursus americanus) radio locations and habitat data consisting of forest cover type, elevation, slope, aspect, distance to roads, distance to streams, and forest cover type diversity score in the Ozark Mountains of Arkansas. The model is based on the Mahalanobis distance statistic coupled with Geographic Information System (GIS) technology. That statistic is a measure of dissimilarity and represents a standardized squared distance between a set of sample variates and an ideal based on the mean of variates associated with animal observations. Calculations were made with the GIS to produce a map containing Mahalanobis distance values within each cell on a 60- × 60-m grid. The model identified areas of high habitat use potential that could not otherwise be identified by independent perusal of any single map layer. This technique avoids many pitfalls that commonly affect typical multivariate analyses of habitat use and is a useful tool for habitat manipulation or mitigation to favor terrestrial vertebrates that use habitats on a landscape scale.

  5. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  6. Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques

    NASA Astrophysics Data System (ADS)

    Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein

    2017-10-01

    The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.

  7. Neuroanatomical morphometric characterization of sex differences in youth using statistical learning.

    PubMed

    Sepehrband, Farshid; Lynch, Kirsten M; Cabeen, Ryan P; Gonzalez-Zacarias, Clio; Zhao, Lu; D'Arcy, Mike; Kesselman, Carl; Herting, Megan M; Dinov, Ivo D; Toga, Arthur W; Clark, Kristi A

    2018-05-15

    Exploring neuroanatomical sex differences using a multivariate statistical learning approach can yield insights that cannot be derived with univariate analysis. While gross differences in total brain volume are well-established, uncovering the more subtle, regional sex-related differences in neuroanatomy requires a multivariate approach that can accurately model spatial complexity as well as the interactions between neuroanatomical features. Here, we developed a multivariate statistical learning model using a support vector machine (SVM) classifier to predict sex from MRI-derived regional neuroanatomical features from a single-site study of 967 healthy youth from the Philadelphia Neurodevelopmental Cohort (PNC). Then, we validated the multivariate model on an independent dataset of 682 healthy youth from the multi-site Pediatric Imaging, Neurocognition and Genetics (PING) cohort study. The trained model exhibited an 83% cross-validated prediction accuracy, and correctly predicted the sex of 77% of the subjects from the independent multi-site dataset. Results showed that cortical thickness of the middle occipital lobes and the angular gyri are major predictors of sex. Results also demonstrated the inferential benefits of going beyond classical regression approaches to capture the interactions among brain features in order to better characterize sex differences in male and female youths. We also identified specific cortical morphological measures and parcellation techniques, such as cortical thickness as derived from the Destrieux atlas, that are better able to discriminate between males and females in comparison to other brain atlases (Desikan-Killiany, Brodmann and subcortical atlases). Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Multivariate Statistical Approach Applied to Sediment Source Tracking Through Quantification and Mineral Identification, Cheyenne River, South Dakota

    NASA Astrophysics Data System (ADS)

    Valder, J.; Kenner, S.; Long, A.

    2008-12-01

    Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.

  9. MANCOVA for one way classification with homogeneity of regression coefficient vectors

    NASA Astrophysics Data System (ADS)

    Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.

    2017-11-01

    The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.

  10. Robotic partial nephrectomy shortens warm ischemia time, reducing suturing time kinetics even for an experienced laparoscopic surgeon: a comparative analysis.

    PubMed

    Faria, Eliney F; Caputo, Peter A; Wood, Christopher G; Karam, Jose A; Nogueras-González, Graciela M; Matin, Surena F

    2014-02-01

    Laparoscopic and robotic partial nephrectomy (LPN and RPN) are strongly related to influence of tumor complexity and learning curve. We analyzed a consecutive experience between RPN and LPN to discern if warm ischemia time (WIT) is in fact improved while accounting for these two confounding variables and if so by which particular aspect of WIT. This is a retrospective analysis of consecutive procedures performed by a single surgeon between 2002-2008 (LPN) and 2008-2012 (RPN). Specifically, individual steps, including tumor excision, suturing of intrarenal defect, and parenchyma, were recorded at the time of surgery. Multivariate and univariate analyzes were used to evaluate influence of learning curve, tumor complexity, and time kinetics of individual steps during WIT, to determine their influence in WIT. Additionally, we considered the effect of RPN on the learning curve. A total of 146 LPNs and 137 RPNs were included. Considering renal function, WIT, suturing time, renorrhaphy time were found statistically significant differences in favor of RPN (p < 0.05). In the univariate analysis, surgical procedure, learning curve, clinical tumor size, and RENAL nephrometry score were statistically significant predictors for WIT (p < 0.05). RPN decreased the WIT on average by approximately 7 min compared to LPN even when adjusting for learning curve, tumor complexity, and both together (p < 0.001). We found RPN was associated with a shorter WIT when controlling for influence of the learning curve and tumor complexity. The time required for tumor excision was not shortened but the time required for suturing steps was significantly shortened.

  11. Engineering Students Designing a Statistical Procedure for Quantifying Variability

    ERIC Educational Resources Information Center

    Hjalmarson, Margret A.

    2007-01-01

    The study examined first-year engineering students' responses to a statistics task that asked them to generate a procedure for quantifying variability in a data set from an engineering context. Teams used technological tools to perform computations, and their final product was a ranking procedure. The students could use any statistical measures,…

  12. A new multivariate zero-adjusted Poisson model with applications to biomedicine.

    PubMed

    Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen

    2018-05-25

    Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Noncentral Chi-Square versus Normal Distributions in Describing the Likelihood Ratio Statistic: The Univariate Case and Its Multivariate Implication

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai

    2008-01-01

    In the literature of mean and covariance structure analysis, noncentral chi-square distribution is commonly used to describe the behavior of the likelihood ratio (LR) statistic under alternative hypothesis. Due to the inaccessibility of the rather technical literature for the distribution of the LR statistic, it is widely believed that the…

  14. Some Tests of Randomness with Applications

    DTIC Science & Technology

    1981-02-01

    freedom. For further details, the reader is referred to Gnanadesikan (1977, p. 169) wherein other relevant tests are also given, Graphical tests, as...sample from a gamma distri- bution. J. Am. Statist. Assoc. 71, 480-7. Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate

  15. Statistical polarization in greenhouse gas emissions: Theory and evidence.

    PubMed

    Remuzgo, Lorena; Trueba, Carmen

    2017-11-01

    The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Quantitative investigation of inappropriate regression model construction and the importance of medical statistics experts in observational medical research: a cross-sectional study.

    PubMed

    Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka

    2018-05-05

    To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.

    PubMed

    Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G

    2017-03-01

    We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  18. A survey of variable selection methods in two Chinese epidemiology journals

    PubMed Central

    2010-01-01

    Background Although much has been written on developing better procedures for variable selection, there is little research on how it is practiced in actual studies. This review surveys the variable selection methods reported in two high-ranking Chinese epidemiology journals. Methods Articles published in 2004, 2006, and 2008 in the Chinese Journal of Epidemiology and the Chinese Journal of Preventive Medicine were reviewed. Five categories of methods were identified whereby variables were selected using: A - bivariate analyses; B - multivariable analysis; e.g. stepwise or individual significance testing of model coefficients; C - first bivariate analyses, followed by multivariable analysis; D - bivariate analyses or multivariable analysis; and E - other criteria like prior knowledge or personal judgment. Results Among the 287 articles that reported using variable selection methods, 6%, 26%, 30%, 21%, and 17% were in categories A through E, respectively. One hundred sixty-three studies selected variables using bivariate analyses, 80% (130/163) via multiple significance testing at the 5% alpha-level. Of the 219 multivariable analyses, 97 (44%) used stepwise procedures, 89 (41%) tested individual regression coefficients, but 33 (15%) did not mention how variables were selected. Sixty percent (58/97) of the stepwise routines also did not specify the algorithm and/or significance levels. Conclusions The variable selection methods reported in the two journals were limited in variety, and details were often missing. Many studies still relied on problematic techniques like stepwise procedures and/or multiple testing of bivariate associations at the 0.05 alpha-level. These deficiencies should be rectified to safeguard the scientific validity of articles published in Chinese epidemiology journals. PMID:20920252

  19. Multivariate postprocessing techniques for probabilistic hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2016-04-01

    Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.

  20. Exploring the Structure of Library and Information Science Web Space Based on Multivariate Analysis of Social Tags

    ERIC Educational Resources Information Center

    Joo, Soohyung; Kipp, Margaret E. I.

    2015-01-01

    Introduction: This study examines the structure of Web space in the field of library and information science using multivariate analysis of social tags from the Website, Delicious.com. A few studies have examined mathematical modelling of tags, mainly examining tagging in terms of tripartite graphs, pattern tracing and descriptive statistics. This…

  1. Identification of Differential Item Functioning in Multiple-Group Settings: A Multivariate Outlier Detection Approach

    ERIC Educational Resources Information Center

    Magis, David; De Boeck, Paul

    2011-01-01

    We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…

  2. Uses of Multivariate Analytical Techniques in Online and Blended Business Education: An Assessment of Current Practice and Recommendations for Future Research

    ERIC Educational Resources Information Center

    Arbaugh, J. B.; Hwang, Alvin

    2013-01-01

    Seeking to assess the analytical rigor of empirical research in management education, this article reviews the use of multivariate statistical techniques in 85 studies of online and blended management education over the past decade and compares them with prescriptions offered by both the organization studies and educational research communities.…

  3. Identifying pleiotropic genes in genome-wide association studies from related subjects using the linear mixed model and Fisher combination function.

    PubMed

    Yang, James J; Williams, L Keoki; Buu, Anne

    2017-08-24

    A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.

  4. Atomic-scale phase composition through multivariate statistical analysis of atom probe tomography data.

    PubMed

    Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F

    2011-06-01

    We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.

  5. Multiple Hypothesis Testing for Experimental Gingivitis Based on Wilcoxon Signed Rank Statistics

    PubMed Central

    Preisser, John S.; Sen, Pranab K.; Offenbacher, Steven

    2011-01-01

    Dental research often involves repeated multivariate outcomes on a small number of subjects for which there is interest in identifying outcomes that exhibit change in their levels over time as well as to characterize the nature of that change. In particular, periodontal research often involves the analysis of molecular mediators of inflammation for which multivariate parametric methods are highly sensitive to outliers and deviations from Gaussian assumptions. In such settings, nonparametric methods may be favored over parametric ones. Additionally, there is a need for statistical methods that control an overall error rate for multiple hypothesis testing. We review univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22 subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four summary measures based upon area under the curve are applied for each biomarker and compared to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the false discovery rate or strong control of the family-wise error rate are examined. PMID:21984957

  6. The impact of operative time on complications after plastic surgery: a multivariate regression analysis of 1753 cases.

    PubMed

    Hardy, Krista L; Davis, Kathryn E; Constantine, Ryan S; Chen, Mo; Hein, Rachel; Jewell, James L; Dirisala, Karunakar; Lysikowski, Jerzy; Reed, Gary; Kenkel, Jeffrey M

    2014-05-01

    Little evidence within plastic surgery literature supports the precept that longer operative times lead to greater morbidity. The authors investigate surgery duration as a determinant of morbidity, with the goal of defining a clinically relevant time for increased risk. A retrospective chart review was conducted of patients who underwent a broad range of complex plastic surgical procedures (n = 1801 procedures) at UT Southwestern Medical Center in Dallas, Texas, from January 1, 2008 to January 31, 2012. Adjusting for possible confounders, multivariate logistic regression assessed surgery duration as an independent predictor of morbidity. To define a cutoff for increased risk, incidence of complications was compared among quintiles of surgery duration. Stratification by type of surgery controlled for procedural complexity. A total of 1753 cases were included in multivariate analyses with an overall complication rate of 27.8%. Most operations were combined (75.8%), averaging 4.9 concurrent procedures. Each hour increase in surgery duration was associated with a 21% rise in odds of morbidity (P < .0001). Compared with the first quintile of operative time (<2.0 hours), there was no change in complications until after 3.1 hours of surgery (odds ratio, 1.6; P = .017), with progressively greater odds increases of 3.1 times after 4.5 hours (P < .0001) and 4.7 times after 6.8 hours (P < .0001). When stratified by type of surgery, longer operations continued to be associated with greater morbidity. Surgery duration is an independent predictor of complications, with a significantly increased risk above 3 hours. Although procedural complexity undoubtedly affects morbidity, operative time should factor into surgical decision making.

  7. 7 CFR 52.38c - Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes. 52.38c Section 52.38c Agriculture Regulations of the... Regulations Governing Inspection and Certification Sampling § 52.38c Statistical sampling procedures for lot...

  8. 7 CFR 52.38b - Statistical sampling procedures for on-line inspection by attributes of processed fruits and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Statistical sampling procedures for on-line inspection by attributes of processed fruits and vegetables. 52.38b Section 52.38b Agriculture Regulations of... Regulations Governing Inspection and Certification Sampling § 52.38b Statistical sampling procedures for on...

  9. 75 FR 79320 - Animal Drugs, Feeds, and Related Products; Regulation of Carcinogenic Compounds in Food-Producing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... is calculated from tumor data of the cancer bioassays using a statistical extrapolation procedure... carcinogenic concern currently set forth in Sec. 500.84 utilizes a statistical extrapolation procedure that... procedures did not rely on a statistical extrapolation of the data to a 1 in 1 million risk of cancer to test...

  10. 7 CFR 52.38b - Statistical sampling procedures for on-line inspection by attributes of processed fruits and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Statistical sampling procedures for on-line inspection by attributes of processed fruits and vegetables. 52.38b Section 52.38b Agriculture Regulations of... Regulations Governing Inspection and Certification Sampling § 52.38b Statistical sampling procedures for on...

  11. 7 CFR 52.38c - Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes. 52.38c Section 52.38c Agriculture Regulations of the... Regulations Governing Inspection and Certification Sampling § 52.38c Statistical sampling procedures for lot...

  12. Type 2 diabetes is an independent negative prognostic factor in patients undergoing surgical resection of a WHO grade I meningioma.

    PubMed

    Nayeri, Arash; Chotai, Silky; Prablek, Marc A; Brinson, Philip R; Douleh, Diana G; Weaver, Kyle D; Thompson, Reid C; Chambless, Lola

    2016-10-01

    In recent years, there has been increased recognition of the relationship between type 2 diabetes mellitus (DM) and poor outcomes following a variety of surgical procedures. We sought to study the role of type 2 DM as a prognostic factor affecting the long-term survival of patients undergoing surgical resection of a WHO Grade I meningioma. We conducted a retrospective cohort study on 196 patients who had a WHO Grade I meningioma resected at our institution between 2001 and 2013. The medical record was reviewed to identify a pre-existing diagnosis of type 2 DM. Patient mortality was reviewed by medical record and Social Security Death Index (SSDI). Variables associated with survival in a univariate analysis were included in the multivariate Cox model if P<0.10. Variables with probability values >0.05 were then removed from the multivariate model in a step-wise fashion. 33 (17%) patients had pre-existing diagnoses of type 2 DM prior to clinical presentation. Mean survival time in diabetic patients was 52.1 months compared to 160.9 months in non-diabetics. The decreased survival rate and time in patients with type 2 DM were found to be statistically significant (p=0.008 and p<0.0001, respectively). In a multivariate Cox analysis, a pre-existing history of type 2 DM was independently associated with decreased survival following the resection of a WHO Grade I meningioma (HR=2.6, p=0.045). A pre-existing diagnosis of type 2 DM is an independent negative prognostic indicator following the resection of a WHO Grade I meningioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Association of left subclavian artery coverage without revascularization and spinal cord ischemia in patients undergoing thoracic endovascular aortic repair: A Vascular Quality Initiative® analysis.

    PubMed

    Teixeira, Pedro Gr; Woo, Karen; Beck, Adam W; Scali, Salvatore T; Weaver, Fred A

    2017-12-01

    Objectives Investigate the impact of left subclavian artery coverage without revascularization on spinal cord ischemia development in patients undergoing thoracic endovascular aortic repair. Methods The Vascular Quality Initiative thoracic endovascular aortic repair module (April 2011-July 2014) was analyzed. Patients undergoing left subclavian artery coverage were divided into two groups according to revascularization status. The association between left subclavian artery revascularization with the primary outcome of spinal cord ischemia and the secondary outcome of stroke was assessed with multivariable analysis adjusting for between-group baseline differences. Results The left subclavian artery was covered in 508 (24.6%) of the 2063 thoracic endovascular aortic repairs performed. Among patients with left subclavian artery coverage, 58.9% underwent revascularization. Spinal cord ischemia incidence was 12.1% in the group without revascularization compared to 8.5% in the group undergoing left subclavian artery revascularization (odds ratio (95%CI): 1.48(0.82-2.68), P = 0.189). Multivariable analysis adjustment identified an independent association between left subclavian artery coverage without revascularization and the incidence of spinal cord ischemia (adjusted odds ratio (95%CI): 2.29(1.03-5.14), P = 0.043). Although the incidence of stroke was also higher for the group with a covered and nonrevascularized left subclavian artery (12.1% versus 8.5%), this difference was not statistically significant after multivariable analysis (adjusted odds ratio (95%CI): 1.55(0.74-3.26), P = 0.244). Conclusion For patients undergoing left subclavian artery coverage during thoracic endovascular aortic repair, the addition of a revascularization procedure was associated with a significantly lower incidence of spinal cord ischemia.

  14. Multiple expression patterns of biopathological markers in primary invasive breast carcinoma: a useful tool for elucidating its biological behaviour.

    PubMed

    Ceccarelli, C; Santini, D; Chieco, P; Taffurelli, M; Marrano, D; Mancini, A M

    1995-03-01

    Commonly used clinical and morphologic criteria have been reported to be of limited value in predicting the outcome of malignant tumours of the breast. Integrated information from the quantitative analysis in tumour tissue of biological parameters such as oestrogen and progesterone receptors (ER and PGR), proliferative activity, and proto-oncogene p53, c-erB2, and bcl-2 expression, may be useful for defining the biology of growth of breast carcinoma and to plan effective therapeutic strategies. Immunohistochemistry with antibodies recognizing ER, PGR, Ki-67, and the p53, c-erbB2, and bcl-2 encoded proteins was performed on 291 primary breast carcinomas. Results were integrated with clinico-pathological indicators and examined with multivariate statistical procedures and modeling. P53, c-erbB2, and bcl-2 gene products were detected, respectively, in 30.6%, 31.6%, and 85.9% of the examined invasive breast carcinomas, revealing variable associations with cellular differentiation and proliferation as defined by ER/PGR status, Ki-67, tumour mass and histologic and nuclear grading. A multivariate graphical display on a subset of the most informative cases revealed that bcl-2 expression parallels ER/PGR status and is of importance in separating tumour clusters with different degrees of aggressiveness. The results of this study indicate that multivariate explorative analyses conducted on biological and clinico-pathological parameters might constitute an integrated approach to data analysis useful for distinguishing different biological behaviours and therapeutic groups in breast carcinoma. Our findings also suggest that bcl-2 expression may play a pivotal role in tumours lacking ER-mediated growth regulation.

  15. Impact of System-Wide King LT Airway Implementation on Orotracheal Intubation.

    PubMed

    Hilton, Michael T; Wayne, Max; Martin-Gill, Christian

    2016-01-01

    Orotracheal intubation is a key component of prehospital airway management and success rates are dependent on procedural experience. Supraglottic airway devices are increasingly being used in the prehospital setting. As a result, paramedics may have fewer opportunities for performing intubation, limiting their proficiency in the procedure. We aimed to determine the trends in intubation versus supraglottic airway use over an 8 year period. We also aimed to determine the association between system-wide introduction of King LT guidelines and ETI success rates. We performed a retrospective observational study of 37 Emergency Medical Services (EMS) agencies in a 10 county region of Southwestern Pennsylvania. Cases between January 1, 2005 and December 31, 2012 were included if an advanced airway procedure was performed. We determined trends in advanced airway placement and compared the proportion of cases with first pass intubation success before and after the King LT was introduced and promoted by statewide protocol starting in 2007. Use of airway devices before and after King LT implementation were presented using descriptive statistics and compared using Pearson's Chi-square or Fishers Exact test as appropriate. We compared first pass success rate of orotracheal intubation between study periods using multivariable logistic regression, controlling for other factors that may impact success of orotracheal intubation (year, EMS agency, age category, traumatic injury, and cardiac arrest). There were 712 cases of orotracheal intubation before and 2,835 cases after introduction of the King LT. The proportion of cases ultimately managed with orotracheal intubation before and after 2007 decreased from 72.3% (95% CI 68.9-75.6%) to 67.1% (95% CI 65.3-68.8%) (p = 0.007). In the multivariable analysis, success of orotracheal intubation was not associated with implementation of the King LT airway (OR 1.02, 95% CI 0.74-1.41). Fewer patients with advanced airway management received orotracheal intubation since introduction of the King LT. In spite of this modest change in airway management, there has not been a change in orotracheal intubation success rate since introduction of this supraglottic device as a primary or rescue airway in this regional EMS setting.

  16. Use of an operating microscope during spine surgery is associated with minor increases in operating room times and no increased risk of infection.

    PubMed

    Basques, Bryce A; Golinvaux, Nicholas S; Bohl, Daniel D; Yacob, Alem; Toy, Jason O; Varthi, Arya G; Grauer, Jonathan N

    2014-10-15

    Retrospective database review. To evaluate whether microscope use during spine procedures is associated with increased operating room times or increased risk of infection. Operating microscopes are commonly used in spine procedures. It is debated whether the use of an operating microscope increases operating room time or confers increased risk of infection. The American College of Surgeons National Surgical Quality Improvement Program database, which includes data from more than 370 participating hospitals, was used to identify patients undergoing elective spinal procedures with and without the use of an operating microscope for the years 2011 and 2012. Bivariate and multivariate linear regressions were used to test the association between microscope use and operating room times. Bivariate and multivariate logistic regressions were similarly conducted to test the association between microscope use and infection occurrence within 30 days of surgery. A total of 23,670 elective spine procedures were identified, of which 2226 (9.4%) used an operating microscope. The average patient age was 55.1±14.4 years. The average operative time (incision to closure) was 125.7±82.0 minutes.Microscope use was associated with minor increases in preoperative room time (+2.9 min, P=0.013), operative time (+13.2 min, P<0.001), and total room time (+18.6 min, P<0.001) on multivariate analysis.A total of 328 (1.4%) patients had an infection within 30 days of surgery. Multivariate analysis revealed no significant difference between the microscope and nonmicroscope groups for occurrence of any infection, superficial surgical site infection, deep surgical site infection, organ space infection, or sepsis/septic shock, regardless of surgery type. We did not find operating room times or infection risk to be significant deterrents for use of an operating microscope during spine surgery. 3.

  17. Use of an operating microscope during spine surgery is associated with minor increases in operating room times and no increased risk of infection

    PubMed Central

    Basques, Bryce A.; Golinvaux, Nicholas S.; Bohl, Daniel D.; Yacob, Alem; Toy, Jason O.; Varthi, Arya G.; Grauer, Jonathan N.

    2014-01-01

    Study Design Retrospective database review. Objective To evaluate whether microscope use during spine procedures is associated with increased operating room times or increased risk of infection. Summary of Background Data Operating microscopes are commonly used in spine procedures. It is debated whether the use of an operating microscope increases operating room time or confers increased risk of infection. Methods The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database, which includes data from over 370 participating hospitals, was used to identify patients undergoing elective spinal procedures with and without an operating microscope for the years 2011 and 2012. Bivariate and multivariate linear regressions were used to test the association between microscope use and operating room times. Bivariate and multivariate logistic regressions were similarly conducted to test the association between microscope use and infection occurrence within 30 days of surgery. Results A total of 23,670 elective spine procedures were identified, of which 2,226 (9.4%) used an operating microscope. The average patient age was 55.1 ± 14.4 years. The average operative time (incision to closure) was 125.7 ± 82.0 minutes. Microscope use was associated with minor increases in preoperative room time (+2.9 minutes, p=0.013), operative time (+13.2 minutes, p<0.001), and total room time (+18.6 minutes, p<0.001) on multivariate analysis. A total of 328 (1.4%) patients had an infection within 30 days of surgery. Multivariate analysis revealed no significant difference between the microscope and non-microscope groups for occurrence of any infection, superficial surgical site infection (SSI), deep SSI, organ space infection, or sepsis/septic shock, regardless of surgery type. Conclusions We did not find operating room times or infection risk to be significant deterrents for use of an operating microscope during spine surgery. PMID:25188600

  18. Exploratory Analysis of Survey Data for Understanding Adoption of Novel Aerospace Systems

    NASA Astrophysics Data System (ADS)

    Reddy, Lauren M.

    In order to meet the increasing demand for manned and unmanned flight, the air transportation system must constantly evolve. As new technologies or operational procedures are conceived, we must determine their effect on humans in the system. In this research, we introduce a strategy to assess how individuals or organizations would respond to a novel aerospace system. We employ the most appropriate and sophisticated exploratory analysis techniques on the survey data to generate insight and identify significant variables. We employ three different methods for eliciting views from individuals or organizations who are affected by a system: an opinion survey, a stated preference survey, and structured interviews. We conduct an opinion survey of both the general public and stakeholders in the unmanned aircraft industry to assess their knowledge, attitude, and practices regarding unmanned aircraft. We complete a statistical analysis of the multiple-choice questions using multinomial logit and multivariate probit models and conduct qualitative analysis on free-text questions. We next present a stated preference survey of the general public on the use of an unmanned aircraft package delivery service. We complete a statistical analysis of the questions using multinomial logit, ordered probit, linear regression, and negative binomial models. Finally, we discuss structured interviews conducted on stakeholders from ANSPs and airlines operating in the North Atlantic. We describe how these groups may choose to adopt a new technology (space-based ADS-B) or operational procedure (in-trail procedures). We discuss similarities and differences between the stakeholders groups, the benefits and costs of in-trail procedures and space-based ADS-B as reported by the stakeholders, and interdependencies between the groups interviewed. To demonstrate the value of the data we generated, we explore how the findings from the surveys can be used to better characterize uncertainty in the cost-benefit analysis of aerospace systems. We demonstrate how the findings from the opinion and stated preference surveys can be infused into the cost-benefit analysis of an unmanned aircraft delivery system. We also demonstrate how to apply the findings from the interviews to characterize uncertainty in the estimation of the benefits of space-based ADS-B.

  19. Risk factors for surgical site infection following nonshunt pediatric neurosurgery: a review of 9296 procedures from a national database and comparison with a single-center experience

    PubMed Central

    Sherrod, Brandon A.; Arynchyna, Anastasia A.; Johnston, James M.; Rozzelle, Curtis J.; Blount, Jeffrey P.; Oakes, W. Jerry; Rocque, Brandon G.

    2017-01-01

    Objective Surgical site infection (SSI) following CSF shunt operations has been well studied, yet risk factors for nonshunt pediatric neurosurgery are less well understood. The purpose of this study was to determine SSI rates and risk factors following nonshunt pediatric neurosurgery using a nationwide patient cohort and an institutional dataset specifically for better understanding SSI. Methods The authors reviewed the American College of Surgeons National Surgical Quality Improvement Program Pediatric (ACS NSQIP-P) database for the years 2012–2014, including all neurosurgical procedures performed on pediatric patients except CSF shunts and hematoma evacuations. SSI included deep (intracranial abscesses, meningitis, osteomyelitis, and ventriculitis) and superficial wound infections. The authors performed univariate analyses of SSI association with procedure, demographic, comorbidity, operative, and hospital variables, with subsequent multivariate logistic regression analysis to determine independent risk factors for SSI within 30 days of the index procedure. A similar analysis was performed using a detailed institutional infection database from Children’s Hospital of Alabama (COA). Results A total of 9296 nonshunt procedures were identified in NSQIP-P with an overall 30-day SSI rate of 2.7%. The 30-day SSI rate in the COA institutional database was similar (3.3% of 1103 procedures, p = 0.325). Postoperative time to SSI in NSQIP-P and COA was 14.6 ± 6.8 days and 14.8 ± 7.3 days, respectively (mean ± SD). Myelomeningocele (4.3% in NSQIP-P, 6.3% in COA), spine (3.5%, 4.9%), and epilepsy (3.4%, 3.1%) procedure categoriess had the highest SSI rates by procedure category in both NSQIP-P and COA. Independent SSI risk factors in NSQIP-P included postoperative pneumonia (OR 4.761, 95% CI 1.269–17.857, p = 0.021), immune disease/immunosuppressant use (OR 3.671, 95% CI 1.371–9.827, p = 0.010), cerebral palsy (OR 2.835, 95% CI 1.463–5.494, p = 0.002), emergency operation (OR 1.843, 95% CI 1.011–3.360, p = 0.046), spine procedures (OR 1.673, 95% CI 1.036–2.702, p = 0.035), acquired CNS abnormality (OR 1.620, 95% CI 1.085–2.420, p = 0.018), and female sex (OR 1.475, 95% CI 1.062–2.049, p = 0.021). The only COA factor independently associated with SSI in the COA database included clean-contaminated wound classification (OR 3.887, 95% CI 1.354–11.153, p = 0.012), with public insurance (OR 1.966, 95% CI 0.957–4.041, p = 0.066) and spine procedures (OR 1.982, 95% CI 0.955–4.114, p = 0.066) approaching significance. Both NSQIP-P and COA multivariate model C-statistics were > 0.7. Conclusions NSQIP-P SSI rates, but not risk factors, were similar to data from a single center. PMID:28186476

  20. Omnibus Tests for Interactions in Repeated Measures Designs with Dichotomous Dependent Variables.

    ERIC Educational Resources Information Center

    Serlin, Ronald C.; Marascuilo, Leonard A.

    When examining a repeated measures design with independent groups for a significant group by trial interaction, classical analysis of variance or multivariate procedures can be used if the assumptions underlying the tests are met. Neither procedure may be justified for designs with small sample sizes and dichotomous dependent variables. An omnibus…

  1. Comparison of Two Procedures for Analyzing Small Sets of Repeated Measures Data

    ERIC Educational Resources Information Center

    Vallejo, Guillermo; Livacic-Rojas, Pablo

    2005-01-01

    This article compares two methods for analyzing small sets of repeated measures data under normal and non-normal heteroscedastic conditions: a mixed model approach with the Kenward-Roger correction and a multivariate extension of the modified Brown-Forsythe (BF) test. These procedures differ in their assumptions about the covariance structure of…

  2. ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.

    ERIC Educational Resources Information Center

    Vale, C. David; Gialluca, Kathleen A.

    ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…

  3. Does the emergency surgery score accurately predict outcomes in emergent laparotomies?

    PubMed

    Peponis, Thomas; Bohnen, Jordan D; Sangji, Naveen F; Nandan, Anirudh R; Han, Kelsey; Lee, Jarone; Yeh, D Dante; de Moya, Marc A; Velmahos, George C; Chang, David C; Kaafarani, Haytham M A

    2017-08-01

    The emergency surgery score is a mortality-risk calculator for emergency general operation patients. We sought to examine whether the emergency surgery score predicts 30-day morbidity and mortality in a high-risk group of patients undergoing emergent laparotomy. Using the 2011-2012 American College of Surgeons National Surgical Quality Improvement Program database, we identified all patients who underwent emergent laparotomy using (1) the American College of Surgeons National Surgical Quality Improvement Program definition of "emergent," and (2) all Current Procedural Terminology codes denoting a laparotomy, excluding aortic aneurysm rupture. Multivariable logistic regression analyses were performed to measure the correlation (c-statistic) between the emergency surgery score and (1) 30-day mortality, and (2) 30-day morbidity after emergent laparotomy. As sensitivity analyses, the correlation between the emergency surgery score and 30-day mortality was also evaluated in prespecified subgroups based on Current Procedural Terminology codes. A total of 26,410 emergent laparotomy patients were included. Thirty-day mortality and morbidity were 10.2% and 43.8%, respectively. The emergency surgery score correlated well with mortality (c-statistic = 0.84); scores of 1, 11, and 22 correlated with mortalities of 0.4%, 39%, and 100%, respectively. Similarly, the emergency surgery score correlated well with morbidity (c-statistic = 0.74); scores of 0, 7, and 11 correlated with complication rates of 13%, 58%, and 79%, respectively. The morbidity rates plateaued for scores higher than 11. Sensitivity analyses demonstrated that the emergency surgery score effectively predicts mortality in patients undergoing emergent (1) splenic, (2) gastroduodenal, (3) intestinal, (4) hepatobiliary, or (5) incarcerated ventral hernia operation. The emergency surgery score accurately predicts outcomes in all types of emergent laparotomy patients and may prove valuable as a bedside decision-making tool for patient and family counseling, as well as for adequate risk-adjustment in emergent laparotomy quality benchmarking efforts. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A Statistical Analysis of Brain Morphology Using Wild Bootstrapping

    PubMed Central

    Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.

    2008-01-01

    Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909

  5. Authigenic oxide Neodymium Isotopic composition as a proxy of seawater: applying multivariate statistical analyses.

    NASA Astrophysics Data System (ADS)

    McKinley, C. C.; Scudder, R.; Thomas, D. J.

    2016-12-01

    The Neodymium Isotopic composition (Nd IC) of oxide coatings has been applied as a tracer of water mass composition and used to address fundamental questions about past ocean conditions. The leached authigenic oxide coating from marine sediment is widely assumed to reflect the dissolved trace metal composition of the bottom water interacting with sediment at the seafloor. However, recent studies have shown that readily reducible sediment components, in addition to trace metal fluxes from the pore water, are incorporated into the bottom water, influencing the trace metal composition of leached oxide coatings. This challenges the prevailing application of the authigenic oxide Nd IC as a proxy of seawater composition. Therefore, it is important to identify the component end-members that create sediments of different lithology and determine if, or how they might contribute to the Nd IC of oxide coatings. To investigate lithologic influence on the results of sequential leaching, we selected two sites with complete bulk sediment statistical characterization. Site U1370 in the South Pacific Gyre, is predominantly composed of Rhyolite ( 60%) and has a distinguishable ( 10%) Fe-Mn Oxyhydroxide component (Dunlea et al., 2015). Site 1149 near the Izu-Bonin-Arc is predominantly composed of dispersed ash ( 20-50%) and eolian dust from Asia ( 50-80%) (Scudder et al., 2014). We perform a two-step leaching procedure: a 14 mL of 0.02 M hydroxylamine hydrochloride (HH) in 20% acetic acid buffered to a pH 4 for one hour, targeting metals bound to Fe- and Mn- oxides fractions, and a second HH leach for 12 hours, designed to remove any remaining oxides from the residual component. We analyze all three resulting fractions for a large suite of major, trace and rare earth elements, a sub-set of the samples are also analyzed for Nd IC. We use multivariate statistical analyses of the resulting geochemical data to identify how each component of the sediment partitions across the sequential extractions. Here we present results comparing the two sites, and examine how the composition of the sediment impacts the resulting Nd IC.

  6. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  7. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.

    2018-03-01

    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  8. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.

    PubMed

    Dazard, Jean-Eudes; Rao, J Sunil

    2012-07-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.

  9. Comparative Research of Navy Voluntary Education at Operational Commands

    DTIC Science & Technology

    2017-03-01

    return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21  B.  DESCRIPTIVE STATISTICS TABLES ...............................................25  C.  PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1.  Variables and Descriptions . Adapted from NETC (2016). .......................21

  10. Spatial Dynamics and Determinants of County-Level Education Expenditure in China

    ERIC Educational Resources Information Center

    Gu, Jiafeng

    2012-01-01

    In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…

  11. Establishing Benchmarks for Outcome Indicators: A Statistical Approach to Developing Performance Standards.

    ERIC Educational Resources Information Center

    Henry, Gary T.; And Others

    1992-01-01

    A statistical technique is presented for developing performance standards based on benchmark groups. The benchmark groups are selected using a multivariate technique that relies on a squared Euclidean distance method. For each observation unit (a school district in the example), a unique comparison group is selected. (SLD)

  12. MULTIVARIATE STATISTICAL MODELS FOR EFFECTS OF PM AND COPOLLUTANTS IN A DAILY TIME SERIES EPIDEMIOLOGY STUDY

    EPA Science Inventory

    Most analyses of daily time series epidemiology data relate mortality or morbidity counts to PM and other air pollutants by means of single-outcome regression models using multiple predictors, without taking into account the complex statistical structure of the predictor variable...

  13. Challenging Conventional Wisdom for Multivariate Statistical Models with Small Samples

    ERIC Educational Resources Information Center

    McNeish, Daniel

    2017-01-01

    In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…

  14. Comparison of pure laparoscopic versus open left hemihepatectomy by multivariate analysis: a retrospective cohort study.

    PubMed

    Cho, Hwui-Dong; Kim, Ki-Hun; Hwang, Shin; Ahn, Chul-Soo; Moon, Deok-Bog; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Park, Gil-Chun; Lee, Sung-Gyu

    2018-02-01

    To compare the outcomes of pure laparoscopic left hemihepatectomy (LLH) versus open left hemihepatectomy (OLH) for benign and malignant conditions using multivariate analysis. All consecutive cases of LLH and OLH between October 2007 and December 2013 in a tertiary referral hospital were enrolled in this retrospective cohort study. All surgical procedures were performed by one surgeon. The LLH and OLH groups were compared in terms of patient demographics, preoperative data, clinical perioperative outcomes, and tumor characteristics in patients with malignancy. Multivariate analysis of the prognostic factors associated with severe complications was then performed. The LLH group (n = 62) had a significantly shorter postoperative hospital stay than the OLH group (n = 118) (9.53 ± 3.30 vs 14.88 ± 11.36 days, p < 0.001). Multivariate analysis revealed that the OLH group had >4 times the risk of the LLH group in terms of developing severe complications (Clavien-Dindo grade ≥III) (odds ratio 4.294, 95% confidence intervals 1.165-15.832, p = 0.029). LLH was a safe and feasible procedure for selected patients. LLH required shorter hospital stay and resulted in less operative blood loss. Multivariate analysis revealed that LLH was associated with a lower risk of severe complications compared to OLH. The authors suggest that LLH could be a reasonable treatment option for selected patients.

  15. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].

    PubMed

    Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li

    2017-10-01

    To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.

  16. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    PubMed

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Anger expression, violent behavior, and symptoms of depression among male college students in Ethiopia.

    PubMed

    Terasaki, Dale J; Gelaye, Bizu; Berhane, Yemane; Williams, Michelle A

    2009-01-12

    Depression is an important global public health problem. Given the scarcity of studies involving African youths, this study was conducted to evaluate the associations of anger expression and violent behavior with symptoms of depression among male college students. A self-administered questionnaire was used to collect information on socio-demographic and lifestyle characteristics and violent behavior among 1,176 college students in Awassa, Ethiopia in June, 2006. The questionnaire incorporated the Spielberger Anger-Out Expression (SAOE) scale and symptoms of depression were evaluated using the Patient Health Questionnaire (PHQ-9). Multivariable logistic regression procedures were used to calculate adjusted odds ratios (OR) and 95% confidence intervals (95%CI). Symptoms of depression were evident in 23.6% of participants. Some 54.3% of students reported committing at least one act of violence in the current academic year; and 29.3% of students reported high (SAOE score > or = 15) levels of anger-expression. In multivariate analysis, moderate (OR = 1.97; 95%CI 1.33-2.93) and high (OR = 3.23; 95%CI 2.14-4.88) outward anger were statistically significantly associated with increased risks of depressive symptoms. Violent behavior was noted to be associated with depressive symptoms (OR = 1.82; 95%CI 1.37-2.40). Further research should be conducted to better characterize community and individual level determinants of anger-expression, violent behavior and depression among youths.

  18. Risk Factors Related with Retroperitoneal Laparoscopic Converted to Open Nephrectomy for Nonfunctioning Renal Tuberculosis.

    PubMed

    Xu, Bo; Hu, Jinghai; Chen, Anxiang; Hao, Yuanyuan; Liu, GuoHui; Wang, Chunxi; Wang, Xiaoqing

    2017-06-01

    The present study was designed to investigate the risk factors affecting the conversion to open surgery in retroperitoneal laparoscopic nephrectomy of nonfunctioning renal tuberculosis (TB). The records of 144 patients who underwent a retroperitoneal laparoscopic nephrectomy procedure by a single surgeon were retrospectively reviewed. The following factors, including age, sex, body mass index (BMI), diabetes status, hypertension status, side of kidney, size of kidney, degree of calcification, mild perirenal extravasation, contralateral hydronephrosis, the time of anti-TB, and surgeon experience were analyzed. Univariate and multivariate logistic regression analyses were used for statistical assessment. Twenty-three patients were converted to open surgery and the conversion rate was 15.97%. In univariate analysis, BMI ≥35 kg/m 2 (p = 0.023), hypertension (p = 0.011), diabetes (p = 0.003), and kidney size (p = 0.032) were the main factors of conversion to open surgery. Sex, age, side, anti-TB time, calcification, mild extravasation, and surgeon experience were not significantly related. In multivariate regression analysis, BMI ≥35 kg/m 2 , hypertension, diabetes, and enlargement of kidney were the most important factors for conversion to open surgery. Depending on the results achieved by a single surgeon, BMI ≥30 kg/m 2 , diabetes, hypertension, and enlargement of kidney significantly increased the conversion risk in retroperitoneal laparoscopic nephrectomy for nonfunctioning renal TB.

  19. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael

    2018-05-01

    Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

  20. Assessment of vocal fold mobility before and after cardiothoracic surgery in children.

    PubMed

    Carpes, Luthiana F; Kozak, Frederick K; Leblanc, Jacques G; Campbell, Andrew I; Human, Derek G; Fandino, Marcela; Ludemann, Jeffrey P; Moxham, J Paul; Fiori, Humberto

    2011-06-01

    To assess the incidence of vocal fold immobility (VFI) after cardiothoracic surgery in children and to determine the factors potentially associated with this outcome. Flexible laryngoscopy to assess vocal fold mobility was performed before surgery and within 72 hours after extubation in 100 pediatric patients who underwent cardiothoracic procedures. The 2 operating surgeons recorded the surgical technique and their impression of possible injury to the recurrent laryngeal nerve. The presence of laryngeal symptoms, such as stridor, hoarseness, and strength of cry, after extubation was documented. Of 100 children included in this study, 8 had VFI after surgery. Univariate analyses showed that these 8 patients were younger and weighed less than the patients with normal vocal fold movement. Monopolar cautery was used in all patients with VFI. On univariate analysis, factors statistically significantly associated with VFI were circulatory arrest and dissection or ligation of the patent ductus arteriosus, left pulmonary artery, right pulmonary artery, or descending aorta. However, multivariate analyses failed to show these associations. The incidence of VFI after cardiothoracic surgery in our population of children was 8.0% (8 of 100). Of several factors found to be potentially associated with VFI on univariate analysis, none were significant on multivariate analysis. This may be a result of the few patients with VFI. A larger multicenter prospective study would be needed to definitively identify factors associated with the outcome of VFI.

  1. Statistics in the pharmacy literature.

    PubMed

    Lee, Charlene M; Soin, Herpreet K; Einarson, Thomas R

    2004-09-01

    Research in statistical methods is essential for maintenance of high quality of the published literature. To update previous reports of the types and frequencies of statistical terms and procedures in research studies of selected professional pharmacy journals. We obtained all research articles published in 2001 in 6 journals: American Journal of Health-System Pharmacy, The Annals of Pharmacotherapy, Canadian Journal of Hospital Pharmacy, Formulary, Hospital Pharmacy, and Journal of the American Pharmaceutical Association. Two independent reviewers identified and recorded descriptive and inferential statistical terms/procedures found in the methods, results, and discussion sections of each article. Results were determined by tallying the total number of times, as well as the percentage, that each statistical term or procedure appeared in the articles. One hundred forty-four articles were included. Ninety-eight percent employed descriptive statistics; of these, 28% used only descriptive statistics. The most common descriptive statistical terms were percentage (90%), mean (74%), standard deviation (58%), and range (46%). Sixty-nine percent of the articles used inferential statistics, the most frequent being chi(2) (33%), Student's t-test (26%), Pearson's correlation coefficient r (18%), ANOVA (14%), and logistic regression (11%). Statistical terms and procedures were found in nearly all of the research articles published in pharmacy journals. Thus, pharmacy education should aim to provide current and future pharmacists with an understanding of the common statistical terms and procedures identified to facilitate the appropriate appraisal and consequential utilization of the information available in research articles.

  2. Utilization of apical vaginal support procedures at time of inpatient hysterectomy performed for benign conditions: a national estimate.

    PubMed

    Ross, Whitney Trotter; Meister, Melanie R; Shepherd, Jonathan P; Olsen, Margaret A; Lowder, Jerry L

    2017-10-01

    Apical vaginal support is considered the keystone of pelvic organ support. Level I evidence supports reestablishment of apical support at time of hysterectomy, regardless of whether the hysterectomy is performed for prolapse. National rates of apical support procedure performance at time of inpatient hysterectomy have not been well described. We sought to estimate trends and factors associated with use of apical support procedures at time of inpatient hysterectomy for benign indications in a large national database. The National (Nationwide) Inpatient Sample was used to identify hysterectomies performed from 2004 through 2013 for benign indications. International Classification of Diseases, Ninth Revision, Clinical Modification codes were used to select both procedures and diagnoses. The primary outcome was performance of an apical support procedure at time of hysterectomy. Descriptive and multivariable analyses were performed. There were 3,509,230 inpatient hysterectomies performed for benign disease from 2004 through 2013. In both nonprolapse and prolapse groups, there was a significant decrease in total number of annual hysterectomies performed over the study period (P < .0001). There were 2,790,652 (79.5%) hysterectomies performed without a diagnosis of prolapse, and an apical support procedure was performed in only 85,879 (3.1%). There was a significant decrease in the proportion of hysterectomies with concurrent apical support procedure (high of 4.0% in 2004 to 2.5% in 2013, P < .0001). In the multivariable logistic regression model, increasing age, hospital type (urban teaching), hospital bed size (large and medium), and hysterectomy type (vaginal and laparoscopically assisted vaginal) were associated with performance of an apical support procedure. During the study period, 718,578 (20.5%) inpatient hysterectomies were performed for prolapse diagnoses and 266,743 (37.1%) included an apical support procedure. There was a significant increase in the proportion of hysterectomies with concurrent apical support procedure (low of 31.3% in 2005 to 49.3% in 2013, P < .0001). In the multivariable logistic regression model, increasing age, hospital type (urban teaching), hospital bed size (medium and large), and hysterectomy type (total laparoscopic and laparoscopic supracervical) were associated with performance of an apical support procedure. This national database study demonstrates that apical support procedures are not routinely performed at time of inpatient hysterectomy regardless of presence of prolapse diagnosis. Educational efforts are needed to increase awareness of the importance of reestablishing apical vaginal support at time of hysterectomy regardless of indication. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparison of Healthcare Costs Among Commercially Insured Women in the United States Who Underwent Hysteroscopic Sterilization Versus Laparoscopic Bilateral Tubal Ligation Sterilization.

    PubMed

    Carney, Patricia I; Yao, Jianying; Lin, Jay; Law, Amy

    2017-05-01

    This study evaluated healthcare costs of index procedures and during a 6-month follow-up of women who had hysteroscopic sterilization (HS) versus laparoscopic bilateral tubal ligation (LBTL). Women (18-49 years) with claims for HS and LBTL procedures were identified from the MarketScan commercial claims database (January 1, 2010, to December 31, 2012) and placed into separate cohorts. Demographics, characteristics, index procedure costs, and 6-month total healthcare costs and sterilization procedure-related costs were compared. Multivariable regression analyses were used to examine the impact of HS versus LBTL on costs. Among the study population, 12,031 had HS (mean age: 37.0 years) and 7286 had LBTL (mean age: 35.8 years). The majority (80.9%) who had HS underwent the procedure in a physician's office setting. Fewer women who had HS versus LBTL received the procedure in an inpatient setting (0.5% vs. 2.1%), an ambulatory surgical center setting (5.0% vs. 23.8%), or a hospital outpatient setting (13.4% vs. 71.9%). Mean total cost for the index sterilization procedure was lower for HS than for LBTL ($3964 vs. $5163, p < 0.0001). During the 6-month follow-up, total medical and prescription costs for all causes ($7093 vs. $7568, p < 0.0001) and sterilization procedure-related costs ($4971 vs. $5407, p < 0.0001) were lower for women who had HS versus LBTL. Multivariable regression results confirmed that costs were lower for women who had HS versus LBTL. Among commercially insured women in the United States, HS versus LBTL is associated with lower average costs for the index procedure and lower total healthcare and procedure-related costs during 6 months after the sterilization procedure.

  4. Mathematical background and attitudes toward statistics in a sample of Spanish college students.

    PubMed

    Carmona, José; Martínez, Rafael J; Sánchez, Manuel

    2005-08-01

    To examine the relation of mathematical background and initial attitudes toward statistics of Spanish college students in social sciences the Survey of Attitudes Toward Statistics was given to 827 students. Multivariate analyses tested the effects of two indicators of mathematical background (amount of exposure and achievement in previous courses) on the four subscales. Analysis suggested grades in previous courses are more related to initial attitudes toward statistics than the number of mathematics courses taken. Mathematical background was related with students' affective responses to statistics but not with their valuing of statistics. Implications of possible research are discussed.

  5. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less

  7. 40 CFR Appendix Xviii to Part 86 - Statistical Outlier Identification Procedure for Light-Duty Vehicles and Light Light-Duty Trucks...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Statistical Outlier Identification... (CONTINUED) Pt. 86, App. XVIII Appendix XVIII to Part 86—Statistical Outlier Identification Procedure for..., but suffer theoretical deficiencies if statistical significance tests are required. Consequently, the...

  8. 40 CFR Appendix Xviii to Part 86 - Statistical Outlier Identification Procedure for Light-Duty Vehicles and Light Light-Duty Trucks...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Statistical Outlier Identification... (CONTINUED) Pt. 86, App. XVIII Appendix XVIII to Part 86—Statistical Outlier Identification Procedure for..., but suffer theoretical deficiencies if statistical significance tests are required. Consequently, the...

  9. Integrated environmental monitoring and multivariate data analysis-A case study.

    PubMed

    Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle

    2017-03-01

    The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate statistics. Integr Environ Assess Manag 2017;13:387-395. © 2016 SETAC. © 2016 SETAC.

  10. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  11. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  12. Applications of statistics to medical science, II overview of statistical procedures for general use.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    Procedures of statistical analysis are reviewed to provide an overview of applications of statistics for general use. Topics that are dealt with are inference on a population, comparison of two populations with respect to means and probabilities, and multiple comparisons. This study is the second part of series in which we survey medical statistics. Arguments related to statistical associations and regressions will be made in subsequent papers.

  13. Replacement of the aortic root with a composite valve-graft conduit: risk factor analysis in 246 consecutive patients.

    PubMed

    Woldendorp, Kei; Starra, Eric; Seco, Michael; Hendel, P Nicholas; Jeremy, Richmond W; Wilson, Michael K; Vallely, Michael P; Bannon, Paul G

    2014-12-01

    Composite valve-graft (CVG) replacement of the aortic root is a well-studied and recognised treatment for various aortic root conditions, including valvular disease with associated aortopathy. There have been few previous studies of the procedure in large numbers in an Australian setting. From January 2006 to June 2013, 246 successive patients underwent CVG root replacements at our institution. Mean age was 56.8 years, 85.4% were male, and 87 had evidence of bicuspid aortic valve. Indications for operation included ascending aortic aneurysm in 222 patients, annuloaortic ectasia in 67 patients, and aortic dissection in 38 patients. The overall unit 30-day mortality was 5.7%, including: elective 30-day mortality of 2.2%, and emergent 30-day mortality of 17.2%. Statistically significant multivariate predictors of 30-day mortality were: acute aortic dissection (OR=20.07), peripheral vascular disease (OR=11.17), new ventricular tachycardia (OR=30.17), re-operation for bleeding (OR=14.42), concomitant mitral stenosis (OR=68.30), and cerebrovascular accident (OR=144.85). Low postoperative mortality in our series matches closely with results from similar sized international studies, demonstrating that this procedure can be performed with low risk in centres with sufficient experience in the operative procedure. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  14. Impact of fast-track concept elements in the classical pancreatic head resection (Kausch-Whipple procedure).

    PubMed

    Gastinger, Ingo; Meyer, Frank; Lembcke, Thomas; Schmidt, Uwe; Ptok, Henry; Lippert, Hans

    2012-08-01

    The aim of the study was to determine statistically significant factors with an impact on the early postoperative surgical outcome. The influence of applied fast-track components on surgical results and early postoperative outcome in 143 consecutive Kausch-Whipple procedure patients was evaluated in a single-center retrospective analysis of a prospective collection of patient-associated pre-, peri- and postoperative data from 1997-2006. The in-hospital mortality rate was 2.8% (n=4). Fast-track measures were shown to have no effect on the morbidity rate in the multi-variate analysis. Over the study period, a decrease of intraoperative infusion volume from 14.2 mL/kg body weight/h in the first year to 10.7 mL/kg body weight/h in the last year was accompanied by an increase in patients requiring intraoperative catecholamines, up from 17% to 95%. The administration of ropivacain/sufentanil via thoracic peri-dural catheter injection initiated in 2000 and now considered the leading analgesic method, was used in 95% of the cases in 2006. Early extubation rate rose from 16.6% to 57.9%. Fast-track aspects in the perioperative management have become more important in several surgical procedure even in those with a greater invasiveness such as Kausch-Whipple. However, such techniques used in peri-operative management of Kausch-Whipple pancreatic-head resections had no impact on the morbidity rate. In addition, the low in-hospital mortality rate was particularly attributed to surgical competence.

  15. Multivariate pattern dependence

    PubMed Central

    Saxe, Rebecca

    2017-01-01

    When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809

  16. MIDAS: Regionally linear multivariate discriminative statistical mapping.

    PubMed

    Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos

    2018-07-01

    Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.

  17. Statistical Knowledge for Teaching: Exploring it in the Classroom

    ERIC Educational Resources Information Center

    Burgess, Tim

    2009-01-01

    This paper first reports on the methodology of a study of teacher knowledge for statistics, conducted in a classroom at the primary school level. The methodology included videotaping of a sequence of lessons that involved students in investigating multivariate data sets, followed up by audiotaped interviews with each teacher. These stimulated…

  18. Performance of the S - [chi][squared] Statistic for Full-Information Bifactor Models

    ERIC Educational Resources Information Center

    Li, Ying; Rupp, Andre A.

    2011-01-01

    This study investigated the Type I error rate and power of the multivariate extension of the S - [chi][squared] statistic using unidimensional and multidimensional item response theory (UIRT and MIRT, respectively) models as well as full-information bifactor (FI-bifactor) models through simulation. Manipulated factors included test length, sample…

  19. Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    Conventional statistical significance tests do not inform the researcher regarding the likelihood that results will replicate. One strategy for evaluating result replication is to use a "bootstrap" resampling of a study's data so that the stability of results across numerous configurations of the subjects can be explored. This paper…

  20. Spatial Statistical Model and Optimal Survey Design for Rapid Geophysical Characterization of UXO Sites

    DTIC Science & Technology

    2003-07-01

    4, Gnanadesikan , 1977). An entity whose measured features fall into one of the regions is classified accordingly. For the approaches we discuss here... Gnanadesikan , R. 1977. Methods for Statistical Data Analysis of Multivariate Observations. John Wiley & Sons, New York. Hassig, N. L., O’Brien, R. F

  1. Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes

    Treesearch

    Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca

    2007-01-01

    The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...

  2. Gamma knife radiosurgery for typical trigeminal neuralgia: An institutional review of 108 patients

    PubMed Central

    Elaimy, Ameer L.; Lamm, Andrew F.; Demakas, John J.; Mackay, Alexander R.; Lamoreaux, Wayne T.; Fairbanks, Robert K.; Pfeffer, Robert D.; Cooke, Barton S.; Peressini, Benjamin J.; Lee, Christopher M.

    2013-01-01

    Background: In this study, we present the previously unreported pain relief outcomes of 108 patients treated at Gamma Knife of Spokane for typical trigeminal neuralgia (TN) between 2002 and 2011. Methods: Pain relief outcomes were measured using the Barrow Neurological Institute (BNI) pain intensity scale. In addition, the effects gender, age at treatment, pain laterality, previous surgical treatment, repeat Gamma Knife radiosurgery (GKRS), and maximum radiosurgery dose have on patient pain relief outcomes were retrospectively analyzed. Statistical analysis was performed using Andersen 95% confidence intervals, approximate confidence intervals for log hazard ratios, and multivariate Cox proportional hazard models. Results: All 108 patients included in this study were grouped into BNI class IV or V prior to GKRS. The median clinical follow-up time was determined to be 15 months. Following the first GKRS procedure, 71% of patients were grouped into BNI class I-IIIb (I = 31%; II = 3%; IIIa = 19%; IIIb = 18%) and the median duration of pain relief for those patients was determined to be 11.8 months. New facial numbness was reported in 19% of patients and new facial paresthesias were reported in 7% of patients after the first GKRS procedure. A total of 19 repeat procedures were performed on the 108 patients included in this study. Following the second GKRS procedure, 73% of patients were grouped into BNI class I-IIIb (I = 44%; II = 6%; IIIa = 17%, IIIb = 6%) and the median duration of pain relief for those patients was determined to be 4.9 months. For repeat procedures, new facial numbness was reported in 22% of patients and new facial paresthesias were reported in 6% of patients. Conclusions: GKRS is a safe and effective management approach for patients diagnosed with typical TN. However, further studies and supporting research is needed on the effects previous surgical treatment, number of radiosurgery procedures, and maximum radiosurgery dose have on GKRS clinical outcomes. PMID:23956935

  3. The first national examination of outcomes and trends in robotic surgery in the United States.

    PubMed

    Anderson, Jamie E; Chang, David C; Parsons, J Kellogg; Talamini, Mark A

    2012-07-01

    There are few population-based data describing outcomes of robotic-assisted surgery. We compared outcomes of robotic-assisted, laparoscopic, and open surgery in a nationally representative population database. A retrospective analysis of the Nationwide Inpatient Sample database from October 2008 to December 2009 was performed. We identified the most common robotic procedures by ICD-9 procedure codes and grouped them into categories by procedure type. Multivariate analyses examined mortality, length of stay (LOS), and total hospital charges, adjusting for age, race, sex, Charlson comorbidity index, and teaching hospital status. A total of 368,239 patients were identified. On adjusted analysis, compared with open, robotic-assisted laparoscopic surgery was associated with decreased odds of mortality (odds ratio = 0.1; 95% CI, 0.0-0.2; p < 0.001), decreased mean LOS (-2.4 days; 95% CI, -2.5 to 2.3; p < 0.001), and increased mean total charges in all procedures (range $3,852 to $15,329) except coronary artery bypass grafting (-$17,318; 95% CI, -34,492 to -143; p = 0.048) and valvuloplasty (not statistically significant). Compared with laparoscopic, robotic-assisted laparoscopic surgery was associated with decreased odds of mortality (odds ratio = 0.1; 95% CI, 0.0-0.6; p = 0.008), decreased LOS overall (-0.6 days; 95% CI, -0.7 to -0.5; p < 0.001), but increased LOS in prostatectomy and other kidney/bladder procedures (0.3 days; 95% CI, 0.1-0.4; p = 0.006; 0.8 days; 95% CI, 0.0-1.6; p = 0.049), and increased total charges ($1,309; 95% CI, 519-2,099; p = 0.001). Data suggest that, compared with open surgery, robotic-assisted surgery results in decreased LOS and diminished likelihood of death. However, these benefits are not as apparent when comparing robotic-assisted laparoscopic with nonrobotic laparoscopic procedures. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Comparison of patients' reported pain following office hysteroscopy with and without endometrial biopsy: a prospective study.

    PubMed

    New, Erika P; Sarkar, Papri; Sappenfield, Elisabeth; Mikhail, Emad; Plosker, Shayne; Imudia, Anthony N

    2018-05-31

    When performing office based gynecologic procedures, one must provide patients with appropriate counseling on anticipated pain prior to the procedure. The goal of this study was to investigate whether there is any difference in patients' pain perception when office hysteroscopy (OH) is performed alone compared with when it is performed with endometrial biopsy (EMB) for various gynecologic indications. A prospective study was performed of patients undergoing office hysteroscopy alone or in combination with endometrial biopsy between October 2015 and February 2017. Procedures were performed using standard gynecologic techniques. Patients described their post procedural pain using the visual analogue scale from 0-10 and data was compared between groups using SPSS version 24. Group 1 had OH alone (n=243) and group 2 had OH combined with EMB (n=80). Patients who underwent both procedures had significantly higher reported median (range) pain scores than those undergoing OH alone [7 (0-10) vs 5 (0-10), p=.004]. The patients in-group 2 were significantly older than those in group 1 (42.6±7.6 vs 36.6±6.5, p<.0001). The patients in group 2 had higher gravidity (2 vs 1, p=.04), were more likely to have a tenaculum used during the procedure (36.3% vs 21.4%, p=.01) and were more likely to be diagnosed with uterine fibroids (73% vs 31%, p<.0001). After controlling for patients age, gravidity, tenaculum use and diagnosis of fibroids using a multivariable regression model, patients undergoing OH with EMB had a 0.51-unit pain score greater than those that had OH alone; however, this difference was not statistically significant [95% CI (-0.32,1.33 p=.23)]. Patients undergoing both OH and EMB appear to report similar pain scores as those undergoing OH alone after controlling for confounding variables. The presence of fibroids was found to contribute to higher reported pain in the patients having OH in combination with EMB.

  5. Evidence-Based Imaging Guidelines and Medicare Payment Policy

    PubMed Central

    Sistrom, Christopher L; McKay, Niccie L

    2008-01-01

    Objective This study examines the relationship between evidence-based appropriateness criteria for neurologic imaging procedures and Medicare payment determinations. The primary research question is whether Medicare is more likely to pay for imaging procedures as the level of appropriateness increases. Data Sources The American College of Radiology Appropriateness Criteria (ACRAC) for neurological imaging, ICD-9-CM codes, CPT codes, and payment determinations by the Medicare Part B carrier for Florida and Connecticut. Study Design Cross-sectional study of appropriateness criteria and Medicare Part B payment policy for neurological imaging. In addition to descriptive and bivariate statistics, multivariate logistic regression on payment determination (yes or no) was performed. Data Collection Methods The American College of Radiology Appropriateness Criteria (ACRAC) documents specific to neurological imaging, ICD-9-CM codes, and CPT codes were used to create 2,510 medical condition/imaging procedure combinations, with associated appropriateness scores (coded as low/middle/high). Principal Findings As the level of appropriateness increased, more medical condition/imaging procedure combinations were payable (low = 61 percent, middle = 70 percent, and high = 74 percent). Logistic regression indicated that the odds of a medical condition/imaging procedure combination with a middle level of appropriateness being payable was 48 percent higher than for an otherwise similar combination with a low appropriateness score (95 percent CI on odds ratio=1.19–1.84). The odds ratio for being payable between high and low levels of appropriateness was 2.25 (95 percent CI: 1.66–3.04). Conclusions Medicare could improve its payment determinations by taking advantage of existing clinical guidelines, appropriateness criteria, and other authoritative resources for evidence-based practice. Such an approach would give providers a financial incentive that is aligned with best-practice medicine. In particular, Medicare should review and update its payment policies to reflect current information on the appropriateness of alternative imaging procedures for the same medical condition. PMID:18454778

  6. Randomization Procedures Applied to Analysis of Ballistic Data

    DTIC Science & Technology

    1991-06-01

    test,;;15. NUMBER OF PAGES data analysis; computationally intensive statistics ; randomization tests; permutation tests; 16 nonparametric statistics ...be 0.13. 8 Any reasonable statistical procedure would fail to support the notion of improvement of dynamic over standard indexing based on this data ...AD-A238 389 TECHNICAL REPORT BRL-TR-3245 iBRL RANDOMIZATION PROCEDURES APPLIED TO ANALYSIS OF BALLISTIC DATA MALCOLM S. TAYLOR BARRY A. BODT - JUNE

  7. Conceptual and statistical problems associated with the use of diversity indices in ecology.

    PubMed

    Barrantes, Gilbert; Sandoval, Luis

    2009-09-01

    Diversity indices, particularly the Shannon-Wiener index, have extensively been used in analyzing patterns of diversity at different geographic and ecological scales. These indices have serious conceptual and statistical problems which make comparisons of species richness or species abundances across communities nearly impossible. There is often no a single statistical method that retains all information needed to answer even a simple question. However, multivariate analyses could be used instead of diversity indices, such as cluster analyses or multiple regressions. More complex multivariate analyses, such as Canonical Correspondence Analysis, provide very valuable information on environmental variables associated to the presence and abundance of the species in a community. In addition, particular hypotheses associated to changes in species richness across localities, or change in abundance of one, or a group of species can be tested using univariate, bivariate, and/or rarefaction statistical tests. The rarefaction method has proved to be robust to standardize all samples to a common size. Even the simplest method as reporting the number of species per taxonomic category possibly provides more information than a diversity index value.

  8. Texture as a basis for acoustic classification of substrate in the nearshore region

    NASA Astrophysics Data System (ADS)

    Dennison, A.; Wattrus, N. J.

    2016-12-01

    Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.

  9. mfpa: Extension of mfp using the ACD covariate transformation for enhanced parametric multivariable modeling.

    PubMed

    Royston, Patrick; Sauerbrei, Willi

    2016-01-01

    In a recent article, Royston (2015, Stata Journal 15: 275-291) introduced the approximate cumulative distribution (acd) transformation of a continuous covariate x as a route toward modeling a sigmoid relationship between x and an outcome variable. In this article, we extend the approach to multivariable modeling by modifying the standard Stata program mfp. The result is a new program, mfpa, that has all the features of mfp plus the ability to fit a new model for user-selected covariates that we call fp1( p 1 , p 2 ). The fp1( p 1 , p 2 ) model comprises the best-fitting combination of a dimension-one fractional polynomial (fp1) function of x and an fp1 function of acd ( x ). We describe a new model-selection algorithm called function-selection procedure with acd transformation, which uses significance testing to attempt to simplify an fp1( p 1 , p 2 ) model to a submodel, an fp1 or linear model in x or in acd ( x ). The function-selection procedure with acd transformation is related in concept to the fsp (fp function-selection procedure), which is an integral part of mfp and which is used to simplify a dimension-two (fp2) function. We describe the mfpa command and give univariable and multivariable examples with real data to demonstrate its use.

  10. The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques.

    PubMed

    Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo

    2011-03-04

    Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Exploratory Multivariate Analysis. A Graphical Approach.

    DTIC Science & Technology

    1981-01-01

    Gnanadesikan , 1977) but we feel that these should be used with great caution unless one really has good reason to believe that the data came from such a...are referred to Gnanadesikan (1977). The present author hopes that the convenience of a single summary or significance level will not deter his readers...fit of a harmonic model to meteorological data. (In preparation). Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate

  12. Prophylactic Plasma Transfusion Prior to Interventional Radiology Procedures Is Not Associated with Reduced Bleeding Complications

    PubMed Central

    Warner, Matthew A.; Woodrum, David A.; Hanson, Andrew C.; Schroeder, Darrell R.; Wilson, Gregory A.; Kor, Daryl J.

    2016-01-01

    Objective To determine the association between prophylactic plasma transfusion and periprocedural RBC transfusion rates in patients with elevated INR values undergoing interventional radiology procedures. Patients and Methods In this retrospective cohort study, adult patients undergoing interventional radiology procedures with a preprocedural INR available within 30 days of the procedure during a study period of Jan 1st, 2009 to Dec 31st, 2013 were eligible for inclusion. Baseline characteristics, coagulation parameters, transfusion requirements, and procedural details were extracted. Univariate and multivariable propensity-matched analyses were used to assess the relationships between prophylactic plasma transfusion and the outcomes of interest, with a primary outcome assessed a priori of RBC transfusion occurring during the procedure or within the first 24 hours post-procedurally. Results A total of 18,204 study participants met inclusion criteria for this study, and 1,803 (9.9%) had an INR ≥ 1.5 prior to their procedure. Among these, 196 patients (10.9%) received prophylactic plasma transfusion with a median (interquartile range) time between plasma initiation and procedural start of 1.9 (1.1 – 3.2) hours. In multivariable propensity-matched analysis, plasma administration was associated with increased periprocedural RBC transfusions [OR (95% CI) = 2.20 (1.38 – 3.50); P<.001] and postprocedural ICU admission rates [OR (95% CI) = 2.11 (1.41 – 3.14); P<.001] compared to those who were not transfused preprocedurally. Similar relationships were seen at higher INR thresholds for plasma transfusion. Conclusion In patients undergoing interventional radiology procedures, preprocedural plasma transfusions given in the setting of elevated INR values were associated with increased periprocedural RBC transfusions. Additional research is needed to clarify this potential association between preprocedural plasma and periprocedural RBC transfusion. PMID:27492911

  13. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    PubMed Central

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  14. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  15. Multivariate analysis of cytokine profiles in pregnancy complications.

    PubMed

    Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali

    2018-03-01

    The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.

  16. Using a Five-Step Procedure for Inferential Statistical Analyses

    ERIC Educational Resources Information Center

    Kamin, Lawrence F.

    2010-01-01

    Many statistics texts pose inferential statistical problems in a disjointed way. By using a simple five-step procedure as a template for statistical inference problems, the student can solve problems in an organized fashion. The problem and its solution will thus be a stand-by-itself organic whole and a single unit of thought and effort. The…

  17. Template Matching for Auditing Hospital Cost and Quality

    PubMed Central

    Silber, Jeffrey H; Rosenbaum, Paul R; Ross, Richard N; Ludwig, Justin M; Wang, Wei; Niknam, Bijan A; Mukherjee, Nabanita; Saynisch, Philip A; Even-Shoshan, Orit; Kelz, Rachel R; Fleisher, Lee A

    2014-01-01

    Objective Develop an improved method for auditing hospital cost and quality. Data Sources/Setting Medicare claims in general, gynecologic and urologic surgery, and orthopedics from Illinois, Texas, and New York between 2004 and 2006. Study Design A template of 300 representative patients was constructed and then used to match 300 patients at hospitals that had a minimum of 500 patients over a 3-year study period. Data Collection/Extraction Methods From each of 217 hospitals we chose 300 patients most resembling the template using multivariate matching. Principal Findings The matching algorithm found close matches on procedures and patient characteristics, far more balanced than measured covariates would be in a randomized clinical trial. These matched samples displayed little to no differences across hospitals in common patient characteristics yet found large and statistically significant hospital variation in mortality, complications, failure-to-rescue, readmissions, length of stay, ICU days, cost, and surgical procedure length. Similar patients at different hospitals had substantially different outcomes. Conclusion The template-matched sample can produce fair, directly standardized audits that evaluate hospitals on patients with similar characteristics, thereby making benchmarking more believable. Through examining matched samples of individual patients, administrators can better detect poor performance at their hospitals and better understand why these problems are occurring. PMID:24588413

  18. Frameless stereotaxy using bone fiducial markers for deep brain stimulation.

    PubMed

    Holloway, Kathryn L; Gaede, Steven E; Starr, Philip A; Rosenow, Joshua M; Ramakrishnan, Viswanathan; Henderson, Jaimie M

    2005-09-01

    Functional neurosurgical interventions such as deep brain stimulation (DBS) are traditionally performed with the aid of a stereotactic frame. Although frameless techniques have been perceived as less accurate, data from a recent phantom study of a modified frameless approach demonstrated a laboratory accuracy exceeding that obtained using a common frame system. The present study was conducted to evaluate the accuracy of a frameless system in routine clinical use. Deep brain stimulation leads were implanted in 38 patients by using a skull-mounted trajectory guide and an image-guided workstation. Registration was accomplished with bone fiducial markers. Final lead positions were measured on postoperative computerized tomography scans and compared with the planned lead positions. The accuracy of the Leksell frame within the clinical situation has been reported on in a recent study; these raw data served as a comparison data set. The difference between expected and actual lead locations in the x plane was 1.4 mm in the frame-based procedure and 1.6 mm in the frameless procedure. Similarly, the difference in the y plane was 1.6 mm in the frame-based system and 1.3 mm in the frameless one. The error was greatest in the z plane, that is, 1.7 mm in the frame-based method and 2 mm in the frameless system. Multivariate analysis of variance demonstrated no statistically significant difference in the accuracy of the two methods. The accuracy of the frame-based and frameless systems was not statistically significantly different (p = 0.22). Note, however, that frameless techniques offer advantages in patient comfort, separation of imaging from surgery, and decreased operating time.

  19. A Brief Critique of the TATES Procedure.

    PubMed

    Aliev, Fazil; Salvatore, Jessica E; Agrawal, Arpana; Almasy, Laura; Chan, Grace; Edenberg, Howard J; Hesselbrock, Victor; Kuperman, Samuel; Meyers, Jacquelyn; Dick, Danielle M

    2018-03-01

    The Trait-based test that uses the Extended Simes procedure (TATES) was developed as a method for conducting multivariate GWAS for correlated phenotypes whose underlying genetic architecture is complex. In this paper, we provide a brief methodological critique of the TATES method using simulated examples and a mathematical proof. Our simulated examples using correlated phenotypes show that the Type I error rate is higher than expected, and that more TATES p values fall outside of the confidence interval relative to expectation. Thus the method may result in systematic inflation when used with correlated phenotypes. In a mathematical proof we further demonstrate that the distribution of TATES p values deviates from expectation in a manner indicative of inflation. Our findings indicate the need for caution when using TATES for multivariate GWAS of correlated phenotypes.

  20. Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM.

    PubMed

    Mair, Patrick; Satorra, Albert; Bentler, Peter M

    2012-07-01

    This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo evaluation of structural equation models within the context of nonnormal data. The new procedure for nonnormal data simulation is theoretically described and also implemented in the widely used R environment. The quality of the method is assessed by Monte Carlo simulations. A 1-sample test on the observed covariance matrix based on the copula methodology is proposed. This new test for evaluating the quality of a simulation is defined through a particular structural model specification and is robust against normality violations.

  1. A comparative analysis of readmission rates after outpatient cosmetic surgery.

    PubMed

    Mioton, Lauren M; Alghoul, Mohammed S; Kim, John Y S

    2014-02-01

    Despite the increasing scrutiny of surgical procedures, outpatient cosmetic surgery has an established record of safety and efficacy. A key measure in assessing surgical outcomes is the examination of readmission rates. However, there is a paucity of data on unplanned readmission following cosmetic surgery procedures. The authors studied readmission rates for outpatient cosmetic surgery and compared the data with readmission rates for other surgical procedures. The 2011 National Surgical Quality Improvement Program (NSQIP) data set was queried for all outpatient procedures. Readmission rates were calculated for the 5 surgical specialties with the greatest number of outpatient procedures and for the overall outpatient cosmetic surgery population. Subgroup analysis was performed on the 5 most common cosmetic surgery procedures. Multivariate regression models were used to determine predictors of readmission for cosmetic surgery patients. The 2879 isolated outpatient cosmetic surgery cases had an associated 0.90% unplanned readmission rate. The 5 specialties with the highest number of outpatient surgical procedures were general, orthopedic, gynecologic, urologic, and otolaryngologic surgery; their unplanned readmission rates ranged from 1.21% to 3.73%. The 5 most common outpatient cosmetic surgery procedures and their associated readmission rates were as follows: reduction mammaplasty, 1.30%; mastopexy, 0.31%; liposuction, 1.13%; abdominoplasty, 1.78%; and breast augmentation, 1.20%. Multivariate regression analysis demonstrated that operating time (in hours) was an independent predictor of readmission (odds ratio, 1.40; 95% confidence interval, 1.08-1.81; P=.010). Rates of unplanned readmission with outpatient cosmetic surgery are low and compare favorably to those of other outpatient surgeries.

  2. Depression among Chinese University Students: Prevalence and Socio-Demographic Correlates

    PubMed Central

    Qiu, Xiao Hui; Yang, Xiu Xian; Qiao, Zheng Xue; Yang, Yan Jie; Liang, Yuan

    2013-01-01

    The purpose of the present study was to estimate the prevalence of depression in Chinese university students, and to identify the socio-demographic factors associated with depression in this population. A multi-stage stratified sampling procedure was used to select university students (N = 5245) in Harbin (Heilongjiang Province, Northeastern China), who were aged 16–35 years. The Beck Depression Inventory (BDI) was used to determine depressive symptoms of the participants. BDI scores of 14 or higher were categorized as depressive for logistic regression analysis. Depression was diagnosed by the Structured Clinical Interview (SCID) for the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV). 11.7% of the participants had a BDI score 14 or higher. Major Depressive Disorder was seen in 4.0% of Chinese university students. There were no statistical differences in the incidence of depression when gender, ethnicity, and university classification were analyzed. Multivariate analysis showed that age, study year, satisfaction with major, family income situation, parental relationship and mother's education were significantly associated with depression. Moderate depression is prevalent in Chinese university students. The students who were older, dissatisfied with their major, had a lower family income, poor parental relationships, and a lower level of mother's education were susceptible to depression. PMID:23516468

  3. Multivariate Statistical Modelling of Drought and Heat Wave Events

    NASA Astrophysics Data System (ADS)

    Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele

    2016-04-01

    Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A copula is a multivariate distribution function which allows one to model the dependence structure of given variables separately from the marginal behaviour. We firstly look at the structure of soil moisture drought over the entire of France using the SAFRAN dataset between 1959 and 2009. Soil moisture is represented using the Standardised Precipitation Evapotranspiration Index (SPEI). Drought characteristics are computed at grid point scale where drought conditions are identified as those with an SPEI value below -1.0. We model the multivariate dependence structure of drought events defined by certain characteristics and compute return levels of these events. We initially find that drought characteristics such as duration, mean SPEI and the maximum contiguous area to a grid point all have positive correlations, though the degree to which they are correlated can vary considerably spatially. A spatial representation of return levels then may provide insight into the areas most prone to drought conditions. As a next step, we analyse the dependence structure between soil moisture conditions preceding the onset of a heat wave and the heat wave itself.

  4. 40 CFR 1065.12 - Approval of alternate procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine meets all applicable emission standards according to specified procedures. (iii) Use statistical.... (e) We may give you specific directions regarding methods for statistical analysis, or we may approve... statistical tests. Perform the tests as follows: (1) Repeat measurements for all applicable duty cycles at...

  5. Comparison of 21-gauge and 22-gauge aspiration needle in endobronchial ultrasound-guided transbronchial needle aspiration: results of the American College of Chest Physicians Quality Improvement Registry, Education, and Evaluation Registry.

    PubMed

    Yarmus, Lonny B; Akulian, Jason; Lechtzin, Noah; Yasin, Faiza; Kamdar, Biren; Ernst, Armin; Ost, David E; Ray, Cynthia; Greenhill, Sarah R; Jimenez, Carlos A; Filner, Joshua; Feller-Kopman, David

    2013-04-01

    Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive procedure originally performed using a 22-gauge (22G) needle. A recently introduced 21-gauge (21G) needle may improve the diagnostic yield and sample adequacy of EBUS-TBNA, but prior smaller studies have shown conflicting results. To our knowledge, this is the largest study undertaken to date to determine whether the 21G needle adds diagnostic benefit. We retrospectively evaluated the results of 1,299 patients from the American College of Chest Physicians Quality Improvement Registry, Education, and Evaluation (AQuIRE) Diagnostic Registry who underwent EBUS-TBNA between February 2009 and September 2010 at six centers throughout the United States. Data collection included patient demographics, sample adequacy, and diagnostic yield. Analysis consisted of univariate and multivariate hierarchical logistic regression comparing diagnostic yield and sample adequacy of EBUS-TBNA specimens by needle gauge. A total of 1,235 patients met inclusion criteria. Sample adequacy was obtained in 94.9% of the 22G needle group and in 94.6% of the 21G needle group (P = .81). A diagnosis was made in 51.4% of the 22G and 51.3% of the 21G groups (P = .98). Multivariate hierarchical logistic regression showed no statistical difference in sample adequacy or diagnostic yield between the two groups. The presence of rapid onsite cytologic evaluation was associated with significantly fewer needle passes per procedure when using the 21G needle (P < .001). There is no difference in specimen adequacy or diagnostic yield between the 21G and 22G needle groups. EBUS-TBNA in conjunction with rapid onsite cytologic evaluation and a 21G needle is associated with fewer needle passes compared with a 22G needle.

  6. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).

  7. Routine perioperative ketorolac administration is not associated with hemorrhage in pediatric neurosurgery patients.

    PubMed

    Richardson, Marlin Dustin; Palmeri, Nicholas O; Williams, Sarah A; Torok, Michelle R; O'Neill, Brent R; Handler, Michael H; Hankinson, Todd C

    2016-01-01

    OBJECT NSAIDs are effective perioperative analgesics. Many surgeons are reluctant to use NSAIDs perioperatively because of a theoretical increase in the risk for bleeding events. The authors assessed the effect of routine perioperative ketorolac use on intracranial hemorrhage in children undergoing a wide range of neurosurgical procedures. METHODS A retrospective single-institution analysis of 1451 neurosurgical cases was performed. Data included demographics, type of surgery, and perioperative ketorolac use. Outcomes included bleeding events requiring return to the operating room, bleeding seen on postoperative imaging, and the development of renal failure or gastrointestinal tract injury. Variables associated with both the exposure and outcomes (p < 0.20) were evaluated as potential confounders for bleeding on postoperative imaging, and multivariable logistic regression was performed. Bivariable analysis was performed for bleeding events. Odds ratios and 95% CIs were estimated. RESULTS Of the 1451 patients, 955 received ketorolac. Multivariate regression analysis demonstrated no significant association between clinically significant bleeding events (OR 0.69; 95% CI 0.15-3.1) or radiographic hemorrhage (OR 0.81; 95% CI 0.43-1.51) and the perioperative administration of ketorolac. Treatment with a medication that creates a known bleeding risk (OR 3.11; 95% CI 1.01-9.57), surgical procedure (OR 2.35; 95% CI 1.11-4.94), and craniotomy/craniectomy (OR 2.43; 95% CI 1.19-4.94) were associated with a significantly elevated risk for radiographically identified hemorrhage. CONCLUSIONS Short-term ketorolac therapy does not appear to be associated with a statistically significant increase in the risk of bleeding documented on postoperative imaging in pediatric neurosurgical patients and may be considered as part of a perioperative analgesic regimen. Although no association was found between ketorolac and clinically significant bleeding events, a larger study needs to be conducted to control for confounding factors, because of the rarity of these events.

  8. Analysis of half diallel mating designs I: a practical analysis procedure for ANOVA approximation.

    Treesearch

    G.R. Johnson; J.N. King

    1998-01-01

    Procedures to analyze half-diallel mating designs using the SAS statistical package are presented. The procedure requires two runs of PROC and VARCOMP and results in estimates of additive and non-additive genetic variation. The procedures described can be modified to work on most statistical software packages which can compute variance component estimates. The...

  9. An extended data mining method for identifying differentially expressed assay-specific signatures in functional genomic studies.

    PubMed

    Rollins, Derrick K; Teh, Ailing

    2010-12-17

    Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA) has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and compared to a current approach on the basis of false discovery rate (FDR) and statistical power (SP) which is the ability to correctly identify important genes. This work developed and evaluated two new test statistics based on PCA and compared them to a popular method that is not PCA based. Both test statistics were found to be effective as evaluated in three case studies: (i) exposing E. coli cells to two different ethanol levels; (ii) application of myostatin to two groups of mice; and (iii) a simulated data study derived from the properties of (ii). The proposed method (PM) effectively identified critical genes in these studies based on comparison with the current method (CM). The simulation study supports higher identification accuracy for PM over CM for both proposed test statistics when the gene variance is constant and for one of the test statistics when the gene variance is non-constant. PM compares quite favorably to CM in terms of lower FDR and much higher SP. Thus, PM can be quite effective in producing accurate signatures from large microarray data sets for differential expression between assays groups identified in a preliminary step of the PCA procedure and is, therefore, recommended for use in these applications.

  10. A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data

    PubMed Central

    Chen, Yi-Hau

    2017-01-01

    Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA. PMID:28622336

  11. A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data.

    PubMed

    Lai, En-Yu; Chen, Yi-Hau; Wu, Kun-Pin

    2017-06-01

    Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA.

  12. Integrating Multiple Criteria in Selection Procedures for Improving Student Quality and Reducing Cost Per Graduate. AIR Forum 1979 Paper.

    ERIC Educational Resources Information Center

    Jones, Gerald L.; Westen, Risdon J.

    The multivariate approach of canonical correlation was used to assess selection procedures of the Air Force Academy. It was felt that improved student selection methods might reduce the number of dropouts while maintaining or improving the quality of graduates. The method of canonical correlation was designed to maximize prediction of academic…

  13. Cost comparison between uterine-sparing fibroid treatments one year following treatment

    PubMed Central

    2014-01-01

    Background To compare one-year all-cause and uterine fibroid (UF)-related direct costs in patients treated with one of the following three uterine-sparing procedures: magnetic resonance-guided focused ultrasound (MRgFUS), uterine artery embolization (UAE) and myomectomy. Methods This retrospective observational cohort study used healthcare claims for several million individuals with healthcare coverage from employers in the MarketScan Database for the period 2003–2010. UF patients aged 25–54 on their first UF procedure (index) date with 366-day baseline experience, 366-day follow-up period, continuous health plan enrollment during baseline and follow-up, and absence of any baseline UF procedures were included in the final sample. Cost outcomes were measured by allowed charges (sum of insurer-paid and patient-paid amounts). UF-related cost was defined as difference in mean cost between study cohorts and propensity-score-matched control cohorts without UF. Multivariate adjustment of cost outcomes was conducted using generalized linear models. Results The study sample comprised 14,426 patients (MRgFUS = 14; UAE = 4,092; myomectomy = 10,320) with a higher percent of older patients in MRgFUS cohort (71% vs. 50% vs. 12% in age-group 45–54, P < 0.001). Adjusted all-cause mean cost was lowest for MRgFUS ($19,763; 95% CI: $10,425-$38,694) followed by myomectomy ($20,407; 95% CI: $19,483-$21,381) and UAE ($25,019; 95% CI: $23,738-$26,376) but without statistical significance. Adjusted UF-related costs were also not significantly different between the three procedures. Conclusions Adjusted all-cause and UF-related costs at one year were not significantly different between patients undergoing MRgFUS, myomectomy and UAE. PMID:25512868

  14. Continuation of TNF blockade in patients with inflammatory rheumatic disease. An observational study on surgical site infections in 1,596 elective orthopedic and hand surgery procedures.

    PubMed

    Berthold, Elisabet; Geborek, Pierre; Gülfe, Anders

    2013-10-01

    Increased infection risk in inflammatory rheumatic diseases may be due to inflammation or immunosuppressive treatment. The influence of tumor necrosis factor (TNF) inhibitors on the risk of developing surgical site infections (SSIs) is not fully known. We compared the incidence of SSI after elective orthopedic surgery or hand surgery in patients with a rheumatic disease when TNF inhibitors were continued or discontinued perioperatively. We included 1,551 patients admitted for elective orthopedic surgery or hand surgery between January 1, 2003 and September 30, 2009. Patient demographic data, previous and current treatment, and factors related to disease severity were collected. Surgical procedures were grouped as hand surgery, foot surgery, implant-related surgery, and other surgery. Infections were recorded and defined according to the 1992 Centers for Disease Control definitions for SSI. In 2003-2005, TNF inhibitors were discontinued perioperatively (group A) but not during 2006-2009 (group B). In group A, there were 28 cases of infection in 870 procedures (3.2%) and in group B, there were 35 infections in 681 procedures (5.1%) (p = < 0.05). Only foot surgery had significantly more SSIs in group B, with very low rates in group A. In multivariable analysis with groups A and B merged, only age was predictive of SSI in a statistically significant manner. Overall, the SSI rates were higher after abolishing the discontinuation of anti-TNF perioperatively, possibly due to unusually low rates in the comparator group. None of the medical treatments analyzed, e.g. methotrexate or TNF inhibitors, were significant risk factors for SSI. Continuation of TNF blockade perioperatively remains a routine at our center.

  15. The impact of complications on costs of major surgical procedures: a cost analysis of 1200 patients.

    PubMed

    Vonlanthen, René; Slankamenac, Ksenija; Breitenstein, Stefan; Puhan, Milo A; Muller, Markus K; Hahnloser, Dieter; Hauri, Dimitri; Graf, Rolf; Clavien, Pierre-Alain

    2011-12-01

    To assess the impact of postoperative complications on full in-hospital costs per case. Rising expenses for complex medical procedures combined with constrained resources represent a major challenge. The severity of postoperative complications reflects surgical outcomes. The magnitude of the cost created by negative outcomes is unclear. Morbidity of 1200 consecutive patients undergoing major surgery from 2005 to 2008 in a tertiary, high-volume center was assessed by a validated, complication score system. Full in-hospital costs were collected for each patient. Statistical analysis was performed using a multivariate linear regression model adjusted for potential confounders. This study population included 393 complex liver/bile duct surgeries, 110 major pancreas operations, 389 colon resections, and 308 Roux-en-Y gastric bypasses. The overall 30-day mortality rate was 1.8%, whereas morbidity was 53.8%. Patients with an uneventful course had mean costs per case of US$ 27,946 (SD US$ 15,106). Costs increased dramatically with the severity of postoperative complications and reached the mean costs of US$ 159,345 (SD US$ 151,191) for grade IV complications. This increase in costs, up to 5 times the cost of a similar operation without complications, was observed for all types of investigated procedures, although the magnitude of the increase varied, with the highest costs in patients undergoing pancreas surgery. This study demonstrates the dramatic impact of postoperative complications on full in-hospital costs per case and that complications are the strongest indicator of costs. Furthermore, the study highlights a relevant savings capacity for major surgical procedures, and supports all efforts to lower negative events in the postoperative course.

  16. Predicting Outcomes After Chemo-Embolization in Patients with Advanced-Stage Hepatocellular Carcinoma: An Evaluation of Different Radiologic Response Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunn, Andrew J., E-mail: agunn@uabmc.edu; Sheth, Rahul A.; Luber, Brandon

    2017-01-15

    PurposeThe purpse of this study was to evaluate the ability of various radiologic response criteria to predict patient outcomes after trans-arterial chemo-embolization with drug-eluting beads (DEB-TACE) in patients with advanced-stage (BCLC C) hepatocellular carcinoma (HCC).Materials and methodsHospital records from 2005 to 2011 were retrospectively reviewed. Non-infiltrative lesions were measured at baseline and on follow-up scans after DEB-TACE according to various common radiologic response criteria, including guidelines of the World Health Organization (WHO), Response Evaluation Criteria in Solid Tumors (RECIST), the European Association for the Study of the Liver (EASL), and modified RECIST (mRECIST). Statistical analysis was performed to see which,more » if any, of the response criteria could be used as a predictor of overall survival (OS) or time-to-progression (TTP).Results75 patients met inclusion criteria. Median OS and TTP were 22.6 months (95 % CI 11.6–24.8) and 9.8 months (95 % CI 7.1–21.6), respectively. Univariate and multivariate Cox analyses revealed that none of the evaluated criteria had the ability to be used as a predictor for OS or TTP. Analysis of the C index in both univariate and multivariate models showed that the evaluated criteria were not accurate predictors of either OS (C-statistic range: 0.51–0.58 in the univariate model; range: 0.54–0.58 in the multivariate model) or TTP (C-statistic range: 0.55–0.59 in the univariate model; range: 0.57–0.61 in the multivariate model).ConclusionCurrent response criteria are not accurate predictors of OS or TTP in patients with advanced-stage HCC after DEB-TACE.« less

  17. Predicting Outcomes After Chemo-Embolization in Patients with Advanced-Stage Hepatocellular Carcinoma: An Evaluation of Different Radiologic Response Criteria.

    PubMed

    Gunn, Andrew J; Sheth, Rahul A; Luber, Brandon; Huynh, Minh-Huy; Rachamreddy, Niranjan R; Kalva, Sanjeeva P

    2017-01-01

    The purpse of this study was to evaluate the ability of various radiologic response criteria to predict patient outcomes after trans-arterial chemo-embolization with drug-eluting beads (DEB-TACE) in patients with advanced-stage (BCLC C) hepatocellular carcinoma (HCC). Hospital records from 2005 to 2011 were retrospectively reviewed. Non-infiltrative lesions were measured at baseline and on follow-up scans after DEB-TACE according to various common radiologic response criteria, including guidelines of the World Health Organization (WHO), Response Evaluation Criteria in Solid Tumors (RECIST), the European Association for the Study of the Liver (EASL), and modified RECIST (mRECIST). Statistical analysis was performed to see which, if any, of the response criteria could be used as a predictor of overall survival (OS) or time-to-progression (TTP). 75 patients met inclusion criteria. Median OS and TTP were 22.6 months (95 % CI 11.6-24.8) and 9.8 months (95 % CI 7.1-21.6), respectively. Univariate and multivariate Cox analyses revealed that none of the evaluated criteria had the ability to be used as a predictor for OS or TTP. Analysis of the C index in both univariate and multivariate models showed that the evaluated criteria were not accurate predictors of either OS (C-statistic range: 0.51-0.58 in the univariate model; range: 0.54-0.58 in the multivariate model) or TTP (C-statistic range: 0.55-0.59 in the univariate model; range: 0.57-0.61 in the multivariate model). Current response criteria are not accurate predictors of OS or TTP in patients with advanced-stage HCC after DEB-TACE.

  18. Clinical Trials With Large Numbers of Variables: Important Advantages of Canonical Analysis.

    PubMed

    Cleophas, Ton J

    2016-01-01

    Canonical analysis assesses the combined effects of a set of predictor variables on a set of outcome variables, but it is little used in clinical trials despite the omnipresence of multiple variables. The aim of this study was to assess the performance of canonical analysis as compared with traditional multivariate methods using multivariate analysis of covariance (MANCOVA). As an example, a simulated data file with 12 gene expression levels and 4 drug efficacy scores was used. The correlation coefficient between the 12 predictor and 4 outcome variables was 0.87 (P = 0.0001) meaning that 76% of the variability in the outcome variables was explained by the 12 covariates. Repeated testing after the removal of 5 unimportant predictor and 1 outcome variable produced virtually the same overall result. The MANCOVA identified identical unimportant variables, but it was unable to provide overall statistics. (1) Canonical analysis is remarkable, because it can handle many more variables than traditional multivariate methods such as MANCOVA can. (2) At the same time, it accounts for the relative importance of the separate variables, their interactions and differences in units. (3) Canonical analysis provides overall statistics of the effects of sets of variables, whereas traditional multivariate methods only provide the statistics of the separate variables. (4) Unlike other methods for combining the effects of multiple variables such as factor analysis/partial least squares, canonical analysis is scientifically entirely rigorous. (5) Limitations include that it is less flexible than factor analysis/partial least squares, because only 2 sets of variables are used and because multiple solutions instead of one is offered. We do hope that this article will stimulate clinical investigators to start using this remarkable method.

  19. A simple rapid approach using coupled multivariate statistical methods, GIS and trajectory models to delineate areas of common oil spill risk

    NASA Astrophysics Data System (ADS)

    Guillen, George; Rainey, Gail; Morin, Michelle

    2004-04-01

    Currently, the Minerals Management Service uses the Oil Spill Risk Analysis model (OSRAM) to predict the movement of potential oil spills greater than 1000 bbl originating from offshore oil and gas facilities. OSRAM generates oil spill trajectories using meteorological and hydrological data input from either actual physical measurements or estimates generated from other hydrological models. OSRAM and many other models produce output matrices of average, maximum and minimum contact probabilities to specific landfall or target segments (columns) from oil spills at specific points (rows). Analysts and managers are often interested in identifying geographic areas or groups of facilities that pose similar risks to specific targets or groups of targets if a spill occurred. Unfortunately, due to the potentially large matrix generated by many spill models, this question is difficult to answer without the use of data reduction and visualization methods. In our study we utilized a multivariate statistical method called cluster analysis to group areas of similar risk based on potential distribution of landfall target trajectory probabilities. We also utilized ArcView™ GIS to display spill launch point groupings. The combination of GIS and multivariate statistical techniques in the post-processing of trajectory model output is a powerful tool for identifying and delineating areas of similar risk from multiple spill sources. We strongly encourage modelers, statistical and GIS software programmers to closely collaborate to produce a more seamless integration of these technologies and approaches to analyzing data. They are complimentary methods that strengthen the overall assessment of spill risks.

  20. Socio-Demographic and Clinical Characteristics are Not Clinically Useful Predictors of Refill Adherence in Patients with Hypertension

    PubMed Central

    Steiner, John F.; Ho, P. Michael; Beaty, Brenda L.; Dickinson, L. Miriam; Hanratty, Rebecca; Zeng, Chan; Tavel, Heather M.; Havranek, Edward P.; Davidson, Arthur J.; Magid, David J.; Estacio, Raymond O.

    2009-01-01

    Background Although many studies have identified patient characteristics or chronic diseases associated with medication adherence, the clinical utility of such predictors has rarely been assessed. We attempted to develop clinical prediction rules for adherence with antihypertensive medications in two health care delivery systems. Methods and Results Retrospective cohort studies of hypertension registries in an inner-city health care delivery system (N = 17176) and a health maintenance organization (N = 94297) in Denver, Colorado. Adherence was defined by acquisition of 80% or more of antihypertensive medications. A multivariable model in the inner-city system found that adherent patients (36.3% of the total) were more likely than non-adherent patients to be older, white, married, and acculturated in US society, to have diabetes or cerebrovascular disease, not to abuse alcohol or controlled substances, and to be prescribed less than three antihypertensive medications. Although statistically significant, all multivariate odds ratios were 1.7 or less, and the model did not accurately discriminate adherent from non-adherent patients (C-statistic = 0.606). In the health maintenance organization, where 72.1% of patients were adherent, significant but weak associations existed between adherence and older age, white race, the lack of alcohol abuse, and fewer antihypertensive medications. The multivariate model again failed to accurately discriminate adherent from non-adherent individuals (C-statistic = 0.576). Conclusions Although certain socio-demographic characteristics or clinical diagnoses are statistically associated with adherence to refills of antihypertensive medications, a combination of these characteristics is not sufficiently accurate to allow clinicians to predict whether their patients will be adherent with treatment. PMID:20031876

  1. Publication of statistically significant research findings in prosthodontics & implant dentistry in the context of other dental specialties.

    PubMed

    Papageorgiou, Spyridon N; Kloukos, Dimitrios; Petridis, Haralampos; Pandis, Nikolaos

    2015-10-01

    To assess the hypothesis that there is excessive reporting of statistically significant studies published in prosthodontic and implantology journals, which could indicate selective publication. The last 30 issues of 9 journals in prosthodontics and implant dentistry were hand-searched for articles with statistical analyses. The percentages of significant and non-significant results were tabulated by parameter of interest. Univariable/multivariable logistic regression analyses were applied to identify possible predictors of reporting statistically significance findings. The results of this study were compared with similar studies in dentistry with random-effects meta-analyses. From the 2323 included studies 71% of them reported statistically significant results, with the significant results ranging from 47% to 86%. Multivariable modeling identified that geographical area and involvement of statistician were predictors of statistically significant results. Compared to interventional studies, the odds that in vitro and observational studies would report statistically significant results was increased by 1.20 times (OR: 2.20, 95% CI: 1.66-2.92) and 0.35 times (OR: 1.35, 95% CI: 1.05-1.73), respectively. The probability of statistically significant results from randomized controlled trials was significantly lower compared to various study designs (difference: 30%, 95% CI: 11-49%). Likewise the probability of statistically significant results in prosthodontics and implant dentistry was lower compared to other dental specialties, but this result did not reach statistical significant (P>0.05). The majority of studies identified in the fields of prosthodontics and implant dentistry presented statistically significant results. The same trend existed in publications of other specialties in dentistry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Estimation and model selection of semiparametric multivariate survival functions under general censorship.

    PubMed

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2010-07-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.

  3. Estimation and model selection of semiparametric multivariate survival functions under general censorship

    PubMed Central

    Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang

    2013-01-01

    We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286

  4. AIC identifies optimal representation of longitudinal dietary variables.

    PubMed

    VanBuren, John; Cavanaugh, Joseph; Marshall, Teresa; Warren, John; Levy, Steven M

    2017-09-01

    The Akaike Information Criterion (AIC) is a well-known tool for variable selection in multivariable modeling as well as a tool to help identify the optimal representation of explanatory variables. However, it has been discussed infrequently in the dental literature. The purpose of this paper is to demonstrate the use of AIC in determining the optimal representation of dietary variables in a longitudinal dental study. The Iowa Fluoride Study enrolled children at birth and dental examinations were conducted at ages 5, 9, 13, and 17. Decayed or filled surfaces (DFS) trend clusters were created based on age 13 DFS counts and age 13-17 DFS increments. Dietary intake data (water, milk, 100 percent-juice, and sugar sweetened beverages) were collected semiannually using a food frequency questionnaire. Multinomial logistic regression models were fit to predict DFS cluster membership (n=344). Multiple approaches could be used to represent the dietary data including averaging across all collected surveys or over different shorter time periods to capture age-specific trends or using the individual time points of dietary data. AIC helped identify the optimal representation. Averaging data for all four dietary variables for the whole period from age 9.0 to 17.0 provided a better representation in the multivariable full model (AIC=745.0) compared to other methods assessed in full models (AICs=750.6 for age 9 and 9-13 increment dietary measurements and AIC=762.3 for age 9, 13, and 17 individual measurements). The results illustrate that AIC can help researchers identify the optimal way to summarize information for inclusion in a statistical model. The method presented here can be used by researchers performing statistical modeling in dental research. This method provides an alternative approach for assessing the propriety of variable representation to significance-based procedures, which could potentially lead to improved research in the dental community. © 2017 American Association of Public Health Dentistry.

  5. Predictive factors of Gastrointestinal motility Dysfunction after gastrojejunostomy for peptic ulcer stenosis.

    PubMed

    Ayadi, Sofiene; Daghfous, Amine; Saidani, Ahmed; Haddad, Anis; Magherbi, Houcine; Jouini, Mohamed; Kacem, Montassar; Ben Safta, Zoubeir

    2014-10-01

    Despite the establishment of effective medical therapies in peptic ulcer disease, gastric outlet obstruction remains one of the most common health problem in Tunisia. Various operations have been attempted, which may lead to postoperative morbidity. Gastrointestinal (GI) motility dysfunction is the most common complications. to determine the predictive factor of gastrointestinal motility dysfunction after gastrojejunostomy for peptic ulcer stenosis. We carried out a retrospective study to evaluate the postoperative recovery of the motility of the upper gastrointestinal tract after gastrojejunostomy for peptic ulcer stenosis. During the 9- year study, 138 patients underwent operations for ulcer peptic stenosis. Among the patients, 116 (84,1%) were treated with gastrojejunostomy. Descriptive statistics, univariate and multivariate analyses were performed. The mean age of patients was 47.85 years (range: 19- 92years) and most. Were male (84, 5 %). Ninety two (79.3%) patients had a documented history of peptic ulcer disease. The duration of symptoms ranged from 10 to 372 days (mean: 135.86 days). Eighty two (71%) patients were operated on through laparotomy. Laparoscopic procedure was performed in 29% of the patients. There was no operative mortality. Perioperative morbidity occurred in 12.4% (14 patients). Gastrointestinal motility dysfunction occurred in 12 patients (10.3%). It was treated by nasogastric aspiration and prokinetics. By univariate analysis; diabetes (0,010), cachexia (0,049), ASA class (0.05) were all statistically associated with gastrointestinal motility dysfunction in this series. Multivariate logistic regression analysis (table 2) showed that the cachexia (0,009), ASA class (0.02) were the main predictors of gastrointestinal motility dysfunction after gastrojejunostomy for peptic ulcer stenosis in the followed patients. Gastrointestinal motility dysfunction is the most common complications after gastrojejunostomy for pyloric adult stenosis. Surgery must be preceded by careful medical preparation. It is more likely to occur in patients with an ASA class 2 or greater. Those patients should be considered for other treatment options, such as endoscopic balloon dilation.

  6. Quality of reporting of multivariable logistic regression models in Chinese clinical medical journals.

    PubMed

    Zhang, Ying-Ying; Zhou, Xiao-Bin; Wang, Qiu-Zhen; Zhu, Xiao-Yan

    2017-05-01

    Multivariable logistic regression (MLR) has been increasingly used in Chinese clinical medical research during the past few years. However, few evaluations of the quality of the reporting strategies in these studies are available.To evaluate the reporting quality and model accuracy of MLR used in published work, and related advice for authors, readers, reviewers, and editors.A total of 316 articles published in 5 leading Chinese clinical medical journals with high impact factor from January 2010 to July 2015 were selected for evaluation. Articles were evaluated according 12 established criteria for proper use and reporting of MLR models.Among the articles, the highest quality score was 9, the lowest 1, and the median 5 (4-5). A total of 85.1% of the articles scored below 6. No significant differences were found among these journals with respect to quality score (χ = 6.706, P = .15). More than 50% of the articles met the following 5 criteria: complete identification of the statistical software application that was used (97.2%), calculation of the odds ratio and its confidence interval (86.4%), description of sufficient events (>10) per variable, selection of variables, and fitting procedure (78.2%, 69.3%, and 58.5%, respectively). Less than 35% of the articles reported the coding of variables (18.7%). The remaining 5 criteria were not satisfied by a sufficient number of articles: goodness-of-fit (10.1%), interactions (3.8%), checking for outliers (3.2%), collinearity (1.9%), and participation of statisticians and epidemiologists (0.3%). The criterion of conformity with linear gradients was applicable to 186 articles; however, only 7 (3.8%) mentioned or tested it.The reporting quality and model accuracy of MLR in selected articles were not satisfactory. In fact, severe deficiencies were noted. Only 1 article scored 9. We recommend authors, readers, reviewers, and editors to consider MLR models more carefully and cooperate more closely with statisticians and epidemiologists. Journals should develop statistical reporting guidelines concerning MLR.

  7. Joint Forward Area Air Defense Test Program Definition.

    DTIC Science & Technology

    1984-03-30

    Visibility Conditions 23 CHAPTER 6. ACRONYMS LIST 24 . CHAPTER 7. REFERENCE 26 APPENDIX A. IDENTIFICATION ISSUE ANALAYSIS PLAN A-1 to A-17 B. C3...and kill ratios between single and multiple pass aircraft. A " multivariate analysis" will be performed to determine if there is any significant...killed will be compared for each set of identification procedure". A " multivariate analysis" will be performed on the number of hostile and friendly

  8. Multi-Sample Cluster Analysis Using Akaike’s Information Criterion.

    DTIC Science & Technology

    1982-12-20

    Intervals. For more details on these test procedures refer to Gabriel [7J, Krishnaiah (CIlUj, [11]), Srivastava [16), and others. -3- As noted in Consul...723. (4] Consul, P. C. (1969), "The Exact Distributions of Likelihood Criteria for Different Hypotheses," in P. R. Krishnaiah (Ed.), Multivariate...1178. [7] Gabriel, K. R. (1969), "A Comparison of Some lethods of Simultaneous Inference in MANOVA," in P. R. Krishnaiah (Ed.), Multivariate Analysis-lI

  9. Edward J. Wolfrum | NREL

    Science.gov Websites

    . Another project used multivariate statistics to develop a novel device to non-invasively measure hydrogen Cellulosic Ethanol Production due to Experimental Measurement Uncertainty," Biotechnology for Biofuels

  10. Concomitant apical suspensory procedures in women with anterior vaginal wall prolapse in the United States in 2011.

    PubMed

    Northington, Gina M; Hudson, Catherine O; Karp, Deborah R; Huber, Sarah A

    2016-04-01

    Although the surgical restoration of apical support has been shown to decrease reoperation rates, it is unclear whether this has been incorporated into current practice. The aims of this study were to determine the rate of concomitant apical suspensory procedures in women with anterior vaginal wall prolapse undergoing surgical repair in 2011 and to identify associated factors. This cross-sectional study queried the Nationwide Inpatient Sample for women with a primary diagnosis of cystocele who underwent prolapse repair in 2011. The study cohort was analyzed for demographics, concomitant procedures, and hospital characteristics. The rate of apical suspensory procedures was determined. Factors potentially associated with receiving concomitant apical suspensory procedure were evaluated using univariate analysis and multivariate logistic regression. A total of 2,900 women in the database had a primary diagnosis of cystocele and underwent surgical prolapse repair in 2011. 925 (31.9 %) subjects underwent a concomitant apical suspensory procedure. The mean age in the study cohort was 61.9 ± 12.8 years. Hysterectomies were performed in 11.1 % of subjects. 61.1 % were performed vaginally, 26.5 % laparoscopically, and 12.5 % abdominally. On multivariate analysis, age greater than 50 years, Caucasian race, concomitant hysterectomy, and an urban teaching hospital setting were independently associated with receiving concomitant apical suspensory procedure in 2011. Despite evidence that the restoration of apical support is important for optimal anterior support, the overall rate of concomitant apical suspensory procedures is low. Several factors may play a role in whether or not women receive an apical suspensory procedure. This study highlights opportunities to improve the quality of surgical care provided to women with anterior vaginal prolapse.

  11. Risk of Venous Thromboembolism and Operative Duration in Patients Undergoing Neurosurgical Procedures.

    PubMed

    Bekelis, Kimon; Labropoulos, Nicos; Coy, Shannon

    2017-05-01

    The association of operative duration with the risk of venous thromboembolism (VTE) has not been quantified in neurosurgery. To investigate the association of surgical duration for several neurosurgical procedures and the incidence of VTE. We performed a retrospective cohort study involving patients who underwent neurosurgical procedures from 2005 to 2012 and were registered in the American College of Surgeons National Quality Improvement Project registry. In order to control for confounding, we used multivariable regression models, and propensity score conditioning. During the study period, there were 94 747 patients, who underwent neurosurgical procedures, and met the inclusion criteria. Of these, 1358 (1.0%) developed VTE within 30 days postoperatively. Multivariable logistic regression demonstrated an association of longer operative duration with higher 30-day incidence of VTE (odds ratio [OR], 1.22; 95% confidence interval [CI], 1.19-1.25). Compared with procedures of moderate duration (third quintile, 40-60th percentile), patients undergoing the longest procedures (>80th percentile) had higher odds (OR, 3.15; 95% CI, 2.49-3.99) of developing VTE. The shortest procedures (<20th percentile) were associated with a decreased incidence of VTE (OR, 0.51; 95% CI, 0.27-0.76) in comparison to those of moderate duration. The same associations were present in propensity score-adjusted models, and models stratified by subgroups of cranial, spinal, peripheral nerve, and carotid procedures. In a cohort of patients from a national prospective surgical registry, increased operative duration was associated with increased incidence of VTE for neurosurgical procedures. These results can be used by neurosurgeons to inform operative management, and to stratify patients with regard to VTE risk. Copyright © 2016 by the Congress of Neurological Surgeons

  12. Detailed Analysis of Peri-Procedural Strokes in Patients Undergoing Intracranial Stenting in SAMMPRIS

    PubMed Central

    Fiorella, David; Derdeyn, Colin P; Lynn, Michael J; Barnwell, Stanley L; Hoh, Brian L.; Levy, Elad I.; Harrigan, Mark R.; Klucznik, Richard P.; McDougall, Cameron G.; Pride, G. Lee; Zaidat, Osama O.; Lutsep, Helmi L.; Waters, Michael F.; Hourihane, J. Maurice; Alexandrov, Andrei V.; Chiu, David; Clark, Joni M.; Johnson, Mark D.; Torbey, Michel T.; Rumboldt, Zoran; Cloft, Harry J.; Turan, Tanya N.; Lane, Bethany F.; Janis, L. Scott; Chimowitz, Marc I.

    2012-01-01

    Background and Purpose Enrollment in the SAMMPRIS trial was halted due to the high risk of stroke or death within 30 days of enrollment in the percutaneous transluminal angioplasty and stenting (PTAS) arm relative to the medical arm. This analysis focuses on the patient and procedural factors that may have been associated with peri-procedural cerebrovascular events in the trial. Methods Bivariate and multivariate analyses were performed to evaluate whether patient and procedural variables were associated with cerebral ischemic or hemorrhagic events occurring within 30 days of enrollment (termed peri-procedural) in the PTAS arm. Results Of 224 patients randomized to PTAS, 213 underwent angioplasty alone (n=5) or with stenting (n=208). Of these, 13 had hemorrhagic strokes (7 parenchymal, 6 subarachnoid), 19 had ischemic stroke, and 2 had cerebral infarcts with temporary signs (CITS) within the peri-procedural period. Ischemic events were categorized as perforator occlusions (13), embolic (4), mixed perforator and embolic (2), and delayed stent occlusion (2). Multivariate analyses showed that higher percent stenosis, lower modified Rankin score, and clopidogrel load associated with an activated clotting time above the target range were associated (p ≤ 0.05) with hemorrhagic stroke. Non-smoking, basilar artery stenosis, diabetes, and older age were associated (p ≤ 0.05) with ischemic events. Conclusions Peri-procedural strokes in SAMMPRIS had multiple causes with the most common being perforator occlusion. Although risk factors for peri-procedural strokes could be identified, excluding patients with these features from undergoing PTAS to lower the procedural risk would limit PTAS to a small subset of patients. Moreover, given the small number of events, the present data should be used for hypothesis generation rather than to guide patient selection in clinical practice. PMID:22984008

  13. Application of Maxent Multivariate Analysis to Define Climate-Change Effects on Species Distributions and Changes

    DTIC Science & Technology

    2014-09-01

    approaches. Ecological Modelling Volume 200, Issues 1–2, 10, pp 1–19. Buhlmann, Kurt A ., Thomas S.B. Akre , John B. Iverson, Deno Karapatakis, Russell A ...statistical multivariate analysis to define the current and projected future range probability for species of interest to Army land managers. A software...15 Figure 4. RCW omission rate and predicted area as a function of the cumulative threshold

  14. A Note on Asymptotic Joint Distribution of the Eigenvalues of a Noncentral Multivariate F Matrix.

    DTIC Science & Technology

    1984-11-01

    Krishnaiah (1982). Now, let us consider the samples drawn from the k multivariate normal popuiejons. Let (Xlt....Xpt) denote the mean vector of the t...to maltivariate problems. Sankh-ya, 4, 381-39(s. (71 KRISHNAIAH , P. R. (1982). Selection of variables in discrimlnant analysis. In Handbook of...Statistics, Volume 2 (P. R. Krishnaiah , editor), 805-820. North-Holland Publishing Company. 6. Unclassifie INSTRUCTIONS REPORT DOCUMENTATION PAGE

  15. LIKELIHOOD RATIO TESTS OF HYPOTHESES ON MULTIVARIATE POPULATIONS, VOLUME II, TEST OF HYPOTHESIS--STATISTICAL MODELS FOR THE EVALUATION AND INTERPRETATION OF EDUCATIONAL CRITERIA. PART 4.

    ERIC Educational Resources Information Center

    SAW, J.G.

    THIS PAPER DEALS WITH SOME TESTS OF HYPOTHESIS FREQUENTLY ENCOUNTERED IN THE ANALYSIS OF MULTIVARIATE DATA. THE TYPE OF HYPOTHESIS CONSIDERED IS THAT WHICH THE STATISTICIAN CAN ANSWER IN THE NEGATIVE OR AFFIRMATIVE. THE DOOLITTLE METHOD MAKES IT POSSIBLE TO EVALUATE THE DETERMINANT OF A MATRIX OF HIGH ORDER, TO SOLVE A MATRIX EQUATION, OR TO…

  16. Determining the Number of Component Clusters in the Standard Multivariate Normal Mixture Model Using Model-Selection Criteria.

    DTIC Science & Technology

    1983-06-16

    has been advocated by Gnanadesikan and 𔃾ilk (1969), and others in the literature. This suggests that, if we use the formal signficance test type...American Statistical Asso., 62, 1159-1178. Gnanadesikan , R., and Wilk, M..B. (1969). Data Analytic Methods in Multi- variate Statistical Analysis. In

  17. What is a good index? Problems with statistically based indicators and the Malmquist index as alternative

    USDA-ARS?s Scientific Manuscript database

    Conventional multivariate statistical methods have been used for decades to calculate environmental indicators. These methods generally work fine if they are used in a situation where the method can be tailored to the data. But there is some skepticism that the methods might fail in the context of s...

  18. Monitoring Items in Real Time to Enhance CAT Security

    ERIC Educational Resources Information Center

    Zhang, Jinming; Li, Jie

    2016-01-01

    An IRT-based sequential procedure is developed to monitor items for enhancing test security. The procedure uses a series of statistical hypothesis tests to examine whether the statistical characteristics of each item under inspection have changed significantly during CAT administration. This procedure is compared with a previously developed…

  19. Efficacy of Sleeve Gastrectomy with Duodenal-Jejunal Bypass for the Treatment of Obese Severe Diabetes Patients in Japan: a Retrospective Multicenter Study.

    PubMed

    Naitoh, Takeshi; Kasama, Kazunori; Seki, Yosuke; Ohta, Masayuki; Oshiro, Takashi; Sasaki, Akira; Miyazaki, Yasuhiro; Yamaguchi, Tsuyoshi; Hayashi, Hideki; Imoto, Hirofumi; Tanaka, Naoki; Unno, Michiaki

    2018-02-01

    The incidence of obesity with type 2 diabetes (T2DM) is increasing in Japan. The main bariatric surgery procedures in Japan are laparoscopic sleeve gastrectomy (LSG) and LSG with duodenal-jejunal bypass (LSG/DJB) because of the high incidence of gastric cancer and difficulty exploring a remnant stomach after gastric bypass. However, few studies have compared the antidiabetic effect of LSG/DJB with LSG alone. The purpose of this study is to compare the antidiabetic effect of LSG/DJB with that of LSG alone in Japanese obese diabetic patients. This was a retrospective multicenter study including 298 cases: 177 and 121 LSG and LSG/DJB cases, respectively. We investigated the antidiabetic effect of these two procedures at 12 months after surgery. Univariate and multivariate analyses were done to evaluate the predictive factors of T2DM remission. The diabetes remission rate at 12 months after surgery was 80.8% for LSG and 86.0% for LSG/DJB. Insulin use and HbA1c ≤ 6.7% were significant predictive factors in multivariate analysis for all patients. In patients with ABCD score ≥ 6, the diabetes remission rate was 94.8% and there was no difference between procedures. Only duration of diabetes and insulin use were significant predictive factors both in univariate and multivariate analyses. However, in cases with ABCD score ≤ 5, the remission rate was 70.3% and procedure type was the most significant predictive factor for diabetes remission (odds ratio [OR] 5.140). Although both LSG and LSG/DJB have good antidiabetic effects in Japanese obese patients, LSG/DJB is more effective for patients with lower ABCD scores.

  20. Effect of sexual steroids on boar kinematic sperm subpopulations.

    PubMed

    Ayala, E M E; Aragón, M A

    2017-11-01

    Here, we show the effects of sexual steroids, progesterone, testosterone, or estradiol on motility parameters of boar sperm. Sixteen commercial seminal doses, four each of four adult boars, were analyzed using computer assisted sperm analysis (CASA). Mean values of motility parameters were analyzed by bivariate and multivariate statistics. Principal component analysis (PCA), followed by hierarchical clustering, was applied on data of motility parameters, provided automatically as intervals by the CASA system. Effects of sexual steroids were described in the kinematic subpopulations identified from multivariate statistics. Mean values of motility parameters were not significantly changed after addition of sexual steroids. Multivariate graphics showed that sperm subpopulations were not sensitive to the addition of either testosterone or estradiol, but sperm subpopulations responsive to progesterone were found. Distribution of motility parameters were wide in controls but sharpened at distinct concentrations of progesterone. We conclude that kinematic sperm subpopulations responsive to progesterone are present in boar semen, and these subpopulations are masked in evaluations of mean values of motility parameters. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  1. The association of 83 plasma proteins with CHD mortality, BMI, HDL-, and total-cholesterol in men: applying multivariate statistics to identify proteins with prognostic value and biological relevance.

    PubMed

    Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M

    2009-06-01

    In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.

  2. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    NASA Astrophysics Data System (ADS)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  3. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE PAGES

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  4. Multivariate statistical model for 3D image segmentation with application to medical images.

    PubMed

    John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O

    2003-12-01

    In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).

  5. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  6. Using Statistical Process Control to Make Data-Based Clinical Decisions.

    ERIC Educational Resources Information Center

    Pfadt, Al; Wheeler, Donald J.

    1995-01-01

    Statistical process control (SPC), which employs simple statistical tools and problem-solving techniques such as histograms, control charts, flow charts, and Pareto charts to implement continual product improvement procedures, can be incorporated into human service organizations. Examples illustrate use of SPC procedures to analyze behavioral data…

  7. Statistical Cost Estimation in Higher Education: Some Alternatives.

    ERIC Educational Resources Information Center

    Brinkman, Paul T.; Niwa, Shelley

    Recent developments in econometrics that are relevant to the task of estimating costs in higher education are reviewed. The relative effectiveness of alternative statistical procedures for estimating costs are also tested. Statistical cost estimation involves three basic parts: a model, a data set, and an estimation procedure. Actual data are used…

  8. Tropical Pacific moisture variability: Its detection, synoptic structure and consequences in the general circulation

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.

    1990-01-01

    Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.

  9. Risk factors associated with surgical site infection and the development of short-term complications in macaques undergoing indwelling vascular access port placement.

    PubMed

    Graham, M L; Rieke, E F; Wijkstrom, M; Dunning, M; Aasheim, T C; Graczyk, M J; Pilon, K J; Hering, B J

    2008-08-01

    Risk factors associated with surgical site infection (SSI) and the development of short-term complications in macaques undergoing vascular access port (VAP) placement are evaluated in this study. Records from 80 macaques with VAPs were retrospectively reviewed. Logistic regression was used to identify factors associated with short-term post-operative complications. The primary outcome was SSI, which occurred in 21.6% (52.6% in the first 12 months vs. 13% thereafter) of procedures. SSI was associated with major secondary complications including VAP removal (11.4%), wound dehiscence (5.7%), and mechanical catheter occlusion (5.7%). In multivariate modeling, only surgical program progress was a statistically significant predictor of SSI, while animal compliance had a slightly protective effect. Vascular access ports have a moderate risk of complications, provided the surgical program optimizes best practices. Under complex experimental conditions, VAPs represent an important refinement, both improving animals' overall well-being and environment and reducing stress.

  10. A KST framework for correlation network construction from time series signals

    NASA Astrophysics Data System (ADS)

    Qi, Jin-Peng; Gu, Quan; Zhu, Ying; Zhang, Ping

    2018-04-01

    A KST (Kolmogorov-Smirnov test and T statistic) method is used for construction of a correlation network based on the fluctuation of each time series within the multivariate time signals. In this method, each time series is divided equally into multiple segments, and the maximal data fluctuation in each segment is calculated by a KST change detection procedure. Connections between each time series are derived from the data fluctuation matrix, and are used for construction of the fluctuation correlation network (FCN). The method was tested with synthetic simulations and the result was compared with those from using KS or T only for detection of data fluctuation. The novelty of this study is that the correlation analyses was based on the data fluctuation in each segment of each time series rather than on the original time signals, which would be more meaningful for many real world applications and for analysis of large-scale time signals where prior knowledge is uncertain.

  11. Genetic dissimilarity of putative gamma-ray-induced 'Preciosa-AAAB-Pome type' banana (Musa sp) mutants based on multivariate statistical analysis.

    PubMed

    Pestana, R K N; Amorim, E P; Ferreira, C F; Amorim, V B O; Oliveira, L S; Ledo, C A S; Silva, S O

    2011-10-25

    Bananas are among the most important fruit crops worldwide, being cultivated in more than 120 countries, mainly by small-scale producers. However, short-stature high-yielding bananas presenting good agronomic characteristics are hard to find. Consequently, wind continues to damage a great number of plantations each year, leading to lodging of plants and bunch loss. Development of new cultivars through conventional genetic breeding methods is hindered by female sterility and the low number of seeds. Mutation induction seems to have great potential for the development of new cultivars. We evaluated genetic dissimilarity among putative 'Preciosa' banana mutants generated by gamma-ray irradiation, using morphoagronomic characteristics and ISSR markers. The genetic distances between the putative 'Preciosa' mutants varied from 0.21 to 0.66, with a cophenetic correlation coefficient of 0.8064. We found good variability after irradiation of 'Preciosa' bananas; this procedure could be useful for banana breeding programs aimed at developing short-stature varieties with good agronomic characteristics.

  12. A statistical approach to rank multiple priorities in environmental epidemiology: an example from high-risk areas in Sardinia, Italy.

    PubMed

    Catelan, Dolores; Biggeri, Annibale

    2008-11-01

    In environmental epidemiology, long lists of relative risk estimates from exposed populations are compared to a reference to scrutinize the dataset for extremes. Here, inference on disease profiles for given areas, or for fixed disease population signatures, are of interest and summaries can be obtained averaging over areas or diseases. We have developed a multivariate hierarchical Bayesian approach to estimate posterior rank distributions and we show how to produce league tables of ranks with credibility intervals useful to address the above mentioned inferential problems. Applying the procedure to a real dataset from the report "Environment and Health in Sardinia (Italy)" we selected 18 areas characterized by high environmental pressure for industrial, mining or military activities investigated for 29 causes of deaths among male residents. Ranking diseases highlighted the increased burdens of neoplastic (cancerous), and non-neoplastic respiratory diseases in the heavily polluted area of Portoscuso. The averaged ranks by disease over areas showed lung cancer among the three highest positions.

  13. Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters

    NASA Astrophysics Data System (ADS)

    de Santana, Felipe Bachion; de Souza, André Marcelo; Poppi, Ronei Jesus

    2018-02-01

    This study evaluates the use of visible and near infrared spectroscopy (Vis-NIRS) combined with multivariate regression based on random forest to quantify some quality soil parameters. The parameters analyzed were soil cation exchange capacity (CEC), sum of exchange bases (SB), organic matter (OM), clay and sand present in the soils of several regions of Brazil. Current methods for evaluating these parameters are laborious, timely and require various wet analytical methods that are not adequate for use in precision agriculture, where faster and automatic responses are required. The random forest regression models were statistically better than PLS regression models for CEC, OM, clay and sand, demonstrating resistance to overfitting, attenuating the effect of outlier samples and indicating the most important variables for the model. The methodology demonstrates the potential of the Vis-NIR as an alternative for determination of CEC, SB, OM, sand and clay, making possible to develop a fast and automatic analytical procedure.

  14. Derivation and Validation of the Surgical Site Infections Risk Model Using Health Administrative Data.

    PubMed

    van Walraven, Carl; Jackson, Timothy D; Daneman, Nick

    2016-04-01

    OBJECTIVE Surgical site infections (SSIs) are common hospital-acquired infections. Tracking SSIs is important to monitor their incidence, and this process requires primary data collection. In this study, we derived and validated a method using health administrative data to predict the probability that a person who had surgery would develop an SSI within 30 days. METHODS All patients enrolled in the National Surgical Quality Improvement Program (NSQIP) from 2 sites were linked to population-based administrative datasets in Ontario, Canada. We derived a multivariate model, stratified by surgical specialty, to determine the independent association of SSI status with patient and hospitalization covariates as well as physician claim codes. This SSI risk model was validated in 2 cohorts. RESULTS The derivation cohort included 5,359 patients with a 30-day SSI incidence of 6.0% (n=118). The SSI risk model predicted the probability that a person had an SSI based on 7 covariates: index hospitalization diagnostic score; physician claims score; emergency visit diagnostic score; operation duration; surgical service; and potential SSI codes. More than 90% of patients had predicted SSI risks lower than 10%. In the derivation group, model discrimination and calibration was excellent (C statistic, 0.912; Hosmer-Lemeshow [H-L] statistic, P=.47). In the 2 validation groups, performance decreased slightly (C statistics, 0.853 and 0.812; H-L statistics, 26.4 [P=.0009] and 8.0 [P=.42]), but low-risk patients were accurately identified. CONCLUSION Health administrative data can effectively identify postoperative patients with a very low risk of surgical site infection within 30 days of their procedure. Records of higher-risk patients can be reviewed to confirm SSI status.

  15. Multivariate test power approximations for balanced linear mixed models in studies with missing data.

    PubMed

    Ringham, Brandy M; Kreidler, Sarah M; Muller, Keith E; Glueck, Deborah H

    2016-07-30

    Multilevel and longitudinal studies are frequently subject to missing data. For example, biomarker studies for oral cancer may involve multiple assays for each participant. Assays may fail, resulting in missing data values that can be assumed to be missing completely at random. Catellier and Muller proposed a data analytic technique to account for data missing at random in multilevel and longitudinal studies. They suggested modifying the degrees of freedom for both the Hotelling-Lawley trace F statistic and its null case reference distribution. We propose parallel adjustments to approximate power for this multivariate test in studies with missing data. The power approximations use a modified non-central F statistic, which is a function of (i) the expected number of complete cases, (ii) the expected number of non-missing pairs of responses, or (iii) the trimmed sample size, which is the planned sample size reduced by the anticipated proportion of missing data. The accuracy of the method is assessed by comparing the theoretical results to the Monte Carlo simulated power for the Catellier and Muller multivariate test. Over all experimental conditions, the closest approximation to the empirical power of the Catellier and Muller multivariate test is obtained by adjusting power calculations with the expected number of complete cases. The utility of the method is demonstrated with a multivariate power analysis for a hypothetical oral cancer biomarkers study. We describe how to implement the method using standard, commercially available software products and give example code. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Testing for significance of phase synchronisation dynamics in the EEG.

    PubMed

    Daly, Ian; Sweeney-Reed, Catherine M; Nasuto, Slawomir J

    2013-06-01

    A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.

  18. Processes and subdivisions in diogenites, a multivariate statistical analysis

    NASA Technical Reports Server (NTRS)

    Harriott, T. A.; Hewins, R. H.

    1984-01-01

    Multivariate statistical techniques used on diogenite orthopyroxene analyses show the relationships that occur within diogenites and the two orthopyroxenite components (class I and II) in the polymict diogenite Garland. Cluster analysis shows that only Peckelsheim is similar to Garland class I (Fe-rich) and the other diogenites resemble Garland class II. The unique diogenite Y 75032 may be related to type I by fractionation. Factor analysis confirms the subdivision and shows that Fe does not correlate with the weakly incompatible elements across the entire pyroxene composition range, indicating that igneous fractionation is not the process controlling total diogenite composition variation. The occurrence of two groups of diogenites is interpreted as the result of sampling or mixing of two main sequences of orthopyroxene cumulates with slightly different compositions.

  19. Evaluating the role of admixture in cancer therapy via in vitro drug response and multivariate genome-wide associations

    PubMed Central

    Jack, John; Havener, Tammy M; McLeod, Howard L; Motsinger-Reif, Alison A; Foster, Matthew

    2015-01-01

    Aim: We investigate the role of ethnicity and admixture in drug response across a broad group of chemotherapeutic drugs. Also, we generate hypotheses on the genetic variants driving differential drug response through multivariate genome-wide association studies. Methods: Immortalized lymphoblastoid cell lines from 589 individuals (Hispanic or non-Hispanic/Caucasian) were used to investigate dose-response for 28 chemotherapeutic compounds. Univariate and multivariate statistical models were used to elucidate associations between genetic variants and differential drug response as well as the role of ethnicity in drug potency and efficacy. Results & Conclusion: For many drugs, the variability in drug response appears to correlate with self-reported race and estimates of genetic ancestry. Additionally, multivariate genome-wide association analyses offered interesting hypotheses governing these differential responses. PMID:26314407

  20. Nonparametric relevance-shifted multiple testing procedures for the analysis of high-dimensional multivariate data with small sample sizes.

    PubMed

    Frömke, Cornelia; Hothorn, Ludwig A; Kropf, Siegfried

    2008-01-27

    In many research areas it is necessary to find differences between treatment groups with several variables. For example, studies of microarray data seek to find a significant difference in location parameters from zero or one for ratios thereof for each variable. However, in some studies a significant deviation of the difference in locations from zero (or 1 in terms of the ratio) is biologically meaningless. A relevant difference or ratio is sought in such cases. This article addresses the use of relevance-shifted tests on ratios for a multivariate parallel two-sample group design. Two empirical procedures are proposed which embed the relevance-shifted test on ratios. As both procedures test a hypothesis for each variable, the resulting multiple testing problem has to be considered. Hence, the procedures include a multiplicity correction. Both procedures are extensions of available procedures for point null hypotheses achieving exact control of the familywise error rate. Whereas the shift of the null hypothesis alone would give straight-forward solutions, the problems that are the reason for the empirical considerations discussed here arise by the fact that the shift is considered in both directions and the whole parameter space in between these two limits has to be accepted as null hypothesis. The first algorithm to be discussed uses a permutation algorithm, and is appropriate for designs with a moderately large number of observations. However, many experiments have limited sample sizes. Then the second procedure might be more appropriate, where multiplicity is corrected according to a concept of data-driven order of hypotheses.

  1. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1984-01-01

    The objective of this investigation is to develop a state-of-the-art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies. A three-dimensional multivariate O/I analysis scheme has been developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  2. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    The development of a state of the art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies was investigated. A three dimensional multivariate O/I analysis scheme was developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  3. A Web-based nomogram predicting para-aortic nodal metastasis in incompletely staged patients with endometrial cancer: a Korean Multicenter Study.

    PubMed

    Kang, Sokbom; Lee, Jong-Min; Lee, Jae-Kwan; Kim, Jae-Weon; Cho, Chi-Heum; Kim, Seok-Mo; Park, Sang-Yoon; Park, Chan-Yong; Kim, Ki-Tae

    2014-03-01

    The purpose of this study is to develop a Web-based nomogram for predicting the individualized risk of para-aortic nodal metastasis in incompletely staged patients with endometrial cancer. From 8 institutions, the medical records of 397 patients who underwent pelvic and para-aortic lymphadenectomy as a surgical staging procedure were retrospectively reviewed. A multivariate logistic regression model was created and internally validated by rigorous bootstrap resampling methods. Finally, the model was transformed into a user-friendly Web-based nomogram (http://http://www.kgog.org/nomogram/empa001.html). The rate of para-aortic nodal metastasis was 14.4% (57/397 patients). Using a stepwise variable selection, 4 variables including deep myometrial invasion, non-endometrioid subtype, lymphovascular space invasion, and log-transformed CA-125 levels were finally adopted. After 1000 repetitions of bootstrapping, all of these 4 variables retained a significant association with para-aortic nodal metastasis in the multivariate analysis-deep myometrial invasion (P = 0.001), non-endometrioid histologic subtype (P = 0.034), lymphovascular space invasion (P = 0.003), and log-transformed serum CA-125 levels (P = 0.004). The model showed good discrimination (C statistics = 0.87; 95% confidence interval, 0.82-0.92) and accurate calibration (Hosmer-Lemeshow P = 0.74). This nomogram showed good performance in predicting para-aortic metastasis in patients with endometrial cancer. The tool may be useful in determining the extent of lymphadenectomy after incomplete surgery.

  4. Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx.

    PubMed

    Huber, Gerhard F; Züllig, Lena; Soltermann, Alex; Roessle, Matthias; Graf, Nicole; Haerle, Stephan K; Studer, Gabriela; Jochum, Wolfram; Moch, Holger; Stoeckli, Sandro J

    2011-06-03

    Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease. E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance. pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (p = 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (p = 0.005) in univariate and multivariate analysis. These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx. 2b.

  5. Radiographical findings in patients with liver cirrhosis and hepatic encephalopathy.

    PubMed

    Elwir, Saleh; Hal, Hassan; Veith, Joshua; Schreibman, Ian; Kadry, Zakiyah; Riley, Thomas

    2016-08-01

    Hepatic encephalopathy is a common complication encountered in patients with liver cirrhosis. Hepatic encephalopathy is not reflected in the current liver transplant allocation system. Correlation was sought between hepatic encephalopathy with findings detected on radiographic imaging studies and the patient's clinical profile. A retrospective analysis was conducted of patients with cirrhosis, who presented for liver transplant evaluation in 2009 and 2010. Patients with hepatocellular carcinoma, ejection fraction less than 60% and who had a TIPS (transjugular intrahepatic portosystemic shunting) procedure or who did not complete the evaluation were excluded. Statistical analysis was performed and variables found to be significant on univariate analysis (P < 0.05) were analysed by a multivariate logistic regression model. A total of 117 patients met the inclusion criteria and were divided into a hepatic encephalopathy group (n = 58) and a control group (n = 59). Univariate analysis found that a smaller portal vein diameter, smaller liver antero-posterior diameter, liver nodularity and use of diuretics or centrally acting medications showed significant correlation with hepatic encephalopathy. This association was confirmed for smaller portal vein, use of diuretics and centrally acting medications in the multivariate analysis. A decrease in portal vein diameter was associated with increased risk of encephalopathy. Identifying patients with smaller portal vein diameter may warrant screening for encephalopathy by more advanced psychometric testing, and more aggressive control of constipation and other factors that may precipitate encephalopathy. © The Author(s) 2015. Published by Oxford University Press and the Digestive Science Publishing Co. Limited.

  6. Correlation of thermocouple data with voiding function after prostate cryoablation.

    PubMed

    Levy, David A

    2010-02-01

    To identify possible correlations of thermocouple recorded data with altered postoperative voiding function after prostate cryosurgery. A retrospective analysis of the records of 58 patients treated with prostate cryoablation from October 2005 through April 2009 was conducted. Multivariate analysis of patient age, presenting prostate-specific antigen level, Gleason score, clinical T stage, prostate volume, maximum low temperature thermocouple recordings, history of radiation and or hormonal therapy, were studied as possible correlative factors for altered postoperative voiding function. Of 58 patients, 22 (37.9%) manifested postcryoablation urgency and frequency (n = 13) requiring medical therapy or retention (n = 9). On multivariate analysis, age (P = .037) and an external sphincter temperature < or = 23 degrees C (P = .012) were associated with voiding frequency, urgency, or retention (odds ratio = 6.26, 95% CI: 1.62-24.16), whereas anterior rectal wall temperature (Denon) was weakly associated (P = .079). Thermocouple data provide an objective means of assessing cryosurgical outcomes. This is the first report of a correlation of such data to post-treatment voiding function. A total of 37.9% of patients experienced urgency and/or frequency or urinary retention after cryoablation of the prostate for localized disease. Older age and external sphincter temperature < or = 23 degrees C were statistically significant predictors of these events. The data suggest that limiting the degree of freezing at the external sphincter may decrease procedure related morbidity. Further study is warranted to better delineate temperature-related data on treatment outcomes. 2010 Elsevier Inc. All rights reserved.

  7. Path analysis and multi-criteria decision making: an approach for multivariate model selection and analysis in health.

    PubMed

    Vasconcelos, A G; Almeida, R M; Nobre, F F

    2001-08-01

    This paper introduces an approach that includes non-quantitative factors for the selection and assessment of multivariate complex models in health. A goodness-of-fit based methodology combined with fuzzy multi-criteria decision-making approach is proposed for model selection. Models were obtained using the Path Analysis (PA) methodology in order to explain the interrelationship between health determinants and the post-neonatal component of infant mortality in 59 municipalities of Brazil in the year 1991. Socioeconomic and demographic factors were used as exogenous variables, and environmental, health service and agglomeration as endogenous variables. Five PA models were developed and accepted by statistical criteria of goodness-of fit. These models were then submitted to a group of experts, seeking to characterize their preferences, according to predefined criteria that tried to evaluate model relevance and plausibility. Fuzzy set techniques were used to rank the alternative models according to the number of times a model was superior to ("dominated") the others. The best-ranked model explained above 90% of the endogenous variables variation, and showed the favorable influences of income and education levels on post-neonatal mortality. It also showed the unfavorable effect on mortality of fast population growth, through precarious dwelling conditions and decreased access to sanitation. It was possible to aggregate expert opinions in model evaluation. The proposed procedure for model selection allowed the inclusion of subjective information in a clear and systematic manner.

  8. Anger expression, violent behavior, and symptoms of depression among male college students in Ethiopia

    PubMed Central

    Terasaki, Dale J; Gelaye, Bizu; Berhane, Yemane; Williams, Michelle A

    2009-01-01

    Background Depression is an important global public health problem. Given the scarcity of studies involving African youths, this study was conducted to evaluate the associations of anger expression and violent behavior with symptoms of depression among male college students. Methods A self-administered questionnaire was used to collect information on socio-demographic and lifestyle characteristics and violent behavior among 1,176 college students in Awassa, Ethiopia in June, 2006. The questionnaire incorporated the Spielberger Anger-Out Expression (SAOE) scale and symptoms of depression were evaluated using the Patient Health Questionnaire (PHQ-9). Multivariable logistic regression procedures were used to calculate adjusted odds ratios (OR) and 95% confidence intervals (95%CI). Results Symptoms of depression were evident in 23.6% of participants. Some 54.3% of students reported committing at least one act of violence in the current academic year; and 29.3% of students reported high (SAOE score ≥ 15) levels of anger-expression. In multivariate analysis, moderate (OR = 1.97; 95%CI 1.33–2.93) and high (OR = 3.23; 95%CI 2.14–4.88) outward anger were statistically significantly associated with increased risks of depressive symptoms. Violent behavior was noted to be associated with depressive symptoms (OR = 1.82; 95%CI 1.37–2.40). Conclusion Further research should be conducted to better characterize community and individual level determinants of anger-expression, violent behavior and depression among youths. PMID:19138431

  9. True survival benefit of lung transplantation for cystic fibrosis patients: the Zurich experience.

    PubMed

    Hofer, Markus; Benden, Christian; Inci, Ilhan; Schmid, Christoph; Irani, Sarosh; Speich, Rudolf; Weder, Walter; Boehler, Annette

    2009-04-01

    Lung transplantation is the ultimate therapy for end-stage cystic fibrosis (CF) lung disease; however, the debate continues as to whether lung transplantation improves survival. We report post-transplant outcome in CF at our institution by comparing 5-year post-transplant survival with a calculated 5-year survival without lung transplantation, using a predictive 5-year survivorship model, and describe pre-transplant parameters influencing transplant outcome. CF patients undergoing lung transplantation at our center were included (1992 to 2007). Survival rates were calculated and compared, and univariate and multivariate Cox regression analyses were used for statistical assessment. Eighty transplants were performed in CF patients, 11 (13.8%) of whom were children. Mean age at transplant was 26.2 years (95% confidence interval: 24.4 to 28.0). The Liou raw score at transplant was -20 (95% confidence interval: -16 to -24), resulting in an estimated 5-year survival without transplantation of 33 +/- 14%, compared with a 5-year post-transplant survival of 68.2 +/- 5.6%. Further improvement was noted in the recent transplant era (since 2000), with a 5-year survival of 72.7 +/- 7.3%. Univariate analysis revealed that later year of transplant and diagnosis of diabetes influenced survival positively. Pediatric age had no negative impact. In the multivariate analysis, only diabetes influenced survival, in a positive manner. Lung transplantation performed at centers having experience with the procedure can offer a true survival benefit to patients with end-stage CF lung disease.

  10. Risk factors for pedicled flap necrosis in hand soft tissue reconstruction: a multivariate logistic regression analysis.

    PubMed

    Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun

    2018-03-01

    Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.

  11. Introducing Statistical Inference to Biology Students through Bootstrapping and Randomization

    ERIC Educational Resources Information Center

    Lock, Robin H.; Lock, Patti Frazer

    2008-01-01

    Bootstrap methods and randomization tests are increasingly being used as alternatives to standard statistical procedures in biology. They also serve as an effective introduction to the key ideas of statistical inference in introductory courses for biology students. We discuss the use of such simulation based procedures in an integrated curriculum…

  12. Efficiency Analysis: Enhancing the Statistical and Evaluative Power of the Regression-Discontinuity Design.

    ERIC Educational Resources Information Center

    Madhere, Serge

    An analytic procedure, efficiency analysis, is proposed for improving the utility of quantitative program evaluation for decision making. The three features of the procedure are explained: (1) for statistical control, it adopts and extends the regression-discontinuity design; (2) for statistical inferences, it de-emphasizes hypothesis testing in…

  13. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  14. Optimal moment determination in POME-copula based hydrometeorological dependence modelling

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi

    2017-07-01

    Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.

  15. Multivariate Tensor-based Morphometry on Surfaces: Application to Mapping Ventricular Abnormalities in HIV/AIDS

    PubMed Central

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F.; Becker, James T.; Aizenstein, Howard J.; Lopez, Oscar L.; Tamburo, Robert J.; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics - these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. PMID:19900560

  16. On measures of association among genetic variables

    PubMed Central

    Gianola, Daniel; Manfredi, Eduardo; Simianer, Henner

    2012-01-01

    Summary Systems involving many variables are important in population and quantitative genetics, for example, in multi-trait prediction of breeding values and in exploration of multi-locus associations. We studied departures of the joint distribution of sets of genetic variables from independence. New measures of association based on notions of statistical distance between distributions are presented. These are more general than correlations, which are pairwise measures, and lack a clear interpretation beyond the bivariate normal distribution. Our measures are based on logarithmic (Kullback-Leibler) and on relative ‘distances’ between distributions. Indexes of association are developed and illustrated for quantitative genetics settings in which the joint distribution of the variables is either multivariate normal or multivariate-t, and we show how the indexes can be used to study linkage disequilibrium in a two-locus system with multiple alleles and present applications to systems of correlated beta distributions. Two multivariate beta and multivariate beta-binomial processes are examined, and new distributions are introduced: the GMS-Sarmanov multivariate beta and its beta-binomial counterpart. PMID:22742500

  17. Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.

    2012-06-15

    In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less

  18. Generating Multivariate Ordinal Data via Entropy Principles.

    PubMed

    Lee, Yen; Kaplan, David

    2018-03-01

    When conducting robustness research where the focus of attention is on the impact of non-normality, the marginal skewness and kurtosis are often used to set the degree of non-normality. Monte Carlo methods are commonly applied to conduct this type of research by simulating data from distributions with skewness and kurtosis constrained to pre-specified values. Although several procedures have been proposed to simulate data from distributions with these constraints, no corresponding procedures have been applied for discrete distributions. In this paper, we present two procedures based on the principles of maximum entropy and minimum cross-entropy to estimate the multivariate observed ordinal distributions with constraints on skewness and kurtosis. For these procedures, the correlation matrix of the observed variables is not specified but depends on the relationships between the latent response variables. With the estimated distributions, researchers can study robustness not only focusing on the levels of non-normality but also on the variations in the distribution shapes. A simulation study demonstrates that these procedures yield excellent agreement between specified parameters and those of estimated distributions. A robustness study concerning the effect of distribution shape in the context of confirmatory factor analysis shows that shape can affect the robust [Formula: see text] and robust fit indices, especially when the sample size is small, the data are severely non-normal, and the fitted model is complex.

  19. Retrospective Evaluation of Safety, Efficacy and Risk Factors for Pneumothorax in Simultaneous Localizations of Multiple Pulmonary Nodules Using Hook Wire System.

    PubMed

    Zhong, Yan; Xu, Xiao-Quan; Pan, Xiang-Long; Zhang, Wei; Xu, Hai; Yuan, Mei; Kong, Ling-Yan; Pu, Xue-Hui; Chen, Liang; Yu, Tong-Fu

    2017-09-01

    To evaluate the safety and efficacy of the hook wire system in the simultaneous localizations for multiple pulmonary nodules (PNs) before video-assisted thoracoscopic surgery (VATS), and to clarify the risk factors for pneumothorax associated with the localization procedure. Between January 2010 and February 2016, 67 patients (147 nodules, Group A) underwent simultaneous localizations for multiple PNs using a hook wire system. The demographic, localization procedure-related information and the occurrence rate of pneumothorax were assessed and compared with a control group (349 patients, 349 nodules, Group B). Multivariate logistic regression analyses were used to determine the risk factors for pneumothorax during the localization procedure. All the 147 nodules were successfully localized. Four (2.7%) hook wires dislodged before VATS procedure, but all these four lesions were successfully resected according to the insertion route of hook wire. Pathological diagnoses were acquired for all 147 nodules. Compared with Group B, Group A demonstrated significantly longer procedure time (p < 0.001) and higher occurrence rate of pneumothorax (p = 0.019). Multivariate logistic regression analysis indicated that position change during localization procedure (OR 2.675, p = 0.021) and the nodules located in the ipsilateral lung (OR 9.404, p < 0.001) were independent risk factors for pneumothorax. Simultaneous localizations for multiple PNs using a hook wire system before VATS procedure were safe and effective. Compared with localization for single PN, simultaneous localizations for multiple PNs were prone to the occurrence of pneumothorax. Position change during localization procedure and the nodules located in the ipsilateral lung were independent risk factors for pneumothorax.

  20. Geographic variation in forest composition and precipitation predict the synchrony of forest insect outbreaks

    Treesearch

    Kyle J. Haynes; Andrew M. Liebhold; Ottar N. Bjørnstad; Andrew J. Allstadt; Randall S. Morin

    2018-01-01

    Evaluating the causes of spatial synchrony in population dynamics in nature is notoriously difficult due to a lack of data and appropriate statistical methods. Here, we use a recently developed method, a multivariate extension of the local indicators of spatial autocorrelation statistic, to map geographic variation in the synchrony of gypsy moth outbreaks. Regression...

Top