USDA-ARS?s Scientific Manuscript database
Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...
Multivariate Strategies in Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Hansen, Lars Kai
2007-01-01
We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.
NASA Technical Reports Server (NTRS)
Wolf, S. F.; Lipschutz, M. E.
1993-01-01
Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.
The Statistical Consulting Center for Astronomy (SCCA)
NASA Technical Reports Server (NTRS)
Akritas, Michael
2001-01-01
The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.
Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.
2011-01-01
The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108
Learning investment indicators through data extension
NASA Astrophysics Data System (ADS)
Dvořák, Marek
2017-07-01
Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.
NASA Astrophysics Data System (ADS)
Ghanate, A. D.; Kothiwale, S.; Singh, S. P.; Bertrand, Dominique; Krishna, C. Murali
2011-02-01
Cancer is now recognized as one of the major causes of morbidity and mortality. Histopathological diagnosis, the gold standard, is shown to be subjective, time consuming, prone to interobserver disagreement, and often fails to predict prognosis. Optical spectroscopic methods are being contemplated as adjuncts or alternatives to conventional cancer diagnostics. The most important aspect of these approaches is their objectivity, and multivariate statistical tools play a major role in realizing it. However, rigorous evaluation of the robustness of spectral models is a prerequisite. The utility of Raman spectroscopy in the diagnosis of cancers has been well established. Until now, the specificity and applicability of spectral models have been evaluated for specific cancer types. In this study, we have evaluated the utility of spectroscopic models representing normal and malignant tissues of the breast, cervix, colon, larynx, and oral cavity in a broader perspective, using different multivariate tests. The limit test, which was used in our earlier study, gave high sensitivity but suffered from poor specificity. The performance of other methods such as factorial discriminant analysis and partial least square discriminant analysis are at par with more complex nonlinear methods such as decision trees, but they provide very little information about the classification model. This comparative study thus demonstrates not just the efficacy of Raman spectroscopic models but also the applicability and limitations of different multivariate tools for discrimination under complex conditions such as the multicancer scenario.
Predicting trauma patient mortality: ICD [or ICD-10-AM] versus AIS based approaches.
Willis, Cameron D; Gabbe, Belinda J; Jolley, Damien; Harrison, James E; Cameron, Peter A
2010-11-01
The International Classification of Diseases Injury Severity Score (ICISS) has been proposed as an International Classification of Diseases (ICD)-10-based alternative to mortality prediction tools that use Abbreviated Injury Scale (AIS) data, including the Trauma and Injury Severity Score (TRISS). To date, studies have not examined the performance of ICISS using Australian trauma registry data. This study aimed to compare the performance of ICISS with other mortality prediction tools in an Australian trauma registry. This was a retrospective review of prospectively collected data from the Victorian State Trauma Registry. A training dataset was created for model development and a validation dataset for evaluation. The multiplicative ICISS model was compared with a worst injury ICISS approach, Victorian TRISS (V-TRISS, using local coefficients), maximum AIS severity and a multivariable model including ICD-10-AM codes as predictors. Models were investigated for discrimination (C-statistic) and calibration (Hosmer-Lemeshow statistic). The multivariable approach had the highest level of discrimination (C-statistic 0.90) and calibration (H-L 7.65, P= 0.468). Worst injury ICISS, V-TRISS and maximum AIS had similar performance. The multiplicative ICISS produced the lowest level of discrimination (C-statistic 0.80) and poorest calibration (H-L 50.23, P < 0.001). The performance of ICISS may be affected by the data used to develop estimates, the ICD version employed, the methods for deriving estimates and the inclusion of covariates. In this analysis, a multivariable approach using ICD-10-AM codes was the best-performing method. A multivariable ICISS approach may therefore be a useful alternative to AIS-based methods and may have comparable predictive performance to locally derived TRISS models. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
NONPARAMETRIC MANOVA APPROACHES FOR NON-NORMAL MULTIVARIATE OUTCOMES WITH MISSING VALUES
He, Fanyin; Mazumdar, Sati; Tang, Gong; Bhatia, Triptish; Anderson, Stewart J.; Dew, Mary Amanda; Krafty, Robert; Nimgaonkar, Vishwajit; Deshpande, Smita; Hall, Martica; Reynolds, Charles F.
2017-01-01
Between-group comparisons often entail many correlated response variables. The multivariate linear model, with its assumption of multivariate normality, is the accepted standard tool for these tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) test is frequently used. However, this test requires complete cases with no missing values in response variables. Deletion of cases with missing values likely leads to inefficient statistical inference. Here we extend the MKW test to retain information from partially-observed cases. Results of simulated studies and analysis of real data show that the proposed method provides adequate coverage and superior power to complete-case analyses. PMID:29416225
Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity
Dinov, Ivo D.; Christou, Nicolas
2014-01-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges. PMID:24465054
Dinov, Ivo D; Christou, Nicolas
2011-09-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges.
Deconstructing multivariate decoding for the study of brain function.
Hebart, Martin N; Baker, Chris I
2017-08-04
Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.
PYCHEM: a multivariate analysis package for python.
Jarvis, Roger M; Broadhurst, David; Johnson, Helen; O'Boyle, Noel M; Goodacre, Royston
2006-10-15
We have implemented a multivariate statistical analysis toolbox, with an optional standalone graphical user interface (GUI), using the Python scripting language. This is a free and open source project that addresses the need for a multivariate analysis toolbox in Python. Although the functionality provided does not cover the full range of multivariate tools that are available, it has a broad complement of methods that are widely used in the biological sciences. In contrast to tools like MATLAB, PyChem 2.0.0 is easily accessible and free, allows for rapid extension using a range of Python modules and is part of the growing amount of complementary and interoperable scientific software in Python based upon SciPy. One of the attractions of PyChem is that it is an open source project and so there is an opportunity, through collaboration, to increase the scope of the software and to continually evolve a user-friendly platform that has applicability across a wide range of analytical and post-genomic disciplines. http://sourceforge.net/projects/pychem
Velasco-Tapia, Fernando
2014-01-01
Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures).
Del Giudice, G; Padulano, R; Siciliano, D
2016-01-01
The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements.
Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F
2017-04-01
Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.
Velasco-Tapia, Fernando
2014-01-01
Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures). PMID:24737994
TU-FG-201-05: Varian MPC as a Statistical Process Control Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carver, A; Rowbottom, C
Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whethermore » or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity and beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.« less
Interactive visual analysis promotes exploration of long-term ecological data
T.N. Pham; J.A. Jones; R. Metoyer; F.J. Swanson; R.J. Pabst
2013-01-01
Long-term ecological data are crucial in helping ecologists understand ecosystem function and environmental change. Nevertheless, these kinds of data sets are difficult to analyze because they are usually large, multivariate, and spatiotemporal. Although existing analysis tools such as statistical methods and spreadsheet software permit rigorous tests of pre-conceived...
Multivariate model of female black bear habitat use for a Geographic Information System
Clark, Joseph D.; Dunn, James E.; Smith, Kimberly G.
1993-01-01
Simple univariate statistical techniques may not adequately assess the multidimensional nature of habitats used by wildlife. Thus, we developed a multivariate method to model habitat-use potential using a set of female black bear (Ursus americanus) radio locations and habitat data consisting of forest cover type, elevation, slope, aspect, distance to roads, distance to streams, and forest cover type diversity score in the Ozark Mountains of Arkansas. The model is based on the Mahalanobis distance statistic coupled with Geographic Information System (GIS) technology. That statistic is a measure of dissimilarity and represents a standardized squared distance between a set of sample variates and an ideal based on the mean of variates associated with animal observations. Calculations were made with the GIS to produce a map containing Mahalanobis distance values within each cell on a 60- × 60-m grid. The model identified areas of high habitat use potential that could not otherwise be identified by independent perusal of any single map layer. This technique avoids many pitfalls that commonly affect typical multivariate analyses of habitat use and is a useful tool for habitat manipulation or mitigation to favor terrestrial vertebrates that use habitats on a landscape scale.
Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan
2017-12-01
Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Polly, Drew; Wang, Chuang; Martin, Christie; Lambert, Richard; Pugalee, David; Middleton, Catherina
2018-01-01
This study examined the influence of a professional development project about an internet-based mathematics formative assessment tool and related pedagogies on primary teachers' instruction and student achievement. Teachers participated in 72 h of professional development during the year. Descriptive statistics and multivariate analyses of…
Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup
2010-10-01
We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.
Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun
2018-01-01
To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.
Karunathilaka, Sanjeewa R; Kia, Ali-Reza Fardin; Srigley, Cynthia; Chung, Jin Kyu; Mossoba, Magdi M
2016-10-01
A rapid tool for evaluating authenticity was developed and applied to the screening of extra virgin olive oil (EVOO) retail products by using Fourier-transform near infrared (FT-NIR) spectroscopy in combination with univariate and multivariate data analysis methods. Using disposable glass tubes, spectra for 62 reference EVOO, 10 edible oil adulterants, 20 blends consisting of EVOO spiked with adulterants, 88 retail EVOO products and other test samples were rapidly measured in the transmission mode without any sample preparation. The univariate conformity index (CI) and the multivariate supervised soft independent modeling of class analogy (SIMCA) classification tool were used to analyze the various olive oil products which were tested for authenticity against a library of reference EVOO. Better discrimination between the authentic EVOO and some commercial EVOO products was observed with SIMCA than with CI analysis. Approximately 61% of all EVOO commercial products were flagged by SIMCA analysis, suggesting that further analysis be performed to identify quality issues and/or potential adulterants. Due to its simplicity and speed, FT-NIR spectroscopy in combination with multivariate data analysis can be used as a complementary tool to conventional official methods of analysis to rapidly flag EVOO products that may not belong to the class of authentic EVOO. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Multivariate flood risk assessment: reinsurance perspective
NASA Astrophysics Data System (ADS)
Ghizzoni, Tatiana; Ellenrieder, Tobias
2013-04-01
For insurance and re-insurance purposes the knowledge of the spatial characteristics of fluvial flooding is fundamental. The probability of simultaneous flooding at different locations during one event and the associated severity and losses have to be estimated in order to assess premiums and for accumulation control (Probable Maximum Losses calculation). Therefore, the identification of a statistical model able to describe the multivariate joint distribution of flood events in multiple location is necessary. In this context, copulas can be viewed as alternative tools for dealing with multivariate simulations as they allow to formalize dependence structures of random vectors. An application of copula function for flood scenario generation is presented for Australia (Queensland, New South Wales and Victoria) where 100.000 possible flood scenarios covering approximately 15.000 years were simulated.
1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.
Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr
2015-12-01
Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.
Putting engineering back into protein engineering: bioinformatic approaches to catalyst design.
Gustafsson, Claes; Govindarajan, Sridhar; Minshull, Jeremy
2003-08-01
Complex multivariate engineering problems are commonplace and not unique to protein engineering. Mathematical and data-mining tools developed in other fields of engineering have now been applied to analyze sequence-activity relationships of peptides and proteins and to assist in the design of proteins and peptides with specified properties. Decreasing costs of DNA sequencing in conjunction with methods to quickly synthesize statistically representative sets of proteins allow modern heuristic statistics to be applied to protein engineering. This provides an alternative approach to expensive assays or unreliable high-throughput surrogate screens.
Quantifying the impact of between-study heterogeneity in multivariate meta-analyses
Jackson, Dan; White, Ian R; Riley, Richard D
2012-01-01
Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950
Multivariate analysis of cytokine profiles in pregnancy complications.
Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali
2018-03-01
The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.
Prolonged instability prior to a regime shift
Spanbauer, Trisha; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.
2014-01-01
Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia.
imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel.
Grapov, Dmitry; Newman, John W
2012-09-01
Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010).
TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.
2013-01-01
To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524
MGAS: a powerful tool for multivariate gene-based genome-wide association analysis.
Van der Sluis, Sophie; Dolan, Conor V; Li, Jiang; Song, Youqiang; Sham, Pak; Posthuma, Danielle; Li, Miao-Xin
2015-04-01
Standard genome-wide association studies, testing the association between one phenotype and a large number of single nucleotide polymorphisms (SNPs), are limited in two ways: (i) traits are often multivariate, and analysis of composite scores entails loss in statistical power and (ii) gene-based analyses may be preferred, e.g. to decrease the multiple testing problem. Here we present a new method, multivariate gene-based association test by extended Simes procedure (MGAS), that allows gene-based testing of multivariate phenotypes in unrelated individuals. Through extensive simulation, we show that under most trait-generating genotype-phenotype models MGAS has superior statistical power to detect associated genes compared with gene-based analyses of univariate phenotypic composite scores (i.e. GATES, multiple regression), and multivariate analysis of variance (MANOVA). Re-analysis of metabolic data revealed 32 False Discovery Rate controlled genome-wide significant genes, and 12 regions harboring multiple genes; of these 44 regions, 30 were not reported in the original analysis. MGAS allows researchers to conduct their multivariate gene-based analyses efficiently, and without the loss of power that is often associated with an incorrectly specified genotype-phenotype models. MGAS is freely available in KGG v3.0 (http://statgenpro.psychiatry.hku.hk/limx/kgg/download.php). Access to the metabolic dataset can be requested at dbGaP (https://dbgap.ncbi.nlm.nih.gov/). The R-simulation code is available from http://ctglab.nl/people/sophie_van_der_sluis. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi
2016-01-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405
Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi
2015-11-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.
NASA Astrophysics Data System (ADS)
Panagopoulos, George P.
2014-10-01
The multivariate statistical techniques conducted on quarterly water consumption data in Mytilene reveal valuable tools that could help the local authorities in assigning strategies aimed at the sustainable development of urban water resources. The proposed methodology is an innovative approach, applied for the first time in the international literature, to handling urban water consumption data in order to analyze statistically the interrelationships among the determinants of urban water use. Factor analysis of demographic, socio-economic and hydrological variables shows that total water consumption in Mytilene is the combined result of increases in (a) income, (b) population, (c) connections and (d) climate parameters. On the other hand, the per connection water demand is influenced by variations in water prices but with different consequences in each consumption class. Increases in water prices are faced by large consumers; they then reduce their consumption rates and transfer to lower consumption blocks. These shifts are responsible for the increase in the average consumption values in the lower blocks despite the increase in the marginal prices.
Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M
2009-06-01
In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.
NASA Astrophysics Data System (ADS)
Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.
2014-12-01
The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.
Multivariate meta-analysis for non-linear and other multi-parameter associations
Gasparrini, A; Armstrong, B; Kenward, M G
2012-01-01
In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043
Cost Modeling for Space Telescope
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2011-01-01
Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.
NASA Astrophysics Data System (ADS)
El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.
2006-11-01
Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.
NASA Astrophysics Data System (ADS)
Guillen, George; Rainey, Gail; Morin, Michelle
2004-04-01
Currently, the Minerals Management Service uses the Oil Spill Risk Analysis model (OSRAM) to predict the movement of potential oil spills greater than 1000 bbl originating from offshore oil and gas facilities. OSRAM generates oil spill trajectories using meteorological and hydrological data input from either actual physical measurements or estimates generated from other hydrological models. OSRAM and many other models produce output matrices of average, maximum and minimum contact probabilities to specific landfall or target segments (columns) from oil spills at specific points (rows). Analysts and managers are often interested in identifying geographic areas or groups of facilities that pose similar risks to specific targets or groups of targets if a spill occurred. Unfortunately, due to the potentially large matrix generated by many spill models, this question is difficult to answer without the use of data reduction and visualization methods. In our study we utilized a multivariate statistical method called cluster analysis to group areas of similar risk based on potential distribution of landfall target trajectory probabilities. We also utilized ArcView™ GIS to display spill launch point groupings. The combination of GIS and multivariate statistical techniques in the post-processing of trajectory model output is a powerful tool for identifying and delineating areas of similar risk from multiple spill sources. We strongly encourage modelers, statistical and GIS software programmers to closely collaborate to produce a more seamless integration of these technologies and approaches to analyzing data. They are complimentary methods that strengthen the overall assessment of spill risks.
NASA Astrophysics Data System (ADS)
Jogesh Babu, G.
2017-01-01
A year-long research (Aug 2016- May 2017) program on `Statistical, Mathematical and Computational Methods for Astronomy (ASTRO)’ is well under way at Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation research institute in Research Triangle Park, NC. This program has brought together astronomers, computer scientists, applied mathematicians and statisticians. The main aims of this program are: to foster cross-disciplinary activities; to accelerate the adoption of modern statistical and mathematical tools into modern astronomy; and to develop new tools needed for important astronomical research problems. The program provides multiple avenues for cross-disciplinary interactions, including several workshops, long-term visitors, and regular teleconferences, so participants can continue collaborations, even if they can only spend limited time in residence at SAMSI. The main program is organized around five working groups:i) Uncertainty Quantification and Astrophysical Emulationii) Synoptic Time Domain Surveysiii) Multivariate and Irregularly Sampled Time Seriesiv) Astrophysical Populationsv) Statistics, computation, and modeling in cosmology.A brief description of each of the work under way by these groups will be given. Overlaps among various working groups will also be highlighted. How the wider astronomy community can both participate and benefit from the activities, will be briefly mentioned.
NASA Astrophysics Data System (ADS)
Martinez Gomez, Monica
Quality improvement of university institutions represents the most important challenge in the next years, and the potential tool to achieve it is based on the institutional evaluation in general, and specially the evaluation of the teaching performance. The opinion questionnaire from the students is the most generalised tool used to evaluate the teaching performance at Spanish universities. The general objective of this thesis is to develop a statistical methodology suitable to extract, analyse and interpret the information contained in the Questionnaire of Teaching Evaluation from Student Opinion (CEDA) of the UPV, aimed at optimising its practical use. The study is centred in the application of different multivariate techniques and has been structured in three parts: (1) Evaluation of the reliability, validity and dimensionality of the tool. The multivariate method used for this purpose is the Factorial Analysis. (2) Determination of the capacity of the questionnaire to identify different profiles of lecturers based on the quality perceived by students. This target is conducted with different multivariate classification techniques: hierarchical cluster analysis, non-hierarchical and two-stage analysis. Moreover, those items that best discriminate among the teaching typologies obtained are identified in the questionnaire. (3) Identification of the teaching typologies according to different descriptive characteristics referent to the subject and lecturer, with the use of decision trees. Once identified these typologies, a new discriminant analysis is conducted aimed at identifying those items that best characterise each typology. Finally, a study is carried out with the classification method SIMCA (Soft Independent Modelling of Class Analogy) in order to determine the discriminant loading of every item among the identified teaching typologies, allowing the identification of those that best distinguish the different classes obtained. With the combined use of the proposed techniques, it is expected to optimise the use of CEDA as a measuring tool and an indicator of the teaching quality at the university, that would allow the introduction of actions for the continuous improvement in the teaching processes of the UPV.
SPICE: exploration and analysis of post-cytometric complex multivariate datasets.
Roederer, Mario; Nozzi, Joshua L; Nason, Martha C
2011-02-01
Polychromatic flow cytometry results in complex, multivariate datasets. To date, tools for the aggregate analysis of these datasets across multiple specimens grouped by different categorical variables, such as demographic information, have not been optimized. Often, the exploration of such datasets is accomplished by visualization of patterns with pie charts or bar charts, without easy access to statistical comparisons of measurements that comprise multiple components. Here we report on algorithms and a graphical interface we developed for these purposes. In particular, we discuss thresholding necessary for accurate representation of data in pie charts, the implications for display and comparison of normalized versus unnormalized data, and the effects of averaging when samples with significant background noise are present. Finally, we define a statistic for the nonparametric comparison of complex distributions to test for difference between groups of samples based on multi-component measurements. While originally developed to support the analysis of T cell functional profiles, these techniques are amenable to a broad range of datatypes. Published 2011 Wiley-Liss, Inc.
imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel
Grapov, Dmitry; Newman, John W.
2012-01-01
Summary: Interactive modules for Data Exploration and Visualization (imDEV) is a Microsoft Excel spreadsheet embedded application providing an integrated environment for the analysis of omics data through a user-friendly interface. Individual modules enables interactive and dynamic analyses of large data by interfacing R's multivariate statistics and highly customizable visualizations with the spreadsheet environment, aiding robust inferences and generating information-rich data visualizations. This tool provides access to multiple comparisons with false discovery correction, hierarchical clustering, principal and independent component analyses, partial least squares regression and discriminant analysis, through an intuitive interface for creating high-quality two- and a three-dimensional visualizations including scatter plot matrices, distribution plots, dendrograms, heat maps, biplots, trellis biplots and correlation networks. Availability and implementation: Freely available for download at http://sourceforge.net/projects/imdev/. Implemented in R and VBA and supported by Microsoft Excel (2003, 2007 and 2010). Contact: John.Newman@ars.usda.gov Supplementary Information: Installation instructions, tutorials and users manual are available at http://sourceforge.net/projects/imdev/. PMID:22815358
Holmes, Susan; Alekseyenko, Alexander; Timme, Alden; Nelson, Tyrrell; Pasricha, Pankaj Jay; Spormann, Alfred
2011-01-01
This article explains the statistical and computational methodology used to analyze species abundances collected using the LNBL Phylochip in a study of Irritable Bowel Syndrome (IBS) in rats. Some tools already available for the analysis of ordinary microarray data are useful in this type of statistical analysis. For instance in correcting for multiple testing we use Family Wise Error rate control and step-down tests (available in the multtest package). Once the most significant species are chosen we use the hypergeometric tests familiar for testing GO categories to test specific phyla and families. We provide examples of normalization, multivariate projections, batch effect detection and integration of phylogenetic covariation, as well as tree equalization and robustification methods.
Cavalcante, Y L; Hauser-Davis, R A; Saraiva, A C F; Brandão, I L S; Oliveira, T F; Silveira, A M
2013-01-01
This paper compared and evaluated seasonal variations in physico-chemical parameters and metals at a hydroelectric power station reservoir by applying Multivariate Analyses and Artificial Neural Networks (ANN) statistical techniques. A Factor Analysis was used to reduce the number of variables: the first factor was composed of elements Ca, K, Mg and Na, and the second by Chemical Oxygen Demand. The ANN showed 100% correct classifications in training and validation samples. Physico-chemical analyses showed that water pH values were not statistically different between the dry and rainy seasons, while temperature, conductivity, alkalinity, ammonia and DO were higher in the dry period. TSS, hardness and COD, on the other hand, were higher during the rainy season. The statistical analyses showed that Ca, K, Mg and Na are directly connected to the Chemical Oxygen Demand, which indicates a possibility of their input into the reservoir system by domestic sewage and agricultural run-offs. These statistical applications, thus, are also relevant in cases of environmental management and policy decision-making processes, to identify which factors should be further studied and/or modified to recover degraded or contaminated water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.
Pre-selection and assessment of green organic solvents by clustering chemometric tools.
Tobiszewski, Marek; Nedyalkova, Miroslava; Madurga, Sergio; Pena-Pereira, Francisco; Namieśnik, Jacek; Simeonov, Vasil
2018-01-01
The study presents the result of the application of chemometric tools for selection of physicochemical parameters of solvents for predicting missing variables - bioconcentration factors, water-octanol and octanol-air partitioning constants. EPI Suite software was successfully applied to predict missing values for solvents commonly considered as "green". Values for logBCF, logK OW and logK OA were modelled for 43 rather nonpolar solvents and 69 polar ones. Application of multivariate statistics was also proved to be useful in the assessment of the obtained modelling results. The presented approach can be one of the first steps and support tools in the assessment of chemicals in terms of their greenness. Copyright © 2017 Elsevier Inc. All rights reserved.
Lommen, Arjen
2009-04-15
Hyphenated full-scan MS technology creates large amounts of data. A versatile easy to handle automation tool aiding in the data analysis is very important in handling such a data stream. MetAlign softwareas described in this manuscripthandles a broad range of accurate mass and nominal mass GC/MS and LC/MS data. It is capable of automatic format conversions, accurate mass calculations, baseline corrections, peak-picking, saturation and mass-peak artifact filtering, as well as alignment of up to 1000 data sets. A 100 to 1000-fold data reduction is achieved. MetAlign software output is compatible with most multivariate statistics programs.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2017-01-01
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.
A power analysis for multivariate tests of temporal trend in species composition.
Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel
2011-10-01
Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.
Diagnostic tools for mixing models of stream water chemistry
Hooper, Richard P.
2003-01-01
Mixing models provide a useful null hypothesis against which to evaluate processes controlling stream water chemical data. Because conservative mixing of end‐members with constant concentration is a linear process, a number of simple mathematical and multivariate statistical methods can be applied to this problem. Although mixing models have been most typically used in the context of mixing soil and groundwater end‐members, an extension of the mathematics of mixing models is presented that assesses the “fit” of a multivariate data set to a lower dimensional mixing subspace without the need for explicitly identified end‐members. Diagnostic tools are developed to determine the approximate rank of the data set and to assess lack of fit of the data. This permits identification of processes that violate the assumptions of the mixing model and can suggest the dominant processes controlling stream water chemical variation. These same diagnostic tools can be used to assess the fit of the chemistry of one site into the mixing subspace of a different site, thereby permitting an assessment of the consistency of controlling end‐members across sites. This technique is applied to a number of sites at the Panola Mountain Research Watershed located near Atlanta, Georgia.
Alamilla, Francisco; Calcerrada, Matías; García-Ruiz, Carmen; Torre, Mercedes
2013-05-10
The differentiation of blue ballpoint pen inks written on documents through an LA-ICP-MS methodology is proposed. Small common office paper portions containing ink strokes from 21 blue pens of known origin were cut and measured without any sample preparation. In a first step, Mg, Ca and Sr were proposed as internal standards (ISs) and used in order to normalize elemental intensities and subtract background signals from the paper. Then, specific criteria were designed and employed to identify target elements (Li, V, Mn, Co, Ni, Cu, Zn, Zr, Sn, W and Pb) which resulted independent of the IS chosen in a 98% of the cases and allowed a qualitative clustering of the samples. In a second step, an elemental-related ratio (ink ratio) based on the targets previously identified was used to obtain mass independent intensities and perform pairwise comparisons by means of multivariate statistical analyses (MANOVA, Tukey's HSD and T2 Hotelling). This treatment improved the discrimination power (DP) and provided objective results, achieving a complete differentiation among different brands and a partial differentiation within pen inks from the same brands. The designed data treatment, together with the use of multivariate statistical tools, represents an easy and useful tool for differentiating among blue ballpoint pen inks, with hardly sample destruction and without the need for methodological calibrations, being its use potentially advantageous from a forensic-practice standpoint. To test the procedure, it was applied to analyze real handwritten questioned contracts, previously studied by the Department of Forensic Document Exams of the Criminalistics Service of Civil Guard (Spain). The results showed that all questioned ink entries were clustered in the same group, being those different from the remaining ink on the document. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Al-Holy, Murad A; Lin, Mengshi; Alhaj, Omar A; Abu-Goush, Mahmoud H
2015-02-01
Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between 4 Alicyclobacillus strains and 4 Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm(-1) reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (for example, principal component analysis and soft independent modeling of class analogy) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these 2 genera. © 2015 Institute of Food Technologists®
Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed
2017-01-05
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.
Time management in acute vertebrobasilar occlusion.
Kamper, Lars; Rybacki, Konrad; Mansour, Michael; Winkler, Sven B; Kempkes, Udo; Haage, Patrick
2009-03-01
Acute vertebrobasilar occlusion (VBO) is associated with a high risk of stroke and death. Although local thrombolysis may achieve recanalization and improve outcome, mortality is still between 35% and 75%. However, without recanalization the chance of a good outcome is extremely poor, with mortality rates of 80-90%. Early treatment is a fundamental factor, but detailed studies of the exact time management of the diagnostic and interventional workflow are still lacking. Data on 18 patients were retrospectively evaluated. Time periods between symptom onset, admission to hospital, time of diagnosis, and beginning of intervention were correlated with postinterventional neurological status. The Glasgow Coma Scale and National Institute of Health Stroke Scale (NIHSS) were used to examine patients before and after local thrombolysis. Additionally, multivariate statistics were applied to reveal similarities between patients with neurological improvement. Primary recanalization was achieved in 77% of patients. The overall mortality was 55%. Major complications were intracranial hemorrhage and peripheral embolism. The time period from symptom onset to intervention showed a strong correlation with the postinterventional NIHSS as well as the patient's age, with the best results in a 4-h interval. Multivariate statistics revealed similarities among the patients. Evaluation of time management in acute VBO by multivariate statistics is a helpful tool for definition of similarities in this patient group. Similarly to the door-to-balloon time for acute coronary interventions, the chances for a good outcome depend on a short time interval between symptom onset and intervention. While the only manipulable time period starts with hospital admission, our results emphasize the necessity of efficient intrahospital workflow.
Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia.
Mohamed, Ibrahim; Othman, Faridah; Ibrahim, Adriana I N; Alaa-Eldin, M E; Yunus, Rossita M
2015-01-01
This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.
Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations
NASA Technical Reports Server (NTRS)
Boccippio, Dennis
2004-01-01
Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.
Prolonged Instability Prior to a Regime Shift | Science ...
Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia. This manuscript explores various methods of assessing the transition between alternative states in an ecological system described by a long-term high-resolution paleoecological dataset.
Dong, Jian-Jun; Li, Qing-Liang; Yin, Hua; Zhong, Cheng; Hao, Jun-Guang; Yang, Pan-Fei; Tian, Yu-Hong; Jia, Shi-Ru
2014-10-15
Sensory evaluation is regarded as a necessary procedure to ensure a reproducible quality of beer. Meanwhile, high-throughput analytical methods provide a powerful tool to analyse various flavour compounds, such as higher alcohol and ester. In this study, the relationship between flavour compounds and sensory evaluation was established by non-linear models such as partial least squares (PLS), genetic algorithm back-propagation neural network (GA-BP), support vector machine (SVM). It was shown that SVM with a Radial Basis Function (RBF) had a better performance of prediction accuracy for both calibration set (94.3%) and validation set (96.2%) than other models. Relatively lower prediction abilities were observed for GA-BP (52.1%) and PLS (31.7%). In addition, the kernel function of SVM played an essential role of model training when the prediction accuracy of SVM with polynomial kernel function was 32.9%. As a powerful multivariate statistics method, SVM holds great potential to assess beer quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
mESAdb: microRNA Expression and Sequence Analysis Database
Kaya, Koray D.; Karakülah, Gökhan; Yakıcıer, Cengiz M.; Acar, Aybar C.; Konu, Özlen
2011-01-01
microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data. PMID:21177657
mESAdb: microRNA expression and sequence analysis database.
Kaya, Koray D; Karakülah, Gökhan; Yakicier, Cengiz M; Acar, Aybar C; Konu, Ozlen
2011-01-01
microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.
Felix, Leonardo Bonato; Miranda de Sá, Antonio Mauricio Ferreira Leite; Infantosi, Antonio Fernando Catelli; Yehia, Hani Camille
2007-03-01
The presence of cerebral evoked responses can be tested by using objective response detectors. They are statistical tests that provide a threshold above which responses can be assumed to have occurred. The detection power depends on the signal-to-noise ratio (SNR) of the response and the amount of data available. However, the correlation within the background noise could also affect the power of such detectors. For a fixed SNR, the detection can only be improved at the expense of using a longer stretch of signal. This can constitute a limitation, for instance, in monitored surgeries. Alternatively, multivariate objective response detection (MORD) could be used. This work applies two MORD techniques (multiple coherence and multiple component synchrony measure) to EEG data collected during intermittent photic stimulation. They were evaluated throughout Monte Carlo simulations, which also allowed verifying that correlation in the background reduces the detection rate. Considering the N EEG derivations as close as possible to the primary visual cortex, if N = 4, 6 or 8, multiple coherence leads to a statistically significant higher detection rate in comparison with multiple component synchrony measure. With the former, the best performance was obtained with six signals (O1, O2, T5, T6, P3 and P4).
Multivariate methods to visualise colour-space and colour discrimination data.
Hastings, Gareth D; Rubin, Alan
2015-01-01
Despite most modern colour spaces treating colour as three-dimensional (3-D), colour data is usually not visualised in 3-D (and two-dimensional (2-D) projection-plane segments and multiple 2-D perspective views are used instead). The objectives of this article are firstly, to introduce a truly 3-D percept of colour space using stereo-pairs, secondly to view colour discrimination data using that platform, and thirdly to apply formal statistics and multivariate methods to analyse the data in 3-D. This is the first demonstration of the software that generated stereo-pairs of RGB colour space, as well as of a new computerised procedure that investigated colour discrimination by measuring colour just noticeable differences (JND). An initial pilot study and thorough investigation of instrument repeatability were performed. Thereafter, to demonstrate the capabilities of the software, five colour-normal and one colour-deficient subject were examined using the JND procedure and multivariate methods of data analysis. Scatter plots of responses were meaningfully examined in 3-D and were useful in evaluating multivariate normality as well as identifying outliers. The extent and direction of the difference between each JND response and the stimulus colour point was calculated and appreciated in 3-D. Ellipsoidal surfaces of constant probability density (distribution ellipsoids) were fitted to response data; the volumes of these ellipsoids appeared useful in differentiating the colour-deficient subject from the colour-normals. Hypothesis tests of variances and covariances showed many statistically significant differences between the results of the colour-deficient subject and those of the colour-normals, while far fewer differences were found when comparing within colour-normals. The 3-D visualisation of colour data using stereo-pairs, as well as the statistics and multivariate methods of analysis employed, were found to be unique and useful tools in the representation and study of colour. Many additional studies using these methods along with the JND and other procedures have been identified and will be reported in future publications. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists
ERIC Educational Resources Information Center
Warne, Russell T.
2014-01-01
Reviews of statistical procedures (e.g., Bangert & Baumberger, 2005; Kieffer, Reese, & Thompson, 2001; Warne, Lazo, Ramos, & Ritter, 2012) show that one of the most common multivariate statistical methods in psychological research is multivariate analysis of variance (MANOVA). However, MANOVA and its associated procedures are often not…
1 H-NMR with Multivariate Analysis for Automobile Lubricant Comparison.
Kim, Siwon; Yoon, Dahye; Lee, Dong-Kye; Yoon, Changshin; Kim, Suhkmann
2017-07-01
Identification of suspected automobile-related lubricants could provide valuable information in forensic cases. We examined that automobile lubricants might exhibit the chemometric characteristics to their individual usages. To compare the degree of clustering in the plots, we co-plotted general industrial oils that were highly dissimilar with automobile lubricants in additive compositions. 1 H-NMR spectroscopy was used with multivariate statistics as a tool for grouping, clustering, and identification of automobile lubricants in laboratory conditions. We analyzed automobile lubricants including automobile engine oils, automobile transmission oils, automobile gear oils, and motorcycle oils. In contrast to the general industrial oils, automobile lubricants showed relatively high tendencies of clustering to their usages. Our pilot study demonstrated that the comparison of known and questioned samples to their usages might be possible in forensic fields. © 2017 American Academy of Forensic Sciences.
Smith, Joseph M.; Mather, Martha E.
2012-01-01
Ecological indicators are science-based tools used to assess how human activities have impacted environmental resources. For monitoring and environmental assessment, existing species assemblage data can be used to make these comparisons through time or across sites. An impediment to using assemblage data, however, is that these data are complex and need to be simplified in an ecologically meaningful way. Because multivariate statistics are mathematical relationships, statistical groupings may not make ecological sense and will not have utility as indicators. Our goal was to define a process to select defensible and ecologically interpretable statistical simplifications of assemblage data in which researchers and managers can have confidence. For this, we chose a suite of statistical methods, compared the groupings that resulted from these analyses, identified convergence among groupings, then we interpreted the groupings using species and ecological guilds. When we tested this approach using a statewide stream fish dataset, not all statistical methods worked equally well. For our dataset, logistic regression (Log), detrended correspondence analysis (DCA), cluster analysis (CL), and non-metric multidimensional scaling (NMDS) provided consistent, simplified output. Specifically, the Log, DCA, CL-1, and NMDS-1 groupings were ≥60% similar to each other, overlapped with the fluvial-specialist ecological guild, and contained a common subset of species. Groupings based on number of species (e.g., Log, DCA, CL and NMDS) outperformed groupings based on abundance [e.g., principal components analysis (PCA) and Poisson regression]. Although the specific methods that worked on our test dataset have generality, here we are advocating a process (e.g., identifying convergent groupings with redundant species composition that are ecologically interpretable) rather than the automatic use of any single statistical tool. We summarize this process in step-by-step guidance for the future use of these commonly available ecological and statistical methods in preparing assemblage data for use in ecological indicators.
High precision mass measurements for wine metabolomics
Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis D.; Schmitt-Kopplin, Philippe
2014-01-01
An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS2. In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy. PMID:25431760
High precision mass measurements for wine metabolomics
NASA Astrophysics Data System (ADS)
Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe
2014-11-01
An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.
Problems with Multivariate Normality: Can the Multivariate Bootstrap Help?
ERIC Educational Resources Information Center
Thompson, Bruce
Multivariate normality is required for some statistical tests. This paper explores the implications of violating the assumption of multivariate normality and illustrates a graphical procedure for evaluating multivariate normality. The logic for using the multivariate bootstrap is presented. The multivariate bootstrap can be used when distribution…
Analyzing Faculty Salaries When Statistics Fail.
ERIC Educational Resources Information Center
Simpson, William A.
The role played by nonstatistical procedures, in contrast to multivariant statistical approaches, in analyzing faculty salaries is discussed. Multivariant statistical methods are usually used to establish or defend against prima facia cases of gender and ethnic discrimination with respect to faculty salaries. These techniques are not applicable,…
Sun, Gang; Hoff, Steven J; Zelle, Brian C; Nelson, Minda A
2008-12-01
It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.
NASA Astrophysics Data System (ADS)
Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha
2015-01-01
Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.
NASA Astrophysics Data System (ADS)
Burns, R. G.; Meyer, R. W.; Cornwell, K.
2003-12-01
In-basin statistical relations allow for development of regional flood frequency and magnitude equations in the Cosumnes River and Mokelumne River drainage basins. Current equations were derived from data collected through 1975, and do not reflect newer data with some significant flooding. Physical basin characteristics (area, mean basin elevation, slope of longest reach, and mean annual precipitation) were correlated against predicted flood discharges for each of the 5, 10, 25, 50, 100, 200, and 500-year recurrence intervals in a multivariate analysis. Predicted maximum instantaneous flood discharges were determined using the PEAKFQ program with default settings, for 24 stream gages within the study area presumed not affected by flow management practices. For numerical comparisons, GIS-based methods using Spatial Analyst and the Arc Hydro Tools extension were applied to derive physical basin characteristics as predictor variables from a 30m digital elevation model (DEM) and a mean annual precipitation raster (PRISM). In a bivariate analysis, examination of Pearson correlation coefficients, F-statistic, and t & p thresholds show good correlation between area and flood discharges. Similar analyses show poor correlation for mean basin elevation, slope and precipitation, with flood discharge. Bivariate analysis suggests slope may not be an appropriate predictor term for use in the multivariate analysis. Precipitation and elevation correlate very well, demonstrating possible orographic effects. From the multivariate analysis, less than 6% of the variability in the correlation is not explained for flood recurrences up to 25 years. Longer term predictions up to 500 years accrue greater uncertainty with as much as 15% of the variability in the correlation left unexplained.
Quantification of proportions of different water sources in a mining operation.
Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric
2018-04-01
The water drained in mining operations (galleries, shafts, open pits) usually comes from different sources. Evaluating the contribution of these sources is very often necessary for water management. To determine mixing ratios, a conventional mass balance is often used. However, the presence of more than two sources creates uncertainties in mass balance applications. Moreover, the composition of the end-members is not commonly known with certainty and/or can vary in space and time. In this paper, we propose a powerful tool for solving such problems and managing groundwater in mining sites based on multivariate statistical analysis. This approach was applied to the Cobre Las Cruces mining complex, the largest copper mine in Europe. There, the open pit water is a mixture of three end-members: runoff (RO), basal Miocene (Mb) and Paleozoic (PZ) groundwater. The volume of water drained from the Miocene base aquifer must be determined and compensated via artificial recharging to comply with current regulations. Through multivariate statistical analysis of samples from a regional field campaign, the compositions of PZ and Mb end-members were firstly estimated, and then used for mixing calculations at the open pit scale. The runoff end-member was directly determined from samples collected in interception trenches inside the open pit. The application of multivariate statistical methods allowed the estimation of mixing ratios for the hydrological years 2014-2015 and 2015-2016. Open pit water proportions have changed from 15% to 7%, 41% to 36%, and 44% to 57% for runoff, Mb and PZ end-members, respectively. An independent estimation of runoff based on the curve method yielded comparable results. Copyright © 2017 Elsevier B.V. All rights reserved.
Giménez-Forcada, Elena; Vega-Alegre, Marisol; Timón-Sánchez, Susana
2017-09-01
Naturally occurring arsenic in groundwater exceeding the limit for potability has been reported along the southern edge of the Cenozoic Duero Basin (CDB) near its contact with the Spanish Central System (SCS). In this area, spatial variability of arsenic is high, peaking at 241μg/L. Forty-seven percent of samples collected contained arsenic above the maximum allowable concentration for drinking water (10μg/L). Correlations of As with other hydrochemical variables were investigated using multivariate statistical analysis (Hierarchical Cluster Analysis, HCA and Principal Component Analysis, PCA). It was found that As, V, Cr and pH are closely related and that there were also close correlations with temperature and Na + . The highest concentrations of arsenic and other associated Potentially Toxic Geogenic Trace Elements (PTGTE) are linked to alkaline NaHCO 3 waters (pH≈9), moderate oxic conditions and temperatures of around 18°C-19°C. The most plausible hypothesis to explain the high arsenic concentrations is the contribution of deeper regional flows with a significant hydrothermal component (cold-hydrothermal waters), flowing through faults in the basement rock. Water mixing and water-rock interactions occur both in the fissured aquifer media (igneous and metasedimentary bedrock) and in the sedimentary environment of the CDB, where agricultural pollution phenomena are also active. A combination of multivariate statistical tools and hydrochemical analysis enabled the distribution pattern of dissolved As and other PTGTE in groundwaters in the study area to be interpreted, and their most likely origin to be established. This methodology could be applied to other sedimentary areas with similar characteristics and problems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Yang, Sibo; Fan, Rongwei; Yu, Xin; Chen, Deying
2018-06-01
In this paper, discrimination of soft tissues using laser-induced breakdown spectroscopy (LIBS) in combination with multivariate statistical methods is presented. Fresh pork fat, skin, ham, loin and tenderloin muscle tissues are manually cut into slices and ablated using a 1064 nm pulsed Nd:YAG laser. Discrimination analyses between fat, skin and muscle tissues, and further between highly similar ham, loin and tenderloin muscle tissues, are performed based on the LIBS spectra in combination with multivariate statistical methods, including principal component analysis (PCA), k nearest neighbors (kNN) classification, and support vector machine (SVM) classification. Performances of the discrimination models, including accuracy, sensitivity and specificity, are evaluated using 10-fold cross validation. The classification models are optimized to achieve best discrimination performances. The fat, skin and muscle tissues can be definitely discriminated using both kNN and SVM classifiers, with accuracy of over 99.83%, sensitivity of over 0.995 and specificity of over 0.998. The highly similar ham, loin and tenderloin muscle tissues can also be discriminated with acceptable performances. The best performances are achieved with SVM classifier using Gaussian kernel function, with accuracy of 76.84%, sensitivity of over 0.742 and specificity of over 0.869. The results show that the LIBS technique assisted with multivariate statistical methods could be a powerful tool for online discrimination of soft tissues, even for tissues of high similarity, such as muscles from different parts of the animal body. This technique could be used for discrimination of tissues suffering minor clinical changes, thus may advance the diagnosis of early lesions and abnormalities.
Multivariate Relationships between Statistics Anxiety and Motivational Beliefs
ERIC Educational Resources Information Center
Baloglu, Mustafa; Abbassi, Amir; Kesici, Sahin
2017-01-01
In general, anxiety has been found to be associated with motivational beliefs and the current study investigated multivariate relationships between statistics anxiety and motivational beliefs among 305 college students (60.0% women). The Statistical Anxiety Rating Scale, the Motivated Strategies for Learning Questionnaire, and a set of demographic…
Analytical aspects of plant metabolite profiling platforms: current standings and future aims.
Seger, Christoph; Sturm, Sonja
2007-02-01
Over the past years, metabolic profiling has been established as a comprehensive systems biology tool. Mass spectrometry or NMR spectroscopy-based technology platforms combined with unsupervised or supervised multivariate statistical methodologies allow a deep insight into the complex metabolite patterns of plant-derived samples. Within this review, we provide a thorough introduction to the analytical hard- and software requirements of metabolic profiling platforms. Methodological limitations are addressed, and the metabolic profiling workflow is exemplified by summarizing recent applications ranging from model systems to more applied topics.
Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI
Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.
2015-01-01
In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490
Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert
2016-08-01
Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters.
Wang, Longfei; Lee, Sungyoung; Gim, Jungsoo; Qiao, Dandi; Cho, Michael; Elston, Robert C; Silverman, Edwin K; Won, Sungho
2016-09-01
Family-based designs have been repeatedly shown to be powerful in detecting the significant rare variants associated with human diseases. Furthermore, human diseases are often defined by the outcomes of multiple phenotypes, and thus we expect multivariate family-based analyses may be very efficient in detecting associations with rare variants. However, few statistical methods implementing this strategy have been developed for family-based designs. In this report, we describe one such implementation: the multivariate family-based rare variant association tool (mFARVAT). mFARVAT is a quasi-likelihood-based score test for rare variant association analysis with multiple phenotypes, and tests both homogeneous and heterogeneous effects of each variant on multiple phenotypes. Simulation results show that the proposed method is generally robust and efficient for various disease models, and we identify some promising candidate genes associated with chronic obstructive pulmonary disease. The software of mFARVAT is freely available at http://healthstat.snu.ac.kr/software/mfarvat/, implemented in C++ and supported on Linux and MS Windows. © 2016 WILEY PERIODICALS, INC.
HydroClimATe: hydrologic and climatic analysis toolkit
Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.
2014-01-01
The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.
Moseson, Heidi; Gerdts, Caitlin; Dehlendorf, Christine; Hiatt, Robert A; Vittinghoff, Eric
2017-12-21
The list experiment is a promising measurement tool for eliciting truthful responses to stigmatized or sensitive health behaviors. However, investigators may be hesitant to adopt the method due to previously untestable assumptions and the perceived inability to conduct multivariable analysis. With a recently developed statistical test that can detect the presence of a design effect - the absence of which is a central assumption of the list experiment method - we sought to test the validity of a list experiment conducted on self-reported abortion in Liberia. We also aim to introduce recently developed multivariable regression estimators for the analysis of list experiment data, to explore relationships between respondent characteristics and having had an abortion - an important component of understanding the experiences of women who have abortions. To test the null hypothesis of no design effect in the Liberian list experiment data, we calculated the percentage of each respondent "type," characterized by response to the control items, and compared these percentages across treatment and control groups with a Bonferroni-adjusted alpha criterion. We then implemented two least squares and two maximum likelihood models (four total), each representing different bias-variance trade-offs, to estimate the association between respondent characteristics and abortion. We find no clear evidence of a design effect in list experiment data from Liberia (p = 0.18), affirming the first key assumption of the method. Multivariable analyses suggest a negative association between education and history of abortion. The retrospective nature of measuring lifetime experience of abortion, however, complicates interpretation of results, as the timing and safety of a respondent's abortion may have influenced her ability to pursue an education. Our work demonstrates that multivariable analyses, as well as statistical testing of a key design assumption, are possible with list experiment data, although with important limitations when considering lifetime measures. We outline how to implement this methodology with list experiment data in future research.
Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice
2017-06-01
In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.
Catelani, Tiago A; Santos, João Rodrigo; Páscoa, Ricardo N M J; Pezza, Leonardo; Pezza, Helena R; Lopes, João A
2018-03-01
This work proposes the use of near infrared (NIR) spectroscopy in diffuse reflectance mode and multivariate statistical process control (MSPC) based on principal component analysis (PCA) for real-time monitoring of the coffee roasting process. The main objective was the development of a MSPC methodology able to early detect disturbances to the roasting process resourcing to real-time acquisition of NIR spectra. A total of fifteen roasting batches were defined according to an experimental design to develop the MSPC models. This methodology was tested on a set of five batches where disturbances of different nature were imposed to simulate real faulty situations. Some of these batches were used to optimize the model while the remaining was used to test the methodology. A modelling strategy based on a time sliding window provided the best results in terms of distinguishing batches with and without disturbances, resourcing to typical MSPC charts: Hotelling's T 2 and squared predicted error statistics. A PCA model encompassing a time window of four minutes with three principal components was able to efficiently detect all disturbances assayed. NIR spectroscopy combined with the MSPC approach proved to be an adequate auxiliary tool for coffee roasters to detect faults in a conventional roasting process in real-time. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Xiuquan; Huang, Guohe; Zhao, Shan; Guo, Junhong
2015-09-01
This paper presents an open-source software package, rSCA, which is developed based upon a stepwise cluster analysis method and serves as a statistical tool for modeling the relationships between multiple dependent and independent variables. The rSCA package is efficient in dealing with both continuous and discrete variables, as well as nonlinear relationships between the variables. It divides the sample sets of dependent variables into different subsets (or subclusters) through a series of cutting and merging operations based upon the theory of multivariate analysis of variance (MANOVA). The modeling results are given by a cluster tree, which includes both intermediate and leaf subclusters as well as the flow paths from the root of the tree to each leaf subcluster specified by a series of cutting and merging actions. The rSCA package is a handy and easy-to-use tool and is freely available at http://cran.r-project.org/package=rSCA . By applying the developed package to air quality management in an urban environment, we demonstrate its effectiveness in dealing with the complicated relationships among multiple variables in real-world problems.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-07-01
A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti
2016-01-01
Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689
NASA Astrophysics Data System (ADS)
Ding, Hao; Cao, Ming; DuPont, Andrew W.; Scott, Larry D.; Guha, Sushovan; Singhal, Shashideep; Younes, Mamoun; Pence, Isaac; Herline, Alan; Schwartz, David; Xu, Hua; Mahadevan-Jansen, Anita; Bi, Xiaohong
2016-03-01
Inflammatory bowel disease (IBD) is an idiopathic disease that is typically characterized by chronic inflammation of the gastrointestinal tract. Recently much effort has been devoted to the development of novel diagnostic tools that can assist physicians for fast, accurate, and automated diagnosis of the disease. Previous research based on Raman spectroscopy has shown promising results in differentiating IBD patients from normal screening cases. In the current study, we examined IBD patients in vivo through a colonoscope-coupled Raman system. Optical diagnosis for IBD discrimination was conducted based on full-range spectra using multivariate statistical methods. Further, we incorporated several feature selection methods in machine learning into the classification model. The diagnostic performance for disease differentiation was significantly improved after feature selection. Our results showed that improved IBD diagnosis can be achieved using Raman spectroscopy in combination with multivariate analysis and feature selection.
Multivariate assessment of event-related potentials with the t-CWT method.
Bostanov, Vladimir
2015-11-05
Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.
Multivariate Density Estimation and Remote Sensing
NASA Technical Reports Server (NTRS)
Scott, D. W.
1983-01-01
Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.
Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance
NASA Astrophysics Data System (ADS)
Glascock, M. D.; Neff, H.; Vaughn, K. J.
2004-06-01
The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.
Chan, Kar-Man; Yue, Grace Gar-Lee; Li, Ping; Wong, Eric Chun-Wai; Lee, Julia Kin-Ming; Kennelly, Edward J; Lau, Clara Bik-San
2017-03-03
According to Chinese Pharmacopoeia 2015 edition, Ganoderma (Lingzhi) is a species complex that comprise of Ganoderma lucidum and Ganoderma sinense. The bioactivity and chemical composition of G. lucidium had been studied extensively, and it was shown to possess antitumor activities in pharmacological studies. In contrast, G. sinense has not been studied in great detail. Our previous studies found that the stipe of G. sinense exhibited more potent antitumor activity than the pileus. To identify the antitumor compounds in the stipe of G. sinense, we studied its chemical components by merging the bioactivity results with liquid chromatography-mass spectrometry-based chemometrics. The stipe of G. sinense was extracted with water, followed by ethanol precipitation and liquid-liquid partition. The resulting residue was fractionated using column chromatography. The antitumor activity of these fractions were analysed using MTT assay in murine breast tumor 4T1 cells, and their chemical components were studied using the LC-QTOF-MS with multivariate statistical tools. The chemometric and MS/MS analysis correlated bioactivity with five known cytotoxic compounds, 4-hyroxyphenylacetate, 9-oxo-(10E,12E)-octadecadienoic acid, 3-phenyl-2-propenoic acid, 13-oxo-(9E,11E)-octadecadienoic acid and lingzhine C, from the stipe of G. sinense. To the best of our knowledge, 4-hyroxyphenylacetate, 3-phenyl-2-propenoic acid and lingzhine C are firstly reported to be found in G. sinense. These five compounds will be investigated for their antitumor activities in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Machine learning for neuroimaging with scikit-learn.
Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël
2014-01-01
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
Machine learning for neuroimaging with scikit-learn
Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël
2014-01-01
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad Allen
EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statistical associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can selectmore » a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.« less
Methodology to assess clinical liver safety data.
Merz, Michael; Lee, Kwan R; Kullak-Ublick, Gerd A; Brueckner, Andreas; Watkins, Paul B
2014-11-01
Analysis of liver safety data has to be multivariate by nature and needs to take into account time dependency of observations. Current standard tools for liver safety assessment such as summary tables, individual data listings, and narratives address these requirements to a limited extent only. Using graphics in the context of a systematic workflow including predefined graph templates is a valuable addition to standard instruments, helping to ensure completeness of evaluation, and supporting both hypothesis generation and testing. Employing graphical workflows interactively allows analysis in a team-based setting and facilitates identification of the most suitable graphics for publishing and regulatory reporting. Another important tool is statistical outlier detection, accounting for the fact that for assessment of Drug-Induced Liver Injury, identification and thorough evaluation of extreme values has much more relevance than measures of central tendency in the data. Taken together, systematical graphical data exploration and statistical outlier detection may have the potential to significantly improve assessment and interpretation of clinical liver safety data. A workshop was convened to discuss best practices for the assessment of drug-induced liver injury (DILI) in clinical trials.
Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi
2017-01-01
High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo
2018-01-01
This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555
Hermes, Ilarraza-Lomelí; Marianna, García-Saldivia; Jessica, Rojano-Castillo; Carlos, Barrera-Ramírez; Rafael, Chávez-Domínguez; María Dolores, Rius-Suárez; Pedro, Iturralde
2016-10-01
Mortality due to cardiovascular disease is often associated with ventricular arrhythmias. Nowadays, patients with cardiovascular disease are more encouraged to take part in physical training programs. Nevertheless, high-intensity exercise is associated to a higher risk for sudden death, even in apparently healthy people. During an exercise testing (ET), health care professionals provide patients, in a controlled scenario, an intense physiological stimulus that could precipitate cardiac arrhythmia in high risk individuals. There is still no clinical or statistical tool to predict this incidence. The aim of this study was to develop a statistical model to predict the incidence of exercise-induced potentially life-threatening ventricular arrhythmia (PLVA) during high intensity exercise. 6415 patients underwent a symptom-limited ET with a Balke ramp protocol. A multivariate logistic regression model where the primary outcome was PLVA was performed. Incidence of PLVA was 548 cases (8.5%). After a bivariate model, thirty one clinical or ergometric variables were statistically associated with PLVA and were included in the regression model. In the multivariate model, 13 of these variables were found to be statistically significant. A regression model (G) with a X(2) of 283.987 and a p<0.001, was constructed. Significant variables included: heart failure, antiarrhythmic drugs, myocardial lower-VD, age and use of digoxin, nitrates, among others. This study allows clinicians to identify patients at risk of ventricular tachycardia or couplets during exercise, and to take preventive measures or appropriate supervision. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2017-09-01
efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components
NASA Astrophysics Data System (ADS)
Gourdol, L.; Hissler, C.; Pfister, L.
2012-04-01
The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.
Spectral discrimination of serum from liver cancer and liver cirrhosis using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Tianyue; Li, Xiaozhou; Yu, Ting; Sun, Ruomin; Li, Siqi
2011-07-01
In this paper, Raman spectra of human serum were measured using Raman spectroscopy, then the spectra was analyzed by multivariate statistical methods of principal component analysis (PCA). Then linear discriminant analysis (LDA) was utilized to differentiate the loading score of different diseases as the diagnosing algorithm. Artificial neural network (ANN) was used for cross-validation. The diagnosis sensitivity and specificity by PCA-LDA are 88% and 79%, while that of the PCA-ANN are 89% and 95%. It can be seen that modern analyzing method is a useful tool for the analysis of serum spectra for diagnosing diseases.
Multivariate meta-analysis: potential and promise.
Jackson, Dan; Riley, Richard; White, Ian R
2011-09-10
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.
Multivariate meta-analysis: Potential and promise
Jackson, Dan; Riley, Richard; White, Ian R
2011-01-01
The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052
Big-Data RHEED analysis for understanding epitaxial film growth processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P
Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence.more » This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.« less
Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel
2014-08-01
Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites. Copyright © 2014 Elsevier B.V. All rights reserved.
Monitoring of an antigen manufacturing process.
Zavatti, Vanessa; Budman, Hector; Legge, Raymond; Tamer, Melih
2016-06-01
Fluorescence spectroscopy in combination with multivariate statistical methods was employed as a tool for monitoring the manufacturing process of pertactin (PRN), one of the virulence factors of Bordetella pertussis utilized in whopping cough vaccines. Fluorophores such as amino acids and co-enzymes were detected throughout the process. The fluorescence data collected at different stages of the fermentation and purification process were treated employing principal component analysis (PCA). Through PCA, it was feasible to identify sources of variability in PRN production. Then, partial least square (PLS) was employed to correlate the fluorescence spectra obtained from pure PRN samples and the final protein content measured by a Kjeldahl test from these samples. In view that a statistically significant correlation was found between fluorescence and PRN levels, this approach could be further used as a method to predict the final protein content.
Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang
2014-10-01
Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Fu, Zhibiao; Baker, Daniel; Cheng, Aili; Leighton, Julie; Appelbaum, Edward; Aon, Juan
2016-05-01
The principle of quality by design (QbD) has been widely applied to biopharmaceutical manufacturing processes. Process characterization is an essential step to implement the QbD concept to establish the design space and to define the proven acceptable ranges (PAR) for critical process parameters (CPPs). In this study, we present characterization of a Saccharomyces cerevisiae fermentation process using risk assessment analysis, statistical design of experiments (DoE), and the multivariate Bayesian predictive approach. The critical quality attributes (CQAs) and CPPs were identified with a risk assessment. The statistical model for each attribute was established using the results from the DoE study with consideration given to interactions between CPPs. Both the conventional overlapping contour plot and the multivariate Bayesian predictive approaches were used to establish the region of process operating conditions where all attributes met their specifications simultaneously. The quantitative Bayesian predictive approach was chosen to define the PARs for the CPPs, which apply to the manufacturing control strategy. Experience from the 10,000 L manufacturing scale process validation, including 64 continued process verification batches, indicates that the CPPs remain under a state of control and within the established PARs. The end product quality attributes were within their drug substance specifications. The probability generated with the Bayesian approach was also used as a tool to assess CPP deviations. This approach can be extended to develop other production process characterization and quantify a reliable operating region. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:799-812, 2016. © 2016 American Institute of Chemical Engineers.
Clustering Multivariate Time Series Using Hidden Markov Models
Ghassempour, Shima; Girosi, Federico; Maeder, Anthony
2014-01-01
In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs), where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers. PMID:24662996
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.
Han, Sheng-Nan
2014-07-01
Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.
A Civilian/Military Trauma Institute: National Trauma Coordinating Center
2015-12-01
zip codes was used in “proximity to violence” analysis. Data were analyzed using SPSS (version 20.0, SPSS Inc., Chicago, IL). Multivariable linear...number of adverse events and serious events was not statistically higher in one group, the incidence of deep venous thrombosis (DVT) was statistically ...subjects the lack of statistical difference on multivariate analysis may be related to an underpowered sample size. It was recommended that the
Suchard, Marc A; Zorych, Ivan; Simpson, Shawn E; Schuemie, Martijn J; Ryan, Patrick B; Madigan, David
2013-10-01
The self-controlled case series (SCCS) offers potential as an statistical method for risk identification involving medical products from large-scale observational healthcare data. However, analytic design choices remain in encoding the longitudinal health records into the SCCS framework and its risk identification performance across real-world databases is unknown. To evaluate the performance of SCCS and its design choices as a tool for risk identification in observational healthcare data. We examined the risk identification performance of SCCS across five design choices using 399 drug-health outcome pairs in five real observational databases (four administrative claims and one electronic health records). In these databases, the pairs involve 165 positive controls and 234 negative controls. We also consider several synthetic databases with known relative risks between drug-outcome pairs. We evaluate risk identification performance through estimating the area under the receiver-operator characteristics curve (AUC) and bias and coverage probability in the synthetic examples. The SCCS achieves strong predictive performance. Twelve of the twenty health outcome-database scenarios return AUCs >0.75 across all drugs. Including all adverse events instead of just the first per patient and applying a multivariate adjustment for concomitant drug use are the most important design choices. However, the SCCS as applied here returns relative risk point-estimates biased towards the null value of 1 with low coverage probability. The SCCS recently extended to apply a multivariate adjustment for concomitant drug use offers promise as a statistical tool for risk identification in large-scale observational healthcare databases. Poor estimator calibration dampens enthusiasm, but on-going work should correct this short-coming.
NASA Technical Reports Server (NTRS)
Djorgovski, S. George
1994-01-01
We developed a package to process and analyze the data from the digital version of the Second Palomar Sky Survey. This system, called SKICAT, incorporates the latest in machine learning and expert systems software technology, in order to classify the detected objects objectively and uniformly, and facilitate handling of the enormous data sets from digital sky surveys and other sources. The system provides a powerful, integrated environment for the manipulation and scientific investigation of catalogs from virtually any source. It serves three principal functions: image catalog construction, catalog management, and catalog analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT automates the process of classifying objects within CCD and digitized plate images. To exploit these catalogs, the system also provides tools to merge them into a large, complete database which may be easily queried and modified when new data or better methods of calibrating or classifying become available. The most innovative feature of SKICAT is the facility it provides to experiment with and apply the latest in machine learning technology to the tasks of catalog construction and analysis. SKICAT provides a unique environment for implementing these tools for any number of future scientific purposes. Initial scientific verification and performance tests have been made using galaxy counts and measurements of galaxy clustering from small subsets of the survey data, and a search for very high redshift quasars. All of the tests were successful, and produced new and interesting scientific results. Attachments to this report give detailed accounts of the technical aspects for multivariate statistical analysis of small and moderate-size data sets, called STATPROG. The package was tested extensively on a number of real scientific applications, and has produced real, published results.
Annotating novel genes by integrating synthetic lethals and genomic information
Schöner, Daniel; Kalisch, Markus; Leisner, Christian; Meier, Lukas; Sohrmann, Marc; Faty, Mahamadou; Barral, Yves; Peter, Matthias; Gruissem, Wilhelm; Bühlmann, Peter
2008-01-01
Background Large scale screening for synthetic lethality serves as a common tool in yeast genetics to systematically search for genes that play a role in specific biological processes. Often the amounts of data resulting from a single large scale screen far exceed the capacities of experimental characterization of every identified target. Thus, there is need for computational tools that select promising candidate genes in order to reduce the number of follow-up experiments to a manageable size. Results We analyze synthetic lethality data for arp1 and jnm1, two spindle migration genes, in order to identify novel members in this process. To this end, we use an unsupervised statistical method that integrates additional information from biological data sources, such as gene expression, phenotypic profiling, RNA degradation and sequence similarity. Different from existing methods that require large amounts of synthetic lethal data, our method merely relies on synthetic lethality information from two single screens. Using a Multivariate Gaussian Mixture Model, we determine the best subset of features that assign the target genes to two groups. The approach identifies a small group of genes as candidates involved in spindle migration. Experimental testing confirms the majority of our candidates and we present she1 (YBL031W) as a novel gene involved in spindle migration. We applied the statistical methodology also to TOR2 signaling as another example. Conclusion We demonstrate the general use of Multivariate Gaussian Mixture Modeling for selecting candidate genes for experimental characterization from synthetic lethality data sets. For the given example, integration of different data sources contributes to the identification of genetic interaction partners of arp1 and jnm1 that play a role in the same biological process. PMID:18194531
A new test of multivariate nonlinear causality
Bai, Zhidong; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong
2018-01-01
The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power. PMID:29304085
A new test of multivariate nonlinear causality.
Bai, Zhidong; Hui, Yongchang; Jiang, Dandan; Lv, Zhihui; Wong, Wing-Keung; Zheng, Shurong
2018-01-01
The multivariate nonlinear Granger causality developed by Bai et al. (2010) (Mathematics and Computers in simulation. 2010; 81: 5-17) plays an important role in detecting the dynamic interrelationships between two groups of variables. Following the idea of Hiemstra-Jones (HJ) test proposed by Hiemstra and Jones (1994) (Journal of Finance. 1994; 49(5): 1639-1664), they attempt to establish a central limit theorem (CLT) of their test statistic by applying the asymptotical property of multivariate U-statistic. However, Bai et al. (2016) (2016; arXiv: 1701.03992) revisit the HJ test and find that the test statistic given by HJ is NOT a function of U-statistics which implies that the CLT neither proposed by Hiemstra and Jones (1994) nor the one extended by Bai et al. (2010) is valid for statistical inference. In this paper, we re-estimate the probabilities and reestablish the CLT of the new test statistic. Numerical simulation shows that our new estimates are consistent and our new test performs decent size and power.
Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM
ERIC Educational Resources Information Center
Warner, Rebecca M.
2007-01-01
This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…
NASA Astrophysics Data System (ADS)
Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.
1995-06-01
A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.
Hamchevici, Carmen; Udrea, Ion
2013-11-01
The concept of basin-wide Joint Danube Survey (JDS) was launched by the International Commission for the Protection of the Danube River (ICPDR) as a tool for investigative monitoring under the Water Framework Directive (WFD), with a frequency of 6 years. The first JDS was carried out in 2001 and its success in providing key information for characterisation of the Danube River Basin District as required by WFD lead to the organisation of the second JDS in 2007, which was the world's biggest river research expedition in that year. The present paper presents an approach for improving the survey strategy for the next planned survey JDS3 (2013) by means of several multivariate statistical techniques. In order to design the optimum structure in terms of parameters and sampling sites, principal component analysis (PCA), factor analysis (FA) and cluster analysis were applied on JDS2 data for 13 selected physico-chemical and one biological element measured in 78 sampling sites located on the main course of the Danube. Results from PCA/FA showed that most of the dataset variance (above 75%) was explained by five varifactors loaded with 8 out of 14 variables: physical (transparency and total suspended solids), relevant nutrients (N-nitrates and P-orthophosphates), feedback effects of primary production (pH, alkalinity and dissolved oxygen) and algal biomass. Taking into account the representation of the factor scores given by FA versus sampling sites and the major groups generated by the clustering procedure, the spatial network of the next survey could be carefully tailored, leading to a decreasing of sampling sites by more than 30%. The approach of target oriented sampling strategy based on the selected multivariate statistics can provide a strong reduction in dimensionality of the original data and corresponding costs as well, without any loss of information.
Meeker, Daniella; Jiang, Xiaoqian; Matheny, Michael E; Farcas, Claudiu; D'Arcy, Michel; Pearlman, Laura; Nookala, Lavanya; Day, Michele E; Kim, Katherine K; Kim, Hyeoneui; Boxwala, Aziz; El-Kareh, Robert; Kuo, Grace M; Resnic, Frederic S; Kesselman, Carl; Ohno-Machado, Lucila
2015-11-01
Centralized and federated models for sharing data in research networks currently exist. To build multivariate data analysis for centralized networks, transfer of patient-level data to a central computation resource is necessary. The authors implemented distributed multivariate models for federated networks in which patient-level data is kept at each site and data exchange policies are managed in a study-centric manner. The objective was to implement infrastructure that supports the functionality of some existing research networks (e.g., cohort discovery, workflow management, and estimation of multivariate analytic models on centralized data) while adding additional important new features, such as algorithms for distributed iterative multivariate models, a graphical interface for multivariate model specification, synchronous and asynchronous response to network queries, investigator-initiated studies, and study-based control of staff, protocols, and data sharing policies. Based on the requirements gathered from statisticians, administrators, and investigators from multiple institutions, the authors developed infrastructure and tools to support multisite comparative effectiveness studies using web services for multivariate statistical estimation in the SCANNER federated network. The authors implemented massively parallel (map-reduce) computation methods and a new policy management system to enable each study initiated by network participants to define the ways in which data may be processed, managed, queried, and shared. The authors illustrated the use of these systems among institutions with highly different policies and operating under different state laws. Federated research networks need not limit distributed query functionality to count queries, cohort discovery, or independently estimated analytic models. Multivariate analyses can be efficiently and securely conducted without patient-level data transport, allowing institutions with strict local data storage requirements to participate in sophisticated analyses based on federated research networks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
NASA Technical Reports Server (NTRS)
Park, Steve
1990-01-01
A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.
J. Grabinsky; A. Aldama; A. Chacalo; H. J. Vazquez
2000-01-01
Inventory data of Mexico City's street trees were studied using classical statistical arboricultural and ecological statistical approaches. Multivariate techniques were applied to both. Results did not differ substantially and were complementary. It was possible to reduce inventory data and to group species, boroughs, blocks, and variables.
Ritota, Mena; Casciani, Lorena; Valentini, Massimiliano
2013-05-01
Analytical traceability of PGI and PDO foods (Protected Geographical Indication and Protected Denomination Origin respectively) is one of the most challenging tasks of current applied research. Here we proposed a metabolomic approach based on the combination of (1)H high-resolution magic angle spinning-nuclear magnetic resonance (HRMAS-NMR) spectroscopy with multivariate analysis, i.e. PLS-DA, as a reliable tool for the traceability of Italian PGI chicories (Cichorium intybus L.), i.e. Radicchio Rosso di Treviso and Radicchio Variegato di Castelfranco, also known as red and red-spotted, respectively. The metabolic profile was gained by means of HRMAS-NMR, and multivariate data analysis allowed us to build statistical models capable of providing clear discrimination among the two varieties and classification according to the geographical origin. Based on Variable Importance in Projection values, the molecular markers for classifying the different types of red chicories analysed were found accounting for both the cultivar and the place of origin. © 2012 Society of Chemical Industry.
Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija
2015-08-01
This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.
The Effect of the Multivariate Box-Cox Transformation on the Power of MANOVA.
ERIC Educational Resources Information Center
Kirisci, Levent; Hsu, Tse-Chi
Most of the multivariate statistical techniques rely on the assumption of multivariate normality. The effects of non-normality on multivariate tests are assumed to be negligible when variance-covariance matrices and sample sizes are equal. Therefore, in practice, investigators do not usually attempt to remove non-normality. In this simulation…
Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes
NASA Astrophysics Data System (ADS)
Schultz, Christian P.; Liu, Kan-Zhi; Johnston, James B.; Mantsch, Henry H.
1997-06-01
Peripheral mononuclear cells obtained from blood of normal individuals and from patients with chronic lymphocytic leukemia (CLL) were investigated by infrared spectroscopy and multivariate statistical analysis. Not only are the spectra of CLL cells different from those of normal cells, but hierarchical clustering also separated the CLL cells into a number of subclusters, based on their different DNA content, a fact which may provide a useful diagnostic tool for staging (progression of the disease) and multiple clone detection. Moreover, there is evidence for a correlation between the increased amount of DNA in the CLL cells and the in-vivo doubling time of the lymphocytes in a given patient.
NASA Astrophysics Data System (ADS)
Brandmeier, M.; Wörner, G.
2016-10-01
Multivariate statistical and geospatial analyses based on a compilation of 890 geochemical and 1200 geochronological data for 194 mapped ignimbrites from the Central Andes document the compositional and temporal patterns of large-volume ignimbrites (so-called "ignimbrite flare-ups") during Neogene times. Rapid advances in computational science during the past decade led to a growing pool of algorithms for multivariate statistics for large datasets with many predictor variables. This study applies cluster analysis (CA) and linear discriminant analysis (LDA) on log-ratio transformed data with the aim of (1) testing a tool for ignimbrite correlation and (2) distinguishing compositional groups that reflect different processes and sources of ignimbrite magmatism during the geodynamic evolution of the Central Andes. CA on major and trace elements allows grouping of ignimbrites according to their geochemical characteristics into rhyolitic and dacitic "end-members" and to differentiate characteristic trace element signatures with respect to Eu anomaly, depletions in middle and heavy rare earth elements (REE) and variable enrichments in light REE. To highlight these distinct compositional signatures, we applied LDA to selected ignimbrites for which comprehensive datasets were available. In comparison to traditional geochemical parameters we found that the advantage of multivariate statistics is their capability of dealing with large datasets and many variables (elements) and to take advantage of this n-dimensional space to detect subtle compositional differences contained in the data. The most important predictors for discriminating ignimbrites are La, Yb, Eu, Al2O3, K2O, P2O5, MgO, FeOt, and TiO2. However, other REE such as Gd, Pr, Tm, Sm, Dy and Er also contribute to the discrimination functions. Significant compositional differences were found between (1) the older (> 13 Ma) large-volume plateau-forming ignimbrites in northernmost Chile and southern Peru and (2) the younger (< 10 Ma) Altiplano-Puna-Volcanic-Complex (APVC) ignimbrites that are of similar volumes. Older ignimbrites are less depleted in HREE and less radiogenic in Sr isotopes, indicating smaller crustal contributions during evolution in a thinner and thermally less evolved crust. These compositional variations indicate a relation to crustal thickening with a "transition" from plagioclase to amphibole and garnet residual mineralogy between 13 and 9 Ma. Compositional and volumetric variations correlate to the N-S passage of the Juan-Fernandéz-Ridge, crustal shortening and thickening, and increased average crustal temperatures during the past 26 Ma. Table DR2 Mapped ignimbrite sheets.
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
Stupák, Ivan; Pavloková, Sylvie; Vysloužil, Jakub; Dohnal, Jiří; Čulen, Martin
2017-11-23
Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.
NASA Astrophysics Data System (ADS)
Fernández-González, Daniel; Martín-Duarte, Ramón; Ruiz-Bustinza, Íñigo; Mochón, Javier; González-Gasca, Carmen; Verdeja, Luis Felipe
2016-08-01
Blast furnace operators expect to get sinter with homogenous and regular properties (chemical and mechanical), necessary to ensure regular blast furnace operation. Blends for sintering also include several iron by-products and other wastes that are obtained in different processes inside the steelworks. Due to their source, the availability of such materials is not always consistent, but their total production should be consumed in the sintering process, to both save money and recycle wastes. The main scope of this paper is to obtain the least expensive iron ore blend for the sintering process, which will provide suitable chemical and mechanical features for the homogeneous and regular operation of the blast furnace. The systematic use of statistical tools was employed to analyze historical data, including linear and partial correlations applied to the data and fuzzy clustering based on the Sugeno Fuzzy Inference System to establish relationships among the available variables.
Multi-element fingerprinting as a tool in origin authentication of four east China marine species.
Guo, Lipan; Gong, Like; Yu, Yanlei; Zhang, Hong
2013-12-01
The contents of 25 elements in 4 types of commercial marine species from the East China Sea were determined by inductively coupled plasma mass spectrometry and atomic absorption spectrometry. The elemental composition was used to differentiate marine species according to geographical origin by multivariate statistical analysis. The results showed that principal component analysis could distinguish samples from different areas and reveal the elements which played the most important role in origin diversity. The established models by partial least squares discriminant analysis (PLS-DA) and by probabilistic neural network (PNN) can both precisely predict the origin of the marine species. Further study indicated that PLS-DA and PNN were efficacious in regional discrimination. The models from these 2 statistical methods, with an accuracy of 97.92% and 100%, respectively, could both distinguish samples from different areas without the need for species differentiation. © 2013 Institute of Food Technologists®
Statistical analysis of multivariate atmospheric variables. [cloud cover
NASA Technical Reports Server (NTRS)
Tubbs, J. D.
1979-01-01
Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.
USDA-ARS?s Scientific Manuscript database
The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...
ERIC Educational Resources Information Center
Martin, James L.
This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…
Appolloni, L; Sandulli, R; Vetrano, G; Russo, G F
2018-05-15
Marine Protected Areas are considered key tools for conservation of coastal ecosystems. However, many reserves are characterized by several problems mainly related to inadequate zonings that often do not protect high biodiversity and propagule supply areas precluding, at the same time, economic important zones for local interests. The Gulf of Naples is here employed as a study area to assess the effects of inclusion of different conservation features and costs in reserve design process. In particular eight scenarios are developed using graph theory to identify propagule source patches and fishing and exploitation activities as costs-in-use for local population. Scenarios elaborated by MARXAN, software commonly used for marine conservation planning, are compared using multivariate analyses (MDS, PERMANOVA and PERMDISP) in order to assess input data having greatest effects on protected areas selection. MARXAN is heuristic software able to give a number of different correct results, all of them near to the best solution. Its outputs show that the most important areas to be protected, in order to ensure long-term habitat life and adequate propagule supply, are mainly located around the Gulf islands. In addition through statistical analyses it allowed us to prove that different choices on conservation features lead to statistically different scenarios. The presence of propagule supply patches forces MARXAN to select almost the same areas to protect decreasingly different MARXAN results and, thus, choices for reserves area selection. The multivariate analyses applied here to marine spatial planning proved to be very helpful allowing to identify i) how different scenario input data affect MARXAN and ii) what features have to be taken into account in study areas characterized by peculiar biological and economic interests. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prabitha, Vasumathi Gopala; Suchetha, Sambasivan; Jayanthi, Jayaraj Lalitha; Baiju, Kamalasanan Vijayakumary; Rema, Prabhakaran; Anuraj, Koyippurath; Mathews, Anita; Sebastian, Paul; Subhash, Narayanan
2016-01-01
Diffuse reflectance (DR) spectroscopy is a non-invasive, real-time, and cost-effective tool for early detection of malignant changes in squamous epithelial tissues. The present study aims to evaluate the diagnostic power of diffuse reflectance spectroscopy for non-invasive discrimination of cervical lesions in vivo. A clinical trial was carried out on 48 sites in 34 patients by recording DR spectra using a point-monitoring device with white light illumination. The acquired data were analyzed and classified using multivariate statistical analysis based on principal component analysis (PCA) and linear discriminant analysis (LDA). Diagnostic accuracies were validated using random number generators. The receiver operating characteristic (ROC) curves were plotted for evaluating the discriminating power of the proposed statistical technique. An algorithm was developed and used to classify non-diseased (normal) from diseased sites (abnormal) with a sensitivity of 72 % and specificity of 87 %. While low-grade squamous intraepithelial lesion (LSIL) could be discriminated from normal with a sensitivity of 56 % and specificity of 80 %, and high-grade squamous intraepithelial lesion (HSIL) from normal with a sensitivity of 89 % and specificity of 97 %, LSIL could be discriminated from HSIL with 100 % sensitivity and specificity. The areas under the ROC curves were 0.993 (95 % confidence interval (CI) 0.0 to 1) and 1 (95 % CI 1) for the discrimination of HSIL from normal and HSIL from LSIL, respectively. The results of the study show that DR spectroscopy could be used along with multivariate analytical techniques as a non-invasive technique to monitor cervical disease status in real time.
A multivariate model and statistical method for validating tree grade lumber yield equations
Donald W. Seegrist
1975-01-01
Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.
Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V
2014-10-28
Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.
Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models
NASA Astrophysics Data System (ADS)
Allen, J. I.; Somerfield, P. J.; Gilbert, F. J.
2007-01-01
Marine ecosystem models are becoming increasingly complex and sophisticated, and are being used to estimate the effects of future changes in the earth system with a view to informing important policy decisions. Despite their potential importance, far too little attention has been, and is generally, paid to model errors and the extent to which model outputs actually relate to real-world processes. With the increasing complexity of the models themselves comes an increasing complexity among model results. If we are to develop useful modelling tools for the marine environment we need to be able to understand and quantify the uncertainties inherent in the simulations. Analysing errors within highly multivariate model outputs, and relating them to even more complex and multivariate observational data, are not trivial tasks. Here we describe the application of a series of techniques, including a 2-stage self-organising map (SOM), non-parametric multivariate analysis, and error statistics, to a complex spatio-temporal model run for the period 1988-1989 in the Southern North Sea, coinciding with the North Sea Project which collected a wealth of observational data. We use model output, large spatio-temporally resolved data sets and a combination of methodologies (SOM, MDS, uncertainty metrics) to simplify the problem and to provide tractable information on model performance. The use of a SOM as a clustering tool allows us to simplify the dimensions of the problem while the use of MDS on independent data grouped according to the SOM classification allows us to validate the SOM. The combination of classification and uncertainty metrics allows us to pinpoint the variables and associated processes which require attention in each region. We recommend the use of this combination of techniques for simplifying complex comparisons of model outputs with real data, and analysis of error distributions.
Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity
ERIC Educational Resources Information Center
Dinov, Ivo D.; Christou, Nicolas
2011-01-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…
Almeida, Tiago P; Chu, Gavin S; Li, Xin; Dastagir, Nawshin; Tuan, Jiun H; Stafford, Peter J; Schlindwein, Fernando S; Ng, G André
2017-01-01
Purpose: Complex fractionated atrial electrograms (CFAE)-guided ablation after pulmonary vein isolation (PVI) has been used for persistent atrial fibrillation (persAF) therapy. This strategy has shown suboptimal outcomes due to, among other factors, undetected changes in the atrial tissue following PVI. In the present work, we investigate CFAE distribution before and after PVI in patients with persAF using a multivariate statistical model. Methods: 207 pairs of atrial electrograms (AEGs) were collected before and after PVI respectively, from corresponding LA regions in 18 persAF patients. Twelve attributes were measured from the AEGs, before and after PVI. Statistical models based on multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) have been used to characterize the atrial regions and AEGs. Results: PVI significantly reduced CFAEs in the LA (70 vs. 40%; P < 0.0001). Four types of LA regions were identified, based on the AEGs characteristics: (i) fractionated before PVI that remained fractionated after PVI (31% of the collected points); (ii) fractionated that converted to normal (39%); (iii) normal prior to PVI that became fractionated (9%) and; (iv) normal that remained normal (21%). Individually, the attributes failed to distinguish these LA regions, but multivariate statistical models were effective in their discrimination ( P < 0.0001). Conclusion: Our results have unveiled that there are LA regions resistant to PVI, while others are affected by it. Although, traditional methods were unable to identify these different regions, the proposed multivariate statistical model discriminated LA regions resistant to PVI from those affected by it without prior ablation information.
Application of multivariate statistical techniques in microbial ecology
Paliy, O.; Shankar, V.
2016-01-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure. PMID:26786791
Multivariate analysis in thoracic research.
Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego
2015-03-01
Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.
Avalappampatty Sivasamy, Aneetha; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668
Sivasamy, Aneetha Avalappampatty; Sundan, Bose
2015-01-01
The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.
Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain
2002-01-01
The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.
Kragel, Philip A; Labar, Kevin S
2013-08-01
Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Buttini, Francesca; Pasquali, Irene; Brambilla, Gaetano; Copelli, Diego; Alberi, Massimiliano Dagli; Balducci, Anna Giulia; Bettini, Ruggero; Sisti, Viviana
2016-03-01
The aim of this work was to evaluate the effect of two different dry powder inhalers, of the NGI induction port and Alberta throat and of the actual inspiratory profiles of asthmatic patients on in-vitro drug inhalation performances. The two devices considered were a reservoir multidose and a capsule-based inhaler. The formulation used to test the inhalers was a combination of formoterol fumarate and beclomethasone dipropionate. A breath simulator was used to mimic inhalatory patterns previously determined in vivo. A multivariate approach was adopted to estimate the significance of the effect of the investigated variables in the explored domain. Breath simulator was a useful tool to mimic in vitro the in vivo inspiratory profiles of asthmatic patients. The type of throat coupled with the impactor did not affect the aerodynamic distribution of the investigated formulation. However, the type of inhaler and inspiratory profiles affected the respirable dose of drugs. The multivariate statistical approach demonstrated that the multidose inhaler, released efficiently a high fine particle mass independently from the inspiratory profiles adopted. Differently, the single dose capsule inhaler, showed a significant decrease of fine particle mass of both drugs when the device was activated using the minimum inspiratory volume (592 mL).
Kragel, Philip A.; LaBar, Kevin S.
2013-01-01
Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PMID:23527508
Multivariate analysis: A statistical approach for computations
NASA Astrophysics Data System (ADS)
Michu, Sachin; Kaushik, Vandana
2014-10-01
Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.
Tulsyan, Aditya; Garvin, Christopher; Ündey, Cenk
2018-04-06
Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gregoire, Alexandre David
2011-07-01
The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.
Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study.
Lee, Poh Foong; Kan, Donica Pei Xin; Croarkin, Paul; Phang, Cheng Kar; Doruk, Deniz
2018-01-01
There is an unmet need for practical and reliable biomarkers for mood disorders in young adults. Identifying the brain activity associated with the early signs of depressive disorders could have important diagnostic and therapeutic implications. In this study we sought to investigate the EEG characteristics in young adults with newly identified depressive symptoms. Based on the initial screening, a total of 100 participants (n = 50 euthymic, n = 50 depressive) underwent 32-channel EEG acquisition. Simple logistic regression and C-statistic were used to explore if EEG power could be used to discriminate between the groups. The strongest EEG predictors of mood using multivariate logistic regression models. Simple logistic regression analysis with subsequent C-statistics revealed that only high-alpha and beta power originating from the left central cortex (C3) have a reliable discriminative value (ROC curve >0.7 (70%)) for differentiating the depressive group from the euthymic group. Multivariate regression analysis showed that the single most significant predictor of group (depressive vs. euthymic) is the high-alpha power over C3 (p = 0.03). The present findings suggest that EEG is a useful tool in the identification of neurophysiological correlates of depressive symptoms in young adults with no previous psychiatric history. Our results could guide future studies investigating the early neurophysiological changes and surrogate outcomes in depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Grassmann, Mariel; Ceulemans, Eva
2017-06-01
Change point detection in multivariate time series is a complex task since next to the mean, the correlation structure of the monitored variables may also alter when change occurs. DeCon was recently developed to detect such changes in mean and\\or correlation by combining a moving windows approach and robust PCA. However, in the literature, several other methods have been proposed that employ other non-parametric tools: E-divisive, Multirank, and KCP. Since these methods use different statistical approaches, two issues need to be tackled. First, applied researchers may find it hard to appraise the differences between the methods. Second, a direct comparison of the relative performance of all these methods for capturing change points signaling correlation changes is still lacking. Therefore, we present the basic principles behind DeCon, E-divisive, Multirank, and KCP and the corresponding algorithms, to make them more accessible to readers. We further compared their performance through extensive simulations using the settings of Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) implying changes in mean and in correlation structure and those of Matteson and James (Journal of the American Statistical Association, 109 (505), 334-345, 2014) implying different numbers of (noise) variables. KCP emerged as the best method in almost all settings. However, in case of more than two noise variables, only DeCon performed adequately in detecting correlation changes.
Bhattacharya, Monisha; Isvaran, Kavita; Balakrishnan, Rohini
2017-04-01
In acoustically communicating animals, reproductive isolation between sympatric species is usually maintained through species-specific calls. This requires that the receiver be tuned to the conspecific signal. Mapping the response space of the receiver onto the signal space of the conspecific investigates this tuning. A combinatorial approach to investigating the response space is more informative as the influence on the receiver of the interactions between the features is also elucidated. However, most studies have examined individual preference functions rather than the multivariate response space. We studied the maintenance of reproductive isolation between two sympatric tree cricket species ( Oecanthus henryi and Oecanthus indicus ) through the temporal features of the calls. Individual response functions were determined experimentally for O. henryi , the results from which were combined in a statistical framework to generate a multivariate quantitative receiver response space. The predicted response was higher for the signals of the conspecific than for signals of the sympatric heterospecific, indicating maintenance of reproductive isolation through songs. The model allows prediction of response to untested combinations of temporal features as well as delineation of the evolutionary constraints on the signal space. The model can also be used to predict the response of O. henryi to other heterospecific signals, making it a useful tool for the study of the evolution and maintenance of reproductive isolation via long-range acoustic signals. © 2017. Published by The Company of Biologists Ltd.
An Interactive Tool For Semi-automated Statistical Prediction Using Earth Observations and Models
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.; Berhane, F.; Tadesse, T.
2015-12-01
We developed a semi-automated statistical prediction tool applicable to concurrent analysis or seasonal prediction of any time series variable in any geographic location. The tool was developed using Shiny, JavaScript, HTML and CSS. A user can extract a predictand by drawing a polygon over a region of interest on the provided user interface (global map). The user can select the Climatic Research Unit (CRU) precipitation or Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) as predictand. They can also upload their own predictand time series. Predictors can be extracted from sea surface temperature, sea level pressure, winds at different pressure levels, air temperature at various pressure levels, and geopotential height at different pressure levels. By default, reanalysis fields are applied as predictors, but the user can also upload their own predictors, including a wide range of compatible satellite-derived datasets. The package generates correlations of the variables selected with the predictand. The user also has the option to generate composites of the variables based on the predictand. Next, the user can extract predictors by drawing polygons over the regions that show strong correlations (composites). Then, the user can select some or all of the statistical prediction models provided. Provided models include Linear Regression models (GLM, SGLM), Tree-based models (bagging, random forest, boosting), Artificial Neural Network, and other non-linear models such as Generalized Additive Model (GAM) and Multivariate Adaptive Regression Splines (MARS). Finally, the user can download the analysis steps they used, such as the region they selected, the time period they specified, the predictand and predictors they chose and preprocessing options they used, and the model results in PDF or HTML format. Key words: Semi-automated prediction, Shiny, R, GLM, ANN, RF, GAM, MARS
Multivariate meta-analysis: a robust approach based on the theory of U-statistic.
Ma, Yan; Mazumdar, Madhu
2011-10-30
Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.
Time Series Model Identification by Estimating Information.
1982-11-01
principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R
Adams, Dean C
2014-09-01
Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (K(mult)) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of K(mult) remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on K(mult) and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-dimensional data. Statistical properties of K(mult) were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that K(mult) provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio
2016-10-01
personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.
A complementary measure of heterogeneity on mathematical skills
NASA Astrophysics Data System (ADS)
Fedriani, Eugenio M.; Moyano, Rafael
2012-06-01
Finding educational truths is an inherently multivariate problem. There are many factors affecting each student and their performances. Because of this, both measuring of skills and assessing students are always complex processes. This is a well-known problem, and a number of solutions have been proposed by specialists. One of its ramifications is that the variety of progress levels of students in the Mathematics classroom makes teaching more difficult. We think that a measure of the heterogeneity of the different student groups could be interesting in order to prepare some strategies to deal with these kinds of difficulties. The major aim of this study is to develop new tools, complementary to the statistical ones that are commonly used for these purposes, to study situations related to education (mainly to the detection of levels of mathematical education) in which several variables are involved. These tools are thought to simplify these educational analyses and, through a better comprehension of the topic, to improve our teaching. Several authors in our research group have developed some mathematical, theoretical tools, to deal with multidimensional phenomena, and have applied them to measure poverty and also to other business models. These tools are based on multidigraphs. In this article, we implement these tools using symbolic computational software and apply them to study a specific situation related to mathematical education.
Decoding the Nature of Emotion in the Brain.
Kragel, Philip A; LaBar, Kevin S
2016-06-01
A central, unresolved problem in affective neuroscience is understanding how emotions are represented in nervous system activity. After prior localization approaches largely failed, researchers began applying multivariate statistical tools to reconceptualize how emotion constructs might be embedded in large-scale brain networks. Findings from pattern analyses of neuroimaging data show that affective dimensions and emotion categories are uniquely represented in the activity of distributed neural systems that span cortical and subcortical regions. Results from multiple-category decoding studies are incompatible with theories postulating that specific emotions emerge from the neural coding of valence and arousal. This 'new look' into emotion representation promises to improve and reformulate neurobiological models of affect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decoding the Nature of Emotion in the Brain
Kragel, Philip A.; LaBar, Kevin S.
2016-01-01
A central, unresolved problem in affective neuroscience is understanding how emotions are represented in nervous system activity. After prior localization approaches largely failed, researchers began applying multivariate statistical tools to reconceptualize how emotion constructs might be embedded in large-scale brain networks. Findings from pattern analyses of neuroimaging data show that affective dimensions and emotion categories are uniquely represented in the activity of distributed neural systems that span cortical and subcortical regions. Results from multiple-category decoding studies are incompatible with theories postulating that specific emotions emerge from the neural coding of valence and arousal. This ‘new look’ into emotion representation promises to improve and reformulate neurobiological models of affect. PMID:27133227
Analysis techniques for multivariate root loci. [a tool in linear control systems
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.; Laub, A. J.
1980-01-01
Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.
A Statistical Discrimination Experiment for Eurasian Events Using a Twenty-Seven-Station Network
1980-07-08
to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...to test the effectiveness of a multivariate method of analysis for distinguishing earthquakes from explosions. The data base for the experiment...the weight assigned to each variable whenever a new one is added. Jennrich, R. I. (1977). Stepwise discriminant analysis , in Statistical Methods for
Souza, Iara da Costa; Morozesk, Mariana; Duarte, Ian Drumond; Bonomo, Marina Marques; Rocha, Lívia Dorsch; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso
2014-08-01
Roots of mangrove trees have an important role in depurating water and sediments by retaining metals that may accumulate in different plant tissues, affecting physiological processes and anatomy. The present study aimed to evaluate adaptive changes in root of Rhizophora mangle in response to different levels of chemical elements (metals/metalloids) in interstitial water and sediments from four neotropical mangroves in Brazil. What sets this study apart from other studies is that we not only investigate adaptive modifications in R. mangle but also changes in environments where this plant grows, evaluating correspondence between physical, chemical and biological issues by a combined set of multivariate statistical methods (pattern recognition). Thus, we looked to match changes in the environment with adaptations in plants. Multivariate statistics highlighted that the lignified periderm and the air gaps are directly related to the environmental contamination. Current results provide new evidences of root anatomical strategies to deal with contaminated environments. Multivariate statistics greatly contributes to extrapolate results from complex data matrixes obtained when analyzing environmental issues, pointing out parameters involved in environmental changes and also evidencing the adaptive response of the exposed biota. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)
ERIC Educational Resources Information Center
Steyn, H. S., Jr.; Ellis, S. M.
2009-01-01
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin
2015-01-01
The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.
Application of multivariate statistical techniques in microbial ecology.
Paliy, O; Shankar, V
2016-03-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.
Applying the multivariate time-rescaling theorem to neural population models
Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon
2011-01-01
Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436
Igloo-Plot: a tool for visualization of multidimensional datasets.
Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S
2014-01-01
Advances in science and technology have resulted in an exponential growth of multivariate (or multi-dimensional) datasets which are being generated from various research areas especially in the domain of biological sciences. Visualization and analysis of such data (with the objective of uncovering the hidden patterns therein) is an important and challenging task. We present a tool, called Igloo-Plot, for efficient visualization of multidimensional datasets. The tool addresses some of the key limitations of contemporary multivariate visualization and analysis tools. The visualization layout, not only facilitates an easy identification of clusters of data-points having similar feature compositions, but also the 'marker features' specific to each of these clusters. The applicability of the various functionalities implemented herein is demonstrated using several well studied multi-dimensional datasets. Igloo-Plot is expected to be a valuable resource for researchers working in multivariate data mining studies. Igloo-Plot is available for download from: http://metagenomics.atc.tcs.com/IglooPlot/. Copyright © 2014 Elsevier Inc. All rights reserved.
Tan, Guangguo; Lou, Ziyang; Jing, Jing; Li, Wuhong; Zhu, Zhenyu; Zhao, Liang; Zhang, Guoqing; Chai, Yifeng
2011-12-01
Aconite roots are popularly used in herbal medicines in China. Many cases of accidental and intentional intoxication with this plant have been reported; some of these are fatal because the toxicity of aconitum is very high. It is thus important to detect and identify aconitum alkaloids in biofluids. In this work, an improved method employing LC-TOFMS with multivariate data analysis was developed for screening and analysis of major aconitum alkaloids and their metabolites in rat urine following oral administration of aconite roots extract. Thirty-four signals highlighted by multivariate statistical analyses including 24 parent components and 10 metabolites were screened out and further identified by adjustment of the fragmentor voltage to produce structure-relevant fragment ions. It is helpful for studying aconite roots in toxicology, pharmacology and forensic medicine. This work also confirmed that the metabolomic approach provides effective tools for screening multiple absorbed and metabolic components of Chinese herbal medicines in vivo. Copyright © 2011 John Wiley & Sons, Ltd.
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.
2003-01-01
Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.
Zhu, Guangxu; Guo, Qingjun; Xiao, Huayun; Chen, Tongbin; Yang, Jun
2017-06-01
Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.
Investigation of advanced UQ for CRUD prediction with VIPRE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Michael Scott
2011-09-01
This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinementmore » for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and smoothness.« less
AIC identifies optimal representation of longitudinal dietary variables.
VanBuren, John; Cavanaugh, Joseph; Marshall, Teresa; Warren, John; Levy, Steven M
2017-09-01
The Akaike Information Criterion (AIC) is a well-known tool for variable selection in multivariable modeling as well as a tool to help identify the optimal representation of explanatory variables. However, it has been discussed infrequently in the dental literature. The purpose of this paper is to demonstrate the use of AIC in determining the optimal representation of dietary variables in a longitudinal dental study. The Iowa Fluoride Study enrolled children at birth and dental examinations were conducted at ages 5, 9, 13, and 17. Decayed or filled surfaces (DFS) trend clusters were created based on age 13 DFS counts and age 13-17 DFS increments. Dietary intake data (water, milk, 100 percent-juice, and sugar sweetened beverages) were collected semiannually using a food frequency questionnaire. Multinomial logistic regression models were fit to predict DFS cluster membership (n=344). Multiple approaches could be used to represent the dietary data including averaging across all collected surveys or over different shorter time periods to capture age-specific trends or using the individual time points of dietary data. AIC helped identify the optimal representation. Averaging data for all four dietary variables for the whole period from age 9.0 to 17.0 provided a better representation in the multivariable full model (AIC=745.0) compared to other methods assessed in full models (AICs=750.6 for age 9 and 9-13 increment dietary measurements and AIC=762.3 for age 9, 13, and 17 individual measurements). The results illustrate that AIC can help researchers identify the optimal way to summarize information for inclusion in a statistical model. The method presented here can be used by researchers performing statistical modeling in dental research. This method provides an alternative approach for assessing the propriety of variable representation to significance-based procedures, which could potentially lead to improved research in the dental community. © 2017 American Association of Public Health Dentistry.
NASA Technical Reports Server (NTRS)
Djorgovski, S. G.
1994-01-01
We developed a package to process and analyze the data from the digital version of the Second Palomar Sky Survey. This system, called SKICAT, incorporates the latest in machine learning and expert systems software technology, in order to classify the detected objects objectively and uniformly, and facilitate handling of the enormous data sets from digital sky surveys and other sources. The system provides a powerful, integrated environment for the manipulation and scientific investigation of catalogs from virtually any source. It serves three principal functions: image catalog construction, catalog management, and catalog analysis. Through use of the GID3* Decision Tree artificial induction software, SKICAT automates the process of classifying objects within CCD and digitized plate images. To exploit these catalogs, the system also provides tools to merge them into a large, complex database which may be easily queried and modified when new data or better methods of calibrating or classifying become available. The most innovative feature of SKICAT is the facility it provides to experiment with and apply the latest in machine learning technology to the tasks of catalog construction and analysis. SKICAT provides a unique environment for implementing these tools for any number of future scientific purposes. Initial scientific verification and performance tests have been made using galaxy counts and measurements of galaxy clustering from small subsets of the survey data, and a search for very high redshift quasars. All of the tests were successful and produced new and interesting scientific results. Attachments to this report give detailed accounts of the technical aspects of the SKICAT system, and of some of the scientific results achieved to date. We also developed a user-friendly package for multivariate statistical analysis of small and moderate-size data sets, called STATPROG. The package was tested extensively on a number of real scientific applications and has produced real, published results.
Bonetti, Jennifer; Quarino, Lawrence
2014-05-01
This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.
Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.
Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Serum dehydroepiandrosterone sulphate, psychosocial factors and musculoskeletal pain in workers.
Marinelli, A; Prodi, A; Pesel, G; Ronchese, F; Bovenzi, M; Negro, C; Larese Filon, F
2017-12-30
The serum level of dehydroepiandrosterone sulphate (DHEA-S) has been suggested as a biological marker of stress. To assess the association between serum DHEA-S, psychosocial factors and musculoskeletal (MS) pain in university workers. The study population included voluntary workers at the scientific departments of the University of Trieste (Italy) who underwent periodical health surveillance from January 2011 to June 2012. DHEA-S level was analysed in serum. The assessment tools included the General Health Questionnaire (GHQ) and a modified Nordic musculoskeletal symptoms questionnaire. The relation between DHEA-S, individual characteristics, pain perception and psychological factors was assessed by means of multivariable linear regression analysis. There were 189 study participants. The study population was characterized by high reward and low effort. Pain perception in the neck, shoulder, upper limbs, upper back and lower back was reported by 42, 32, 19, 29 and 43% of people, respectively. In multivariable regression analysis, gender, age and pain perception in the shoulder and upper limbs were significantly related to serum DHEA-S. Effort and overcommitment were related to shoulder and neck pain but not to DHEA-S. The GHQ score was associated with pain perception in different body sites and inversely to DHEA-S but significance was lost in multivariable regression analysis. DHEA-S was associated with age, gender and perception of MS pain, while effort-reward imbalance dimensions and GHQ score failed to reach the statistical significance in multivariable regression analysis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Ji, Hong; Petro, Nathan M; Chen, Badong; Yuan, Zejian; Wang, Jianji; Zheng, Nanning; Keil, Andreas
2018-02-06
Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis. © 2018 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, A; Veeraraghavan, H; Oh, J
Purpose: To present an open source and free platform to facilitate radiomics research — The “Radiomics toolbox” in CERR. Method: There is scarcity of open source tools that support end-to-end modeling of image features to predict patient outcomes. The “Radiomics toolbox” strives to fill the need for such a software platform. The platform supports (1) import of various kinds of image modalities like CT, PET, MR, SPECT, US. (2) Contouring tools to delineate structures of interest. (3) Extraction and storage of image based features like 1st order statistics, gray-scale co-occurrence and zonesize matrix based texture features and shape features andmore » (4) Statistical Analysis. Statistical analysis of the extracted features is supported with basic functionality that includes univariate correlations, Kaplan-Meir curves and advanced functionality that includes feature reduction and multivariate modeling. The graphical user interface and the data management are performed with Matlab for the ease of development and readability of code and features for wide audience. Open-source software developed with other programming languages is integrated to enhance various components of this toolbox. For example: Java-based DCM4CHE for import of DICOM, R for statistical analysis. Results: The Radiomics toolbox will be distributed as an open source, GNU copyrighted software. The toolbox was prototyped for modeling Oropharyngeal PET dataset at MSKCC. The analysis will be presented in a separate paper. Conclusion: The Radiomics Toolbox provides an extensible platform for extracting and modeling image features. To emphasize new uses of CERR for radiomics and image-based research, we have changed the name from the “Computational Environment for Radiotherapy Research” to the “Computational Environment for Radiological Research”.« less
Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C; Downing, James R; Lamba, Jatinder
2009-08-15
In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org.
Characterizing pigments with hyperspectral imaging variable false-color composites
NASA Astrophysics Data System (ADS)
Hayem-Ghez, Anita; Ravaud, Elisabeth; Boust, Clotilde; Bastian, Gilles; Menu, Michel; Brodie-Linder, Nancy
2015-11-01
Hyperspectral imaging has been used for pigment characterization on paintings for the last 10 years. It is a noninvasive technique, which mixes the power of spectrophotometry and that of imaging technologies. We have access to a visible and near-infrared hyperspectral camera, ranging from 400 to 1000 nm in 80-160 spectral bands. In order to treat the large amount of data that this imaging technique generates, one can use statistical tools such as principal component analysis (PCA). To conduct the characterization of pigments, researchers mostly use PCA, convex geometry algorithms and the comparison of resulting clusters to database spectra with a specific tolerance (like the Spectral Angle Mapper tool on the dedicated software ENVI). Our approach originates from false-color photography and aims at providing a simple tool to identify pigments thanks to imaging spectroscopy. It can be considered as a quick first analysis to see the principal pigments of a painting, before using a more complete multivariate statistical tool. We study pigment spectra, for each kind of hue (blue, green, red and yellow) to identify the wavelength maximizing spectral differences. The case of red pigments is most interesting because our methodology can discriminate the red pigments very well—even red lakes, which are always difficult to identify. As for the yellow and blue categories, it represents a good progress of IRFC photography for pigment discrimination. We apply our methodology to study the pigments on a painting by Eustache Le Sueur, a French painter of the seventeenth century. We compare the results to other noninvasive analysis like X-ray fluorescence and optical microscopy. Finally, we draw conclusions about the advantages and limits of the variable false-color image method using hyperspectral imaging.
Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas
2014-01-01
Summary Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students’ understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference. PMID:25419016
Dinov, Ivo D; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas
2013-01-01
Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students' understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference.
NASA Technical Reports Server (NTRS)
Mcguirk, James P.
1990-01-01
Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.
Monakhova, Yulia B; Diehl, Bernd W K; Fareed, Jawed
2018-02-05
High resolution (600MHz) nuclear magnetic resonance (NMR) spectroscopy is used to distinguish heparin and low-molecular weight heparins (LMWHs) produced from porcine, bovine and ovine mucosal tissues as well as their blends. For multivariate analysis several statistical methods such as principal component analysis (PCA), factor discriminant analysis (FDA), partial least squares - discriminant analysis (PLS-DA), linear discriminant analysis (LDA) were utilized for the modeling of NMR data of more than 100 authentic samples. Heparin and LMWH samples from the independent test set (n=15) were 100% correctly classified according to its animal origin. Moreover, by using 1 H NMR coupled with chemometrics and several batches of bovine heparins from two producers were differentiated. Thus, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of animal origin and process based manufacturing difference in heparin products. Copyright © 2017 Elsevier B.V. All rights reserved.
Self-Regulated Learning Strategies in Relation with Statistics Anxiety
ERIC Educational Resources Information Center
Kesici, Sahin; Baloglu, Mustafa; Deniz, M. Engin
2011-01-01
Dealing with students' attitudinal problems related to statistics is an important aspect of statistics instruction. Employing the appropriate learning strategies may have a relationship with anxiety during the process of statistics learning. Thus, the present study investigated multivariate relationships between self-regulated learning strategies…
McArtor, Daniel B.; Lubke, Gitta H.; Bergeman, C. S.
2017-01-01
Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains. PMID:27738957
McArtor, Daniel B; Lubke, Gitta H; Bergeman, C S
2017-12-01
Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.
Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation
NASA Astrophysics Data System (ADS)
Muhammad, Syahidah; Frew, Russell; Hayman, Alan
2015-02-01
Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.
Compound-specific isotope analysis of diesel fuels in a forensic investigation
Muhammad, Syahidah A.; Frew, Russell D.; Hayman, Alan R.
2015-01-01
Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples. PMID:25774366
Statistical analysis and interpolation of compositional data in materials science.
Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M
2015-02-09
Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-14
This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.
1981-08-01
RATIO TEST STATISTIC FOR SPHERICITY OF COMPLEX MULTIVARIATE NORMAL DISTRIBUTION* C. Fang P. R. Krishnaiah B. N. Nagarsenker** August 1981 Technical...and their applications in time sEries, the reader is referred to Krishnaiah (1976). Motivated by the applications in the area of inference on multiple...for practical purposes. Here, we note that Krishnaiah , Lee and Chang (1976) approxi- mated the null distribution of certain power of the likeli
NASA Astrophysics Data System (ADS)
Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.
2014-12-01
Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.
GAISE 2016 Promotes Statistical Literacy
ERIC Educational Resources Information Center
Schield, Milo
2017-01-01
In the 2005 Guidelines for Assessment and Instruction in Statistics Education (GAISE), statistical literacy featured as a primary goal. The 2016 revision eliminated statistical literacy as a stated goal. Although this looks like a rejection, this paper argues that by including multivariate thinking and--more importantly--confounding as recommended…
NASA Astrophysics Data System (ADS)
Most, Sebastian; Nowak, Wolfgang; Bijeljic, Branko
2015-04-01
Fickian transport in groundwater flow is the exception rather than the rule. Transport in porous media is frequently simulated via particle methods (i.e. particle tracking random walk (PTRW) or continuous time random walk (CTRW)). These methods formulate transport as a stochastic process of particle position increments. At the pore scale, geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Hence, it is important to get a better understanding of the processes at pore scale. For our analysis we track the positions of 10.000 particles migrating through the pore space over time. The data we use come from micro CT scans of a homogeneous sandstone and encompass about 10 grain sizes. Based on those images we discretize the pore structure and simulate flow at the pore scale based on the Navier-Stokes equation. This flow field realistically describes flow inside the pore space and we do not need to add artificial dispersion during the transport simulation. Next, we use particle tracking random walk and simulate pore-scale transport. Finally, we use the obtained particle trajectories to do a multivariate statistical analysis of the particle motion at the pore scale. Our analysis is based on copulas. Every multivariate joint distribution is a combination of its univariate marginal distributions. The copula represents the dependence structure of those univariate marginals and is therefore useful to observe correlation and non-Gaussian interactions (i.e. non-Fickian transport). The first goal of this analysis is to better understand the validity regions of commonly made assumptions. We are investigating three different transport distances: 1) The distance where the statistical dependence between particle increments can be modelled as an order-one Markov process. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks start. 2) The distance where bivariate statistical dependence simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW/CTRW). 3) The distance of complete statistical independence (validity of classical PTRW/CTRW). The second objective is to reveal characteristic dependencies influencing transport the most. Those dependencies can be very complex. Copulas are highly capable of representing linear dependence as well as non-linear dependence. With that tool we are able to detect persistent characteristics dominating transport even across different scales. The results derived from our experimental data set suggest that there are many more non-Fickian aspects of pore-scale transport than the univariate statistics of longitudinal displacements. Non-Fickianity can also be found in transverse displacements, and in the relations between increments at different time steps. Also, the found dependence is non-linear (i.e. beyond simple correlation) and persists over long distances. Thus, our results strongly support the further refinement of techniques like correlated PTRW or correlated CTRW towards non-linear statistical relations.
NASA Astrophysics Data System (ADS)
Fuchs, Julia; Cermak, Jan; Andersen, Hendrik
2017-04-01
This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.
Collaborative Web-Enabled GeoAnalytics Applied to OECD Regional Data
NASA Astrophysics Data System (ADS)
Jern, Mikael
Recent advances in web-enabled graphics technologies have the potential to make a dramatic impact on developing collaborative geovisual analytics (GeoAnalytics). In this paper, tools are introduced that help establish progress initiatives at international and sub-national levels aimed at measuring and collaborating, through statistical indicators, economic, social and environmental developments and to engage both statisticians and the public in such activities. Given this global dimension of such a task, the “dream” of building a repository of progress indicators, where experts and public users can use GeoAnalytics collaborative tools to compare situations for two or more countries, regions or local communities, could be accomplished. While the benefits of GeoAnalytics tools are many, it remains a challenge to adapt these dynamic visual tools to the Internet. For example, dynamic web-enabled animation that enables statisticians to explore temporal, spatial and multivariate demographics data from multiple perspectives, discover interesting relationships, share their incremental discoveries with colleagues and finally communicate selected relevant knowledge to the public. These discoveries often emerge through the diverse backgrounds and experiences of expert domains and are precious in a creative analytics reasoning process. In this context, we introduce a demonstrator “OECD eXplorer”, a customized tool for interactively analyzing, and collaborating gained insights and discoveries based on a novel story mechanism that capture, re-use and share task-related explorative events.
Skoulikidis, N Th; Amaxidis, Y; Bertahas, I; Laschou, S; Gritzalis, K
2006-06-01
Twenty-nine small- and mid-sized permanent rivers (thirty-six sites) scattered throughout Greece and equally distributed within three geo-chemical-climatic zones, have been investigated in a seasonal base. Hydrochemical types have been determined and spatio-temporal variations have been interpreted in relation to environmental characteristics and anthropogenic pressures. Multivariate statistical techniques have been used to identify the factors and processes affecting hydrochemical variability and the driving forces that control aquatic composition. It has been shown that spatial variation of aquatic quality is mainly governed by geological and hydrogeological factors. Due to geological and climatic variability, the three zones have different hydrochemical characteristics. Temporal hydrological variations in combination with hydrogeological factors control seasonal hydrochemical trends. Respiration processes due to municipal wastewaters, dominate in summer, and enhance nutrient, chloride and sodium concentrations, while nitrate originates primarily from agriculture. Photosynthetic processes dominate in spring. Carbonate chemistry is controlled by hydrogeological factors and biological activity. A possible enrichment of surface waters with nutrients in "pristine" forested catchments is attributed to soil leaching and mineralisation processes. Two management tools have been developed: a nutrient classification system and a rapid prediction of aquatic composition tool.
Relevance of graph literacy in the development of patient-centered communication tools.
Nayak, Jasmir G; Hartzler, Andrea L; Macleod, Liam C; Izard, Jason P; Dalkin, Bruce M; Gore, John L
2016-03-01
To determine the literacy skill sets of patients in the context of graphical interpretation of interactive dashboards. We assessed literacy characteristics of prostate cancer patients and assessed comprehension of quality of life dashboards. Health literacy, numeracy and graph literacy were assessed with validated tools. We divided patients into low vs. high numeracy and graph literacy. We report descriptive statistics on literacy, dashboard comprehension, and relationships between groups. We used correlation and multiple linear regressions to examine factors associated with dashboard comprehension. Despite high health literacy in educated patients (78% college educated), there was variation in numeracy and graph literacy. Numeracy and graph literacy scores were correlated (r=0.37). In those with low literacy, graph literacy scores most strongly correlated with dashboard comprehension (r=0.59-0.90). On multivariate analysis, graph literacy was independently associated with dashboard comprehension, adjusting for age, education, and numeracy level. Even among higher educated patients; variation in the ability to comprehend graphs exists. Clinicians must be aware of these differential proficiencies when counseling patients. Tools for patient-centered communication that employ visual displays need to account for literacy capabilities to ensure that patients can effectively engage these resources. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Multivariate statistical analysis of low-voltage EDS spectrum images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.M.
1998-03-01
Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.
Quick Overview Scout 2008 Version 1.0
The Scout 2008 version 1.0 statistical software package has been updated from past DOS and Windows versions to provide classical and robust univariate and multivariate graphical and statistical methods that are not typically available in commercial or freeware statistical softwar...
Spurr, Kathy; Dechman, Gail; Lackie, Kelly; Gilbert, Robert
2016-01-01
Evidence-based decision-making (EBDM) is the process health care providers (HCPs) use to identify and appraise potential evidence. It supports the integration of best research evidence with clinical expertise and patient values into the decision-making process for patient care. Competence in this process is essential to delivery of optimal care. There is no objective tool that assesses EBDM across HCP groups. This research aimed to develop a content valid tool to assess knowledge of the principles of evidence-based medicine and the EBDM process, for use with all HCPs. A Delphi process was used in the creation of the tool. Pilot testing established its content validity with the added benefit of evaluating HCPs' knowledge of EBDM. Descriptive statistics and multivariate mixed models were used to evaluate individual survey responses in total, as well as within each EBDM component. The tool consisted of 26 multiple-choice questions. A total of 12,884 HCPs in Nova Scotia were invited to participate in the web-based validation study, yielding 818 (6.3%) participants, 471 of whom completed all questions. The mean overall score was 68%. Knowledge in one component, integration of evidence with clinical expertise and patient preferences, was identified as needing development across all HCPs surveyed. A content valid tool for assessing HCP EBDM knowledge was created and can be used to support the development of continuing education programs to enhance EBDM competency.
The use of multivariate statistics in studies of wildlife habitat
David E. Capen
1981-01-01
This report contains edited and reviewed versions of papers presented at a workshop held at the University of Vermont in April 1980. Topics include sampling avian habitats, multivariate methods, applications, examples, and new approaches to analysis and interpretation.
Rejection of Multivariate Outliers.
1983-05-01
available in Gnanadesikan (1977). 2 The motivation for the present investigation lies in a recent paper of Schvager and Margolin (1982) who derive a... Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York. [7] Hawkins, D.M. (1980). Identification of
Multivariate analysis: greater insights into complex systems
USDA-ARS?s Scientific Manuscript database
Many agronomic researchers measure and collect multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate (MV) statistical methods encompass the simultaneous analysis of all random variables (RV) measured on each experimental or sampling ...
Hafen, G M; Hurst, C; Yearwood, J; Smith, J; Dzalilov, Z; Robinson, P J
2008-10-05
Cystic fibrosis is the most common fatal genetic disorder in the Caucasian population. Scoring systems for assessment of Cystic fibrosis disease severity have been used for almost 50 years, without being adapted to the milder phenotype of the disease in the 21st century. The aim of this current project is to develop a new scoring system using a database and employing various statistical tools. This study protocol reports the development of the statistical tools in order to create such a scoring system. The evaluation is based on the Cystic Fibrosis database from the cohort at the Royal Children's Hospital in Melbourne. Initially, unsupervised clustering of the all data records was performed using a range of clustering algorithms. In particular incremental clustering algorithms were used. The clusters obtained were characterised using rules from decision trees and the results examined by clinicians. In order to obtain a clearer definition of classes expert opinion of each individual's clinical severity was sought. After data preparation including expert-opinion of an individual's clinical severity on a 3 point-scale (mild, moderate and severe disease), two multivariate techniques were used throughout the analysis to establish a method that would have a better success in feature selection and model derivation: 'Canonical Analysis of Principal Coordinates' and 'Linear Discriminant Analysis'. A 3-step procedure was performed with (1) selection of features, (2) extracting 5 severity classes out of a 3 severity class as defined per expert-opinion and (3) establishment of calibration datasets. (1) Feature selection: CAP has a more effective "modelling" focus than DA.(2) Extraction of 5 severity classes: after variables were identified as important in discriminating contiguous CF severity groups on the 3-point scale as mild/moderate and moderate/severe, Discriminant Function (DF) was used to determine the new groups mild, intermediate moderate, moderate, intermediate severe and severe disease. (3) Generated confusion tables showed a misclassification rate of 19.1% for males and 16.5% for females, with a majority of misallocations into adjacent severity classes particularly for males. Our preliminary data show that using CAP for detection of selection features and Linear DA to derive the actual model in a CF database might be helpful in developing a scoring system. However, there are several limitations, particularly more data entry points are needed to finalize a score and the statistical tools have further to be refined and validated, with re-running the statistical methods in the larger dataset.
Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye
2016-01-13
A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.
Pounds, Stan; Cheng, Cheng; Cao, Xueyuan; Crews, Kristine R.; Plunkett, William; Gandhi, Varsha; Rubnitz, Jeffrey; Ribeiro, Raul C.; Downing, James R.; Lamba, Jatinder
2009-01-01
Motivation: In some applications, prior biological knowledge can be used to define a specific pattern of association of multiple endpoint variables with a genomic variable that is biologically most interesting. However, to our knowledge, there is no statistical procedure designed to detect specific patterns of association with multiple endpoint variables. Results: Projection onto the most interesting statistical evidence (PROMISE) is proposed as a general procedure to identify genomic variables that exhibit a specific biologically interesting pattern of association with multiple endpoint variables. Biological knowledge of the endpoint variables is used to define a vector that represents the biologically most interesting values for statistics that characterize the associations of the endpoint variables with a genomic variable. A test statistic is defined as the dot-product of the vector of the observed association statistics and the vector of the most interesting values of the association statistics. By definition, this test statistic is proportional to the length of the projection of the observed vector of correlations onto the vector of most interesting associations. Statistical significance is determined via permutation. In simulation studies and an example application, PROMISE shows greater statistical power to identify genes with the interesting pattern of associations than classical multivariate procedures, individual endpoint analyses or listing genes that have the pattern of interest and are significant in more than one individual endpoint analysis. Availability: Documented R routines are freely available from www.stjuderesearch.org/depts/biostats and will soon be available as a Bioconductor package from www.bioconductor.org. Contact: stanley.pounds@stjude.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19528086
Chemical indices and methods of multivariate statistics as a tool for odor classification.
Mahlke, Ingo T; Thiesen, Peter H; Niemeyer, Bernd
2007-04-01
Industrial and agricultural off-gas streams are comprised of numerous volatile compounds, many of which have substantially different odorous properties. State-of-the-art waste-gas treatment includes the characterization of these molecules and is directed at, if possible, either the avoidance of such odorants during processing or the use of existing standardized air purification techniques like bioscrubbing or afterburning, which however, often show low efficiency under ecological and economical regards. Selective odor separation from the off-gas streams could ease many of these disadvantages but is not yet widely applicable. Thus, the aim of this paper is to identify possible model substances in selective odor separation research from 155 volatile molecules mainly originating from livestock facilities, fat refineries, and cocoa and coffee production by knowledge-based methods. All compounds are examined with regard to their structure and information-content using topological and information-theoretical indices. Resulting data are fitted in an observation matrix, and similarities between the substances are computed. Principal component analysis and k-means cluster analysis are conducted showing that clustering of indices data can depict odor information correlating well to molecular composition and molecular shape. Quantitative molecule describtion along with the application of such statistical means therefore provide a good classification tool of malodorant structure properties with no thermodynamic data needed. The approximate look-alike shape of odorous compounds within the clusters suggests a fair choice of possible model molecules.
Accounting for host cell protein behavior in anion-exchange chromatography.
Swanson, Ryan K; Xu, Ruo; Nettleton, Daniel S; Glatz, Charles E
2016-11-01
Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis provided data on the three physicochemical properties most commonly exploited during DSP for each HCP: pI (isoelectric point), molecular weight, and surface hydrophobicity. The protein separation behaviors of two alternative expression host extracts (corn germ and E. coli) were characterized. A multivariate random forest (MVRF) statistical methodology was then applied to the database of characterized proteins creating a tool for predicting the AEX behavior of a mixture of proteins. The accuracy of the MVRF method was determined by calculating a root mean squared error value for each database. This measure never exceeded a value of 0.045 (fraction of protein populating each of the multiple separation fractions) for AEX. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1453-1463, 2016. © 2016 American Institute of Chemical Engineers.
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos
2015-01-01
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.
2016-01-01
Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445
Multivariate Analysis and Prediction of Dioxin-Furan ...
Peer Review Draft of Regional Methods Initiative Final Report Dioxins, which are bioaccumulative and environmentally persistent, pose an ongoing risk to human and ecosystem health. Fish constitute a significant source of dioxin exposure for humans and fish-eating wildlife. Current dioxin analytical methods are costly, time-consuming, and produce hazardous by-products. A Danish team developed a novel, multivariate statistical methodology based on the covariance of dioxin-furan congener Toxic Equivalences (TEQs) and fatty acid methyl esters (FAMEs) and applied it to North Atlantic Ocean fishmeal samples. The goal of the current study was to attempt to extend this Danish methodology to 77 whole and composite fish samples from three trophic groups: predator (whole largemouth bass), benthic (whole flathead and channel catfish) and forage fish (composite bluegill, pumpkinseed and green sunfish) from two dioxin contaminated rivers (Pocatalico R. and Kanawha R.) in West Virginia, USA. Multivariate statistical analyses, including, Principal Components Analysis (PCA), Hierarchical Clustering, and Partial Least Squares Regression (PLS), were used to assess the relationship between the FAMEs and TEQs in these dioxin contaminated freshwater fish from the Kanawha and Pocatalico Rivers. These three multivariate statistical methods all confirm that the pattern of Fatty Acid Methyl Esters (FAMEs) in these freshwater fish covaries with and is predictive of the WHO TE
Williams, L. Keoki; Buu, Anne
2017-01-01
We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher’s combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed correlation estimation methods have high levels of accuracy. More importantly, our approach conservatively estimates the variance of the test statistic so that the type I error rate is controlled. The simulation also shows that the proposed test maintains the power at the level very close to that of the ideal analysis based on known latent phenotypes while controlling the type I error. In contrast, conventional approaches–dichotomizing all observed phenotypes or treating them as continuous variables–could either reduce the power or employ a linear regression model unfit for the data. Furthermore, the statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that conducting a multivariate test on multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests. The proposed method also offers a new approach to analyzing the Fagerström Test for Nicotine Dependence as multivariate phenotypes in genome-wide association studies. PMID:28081206
MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA
Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...
Borrowing of strength and study weights in multivariate and network meta-analysis.
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2017-12-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of 'borrowing of strength'. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis).
Borrowing of strength and study weights in multivariate and network meta-analysis
Jackson, Dan; White, Ian R; Price, Malcolm; Copas, John; Riley, Richard D
2016-01-01
Multivariate and network meta-analysis have the potential for the estimated mean of one effect to borrow strength from the data on other effects of interest. The extent of this borrowing of strength is usually assessed informally. We present new mathematical definitions of ‘borrowing of strength’. Our main proposal is based on a decomposition of the score statistic, which we show can be interpreted as comparing the precision of estimates from the multivariate and univariate models. Our definition of borrowing of strength therefore emulates the usual informal assessment. We also derive a method for calculating study weights, which we embed into the same framework as our borrowing of strength statistics, so that percentage study weights can accompany the results from multivariate and network meta-analyses as they do in conventional univariate meta-analyses. Our proposals are illustrated using three meta-analyses involving correlated effects for multiple outcomes, multiple risk factor associations and multiple treatments (network meta-analysis). PMID:26546254
2012-01-01
Background It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. Results BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza. To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a multivariate AS analysis. Conclusions Despite exon array chips being widely used for transcriptomics studies, there is a lack of analysis tools offering advanced statistical features and requiring no programming knowledge. BEAT provides a user-friendly platform for a comprehensive study of AS events in human diseases, displaying the analysis results with easily interpretable and interactive tables and graphics. PMID:22536968
EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis
NASA Astrophysics Data System (ADS)
Žvokelj, Matej; Zupan, Samo; Prebil, Ivan
2016-05-01
A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.
Friedman, David B
2012-01-01
All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.
Mhlongo, M I; Tugizimana, F; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A
2017-01-22
To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Jędrkiewicz, Renata; Tsakovski, Stefan; Lavenu, Aurore; Namieśnik, Jacek; Tobiszewski, Marek
2018-02-01
Novel methodology for grouping and ranking with application of self-organizing maps and multicriteria decision analysis is presented. The dataset consists of 22 objects that are analytical procedures applied to furan determination in food samples. They are described by 10 variables, referred to their analytical performance, environmental and economic aspects. Multivariate statistics analysis allows to limit the amount of input data for ranking analysis. Assessment results show that the most beneficial procedures are based on microextraction techniques with GC-MS final determination. It is presented how the information obtained from both tools complement each other. The applicability of combination of grouping and ranking is also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Low-dimensional approximation searching strategy for transfer entropy from non-uniform embedding
2018-01-01
Transfer entropy from non-uniform embedding is a popular tool for the inference of causal relationships among dynamical subsystems. In this study we present an approach that makes use of low-dimensional conditional mutual information quantities to decompose the original high-dimensional conditional mutual information in the searching procedure of non-uniform embedding for significant variables at different lags. We perform a series of simulation experiments to assess the sensitivity and specificity of our proposed method to demonstrate its advantage compared to previous algorithms. The results provide concrete evidence that low-dimensional approximations can help to improve the statistical accuracy of transfer entropy in multivariate causality analysis and yield a better performance over other methods. The proposed method is especially efficient as the data length grows. PMID:29547669
Applying Sociocultural Theory to Teaching Statistics for Doctoral Social Work Students
ERIC Educational Resources Information Center
Mogro-Wilson, Cristina; Reeves, Michael G.; Charter, Mollie Lazar
2015-01-01
This article describes the development of two doctoral-level multivariate statistics courses utilizing sociocultural theory, an integrative pedagogical framework. In the first course, the implementation of sociocultural theory helps to support the students through a rigorous introduction to statistics. The second course involves students…
A review on the multivariate statistical methods for dimensional reduction studies
NASA Astrophysics Data System (ADS)
Aik, Lim Eng; Kiang, Lam Chee; Mohamed, Zulkifley Bin; Hong, Tan Wei
2017-05-01
In this research study we have discussed multivariate statistical methods for dimensional reduction, which has been done by various researchers. The reduction of dimensionality is valuable to accelerate algorithm progression, as well as really may offer assistance with the last grouping/clustering precision. A lot of boisterous or even flawed info information regularly prompts a not exactly alluring algorithm progression. Expelling un-useful or dis-instructive information segments may for sure help the algorithm discover more broad grouping locales and principles and generally speaking accomplish better exhibitions on new data set.
Burns, Melissa K; Andeway, Kathleen; Eppenstein, Paula; Ruroede, Kathleen
2014-06-01
This study was designed to establish balance parameters for the Nintendo(®) (Redmond, WA) "Wii Fit™" Balance Board system with three common games, in a sample of healthy adults, and to evaluate the balance measurement reproducibility with separation by age. This was a prospective, multivariate analysis of variance, cohort study design. Seventy-five participants who satisfied all inclusion criteria and completed an informed consent were enrolled. Participants were grouped into age ranges: 21-35 years (n=24), 36-50 years (n=24), and 51-65 years (n=27). Each participant completed the following games three consecutive times, in a randomized order, during one session: "Balance Bubble" (BB) for distance and duration, "Tight Rope" (TR) for distance and duration, and "Center of Balance" (COB) on the left and right sides. COB distributed weight was fairly symmetrical across all subjects and trials; therefore, no influence was assumed on or interaction with other "Wii Fit" measurements. Homogeneity of variance statistics indicated the assumption of distribution normality of the dependent variables (rates) were tenable. The multivariate analysis of variance included dependent variables BB and TR rates (distance divided by duration to complete) with age group and trials as the independent variables. The BB rate was statistically significant (F=4.725, P<0.005), but not the TR rate. The youngest group's BB rate was significantly larger than those of the other two groups. "Wii Fit" can discriminate among age groups across trials. The results show promise as a viable tool to measure balance and distance across time (speed) and center of balance distribution.
Assessment of data pre-processing methods for LC-MS/MS-based metabolomics of uterine cervix cancer.
Chen, Yanhua; Xu, Jing; Zhang, Ruiping; Shen, Guoqing; Song, Yongmei; Sun, Jianghao; He, Jiuming; Zhan, Qimin; Abliz, Zeper
2013-05-07
A metabolomics strategy based on rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS) and multivariate statistics has been implemented to identify potential biomarkers in uterine cervix cancer. Due to the importance of the data pre-processing method, three popular software packages have been compared. Then they have been used to acquire respective data matrices from the same LC-MS/MS data. Multivariate statistics was subsequently used to identify significantly changed biomarkers for uterine cervix cancer from the resulting data matrices. The reliabilities of the identified discriminated metabolites have been further validated on the basis of manually extracted data and ROC curves. Nine potential biomarkers have been identified as having a close relationship with uterine cervix cancer. Considering these in combination as a biomarker group, the AUC amounted to 0.997, with a sensitivity of 92.9% and a specificity of 95.6%. The prediction accuracy was 96.6%. Among these potential biomarkers, the amounts of four purine derivatives were greatly decreased, which might be related to a P2 receptor that might lead to a decrease in cell number through apoptosis. Moreover, only two of them were identified simultaneously by all of the pre-processing tools. The results have demonstrated that the data pre-processing method could seriously bias the metabolomics results. Therefore, application of two or more data pre-processing methods would reveal a more comprehensive set of potential biomarkers in non-targeted metabolomics, before a further validation with LC-MS/MS based targeted metabolomics in MRM mode could be conducted.
NASA Astrophysics Data System (ADS)
Ako, Andrew Ako; Eyong, Gloria Eneke Takem; Shimada, Jun; Koike, Katsuaki; Hosono, Takahiro; Ichiyanagi, Kimpei; Richard, Akoachere; Tandia, Beatrice Ketchemen; Nkeng, George Elambo; Roger, Ntankouo Njila
2014-06-01
Water containing high concentrations of nitrate is unfit for human consumption and, if discharging to freshwater or marine habitats, can contribute to algal blooms and eutrophication. The level of nitrate contamination in groundwater of two densely populated, agro-industrial areas of the Cameroon Volcanic Line (CVL) (Banana Plain and Mount Cameroon area) was evaluated. A total of 100 samples from boreholes, open wells and springs (67 from the Banana Plain; 33 from springs only, in the Mount Cameroon area) were collected in April 2009 and January 2010 and analyzed for chemical constituents, including nitrates. The average groundwater nitrate concentrations for the studied areas are: 17.28 mg/l for the Banana Plain and 2.90 mg/l for the Mount Cameroon area. Overall, groundwaters are relatively free from excessive nitrate contamination, with nitrate concentrations in only 6 % of groundwater resources in the Banana Plain exceeding the maximum admissible concentration for drinking water (50 mg/l). Sources of NO3 - in groundwater of this region may be mainly anthropogenic (N-fertilizers, sewerage, animal waste, organic manure, pit latrines, etc.). Multivariate statistical analyses of the hydrochemical data revealed that three factors were responsible for the groundwater chemistry (especially, degree of nitrate contamination): (1) a geogenic factor; (2) nitrate contamination factor; (3) ionic enrichment factor. The impact of anthropogenic activities, especially groundwater nitrate contamination, is more accentuated in the Banana Plain than in the Mount Cameroon area. This study also demonstrates the usefulness of multivariate statistical analysis in groundwater study as a supplementary tool for interpretation of complex hydrochemical data sets.
Generating an Empirical Probability Distribution for the Andrews-Pregibon Statistic.
ERIC Educational Resources Information Center
Jarrell, Michele G.
A probability distribution was developed for the Andrews-Pregibon (AP) statistic. The statistic, developed by D. F. Andrews and D. Pregibon (1978), identifies multivariate outliers. It is a ratio of the determinant of the data matrix with an observation deleted to the determinant of the entire data matrix. Although the AP statistic has been used…
Kona, Ravikanth; Fahmy, Raafat M; Claycamp, Gregg; Polli, James E; Martinez, Marilyn; Hoag, Stephen W
2015-02-01
The objective of this study is to use near-infrared spectroscopy (NIRS) coupled with multivariate chemometric models to monitor granule and tablet quality attributes in the formulation development and manufacturing of ciprofloxacin hydrochloride (CIP) immediate release tablets. Critical roller compaction process parameters, compression force (CFt), and formulation variables identified from our earlier studies were evaluated in more detail. Multivariate principal component analysis (PCA) and partial least square (PLS) models were developed during the development stage and used as a control tool to predict the quality of granules and tablets. Validated models were used to monitor and control batches manufactured at different sites to assess their robustness to change. The results showed that roll pressure (RP) and CFt played a critical role in the quality of the granules and the finished product within the range tested. Replacing binder source did not statistically influence the quality attributes of the granules and tablets. However, lubricant type has significantly impacted the granule size. Blend uniformity, crushing force, disintegration time during the manufacturing was predicted using validated PLS regression models with acceptable standard error of prediction (SEP) values, whereas the models resulted in higher SEP for batches obtained from different manufacturing site. From this study, we were able to identify critical factors which could impact the quality attributes of the CIP IR tablets. In summary, we demonstrated the ability of near-infrared spectroscopy coupled with chemometrics as a powerful tool to monitor critical quality attributes (CQA) identified during formulation development.
Matero, Sanni; van Den Berg, Frans; Poutiainen, Sami; Rantanen, Jukka; Pajander, Jari
2013-05-01
The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim to achieve a thorough understanding and control over the production process. PAT includes the frames for measurement as well as data analyzes and controlling for in-depth understanding, leading to more consistent and safer drug products with less batch rejections. In the optimal situation, by applying these techniques, destructive end-product testing could be avoided. In this paper the most prominent multivariate data analysis measuring tools within tablet manufacturing and basic research on operations are reviewed. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Azami, Hamed; Escudero, Javier
2017-01-01
Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.
48 CFR 1852.223-76 - Federal Automotive Statistical Tool Reporting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Statistical Tool Reporting. 1852.223-76 Section 1852.223-76 Federal Acquisition Regulations System NATIONAL... Provisions and Clauses 1852.223-76 Federal Automotive Statistical Tool Reporting. As prescribed at 1823.271 and 1851.205, insert the following clause: Federal Automotive Statistical Tool Reporting (JUL 2003) If...
McKinney, Brett A.; White, Bill C.; Grill, Diane E.; Li, Peter W.; Kennedy, Richard B.; Poland, Gregory A.; Oberg, Ann L.
2013-01-01
Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: http://insilico.utulsa.edu/ReliefSeq.php. PMID:24339943
Huang, J; Du, P; Ao, C; Ho, M; Lei, M; Zhao, D; Wang, Z
2007-12-01
Statistical analysis of stormwater runoff data enables general identification of runoff characteristics. Six catchments with different urban surface type including roofs, roadway, park, and residential/commercial in Macau were selected for sampling and study during the period from June 2005 to September 2006. Based on univariate statistical analysis of data sampled, major pollutants discharged from different urban surface type were identified. As for iron roof runoff, Zn is the most significant pollutant. The major pollutants from urban roadway runoff are TSS and COD. Stormwater runoff from commercial/residential and Park catchments show high level of COD, TN, and TP concentration. Principal component analysis was further done for identification of linkages between stormwater quality and urban surface types. Two potential pollution sources were identified for study catchments with different urban surface types. The first one is referred as nutrients losses, soil losses and organic pollutants discharges, the second is related to heavy metals losses. PCA was proved to be a viable tool to explain the type of pollution sources and its mechanism for different urban surface type catchments.
Optimization of hole generation in Ti/CFRP stacks
NASA Astrophysics Data System (ADS)
Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.
2018-03-01
The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.
treespace: Statistical exploration of landscapes of phylogenetic trees.
Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Colijn, Caroline
2017-11-01
The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low-dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group-specific consensus phylogenies. treespace also provides a user-friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Djorgovski, George
1993-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.
NASA Technical Reports Server (NTRS)
Djorgovski, Stanislav
1992-01-01
The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.
Dangers in Using Analysis of Covariance Procedures.
ERIC Educational Resources Information Center
Campbell, Kathleen T.
Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…
A Multivariate Solution of the Multivariate Ranking and Selection Problem
1980-02-01
Taneja (1972)), a ’a for a vector of constants c (Krishnaiah and Rizvi (1966)), the generalized variance ( Gnanadesikan and Gupta (1970)), iegier (1976...Olk-in, I. and Sobel, M. (1977). Selecting and Ordering Populations: A New Statistical Methodology, John Wiley & Sons, Inc., New York. Gnanadesikan
Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques
NASA Technical Reports Server (NTRS)
McDonald, G.; Storrie-Lombardi, M.; Nealson, K.
1999-01-01
The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.
NASA Astrophysics Data System (ADS)
Whitestone, Jennifer J.; Geisen, Glen R.; McQuiston, Barbara K.
1997-03-01
Anthropometric surveys conducted by the military provide comprehensive human body measurement data that are human interface requirements for successful mission performance of weapon systems, including cockpits, protective equipment, and clothing. The application of human body dimensions to model humans and human-machine performance begins with engineering anthropometry. There are two critical elements to engineering anthropometry: data acquisition and data analysis. First, the human body is captured dimensionally with either traditional anthropometric tools, such as calipers and tape measures, or with advanced image acquisition systems, such as a laser scanner. Next, numerous statistical analysis tools, such as multivariate modeling and feature envelopes, are used to effectively transition these data for design and evaluation of equipment and work environments. Recently, Air Force technology transfer allowed researchers at the Computerized Anthropometric Research and Design (CARD) Laboratory at Wright-Patterson Air Force Base to work with the Dayton, Ohio area medical community in assessing the rate of wound healing and improving the fit of total contract burn masks. This paper describes the successful application of CARD Lab engineering anthropometry to two medically oriented human interface problems.
Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.
1980-01-01
Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.
Buttigieg, Pier Luigi; Ramette, Alban
2014-12-01
The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
Ensembles of radial basis function networks for spectroscopic detection of cervical precancer
NASA Technical Reports Server (NTRS)
Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.
1998-01-01
The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.
SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *
Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.
2014-01-01
The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844
Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel
2015-01-01
Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel activity.
Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions.
Zakrzewski, Martha; Proietti, Carla; Ellis, Jonathan J; Hasan, Shihab; Brion, Marie-Jo; Berger, Bernard; Krause, Lutz
2017-03-01
Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. The web-interface is accessible via http://cgenome.net/calypso/ . The software is programmed in Java, PERL and R and the source code is available from Zenodo ( https://zenodo.org/record/50931 ). The software is freely available for non-commercial users. l.krause@uq.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng
2013-05-01
Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.
Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies
ERIC Educational Resources Information Center
Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.
2012-01-01
In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…
NASA Astrophysics Data System (ADS)
O'Shea, Bethany; Jankowski, Jerzy
2006-12-01
The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright
Multiple Versus Single Set Validation of Multivariate Models to Avoid Mistakes.
Harrington, Peter de Boves
2018-01-02
Validation of multivariate models is of current importance for a wide range of chemical applications. Although important, it is neglected. The common practice is to use a single external validation set for evaluation. This approach is deficient and may mislead investigators with results that are specific to the single validation set of data. In addition, no statistics are available regarding the precision of a derived figure of merit (FOM). A statistical approach using bootstrapped Latin partitions is advocated. This validation method makes an efficient use of the data because each object is used once for validation. It was reviewed a decade earlier but primarily for the optimization of chemometric models this review presents the reasons it should be used for generalized statistical validation. Average FOMs with confidence intervals are reported and powerful, matched-sample statistics may be applied for comparing models and methods. Examples demonstrate the problems with single validation sets.
Joint resonant CMB power spectrum and bispectrum estimation
NASA Astrophysics Data System (ADS)
Meerburg, P. Daniel; Münchmeyer, Moritz; Wandelt, Benjamin
2016-02-01
We develop the tools necessary to assess the statistical significance of resonant features in the CMB correlation functions, combining power spectrum and bispectrum measurements. This significance is typically addressed by running a large number of simulations to derive the probability density function (PDF) of the feature-amplitude in the Gaussian case. Although these simulations are tractable for the power spectrum, for the bispectrum they require significant computational resources. We show that, by assuming that the PDF is given by a multivariate Gaussian where the covariance is determined by the Fisher matrix of the sine and cosine terms, we can efficiently produce spectra that are statistically close to those derived from full simulations. By drawing a large number of spectra from this PDF, both for the power spectrum and the bispectrum, we can quickly determine the statistical significance of candidate signatures in the CMB, considering both single frequency and multifrequency estimators. We show that for resonance models, cosmology and foreground parameters have little influence on the estimated amplitude, which allows us to simplify the analysis considerably. A more precise likelihood treatment can then be applied to candidate signatures only. We also discuss a modal expansion approach for the power spectrum, aimed at quickly scanning through large families of oscillating models.
Konaté, Ahmed Amara; Ma, Huolin; Pan, Heping; Qin, Zhen; Ahmed, Hafizullah Abba; Dembele, N'dji Dit Jacques
2017-10-01
The availability of a deep well that penetrates deep into the Ultra High Pressure (UHP) metamorphic rocks is unusual and consequently offers a unique chance to study the metamorphic rocks. One such borehole is located in the southern part of Donghai County in the Sulu UHP metamorphic belt of Eastern China, from the Chinese Continental Scientific Drilling Main hole. This study reports the results obtained from the analysis of oxide log data. A geochemical logging tool provides in situ, gamma ray spectroscopy measurements of major and trace elements in the borehole. Dry weight percent oxide concentration logs obtained for this study were SiO 2 , K 2 O, TiO 2 , H 2 O, CO 2 , Na 2 O, Fe 2 O 3 , FeO, CaO, MnO, MgO, P 2 O 5 and Al 2 O 3 . Cross plot and Principal Component Analysis methods were applied for lithology characterization and mineralogy description respectively. Cross plot analysis allows lithological variations to be characterized. Principal Component Analysis shows that the oxide logs can be summarized by two components related to the feldspar and hydrous minerals. This study has shown that geochemical logging tool data is accurate and adequate to be tremendously useful in UHP metamorphic rocks analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Volatile metabolomic signature of human breast cancer cell lines
Silva, Catarina L.; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S.
2017-01-01
Breast cancer (BC) remains the most prevalent oncologic pathology in women, causing huge psychological, economic and social impacts on our society. Currently, the available diagnostic tools have limited sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and is a useful platform for discovering new biomarkers or make disease diagnosis using different biofluids. Volatile organic compounds (VOCs) from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC–MS), thus defining a volatile metabolomic signature. 2-Pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in cultured BC cell lines. Multivariate statistical methods were used to verify the volatomic differences between BC cell lines and normal cells in order to find a set of specific VOCs that could be associated with BC, providing comprehensive insight into VOCs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the BC diagnostic tools and explore the associated metabolomic pathways. PMID:28256598
NASA Astrophysics Data System (ADS)
Theodorakou, Chrysoula; Farquharson, Michael J.
2009-08-01
The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.
A Descriptive Study of Individual and Cross-Cultural Differences in Statistics Anxiety
ERIC Educational Resources Information Center
Baloglu, Mustafa; Deniz, M. Engin; Kesici, Sahin
2011-01-01
The present study investigated individual and cross-cultural differences in statistics anxiety among 223 Turkish and 237 American college students. A 2 x 2 between-subjects factorial multivariate analysis of covariance (MANCOVA) was performed on the six dependent variables which are the six subscales of the Statistical Anxiety Rating Scale.…
Pedagogical monitoring as a tool to reduce dropout in distance learning in family health.
de Castro E Lima Baesse, Deborah; Grisolia, Alexandra Monteiro; de Oliveira, Ana Emilia Figueiredo
2016-08-22
This paper presents the results of a study of the Monsys monitoring system, an educational support tool designed to prevent and control the dropout rate in a distance learning course in family health. Developed by UNA-SUS/UFMA, Monsys was created to enable data mining in the virtual learning environment known as Moodle. This is an exploratory study using documentary and bibliographic research and analysis of the Monsys database. Two classes (2010 and 2011) were selected as research subjects, one with Monsys intervention and the other without. The samples were matched (using a ration of 1:1) by gender, age, marital status, graduation year, previous graduation status, location and profession. Statistical analysis was performed using the chi-square test and a multivariate logistic regression model with a 5 % significance level. The findings show that the dropout rate in the class in which Monsys was not employed (2010) was 43.2 %. However, the dropout rate in the class of 2011, in which the tool was employed as a pedagogical team aid, was 30.6 %. After statistical adjustment, the Monsys monitoring system remained in correlation with the course completion variable (adjusted OR = 1.74, IC95% = 1.17-2.59; p = 0.005), suggesting that the use of the Monsys tool, isolated to the adjusted variables, can enhance the likelihood that students will complete the course. Using the chi-square test, a profile analysis of students revealed a higher completion rate among women (67.7 %) than men (52.2 %). Analysis of age demonstrated that students between 40 and 49 years dropped out the least (32.1 %) and, with regard to professional training, nurses have the lowest dropout rates (36.3 %). The use of Monsys significantly reduced the dropout, with results showing greater association between the variables denoting presence of the monitoring system and female gender.
Richard. D. Wood-Smith; John M. Buffington
1996-01-01
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.
Preliminary Multi-Variable Parametric Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Hendrichs, Todd
2010-01-01
This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.
Facilitating the Transition from Bright to Dim Environments
2016-03-04
For the parametric data, a multivariate ANOVA was used in determining the systematic presence of any statistically significant performance differences...performed. All significance levels were p < 0.05, and statistical analyses were performed with the Statistical Package for Social Sciences ( SPSS ...1950. Age changes in rate and level of visual dark adaptation. Journal of Applied Physiology, 2, 407–411. Field, A. 2009. Discovering statistics
Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.
2016-01-01
Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095
Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.
Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek
2015-06-12
The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.
NASA Technical Reports Server (NTRS)
Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.
1992-01-01
The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.
Lu, Tsui-Shan; Longnecker, Matthew P.; Zhou, Haibo
2016-01-01
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data and the general ODS design for a continuous response. While substantial work has been done for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome dependent sampling (Multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the Multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the Multivariate-ODS or the estimator from a simple random sample with the same sample size. The Multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of PCB exposure to hearing loss in children born to the Collaborative Perinatal Study. PMID:27966260
Li, Jinling; He, Ming; Han, Wei; Gu, Yifan
2009-05-30
An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.
Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data
NASA Technical Reports Server (NTRS)
Baker, W. E.; Bloom, S. C.; Nestler, M. S.
1985-01-01
A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.
Exploring the Dynamics of Dyadic Interactions via Hierarchical Segmentation
ERIC Educational Resources Information Center
Hsieh, Fushing; Ferrer, Emilio; Chen, Shu-Chun; Chow, Sy-Miin
2010-01-01
In this article we present an exploratory tool for extracting systematic patterns from multivariate data. The technique, hierarchical segmentation (HS), can be used to group multivariate time series into segments with similar discrete-state recurrence patterns and it is not restricted by the stationarity assumption. We use a simulation study to…
A Simpli ed, General Approach to Simulating from Multivariate Copula Functions
Barry Goodwin
2012-01-01
Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses \\probability{...
Early Numeracy Intervention: Does Quantity Discrimination Really Work?
ERIC Educational Resources Information Center
Hansmann, Paul
2013-01-01
Scope and Method of Study: The current study demonstrates that a taped problem intervention is an effective tool for increasing the early numeracy skill of QD. A taped problems intervention was used with two variations of the quantity discrimination measure (triangle and traditional). A 3x2 doubly multivariate multivariate analysis of variance was…
Forcino, Frank L; Leighton, Lindsey R; Twerdy, Pamela; Cahill, James F
2015-01-01
Community ecologists commonly perform multivariate techniques (e.g., ordination, cluster analysis) to assess patterns and gradients of taxonomic variation. A critical requirement for a meaningful statistical analysis is accurate information on the taxa found within an ecological sample. However, oversampling (too many individuals counted per sample) also comes at a cost, particularly for ecological systems in which identification and quantification is substantially more resource consuming than the field expedition itself. In such systems, an increasingly larger sample size will eventually result in diminishing returns in improving any pattern or gradient revealed by the data, but will also lead to continually increasing costs. Here, we examine 396 datasets: 44 previously published and 352 created datasets. Using meta-analytic and simulation-based approaches, the research within the present paper seeks (1) to determine minimal sample sizes required to produce robust multivariate statistical results when conducting abundance-based, community ecology research. Furthermore, we seek (2) to determine the dataset parameters (i.e., evenness, number of taxa, number of samples) that require larger sample sizes, regardless of resource availability. We found that in the 44 previously published and the 220 created datasets with randomly chosen abundances, a conservative estimate of a sample size of 58 produced the same multivariate results as all larger sample sizes. However, this minimal number varies as a function of evenness, where increased evenness resulted in increased minimal sample sizes. Sample sizes as small as 58 individuals are sufficient for a broad range of multivariate abundance-based research. In cases when resource availability is the limiting factor for conducting a project (e.g., small university, time to conduct the research project), statistically viable results can still be obtained with less of an investment.
Viewpoints: Interactive Exploration of Large Multivariate Earth and Space Science Data Sets
NASA Astrophysics Data System (ADS)
Levit, C.; Gazis, P. R.
2006-05-01
Analysis and visualization of extremely large and complex data sets may be one of the most significant challenges facing earth and space science investigators in the forthcoming decades. While advances in hardware speed and storage technology have roughly kept up with (indeed, have driven) increases in database size, the same is not of our abilities to manage the complexity of these data. Current missions, instruments, and simulations produce so much data of such high dimensionality that they outstrip the capabilities of traditional visualization and analysis software. This problem can only be expected to get worse as data volumes increase by orders of magnitude in future missions and in ever-larger supercomputer simulations. For large multivariate data (more than 105 samples or records with more than 5 variables per sample) the interactive graphics response of most existing statistical analysis, machine learning, exploratory data analysis, and/or visualization tools such as Torch, MLC++, Matlab, S++/R, and IDL stutters, stalls, or stops working altogether. Fortunately, the graphics processing units (GPUs) built in to all professional desktop and laptop computers currently on the market are capable of transforming, filtering, and rendering hundreds of millions of points per second. We present a prototype open-source cross-platform application which leverages much of the power latent in the GPU to enable smooth interactive exploration and analysis of large high- dimensional data using a variety of classical and recent techniques. The targeted application is the interactive analysis of large, complex, multivariate data sets, with dimensionalities that may surpass 100 and sample sizes that may exceed 106-108.
Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K
2017-01-01
The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.
2018-03-01
This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.
Attitudes toward Advanced and Multivariate Statistics When Using Computers.
ERIC Educational Resources Information Center
Kennedy, Robert L.; McCallister, Corliss Jean
This study investigated the attitudes toward statistics of graduate students who studied advanced statistics in a course in which the focus of instruction was the use of a computer program in class. The use of the program made it possible to provide an individualized, self-paced, student-centered, and activity-based course. The three sections…
ERIC Educational Resources Information Center
Williams, Amanda S.
2015-01-01
Statistics anxiety is a common problem for graduate students. This study explores the multivariate relationship between a set of worry-related variables and six types of statistics anxiety. Canonical correlation analysis indicates a significant relationship between the two sets of variables. Findings suggest that students who are more intolerant…
Ferreira, Ana P; Tobyn, Mike
2015-01-01
In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.
Li, Jia; Zhang, Haibo; Chen, Yongshan; Luo, Yongming; Zhang, Hua
2016-07-01
To quantify the extent of antibiotic contamination and to identity the dominant pollutant sources in the Tiaoxi River Watershed, surface water samples were collected at eight locations and analyzed for four tetracyclines and three sulfonamides using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The observed maximum concentrations of tetracycline (623 ng L(-1)), oxytetracycline (19,810 ng L(-1)), and sulfamethoxazole (112 ng L(-1)) exceeded their corresponding Predicted No Effect Concentration (PNEC) values. In particular, high concentrations of antibiotics were observed in wet summer with heavy rainfall. The maximum concentrations of antibiotics appeared in the vicinity of intensive aquaculture areas. High-resolution land use data were used for identifying diffuse source of antibiotic pollution in the watershed. Significant correlations between tetracycline and developed (r = 0.93), tetracycline and barren (r = 0.87), oxytetracycline and barren (r = 0.82), and sulfadiazine and agricultural facilities (r = 0.71) were observed. In addition, the density of aquaculture significantly correlated with doxycycline (r = 0.74) and oxytetracycline (r = 0.76), while the density of livestock significantly correlated with sulfadiazine (r = 0.71). Principle Component Analysis (PCA) indicated that doxycycline, tetracycline, oxytetracycline, and sulfamethoxazole were from aquaculture and domestic sources, whereas sulfadiazine and sulfamethazine were from livestock wastewater. Flood or drainage from aquaculture ponds was identified as a major source of antibiotics in the Tiaoxi watershed. A hot-spot map was created based on results of land use analysis and multi-variable statistics, which provided an effective management tool of sources identification in watersheds with multiple diffuse sources of antibiotic pollution.
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.
2008-01-01
Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of southern California. This study demonstrates that logistic regression is a valuable tool for developing models that predict the probability of debris flows occurring in recently burned landscapes.
Statistical methods and neural network approaches for classification of data from multiple sources
NASA Technical Reports Server (NTRS)
Benediktsson, Jon Atli; Swain, Philip H.
1990-01-01
Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yan; Notaro, Michael; Wang, Fuyao
Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less
Yu, Yan; Notaro, Michael; Wang, Fuyao; ...
2018-02-05
Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less
High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics
Carvalho, Carlos M.; Chang, Jeffrey; Lucas, Joseph E.; Nevins, Joseph R.; Wang, Quanli; West, Mike
2010-01-01
We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor and regression models for microarray gene expression data. We discuss breast cancer applications and key aspects of the modeling and computational methodology. Our case studies aim to investigate and characterize heterogeneity of structure related to specific oncogenic pathways, as well as links between aggregate patterns in gene expression profiles and clinical biomarkers. Based on the metaphor of statistically derived “factors” as representing biological “subpathway” structure, we explore the decomposition of fitted sparse factor models into pathway subcomponents and investigate how these components overlay multiple aspects of known biological activity. Our methodology is based on sparsity modeling of multivariate regression, ANOVA, and latent factor models, as well as a class of models that combines all components. Hierarchical sparsity priors address questions of dimension reduction and multiple comparisons, as well as scalability of the methodology. The models include practically relevant non-Gaussian/nonparametric components for latent structure, underlying often quite complex non-Gaussianity in multivariate expression patterns. Model search and fitting are addressed through stochastic simulation and evolutionary stochastic search methods that are exemplified in the oncogenic pathway studies. Supplementary supporting material provides more details of the applications, as well as examples of the use of freely available software tools for implementing the methodology. PMID:21218139
Fitzpatrick, John L; Simmons, Leigh W; Evans, Jonathan P
2012-08-01
Assessing how selection operates on several, potentially interacting, components of the ejaculate is a challenging endeavor. Ejaculates can be subject to natural and/or sexual selection, which can impose both linear (directional) and nonlinear (stabilizing, disruptive, and correlational) selection on different ejaculate components. Most previous studies have examined linear selection of ejaculate components and, consequently, we know very little about patterns of nonlinear selection on the ejaculate. Even less is known about how selection acts on the ejaculate as a functionally integrated unit, despite evidence of covariance among ejaculate components. Here, we assess how selection acts on multiple ejaculate components simultaneously in the broadcast spawning sessile invertebrate Mytilus galloprovincialis using the statistical tools of multivariate selection analyses. Our analyses of relative fertilization rates revealed complex patterns of selection on sperm velocity, motility, and morphology. Interestingly, the most successful ejaculates were made up of slower swimming sperm with relatively low percentages of motile cells, and sperm with smaller head volumes that swam in highly pronounced curved swimming trajectories. These results are consistent with an emerging body of literature on fertilization kinetics in broadcast spawners, and shed light on the fundamental nature of selection acting on the ejaculate as a functionally integrated unit. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Li, Yan; Zhang, Ji; Jin, Hang; Liu, Honggao; Wang, Yuanzhong
2016-08-05
A quality assessment system comprised of a tandem technique of ultraviolet (UV) spectroscopy and ultra-fast liquid chromatography (UFLC) aided by multivariate analysis was presented for the determination of geographic origin of Wolfiporia extensa collected from five regions in Yunnan Province of China. Characteristic UV spectroscopic fingerprints of samples were determined based on its methanol extract. UFLC was applied for the determination of pachymic acid (a biomarker) presented in individual test samples. The spectrum data matrix and the content of pachymic acid were integrated and analyzed by partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA). The results showed that chemical properties of samples were clearly dominated by the epidermis and inner part as well as geographical origins. The relationships among samples obtained from these five regions have been also presented. Moreover, an interesting finding implied that geographical origins had much greater influence on the chemical properties of epidermis compared with that of the inner part. This study demonstrated that a rapid tool for accurate discrimination of W. extensa by UV spectroscopy and UFLC could be available for quality control of complicated medicinal mushrooms. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Chaosheng
2006-08-01
Galway is a small but rapidly growing tourism city in western Ireland. To evaluate its environmental quality, a total of 166 surface soil samples (0-10 cm depth) were collected from parks and grasslands at the density of 1 sample per 0.25 km2 at the end of 2004. All samples were analysed using ICP-AES for the near-total concentrations of 26 chemical elements. Multivariate statistics and GIS techniques were applied to classify the elements and to identify elements influenced by human activities. Cluster analysis (CA) and principal component analysis (PCA) classified the elements into two groups: the first group predominantly derived from natural sources, the second being influenced by human activities. GIS mapping is a powerful tool in identifying the possible sources of pollutants. Relatively high concentrations of Cu, Pb and Zn were found in the city centre, old residential areas, and along major traffic routes, showing significant effects of traffic pollution. The element As is enriched in soils of the old built-up areas, which can be attributed to coal and peat combustion for home heating. Such significant spatial patterns of pollutants displayed by urban soils may imply potential health threat to residents of the contaminated areas of the city.
Extracting galactic structure parameters from multivariated density estimation
NASA Technical Reports Server (NTRS)
Chen, B.; Creze, M.; Robin, A.; Bienayme, O.
1992-01-01
Multivariate statistical analysis, including includes cluster analysis (unsupervised classification), discriminant analysis (supervised classification) and principle component analysis (dimensionlity reduction method), and nonparameter density estimation have been successfully used to search for meaningful associations in the 5-dimensional space of observables between observed points and the sets of simulated points generated from a synthetic approach of galaxy modelling. These methodologies can be applied as the new tools to obtain information about hidden structure otherwise unrecognizable, and place important constraints on the space distribution of various stellar populations in the Milky Way. In this paper, we concentrate on illustrating how to use nonparameter density estimation to substitute for the true densities in both of the simulating sample and real sample in the five-dimensional space. In order to fit model predicted densities to reality, we derive a set of equations which include n lines (where n is the total number of observed points) and m (where m: the numbers of predefined groups) unknown parameters. A least-square estimation will allow us to determine the density law of different groups and components in the Galaxy. The output from our software, which can be used in many research fields, will also give out the systematic error between the model and the observation by a Bayes rule.
Interfaces between statistical analysis packages and the ESRI geographic information system
NASA Technical Reports Server (NTRS)
Masuoka, E.
1980-01-01
Interfaces between ESRI's geographic information system (GIS) data files and real valued data files written to facilitate statistical analysis and display of spatially referenced multivariable data are described. An example of data analysis which utilized the GIS and the statistical analysis system is presented to illustrate the utility of combining the analytic capability of a statistical package with the data management and display features of the GIS.
Spatial extremes modeling applied to extreme precipitation data in the state of Paraná
NASA Astrophysics Data System (ADS)
Olinda, R. A.; Blanchet, J.; dos Santos, C. A. C.; Ozaki, V. A.; Ribeiro, P. J., Jr.
2014-11-01
Most of the mathematical models developed for rare events are based on probabilistic models for extremes. Although the tools for statistical modeling of univariate and multivariate extremes are well developed, the extension of these tools to model spatial extremes includes an area of very active research nowadays. A natural approach to such a modeling is the theory of extreme spatial and the max-stable process, characterized by the extension of infinite dimensions of multivariate extreme value theory, and making it possible then to incorporate the existing correlation functions in geostatistics and therefore verify the extremal dependence by means of the extreme coefficient and the Madogram. This work describes the application of such processes in modeling the spatial maximum dependence of maximum monthly rainfall from the state of Paraná, based on historical series observed in weather stations. The proposed models consider the Euclidean space and a transformation referred to as space weather, which may explain the presence of directional effects resulting from synoptic weather patterns. This method is based on the theorem proposed for de Haan and on the models of Smith and Schlather. The isotropic and anisotropic behavior of these models is also verified via Monte Carlo simulation. Estimates are made through pairwise likelihood maximum and the models are compared using the Takeuchi Information Criterion. By modeling the dependence of spatial maxima, applied to maximum monthly rainfall data from the state of Paraná, it was possible to identify directional effects resulting from meteorological phenomena, which, in turn, are important for proper management of risks and environmental disasters in countries with its economy heavily dependent on agribusiness.
Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek
2012-01-01
As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci. Copyright © 2013 S. Karger AG, Basel.
Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Andrew; Musolf, Anthony; Matise, Tara C.; Finch, Stephen J.; Gordon, Derek
2013-01-01
As with any new technology, next generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model, based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to that data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p-value, no matter how many loci. PMID:23594495
Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave
2014-01-01
We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...
ERIC Educational Resources Information Center
Grasman, Raoul P. P. P.; Huizenga, Hilde M.; Geurts, Hilde M.
2010-01-01
Crawford and Howell (1998) have pointed out that the common practice of z-score inference on cognitive disability is inappropriate if a patient's performance on a task is compared with relatively few typical control individuals. Appropriate univariate and multivariate statistical tests have been proposed for these studies, but these are only valid…
Applied statistics in agricultural, biological, and environmental sciences.
USDA-ARS?s Scientific Manuscript database
Agronomic research often involves measurement and collection of multiple response variables in an effort to understand the more complex nature of the system being studied. Multivariate statistical methods encompass the simultaneous analysis of all random variables measured on each experimental or s...
SOURCE APPORTIONMENT RESULTS, UNCERTAINTIES, AND MODELING TOOLS
Advanced multivariate receptor modeling tools are available from the U.S. Environmental Protection Agency (EPA) that use only speciated sample data to identify and quantify sources of air pollution. EPA has developed both EPA Unmix and EPA Positive Matrix Factorization (PMF) and ...
The fragility of statistically significant findings from randomized trials in head and neck surgery.
Noel, Christopher W; McMullen, Caitlin; Yao, Christopher; Monteiro, Eric; Goldstein, David P; Eskander, Antoine; de Almeida, John R
2018-04-23
The Fragility Index (FI) is a novel tool for evaluating the robustness of statistically significant findings in a randomized control trial (RCT). It measures the number of events upon which statistical significance depends. We sought to calculate the FI scores for RCTs in the head and neck cancer literature where surgery was a primary intervention. Potential articles were identified in PubMed (MEDLINE), Embase, and Cochrane without publication date restrictions. Two reviewers independently screened eligible RCTs reporting at least one dichotomous and statistically significant outcome. The data from each trial were extracted and the FI scores were calculated. Associations between trial characteristics and FI were determined. In total, 27 articles were identified. The median sample size was 67.5 (interquartile range [IQR] = 42-143) and the median number of events per trial was 8 (IQR = 2.25-18.25). The median FI score was 1 (IQR = 0-2.5), meaning that changing one patient from a nonevent to an event in the treatment arm would change the result to a statistically nonsignificant result, or P > .05. The FI score was less than the number of patients lost to follow-up in 71% of cases. The FI score was found to be moderately correlated with P value (ρ = -0.52, P = .007) and with journal impact factor (ρ = 0.49, P = .009) on univariable analysis. On multivariable analysis, only the P value was found to be a predictor of FI score (P = .001). Randomized trials in the head and neck cancer literature where surgery is a primary modality are relatively nonrobust statistically with low FI scores. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan
2016-04-01
Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.
Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques
NASA Astrophysics Data System (ADS)
Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein
2017-10-01
The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.
Sepehrband, Farshid; Lynch, Kirsten M; Cabeen, Ryan P; Gonzalez-Zacarias, Clio; Zhao, Lu; D'Arcy, Mike; Kesselman, Carl; Herting, Megan M; Dinov, Ivo D; Toga, Arthur W; Clark, Kristi A
2018-05-15
Exploring neuroanatomical sex differences using a multivariate statistical learning approach can yield insights that cannot be derived with univariate analysis. While gross differences in total brain volume are well-established, uncovering the more subtle, regional sex-related differences in neuroanatomy requires a multivariate approach that can accurately model spatial complexity as well as the interactions between neuroanatomical features. Here, we developed a multivariate statistical learning model using a support vector machine (SVM) classifier to predict sex from MRI-derived regional neuroanatomical features from a single-site study of 967 healthy youth from the Philadelphia Neurodevelopmental Cohort (PNC). Then, we validated the multivariate model on an independent dataset of 682 healthy youth from the multi-site Pediatric Imaging, Neurocognition and Genetics (PING) cohort study. The trained model exhibited an 83% cross-validated prediction accuracy, and correctly predicted the sex of 77% of the subjects from the independent multi-site dataset. Results showed that cortical thickness of the middle occipital lobes and the angular gyri are major predictors of sex. Results also demonstrated the inferential benefits of going beyond classical regression approaches to capture the interactions among brain features in order to better characterize sex differences in male and female youths. We also identified specific cortical morphological measures and parcellation techniques, such as cortical thickness as derived from the Destrieux atlas, that are better able to discriminate between males and females in comparison to other brain atlases (Desikan-Killiany, Brodmann and subcortical atlases). Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Valder, J.; Kenner, S.; Long, A.
2008-12-01
Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.
Himsworth, Chelsea G; Parsons, Kirbee L; Feng, Alice Y T; Kerr, Thomas; Jardine, Claire M; Patrick, David M
2014-01-01
Urban rats (Rattus spp.) are among the most ubiquitous pest species in the world. Previous research has shown that rat abundance is largely determined by features of the environment; however, the specific urban environmental factors that influence rat population density within cities have yet to be clearly identified. Additionally, there are no well described tools or methodologies for conducting an in-depth evaluation of the relationship between urban rat abundance and the environment. In this study, we developed a systematic environmental observation tool using methods borrowed from the field of systematic social observation. This tool, which employed a combination of quantitative and qualitative methodologies, was then used to identify environmental factors associated with the relative abundance of Norway rats (Rattus norvegicus) in an inner-city neighborhood of Vancouver, Canada. Using a multivariate zero-inflated negative binomial model, we found that a variety of factors, including specific land use, building condition, and amount of refuse, were related to rat presence and abundance. Qualitative data largely supported and further clarified observed statistical relationships, but also identified conflicting and unique situations not easily captured through quantitative methods. Overall, the tool helped us to better understand the relationship between features of the urban environment and relative rat abundance within our study area and may useful for studying environmental determinants of zoonotic disease prevalence/distribution among urban rat populations in the future.
Himsworth, Chelsea G.; Parsons, Kirbee L.; Feng, Alice Y. T.; Kerr, Thomas; Jardine, Claire M.; Patrick, David M.
2014-01-01
Urban rats (Rattus spp.) are among the most ubiquitous pest species in the world. Previous research has shown that rat abundance is largely determined by features of the environment; however, the specific urban environmental factors that influence rat population density within cities have yet to be clearly identified. Additionally, there are no well described tools or methodologies for conducting an in-depth evaluation of the relationship between urban rat abundance and the environment. In this study, we developed a systematic environmental observation tool using methods borrowed from the field of systematic social observation. This tool, which employed a combination of quantitative and qualitative methodologies, was then used to identify environmental factors associated with the relative abundance of Norway rats (Rattus norvegicus) in an inner-city neighborhood of Vancouver, Canada. Using a multivariate zero-inflated negative binomial model, we found that a variety of factors, including specific land use, building condition, and amount of refuse, were related to rat presence and abundance. Qualitative data largely supported and further clarified observed statistical relationships, but also identified conflicting and unique situations not easily captured through quantitative methods. Overall, the tool helped us to better understand the relationship between features of the urban environment and relative rat abundance within our study area and may useful for studying environmental determinants of zoonotic disease prevalence/distribution among urban rat populations in the future. PMID:24830847
HC StratoMineR: A Web-Based Tool for the Rapid Analysis of High-Content Datasets.
Omta, Wienand A; van Heesbeen, Roy G; Pagliero, Romina J; van der Velden, Lieke M; Lelieveld, Daphne; Nellen, Mehdi; Kramer, Maik; Yeong, Marley; Saeidi, Amir M; Medema, Rene H; Spruit, Marco; Brinkkemper, Sjaak; Klumperman, Judith; Egan, David A
2016-10-01
High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization.
Arabidopsis phenotyping through Geometric Morphometrics.
Manacorda, Carlos A; Asurmendi, Sebastian
2018-06-18
Recently, much technical progress was achieved in the field of plant phenotyping. High-throughput platforms and the development of improved algorithms for rosette image segmentation make it now possible to extract shape and size parameters for genetic, physiological and environmental studies on a large scale. The development of low-cost phenotyping platforms and freeware resources make it possible to widely expand phenotypic analysis tools for Arabidopsis. However, objective descriptors of shape parameters that could be used independently of platform and segmentation software used are still lacking and shape descriptions still rely on ad hoc or even sometimes contradictory descriptors, which could make comparisons difficult and perhaps inaccurate. Modern geometric morphometrics is a family of methods in quantitative biology proposed to be the main source of data and analytical tools in the emerging field of phenomics studies. Based on the location of landmarks (corresponding points) over imaged specimens and by combining geometry, multivariate analysis and powerful statistical techniques, these tools offer the possibility to reproducibly and accurately account for shape variations amongst groups and measure them in shape distance units. Here, a particular scheme of landmarks placement on Arabidopsis rosette images is proposed to study shape variation in the case of viral infection processes. Shape differences between controls and infected plants are quantified throughout the infectious process and visualized. Quantitative comparisons between two unrelated ssRNA+ viruses are shown and reproducibility issues are assessed. Combined with the newest automated platforms and plant segmentation procedures, geometric morphometric tools could boost phenotypic features extraction and processing in an objective, reproducible manner.
MANCOVA for one way classification with homogeneity of regression coefficient vectors
NASA Astrophysics Data System (ADS)
Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.
2017-11-01
The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.
Nutritional Risk in Emergency-2017: A New Simplified Proposal for a Nutrition Screening Tool.
Marcadenti, Aline; Mendes, Larissa Loures; Rabito, Estela Iraci; Fink, Jaqueline da Silva; Silva, Flávia Moraes
2018-03-13
There are many nutrition screening tools currently being applied in hospitals to identify risk of malnutrition. However, multivariate statistical models are not usually employed to take into account the importance of each variable included in the instrument's development. To develop and evaluate the concurrent and predictive validities of a new screening tool of nutrition risk. A prospective cohort study was developed, in which 4 nutrition screening tools were applied to all patients. Length of stay in hospital and mortality were considered to test the predictive validity, and the concurrent validity was tested by comparing the Nuritional Risk in Emergency (NRE)-2017 to the other tools. A total of 748 patients were included. The final NRE-2017 score was composed of 6 questions (advanced age, metabolic stress of the disease, decreased appetite, changing of food consistency, unintentional weight loss, and muscle mass loss) with answers yes or no. The prevalence of nutrition risk was 50.7% and 38.8% considering the cutoff points 1.0 and 1.5, respectively. The NRE-2017 showed a satisfactory power to indentify risk of malnutrition (area under the curve >0.790 for all analyses). According to the NRE-2017, patients at risk of malnutrition have twice as high relative risk of a very long hospital stay. The hazard ratio for mortality was 2.78 (1.03-7.49) when the cutoff adopted by the NRE-2017 was 1.5 points. NRE-2017 is a new, easy-to-apply nutrition screening tool which uses 6 bi-categoric features to detect the risk of malnutrition, and it presented a good concurrent and predictive validity. © 2018 American Society for Parenteral and Enteral Nutrition.
A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series
ERIC Educational Resources Information Center
Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.
2011-01-01
Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…
A new multivariate zero-adjusted Poisson model with applications to biomedicine.
Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen
2018-05-25
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Yuan, Ke-Hai
2008-01-01
In the literature of mean and covariance structure analysis, noncentral chi-square distribution is commonly used to describe the behavior of the likelihood ratio (LR) statistic under alternative hypothesis. Due to the inaccessibility of the rather technical literature for the distribution of the LR statistic, it is widely believed that the…
Some Tests of Randomness with Applications
1981-02-01
freedom. For further details, the reader is referred to Gnanadesikan (1977, p. 169) wherein other relevant tests are also given, Graphical tests, as...sample from a gamma distri- bution. J. Am. Statist. Assoc. 71, 480-7. Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate
Statistical polarization in greenhouse gas emissions: Theory and evidence.
Remuzgo, Lorena; Trueba, Carmen
2017-11-01
The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Tsui-Shan; Longnecker, Matthew P; Zhou, Haibo
2017-03-15
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data, and the general ODS design for a continuous response. While substantial work has been carried out for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome-dependent sampling (multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the multivariate-ODS or the estimator from a simple random sample with the same sample size. The multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of polychlorinated biphenyl exposure to hearing loss in children born to the Collaborative Perinatal Study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing
2016-01-01
Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.
Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka
2018-05-05
To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G
2017-03-01
We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Multivariate postprocessing techniques for probabilistic hydrological forecasting
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian
2016-04-01
Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.
Landslide susceptibility map: from research to application
NASA Astrophysics Data System (ADS)
Fiorucci, Federica; Reichenbach, Paola; Ardizzone, Francesca; Rossi, Mauro; Felicioni, Giulia; Antonini, Guendalina
2014-05-01
Susceptibility map is an important and essential tool in environmental planning, to evaluate landslide hazard and risk and for a correct and responsible management of the territory. Landslide susceptibility is the likelihood of a landslide occurring in an area on the basis of local terrain conditions. Can be expressed as the probability that any given region will be affected by landslides, i.e. an estimate of "where" landslides are likely to occur. In this work we present two examples of landslide susceptibility map prepared for the Umbria Region and for the Perugia Municipality. These two maps were realized following official request from the Regional and Municipal government to the Research Institute for the Hydrogeological Protection (CNR-IRPI). The susceptibility map prepared for the Umbria Region represents the development of previous agreements focused to prepare: i) a landslide inventory map that was included in the Urban Territorial Planning (PUT) and ii) a series of maps for the Regional Plan for Multi-risk Prevention. The activities carried out for the Umbria Region were focused to define and apply methods and techniques for landslide susceptibility zonation. Susceptibility maps were prepared exploiting a multivariate statistical model (linear discriminant analysis) for the five Civil Protection Alert Zones defined in the regional territory. The five resulting maps were tested and validated using the spatial distribution of recent landslide events that occurred in the region. The susceptibility map for the Perugia Municipality was prepared to be integrated as one of the cartographic product in the Municipal development plan (PRG - Piano Regolatore Generale) as required by the existing legislation. At strategic level, one of the main objectives of the PRG, is to establish a framework of knowledge and legal aspects for the management of geo-hydrological risk. At national level most of the susceptibility maps prepared for the PRG, were and still are obtained qualitatively classifying the territory according to slope classes. For the Perugia Municipality the susceptibility map was obtained combining results of statistical multivariate models and landslide density map. In particular, in the first phase a susceptibility zonation was prepared using different single and combined probability statistical multivariate techniques. The zonation was then combined and compared with the landslide density map in order to reclassify the false negative (portion of the territory classified by the model as stable affected by slope failures). The semi-quantitative resulting map was classified in five susceptibility classes. For each class a set of technical regulation was established to manage the territory.
ERIC Educational Resources Information Center
Joo, Soohyung; Kipp, Margaret E. I.
2015-01-01
Introduction: This study examines the structure of Web space in the field of library and information science using multivariate analysis of social tags from the Website, Delicious.com. A few studies have examined mathematical modelling of tags, mainly examining tagging in terms of tripartite graphs, pattern tracing and descriptive statistics. This…
ERIC Educational Resources Information Center
Magis, David; De Boeck, Paul
2011-01-01
We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…
ERIC Educational Resources Information Center
Arbaugh, J. B.; Hwang, Alvin
2013-01-01
Seeking to assess the analytical rigor of empirical research in management education, this article reviews the use of multivariate statistical techniques in 85 studies of online and blended management education over the past decade and compares them with prescriptions offered by both the organization studies and educational research communities.…
On Some Multiple Decision Problems
1976-08-01
parameter space. Some recent results in the area of subset selection formulation are Gnanadesikan and Gupta [28], Gupta and Studden [43], Gupta and...York, pp. 363-376. [27) Gnanadesikan , M. (1966). Some Selection and Ranking Procedures for Multivariate Normal Populations. Ph.D. Thesis. Dept. of...Statist., Purdue Univ., West Lafayette, Indiana 47907. [28) Gnanadesikan , M. and Gupta, S. S. (1970). Selection procedures for multivariate normal
Yang, James J; Williams, L Keoki; Buu, Anne
2017-08-24
A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.
Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F
2011-06-01
We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.
Multiple Hypothesis Testing for Experimental Gingivitis Based on Wilcoxon Signed Rank Statistics
Preisser, John S.; Sen, Pranab K.; Offenbacher, Steven
2011-01-01
Dental research often involves repeated multivariate outcomes on a small number of subjects for which there is interest in identifying outcomes that exhibit change in their levels over time as well as to characterize the nature of that change. In particular, periodontal research often involves the analysis of molecular mediators of inflammation for which multivariate parametric methods are highly sensitive to outliers and deviations from Gaussian assumptions. In such settings, nonparametric methods may be favored over parametric ones. Additionally, there is a need for statistical methods that control an overall error rate for multiple hypothesis testing. We review univariate and multivariate nonparametric hypothesis tests and apply them to longitudinal data to assess changes over time in 31 biomarkers measured from the gingival crevicular fluid in 22 subjects whereby gingivitis was induced by temporarily withholding tooth brushing. To identify biomarkers that can be induced to change, multivariate Wilcoxon signed rank tests for a set of four summary measures based upon area under the curve are applied for each biomarker and compared to their univariate counterparts. Multiple hypothesis testing methods with choice of control of the false discovery rate or strong control of the family-wise error rate are examined. PMID:21984957
Lee, Dong-Hyun; Kang, Bo-Sik; Park, Hyun-Jin
2011-11-09
The oxidation of Cabernet Sauvignon wines during secondary shelf life was studied by headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-quadrupole mass spectrometry (GC-qMS) and sensory tests, with the support of multivariate statistical analyses such as OPLS-DA loading plot and PCA score plot. Four different oxidation conditions were established during a 1-week secondary shelf life. Samples collected on a regular basis were analyzed to determine the changes of volatile chemicals, with sensory characteristics evaluated through pattern recognition models. During secondary shelf life the separation among collected samples depended on the degree of oxidation in wine. Isoamyl acetate, ethyl decanoate, nonanoic acid, n-decanoic acid, undecanoic acid, 2-furancarboxylic acid, dodecanoic acid, and phenylacetaldehyde were determined to be associated with the oxidation of the wine. PCA sensory evaluation revealed that least oxidized wine and fresh wine was well-separated from more oxidized wines, demonstrating that sensory characteristics of less oxidized wines tend toward "fruity", "citrous", and "sweetness", while those of more oxidized wines are positively correlated with "animal", "bitterness", and "dairy". The study also demonstrates that OPLS-DA and PCA are very useful statistical tools for the understanding of wine oxidation.
Neman, R
1975-03-01
The Zigler and Seitz (1975) critique was carefully examined with respect to the conclusions of the Neman et al. (1975) study. Particular attention was given to the following questions: (a) did experimenter bias or commitment account for the results, (b) were unreliable and invalid psychometric instruments used, (c) were the statistical analyses insufficient or incorrect, (d) did the results reflect no more than the operation of chance, and (e) were the results biased by artifactually inflated profile scores. Experimenter bias and commitment were shown to be insufficient to account for the results; a further review of Buros (1972) showed that there was no need for apprehension about the testing instruments; the statistical analyses were shown to exceed prevailing standards for research reporting; the results were shown to reflect valid findings at the .05 probability level; and the Neman et al. (1975) results for the profile measure were equally significant using either "raw" neurological scores or "scales" neurological age scores. Zigler, Seitz, and I agreed on the needs for (a) using multivariate analyses, where applicable, in studies having more than one dependent variable; (b) defining the population for which sensorimotor training procedures may be appropriately prescribed; and (c) validating the profile measure as a tool to assess neurological disorganization.
Simeonov, V; Massart, D L; Andreev, G; Tsakovski, S
2000-11-01
The paper deals with application of different statistical methods like cluster and principal components analysis (PCA), partial least squares (PLSs) modeling. These approaches are an efficient tool in achieving better understanding about the contamination of two gulf regions in Black Sea. As objects of the study, a collection of marine sediment samples from Varna and Bourgas "hot spots" gulf areas are used. In the present case the use of cluster and PCA make it possible to separate three zones of the marine environment with different levels of pollution by interpretation of the sediment analysis (Bourgas gulf, Varna gulf and lake buffer zone). Further, the extraction of four latent factors offers a specific interpretation of the possible pollution sources and separates natural from anthropogenic factors, the latter originating from contamination by chemical, oil refinery and steel-work enterprises. Finally, the PLSs modeling gives a better opportunity in predicting contaminant concentration on tracer (or tracers) element as compared to the one-dimensional approach of the baseline models. The results of the study are important not only in local aspect as they allow quick response in finding solutions and decision making but also in broader sense as a useful environmetrical methodology.
Simonoska Crcarevska, Maja; Dimitrovska, Aneta; Sibinovska, Nadica; Mladenovska, Kristina; Slavevska Raicki, Renata; Glavas Dodov, Marija
2015-07-15
Microsponges drug delivery system (MDDC) was prepared by double emulsion-solvent-diffusion technique using rotor-stator homogenization. Quality by design (QbD) concept was implemented for the development of MDDC with potential to be incorporated into semisolid dosage form (gel). Quality target product profile (QTPP) and critical quality attributes (CQA) were defined and identified, accordingly. Critical material attributes (CMA) and Critical process parameters (CPP) were identified using quality risk management (QRM) tool, failure mode, effects and criticality analysis (FMECA). CMA and CPP were identified based on results obtained from principal component analysis (PCA-X&Y) and partial least squares (PLS) statistical analysis along with literature data, product and process knowledge and understanding. FMECA identified amount of ethylcellulose, chitosan, acetone, dichloromethane, span 80, tween 80 and water ratio in primary/multiple emulsions as CMA and rotation speed and stirrer type used for organic solvent removal as CPP. The relationship between identified CPP and particle size as CQA was described in the design space using design of experiments - one-factor response surface method. Obtained results from statistically designed experiments enabled establishment of mathematical models and equations that were used for detailed characterization of influence of identified CPP upon MDDC particle size and particle size distribution and their subsequent optimization. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of Raman Spectroscopy as a Clinical Diagnostic Tool
NASA Astrophysics Data System (ADS)
Borel, Santa
Raman spectroscopy is the collection of inelastically scattered light in which the spectra contain biochemical information of the probed cells or tissue. This work presents both targeted and untargeted ways that the technique can be exploited in biological samples. First, surface enhanced Raman scattering (SERS) gold nanoparticles conjugated to targeting antibodies were shown to be successful for multiplexed detection of overexpressed surface antigens in lung cancer cell lines. Further work will need to optimize the conjugation technique to preserve the strong binding affinity of the antibodies. Second, untargeted Raman microspectroscopy combined with multivariate statistical analysis was able to successfully differentiate mouse ovarian surface epithelial (MOSE) cells and spontaneously transformed ovarian surface epithelial (STOSE) cells with high accuracy. The differences between the two groups were associated with increased nucleic acid content in the STOSE cells. This shows potential for single cell detection of ovarian cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-01-05
SandiaMCR was developed to identify pure components and their concentrations from spectral data. This software efficiently implements the multivariate calibration regression alternating least squares (MCR-ALS), principal component analysis (PCA), and singular value decomposition (SVD). Version 3.37 also includes the PARAFAC-ALS Tucker-1 (for trilinear analysis) algorithms. The alternating least squares methods can be used to determine the composition without or with incomplete prior information on the constituents and their concentrations. It allows the specification of numerous preprocessing, initialization and data selection and compression options for the efficient processing of large data sets. The software includes numerous options including the definition ofmore » equality and non-negativety constraints to realistically restrict the solution set, various normalization or weighting options based on the statistics of the data, several initialization choices and data compression. The software has been designed to provide a practicing spectroscopist the tools required to routinely analysis data in a reasonable time and without requiring expert intervention.« less
Family Caregiver Role and Burden Related to Gender and Family Relationships
Friedemann, Marie-Luise; Buckwalter, Kathleen C.
2015-01-01
This study described and contrasted family caregivers and explored the effect of gender and family relationship on the caregiver’s role perception, workload, burden, and family help. Home care agencies and community organizations assisted with the recruitment of 533 multicultural, predominantly Latino caregivers who were interviewed at home. The Caregiver Identity Theory guided the study. Survey instruments were standardized tools or were constructed and pretested for this study. Descriptive statistics and t-test analyses assisted in describing the sample and multivariate analyses were used to contrast the caregiver groups. Findings suggested a gendered approach to self-appraisal and coping. Men in this predominantly Latino and Caribbean sample felt less burden and depression than women who believed caregiving is a female duty. Family nurses should pay attention to the most vulnerable groups: older spouses resistant to using family and community resources and hard-working female adult children, and assess each family situation individually. PMID:24777069
Balog, Julia; Perenyi, Dora; Guallar-Hoyas, Cristina; Egri, Attila; Pringle, Steven D; Stead, Sara; Chevallier, Olivier P; Elliott, Chris T; Takats, Zoltan
2016-06-15
Increasingly abundant food fraud cases have brought food authenticity and safety into major focus. This study presents a fast and effective way to identify meat products using rapid evaporative ionization mass spectrometry (REIMS). The experimental setup was demonstrated to be able to record a mass spectrometric profile of meat specimens in a time frame of <5 s. A multivariate statistical algorithm was developed and successfully tested for the identification of animal tissue with different anatomical origin, breed, and species with 100% accuracy at species and 97% accuracy at breed level. Detection of the presence of meat originating from a different species (horse, cattle, and venison) has also been demonstrated with high accuracy using mixed patties with a 5% detection limit. REIMS technology was found to be a promising tool in food safety applications providing a reliable and simple method for the rapid characterization of food products.
Detection of amines with extended distyrylbenzenes by strip assays.
Kumpf, Jan; Freudenberg, Jan; Fletcher, Katharyn; Dreuw, Andreas; Bunz, Uwe H F
2014-07-18
We herein describe the synthesis and property evaluation of three novel aldehyde-substituted pentameric phenylenevinylenes carrying branched oligo(ethylene glycol) (swallowtail, Sw) substituents. The targets were synthesized by a combination of Heck coupling and Wittig or Horner reactions of suitable precursor modules. If the pentameric phenylenevinylene carries only two of these Sw substituents, it is no longer water-soluble. When six of the Sw substituents are attached, regardless of their position, the pentameric phenylenevinylenes are well water-soluble. The dialdehydes were investigated with respect to their amine-sensing capabilities both in water as well as in the solid state, sprayed onto thin layer chromatography (TLC) plates (alox, silica gel, reversed phase silica gel). The recognition of amine vapors using the sprayed-on phenylenevinylene dialdehydes is superb and allows the identification of different amines on regular silica TLC plates via color changes, analyzed by a statistical tool, the multivariate analysis of variance (MANOVA) protocol.
Tsugawa, Hiroshi; Arita, Masanori; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Bamba, Takeshi; Fukusaki, Eiichiro
2013-05-21
We developed a new software program, MRMPROBS, for widely targeted metabolomics by using the large-scale multiple reaction monitoring (MRM) mode. The strategy became increasingly popular for the simultaneous analysis of up to several hundred metabolites at high sensitivity, selectivity, and quantitative capability. However, the traditional method of assessing measured metabolomics data without probabilistic criteria is not only time-consuming but is often subjective and makeshift work. Our program overcomes these problems by detecting and identifying metabolites automatically, by separating isomeric metabolites, and by removing background noise using a probabilistic score defined as the odds ratio from an optimized multivariate logistic regression model. Our software program also provides a user-friendly graphical interface to curate and organize data matrices and to apply principal component analyses and statistical tests. For a demonstration, we conducted a widely targeted metabolome analysis (152 metabolites) of propagating Saccharomyces cerevisiae measured at 15 time points by gas and liquid chromatography coupled to triple quadrupole mass spectrometry. MRMPROBS is a useful and practical tool for the assessment of large-scale MRM data available to any instrument or any experimental condition.
NASA Astrophysics Data System (ADS)
Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.
2016-01-01
In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.
Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil
2016-11-17
Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends' preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Tanmoy; Maru, Girish; Ingle, Arvind; Krishna, C. Murali
2013-04-01
Raman spectroscopy (RS) has been extensively explored as an alternative diagnostic tool for breast cancer. This can be attributed to its sensitivity to malignancy-associated biochemical changes. However, biochemical changes due to nonmalignant conditions like benign lesions, inflammatory diseases, aging, menstrual cycle, pregnancy, and lactation may act as confounding factors in diagnosis of breast cancer. Therefore, in this study, the efficacy of RS to classify pregnancy and lactation-associated changes as well as its effect on breast tumor diagnosis was evaluated. Since such studies are difficult in human subjects, a mouse model was used. Spectra were recorded transcutaneously from the breast region of six Swiss bare mice postmating, during pregnancy, and during lactation. Data were analyzed using multivariate statistical tool Principal Component-Linear Discriminant Analysis. Results suggest that RS can differentiate breasts of pregnant/lactating mice from those of normal mice, the classification efficiencies being 100%, 60%, and 88% for normal, pregnant, and lactating mice, respectively. Frank breast tumors could be classified with 97.5% efficiency, suggesting that these physiological changes do not affect the ability of RS to detect breast tumors.
A note on a simplified and general approach to simulating from multivariate copula functions
Barry K. Goodwin
2013-01-01
Copulas have become an important analytic tool for characterizing multivariate distributions and dependence. One is often interested in simulating data from copula estimates. The process can be analytically and computationally complex and usually involves steps that are unique to a given parametric copula. We describe an alternative approach that uses âProbability-...
2011-01-01
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586
Keithley, Richard B; Wightman, R Mark
2011-06-07
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.
NASA Astrophysics Data System (ADS)
Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.
NASA Astrophysics Data System (ADS)
Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.
2018-03-01
The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.
Comparative Research of Navy Voluntary Education at Operational Commands
2017-03-01
return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21 B. DESCRIPTIVE STATISTICS TABLES ...............................................25 C. PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1. Variables and Descriptions . Adapted from NETC (2016). .......................21
Spatial Dynamics and Determinants of County-Level Education Expenditure in China
ERIC Educational Resources Information Center
Gu, Jiafeng
2012-01-01
In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…
ERIC Educational Resources Information Center
Henry, Gary T.; And Others
1992-01-01
A statistical technique is presented for developing performance standards based on benchmark groups. The benchmark groups are selected using a multivariate technique that relies on a squared Euclidean distance method. For each observation unit (a school district in the example), a unique comparison group is selected. (SLD)
Most analyses of daily time series epidemiology data relate mortality or morbidity counts to PM and other air pollutants by means of single-outcome regression models using multiple predictors, without taking into account the complex statistical structure of the predictor variable...
Challenging Conventional Wisdom for Multivariate Statistical Models with Small Samples
ERIC Educational Resources Information Center
McNeish, Daniel
2017-01-01
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.
2018-04-01
The PySAT point spectra tool provides a flexible graphical interface, enabling scientists to apply a wide variety of preprocessing and machine learning methods to point spectral data, with an emphasis on multivariate regression.
Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li
2017-10-01
To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.
Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan
2017-09-01
In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Dualé, Christian; Nicolas-Courbon, Aurélie; Gerbaud, Laurent; Lemery, Didier; Bonnin, Martine; Pereira, Bruno
2015-03-01
To investigate whether maternal satisfaction (MS) is taken into consideration as an outcome criterion in clinical research on analgesia for labor. A systematic review of articles reporting analgesia for labor from a panel of 17 influential journals was undertaken. A total of 116 articles were analyzed, including 282 within-study groups. The scope of MS, the type of outcome measure used, and the time of measurement were noted. Each available observation was assigned an ordinal value of MS (ordMS), according to data distribution. The factors influencing ordMS were identified by multivariable analysis. The methods used to assess MS were very variable, even within the different measurement tools reported. The weighted distribution of ordMS was 17.8%, 21.8%, 31.2%, and 29.3% for levels "poor," "fair," "good," and "excellent," respectively. In comparative studies, statistical differences for analgesia were related to statistical differences for MS (P<0.0001), but only the negative predictive value was high (0.87). Power to detect a difference in MS between treatment groups was low in general, but it influenced reporting of a significant difference for MS (P<0.0001). The obstetrical factors influencing ordMS were: the body mass index, the initial cervical dilatation, and the within-study percentage of nulliparous women. The techniques alternative to epidural analgesia negatively influenced ordMS. A standard and validated tool to assess MS in clinical research on analgesia for labor is still to be developed. Power should be improved by acting on sample sizes or sensitivity of the outcome.
Houvenaeghel, Gilles; Bannier, Marie; Nos, Claude; Giard, Sylvia; Mignotte, Herve; Jacquemier, Jocelyne; Martino, Marc; Esterni, Benjamin; Belichard, Catherine; Classe, Jean-Marc; Tunon de Lara, Christine; Cohen, Monique; Payan, Raoul; Blanchot, Jerome; Rouanet, Philippe; Penault-Llorca, Frederique; Bonnier, Pascal; Fournet, Sandrine; Agostini, Aubert; Marchal, Frederique; Garbay, Jean-Remi
2012-04-01
The risk of non sentinel node (NSN) involvement varies in function of the characteristics of sentinel nodes (SN) and primary tumor. Our aim was to determine and validate a statistical tool (a nomogram) able to predict the risk of NSN involvement in case of SN micro or sub-micrometastasis of breast cancer. We have compared this monogram with other models described in the literature. We have collected data on 905 patients, then 484 other patients, to build and validate the nomogram and compare it with other published scores and nomograms. Multivariate analysis conducted on the data of the first cohort allowed us to define a nomogram based on 5 criteria: the method of SN detection (immunohistochemistry or by standard coloration with HES); the ratio of positive SN out of total removed SN; the pathologic size of the tumor; the histological type; and the presence (or not) of lympho-vascular invasion. The nomogram developed here is the only one dedicated to micrometastasis and developed on the basis of two large cohorts. The results of this statistical tool in the calculation of the risk of NSN involvement is similar to those of the MSKCC (the similarly more effective nomogram according to the literature), with a lower rate of false negatives. this nomogram is dedicated specifically to cases of SN involvement by metastasis lower or equal to 2 mm. It could be used in clinical practice in the way to omit ALND when the risk of NSN involvement is low. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ceccarelli, C; Santini, D; Chieco, P; Taffurelli, M; Marrano, D; Mancini, A M
1995-03-01
Commonly used clinical and morphologic criteria have been reported to be of limited value in predicting the outcome of malignant tumours of the breast. Integrated information from the quantitative analysis in tumour tissue of biological parameters such as oestrogen and progesterone receptors (ER and PGR), proliferative activity, and proto-oncogene p53, c-erB2, and bcl-2 expression, may be useful for defining the biology of growth of breast carcinoma and to plan effective therapeutic strategies. Immunohistochemistry with antibodies recognizing ER, PGR, Ki-67, and the p53, c-erbB2, and bcl-2 encoded proteins was performed on 291 primary breast carcinomas. Results were integrated with clinico-pathological indicators and examined with multivariate statistical procedures and modeling. P53, c-erbB2, and bcl-2 gene products were detected, respectively, in 30.6%, 31.6%, and 85.9% of the examined invasive breast carcinomas, revealing variable associations with cellular differentiation and proliferation as defined by ER/PGR status, Ki-67, tumour mass and histologic and nuclear grading. A multivariate graphical display on a subset of the most informative cases revealed that bcl-2 expression parallels ER/PGR status and is of importance in separating tumour clusters with different degrees of aggressiveness. The results of this study indicate that multivariate explorative analyses conducted on biological and clinico-pathological parameters might constitute an integrated approach to data analysis useful for distinguishing different biological behaviours and therapeutic groups in breast carcinoma. Our findings also suggest that bcl-2 expression may play a pivotal role in tumours lacking ER-mediated growth regulation.
Teixeira, Kelly Sivocy Sampaio; da Cruz Fonseca, Said Gonçalves; de Moura, Luís Carlos Brigido; de Moura, Mario Luís Ribeiro; Borges, Márcia Herminia Pinheiro; Barbosa, Euzébio Guimaraes; De Lima E Moura, Túlio Flávio Accioly
2018-02-05
The World Health Organization recommends that TB treatment be administered using combination therapy. The methodologies for quantifying simultaneously associated drugs are highly complex, being costly, extremely time consuming and producing chemical residues harmful to the environment. The need to seek alternative techniques that minimize these drawbacks is widely discussed in the pharmaceutical industry. Therefore, the objective of this study was to develop and validate a multivariate calibration model in association with the near infrared spectroscopy technique (NIR) for the simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol. These models allow the quality control of these medicines to be optimized using simple, fast, low-cost techniques that produce no chemical waste. In the NIR - PLS method, spectra readings were acquired in the 10,000-4000cm -1 range using an infrared spectrophotometer (IRPrestige - 21 - Shimadzu) with a resolution of 4cm -1 , 20 sweeps, under controlled temperature and humidity. For construction of the model, the central composite experimental design was employed on the program Statistica 13 (StatSoft Inc.). All spectra were treated by computational tools for multivariate analysis using partial least squares regression (PLS) on the software program Pirouette 3.11 (Infometrix, Inc.). Variable selections were performed by the QSAR modeling program. The models developed by NIR in association with multivariate analysis provided good prediction of the APIs for the external samples and were therefore validated. For the tablets, however, the slightly different quantitative compositions of excipients compared to the mixtures prepared for building the models led to results that were not statistically similar, despite having prediction errors considered acceptable in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.
A comparison of ensemble post-processing approaches that preserve correlation structures
NASA Astrophysics Data System (ADS)
Schefzik, Roman; Van Schaeybroeck, Bert; Vannitsem, Stéphane
2016-04-01
Despite the fact that ensemble forecasts address the major sources of uncertainty, they exhibit biases and dispersion errors and therefore are known to improve by calibration or statistical post-processing. For instance the ensemble model output statistics (EMOS) method, also known as non-homogeneous regression approach (Gneiting et al., 2005) is known to strongly improve forecast skill. EMOS is based on fitting and adjusting a parametric probability density function (PDF). However, EMOS and other common post-processing approaches apply to a single weather quantity at a single location for a single look-ahead time. They are therefore unable of taking into account spatial, inter-variable and temporal dependence structures. Recently many research efforts have been invested in designing post-processing methods that resolve this drawback but also in verification methods that enable the detection of dependence structures. New verification methods are applied on two classes of post-processing methods, both generating physically coherent ensembles. A first class uses the ensemble copula coupling (ECC) that starts from EMOS but adjusts the rank structure (Schefzik et al., 2013). The second class is a member-by-member post-processing (MBM) approach that maps each raw ensemble member to a corrected one (Van Schaeybroeck and Vannitsem, 2015). We compare variants of the EMOS-ECC and MBM classes and highlight a specific theoretical connection between them. All post-processing variants are applied in the context of the ensemble system of the European Centre of Weather Forecasts (ECMWF) and compared using multivariate verification tools including the energy score, the variogram score (Scheuerer and Hamill, 2015) and the band depth rank histogram (Thorarinsdottir et al., 2015). Gneiting, Raftery, Westveld, and Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., {133}, 1098-1118. Scheuerer and Hamill, 2015. Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon. Wea. Rev. {143},1321-1334. Schefzik, Thorarinsdottir, Gneiting. Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science {28},616-640, 2013. Thorarinsdottir, M. Scheuerer, and C. Heinz, 2015. Assessing the calibration of high-dimensional ensemble forecasts using rank histograms, arXiv:1310.0236. Van Schaeybroeck and Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: theoretical aspects. Q.J.R. Meteorol. Soc., 141: 807-818.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.
2009-09-01
SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S.; Graff, T.; Morris, R. V.; Laura, J.
2017-06-01
We present a Python-based library and graphical interface for the analysis of point spectra. The tool is being developed with a focus on methods used for ChemCam data, but is flexible enough to handle spectra from other instruments.
Mathematical background and attitudes toward statistics in a sample of Spanish college students.
Carmona, José; Martínez, Rafael J; Sánchez, Manuel
2005-08-01
To examine the relation of mathematical background and initial attitudes toward statistics of Spanish college students in social sciences the Survey of Attitudes Toward Statistics was given to 827 students. Multivariate analyses tested the effects of two indicators of mathematical background (amount of exposure and achievement in previous courses) on the four subscales. Analysis suggested grades in previous courses are more related to initial attitudes toward statistics than the number of mathematics courses taken. Mathematical background was related with students' affective responses to statistics but not with their valuing of statistics. Implications of possible research are discussed.
Di Nuovo, Alessandro G; Di Nuovo, Santo; Buono, Serafino
2012-02-01
The estimation of a person's intelligence quotient (IQ) by means of psychometric tests is indispensable in the application of psychological assessment to several fields. When complex tests as the Wechsler scales, which are the most commonly used and universally recognized parameter for the diagnosis of degrees of retardation, are not applicable, it is necessary to use other psycho-diagnostic tools more suited for the subject's specific condition. But to ensure a homogeneous diagnosis it is necessary to reach a common metric, thus, the aim of our work is to build models able to estimate accurately and reliably the Wechsler IQ, starting from different psycho-diagnostic tools. Four different psychometric tests (Leiter international performance scale; coloured progressive matrices test; the mental development scale; psycho educational profile), along with the Wechsler scale, were administered to a group of 40 mentally retarded subjects, with various pathologies, and control persons. The obtained database is used to evaluate Wechsler IQ estimation models starting from the scores obtained in the other tests. Five modelling methods, two statistical and three from machine learning, that belong to the family of artificial neural networks (ANNs) are employed to build the estimator. Several error metrics for estimated IQ and for retardation level classification are defined to compare the performance of the various models with univariate and multivariate analyses. Eight empirical studies show that, after ten-fold cross-validation, best average estimation error is of 3.37 IQ points and mental retardation level classification error of 7.5%. Furthermore our experiments prove the superior performance of ANN methods over statistical regression ones, because in all cases considered ANN models show the lowest estimation error (from 0.12 to 0.9 IQ points) and the lowest classification error (from 2.5% to 10%). Since the estimation performance is better than the confidence interval of Wechsler scales (five IQ points), we consider models built very accurate and reliable and they can be used into help clinical diagnosis. Therefore a computer software based on the results of our work is currently used in a clinical center and empirical trails confirm its validity. Furthermore positive results in our multivariate studies suggest new approaches for clinicians. Copyright © 2011 Elsevier B.V. All rights reserved.
Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.
Adams, Dean C; Collyer, Michael L
2018-01-01
Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Characterizations of linear sufficient statistics
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Reoner, R.; Decell, H. P., Jr.
1977-01-01
A surjective bounded linear operator T from a Banach space X to a Banach space Y must be a sufficient statistic for a dominated family of probability measures defined on the Borel sets of X. These results were applied, so that they characterize linear sufficient statistics for families of the exponential type, including as special cases the Wishart and multivariate normal distributions. The latter result was used to establish precisely which procedures for sampling from a normal population had the property that the sample mean was a sufficient statistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd-Lively, Jennifer L
2014-01-01
The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less
Integrated environmental monitoring and multivariate data analysis-A case study.
Eide, Ingvar; Westad, Frank; Nilssen, Ingunn; de Freitas, Felipe Sales; Dos Santos, Natalia Gomes; Dos Santos, Francisco; Cabral, Marcelo Montenegro; Bicego, Marcia Caruso; Figueira, Rubens; Johnsen, Ståle
2017-03-01
The present article describes integration of environmental monitoring and discharge data and interpretation using multivariate statistics, principal component analysis (PCA), and partial least squares (PLS) regression. The monitoring was carried out at the Peregrino oil field off the coast of Brazil. One sensor platform and 3 sediment traps were placed on the seabed. The sensors measured current speed and direction, turbidity, temperature, and conductivity. The sediment trap samples were used to determine suspended particulate matter that was characterized with respect to a number of chemical parameters (26 alkanes, 16 PAHs, N, C, calcium carbonate, and Ba). Data on discharges of drill cuttings and water-based drilling fluid were provided on a daily basis. The monitoring was carried out during 7 campaigns from June 2010 to October 2012, each lasting 2 to 3 months due to the capacity of the sediment traps. The data from the campaigns were preprocessed, combined, and interpreted using multivariate statistics. No systematic difference could be observed between campaigns or traps despite the fact that the first campaign was carried out before drilling, and 1 of 3 sediment traps was located in an area not expected to be influenced by the discharges. There was a strong covariation between suspended particulate matter and total N and organic C suggesting that the majority of the sediment samples had a natural and biogenic origin. Furthermore, the multivariate regression showed no correlation between discharges of drill cuttings and sediment trap or turbidity data taking current speed and direction into consideration. Because of this lack of correlation with discharges from the drilling location, a more detailed evaluation of chemical indicators providing information about origin was carried out in addition to numerical modeling of dispersion and deposition. The chemical indicators and the modeling of dispersion and deposition support the conclusions from the multivariate statistics. Integr Environ Assess Manag 2017;13:387-395. © 2016 SETAC. © 2016 SETAC.
Characterizing multivariate decoding models based on correlated EEG spectral features
McFarland, Dennis J.
2013-01-01
Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267
Multivariate Methods for Meta-Analysis of Genetic Association Studies.
Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G
2018-01-01
Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.
Martyna, Agnieszka; Zadora, Grzegorz; Neocleous, Tereza; Michalska, Aleksandra; Dean, Nema
2016-08-10
Many chemometric tools are invaluable and have proven effective in data mining and substantial dimensionality reduction of highly multivariate data. This becomes vital for interpreting various physicochemical data due to rapid development of advanced analytical techniques, delivering much information in a single measurement run. This concerns especially spectra, which are frequently used as the subject of comparative analysis in e.g. forensic sciences. In the presented study the microtraces collected from the scenarios of hit-and-run accidents were analysed. Plastic containers and automotive plastics (e.g. bumpers, headlamp lenses) were subjected to Fourier transform infrared spectrometry and car paints were analysed using Raman spectroscopy. In the forensic context analytical results must be interpreted and reported according to the standards of the interpretation schemes acknowledged in forensic sciences using the likelihood ratio approach. However, for proper construction of LR models for highly multivariate data, such as spectra, chemometric tools must be employed for substantial data compression. Conversion from classical feature representation to distance representation was proposed for revealing hidden data peculiarities and linear discriminant analysis was further applied for minimising the within-sample variability while maximising the between-sample variability. Both techniques enabled substantial reduction of data dimensionality. Univariate and multivariate likelihood ratio models were proposed for such data. It was shown that the combination of chemometric tools and the likelihood ratio approach is capable of solving the comparison problem of highly multivariate and correlated data after proper extraction of the most relevant features and variance information hidden in the data structure. Copyright © 2016 Elsevier B.V. All rights reserved.
Reservoir characterization using core, well log, and seismic data and intelligent software
NASA Astrophysics Data System (ADS)
Soto Becerra, Rodolfo
We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from the neural network models with the results from regression statistical and non-parametric approach models. The results show that it is possible to obtain the highest cross-correlation coefficient between predicted and actual target variables, and the lowest average absolute errors using the integrated techniques of multivariate statistical analysis and neural networks in our intelligent software.
Charles, Patrick G P; Wolfe, Rory; Whitby, Michael; Fine, Michael J; Fuller, Andrew J; Stirling, Robert; Wright, Alistair A; Ramirez, Julio A; Christiansen, Keryn J; Waterer, Grant W; Pierce, Robert J; Armstrong, John G; Korman, Tony M; Holmes, Peter; Obrosky, D Scott; Peyrani, Paula; Johnson, Barbara; Hooy, Michelle; Grayson, M Lindsay
2008-08-01
Existing severity assessment tools, such as the pneumonia severity index (PSI) and CURB-65 (tool based on confusion, urea level, respiratory rate, blood pressure, and age >or=65 years), predict 30-day mortality in community-acquired pneumonia (CAP) and have limited ability to predict which patients will require intensive respiratory or vasopressor support (IRVS). The Australian CAP Study (ACAPS) was a prospective study of 882 episodes in which each patient had a detailed assessment of severity features, etiology, and treatment outcomes. Multivariate logistic regression was performed to identify features at initial assessment that were associated with receipt of IRVS. These results were converted into a simple points-based severity tool that was validated in 5 external databases, totaling 7464 patients. In ACAPS, 10.3% of patients received IRVS, and the 30-day mortality rate was 5.7%. The features statistically significantly associated with receipt of IRVS were low systolic blood pressure (2 points), multilobar chest radiography involvement (1 point), low albumin level (1 point), high respiratory rate (1 point), tachycardia (1 point), confusion (1 point), poor oxygenation (2 points), and low arterial pH (2 points): SMART-COP. A SMART-COP score of >or=3 points identified 92% of patients who received IRVS, including 84% of patients who did not need immediate admission to the intensive care unit. Accuracy was also high in the 5 validation databases. Sensitivities of PSI and CURB-65 for identifying the need for IRVS were 74% and 39%, respectively. SMART-COP is a simple, practical clinical tool for accurately predicting the need for IRVS that is likely to assist clinicians in determining CAP severity.
NASA Astrophysics Data System (ADS)
Verma, Surendra P.; Pandarinath, Kailasa; Verma, Sanjeet K.
2011-07-01
In the lead presentation (invited talk) of Session SE05 (Frontiers in Geochemistry with Reference to Lithospheric Evolution and Metallogeny) of AOGS2010, we have highlighted the requirement of correct statistical treatment of geochemical data. In most diagrams used for interpreting compositional data, the basic statistical assumption of open space for all variables is violated. Among these graphic tools, discrimination diagrams have been in use for nearly 40 years to decipher tectonic setting. The newer set of five tectonomagmatic discrimination diagrams published in 2006 (based on major-elements) and two sets made available in 2008 and 2011 (both based on immobile elements) fulfill all statistical requirements for correct handling of compositional data, including the multivariate nature of compositional variables, representative sampling, and probability-based tectonic field boundaries. Additionally in the most recent proposal of 2011, samples having normally distributed, discordant-outlier free, log-ratio variables were used in linear discriminant analysis. In these three sets of five diagrams each, discrimination was successfully documented for four tectonic settings (island arc, continental rift, ocean-island, and mid-ocean ridge). The discrimination diagrams have been extensively evaluated for their performance by different workers. We exemplify these two sets of new diagrams (one set based on major-elements and the other on immobile elements) using ophiolites from Boso Peninsula, Japan. This example is included for illustration purposes only and is not meant for testing of these newer diagrams. Their evaluation and comparison with older, conventional bivariate or ternary diagrams have been reported in other papers.
Effect of influenza vaccination on oxidative stress products in breath.
Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Danaher, Patrick J; Devadiga, Anantrai; Legendre, David A; Nail, Kim L; Schmitt, Peter; Wai, James
2010-06-01
Viral infections cause increased oxidative stress, so a breath test for oxidative stress biomarkers (alkanes and alkane derivatives) might provide a new tool for early diagnosis. We studied 33 normal healthy human subjects receiving scheduled treatment with live attenuated influenza vaccine (LAIV). Each subject was his or her own control, since they were studied on day 0 prior to vaccination, and then on days 2, 7 and 14 following vaccination. Breath volatile organic compounds (VOCs) were collected with a breath collection apparatus, then analyzed by automated thermal desorption with gas chromatography and mass spectroscopy. A Monte Carlo simulation technique identified non-random VOC biomarkers of infection based on their C-statistic values (area under curve of receiver operating characteristic). Treatment with LAIV was followed by non-random changes in the abundance of breath VOCs. 2, 8-Dimethyl-undecane and other alkane derivatives were observed on all days. Conservative multivariate models identified vaccinated subjects on day 2 (C-statistic = 0.82, sensitivity = 63.6% and specificity = 88.5%); day 7 (C-statistic = 0.94, sensitivity = 88.5% and specificity = 92.3%); and day 14 (C-statistic = 0.95, sensitivity = 92.3% and specificity = 92.3%). The altered breath VOCs were not detected in live attenuated influenza vaccine, excluding artifactual contamination. LAIV vaccination in healthy humans elicited a prompt and sustained increase in breath biomarkers of oxidative stress. A breath test for these VOCs could potentially identify humans who are acutely infected with influenza, but who have not yet developed clinical symptoms or signs of disease.
Warton, David I; Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.
Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071
Multivariate pattern dependence
Saxe, Rebecca
2017-01-01
When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the statistical significance of the derived statistic by analytically approximating its null distribution without the need for computationally expensive permutation tests. The proposed framework was extensively validated using simulated atrophy in structural magnetic resonance imaging (MRI) and further tested using data from a task-based functional MRI study as well as a structural MRI study of cognitive performance. The performance of the proposed framework was evaluated against standard voxel-wise general linear models and other information mapping methods. The experimental results showed that MIDAS achieves relatively higher sensitivity and specificity in detecting group differences. Together, our results demonstrate the potential of the proposed approach to efficiently map effects of interest in both structural and functional data. Copyright © 2018. Published by Elsevier Inc.
ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antcheva, I.; /CERN; Ballintijn, M.
2009-01-01
ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web or a number of different shared file systems. In order to analyze this data, the user can chose outmore » of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate classification methods based on machine learning techniques are available via the TMVA package. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks - e.g. data mining in HEP - by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way.« less
Statistical Knowledge for Teaching: Exploring it in the Classroom
ERIC Educational Resources Information Center
Burgess, Tim
2009-01-01
This paper first reports on the methodology of a study of teacher knowledge for statistics, conducted in a classroom at the primary school level. The methodology included videotaping of a sequence of lessons that involved students in investigating multivariate data sets, followed up by audiotaped interviews with each teacher. These stimulated…
Performance of the S - [chi][squared] Statistic for Full-Information Bifactor Models
ERIC Educational Resources Information Center
Li, Ying; Rupp, Andre A.
2011-01-01
This study investigated the Type I error rate and power of the multivariate extension of the S - [chi][squared] statistic using unidimensional and multidimensional item response theory (UIRT and MIRT, respectively) models as well as full-information bifactor (FI-bifactor) models through simulation. Manipulated factors included test length, sample…
Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.
ERIC Educational Resources Information Center
Thompson, Bruce
Conventional statistical significance tests do not inform the researcher regarding the likelihood that results will replicate. One strategy for evaluating result replication is to use a "bootstrap" resampling of a study's data so that the stability of results across numerous configurations of the subjects can be explored. This paper…
2003-07-01
4, Gnanadesikan , 1977). An entity whose measured features fall into one of the regions is classified accordingly. For the approaches we discuss here... Gnanadesikan , R. 1977. Methods for Statistical Data Analysis of Multivariate Observations. John Wiley & Sons, New York. Hassig, N. L., O’Brien, R. F
Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes
Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca
2007-01-01
The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...
Evaluation of N-ratio in selecting patients for adjuvant chemoradiotherapy after d2-gastrectomy.
Costa Junior, Wilson Luiz da; Coimbra, Felipe José Fernández; Batista, Thales Paulo; Ribeiro, Héber Salvador de Castro; Diniz, Alessandro Landskron
2013-01-01
Whether adjuvant chemoradiotherapy may contribute to improve survival outcomes after D2-gastrectomy remains controversial. To explore the clinical utility of N-Ratio in selecting gastric cancer patients for adjuvant chemoradiotherapy after D2-gastrectomy. A retrospective cohort study was carried out on gastric cancer patients who underwent D2-gastrectomy alone or D2-gastrectomy plus adjuvant chemoradiotherapy (INT-0116 protocol) at the Hospital A. C. Camargo from September 1998 to December 2008. Statistical analysis were performed using multiple conventional methods, such as c-statistic, adjusted Cox's regression and stratified survival analysis. Our analysis involved 128 patients. According to c-statistic, the N-Ratio (i.e., as a continuous variable) presented "area under ROC curve" (AUC) of 0.713, while the number of metastatic nodes presented AUC of 0.705. After categorization, the cut-offs provide by Marchet et al. displayed the highest discriminating power - AUC value of 0.702. This N-Ratio categorization was confirmed as an independent predictor of survival using multivariate analyses. There also was a trend of better survival by adding of adjuvant chemoradiotherapy only for patients with milder degrees of lymphatic spread - 5-year survival of 23.1% vs 66.9%, respectively (HR = 0.426, 95% CI 0.150-1.202; P = 0.092). This study confirms the N-Ratio as a tool to improve the lymph node metastasis staging in gastric cancer and suggests the cut-offs provided by Marchet et al. as the best way for its categorization after a D2-gastrectomy. In these settings, the N-Ratio appears a useful tool to select patients for adjuvant chemoradiotherapy, and the benefit of adding this type of adjuvancy to D2-gastrectomy is suggested to be limited to patients with milder degrees of lymphatic spread (i.e., NR2, 10%-25%).
Karaismailoğlu, Eda; Dikmen, Zeliha Günnur; Akbıyık, Filiz; Karaağaoğlu, Ahmet Ergun
2018-04-30
Background/aim: Myoglobin, cardiac troponin T, B-type natriuretic peptide (BNP), and creatine kinase isoenzyme MB (CK-MB) are frequently used biomarkers for evaluating risk of patients admitted to an emergency department with chest pain. Recently, time- dependent receiver operating characteristic (ROC) analysis has been used to evaluate the predictive power of biomarkers where disease status can change over time. We aimed to determine the best set of biomarkers that estimate cardiac death during follow-up time. We also obtained optimal cut-off values of these biomarkers, which differentiates between patients with and without risk of death. A web tool was developed to estimate time intervals in risk. Materials and methods: A total of 410 patients admitted to the emergency department with chest pain and shortness of breath were included. Cox regression analysis was used to determine an optimal set of biomarkers that can be used for estimating cardiac death and to combine the significant biomarkers. Time-dependent ROC analysis was performed for evaluating performances of significant biomarkers and a combined biomarker during 240 h. The bootstrap method was used to compare statistical significance and the Youden index was used to determine optimal cut-off values. Results : Myoglobin and BNP were significant by multivariate Cox regression analysis. Areas under the time-dependent ROC curves of myoglobin and BNP were about 0.80 during 240 h, and that of the combined biomarker (myoglobin + BNP) increased to 0.90 during the first 180 h. Conclusion: Although myoglobin is not clinically specific to a cardiac event, in our study both myoglobin and BNP were found to be statistically significant for estimating cardiac death. Using this combined biomarker may increase the power of prediction. Our web tool can be useful for evaluating the risk status of new patients and helping clinicians in making decisions.
Conceptual and statistical problems associated with the use of diversity indices in ecology.
Barrantes, Gilbert; Sandoval, Luis
2009-09-01
Diversity indices, particularly the Shannon-Wiener index, have extensively been used in analyzing patterns of diversity at different geographic and ecological scales. These indices have serious conceptual and statistical problems which make comparisons of species richness or species abundances across communities nearly impossible. There is often no a single statistical method that retains all information needed to answer even a simple question. However, multivariate analyses could be used instead of diversity indices, such as cluster analyses or multiple regressions. More complex multivariate analyses, such as Canonical Correspondence Analysis, provide very valuable information on environmental variables associated to the presence and abundance of the species in a community. In addition, particular hypotheses associated to changes in species richness across localities, or change in abundance of one, or a group of species can be tested using univariate, bivariate, and/or rarefaction statistical tests. The rarefaction method has proved to be robust to standardize all samples to a common size. Even the simplest method as reporting the number of species per taxonomic category possibly provides more information than a diversity index value.
Texture as a basis for acoustic classification of substrate in the nearshore region
NASA Astrophysics Data System (ADS)
Dennison, A.; Wattrus, N. J.
2016-12-01
Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
Estimating brain connectivity when few data points are available: Perspectives and limitations.
Antonacci, Yuri; Toppi, Jlenia; Caschera, Stefano; Anzolin, Alessandra; Mattia, Donatella; Astolfi, Laura
2017-07-01
Methods based on the use of multivariate autoregressive modeling (MVAR) have proved to be an accurate and flexible tool for the estimation of brain functional connectivity. The multivariate approach, however, implies the use of a model whose complexity (in terms of number of parameters) increases quadratically with the number of signals included in the problem. This can often lead to an underdetermined problem and to the condition of multicollinearity. The aim of this paper is to introduce and test an approach based on Ridge Regression combined with a modified version of the statistics usually adopted for these methods, to broaden the estimation of brain connectivity to those conditions in which current methods fail, due to the lack of enough data points. We tested the performances of this new approach, in comparison with the classical approach based on ordinary least squares (OLS), by means of a simulation study implementing different ground-truth networks, under different network sizes and different levels of data points. Simulation results showed that the new approach provides better performances, in terms of accuracy of the parameters estimation and false positives/false negatives rates, in all conditions related to a low data points/model dimension ratio, and may thus be exploited to estimate and validate estimated patterns at single-trial level or when short time data segments are available.
EUCLID: an outcome analysis tool for high-dimensional clinical studies
NASA Astrophysics Data System (ADS)
Gayou, Olivier; Parda, David S.; Miften, Moyed
2007-03-01
Treatment management decisions in three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) are usually made based on the dose distributions in the target and surrounding normal tissue. These decisions may include, for example, the choice of one treatment over another and the level of tumour dose escalation. Furthermore, biological predictors such as tumour control probability (TCP) and normal tissue complication probability (NTCP), whose parameters available in the literature are only population-based estimates, are often used to assess and compare plans. However, a number of other clinical, biological and physiological factors also affect the outcome of radiotherapy treatment and are often not considered in the treatment planning and evaluation process. A statistical outcome analysis tool, EUCLID, for direct use by radiation oncologists and medical physicists was developed. The tool builds a mathematical model to predict an outcome probability based on a large number of clinical, biological, physiological and dosimetric factors. EUCLID can first analyse a large set of patients, such as from a clinical trial, to derive regression correlation coefficients between these factors and a given outcome. It can then apply such a model to an individual patient at the time of treatment to derive the probability of that outcome, allowing the physician to individualize the treatment based on medical evidence that encompasses a wide range of factors. The software's flexibility allows the clinicians to explore several avenues to select the best predictors of a given outcome. Its link to record-and-verify systems and data spreadsheets allows for a rapid and practical data collection and manipulation. A wide range of statistical information about the study population, including demographics and correlations between different factors, is available. A large number of one- and two-dimensional plots, histograms and survival curves allow for an easy visual analysis of the population. Several visual and analytical methods are available to quantify the predictive power of the multivariate regression model. The EUCLID tool can be readily integrated with treatment planning and record-and-verify systems.
EUCLID: an outcome analysis tool for high-dimensional clinical studies.
Gayou, Olivier; Parda, David S; Miften, Moyed
2007-03-21
Treatment management decisions in three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) are usually made based on the dose distributions in the target and surrounding normal tissue. These decisions may include, for example, the choice of one treatment over another and the level of tumour dose escalation. Furthermore, biological predictors such as tumour control probability (TCP) and normal tissue complication probability (NTCP), whose parameters available in the literature are only population-based estimates, are often used to assess and compare plans. However, a number of other clinical, biological and physiological factors also affect the outcome of radiotherapy treatment and are often not considered in the treatment planning and evaluation process. A statistical outcome analysis tool, EUCLID, for direct use by radiation oncologists and medical physicists was developed. The tool builds a mathematical model to predict an outcome probability based on a large number of clinical, biological, physiological and dosimetric factors. EUCLID can first analyse a large set of patients, such as from a clinical trial, to derive regression correlation coefficients between these factors and a given outcome. It can then apply such a model to an individual patient at the time of treatment to derive the probability of that outcome, allowing the physician to individualize the treatment based on medical evidence that encompasses a wide range of factors. The software's flexibility allows the clinicians to explore several avenues to select the best predictors of a given outcome. Its link to record-and-verify systems and data spreadsheets allows for a rapid and practical data collection and manipulation. A wide range of statistical information about the study population, including demographics and correlations between different factors, is available. A large number of one- and two-dimensional plots, histograms and survival curves allow for an easy visual analysis of the population. Several visual and analytical methods are available to quantify the predictive power of the multivariate regression model. The EUCLID tool can be readily integrated with treatment planning and record-and-verify systems.
Exploratory Multivariate Analysis. A Graphical Approach.
1981-01-01
Gnanadesikan , 1977) but we feel that these should be used with great caution unless one really has good reason to believe that the data came from such a...are referred to Gnanadesikan (1977). The present author hopes that the convenience of a single summary or significance level will not deter his readers...fit of a harmonic model to meteorological data. (In preparation). Gnanadesikan , R. (1977). Methods for Statistical Data Analysis of Multivariate
Nonlinear multivariate and time series analysis by neural network methods
NASA Astrophysics Data System (ADS)
Hsieh, William W.
2004-03-01
Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.
NASA Astrophysics Data System (ADS)
Gagné, Jonathan; Mamajek, Eric E.; Malo, Lison; Riedel, Adric; Rodriguez, David; Lafrenière, David; Faherty, Jacqueline K.; Roy-Loubier, Olivier; Pueyo, Laurent; Robin, Annie C.; Doyon, René
2018-03-01
BANYAN Σ is a new Bayesian algorithm to identify members of young stellar associations within 150 pc of the Sun. It includes 27 young associations with ages in the range ∼1–800 Myr, modeled with multivariate Gaussians in six-dimensional (6D) XYZUVW space. It is the first such multi-association classification tool to include the nearest sub-groups of the Sco-Cen OB star-forming region, the IC 2602, IC 2391, Pleiades and Platais 8 clusters, and the ρ Ophiuchi, Corona Australis, and Taurus star formation regions. A model of field stars is built from a mixture of multivariate Gaussians based on the Besançon Galactic model. The algorithm can derive membership probabilities for objects with only sky coordinates and proper motion, but can also include parallax and radial velocity measurements, as well as spectrophotometric distance constraints from sequences in color–magnitude or spectral type–magnitude diagrams. BANYAN Σ benefits from an analytical solution to the Bayesian marginalization integrals over unknown radial velocities and distances that makes it more accurate and significantly faster than its predecessor BANYAN II. A contamination versus hit rate analysis is presented and demonstrates that BANYAN Σ achieves a better classification performance than other moving group tools available in the literature, especially in terms of cross-contamination between young associations. An updated list of bona fide members in the 27 young associations, augmented by the Gaia-DR1 release, as well as all parameters for the 6D multivariate Gaussian models for each association and the Galactic field neighborhood within 300 pc are presented. This new tool will make it possible to analyze large data sets such as the upcoming Gaia-DR2 to identify new young stars. IDL and Python versions of BANYAN Σ are made available with this publication, and a more limited online web tool is available at http://www.exoplanetes.umontreal.ca/banyan/banyansigma.php.
NASA Astrophysics Data System (ADS)
Maurer, Thomas; Gustavos Trujillo Siliézar, Carlos; Oeser, Anne; Pohle, Ina; Hinz, Christoph
2016-04-01
In evolving initial landscapes, vegetation development depends on a variety of feedback effects. One of the less understood feedback loops is the interaction between throughfall and plant canopy development. The amount of throughfall is governed by the characteristics of the vegetation canopy, whereas vegetation pattern evolution may in turn depend on the spatio-temporal distribution of throughfall. Meteorological factors that may influence throughfall, while at the same time interacting with the canopy, are e.g. wind speed, wind direction and rainfall intensity. Our objective is to investigate how throughfall, vegetation canopy and meteorological variables interact in an exemplary eco-hydrological system in its initial development phase, in which the canopy is very heterogeneous and rapidly changing. For that purpose, we developed a methodological approach combining field methods, raster image analysis and multivariate statistics. The research area for this study is the Hühnerwasser ('Chicken Creek') catchment in Lower Lusatia, Brandenburg, Germany, where after eight years of succession, the spatial distribution of plant species is highly heterogeneous, leading to increasingly differentiated throughfall patterns. The constructed 6-ha catchment offers ideal conditions for our study due to the rapidly changing vegetation structure and the availability of complementary monitoring data. Throughfall data were obtained by 50 tipping bucket rain gauges arranged in two transects and connected via a wireless sensor network that cover the predominant vegetation types on the catchment (locust copses, dense sallow thorn bushes and reeds, base herbaceous and medium-rise small-reed vegetation, and open areas covered by moss and lichens). The spatial configuration of the vegetation canopy for each measurement site was described via digital image analysis of hemispheric photographs of the canopy using the ArcGIS Spatial Analyst, GapLight and ImageJ software. Meteorological data from two on-site weather stations (wind direction, wind speed, air temperature, air humidity, insolation, soil temperature, precipitation) were provided by the 'Research Platform Chicken Creek' (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). Data were combined and multivariate statistical analysis (PCA, cluster analysis, regression trees) were conducted using the R-software to i) obtain statistical indices describing the relevant characteristics of the data and ii) to identify the determining factors for throughfall intensity. The methodology is currently tested and results will be presented. Preliminary evaluation of the image analysis approach showed only marginal, systematic deviation of results for the different software tools applied, which makes the developed workflow a viable tool for canopy characterization. Results from this study will have a broad spectrum of possible applications, for instance the development / calibration of rainfall interception models, the incorporation into eco-hydrological models, or to test the fault tolerance of wireless rainfall sensor networks.
... Doing AMIGAS Stay Informed Cancer Home Uterine Cancer Statistics Language: English (US) Español (Spanish) Recommend on Facebook ... the most commonly diagnosed gynecologic cancer. U.S. Cancer Statistics Data Visualizations Tool The Data Visualizations tool makes ...
Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel
2016-01-01
This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection. PMID:26789008
Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel
2016-01-01
This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection.
Multivariate Statistical Modelling of Drought and Heat Wave Events
NASA Astrophysics Data System (ADS)
Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele
2016-04-01
Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A copula is a multivariate distribution function which allows one to model the dependence structure of given variables separately from the marginal behaviour. We firstly look at the structure of soil moisture drought over the entire of France using the SAFRAN dataset between 1959 and 2009. Soil moisture is represented using the Standardised Precipitation Evapotranspiration Index (SPEI). Drought characteristics are computed at grid point scale where drought conditions are identified as those with an SPEI value below -1.0. We model the multivariate dependence structure of drought events defined by certain characteristics and compute return levels of these events. We initially find that drought characteristics such as duration, mean SPEI and the maximum contiguous area to a grid point all have positive correlations, though the degree to which they are correlated can vary considerably spatially. A spatial representation of return levels then may provide insight into the areas most prone to drought conditions. As a next step, we analyse the dependence structure between soil moisture conditions preceding the onset of a heat wave and the heat wave itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunn, Andrew J., E-mail: agunn@uabmc.edu; Sheth, Rahul A.; Luber, Brandon
2017-01-15
PurposeThe purpse of this study was to evaluate the ability of various radiologic response criteria to predict patient outcomes after trans-arterial chemo-embolization with drug-eluting beads (DEB-TACE) in patients with advanced-stage (BCLC C) hepatocellular carcinoma (HCC).Materials and methodsHospital records from 2005 to 2011 were retrospectively reviewed. Non-infiltrative lesions were measured at baseline and on follow-up scans after DEB-TACE according to various common radiologic response criteria, including guidelines of the World Health Organization (WHO), Response Evaluation Criteria in Solid Tumors (RECIST), the European Association for the Study of the Liver (EASL), and modified RECIST (mRECIST). Statistical analysis was performed to see which,more » if any, of the response criteria could be used as a predictor of overall survival (OS) or time-to-progression (TTP).Results75 patients met inclusion criteria. Median OS and TTP were 22.6 months (95 % CI 11.6–24.8) and 9.8 months (95 % CI 7.1–21.6), respectively. Univariate and multivariate Cox analyses revealed that none of the evaluated criteria had the ability to be used as a predictor for OS or TTP. Analysis of the C index in both univariate and multivariate models showed that the evaluated criteria were not accurate predictors of either OS (C-statistic range: 0.51–0.58 in the univariate model; range: 0.54–0.58 in the multivariate model) or TTP (C-statistic range: 0.55–0.59 in the univariate model; range: 0.57–0.61 in the multivariate model).ConclusionCurrent response criteria are not accurate predictors of OS or TTP in patients with advanced-stage HCC after DEB-TACE.« less
Gunn, Andrew J; Sheth, Rahul A; Luber, Brandon; Huynh, Minh-Huy; Rachamreddy, Niranjan R; Kalva, Sanjeeva P
2017-01-01
The purpse of this study was to evaluate the ability of various radiologic response criteria to predict patient outcomes after trans-arterial chemo-embolization with drug-eluting beads (DEB-TACE) in patients with advanced-stage (BCLC C) hepatocellular carcinoma (HCC). Hospital records from 2005 to 2011 were retrospectively reviewed. Non-infiltrative lesions were measured at baseline and on follow-up scans after DEB-TACE according to various common radiologic response criteria, including guidelines of the World Health Organization (WHO), Response Evaluation Criteria in Solid Tumors (RECIST), the European Association for the Study of the Liver (EASL), and modified RECIST (mRECIST). Statistical analysis was performed to see which, if any, of the response criteria could be used as a predictor of overall survival (OS) or time-to-progression (TTP). 75 patients met inclusion criteria. Median OS and TTP were 22.6 months (95 % CI 11.6-24.8) and 9.8 months (95 % CI 7.1-21.6), respectively. Univariate and multivariate Cox analyses revealed that none of the evaluated criteria had the ability to be used as a predictor for OS or TTP. Analysis of the C index in both univariate and multivariate models showed that the evaluated criteria were not accurate predictors of either OS (C-statistic range: 0.51-0.58 in the univariate model; range: 0.54-0.58 in the multivariate model) or TTP (C-statistic range: 0.55-0.59 in the univariate model; range: 0.57-0.61 in the multivariate model). Current response criteria are not accurate predictors of OS or TTP in patients with advanced-stage HCC after DEB-TACE.
Clinical Trials With Large Numbers of Variables: Important Advantages of Canonical Analysis.
Cleophas, Ton J
2016-01-01
Canonical analysis assesses the combined effects of a set of predictor variables on a set of outcome variables, but it is little used in clinical trials despite the omnipresence of multiple variables. The aim of this study was to assess the performance of canonical analysis as compared with traditional multivariate methods using multivariate analysis of covariance (MANCOVA). As an example, a simulated data file with 12 gene expression levels and 4 drug efficacy scores was used. The correlation coefficient between the 12 predictor and 4 outcome variables was 0.87 (P = 0.0001) meaning that 76% of the variability in the outcome variables was explained by the 12 covariates. Repeated testing after the removal of 5 unimportant predictor and 1 outcome variable produced virtually the same overall result. The MANCOVA identified identical unimportant variables, but it was unable to provide overall statistics. (1) Canonical analysis is remarkable, because it can handle many more variables than traditional multivariate methods such as MANCOVA can. (2) At the same time, it accounts for the relative importance of the separate variables, their interactions and differences in units. (3) Canonical analysis provides overall statistics of the effects of sets of variables, whereas traditional multivariate methods only provide the statistics of the separate variables. (4) Unlike other methods for combining the effects of multiple variables such as factor analysis/partial least squares, canonical analysis is scientifically entirely rigorous. (5) Limitations include that it is less flexible than factor analysis/partial least squares, because only 2 sets of variables are used and because multiple solutions instead of one is offered. We do hope that this article will stimulate clinical investigators to start using this remarkable method.
Steiner, John F.; Ho, P. Michael; Beaty, Brenda L.; Dickinson, L. Miriam; Hanratty, Rebecca; Zeng, Chan; Tavel, Heather M.; Havranek, Edward P.; Davidson, Arthur J.; Magid, David J.; Estacio, Raymond O.
2009-01-01
Background Although many studies have identified patient characteristics or chronic diseases associated with medication adherence, the clinical utility of such predictors has rarely been assessed. We attempted to develop clinical prediction rules for adherence with antihypertensive medications in two health care delivery systems. Methods and Results Retrospective cohort studies of hypertension registries in an inner-city health care delivery system (N = 17176) and a health maintenance organization (N = 94297) in Denver, Colorado. Adherence was defined by acquisition of 80% or more of antihypertensive medications. A multivariable model in the inner-city system found that adherent patients (36.3% of the total) were more likely than non-adherent patients to be older, white, married, and acculturated in US society, to have diabetes or cerebrovascular disease, not to abuse alcohol or controlled substances, and to be prescribed less than three antihypertensive medications. Although statistically significant, all multivariate odds ratios were 1.7 or less, and the model did not accurately discriminate adherent from non-adherent patients (C-statistic = 0.606). In the health maintenance organization, where 72.1% of patients were adherent, significant but weak associations existed between adherence and older age, white race, the lack of alcohol abuse, and fewer antihypertensive medications. The multivariate model again failed to accurately discriminate adherent from non-adherent individuals (C-statistic = 0.576). Conclusions Although certain socio-demographic characteristics or clinical diagnoses are statistically associated with adherence to refills of antihypertensive medications, a combination of these characteristics is not sufficiently accurate to allow clinicians to predict whether their patients will be adherent with treatment. PMID:20031876
Papageorgiou, Spyridon N; Kloukos, Dimitrios; Petridis, Haralampos; Pandis, Nikolaos
2015-10-01
To assess the hypothesis that there is excessive reporting of statistically significant studies published in prosthodontic and implantology journals, which could indicate selective publication. The last 30 issues of 9 journals in prosthodontics and implant dentistry were hand-searched for articles with statistical analyses. The percentages of significant and non-significant results were tabulated by parameter of interest. Univariable/multivariable logistic regression analyses were applied to identify possible predictors of reporting statistically significance findings. The results of this study were compared with similar studies in dentistry with random-effects meta-analyses. From the 2323 included studies 71% of them reported statistically significant results, with the significant results ranging from 47% to 86%. Multivariable modeling identified that geographical area and involvement of statistician were predictors of statistically significant results. Compared to interventional studies, the odds that in vitro and observational studies would report statistically significant results was increased by 1.20 times (OR: 2.20, 95% CI: 1.66-2.92) and 0.35 times (OR: 1.35, 95% CI: 1.05-1.73), respectively. The probability of statistically significant results from randomized controlled trials was significantly lower compared to various study designs (difference: 30%, 95% CI: 11-49%). Likewise the probability of statistically significant results in prosthodontics and implant dentistry was lower compared to other dental specialties, but this result did not reach statistical significant (P>0.05). The majority of studies identified in the fields of prosthodontics and implant dentistry presented statistically significant results. The same trend existed in publications of other specialties in dentistry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang
2010-07-01
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root- n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided.
Chen, Xiaohong; Fan, Yanqin; Pouzo, Demian; Ying, Zhiliang
2013-01-01
We study estimation and model selection of semiparametric models of multivariate survival functions for censored data, which are characterized by possibly misspecified parametric copulas and nonparametric marginal survivals. We obtain the consistency and root-n asymptotic normality of a two-step copula estimator to the pseudo-true copula parameter value according to KLIC, and provide a simple consistent estimator of its asymptotic variance, allowing for a first-step nonparametric estimation of the marginal survivals. We establish the asymptotic distribution of the penalized pseudo-likelihood ratio statistic for comparing multiple semiparametric multivariate survival functions subject to copula misspecification and general censorship. An empirical application is provided. PMID:24790286
. Another project used multivariate statistics to develop a novel device to non-invasively measure hydrogen Cellulosic Ethanol Production due to Experimental Measurement Uncertainty," Biotechnology for Biofuels
2014-09-01
approaches. Ecological Modelling Volume 200, Issues 1–2, 10, pp 1–19. Buhlmann, Kurt A ., Thomas S.B. Akre , John B. Iverson, Deno Karapatakis, Russell A ...statistical multivariate analysis to define the current and projected future range probability for species of interest to Army land managers. A software...15 Figure 4. RCW omission rate and predicted area as a function of the cumulative threshold
Deterministic annealing for density estimation by multivariate normal mixtures
NASA Astrophysics Data System (ADS)
Kloppenburg, Martin; Tavan, Paul
1997-03-01
An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.
A Note on Asymptotic Joint Distribution of the Eigenvalues of a Noncentral Multivariate F Matrix.
1984-11-01
Krishnaiah (1982). Now, let us consider the samples drawn from the k multivariate normal popuiejons. Let (Xlt....Xpt) denote the mean vector of the t...to maltivariate problems. Sankh-ya, 4, 381-39(s. (71 KRISHNAIAH , P. R. (1982). Selection of variables in discrimlnant analysis. In Handbook of...Statistics, Volume 2 (P. R. Krishnaiah , editor), 805-820. North-Holland Publishing Company. 6. Unclassifie INSTRUCTIONS REPORT DOCUMENTATION PAGE
ERIC Educational Resources Information Center
SAW, J.G.
THIS PAPER DEALS WITH SOME TESTS OF HYPOTHESIS FREQUENTLY ENCOUNTERED IN THE ANALYSIS OF MULTIVARIATE DATA. THE TYPE OF HYPOTHESIS CONSIDERED IS THAT WHICH THE STATISTICIAN CAN ANSWER IN THE NEGATIVE OR AFFIRMATIVE. THE DOOLITTLE METHOD MAKES IT POSSIBLE TO EVALUATE THE DETERMINANT OF A MATRIX OF HIGH ORDER, TO SOLVE A MATRIX EQUATION, OR TO…
1983-06-16
has been advocated by Gnanadesikan and ilk (1969), and others in the literature. This suggests that, if we use the formal signficance test type...American Statistical Asso., 62, 1159-1178. Gnanadesikan , R., and Wilk, M..B. (1969). Data Analytic Methods in Multi- variate Statistical Analysis. In
USDA-ARS?s Scientific Manuscript database
Conventional multivariate statistical methods have been used for decades to calculate environmental indicators. These methods generally work fine if they are used in a situation where the method can be tailored to the data. But there is some skepticism that the methods might fail in the context of s...
Effect of sexual steroids on boar kinematic sperm subpopulations.
Ayala, E M E; Aragón, M A
2017-11-01
Here, we show the effects of sexual steroids, progesterone, testosterone, or estradiol on motility parameters of boar sperm. Sixteen commercial seminal doses, four each of four adult boars, were analyzed using computer assisted sperm analysis (CASA). Mean values of motility parameters were analyzed by bivariate and multivariate statistics. Principal component analysis (PCA), followed by hierarchical clustering, was applied on data of motility parameters, provided automatically as intervals by the CASA system. Effects of sexual steroids were described in the kinematic subpopulations identified from multivariate statistics. Mean values of motility parameters were not significantly changed after addition of sexual steroids. Multivariate graphics showed that sperm subpopulations were not sensitive to the addition of either testosterone or estradiol, but sperm subpopulations responsive to progesterone were found. Distribution of motility parameters were wide in controls but sharpened at distinct concentrations of progesterone. We conclude that kinematic sperm subpopulations responsive to progesterone are present in boar semen, and these subpopulations are masked in evaluations of mean values of motility parameters. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy
NASA Astrophysics Data System (ADS)
Limandri, S.; Robledo, J.; Tirao, G.
2018-06-01
High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.
Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...
2014-12-02
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
Multivariate statistical model for 3D image segmentation with application to medical images.
John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O
2003-12-01
In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
Experimental analysis of computer system dependability
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar, K.; Tang, Dong
1993-01-01
This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.
Harnessing Multivariate Statistics for Ellipsoidal Data in Structural Geology
NASA Astrophysics Data System (ADS)
Roberts, N.; Davis, J. R.; Titus, S.; Tikoff, B.
2015-12-01
Most structural geology articles do not state significance levels, report confidence intervals, or perform regressions to find trends. This is, in part, because structural data tend to include directions, orientations, ellipsoids, and tensors, which are not treatable by elementary statistics. We describe a full procedural methodology for the statistical treatment of ellipsoidal data. We use a reconstructed dataset of deformed ooids in Maryland from Cloos (1947) to illustrate the process. Normalized ellipsoids have five degrees of freedom and can be represented by a second order tensor. This tensor can be permuted into a five dimensional vector that belongs to a vector space and can be treated with standard multivariate statistics. Cloos made several claims about the distribution of deformation in the South Mountain fold, Maryland, and we reexamine two particular claims using hypothesis testing: 1) octahedral shear strain increases towards the axial plane of the fold; 2) finite strain orientation varies systematically along the trend of the axial trace as it bends with the Appalachian orogen. We then test the null hypothesis that the southern segment of South Mountain is the same as the northern segment. This test illustrates the application of ellipsoidal statistics, which combine both orientation and shape. We report confidence intervals for each test, and graphically display our results with novel plots. This poster illustrates the importance of statistics in structural geology, especially when working with noisy or small datasets.
Ringham, Brandy M; Kreidler, Sarah M; Muller, Keith E; Glueck, Deborah H
2016-07-30
Multilevel and longitudinal studies are frequently subject to missing data. For example, biomarker studies for oral cancer may involve multiple assays for each participant. Assays may fail, resulting in missing data values that can be assumed to be missing completely at random. Catellier and Muller proposed a data analytic technique to account for data missing at random in multilevel and longitudinal studies. They suggested modifying the degrees of freedom for both the Hotelling-Lawley trace F statistic and its null case reference distribution. We propose parallel adjustments to approximate power for this multivariate test in studies with missing data. The power approximations use a modified non-central F statistic, which is a function of (i) the expected number of complete cases, (ii) the expected number of non-missing pairs of responses, or (iii) the trimmed sample size, which is the planned sample size reduced by the anticipated proportion of missing data. The accuracy of the method is assessed by comparing the theoretical results to the Monte Carlo simulated power for the Catellier and Muller multivariate test. Over all experimental conditions, the closest approximation to the empirical power of the Catellier and Muller multivariate test is obtained by adjusting power calculations with the expected number of complete cases. The utility of the method is demonstrated with a multivariate power analysis for a hypothetical oral cancer biomarkers study. We describe how to implement the method using standard, commercially available software products and give example code. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Characterizing multivariate decoding models based on correlated EEG spectral features.
McFarland, Dennis J
2013-07-01
Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shan, X.; Zhang, K.; Zhuang, Y.; Fu, R.; Hong, Y.
2017-12-01
Seasonal prediction of rainfall during the dry-to-wet transition season in austral spring (September-November) over southern Amazonia is central for improving planting crops and fire mitigation in that region. Previous studies have identified the key large-scale atmospheric dynamic and thermodynamics pre-conditions during the dry season (June-August) that influence the rainfall anomalies during the dry to wet transition season over Southern Amazonia. Based on these key pre-conditions during dry season, we have evaluated several statistical models and developed a Neural Network based statistical prediction system to predict rainfall during the dry to wet transition for Southern Amazonia (5-15°S, 50-70°W). Multivariate Empirical Orthogonal Function (EOF) Analysis is applied to the following four fields during JJA from the ECMWF Reanalysis (ERA-Interim) spanning from year 1979 to 2015: geopotential height at 200 hPa, surface relative humidity, convective inhibition energy (CIN) index and convective available potential energy (CAPE), to filter out noise and highlight the most coherent spatial and temporal variations. The first 10 EOF modes are retained for inputs to the statistical models, accounting for at least 70% of the total variance in the predictor fields. We have tested several linear and non-linear statistical methods. While the regularized Ridge Regression and Lasso Regression can generally capture the spatial pattern and magnitude of rainfall anomalies, we found that that Neural Network performs best with an accuracy greater than 80%, as expected from the non-linear dependence of the rainfall on the large-scale atmospheric thermodynamic conditions and circulation. Further tests of various prediction skill metrics and hindcasts also suggest this Neural Network prediction approach can significantly improve seasonal prediction skill than the dynamic predictions and regression based statistical predictions. Thus, this statistical prediction system could have shown potential to improve real-time seasonal rainfall predictions in the future.
The European Southern Observatory-MIDAS table file system
NASA Technical Reports Server (NTRS)
Peron, M.; Grosbol, P.
1992-01-01
The new and substantially upgraded version of the Table File System in MIDAS is presented as a scientific database system. MIDAS applications for performing database operations on tables are discussed, for instance, the exchange of the data to and from the TFS, the selection of objects, the uncertainty joins across tables, and the graphical representation of data. This upgraded version of the TFS is a full implementation of the binary table extension of the FITS format; in addition, it also supports arrays of strings. Different storage strategies for optimal access of very large data sets are implemented and are addressed in detail. As a simple relational database, the TFS may be used for the management of personal data files. This opens the way to intelligent pipeline processing of large amounts of data. One of the key features of the Table File System is to provide also an extensive set of tools for the analysis of the final results of a reduction process. Column operations using standard and special mathematical functions as well as statistical distributions can be carried out; commands for linear regression and model fitting using nonlinear least square methods and user-defined functions are available. Finally, statistical tests of hypothesis and multivariate methods can also operate on tables.
Anomaly detection of microstructural defects in continuous fiber reinforced composites
NASA Astrophysics Data System (ADS)
Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell
2015-03-01
Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.
Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.
2013-01-01
1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147
Kriechbaumer, Thomas; Blackburn, Kim; Breckon, Toby P.; Hamilton, Oliver; Rivas Casado, Monica
2015-01-01
Autonomous survey vessels can increase the efficiency and availability of wide-area river environment surveying as a tool for environment protection and conservation. A key challenge is the accurate localisation of the vessel, where bank-side vegetation or urban settlement preclude the conventional use of line-of-sight global navigation satellite systems (GNSS). In this paper, we evaluate unaided visual odometry, via an on-board stereo camera rig attached to the survey vessel, as a novel, low-cost localisation strategy. Feature-based and appearance-based visual odometry algorithms are implemented on a six degrees of freedom platform operating under guided motion, but stochastic variation in yaw, pitch and roll. Evaluation is based on a 663 m-long trajectory (>15,000 image frames) and statistical error analysis against ground truth position from a target tracking tachymeter integrating electronic distance and angular measurements. The position error of the feature-based technique (mean of ±0.067 m) is three times smaller than that of the appearance-based algorithm. From multi-variable statistical regression, we are able to attribute this error to the depth of tracked features from the camera in the scene and variations in platform yaw. Our findings inform effective strategies to enhance stereo visual localisation for the specific application of river monitoring. PMID:26694411
A Step Beyond Simple Keyword Searches: Services Enabled by a Full Content Digital Journal Archive
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.
2003-01-01
The problems of managing and searching large archives of scientific journal articles can potentially be addressed through data mining and statistical techniques matured primarily for quantitative scientific data analysis. A journal paper could be represented by a multivariate descriptor, e.g., the occurrence counts of a number key technical terms or phrases (keywords), perhaps derived from a controlled vocabulary ( e . g . , the American Meteorological Society's Glossary of Meteorology) or bootstrapped from the journal archive itself. With this technique, conventional statistical classification tools can be leveraged to address challenges faced by both scientists and professional societies in knowledge management. For example, cluster analyses can be used to find bundles of "most-related" papers, and address the issue of journal bifurcation (when is a new journal necessary, and what topics should it encompass). Similarly, neural networks can be trained to predict the optimal journal (within a society's collection) in which a newly submitted paper should be published. Comparable techniques could enable very powerful end-user tools for journal searches, all premised on the view of a paper as a data point in a multidimensional descriptor space, e.g.: "find papers most similar to the one I am reading", "build a personalized subscription service, based on the content of the papers I am interested in, rather than preselected keywords", "find suitable reviewers, based on the content of their own published works", etc. Such services may represent the next "quantum leap" beyond the rudimentary search interfaces currently provided to end-users, as well as a compelling value-added component needed to bridge the print-to-digital-medium gap, and help stabilize professional societies' revenue stream during the print-to-digital transition.
Au-yeung, Wan-tai M.; Reinhall, Per; Poole, Jeanne E.; Anderson, Jill; Johnson, George; Fletcher, Ross D.; Moore, Hans J.; Mark, Daniel B.; Lee, Kerry L.; Bardy, Gust H.
2015-01-01
Background In the SCD-HeFT a significant fraction of the congestive heart failure (CHF) patients ultimately did not die suddenly from arrhythmic causes. CHF patients will benefit from better tools to identify if ICD therapy is needed. Objective To identify predictor variables from baseline SCD-HeFT patients’ RR intervals that correlate to arrhythmic sudden cardiac death (SCD) and mortality and to design an ICD therapy screening test. Methods Ten predictor variables were extracted from pre-randomization Holter data from 475 patients enrolled in the SCD-HeFT ICD arm using novel and traditional heart rate variability methods. All variables were correlated to SCD using Mann Whitney-Wilcoxon test and receiver operating characteristic analysis. ICD therapy screening tests were designed by minimizing the cost of false classifications. Survival analysis, including log-rank test and Cox models, was also performed. Results α1 and α2 from detrended fluctuation analysis, the ratio of low to high frequency power, the number of PVCs per hour and heart rate turbulence slope are all statistically significant for predicting the occurrences of SCD (p<0.001) and survival (log-rank p<0.01). The most powerful multivariate predictor tool using the Cox Proportional Hazards was α2 with a hazard ratio of 0.0465 (95% CI: 0.00528 – 0.409, p<0.01). Conclusion Predictor variables from RR intervals correlate to the occurrences of SCD and distinguish survival among SCD-HeFT ICD patients. We believe SCD prediction models should incorporate Holter based RR interval analysis to refine ICD patient selection especially in removing patients who are unlikely to benefit from ICD therapy. PMID:26096609
MetNet: Software to Build and Model the Biogenetic Lattice of Arabidopsis
Wurtele, Eve Syrkin; Li, Jie; Diao, Lixia; ...
2003-01-01
MetNet (http://www.botany.iastate.edu/∼mash/metnetex/metabolicnetex.html) is publicly available software in development for analysis of genome-wide RNA, protein and metabolite profiling data. The software is designed to enable the biologist to visualize, statistically analyse and model a metabolic and regulatory network map of Arabidopsis , combined with gene expression profiling data. It contains a JAVA interface to an interactions database (MetNetDB) containing information on regulatory and metabolic interactions derived from a combination of web databases (TAIR, KEGG, BRENDA) and input from biologists in their area of expertise. FCModeler captures input from MetNetDB in a graphical form. Sub-networks can be identified and interpreted using simplemore » fuzzy cognitive maps. FCModeler is intended to develop and evaluate hypotheses, and provide a modelling framework for assessing the large amounts of data captured by high-throughput gene expression experiments. FCModeler and MetNetDB are currently being extended to three-dimensional virtual reality display. The MetNet map, together with gene expression data, can be viewed using multivariate graphics tools in GGobi linked with the data analytic tools in R. Users can highlight different parts of the metabolic network and see the relevant expression data highlighted in other data plots. Multi-dimensional expression data can be rotated through different dimensions. Statistical analysis can be computed alongside the visual. MetNet is designed to provide a framework for the formulation of testable hypotheses regarding the function of specific genes, and in the long term provide the basis for identification of metabolic and regulatory networks that control plant composition and development.« less
Testing for significance of phase synchronisation dynamics in the EEG.
Daly, Ian; Sweeney-Reed, Catherine M; Nasuto, Slawomir J
2013-06-01
A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.
Processes and subdivisions in diogenites, a multivariate statistical analysis
NASA Technical Reports Server (NTRS)
Harriott, T. A.; Hewins, R. H.
1984-01-01
Multivariate statistical techniques used on diogenite orthopyroxene analyses show the relationships that occur within diogenites and the two orthopyroxenite components (class I and II) in the polymict diogenite Garland. Cluster analysis shows that only Peckelsheim is similar to Garland class I (Fe-rich) and the other diogenites resemble Garland class II. The unique diogenite Y 75032 may be related to type I by fractionation. Factor analysis confirms the subdivision and shows that Fe does not correlate with the weakly incompatible elements across the entire pyroxene composition range, indicating that igneous fractionation is not the process controlling total diogenite composition variation. The occurrence of two groups of diogenites is interpreted as the result of sampling or mixing of two main sequences of orthopyroxene cumulates with slightly different compositions.
Aguirre-Gamboa, Raul; Trevino, Victor
2014-06-01
MicroRNAs (miRNAs) play a key role in post-transcriptional regulation of mRNA levels. Their function in cancer has been studied by high-throughput methods generating valuable sources of public information. Thus, miRNA signatures predicting cancer clinical outcomes are emerging. An important step to propose miRNA-based biomarkers before clinical validation is their evaluation in independent cohorts. Although it can be carried out using public data, such task is time-consuming and requires a specialized analysis. Therefore, to aid and simplify the evaluation of prognostic miRNA signatures in cancer, we developed SurvMicro, a free and easy-to-use web tool that assesses miRNA signatures from publicly available miRNA profiles using multivariate survival analysis. SurvMicro is composed of a wide and updated database of >40 cohorts in different tissues and a web tool where survival analysis can be done in minutes. We presented evaluations to portray the straightforward functionality of SurvMicro in liver and lung cancer. To our knowledge, SurvMicro is the only bioinformatic tool that aids the evaluation of multivariate prognostic miRNA signatures in cancer. SurvMicro and its tutorial are freely available at http://bioinformatica.mty.itesm.mx/SurvMicro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil
2016-01-01
Background. Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends’ preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. Methods. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. Results. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Conclusion. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors. PMID:28231172
Lackey, Denise E; Burk, David H; Ali, Mohamed R; Mostaedi, Rouzbeh; Smith, William H; Park, Jiyoung; Scherer, Philipp E; Seay, Shundra A; McCoin, Colin S; Bonaldo, Paolo; Adams, Sean H
2014-02-01
The extracellular matrix (ECM) plays an important role in the maintenance of white adipose tissue (WAT) architecture and function, and proper ECM remodeling is critical to support WAT malleability to accommodate changes in energy storage needs. Obesity and adipocyte hypertrophy place a strain on the ECM remodeling machinery, which may promote disordered ECM and altered tissue integrity and could promote proinflammatory and cell stress signals. To explore these questions, new methods were developed to quantify omental and subcutaneous WAT tensile strength and WAT collagen content by three-dimensional confocal imaging, using collagen VI knockout mice as a methods validation tool. These methods, combined with comprehensive measurement of WAT ECM proteolytic enzymes, transcript, and blood analyte analyses, were used to identify unique pathophenotypes of metabolic syndrome and type 2 diabetes mellitus in obese women, using multivariate statistical modeling and univariate comparisons with weight-matched healthy obese individuals. In addition to the expected differences in inflammation and glycemic control, approximately 20 ECM-related factors, including omental tensile strength, collagen, and enzyme transcripts, helped discriminate metabolically compromised obesity. This is consistent with the hypothesis that WAT ECM physiology is intimately linked to metabolic health in obese humans, and the studies provide new tools to explore this relationship.
Jack, John; Havener, Tammy M; McLeod, Howard L; Motsinger-Reif, Alison A; Foster, Matthew
2015-01-01
Aim: We investigate the role of ethnicity and admixture in drug response across a broad group of chemotherapeutic drugs. Also, we generate hypotheses on the genetic variants driving differential drug response through multivariate genome-wide association studies. Methods: Immortalized lymphoblastoid cell lines from 589 individuals (Hispanic or non-Hispanic/Caucasian) were used to investigate dose-response for 28 chemotherapeutic compounds. Univariate and multivariate statistical models were used to elucidate associations between genetic variants and differential drug response as well as the role of ethnicity in drug potency and efficacy. Results & Conclusion: For many drugs, the variability in drug response appears to correlate with self-reported race and estimates of genetic ancestry. Additionally, multivariate genome-wide association analyses offered interesting hypotheses governing these differential responses. PMID:26314407
Hajikhani Golchin, Nayereh Azam; Hamzehgardeshi, Zeinab; Hamzehgardeshi, Leila; Shirzad Ahoodashti, Mahboobeh
2014-01-01
Background: Domestic violence refers to any type of physical, sexual, and psychological abuse enforced in the setting of familial relationships. Domestic violence has a significant relationship with poor outcome among pregnant women. Success in resolving this social phenomenon rests on accurate assessment of the society and the factors associated with violence in that specific community. Objectives: The present study was conducted to assess the demographic characteristics of pregnant women exposed to different types of domestic violence during pregnancy in Iranian setting. Patients and Methods: This is a descriptive-analytic, cross-sectional study. Sampling was done with convenience sampling method. in the current study, 301 pregnant women aged 15-45 years of Iranian nationality who were referred to the hospital for delivery or abortion, regardless of the gestational age, were selected as the subjects. Data collection tools consisted of a sociodemographic questionnaire and a violence checklist. Violence was assessed using Revised Conflict Tactics Scale (CTS2). Data were analyzed using descriptive and analytic statistics on SPSS version 16 (SPSS, Chicago, IL, USA) and STATA version 10. The characteristics of the participants were presented as mean ± SD or number and percentage. Differences between variables were determined by the χ2 test, and multivariate logistic regression. P < 0.05 was considered significant. Results: According to the findings, 34.56% of participants had experienced psychological violence, 28.24% physical violence, and 3.65% sexual violence. Multivariate logistic regression revealed a statistically significant relationship only in the case of physical violence and history of penal conviction for partner (Adjusted Odds Ratio (AOR) = 12.60) and a patriarchal household (AOR = 16.75). Conclusions: As domestic violence is greatly influenced by the customs and cultures of each community, no single strategy can be adopted to resolve it universally. Simultaneously, it is necessary to adopt comprehensive measures to control factors associated with domestic violence in the healthcare, judiciary, and the educational systems in order to prevent and curb this social challenge. PMID:24910784
Hoenigl, Martin; Weibel, Nadir; Mehta, Sanjay R; Anderson, Christy M; Jenks, Jeffrey; Green, Nella; Gianella, Sara; Smith, Davey M; Little, Susan J
2015-08-01
Although men who have sex with men (MSM) represent a dominant risk group for human immunodeficiency virus (HIV), the risk of HIV infection within this population is not uniform. The objective of this study was to develop and validate a score to estimate incident HIV infection risk. Adult MSM who were tested for acute and early HIV (AEH) between 2008 and 2014 were retrospectively randomized 2:1 to a derivation and validation dataset, respectively. Using the derivation dataset, each predictor associated with an AEH outcome in the multivariate prediction model was assigned a point value that corresponded to its odds ratio. The score was validated on the validation dataset using C-statistics. Data collected at a single HIV testing encounter from 8326 unique MSM were analyzed, including 200 with AEH (2.4%). Four risk behavior variables were significantly associated with an AEH diagnosis (ie, incident infection) in multivariable analysis and were used to derive the San Diego Early Test (SDET) score: condomless receptive anal intercourse (CRAI) with an HIV-positive MSM (3 points), the combination of CRAI plus ≥5 male partners (3 points), ≥10 male partners (2 points), and diagnosis of bacterial sexually transmitted infection (2 points)-all as reported for the prior 12 months. The C-statistic for this risk score was >0.7 in both data sets. The SDET risk score may help to prioritize resources and target interventions, such as preexposure prophylaxis, to MSM at greatest risk of acquiring HIV infection. The SDET risk score is deployed as a freely available tool at http://sdet.ucsd.edu. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lakew, Yihunie; Benedict, Susan; Haile, Demewoz
2015-01-01
Objective This study identifies social determinants of HIV infection, hotspot areas and subpopulation groups in Ethiopia. Design The study used data from the 2011 Ethiopian Demographic and Health Survey (EDHS). Sample blood tests from the finger pricks collected on filter paper cards were labelled with a barcode unique to each respondent. Spatial scan statistics and geographic information system tools were used to map hotspot areas of HIV prevalence. Bivariate and multivariable logistic regression models were used to identify social determinants of HIV infection. Population A total of 30 625 adults (16 515 women and 14 110 men) were included from 11 administrative states of Ethiopia. Main outcome measures Laboratory-confirmed HIV serostatus is the main outcome variable. Results HIV prevalence reached 10–21% in the central, eastern and western geographic clusters of Ethiopia. Multivariable analysis showed that individuals who were in the middle, richer and richest wealth quintiles had increased odds of having HIV over those in the poorest quintile. Adults who had primary, secondary and higher educational levels had higher odds of being HIV positive than non-educated individuals. The odds of having HIV were higher among adults who had multiple lifetime sexual partners than those with a single partner. An increasing odds of HIV infection were observed among adults in the age groups of 25–29, 30–34, 35–39 and 40–45 years compared with adults in the age group of 45–49 years. Merchants had higher odds of being HIV positive than those who were not employed. The odds of having HIV were higher among urban residents and females than among rural residents and males, respectively. Conclusions This study found statistically significant HIV concentrations in administrative zones of central, eastern and western Ethiopia. Geospatial monitoring and targeting of prevention strategies for specific population groups is recommended. PMID:26589427
NASA Astrophysics Data System (ADS)
Smentkowski, V. S.; Duong, H. M.; Tamaki, R.; Keenan, M. R.; Ohlhausen, J. A. Tony; Kotula, P. G.
2006-11-01
Silsesquioxane, with an empirical formula of RSiO3/2, has the potential to combine the mechanical properties of plastics with the oxidative stability of ceramics in one material [D.W. Scott, J. Am. Chem. Soc. 68 (1946) 356; K.J. Shea, D.A. Loy, Acc. Chem. Res. 34 (2001) 707; K.-M. Kim, D.-K. Keum, Y. Chujo, Macromolecules 36 (2003) 867; M.J. Abad, L. Barral, D.P. Fasce, R.J.J. William, Macromolecules 36 (2003) 3128]. The high sensitivity, surface specificity, and ability to detect and image high mass additives make time-of-flight secondary ion mass spectrometry (ToF-SIMS) a powerful surface analytical instrument for the characterization of polymer composite surfaces in an analytical laboratory [J.C. Vickerman, D. Briggs (Eds.), ToF-SIMS Surface Analysis by Mass Spectrometry, Surface Spectra/IMPublications, UK, 2001; X. Vanden Eynde, P. Bertand, Surf. Interface Anal. 27 (1999) 157; P.M. Thompson, Anal. Chem. 63 (1991) 2447; S.J. Simko, S.R. Bryan, D.P. Griffis, R.W. Murray, R.W. Linton, Anal. Chem. 57 (1985) 1198; S. Affrossman, S.A. O'Neill, M. Stamm, Macromolecules 31 (1998) 6280]. In this paper, we compare ToF-SIMS spectra of control samples with spectra generated from polymer nano-composites based on octabenzyl-polyhedral oligomeric silsesquioxane (BnPOSS) as well as spectra (and images) generated from multivariate statistical analysis (MVSA) of the entire spectral image. We will demonstrate that ToF-SIMS is able to detect and image low concentrations of BnPOSS in polycarbonate. We emphasize the use of MVSA tools for converting the massive amount of data contained in a ToF-SIMS spectral image into a smaller number of useful chemical components (spectra and images) that fully describe the ToF-SIMS measurement.
Martin, Guillaume; Chapuis, Elodie; Goudet, Jérôme
2008-01-01
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Qst–Fst) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2Fst/(1 − Fst)G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2Fst/(1 − Fst)] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Qst–Fst comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions. PMID:18245845
Haliński, Łukasz P; Samuels, John; Stepnowski, Piotr
2017-12-01
The brinjal eggplant (Solanum melongena L.) is an important vegetable species worldwide, while African eggplants (S. aethiopicum L., S. macrocarpon L.) are indigenous vegetable species of local significance. Taxonomy of eggplants and their wild relatives is complicated and still unclear. Hence, the objective of the study was to clarify taxonomic position of cultivars and landraces of brinjal, its wild relatives and African eggplant species and their wild ancestors using chemotaxonomic markers and multivariate analysis techniques for data processing, with special attention paid to the recognition of markers characteristic for each group of the plants. The total of 34 accessions belonging to 9 species from genus Solanum L. were used in the study. Chemotaxonomic analysis was based on the profiles of cuticular n-alkanes and methylalkanes, obtained using gas chromatography-mass spectrometry and gas chromatography with flame ionization detector. Standard hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used for the classification, while the latter and two-way HCA allowed to identify markers responsible for the clustering of the species. Cultivars, landraces and wild forms of S. melongena were practically identical in terms of their taxonomic position. The results confirmed high and statistically significant distinctiveness of all African eggplant species from the brinjal eggplant. The latter was characterized mostly by abundant long chain hydrocarbons in the range of 34-37 carbon atoms. The differences between both African eggplant species were, however, also statistically significant; S. aethiopicum displayed the highest contribution of 2-methylalkanes to the total cuticular hydrocarbons, while S. macrocarpon was characterized by elevated n-alkanes in the range of 25-32 carbon atoms. Wild ancestors of both African eggplant species were identical with their cultivated relatives. Concluding, high usefulness of the chemotaxonomic approach in classification of this important group of plants was confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Riedl, Janet; Esslinger, Susanne; Fauhl-Hassek, Carsten
2015-07-23
Food fingerprinting approaches are expected to become a very potent tool in authentication processes aiming at a comprehensive characterization of complex food matrices. By non-targeted spectrometric or spectroscopic chemical analysis with a subsequent (multivariate) statistical evaluation of acquired data, food matrices can be investigated in terms of their geographical origin, species variety or possible adulterations. Although many successful research projects have already demonstrated the feasibility of non-targeted fingerprinting approaches, their uptake and implementation into routine analysis and food surveillance is still limited. In many proof-of-principle studies, the prediction ability of only one data set was explored, measured within a limited period of time using one instrument within one laboratory. Thorough validation strategies that guarantee reliability of the respective data basis and that allow conclusion on the applicability of the respective approaches for its fit-for-purpose have not yet been proposed. Within this review, critical steps of the fingerprinting workflow were explored to develop a generic scheme for multivariate model validation. As a result, a proposed scheme for "good practice" shall guide users through validation and reporting of non-targeted fingerprinting results. Furthermore, food fingerprinting studies were selected by a systematic search approach and reviewed with regard to (a) transparency of data processing and (b) validity of study results. Subsequently, the studies were inspected for measures of statistical model validation, analytical method validation and quality assurance measures. In this context, issues and recommendations were found that might be considered as an actual starting point for developing validation standards of non-targeted metabolomics approaches for food authentication in the future. Hence, this review intends to contribute to the harmonization and standardization of food fingerprinting, both required as a prior condition for the authentication of food in routine analysis and official control. Copyright © 2015 Elsevier B.V. All rights reserved.
Integrated Data Visualization and Virtual Reality Tool
NASA Technical Reports Server (NTRS)
Dryer, David A.
1998-01-01
The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.
Potyrailo, Radislav A
2017-08-29
For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.
Hou, Wen-Hsuan; Kang, Chun-Mei; Ho, Mu-Hsing; Kuo, Jessie Ming-Chuan; Chen, Hsiao-Lien; Chang, Wen-Yin
2017-03-01
To evaluate the accuracy of the inpatient fall risk screening tool and to identify the most critical fall risk factors in inpatients. Variations exist in several screening tools applied in acute care hospitals for examining risk factors for falls and identifying high-risk inpatients. Secondary data analysis. A subset of inpatient data for the period from June 2011-June 2014 was extracted from the nursing information system and adverse event reporting system of an 818-bed teaching medical centre in Taipei. Data were analysed using descriptive statistics, receiver operating characteristic curve analysis and logistic regression analysis. During the study period, 205 fallers and 37,232 nonfallers were identified. The results revealed that the inpatient fall risk screening tool (cut-off point of ≥3) had a low sensitivity level (60%), satisfactory specificity (87%), a positive predictive value of 2·0% and a negative predictive value of 99%. The receiver operating characteristic curve analysis revealed an area under the curve of 0·805 (sensitivity, 71·8%; specificity, 78%). To increase the sensitivity values, the Youden index suggests at least 1·5 points to be the most suitable cut-off point for the inpatient fall risk screening tool. Multivariate logistic regression analysis revealed a considerably increased fall risk in patients with impaired balance and impaired elimination. The fall risk factor was also significantly associated with days of hospital stay and with admission to surgical wards. The findings can raise awareness about the two most critical risk factors for falls among future clinical nurses and other healthcare professionals and thus facilitate the development of fall prevention interventions. This study highlights the needs for redefining the cut-off points of the inpatient fall risk screening tool to effectively identify inpatients at a high risk of falls. Furthermore, inpatients with impaired balance and impaired elimination should be closely monitored by nurses to prevent falling during hospitalisations. © 2016 John Wiley & Sons Ltd.
Multivariable Parametric Cost Model for Ground Optical Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2005-01-01
A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.
Gildersleeve, R.; Cooper, P.
2013-01-01
Background The Centers for Medicare and Medicaid Services’ Readmissions Reduction Program adjusts payments to hospitals based on 30-day readmission rates for patients with acute myocardial infarction, heart failure, and pneumonia. This holds hospitals accountable for a complex phenomenon about which there is little evidence regarding effective interventions. Further study may benefit from a method for efficiently and inexpensively identifying patients at risk of readmission. Several models have been developed to assess this risk, many of which may not translate to a U.S. community hospital setting. Objective To develop a real-time, automated tool to stratify risk of 30-day readmission at a semirural community hospital. Methods A derivation cohort was created by extracting demographic and clinical variables from the data repository for adult discharges from calendar year 2010. Multivariate logistic regression identified variables that were significantly associated with 30-day hospital readmission. Those variables were incorporated into a formula to produce a Risk of Readmission Score (RRS). A validation cohort from 2011 assessed the predictive value of the RRS. A SQL stored procedure was created to calculate the RRS for any patient and publish its value, along with an estimate of readmission risk and other factors, to a secure intranet site. Results Eleven variables were significantly associated with readmission in the multivariate analysis of each cohort. The RRS had an area under the receiver operating characteristic curve (c-statistic) of 0.74 (95% CI 0.73-0.75) in the derivation cohort and 0.70 (95% CI 0.69-0.71) in the validation cohort. Conclusion Clinical and administrative data available in a typical community hospital database can be used to create a validated, predictive scoring system that automatically assigns a probability of 30-day readmission to hospitalized patients. This does not require manual data extraction or manipulation and uses commonly available systems. Additional study is needed to refine and confirm the findings. PMID:23874355
Optimal moment determination in POME-copula based hydrometeorological dependence modelling
NASA Astrophysics Data System (ADS)
Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi
2017-07-01
Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.
Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F.; Becker, James T.; Aizenstein, Howard J.; Lopez, Oscar L.; Tamburo, Robert J.; Toga, Arthur W.; Thompson, Paul M.
2010-01-01
Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics - these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. PMID:19900560
On measures of association among genetic variables
Gianola, Daniel; Manfredi, Eduardo; Simianer, Henner
2012-01-01
Summary Systems involving many variables are important in population and quantitative genetics, for example, in multi-trait prediction of breeding values and in exploration of multi-locus associations. We studied departures of the joint distribution of sets of genetic variables from independence. New measures of association based on notions of statistical distance between distributions are presented. These are more general than correlations, which are pairwise measures, and lack a clear interpretation beyond the bivariate normal distribution. Our measures are based on logarithmic (Kullback-Leibler) and on relative ‘distances’ between distributions. Indexes of association are developed and illustrated for quantitative genetics settings in which the joint distribution of the variables is either multivariate normal or multivariate-t, and we show how the indexes can be used to study linkage disequilibrium in a two-locus system with multiple alleles and present applications to systems of correlated beta distributions. Two multivariate beta and multivariate beta-binomial processes are examined, and new distributions are introduced: the GMS-Sarmanov multivariate beta and its beta-binomial counterpart. PMID:22742500
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.
2012-06-15
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less
Jantzi, Sarah C; Almirall, José R
2014-01-01
Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.
Kyle J. Haynes; Andrew M. Liebhold; Ottar N. Bjørnstad; Andrew J. Allstadt; Randall S. Morin
2018-01-01
Evaluating the causes of spatial synchrony in population dynamics in nature is notoriously difficult due to a lack of data and appropriate statistical methods. Here, we use a recently developed method, a multivariate extension of the local indicators of spatial autocorrelation statistic, to map geographic variation in the synchrony of gypsy moth outbreaks. Regression...
Schmidt-Hansen, Mia; Berendse, Sabine; Hamilton, Willie; Baldwin, David R
2017-01-01
Background Lung cancer is the leading cause of cancer deaths. Around 70% of patients first presenting to specialist care have advanced disease, at which point current treatments have little effect on survival. The issue for primary care is how to recognise patients earlier and investigate appropriately. This requires an assessment of the risk of lung cancer. Aim The aim of this study was to systematically review the existing risk prediction tools for patients presenting in primary care with symptoms that may indicate lung cancer Design and setting Systematic review of primary care data. Method Medline, PreMedline, Embase, the Cochrane Library, Web of Science, and ISI Proceedings (1980 to March 2016) were searched. The final list of included studies was agreed between two of the authors, who also appraised and summarised them. Results Seven studies with between 1482 and 2 406 127 patients were included. The tools were all based on UK primary care data, but differed in complexity of development, number/type of variables examined/included, and outcome time frame. There were four multivariable tools with internal validation area under the curves between 0.88 and 0.92. The tools all had a number of limitations, and none have been externally validated, or had their clinical and cost impact examined. Conclusion There is insufficient evidence for the recommendation of any one of the available risk prediction tools. However, some multivariable tools showed promising discrimination. What is needed to guide clinical practice is both external validation of the existing tools and a comparative study, so that the best tools can be incorporated into clinical decision tools used in primary care. PMID:28483820
FADTTS: functional analysis of diffusion tensor tract statistics.
Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H
2011-06-01
The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lowe, David J.; Pearce, Nicholas J. G.; Jorgensen, Murray A.; Kuehn, Stephen C.; Tryon, Christian A.; Hayward, Chris L.
2017-11-01
We define tephras and cryptotephras and their components (mainly ash-sized particles of glass ± crystals in distal deposits) and summarize the basis of tephrochronology as a chronostratigraphic correlational and dating tool for palaeoenvironmental, geological, and archaeological research. We then document and appraise recent advances in analytical methods used to determine the major, minor, and trace elements of individual glass shards from tephra or cryptotephra deposits to aid their correlation and application. Protocols developed recently for the electron probe microanalysis of major elements in individual glass shards help to improve data quality and standardize reporting procedures. A narrow electron beam (diameter ∼3-5 μm) can now be used to analyze smaller glass shards than previously attainable. Reliable analyses of 'microshards' (defined here as glass shards <32 μm in diameter) using narrow beams are useful for fine-grained samples from distal or ultra-distal geographic locations, and for vesicular or microlite-rich glass shards or small melt inclusions. Caveats apply, however, in the microprobe analysis of very small microshards (≤∼5 μm in diameter), where particle geometry becomes important, and of microlite-rich glass shards where the potential problem of secondary fluorescence across phase boundaries needs to be recognised. Trace element analyses of individual glass shards using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), with crater diameters of 20 μm and 10 μm, are now effectively routine, giving detection limits well below 1 ppm. Smaller ablation craters (<10 μm) can be subject to significant element fractionation during analysis, but the systematic relationship of such fractionation with glass composition suggests that analyses for some elements at these resolutions may be quantifiable. In undertaking analyses, either by microprobe or LA-ICP-MS, reference material data acquired using the same procedure, and preferably from the same analytical session, should be presented alongside new analytical data. In part 2 of the review, we describe, critically assess, and recommend ways in which tephras or cryptotephras can be correlated (in conjunction with other information) using numerical or statistical analyses of compositional data. Statistical methods provide a less subjective means of dealing with analytical data pertaining to tephra components (usually glass or crystals/phenocrysts) than heuristic alternatives. They enable a better understanding of relationships among the data from multiple viewpoints to be developed and help quantify the degree of uncertainty in establishing correlations. In common with other scientific hypothesis testing, it is easier to infer using such analysis that two or more tephras are different rather than the same. Adding stratigraphic, chronological, spatial, or palaeoenvironmental data (i.e. multiple criteria) is usually necessary and allows for more robust correlations to be made. A two-stage approach is useful, the first focussed on differences in the mean composition of samples, or their range, which can be visualised graphically via scatterplot matrices or bivariate plots coupled with the use of statistical tools such as distance measures, similarity coefficients, hierarchical cluster analysis (informed by distance measures or similarity or cophenetic coefficients), and principal components analysis (PCA). Some statistical methods (cluster analysis, discriminant analysis) are referred to as 'machine learning' in the computing literature. The second stage examines sample variance and the degree of compositional similarity so that sample equivalence or otherwise can be established on a statistical basis. This stage may involve discriminant function analysis (DFA), support vector machines (SVMs), canonical variates analysis (CVA), and ANOVA or MANOVA (or its two-sample special case, the Hotelling two-sample T2 test). Randomization tests can be used where distributional assumptions such as multivariate normality underlying parametric tests are doubtful. Compositional data may be transformed and scaled before being subjected to multivariate statistical procedures including calculation of distance matrices, hierarchical cluster analysis, and PCA. Such transformations may make the assumption of multivariate normality more appropriate. A sequential procedure using Mahalanobis distance and the Hotelling two-sample T2 test is illustrated using glass major element data from trachytic to phonolitic Kenyan tephras. All these methods require a broad range of high-quality compositional data which can be used to compare 'unknowns' with reference (training) sets that are sufficiently complete to account for all possible correlatives, including tephras with heterogeneous glasses that contain multiple compositional groups. Currently, incomplete databases are tending to limit correlation efficacy. The development of an open, online global database to facilitate progress towards integrated, high-quality tephrostratigraphic frameworks for different regions is encouraged.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Smith, P. R.; Cimato, A.; Attilio, C.; Huertas, R.; Melgosa Latorre, Manuel; Bertho, A. C.; O'Rourke, B.; McMillan, N. D.
2005-05-01
Scattered colorimetry, i.e., multi-angle and multi-wavelength absorption spectroscopy performed in the visible spectral range, was used to map three kinds of liquids: extra virgin olive oils, frying oils, and detergents in water. By multivariate processing of the spectral data, the liquids could be classified according to their intrinisic characteristics: geographic area of extra virgin olive oils, degradation of frying oils, and surfactant types and mixtures in water.
Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E
2016-07-15
Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Gordon, Derek; Londono, Douglas; Patel, Payal; Kim, Wonkuk; Finch, Stephen J; Heiman, Gary A
2016-01-01
Our motivation here is to calculate the power of 3 statistical tests used when there are genetic traits that operate under a pleiotropic mode of inheritance and when qualitative phenotypes are defined by use of thresholds for the multiple quantitative phenotypes. Specifically, we formulate a multivariate function that provides the probability that an individual has a vector of specific quantitative trait values conditional on having a risk locus genotype, and we apply thresholds to define qualitative phenotypes (affected, unaffected) and compute penetrances and conditional genotype frequencies based on the multivariate function. We extend the analytic power and minimum-sample-size-necessary (MSSN) formulas for 2 categorical data-based tests (genotype, linear trend test [LTT]) of genetic association to the pleiotropic model. We further compare the MSSN of the genotype test and the LTT with that of a multivariate ANOVA (Pillai). We approximate the MSSN for statistics by linear models using a factorial design and ANOVA. With ANOVA decomposition, we determine which factors most significantly change the power/MSSN for all statistics. Finally, we determine which test statistics have the smallest MSSN. In this work, MSSN calculations are for 2 traits (bivariate distributions) only (for illustrative purposes). We note that the calculations may be extended to address any number of traits. Our key findings are that the genotype test usually has lower MSSN requirements than the LTT. More inclusive thresholds (top/bottom 25% vs. top/bottom 10%) have higher sample size requirements. The Pillai test has a much larger MSSN than both the genotype test and the LTT, as a result of sample selection. With these formulas, researchers can specify how many subjects they must collect to localize genes for pleiotropic phenotypes. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Guimarães Nobre, Gabriela; Arnbjerg-Nielsen, Karsten; Rosbjerg, Dan; Madsen, Henrik
2016-04-01
Traditionally, flood risk assessment studies have been carried out from a univariate frequency analysis perspective. However, statistical dependence between hydrological variables, such as extreme rainfall and extreme sea surge, is plausible to exist, since both variables to some extent are driven by common meteorological conditions. Aiming to overcome this limitation, multivariate statistical techniques has the potential to combine different sources of flooding in the investigation. The aim of this study was to apply a range of statistical methodologies for analyzing combined extreme hydrological variables that can lead to coastal and urban flooding. The study area is the Elwood Catchment, which is a highly urbanized catchment located in the city of Port Phillip, Melbourne, Australia. The first part of the investigation dealt with the marginal extreme value distributions. Two approaches to extract extreme value series were applied (Annual Maximum and Partial Duration Series), and different probability distribution functions were fit to the observed sample. Results obtained by using the Generalized Pareto distribution demonstrate the ability of the Pareto family to model the extreme events. Advancing into multivariate extreme value analysis, first an investigation regarding the asymptotic properties of extremal dependence was carried out. As a weak positive asymptotic dependence between the bivariate extreme pairs was found, the Conditional method proposed by Heffernan and Tawn (2004) was chosen. This approach is suitable to model bivariate extreme values, which are relatively unlikely to occur together. The results show that the probability of an extreme sea surge occurring during a one-hour intensity extreme precipitation event (or vice versa) can be twice as great as what would occur when assuming independent events. Therefore, presuming independence between these two variables would result in severe underestimation of the flooding risk in the study area.
The Perseus computational platform for comprehensive analysis of (prote)omics data.
Tyanova, Stefka; Temu, Tikira; Sinitcyn, Pavel; Carlson, Arthur; Hein, Marco Y; Geiger, Tamar; Mann, Matthias; Cox, Jürgen
2016-09-01
A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.
Zhang, Xufeng; Liu, Yu; Li, Ying; Zhao, Xinda
2017-03-01
Geographic traceability is an important issue for food quality and safety control of seafood. In this study,δ 13 C and δ 15 N values, as well as fatty acid (FA) content of 133 samples of A. japonicus from seven sampling points in northern China Sea were determined to evaluate their applicability in the origin traceability of A. japonicus. Principal component analysis (PCA) and discriminant analysis (DA) were applied to different data sets in order to evaluate their performance in terms of classification or predictive ability. δ 13 C and δ 15 N values could effectively discriminate between different origins of A. japonicus. Significant differences in the FA compositions showed the effectiveness of FA composition as a tool for distinguishing between different origins of A. japonicus. The two technologies, combined with multivariate statistical analysis, can be promising methods to discriminate A. japonicus from different geographical areas. Copyright © 2016. Published by Elsevier Ltd.
Peterson, Gunnel; Nilsson, David; Trygg, Johan; Falla, Deborah; Dedering, Åsa; Wallman, Thorne; Peolsson, Anneli
2015-10-16
Chronic whiplash-associated disorder (WAD) is common after whiplash injury, with considerable personal, social, and economic burden. Despite decades of research, factors responsible for continuing pain and disability are largely unknown, and diagnostic tools are lacking. Here, we report a novel model of mechanical ventral neck muscle function recorded from non-invasive, real-time, ultrasound measurements. We calculated the deformation area and deformation rate in 23 individuals with persistent WAD and compared them to 23 sex- and age-matched controls. Multivariate statistics were used to analyse interactions between ventral neck muscles, revealing different interplay between muscles in individuals with WAD and healthy controls. Although the cause and effect relation cannot be established from this data, for the first time, we reveal a novel method capable of detecting different neck muscle interplay in people with WAD. This non-invasive method stands to make a major breakthrough in the assessment and diagnosis of people following a whiplash trauma.
Pace, Roberto; Martinelli, Ernesto Marco; Sardone, Nicola; D E Combarieu, Eric
2015-03-01
Ginseng is any one of the eleven species belonging to the genus Panax of the family Araliaceae and is found in North America and in eastern Asia. Ginseng is characterized by the presence of ginsenosides. Principally Panax ginseng and Panax quinquefolius are the adaptogenic herbs and are commonly distributed as health food markets. In the present study high performance liquid chromatography has been used to identify and quantify ginsenosides in the two subject species and the different parts of the plant (roots, neck, leaves, flowers, fruits). The power of this chromatographic technique to evaluate the identity of botanical material and to distinguishing different part of the plants has been investigated with metabolomic technique such as principal component analysis. Metabolomics provide a good opportunity for mining useful chemical information from the chromatographic data set resulting an important tool for quality evaluation of medicinal plants in the authenticity, consistency and efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.
Traceability of 'Limone di Siracusa PGI' by a multidisciplinary analytical and chemometric approach.
Amenta, M; Fabroni, S; Costa, C; Rapisarda, P
2016-11-15
Food traceability is increasingly relevant with respect to safety, quality and typicality issues. Lemon fruits grown in a typical lemon-growing area of southern Italy (Siracusa), have been awarded the PGI (Protected Geographical Indication) recognition as 'Limone di Siracusa'. Due to its peculiarity, consumers have an increasing interest about this product. The detection of potential fraud could be improved by using the tools linking the composition of this production to its typical features. This study used a wide range of analytical techniques, including conventional techniques and analytical approaches, such as spectral (NIR spectra), multi-elemental (Fe, Zn, Mn, Cu, Li, Sr) and isotopic ((13)C/(12)C, (18)O/(16)O) marker investigations, joined with multivariate statistical analysis, such as PLS-DA (Partial Least Squares Discriminant Analysis) and LDA (Linear Discriminant Analysis), to implement a traceability system to verify the authenticity of 'Limone di Siracusa' production. The results demonstrated a very good geographical discrimination rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Point-of-care optical tool to detect early stage of hemorrhage and shock
NASA Astrophysics Data System (ADS)
Gurjar, Rajan S.; Riccardi, Suzannah L.; Johnson, Blair D.; Johnson, Christopher P.; Paradis, Norman A.; Joyner, Michael J.; Wolf, David E.
2014-02-01
There is a critical unmet clinical need for a device that can monitor and predict the onset of shock: hemorrhagic shock or bleeding to death, septic shock or systemic infection, and cardiogenic shock or blood flow and tissue oxygenation impairment due to heart attack. Together these represent 141 M patients per year. We have developed a monitor for shock based on measuring blood flow in peripheral (skin) capillary beds using diffuse correlation spectroscopy, a form of dynamic light scattering, and have demonstrated proof-of-principle both in pigs and humans. Our results show that skin blood flow measurement, either alone or in conjunction with other hemodynamic properties such as heart rate variability, pulse pressure variability, and tissue oxygenation, can meet this unmet need in a small self-contained patch-like device in conjunction with a hand-held processing unit. In this paper we describe and discuss the experimental work and the multivariate statistical analysis performed to demonstrate proof-of-principle of the concept.
Degradation of oxytetracycline and its impacts on biogas-producing microbial community structure.
Coban, Halil; Ertekin, Emine; Ince, Orhan; Turker, Gokhan; Akyol, Çağrı; Ince, Bahar
2016-07-01
The effect of veterinary antibiotics in anaerobic digesters is a concern where methane production efficiency is highly dependent on microbial community structure. In this study, both anaerobic degradation of a common veterinary antibiotic, oxytetracycline (OTC), and its effects on an anaerobic digester microbial community were investigated. Qualitative and quantitative molecular tools were used to monitor changes in microbial community structure during a 60-day batch incubation period of cow manure with the addition of different concentrations of the antibiotic. Molecular data were interpreted by a further redundancy analysis as a multivariate statistics approach. At the end of the experiment, approximately 48, 33, and 17 % of the initially added 50, 100, and 200 mg l(-1) of OTC was still present in the serum bottles which reduced the biogas production via accumulation of some of the volatile fatty acids (VFAs). Biogas production was highly correlated with Methanobacteriales and Methanosarcinales gene copy numbers, and those parameters were negatively affected with oxytetracycline and VFA concentrations.
Wilkinson, Kai E; Lundkvist, Johanna; Netrval, Julia; Eriksson, Mats; Seisenbaeva, Gulaim A; Kessler, Vadim G
2013-11-01
Concerns over exposure to airborne particulate matter (PM) are on the rise. Currently monitoring of PM is done on the basis of interpolating a mass of PM by volume (μg/m(3)) but has the drawback of not taking the chemical nature of PM into account. Here we propose a method of collecting PM at its emission source and employing automated analysis with scanning electron microscopy associated with EDS-analysis together with light scattering to discern the chemical composition, size distribution, and time and space resolved structure of PM emissions in a heavily trafficated roundabout in Sweden. Multivariate methods (PCA, ANOVA) indicate that the technogenic marker Fe follows roadside dust in spreading from the road, and depending on time and location of collection, a statistically significant difference can be seen, adding a useful tool to the repertoiré of detailed PM monitoring and risk assessment of local emission sources. Copyright © 2013 Elsevier Ltd. All rights reserved.
Moreno Rojas, Jose Manuel; Cosofret, Sorin; Reniero, Fabiano; Guillou, Claude; Serra, Francesca
2007-01-01
Following previous studies on counterfeit of wines with synthetic ingredients, the possibility of frauds by natural external L-tartaric acid has also been investigated. The aim of this research was to map the stable isotope ratios of L-tartaric acid coming from botanical species containing large amounts of this compound: grape and tamarind. Samples of L-tartaric acid were extracted from the pulp of tamarind fruits originating from several countries and from grape must. delta(13)C and delta(18)O were measured for all samples. Additional delta(2)H measurements were performed as a complementary analysis to help discrimination of the botanical origin. Different isotopic patterns were observed for the different botanical origins. The multivariate statistical analysis of the data shows clear discrimination among the different botanical and synthetic sources. This approach could be a complementary tool for the control of L-tartaric acid used in oenology. Copyright (c) 2007 John Wiley & Sons, Ltd.
Modeling Climate Change Impacts on Landscape Evolution, Fire, and Hydrology
NASA Astrophysics Data System (ADS)
Sheppard, B. S.; O Connor, C.; Falk, D. A.; Garfin, G. M.
2015-12-01
Landscape disturbances such as wildfire interact with climate variability to influence hydrologic regimes. We coupled landscape, fire, and hydrologic models and forced them using projected climate to demonstrate climate change impacts anticipated at Fort Huachuca in southeastern Arizona, USA. The US Department of Defense (DoD) recognizes climate change as a trend that has implications for military installations, national security and global instability. The goal of this DoD Strategic Environmental Research and Development Program (SERDP) project (RC-2232) is to provide decision making tools for military installations in the southwestern US to help them adapt to the operational realities associated with climate change. For this study we coupled the spatially explicit fire and vegetation dynamics model FireBGCv2 with the Automated Geospatial Watershed Assessment tool (AGWA) to evaluate landscape vegetation change, fire disturbance, and surface runoff in response to projected climate forcing. A projected climate stream for the years 2005-2055 was developed from the Multivariate Adaptive Constructed Analogs (MACA) 4 km statistical downscaling of the CanESM2 GCM using Representative Concentration Pathway (RCP) 8.5. AGWA, an ArcGIS add-in tool, was used to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and the KINematic runoff and EROSion2 (KINEROS2) models based on GIS layers. Landscape raster data generated by FireBGCv2 project an increase in fire and drought associated tree mortality and a decrease in vegetative basal area over the years of simulation. Preliminary results from SWAT modeling efforts show an increase to surface runoff during years following a fire, and for future winter rainy seasons. Initial results from KINEROS2 model runs show that peak runoff rates are expected to increase 10-100 fold as a result of intense rainfall falling on burned areas.
HEPDOOP: High-Energy Physics Analysis using Hadoop
NASA Astrophysics Data System (ADS)
Bhimji, W.; Bristow, T.; Washbrook, A.
2014-06-01
We perform a LHC data analysis workflow using tools and data formats that are commonly used in the "Big Data" community outside High Energy Physics (HEP). These include Apache Avro for serialisation to binary files, Pig and Hadoop for mass data processing and Python Scikit-Learn for multi-variate analysis. Comparison is made with the same analysis performed with current HEP tools in ROOT.
[Statistical prediction methods in violence risk assessment and its application].
Liu, Yuan-Yuan; Hu, Jun-Mei; Yang, Min; Li, Xiao-Song
2013-06-01
It is an urgent global problem how to improve the violence risk assessment. As a necessary part of risk assessment, statistical methods have remarkable impacts and effects. In this study, the predicted methods in violence risk assessment from the point of statistics are reviewed. The application of Logistic regression as the sample of multivariate statistical model, decision tree model as the sample of data mining technique, and neural networks model as the sample of artificial intelligence technology are all reviewed. This study provides data in order to contribute the further research of violence risk assessment.
ERIC Educational Resources Information Center
Ciftci, S. Koza; Karadag, Engin; Akdal, Pinar
2014-01-01
The purpose of this study was to determine the effect of statistics instruction using computer-based tools, on statistics anxiety, attitude, and achievement. This study was designed as quasi-experimental research and the pattern used was a matched pre-test/post-test with control group design. Data was collected using three scales: a Statistics…
Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.
Kang, Sokbom; Lee, Jong-Min; Lee, Jae-Kwan; Kim, Jae-Weon; Cho, Chi-Heum; Kim, Seok-Mo; Park, Sang-Yoon; Park, Chan-Yong; Kim, Ki-Tae
2014-03-01
The purpose of this study is to develop a Web-based nomogram for predicting the individualized risk of para-aortic nodal metastasis in incompletely staged patients with endometrial cancer. From 8 institutions, the medical records of 397 patients who underwent pelvic and para-aortic lymphadenectomy as a surgical staging procedure were retrospectively reviewed. A multivariate logistic regression model was created and internally validated by rigorous bootstrap resampling methods. Finally, the model was transformed into a user-friendly Web-based nomogram (http://http://www.kgog.org/nomogram/empa001.html). The rate of para-aortic nodal metastasis was 14.4% (57/397 patients). Using a stepwise variable selection, 4 variables including deep myometrial invasion, non-endometrioid subtype, lymphovascular space invasion, and log-transformed CA-125 levels were finally adopted. After 1000 repetitions of bootstrapping, all of these 4 variables retained a significant association with para-aortic nodal metastasis in the multivariate analysis-deep myometrial invasion (P = 0.001), non-endometrioid histologic subtype (P = 0.034), lymphovascular space invasion (P = 0.003), and log-transformed serum CA-125 levels (P = 0.004). The model showed good discrimination (C statistics = 0.87; 95% confidence interval, 0.82-0.92) and accurate calibration (Hosmer-Lemeshow P = 0.74). This nomogram showed good performance in predicting para-aortic metastasis in patients with endometrial cancer. The tool may be useful in determining the extent of lymphadenectomy after incomplete surgery.
Multivariate Models of Adult Pacific Salmon Returns
Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa
2013-01-01
Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586
Importance of early nutritional screening in patients with gastric cancer.
Gavazzi, Cecilia; Colatruglio, Silvia; Sironi, Alessandro; Mazzaferro, Vincenzo; Miceli, Rosalba
2011-12-01
In the present study, we evaluated the relationship between nutritional status, disease stage and quality of life (QoL) in 100 patients recently diagnosed with gastric carcinoma. The patients' nutritional status was investigated with anthropometric, biochemical, inflammatory and functional variables; and we also evaluated the nutritional risk with the Nutritional Risk Screening 2002. Oncological staging was standard. QoL was evaluated using the Functional Assessment of Anorexia/Cachexia Therapy questionnaire. The statistical correlation between nutritional risk score (NRS) and oncological characteristics or QoL was evaluated using both univariable and multivariable analyses. Weight loss and reduction of food intake were the most frequent pathological nutritional indicators, while biochemical, inflammatory and functional variables were in the normal range. According to NRS, thirty-six patients were malnourished or at risk for malnutrition. Patients with NRS ≥ 3 presented a significantly greater percentage of stage IV gastric cancer and pathological values of C-reactive protein, while no correlation was found with the site of tumour. NRS was negatively associated with QoL (P < 0·001) and this relation was independent from oncological and inflammatory variables as confirmed by multivariable analysis. In the present study, we found that in patients with gastric cancer malnutrition is frequent at diagnosis and this is likely due to reduction in food intake. Moreover, NRS is directly correlated with tumour stage and inversely correlated with QoL, which makes it a useful tool to identify patients in need of an early nutritional intervention during oncological treatments.
Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian
2016-09-28
The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various animal and tool categories, and used multivariate pattern classification of fMRI data to decode the semantic representations of the trained pseudowords. We found that: (1) animal and tool information was organized in category-selective subregions of medial left anterior temporal lobe (LATL); (2) tools, but not animals, were encoded in left inferior parietal lobe; and (3) LATL subregions exhibited distinct patterns of functional connectivity with category-related regions across cortex. Our findings suggest that semantic knowledge in LATL is organized in category-related subregions, providing evidence for the existence of multiple, category-specific semantic representations in the brain. Copyright © 2016 the authors 0270-6474/16/3610089-08$15.00/0.
Docking and multivariate methods to explore HIV-1 drug-resistance: a comparative analysis
NASA Astrophysics Data System (ADS)
Almerico, Anna Maria; Tutone, Marco; Lauria, Antonino
2008-05-01
In this paper we describe a comparative analysis between multivariate and docking methods in the study of the drug resistance to the reverse transcriptase and the protease inhibitors. In our early papers we developed a simple but efficient method to evaluate the features of compounds that are less likely to trigger resistance or are effective against mutant HIV strains, using the multivariate statistical procedures PCA and DA. In the attempt to create a more solid background for the prediction of susceptibility or resistance, we carried out a comparative analysis between our previous multivariate approach and molecular docking study. The intent of this paper is not only to find further support to the results obtained by the combined use of PCA and DA, but also to evidence the structural features, in terms of molecular descriptors, similarity, and energetic contributions, derived from docking, which can account for the arising of drug-resistance against mutant strains.
NASA Astrophysics Data System (ADS)
Eilert, Tobias; Beckers, Maximilian; Drechsler, Florian; Michaelis, Jens
2017-10-01
The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative structural information about macromolecules in their natural environment. In the algorithm a Bayesian model gives rise to a multivariate probability distribution describing the uncertainty of the structure determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety of smFRET networks, we established an MCMC based sampling engine that approximates the target distribution and requires no parameter specification by the user at all. For an efficient local exploration we automatically adapt the multivariate proposal kernel according to the shape of the target distribution. In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully adaptive with respect to temperature spacing and number of chains. Since the molecular surrounding of a dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which can be selected for every dye molecule individually. These models allow the user to represent the smFRET network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen model combination is provided. Programme Files doi:http://dx.doi.org/10.17632/7ztzj63r68.1 Licencing provisions: Apache-2.0 Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++ Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for macromolecular structures from smFRET data. Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.
Biostatistics Series Module 10: Brief Overview of Multivariate Methods.
Hazra, Avijit; Gogtay, Nithya
2017-01-01
Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.
Evaluation of Facility Management by Multivariate Statistics - Factor Analysis
NASA Astrophysics Data System (ADS)
Singovszki, Miloš; Vranayová, Zuzana
2013-06-01
Facility management is evolving, there is no exact than other sciences, although its development is fast forward. The knowledge and practical skills in facility management is not replaced, on the contrary, they complement each other. The existing low utilization of science in the field of facility management is mainly caused by the management of support activities are many variables and prevailing immediate reaction to the extraordinary situation arising from motives of those who have substantial experience and years of proven experience. Facility management is looking for a system that uses organized knowledge and will form the basis, which grows from a wide range of disciplines. Significant influence on its formation as a scientific discipline is the "structure, which follows strategy". The paper deals evaluate technology building as part of an facility management by multivariate statistic - factor analysis.
Santos, L N S; Cabral, P D S; Neves, G A R; Alves, F R; Teixeira, M B; Cunha, F N; Silva, N F
2017-03-16
The availability of common bean cultivars tolerant to Meloidogyne javanica is limited in Brazil. Thus, the present study aimed to evaluate the reactions of 33 common bean genotypes (23 landrace, 8 commercial, 1 susceptible standard and 1 resistant standard) to M. javanica, employing multivariate statistics to discriminate the reaction of the genotypes. The experiment was conducted in a greenhouse using a completely randomized design with seven replicates. The seeds were sown in 1-L pots containing autoclaved soil and sand in a 1:1 ratio (v:v). On day 19, after emergence of the seedlings, the plants were treated with inoculum containing 4000 eggs + second-stage juveniles (J2). At 60 days after inoculation, the seedlings were evaluated based on biometric and parasitism-related traits, such as number of galls, final nematode population per root system, reproduction factor, and percent reduction in the reproduction factor of the nematode (%RRF). The data were subjected to analysis of variance using the F-test. The Mahalanobis generalized distance was used to obtain the dissimilarity matrix, and the average linkage between groups was used for clustering. The use of multivariate statistics allowed groups to be separated according to the resistance levels of genotypes, as observed in the %RRF. The landrace genotypes FORT-09, FORT-17, FORT-31, FORT-32, FORT-34 and FORT-36 presented resistance to M. javanica; thus, these genotypes can be considered potential sources of resistance.
Burgos, P I; Vilá, L M; Reveille, J D; Alarcón, G S
2009-12-01
To determine the factors associated with peripheral vascular damage in systemic lupus erythematosus patients and its impact on survival from Lupus in Minorities, Nature versus Nurture, a longitudinal US multi-ethnic cohort. Peripheral vascular damage was defined by the Systemic Lupus International Collaborating Clinics Damage Index (SDI). Factors associated with peripheral vascular damage were examined by univariable and multi-variable logistic regression models and its impact on survival by a Cox multi-variable regression. Thirty-four (5.3%) of 637 patients (90% women, mean [SD] age 36.5 [12.6] [16-87] years) developed peripheral vascular damage. Age and the SDI (without peripheral vascular damage) were statistically significant (odds ratio [OR] = 1.05, 95% confidence interval [CI] 1.01-1.08; P = 0.0107 and OR = 1.30, 95% CI 0.09-1.56; P = 0.0043, respectively) in multi-variable analyses. Azathioprine, warfarin and statins were also statistically significant, and glucocorticoid use was borderline statistically significant (OR = 1.03, 95% CI 0.10-1.06; P = 0.0975). In the survival analysis, peripheral vascular damage was independently associated with a diminished survival (hazard ratio = 2.36; 95% CI 1.07-5.19; P = 0.0334). In short, age was independently associated with peripheral vascular damage, but so was the presence of damage in other organs (ocular, neuropsychiatric, renal, cardiovascular, pulmonary, musculoskeletal and integument) and some medications (probably reflecting more severe disease). Peripheral vascular damage also negatively affected survival.
Paixão, Paulo; Gouveia, Luís F; Silva, Nuno; Morais, José A G
2017-03-01
A simulation study is presented, evaluating the performance of the f 2 , the model-independent multivariate statistical distance and the f 2 bootstrap methods in the ability to conclude similarity between two dissolution profiles. Different dissolution profiles, based on the Noyes-Whitney equation and ranging from theoretical f 2 values between 100 and 40, were simulated. Variability was introduced in the dissolution model parameters in an increasing order, ranging from a situation complying with the European guidelines requirements for the use of the f 2 metric to several situations where the f 2 metric could not be used anymore. Results have shown that the f 2 is an acceptable metric when used according to the regulatory requirements, but loses its applicability when variability increases. The multivariate statistical distance presented contradictory results in several of the simulation scenarios, which makes it an unreliable metric for dissolution profile comparisons. The bootstrap f 2 , although conservative in its conclusions is an alternative suitable method. Overall, as variability increases, all of the discussed methods reveal problems that can only be solved by increasing the number of dosage form units used in the comparison, which is usually not practical or feasible. Additionally, experimental corrective measures may be undertaken in order to reduce the overall variability, particularly when it is shown that it is mainly due to the dissolution assessment instead of being intrinsic to the dosage form. Copyright © 2016. Published by Elsevier B.V.