Meta-Analytic Structural Equation Modeling (MASEM): Comparison of the Multivariate Methods
ERIC Educational Resources Information Center
Zhang, Ying
2011-01-01
Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices across studies using meta-analysis techniques and then analyze the pooled correlation matrix using structural equation modeling techniques. Several multivariate methods of…
A Robust Bayesian Approach for Structural Equation Models with Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum; Xia, Ye-Mao
2008-01-01
In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…
Structural Equation Modeling of Multivariate Time Series
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Browne, Michael W.
2007-01-01
The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM
ERIC Educational Resources Information Center
Mair, Patrick; Satorra, Albert; Bentler, Peter M.
2012-01-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
Structural Equation Model Trees
ERIC Educational Resources Information Center
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
ERIC Educational Resources Information Center
Karakaya-Ozyer, Kubra; Aksu-Dunya, Beyza
2018-01-01
Structural equation modeling (SEM) is one of the most popular multivariate statistical techniques in Turkish educational research. This study elaborates the SEM procedures employed by 75 educational research articles which were published from 2010 to 2015 in Turkey. After documenting and coding 75 academic papers, categorical frequencies and…
ERIC Educational Resources Information Center
Nevitt, Johnathan; Hancock, Gregory R.
Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into…
Implementing Restricted Maximum Likelihood Estimation in Structural Equation Models
ERIC Educational Resources Information Center
Cheung, Mike W.-L.
2013-01-01
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM.
Mair, Patrick; Satorra, Albert; Bentler, Peter M
2012-07-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo evaluation of structural equation models within the context of nonnormal data. The new procedure for nonnormal data simulation is theoretically described and also implemented in the widely used R environment. The quality of the method is assessed by Monte Carlo simulations. A 1-sample test on the observed covariance matrix based on the copula methodology is proposed. This new test for evaluating the quality of a simulation is defined through a particular structural model specification and is robust against normality violations.
USDA-ARS?s Scientific Manuscript database
Hulled wheats are largely untapped genetic resources with >10,000 years of genetic memory and diversity that can be used for wheat quality improvement, development of healthy products, and adaptation to climate change. Multivariate diversity was assessed in the diploid Triticum monococcum L. var mon...
A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series
ERIC Educational Resources Information Center
Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.
2011-01-01
Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…
ERIC Educational Resources Information Center
Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.
2012-01-01
We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…
Structural Equation Modeling: Applications in ecological and evolutionary biology research
Pugesek, Bruce H.; von Eye, Alexander; Tomer, Adrian
2003-01-01
This book presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems. Supplementary information can be found at the authors website, http://www.jamesbgrace.com/. Details why multivariate analyses should be used to study ecological systems Exposes unappreciated weakness in many current popular analyses Emphasizes the future methodological developments needed to advance our understanding of ecological systems.
Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems
NASA Technical Reports Server (NTRS)
Hou, Gene J. W.; Kenny, Sean P.
1991-01-01
A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
Toda, Hiroyuki; Inoue, Takeshi; Tsunoda, Tomoya; Nakai, Yukiei; Tanichi, Masaaki; Tanaka, Teppei; Hashimoto, Naoki; Nakato, Yasuya; Nakagawa, Shin; Kitaichi, Yuji; Mitsui, Nobuyuki; Boku, Shuken; Tanabe, Hajime; Nibuya, Masashi; Yoshino, Aihide; Kusumi, Ichiro
2015-01-01
Background Previous studies have shown the interaction between heredity and childhood stress or life events on the pathogenesis of a major depressive disorder (MDD). In this study, we tested our hypothesis that childhood abuse, affective temperaments, and adult stressful life events interact and influence the diagnosis of MDD. Patients and methods A total of 170 healthy controls and 98 MDD patients were studied using the following self-administered questionnaire surveys: the Patient Health Questionnaire-9 (PHQ-9), the Life Experiences Survey, the Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego Autoquestionnaire, and the Child Abuse and Trauma Scale (CATS). The data were analyzed with univariate analysis, multivariable analysis, and structural equation modeling. Results The neglect scores of the CATS indirectly predicted the diagnosis of MDD through cyclothymic and anxious temperament scores of the Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego Autoquestionnaire in the structural equation modeling. Two temperaments – cyclothymic and anxious – directly predicted the diagnosis of MDD. The validity of this result was supported by the results of the stepwise multivariate logistic regression analysis as follows: three factors – neglect, cyclothymic, and anxious temperaments – were significant predictors of MDD. Neglect and the total CATS scores were also predictors of remission vs treatment-resistance in MDD patients independently of depressive symptoms. Limitations The sample size was small for the comparison between the remission and treatment-resistant groups in MDD patients in multivariable analysis. Conclusion This study suggests that childhood abuse, especially neglect, indirectly predicted the diagnosis of MDD through increased affective temperaments. The important role as a mediator of affective temperaments in the effect of childhood abuse on MDD was suggested. PMID:26316754
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2015-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789
A multivariate model and statistical method for validating tree grade lumber yield equations
Donald W. Seegrist
1975-01-01
Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.
NASA Astrophysics Data System (ADS)
Waubke, Holger; Kasess, Christian H.
2016-11-01
Devices that emit structure-borne sound are commonly decoupled by elastic components to shield the environment from acoustical noise and vibrations. The elastic elements often have a hysteretic behavior that is typically neglected. In order to take hysteretic behavior into account, Bouc developed a differential equation for such materials, especially joints made of rubber or equipped with dampers. In this work, the Bouc model is solved by means of the Gaussian closure technique based on the Kolmogorov equation. Kolmogorov developed a method to derive probability density functions for arbitrary explicit first-order vector differential equations under white noise excitation using a partial differential equation of a multivariate conditional probability distribution. Up to now no analytical solution of the Kolmogorov equation in conjunction with the Bouc model exists. Therefore a wide range of approximate solutions, especially the statistical linearization, were developed. Using the Gaussian closure technique that is an approximation to the Kolmogorov equation assuming a multivariate Gaussian distribution an analytic solution is derived in this paper for the Bouc model. For the stationary case the two methods yield equivalent results, however, in contrast to statistical linearization the presented solution allows to calculate the transient behavior explicitly. Further, stationary case leads to an implicit set of equations that can be solved iteratively with a small number of iterations and without instabilities for specific parameter sets.
Multiple Indicator Stationary Time Series Models.
ERIC Educational Resources Information Center
Sivo, Stephen A.
2001-01-01
Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…
A Multivariate Model of Physics Problem Solving
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Farley, John
2013-01-01
A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…
ERIC Educational Resources Information Center
Hopwood, Christopher J.
2007-01-01
Second-generation early intervention research typically involves the specification of multivariate relations between interventions, outcomes, and other variables. Moderation and mediation involve variables or sets of variables that influence relations between interventions and outcomes. Following the framework of Baron and Kenny's (1986) seminal…
A Multivariate Model of Achievement in Geometry
ERIC Educational Resources Information Center
Bailey, MarLynn; Taasoobshirazi, Gita; Carr, Martha
2014-01-01
Previous studies have shown that several key variables influence student achievement in geometry, but no research has been conducted to determine how these variables interact. A model of achievement in geometry was tested on a sample of 102 high school students. Structural equation modeling was used to test hypothesized relationships among…
Racial Variation in Vocational Rehabilitation Outcomes: A Structural Equation Modeling Approach
ERIC Educational Resources Information Center
Martin, Frank H.
2010-01-01
Numerous studies have indicated racial and ethnic disparities in the vocational rehabilitation (VR) system, including differences in acceptance, services provided, closure types, and employment outcomes. Few of these studies, however, have used advanced multivariate techniques or latent constructs to measure quality of employment outcomes (QEO) or…
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1993-01-01
A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.
ERIC Educational Resources Information Center
Inbar-Furst, Hagit; Gumpel, Thomas P.
2015-01-01
Questionnaires were given to 392 elementary school teachers to examine help-seeking or help-avoidance in dealing with classroom behavioral problems. Scale validity was examined through a series of exploratory and confirmatory factor analyses. Using a series of multivariate regression analyses and structural equation modeling, we identified…
Structural equation modeling and natural systems
Grace, James B.
2006-01-01
This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.
Long-Term Stability of Core Language Skill in Children with Contrasting Language Skills
ERIC Educational Resources Information Center
Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.
2016-01-01
This 4-wave longitudinal study evaluated stability of core language skill in 421 European American and African American children, half of whom were identified as low (n = 201) and half of whom were average-to-high (n = 220) in later language skill. Structural equation modeling supported loadings of multivariate age-appropriate multisource measures…
Automated smoother for the numerical decoupling of dynamics models.
Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S
2007-08-21
Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental time series.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wasilah, S.; Fahmyddin, T.
2018-03-01
The employment of structural equation modeling (SEM) in research has taken an increasing attention in among researchers in built environment. There is a gap to understand the attributes, application, and importance of this approach in data analysis in built environment study. This paper intends to provide fundamental comprehension of SEM method in data analysis, unveiling attributes, employment and significance and bestow cases to assess associations amongst variables and constructs. The study uses some main literature to grasp the essence of SEM regarding with built environment research. The better acknowledgment of this analytical tool may assist the researcher in the built environment to analyze data under complex research questions and to test multivariate models in a single study.
Properties of multivariable root loci. M.S. Thesis
NASA Technical Reports Server (NTRS)
Yagle, A. E.
1981-01-01
Various properties of multivariable root loci are analyzed from a frequency domain point of view by using the technique of Newton polygons, and some generalizations of the SISO root locus rules to the multivariable case are pointed out. The behavior of the angles of arrival and departure is related to the Smith-MacMillan form of G(s) and explicit equations for these angles are obtained. After specializing to first order and a restricted class of higher order poles and zeros, some simple equations for these angles that are direct generalizations of the SISO equations are found. The unusual behavior of root loci on the real axis at branch points is studied. The SISO root locus rules for break-in and break-out points are shown to generalize directly to the multivariable case. Some methods for computing both types of points are presented.
Predicting volumes in four Hawaii hardwoods...first multivariate equations developed
David A. Sharpnack
1966-01-01
Multivariate regression equations were developed for predicting board-foot (Int. 1/ 4-inch log rule ) and cubic-foot volumes in each 8.15-foot section of trees of four Hawaii hardwood species. The species are koa (Acacia koa), ohia (Metrosideros polymorpha), robusta eucalyptus (Eucalyptus robusta), and...
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1992-01-01
A general optimization-based method for the design of large space platforms through integration of the disciplines of structural dynamics and control is presented. The method uses the global sensitivity equations approach and is especially appropriate for preliminary design problems in which the structural and control analyses are tightly coupled. The method is capable of coordinating general purpose structural analysis, multivariable control, and optimization codes, and thus, can be adapted to a variety of controls-structures integrated design projects. The method is used to minimize the total weight of a space platform while maintaining a specified vibration decay rate after slewing maneuvers.
Is the ML Chi-Square Ever Robust to Nonnormality? A Cautionary Note with Missing Data
ERIC Educational Resources Information Center
Savalei, Victoria
2008-01-01
Normal theory maximum likelihood (ML) is by far the most popular estimation and testing method used in structural equation modeling (SEM), and it is the default in most SEM programs. Even though this approach assumes multivariate normality of the data, its use can be justified on the grounds that it is fairly robust to the violations of the…
Bayesian Factor Analysis as a Variable Selection Problem: Alternative Priors and Consequences
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2016-01-01
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach. PMID:27314566
Willis, Michael; Asseburg, Christian; Nilsson, Andreas; Johnsson, Kristina; Kartman, Bernt
2017-03-01
Type 2 diabetes mellitus (T2DM) is chronic and progressive and the cost-effectiveness of new treatment interventions must be established over long time horizons. Given the limited durability of drugs, assumptions regarding downstream rescue medication can drive results. Especially for insulin, for which treatment effects and adverse events are known to depend on patient characteristics, this can be problematic for health economic evaluation involving modeling. To estimate parsimonious multivariate equations of treatment effects and hypoglycemic event risks for use in parameterizing insulin rescue therapy in model-based cost-effectiveness analysis. Clinical evidence for insulin use in T2DM was identified in PubMed and from published reviews and meta-analyses. Study and patient characteristics and treatment effects and adverse event rates were extracted and the data used to estimate parsimonious treatment effect and hypoglycemic event risk equations using multivariate regression analysis. Data from 91 studies featuring 171 usable study arms were identified, mostly for premix and basal insulin types. Multivariate prediction equations for glycated hemoglobin A 1c lowering and weight change were estimated separately for insulin-naive and insulin-experienced patients. Goodness of fit (R 2 ) for both outcomes were generally good, ranging from 0.44 to 0.84. Multivariate prediction equations for symptomatic, nocturnal, and severe hypoglycemic events were also estimated, though considerable heterogeneity in definitions limits their usefulness. Parsimonious and robust multivariate prediction equations were estimated for glycated hemoglobin A 1c and weight change, separately for insulin-naive and insulin-experienced patients. Using these in economic simulation modeling in T2DM can improve realism and flexibility in modeling insulin rescue medication. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Space construction base control system
NASA Technical Reports Server (NTRS)
Kaczynski, R. F.
1979-01-01
Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew
2014-01-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456
The development of comparative bias index
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-08-01
Structural Equation Modeling (SEM) is a second generation statistical analysis techniques developed for analyzing the inter-relationships among multiple variables in a model simultaneously. There are two most common used methods in SEM namely Covariance-Based Structural Equation Modeling (CB-SEM) and Partial Least Square Path Modeling (PLS-PM). There have been continuous debates among researchers in the use of PLS-PM over CB-SEM. While there is few studies were conducted to test the performance of CB-SEM and PLS-PM bias in estimating simulation data. This study intends to patch this problem by a) developing the Comparative Bias Index and b) testing the performance of CB-SEM and PLS-PM using developed index. Based on balanced experimental design, two multivariate normal simulation data with of distinct specifications of size 50, 100, 200 and 500 are generated and analyzed using CB-SEM and PLS-PM.
Structural equation modeling for observational studies
Grace, J.B.
2008-01-01
Structural equation modeling (SEM) represents a framework for developing and evaluating complex hypotheses about systems. This method of data analysis differs from conventional univariate and multivariate approaches familiar to most biologists in several ways. First, SEMs are multiequational and capable of representing a wide array of complex hypotheses about how system components interrelate. Second, models are typically developed based on theoretical knowledge and designed to represent competing hypotheses about the processes responsible for data structure. Third, SEM is conceptually based on the analysis of covariance relations. Most commonly, solutions are obtained using maximum-likelihood solution procedures, although a variety of solution procedures are used, including Bayesian estimation. Numerous extensions give SEM a very high degree of flexibility in dealing with nonnormal data, categorical responses, latent variables, hierarchical structure, multigroup comparisons, nonlinearities, and other complicating factors. Structural equation modeling allows researchers to address a variety of questions about systems, such as how different processes work in concert, how the influences of perturbations cascade through systems, and about the relative importance of different influences. I present 2 example applications of SEM, one involving interactions among lynx (Lynx pardinus), mongooses (Herpestes ichneumon), and rabbits (Oryctolagus cuniculus), and the second involving anuran species richness. Many wildlife ecologists may find SEM useful for understanding how populations function within their environments. Along with the capability of the methodology comes a need for care in the proper application of SEM.
Flood-frequency prediction methods for unregulated streams of Tennessee, 2000
Law, George S.; Tasker, Gary D.
2003-01-01
Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.
NASA Astrophysics Data System (ADS)
Shahlan, M. Z.; Sidek, A. A.; Suffian, S. A.; Hazza, M. H. F. A.; Daud, M. R. C.
2018-01-01
In this paper, climate change and global warming are the biggest current issues in the industrial sectors. The green supply chain managements (GSCM) is one of the crucial input to these issues. Effective GSCM can potentially secure the organization’s competitive advantage and improve the environmental performance of the network activities. In this study, the aim is to investigate and examine how a small and medium enterprises (SMEs) stakeholder pressure and top management influence green supply chain management practices. The study is further advance green supply chain management research in Malaysia focusing on SMEs manufacturing sector using structural equation modelling. Structural equation modelling is a multivariate statistical analysis technique used to examine structural relationship. It is the combination of factor analysis and multi regression analysis and used to analyse structural relationship between measure variable and latent factor. This research found that top management support and stakeholder pressure is the major influence for SMEs to adopt green supply chain management. The research also found that top management is fully mediate with the relationship between stakeholder pressure and monitoring supplier environmental performance.
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Ochs, Harry T., III
1988-01-01
The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupšys, P.
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
Beyond a bigger brain: Multivariable structural brain imaging and intelligence
Ritchie, Stuart J.; Booth, Tom; Valdés Hernández, Maria del C.; Corley, Janie; Maniega, Susana Muñoz; Gow, Alan J.; Royle, Natalie A.; Pattie, Alison; Karama, Sherif; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.
2015-01-01
People with larger brains tend to score higher on tests of general intelligence (g). It is unclear, however, how much variance in intelligence other brain measurements would account for if included together with brain volume in a multivariable model. We examined a large sample of individuals in their seventies (n = 672) who were administered a comprehensive cognitive test battery. Using structural equation modelling, we related six common magnetic resonance imaging-derived brain variables that represent normal and abnormal features—brain volume, cortical thickness, white matter structure, white matter hyperintensity load, iron deposits, and microbleeds—to g and to fluid intelligence. As expected, brain volume accounted for the largest portion of variance (~ 12%, depending on modelling choices). Adding the additional variables, especially cortical thickness (+~ 5%) and white matter hyperintensity load (+~ 2%), increased the predictive value of the model. Depending on modelling choices, all neuroimaging variables together accounted for 18–21% of the variance in intelligence. These results reveal which structural brain imaging measures relate to g over and above the largest contributor, total brain volume. They raise questions regarding which other neuroimaging measures might account for even more of the variance in intelligence. PMID:26240470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlotnikov, Michael
We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less
The algebraic theory of latent projectors in lambda matrices
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.
1981-01-01
Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.
Model fit evaluation in multilevel structural equation models
Ryu, Ehri
2014-01-01
Assessing goodness of model fit is one of the key questions in structural equation modeling (SEM). Goodness of fit is the extent to which the hypothesized model reproduces the multivariate structure underlying the set of variables. During the earlier development of multilevel structural equation models, the “standard” approach was to evaluate the goodness of fit for the entire model across all levels simultaneously. The model fit statistics produced by the standard approach have a potential problem in detecting lack of fit in the higher-level model for which the effective sample size is much smaller. Also when the standard approach results in poor model fit, it is not clear at which level the model does not fit well. This article reviews two alternative approaches that have been proposed to overcome the limitations of the standard approach. One is a two-step procedure which first produces estimates of saturated covariance matrices at each level and then performs single-level analysis at each level with the estimated covariance matrices as input (Yuan and Bentler, 2007). The other level-specific approach utilizes partially saturated models to obtain test statistics and fit indices for each level separately (Ryu and West, 2009). Simulation studies (e.g., Yuan and Bentler, 2007; Ryu and West, 2009) have consistently shown that both alternative approaches performed well in detecting lack of fit at any level, whereas the standard approach failed to detect lack of fit at the higher level. It is recommended that the alternative approaches are used to assess the model fit in multilevel structural equation model. Advantages and disadvantages of the two alternative approaches are discussed. The alternative approaches are demonstrated in an empirical example. PMID:24550882
Snyder, James
2014-01-01
Objective Demonstrate multivariate multilevel survival analysis within a larger structural equation model. Test the 3 hypotheses that when confronted by a negative parent, child rates of angry, sad/fearful, and positive emotion will increase, decrease, and stay the same, respectively, for antisocial compared with normal children. This same pattern will predict increases in future antisocial behavior. Methods Parent–child dyads were videotaped in the fall of kindergarten in the laboratory and antisocial behavior ratings were obtained in the fall of kindergarten and third grade. Results Kindergarten antisocial predicted less child sad/fear and child positive but did not predict child anger given parent negative. Less child positive and more child neutral given parent negative predicted increases in third-grade antisocial behavior. Conclusions The model is a useful analytic tool for studying rates of social behavior. Lack of positive affect or excess neutral affect may be a new risk factor for child antisocial behavior. PMID:24133296
Polynomial reduction and evaluation of tree- and loop-level CHY amplitudes
Zlotnikov, Michael
2016-08-24
We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less
Gao, Zhiqian; Khoury, Philip R; McCoy, Connie E; Shah, Amy S; Kimball, Thomas R; Dolan, Lawrence M; Urbina, Elaine M
2016-03-01
Carotid intima-media thickness (cIMT) is associated with CV events in adults. Thicker cIMT is found in youth with CV risk factors including obesity. Which risk factors have the most effect upon cIMT in youth and whether obesity has direct or indirect effects is not known. We used structural equation modeling to elucidate direct and indirect pathways through which obesity and other risk factors were associated with cIMT. We collected demographics, anthropometrics and laboratory data on 784 subjects age 10-24 years (mean 18.0 ± 3.3 years). Common, bulb and internal carotid cIMT were measured by ultrasound. Multivariable regression analysis was performed to assess independent determinants of cIMT. Analyses were repeated with structural equation modeling to determine direct and indirect effects. Multivariable regression models explained 11%-22% of variation of cIMT. Age, sex and systolic blood pressure (BP) z-score were significant determinants of all cIMT segments. Body mass index (BMI) z-score, race, presence of type 2 diabetes mellitus (T2DM), hemoglobin A1c (HbA1c) and non-HDL were significant for some segments (all p = 0.05). The largest direct effect on cIMT was age (0.312) followed by BP (0.228), Blood glucose control (0.108) and non-HDL (0.134). BMI only had a significant indirect effect through blood glucose control, BP & non-HDL. High sensitivity C-reactive protein (CRP) had a small indirect effect through blood glucose control (all p = 0.05). Age and BP are the major factors with direct effect on cIMT. Glucose and non-HDL were also important in this cohort with a high prevalence of T2DM. BMI only has indirect effects, through other risk factors. Traditional CV risk factors have important direct effects on cIMT in the young, but adiposity exerts its influence only through other CV risk factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pritikin, Joshua N; Brick, Timothy R; Neale, Michael C
2018-04-01
A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.
A multivariate model of parent-adolescent relationship variables in early adolescence.
McKinney, Cliff; Renk, Kimberly
2011-08-01
Given the importance of predicting outcomes for early adolescents, this study examines a multivariate model of parent-adolescent relationship variables, including parenting, family environment, and conflict. Participants, who completed measures assessing these variables, included 710 culturally diverse 11-14-year-olds who were attending a middle school in a Southeastern state. The parents of a subset of these adolescents (i.e., 487 mother-father pairs) participated in this study as well. Correlational analyses indicate that authoritative and authoritarian parenting, family cohesion and adaptability, and conflict are significant predictors of early adolescents' internalizing and externalizing problems. Structural equation modeling analyses indicate that fathers' parenting may not predict directly externalizing problems in male and female adolescents but instead may act through conflict. More direct relationships exist when examining mothers' parenting. The impact of parenting, family environment, and conflict on early adolescents' internalizing and externalizing problems and the importance of both gender and cross-informant ratings are emphasized.
Inferring phase equations from multivariate time series.
Tokuda, Isao T; Jain, Swati; Kiss, István Z; Hudson, John L
2007-08-10
An approach is presented for extracting phase equations from multivariate time series data recorded from a network of weakly coupled limit cycle oscillators. Our aim is to estimate important properties of the phase equations including natural frequencies and interaction functions between the oscillators. Our approach requires the measurement of an experimental observable of the oscillators; in contrast with previous methods it does not require measurements in isolated single or two-oscillator setups. This noninvasive technique can be advantageous in biological systems, where extraction of few oscillators may be a difficult task. The method is most efficient when data are taken from the nonsynchronized regime. Applicability to experimental systems is demonstrated by using a network of electrochemical oscillators; the obtained phase model is utilized to predict the synchronization diagram of the system.
Multivariant function model generation
NASA Technical Reports Server (NTRS)
1974-01-01
The development of computer programs applicable to space vehicle guidance was conducted. The subjects discussed are as follows: (1) determination of optimum reentry trajectories, (2) development of equations for performance of trajectory computation, (3) vehicle control for fuel optimization, (4) development of equations for performance trajectory computations, (5) applications and solution of Hamilton-Jacobi equation, and (6) stresses in dome shaped shells with discontinuities at the apex.
Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM
ERIC Educational Resources Information Center
Warner, Rebecca M.
2007-01-01
This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…
Grace, J.B.; Bollen, K.A.
2008-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.
The Interface Between Theory and Data in Structural Equation Models
Grace, James B.; Bollen, Kenneth A.
2006-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite, for representing general concepts. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling general relationships of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially reduced form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influences of suites of variables are often of interest.
Measuring watershed runoff capability with ERTS data. [Washita River Basin, Oklahoma
NASA Technical Reports Server (NTRS)
Blanchard, B. J.
1974-01-01
Parameters of most equations used to predict runoff from an ungaged area are based on characteristics of the watershed and subject to the biases of a hydrologist. Digital multispectral scanner, MSS, data from ERTS was reduced with the aid of computer programs and a Dicomed display. Multivariate analyses of the MSS data indicate that discrimination between watersheds with different runoff capabilities is possible using ERTS data. Differences between two visible bands of MSS data can be used to more accurately evaluate the parameters than present subjective methods, thus reducing construction cost due to overdesign of flood detention structures.
Verdam, Mathilde G. E.; Oort, Frans J.
2014-01-01
Highlights Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data. A method for the investigation of measurement bias with Kronecker product restricted models. Application of these methods to health-related quality of life data from bone metastasis patients, collected at 13 consecutive measurement occasions. The use of curves to facilitate substantive interpretation of apparent measurement bias. Assessment of change in common factor means, after accounting for apparent measurement bias. Longitudinal measurement invariance is usually investigated with a longitudinal factor model (LFM). However, with multiple measurement occasions, the number of parameters to be estimated increases with a multiple of the number of measurement occasions. To guard against too low ratios of numbers of subjects and numbers of parameters, we can use Kronecker product restrictions to model the multivariate longitudinal structure of the data. These restrictions can be imposed on all parameter matrices, including measurement invariance restrictions on factor loadings and intercepts. The resulting models are parsimonious and have attractive interpretation, but require different methods for the investigation of measurement bias. Specifically, additional parameter matrices are introduced to accommodate possible violations of measurement invariance. These additional matrices consist of measurement bias parameters that are either fixed at zero or free to be estimated. In cases of measurement bias, it is also possible to model the bias over time, e.g., with linear or non-linear curves. Measurement bias detection with Kronecker product restricted models will be illustrated with multivariate longitudinal data from 682 bone metastasis patients whose health-related quality of life (HRQL) was measured at 13 consecutive weeks. PMID:25295016
Verdam, Mathilde G E; Oort, Frans J
2014-01-01
Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data.A method for the investigation of measurement bias with Kronecker product restricted models.Application of these methods to health-related quality of life data from bone metastasis patients, collected at 13 consecutive measurement occasions.The use of curves to facilitate substantive interpretation of apparent measurement bias.Assessment of change in common factor means, after accounting for apparent measurement bias.Longitudinal measurement invariance is usually investigated with a longitudinal factor model (LFM). However, with multiple measurement occasions, the number of parameters to be estimated increases with a multiple of the number of measurement occasions. To guard against too low ratios of numbers of subjects and numbers of parameters, we can use Kronecker product restrictions to model the multivariate longitudinal structure of the data. These restrictions can be imposed on all parameter matrices, including measurement invariance restrictions on factor loadings and intercepts. The resulting models are parsimonious and have attractive interpretation, but require different methods for the investigation of measurement bias. Specifically, additional parameter matrices are introduced to accommodate possible violations of measurement invariance. These additional matrices consist of measurement bias parameters that are either fixed at zero or free to be estimated. In cases of measurement bias, it is also possible to model the bias over time, e.g., with linear or non-linear curves. Measurement bias detection with Kronecker product restricted models will be illustrated with multivariate longitudinal data from 682 bone metastasis patients whose health-related quality of life (HRQL) was measured at 13 consecutive weeks.
Waldman, Irwin D; Poore, Holly E; van Hulle, Carol; Rathouz, Paul J; Lahey, Benjamin B
2016-11-01
Several recent studies of the hierarchical phenotypic structure of psychopathology have identified a General psychopathology factor in addition to the more expected specific Externalizing and Internalizing dimensions in both youth and adult samples and some have found relevant unique external correlates of this General factor. We used data from 1,568 twin pairs (599 MZ & 969 DZ) age 9 to 17 to test hypotheses for the underlying structure of youth psychopathology and the external validity of the higher-order factors. Psychopathology symptoms were assessed via structured interviews of caretakers and youth. We conducted phenotypic analyses of competing structural models using Confirmatory Factor Analysis and used Structural Equation Modeling and multivariate behavior genetic analyses to understand the etiology of the higher-order factors and their external validity. We found that both a General factor and specific Externalizing and Internalizing dimensions are necessary for characterizing youth psychopathology at both the phenotypic and etiologic levels, and that the 3 higher-order factors differed substantially in the magnitudes of their underlying genetic and environmental influences. Phenotypically, the specific Externalizing and Internalizing dimensions were slightly negatively correlated when a General factor was included, which reflected a significant inverse correlation between the nonshared environmental (but not genetic) influences on Internalizing and Externalizing. We estimated heritability of the general factor of psychopathology for the first time. Its moderate heritability suggests that it is not merely an artifact of measurement error but a valid construct. The General, Externalizing, and Internalizing factors differed in their relations with 3 external validity criteria: mother's smoking during pregnancy, parent's harsh discipline, and the youth's association with delinquent peers. Multivariate behavior genetic analyses supported the external validity of the 3 higher-order factors by suggesting that the General, Externalizing, and Internalizing factors were correlated with peer delinquency and parent's harsh discipline for different etiologic reasons. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Multivariate space - time analysis of PRE-STORM precipitation
NASA Technical Reports Server (NTRS)
Polyak, Ilya; North, Gerald R.; Valdes, Juan B.
1994-01-01
This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.
Multivariate regression model for partitioning tree volume of white oak into round-product classes
Daniel A. Yaussy; David L. Sonderman
1984-01-01
Describes the development of multivariate equations that predict the expected cubic volume of four round-product classes from independent variables composed of individual tree-quality characteristics. Although the model has limited application at this time, it does demonstrate the feasibility of partitioning total tree cubic volume into round-product classes based on...
Pion, Johan A; Fransen, Job; Deprez, Dieter N; Segers, Veerle I; Vaeyens, Roel; Philippaerts, Renaat M; Lenoir, Matthieu
2015-06-01
It was hypothesized that differences in anthropometry, physical performance, and motor coordination would be found between Belgian elite and sub-elite level female volleyball players using a retrospective analysis of test results gathered over a 5-year period. The test sample in this study consisted of 21 young female volleyball players (15.3 ± 1.5 years) who were selected to train at the Flemish Top Sports Academy for Volleyball in 2008. All players (elite, n = 13; sub-elite, n = 8) were included in the same talent development program, and the elite-level athletes were of a high to very high performance levels according to European competition level in 2013. Five multivariate analyses of variance were used. There was no significant effect of playing level on measures of anthropometry (F = 0.455, p = 0.718, (Equation is included in full-text article.)= 0.07), flexibility (F = 1.861, p = 0.188, (Equation is included in full-text article.)= 0.19), strength (F = 1.218, p = 0.355, (Equation is included in full-text article.)= 0.32); and speed and agility (F = 1.176, p = 0.350, (Equation is included in full-text article.)= 0.18). Multivariate analyses of variance revealed significant multivariate effects between playing levels for motor coordination (F = 3.470, p = 0.036, (Equation is included in full-text article.)= 0.59). A Mann-Whitney U test and a sequential discriminant analysis confirmed these results. Previous research revealed that stature and jump height are prerequisites for talent identification in female volleyball. In addition, the results show that motor coordination is an important factor in determining inclusion into the elite level in female volleyball.
Johnson, Susan L; Tabaei, Bahman P; Herman, William H
2005-02-01
To simulate the outcomes of alternative strategies for screening the U.S. population 45-74 years of age for type 2 diabetes. We simulated screening with random plasma glucose (RPG) and cut points of 100, 130, and 160 mg/dl and a multivariate equation including RPG and other variables. Over 15 years, we simulated screening at intervals of 1, 3, and 5 years. All positive screening tests were followed by a diagnostic fasting plasma glucose or an oral glucose tolerance test. Outcomes include the numbers of false-negative, true-positive, and false-positive screening tests and the direct and indirect costs. At year 15, screening every 3 years with an RPG cut point of 100 mg/dl left 0.2 million false negatives, an RPG of 130 mg/dl or the equation left 1.3 million false negatives, and an RPG of 160 mg/dl left 2.8 million false negatives. Over 15 years, the absolute difference between the most sensitive and most specific screening strategy was 4.5 million true positives and 476 million false-positives. Strategies using RPG cut points of 130 mg/dl or the multivariate equation every 3 years identified 17.3 million true positives; however, the equation identified fewer false-positives. The total cost of the most sensitive screening strategy was $42.7 billion and that of the most specific strategy was $6.9 billion. Screening for type 2 diabetes every 3 years with an RPG cut point of 130 mg/dl or the multivariate equation provides good yield and minimizes false-positive screening tests and costs.
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-05-01
Structural equation modeling (SEM) is the second generation statistical analysis technique developed for analyzing the inter-relationships among multiple variables in a model. Previous studies have shown that there seemed to be at least an implicit agreement about the factors that should drive the choice between covariance-based structural equation modeling (CB-SEM) and partial least square path modeling (PLS-PM). PLS-PM appears to be the preferred method by previous scholars because of its less stringent assumption and the need to avoid the perceived difficulties in CB-SEM. Along with this issue has been the increasing debate among researchers on the use of CB-SEM and PLS-PM in studies. The present study intends to assess the performance of CB-SEM and PLS-PM as a confirmatory study in which the findings will contribute to the body of knowledge of SEM. Maximum likelihood (ML) was chosen as the estimator for CB-SEM and was expected to be more powerful than PLS-PM. Based on the balanced experimental design, the multivariate normal data with specified population parameter and sample sizes were generated using Pro-Active Monte Carlo simulation, and the data were analyzed using AMOS for CB-SEM and SmartPLS for PLS-PM. Comparative Bias Index (CBI), construct relationship, average variance extracted (AVE), composite reliability (CR), and Fornell-Larcker criterion were used to study the consequence of each estimator. The findings conclude that CB-SEM performed notably better than PLS-PM in estimation for large sample size (100 and above), particularly in terms of estimations accuracy and consistency.
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.
2017-05-01
The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.
ERIC Educational Resources Information Center
Zu, Jiyun; Yuan, Ke-Hai
2012-01-01
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
ERIC Educational Resources Information Center
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)
Churchill, Morgan; Clementz, Mark T; Kohno, Naoki
2014-01-01
Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814
Nijman, Henk; Simpson, Alan; Jones, Julia
2010-01-01
Background Conflict (aggression, substance use, absconding, etc.) and containment (coerced medication, manual restraint, etc.) threaten the safety of patients and staff on psychiatric wards. Previous work has suggested that staff variables may be significant in explaining differences between wards in their rates of these behaviours, and that structure (ward organisation, rules and daily routines) might be the most critical of these. This paper describes the exploration of a large dataset to assess the relationship between structure and other staff variables. Methods A multivariate cross-sectional design was utilised. Data were collected from staff on 136 acute psychiatric wards in 26 NHS Trusts in England, measuring leadership, teamwork, structure, burnout and attitudes towards difficult patients. Relationships between these variables were explored through principal components analysis (PCA), structural equation modelling and cluster analysis. Results Principal components analysis resulted in the identification of each questionnaire as a separate factor, indicating that the selected instruments assessed a number of non-overlapping items relevant for ward functioning. Structural equation modelling suggested a linear model in which leadership influenced teamwork, teamwork structure; structure burnout; and burnout feelings about difficult patients. Finally, cluster analysis identified two significantly distinct groups of wards: the larger of which had particularly good leadership, teamwork, structure, attitudes towards patients and low burnout; and the second smaller proportion which was poor on all variables and high on burnout. The better functioning cluster of wards had significantly lower rates of containment events. Conclusion The overall performance of staff teams is associated with differing rates of containment on wards. Interventions to reduce rates of containment on wards may need to address staff issues at every level, from leadership through to staff attitudes. PMID:20082064
Individual- and Structural-Level Risk Factors for Suicide Attempts Among Transgender Adults.
Perez-Brumer, Amaya; Hatzenbuehler, Mark L; Oldenburg, Catherine E; Bockting, Walter
2015-01-01
This study assessed individual (ie, internalized transphobia) and structural forms of stigma as risk factors for suicide attempts among transgender adults. Internalized transphobia was assessed through a 26-item scale including four dimensions: pride, passing, alienation, and shame. State-level structural stigma was operationalized as a composite index, including density of same-sex couples; proportion of Gay-Straight Alliances per public high school; 5 policies related to sexual orientation discrimination; and aggregated public opinion toward homosexuality. Multivariable logistic generalized estimating equation models assessed associations of interest among an online sample of transgender adults (N = 1,229) representing 48 states and the District of Columbia. Lower levels of structural stigma were associated with fewer lifetime suicide attempts (AOR 0.96, 95% CI 0.92-0.997), and a higher score on the internalized transphobia scale was associated with greater lifetime suicide attempts (AOR 1.18, 95% CI 1.04-1.33). Addressing stigma at multiple levels is necessary to reduce the vulnerability of suicide attempts among transgender adults.
Lee, Yeonok; Wu, Hulin
2012-01-01
Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Kidder, Stanley Q.; Scott, Robert W.
1988-01-01
The variational multivariate assimilation method described in a companion paper by Achtemeier and Ochs is applied to conventional and conventional plus satellite data. Ground-based and space-based meteorological data are weighted according to the respective measurement errors and blended into a data set that is a solution of numerical forms of the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation for a dry atmosphere. The analyses serve first, to evaluate the accuracy of the model, and second to contrast the analyses with and without satellite data. Evaluation criteria measure the extent to which: (1) the assimilated fields satisfy the dynamical constraints, (2) the assimilated fields depart from the observations, and (3) the assimilated fields are judged to be realistic through pattern analysis. The last criterion requires that the signs, magnitudes, and patterns of the hypersensitive vertical velocity and local tendencies of the horizontal velocity components be physically consistent with respect to the larger scale weather systems.
Extracting galactic structure parameters from multivariated density estimation
NASA Technical Reports Server (NTRS)
Chen, B.; Creze, M.; Robin, A.; Bienayme, O.
1992-01-01
Multivariate statistical analysis, including includes cluster analysis (unsupervised classification), discriminant analysis (supervised classification) and principle component analysis (dimensionlity reduction method), and nonparameter density estimation have been successfully used to search for meaningful associations in the 5-dimensional space of observables between observed points and the sets of simulated points generated from a synthetic approach of galaxy modelling. These methodologies can be applied as the new tools to obtain information about hidden structure otherwise unrecognizable, and place important constraints on the space distribution of various stellar populations in the Milky Way. In this paper, we concentrate on illustrating how to use nonparameter density estimation to substitute for the true densities in both of the simulating sample and real sample in the five-dimensional space. In order to fit model predicted densities to reality, we derive a set of equations which include n lines (where n is the total number of observed points) and m (where m: the numbers of predefined groups) unknown parameters. A least-square estimation will allow us to determine the density law of different groups and components in the Galaxy. The output from our software, which can be used in many research fields, will also give out the systematic error between the model and the observation by a Bayes rule.
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Cultural and social determinants of health among indigenous Mexican migrants in the United States.
Lee, Junghee; Donlan, William; Cardoso, Edgar Ezequiel Orea; Paz, Juan Jesus
2013-01-01
Despite growing numbers, indigenous Mexican migrants are relatively invisible to health practitioners who group them with nonindigenous, mestizo Mexican-origin populations. Associations between indigenous and mestizo cultural identifications with psychosocial characteristics and health indicators among indigenous Mexican migrants were examined. Results revealed gender differences in cultural identifications, perceived discrimination, self-esteem, self-efficacy, and various health indicators including depression severity, culture-bound syndromes, and self-rated health. Multivariate regression and structural equation path modeling demonstrated how indigenous cultural identification and perceived discrimination affects health. Findings suggest that interventions should utilize indigenous community-based activities designed to promote self-esteem and the value of indigenous culture, with a focus on females.
Hodgins, David C; Williams, Robert; Munro, Gordon
2009-01-01
The objectives of this study were to determine the prevalence of alcohol use and problems among employed individuals in Alberta, Canada (N = 1,890), and to conduct a multivariate examination of predictors of alcohol consumption-related problems. General alcohol problems were identified by 10%, although very few workers described any specific work-related alcohol problems (1%). Structural equation modeling revealed that, as hypothesized, workplace alcohol availability predicted general alcohol problems. Job responsibility and workplace norms also predicted alcohol problems but only for men. Perceived work stress did not predict alcohol problems. Results support the development of interventions that focus on re-shaping alcohol use norms.
Effect of Contact Damage on the Strength of Ceramic Materials.
1982-10-01
variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F
ERIC Educational Resources Information Center
SAW, J.G.
THIS PAPER DEALS WITH SOME TESTS OF HYPOTHESIS FREQUENTLY ENCOUNTERED IN THE ANALYSIS OF MULTIVARIATE DATA. THE TYPE OF HYPOTHESIS CONSIDERED IS THAT WHICH THE STATISTICIAN CAN ANSWER IN THE NEGATIVE OR AFFIRMATIVE. THE DOOLITTLE METHOD MAKES IT POSSIBLE TO EVALUATE THE DETERMINANT OF A MATRIX OF HIGH ORDER, TO SOLVE A MATRIX EQUATION, OR TO…
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
NASA Astrophysics Data System (ADS)
Sarghini, Fabrizio; De Vivo, Angela; Marra, Francesco
2017-10-01
Computational science and engineering methods have allowed a major change in the way products and processes are designed, as validated virtual models - capable to simulate physical, chemical and bio changes occurring during production processes - can be realized and used in place of real prototypes and performing experiments, often time and money consuming. Among such techniques, Optimal Shape Design (OSD) (Mohammadi & Pironneau, 2004) represents an interesting approach. While most classical numerical simulations consider fixed geometrical configurations, in OSD a certain number of geometrical degrees of freedom is considered as a part of the unknowns: this implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize the objective function. The applications of optimal shape design (OSD) are uncountable. For systems governed by partial differential equations, they range from structure mechanics to electromagnetism and fluid mechanics or to a combination of the three. This paper presents one of possible applications of OSD, particularly how extrusion bell shape, for past production, can be designed by applying a multivariate constrained shape optimization.
Modified Distribution-Free Goodness-of-Fit Test Statistic.
Chun, So Yeon; Browne, Michael W; Shapiro, Alexander
2018-03-01
Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.
La Peyre, M.K.; Mendelssohn, I.A.; Reams, M.A.; Templet, P.H.; Grace, J.B.
2001-01-01
Integrated management and policy models suggest that solutions to environmental issues may be linked to the socioeconomic and political Characteristics of a nation. In this study, we empirically explore these suggestions by applying them to the wetland management activities of nations. Structural equation modeling was used to evaluate a model of national wetland management effort and one of national wetland protection. Using five predictor variables of social capital, economic capital, environmental and political characteristics, and land-use pressure, the multivariate models were able to explain 60% of the variation in nations' wetland protection efforts based on data from 90 nations, as defined by level of participation, in the international wetland convention. Social capital had the largest direct effect on wetland protection efforts, suggesting that increased social development may eventually lead to better wetland protection. In contrast, increasing economic development had a negative linear relationship with wetland protection efforts, suggesting the need for explicit wetland protection programs as nations continue to focus on economic development. Government, environmental characteristics, and land-use pressure also had a positive direct effect on wetland protection, and mediated the effect of social capital on wetland protection. Explicit wetland protection policies, combined with a focus on social development, would lead to better wetland protection at the national level.
Writing and reading: connections between language by hand and language by eye.
Berninger, Virginia W; Abbott, Robert D; Abbott, Sylvia P; Graham, Steve; Richards, Todd
2002-01-01
Four approaches to the investigation of connections between language by hand and language by eye are described and illustrated with studies from a decade-long research program. In the first approach, multigroup structural equation modeling is applied to reading and writing measures given to typically developing writers to examine unidirectional and bidirectional relationships between specific components of the reading and writing systems. In the second approach, structural equation modeling is applied to a multivariate set of language measures given to children and adults with reading and writing disabilities to examine how the same set of language processes is orchestrated differently to accomplish specific reading or writing goals, and correlations between factors are evaluated to examine the level at which the language-by-hand system and the language-by-eye system communicate most easily. In the third approach, mode of instruction and mode of response are systematically varied in evaluating effectiveness of treating reading disability with and without a writing component. In the fourth approach, functional brain imaging is used to investigate residual spelling problems in students whose problems with word decoding have been remediated. The four approaches support a model in which language by hand and language by eye are separate systems that interact in predictable ways.
Geiser, Christian; Bishop, Jacob; Lockhart, Ginger; Shiffman, Saul; Grenard, Jerry L.
2013-01-01
Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demonstrate that using the ML-SEM rather than the SL-SEM framework to estimate the parameters of these models can be practical when the study involves (1) a large number of time points, (2) individually-varying times of observation, (3) unequally spaced time intervals, and/or (4) incomplete data. Despite the practical advantages of the ML-SEM approach under these circumstances, there are also some limitations that researchers should consider. We present an application to an ecological momentary assessment study (N = 158 youths with an average of 23.49 observations of positive mood per person) using the software Mplus (Muthén and Muthén, 1998–2012) and discuss advantages and disadvantages of using the ML-SEM approach to estimate the parameters of LST and multiple-indicator LGC models. PMID:24416023
Toda, Hiroyuki; Inoue, Takeshi; Tanichi, Masaaki; Saito, Taku; Nakagawa, Shin; Masuya, Jiro; Tanabe, Hajime; Yoshino, Aihide; Kusumi, Ichiro
2018-04-01
In previous studies, various components such as environmental and genetic factors have been shown to contribute to the development of bipolar disorder (BD). This study investigated how multiple factors, including child abuse, adult life events, and affective temperaments, are interrelated and how they affect the diagnosis of BD. A total of 170 healthy controls and 75 BD patients completed the following self-administered questionnaires: the Patient Health Questionnaire-9 evaluating the severity of depressive symptoms; the Child Abuse and Trauma Scale (CATS) evaluating child abuse; the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego autoquestionnaire (TEMPS-A) evaluating affective temperaments; and the Life Experiences Survey (LES) evaluating negative and positive adult life events. The data were subjected to univariate analysis, multivariable analysis, and structural equation modeling. The structural equation modeling showed that the diagnosis of BD was indirectly predicted by the neglect and sexual abuse scores of the CATS through four affective temperaments (depressive, cyclothymic, irritable, and anxious) of the TEMPS-A and directly predicted by these four affective temperaments. This study suggested that affective temperament plays an important role as a mediator in the influence of child abuse on BD diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.
Lehtonen, Jussi
2018-01-01
A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.
NASA Astrophysics Data System (ADS)
Palombi, Filippo; Toti, Simona
2015-05-01
Approximate weak solutions of the Fokker-Planck equation represent a useful tool to analyze the equilibrium fluctuations of birth-death systems, as they provide a quantitative knowledge lying in between numerical simulations and exact analytic arguments. In this paper, we adapt the general mathematical formalism known as the Ritz-Galerkin method for partial differential equations to the Fokker-Planck equation with time-independent polynomial drift and diffusion coefficients on the simplex. Then, we show how the method works in two examples, namely the binary and multi-state voter models with zealots.
Alternatives for Jet Engine Control
NASA Technical Reports Server (NTRS)
Leake, R. J.; Sain, M. K.
1976-01-01
Approaches are developed as alternatives to current design methods which rely heavily on linear quadratic and Riccati equation methods. The main alternatives are discussed in two broad categories, local multivariable frequency domain methods and global nonlinear optimal methods.
How does pedogenesis drive plant diversity?
Laliberté, Etienne; Grace, James B.; Huston, Michael A.; Lambers, Hans; Teste, François P.; Turner, Benjamin L.; Wardle, David A.
2013-01-01
Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.
About the dark and bright sides of self-efficacy: workaholism and work engagement.
Del Líbano, Mario; Llorens, Susana; Salanoval, Marisa; Schaufeli, Wilmar B
2012-07-01
Taking the Resources-Experiences-Demands Model (RED Model) by Salanova and colleagues as our starting point, we tested how work self-efficacy relates positively to negative (i.e., work overload and work-family conflict) and positive outcomes (i.e., job satisfaction and organizational commitment), through the mediating role of workaholism (health impairment process) and work engagement (motivational process). In a sample of 386 administrative staff from a Spanish University (65% women), Structural Equation Modeling provided full evidence for the research model. In addition, Multivariate Analyses of Variance showed that self-efficacy was only related positively to one of the two dimensions of workaholism, namely, working excessively. Finally, we discuss the theoretical and practical contributions in terms of the RED Model.
Rodgers, Joseph Lee
2016-01-01
The Bayesian-frequentist debate typically portrays these statistical perspectives as opposing views. However, both Bayesian and frequentist statisticians have expanded their epistemological basis away from a singular focus on the null hypothesis, to a broader perspective involving the development and comparison of competing statistical/mathematical models. For frequentists, statistical developments such as structural equation modeling and multilevel modeling have facilitated this transition. For Bayesians, the Bayes factor has facilitated this transition. The Bayes factor is treated in articles within this issue of Multivariate Behavioral Research. The current presentation provides brief commentary on those articles and more extended discussion of the transition toward a modern modeling epistemology. In certain respects, Bayesians and frequentists share common goals.
Structural equation modeling in environmental risk assessment.
Buncher, C R; Succop, P A; Dietrich, K N
1991-01-01
Environmental epidemiology requires effective models that take individual observations of environmental factors and connect them into meaningful patterns. Single-factor relationships have given way to multivariable analyses; simple additive models have been augmented by multiplicative (logistic) models. Each of these steps has produced greater enlightenment and understanding. Models that allow for factors causing outputs that can affect later outputs with putative causation working at several different time points (e.g., linkage) are not commonly used in the environmental literature. Structural equation models are a class of covariance structure models that have been used extensively in economics/business and social science but are still little used in the realm of biostatistics. Path analysis in genetic studies is one simplified form of this class of models. We have been using these models in a study of the health and development of infants who have been exposed to lead in utero and in the postnatal home environment. These models require as input the directionality of the relationship and then produce fitted models for multiple inputs causing each factor and the opportunity to have outputs serve as input variables into the next phase of the simultaneously fitted model. Some examples of these models from our research are presented to increase familiarity with this class of models. Use of these models can provide insight into the effect of changing an environmental factor when assessing risk. The usual cautions concerning believing a model, believing causation has been proven, and the assumptions that are required for each model are operative.
Ji, Hongwei; Zhang, Han; Xiong, Jing; Yu, Shikai; Chi, Chen; Bai, Bin; Li, Jue; Blacher, Jacques; Zhang, Yi; Xu, Yawei
2017-01-01
With increasing age, estimated glomerular filtration rate (eGFR) decline is a frequent manifestation and is strongly associated with other preclinical target organ damage (TOD). In literature, many equations exist in assessing patients' eGFR. However, these equations were mainly derived and validated in the population from Western countries, which equation should be used for risk stratification in the Chinese population remains unclear, as well as their comparison. Considering that TOD is a good marker for risk stratification in the elderly, in this analysis, we aimed to investigate whether the recent eGFR equations derived from Asian and Chinese are better associated with preclinical TOD than the other equations in elderly Chinese. A total of 1,599 community-dwelling elderly participants (age >65 years) in northern Shanghai were prospectively recruited from June 2014 to August 2015. Conventional cardiovascular risk factors were assessed, and hypertensive TOD including left ventricular mass index (LVMI), carotid-femoral pulse wave velocity (cf-PWV), carotid intima-media thickness (IMT), ankle-brachial index (ABI) and urine albumin to creatinine ratio (UACR) was evaluated for each participant. Participant's eGFR was calculated from the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Chinese-abbreviated MDRD (c-aMDRD), Asian-modified CKD-EPI (aCKD-EPI) equation and Chinese-modified CKD-EPI (cCKD-EPI) equation. In multivariate regression analysis, only eGFRs from aCKD-EPI were significantly and inversely associated with carotid IMT ( P =0.005). In multivariate logistic models, decreased eGFR from all the equations were significantly associated with lower ABI ( P <0.001), microalbuminuria ( P =0.02 to P <0.001) and increased cf-PWV ( P <0.001). Only decreased eGFRs from aCKD-EPI and cCKD-EPI equations were significantly associated with increased IMT (both crude P <0.05). In the receiver operator characteristic (ROC) analysis, only aCKD-EPI and cCKD-EPI equations presented significant associations with all the listed preclinical TODs ( P -value from <0.05 to <0.001). In community-dwelling elderly Chinese, eGFRs from aCKD-EPI and cCKD-EPI equations are better associated with preclinical TOD. aCKD-EPI and cCKD-EPI equations should be preferred when making risk assessment.
Predictive Temperature Equations for Three Sites at the Grand Canyon
NASA Astrophysics Data System (ADS)
McLaughlin, Katrina Marie Neitzel
Climate data collected at a number of automated weather stations were used to create a series of predictive equations spanning from December 2009 to May 2010 in order to better predict the temperatures along hiking trails within the Grand Canyon. The central focus of this project is how atmospheric variables interact and can be combined to predict the weather in the Grand Canyon at the Indian Gardens, Phantom Ranch, and Bright Angel sites. Through the use of statistical analysis software and data regression, predictive equations were determined. The predictive equations are simple or multivariable best fits that reflect the curvilinear nature of the data. With data analysis software curves resulting from the predictive equations were plotted along with the observed data. Each equation's reduced chi2 was determined to aid the visual examination of the predictive equations' ability to reproduce the observed data. From this information an equation or pair of equations was determined to be the best of the predictive equations. Although a best predictive equation for each month and season was determined for each site, future work may refine equations to result in a more accurate predictive equation.
Evaluation of the path integral for flow through random porous media
NASA Astrophysics Data System (ADS)
Westbroek, Marise J. E.; Coche, Gil-Arnaud; King, Peter R.; Vvedensky, Dimitri D.
2018-04-01
We present a path integral formulation of Darcy's equation in one dimension with random permeability described by a correlated multivariate lognormal distribution. This path integral is evaluated with the Markov chain Monte Carlo method to obtain pressure distributions, which are shown to agree with the solutions of the corresponding stochastic differential equation for Dirichlet and Neumann boundary conditions. The extension of our approach to flow through random media in two and three dimensions is discussed.
Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Zhou, Yuan
2018-02-01
Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln f) x and u = 2(ln f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.
Spector, June T.; Navas-Acien, Ana; Fadrowski, Jeffrey; Guallar, Eliseo; Jaar, Bernard
2011-01-01
Background. Low-level lead exposure is widespread and has been implicated as a chronic kidney disease (CKD) risk factor. However, studies evaluating associations of lead dose with newer, potentially more accurate, estimates of kidney function, in participants with a wide range of glomerular filtration rates (GFRs), are scarce. Methods. We compared associations of blood lead and estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and cystatin C single variable, multivariable and combined creatinine/cystatin C equations in 3941 adults who participated in the 1999–2002 National Health and Nutrition Examination Survey cystatin C subsample. Results. Geometric mean blood lead was 1.7 μg/dL. After multivariable adjustment, differences [95% confidence interval (CI)] in mean eGFR for a doubling of blood lead were −1.9 (−3.2, −0.7), −1.7 (−3.0, −0.5) and −1.4 (−2.3, −0.5) mL/min/1.73 m2, using the cystatin C single variable, multivariable and combined creatinine/cystatin C equations, respectively, reflecting lower eGFR with increased blood lead. The corresponding differences (95% CI) were −0.9 (−1.9, 0.02) and −0.9 (−1.8, 0.01) using the creatinine-based MDRD and CKD-EPI equations, respectively. In participants aged ≥60 years, differences in mean eGFR ranged from −3.0 to −4.5 mL/min/1.73 m2, and odds of reduced eGFR (<60 mL/min/1.73 m2) were increased for all estimates of GFR. Conclusions. These results support the inclusion of cystatin C-based eGFR in future lead research and provide additional evidence for environmental lead exposure as a CKD risk factor. PMID:21248295
[Regression analysis to select native-like structures from decoys of antigen-antibody docking].
Chen, Zhengshan; Chi, Xiangyang; Fan, Pengfei; Zhang, Guanying; Wang, Meirong; Yu, Changming; Chen, Wei
2018-06-25
Given the increasing exploitation of antibodies in different contexts such as molecular diagnostics and therapeutics, it would be beneficial to unravel properties of antigen-antibody interaction with modeling of computational protein-protein docking, especially, in the absence of a cocrystal structure. However, obtaining a native-like antigen-antibody structure remains challenging due in part to failing to reliably discriminate accurate from inaccurate structures among tens of thousands of decoys after computational docking with existing scoring function. We hypothesized that some important physicochemical and energetic features could be used to describe antigen-antibody interfaces and identify native-like antigen-antibody structure. We prepared a dataset, a subset of Protein-Protein Docking Benchmark Version 4.0, comprising 37 nonredundant 3D structures of antigen-antibody complexes, and used it to train and test multivariate logistic regression equation which took several important physicochemical and energetic features of decoys as dependent variables. Our results indicate that the ability to identify native-like structures of our method is superior to ZRANK and ZDOCK score for the subset of antigen-antibody complexes. And then, we use our method in workflow of predicting epitope of anti-Ebola glycoprotein monoclonal antibody-4G7 and identify three accurate residues in its epitope.
Lefcheck, Jonathan S; Duffy, J Emmett
2015-11-01
The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.
Mund, Marcus; Neyer, Franz J
2016-10-01
Prior research demonstrated influences of personality traits and their development on later status of subjective health and loneliness. In the present study, we intended to extend these findings by examining mutual influences between health-related characteristics and personality traits and their development over time. German adults were assessed at two time points across 15 years (NT1 = 654, NT2 = 271; Mage at Time 1 = 24.39, SD = 3.69). Data were analyzed with multivariate structural equation models and a multivariate latent change model. Neuroticism was found to predict later levels and the development of subjective health and loneliness. While subjective health likewise predicted later levels of Neuroticism, loneliness was found to be predictive of later levels as well as the development of Neuroticism, Extraversion, and Conscientiousness. Correlated changes indicated that developing a socially more desirable personality is associated with slower declines in subjective health and slower increases in loneliness. The findings indicate that characteristics related to an individual's health are reciprocally associated with personality traits. Thus, the study adds to the understanding of the development of personality and health-related characteristics. © 2015 Wiley Periodicals, Inc.
Evolutionary rates for multivariate traits: the role of selection and genetic variation
Pitchers, William; Wolf, Jason B.; Tregenza, Tom; Hunt, John; Dworkin, Ian
2014-01-01
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (), which predicts evolutionary change for a suite of phenotypic traits () as a product of directional selection acting on them (β) and the genetic variance–covariance matrix for those traits (G). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. PMID:25002697
Attitudes and exercise adherence: test of the Theories of Reasoned Action and Planned Behaviour.
Smith, R A; Biddle, S J
1999-04-01
Three studies of exercise adherence and attitudes are reported that tested the Theory of Reasoned Action and the Theory of Planned Behaviour. In a prospective study of adherence to a private fitness club, structural equation modelling path analysis showed that attitudinal and social normative components of the Theory of Reasoned Action accounted for 13.1% of the variance in adherence 4 months later, although only social norm significantly predicted intention. In a second study, the Theory of Planned Behaviour was used to predict both physical activity and sedentary behaviour. Path analyses showed that attitude and perceived control, but not social norm, predicted total physical activity. Physical activity was predicted from intentions and control over sedentary behaviour. Finally, an intervention study with previously sedentary adults showed that intentions to be active measured at the start and end of a 10-week intervention were associated with the planned behaviour variables. A multivariate analysis of variance revealed no significant multivariate effects for time on the planned behaviour variables measured before and after intervention. Qualitative data provided evidence that participants had a positive experience on the intervention programme and supported the role of social normative factors in the adherence process.
Yıldırım, N; Karaca, A; Cangur, S; Acıkgoz, F; Akkus, D
2017-01-01
Nursing education can be a stressful experience. To fully benefit from this experience and develop a positive professional identity, it is essential for nursing students to effectively cope with education-related stress. The aim of the study was to investigate the relationships between nursing students' education-related stress and stress coping, self-esteem, social support, and health status. This study utilized a cross-sectional, descriptive, and correlational design. The sample consisted 517 nursing students from a bachelor program in Turkey during the 2014-2015 academic year. Participants provided data on sociodemographic characteristics as well as completing the following instruments: Nursing Education Stress Scale, Coping Behavior Inventory for Nursing Students, Multidimensional Scale of Perceived Social Support, Rosenberg Self-Esteem Scale, and General Health Questionnaire. Relationships were examined using multivariate structural equation modeling. Results indicated that nursing students' stress coping levels were affected by self-esteem and social support. Additionally, this interaction appears to affect general health status. Although the direct effect of stress on coping was non-significant, its overall effect was significant within the model. It is necessary to conduct further intervention studies examining the role of self-esteem and social support in facilitating nursing students' stress-related coping during their education. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geladi, Paul; Nelson, Andrew; Lindholm-Sethson, Britta
2007-07-09
Electrical impedance gives multivariate complex number data as results. Two examples of multivariate electrical impedance data measured on lipid monolayers in different solutions give rise to matrices (16x50 and 38x50) of complex numbers. Multivariate data analysis by principal component analysis (PCA) or singular value decomposition (SVD) can be used for complex data and the necessary equations are given. The scores and loadings obtained are vectors of complex numbers. It is shown that the complex number PCA and SVD are better at concentrating information in a few components than the naïve juxtaposition method and that Argand diagrams can replace score and loading plots. Different concentrations of Magainin and Gramicidin A give different responses and also the role of the electrolyte medium can be studied. An interaction of Gramicidin A in the solution with the monolayer over time can be observed.
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
Kincaid, D Lawrence; Do, Mai Phuong
2006-01-01
Cost-effectiveness analysis is based on a simple formula. A dollar estimate of the total cost to conduct a program is divided by the number of people estimated to have been affected by it in terms of some intended outcome. The direct, total costs of most communication campaigns are usually available. Estimating the amount of effect that can be attributed to the communication alone, however is problematical in full-coverage, mass media campaigns where the randomized control group design is not feasible. Single-equation, multiple regression analysis controls for confounding variables but does not adequately address the issue of causal attribution. In this article, multivariate causal attribution (MCA) methods are applied to data from a sample survey of 1,516 married women in the Philippines to obtain a valid measure of the number of new adopters of modern contraceptives that can be causally attributed to a national mass media campaign and to calculate its cost-effectiveness. The MCA analysis uses structural equation modeling to test the causal pathways and to test for endogeneity, biprobit analysis to test for direct effects of the campaign and endogeneity, and propensity score matching to create a statistically equivalent, matched control group that approximates the results that would have been obtained from a randomized control group design. The MCA results support the conclusion that the observed, 6.4 percentage point increase in modern contraceptive use can be attributed to the national mass media campaign and to its indirect effects on attitudes toward contraceptives. This net increase represented 348,695 new adopters in the population of married women at a cost of U.S. $1.57 per new adopter.
Polynomial compensation, inversion, and approximation of discrete time linear systems
NASA Technical Reports Server (NTRS)
Baram, Yoram
1987-01-01
The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.
NASA Astrophysics Data System (ADS)
Daftardar-Gejji, Varsha; Jafari, Hossein
2005-01-01
Adomian decomposition method has been employed to obtain solutions of a system of fractional differential equations. Convergence of the method has been discussed with some illustrative examples. In particular, for the initial value problem: where A=[aij] is a real square matrix, the solution turns out to be , where E([alpha]1,...,[alpha]n),1 denotes multivariate Mittag-Leffler function defined for matrix arguments and Ai is the matrix having ith row as [ai1...ain], and all other entries are zero. Fractional oscillation and Bagley-Torvik equations are solved as illustrative examples.
Landscape structure affects specialists but not generalists in naturally fragmented grasslands
Miller, Jesse E.D.; Damschen, Ellen Ingman; Harrison, Susan P.; Grace, James B.
2015-01-01
Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural landscapes become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. In this study, we asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure-defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index)-had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities, and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.
Long-Term Stability of Core Language Skill in Children with Contrasting Language Skills
Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.
2016-01-01
This four-wave longitudinal study evaluated stability of core language skill in 421 European American and African American children, half of whom were identified as low (n = 201) and half of whom were average-to-high (n = 220) in later language skill. Structural equation modeling supported loadings of multivariate age-appropriate multisource measures of child language on single latent variables of core language skill at 15 and 25 months and 5 and 11 years. Significant stability coefficients were obtained between language latent variables for children of low and average-to-high language skill, even accounting for child positive social interaction and nonverbal intelligence, maternal education and language, and family home environment. Prospects for children with different language skills and intervention implications are discussed. PMID:26998572
How does pedogenesis drive plant diversity?
Laliberté, Etienne; Grace, James B; Huston, Michael A; Lambers, Hans; Teste, François P; Turner, Benjamin L; Wardle, David A
2013-06-01
Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimal design of reverse osmosis module networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maskan, F.; Wiley, D.E.; Johnston, L.P.M.
2000-05-01
The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found thatmore » optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.« less
Theories of Memory and Aging: A Look at the Past and a Glimpse of the Future
Festini, Sara B.
2017-01-01
The present article reviews theories of memory and aging over the past 50 years. Particularly notable is a progression from early single-mechanism perspectives to complex multifactorial models proposed to account for commonly observed age deficits in memory function. The seminal mechanistic theories of processing speed, limited resources, and inhibitory deficits are discussed and viewed as especially important theories for understanding age-related memory decline. Additionally, advances in multivariate techniques including structural equation modeling provided new tools that led to the development of more complex multifactorial theories than existed earlier. The important role of neuroimaging is considered, along with the current prevalence of intervention studies. We close with predictions about new directions that future research on memory and aging will take. PMID:27257229
NASA Technical Reports Server (NTRS)
Hargrove, A.
1982-01-01
Optimal digital control of nonlinear multivariable constrained systems was studied. The optimal controller in the form of an algorithm was improved and refined by reducing running time and storage requirements. A particularly difficult system of nine nonlinear state variable equations was chosen as a test problem for analyzing and improving the controller. Lengthy analysis, modeling, computing and optimization were accomplished. A remote interactive teletype terminal was installed. Analysis requiring computer usage of short duration was accomplished using Tuskegee's VAX 11/750 system.
Dwyer, John M; Laughlin, Daniel C
2017-07-01
Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes. © 2017 John Wiley & Sons Ltd/CNRS.
A Longitudinal Study on Human Outdoor Decomposition in Central Texas.
Suckling, Joanna K; Spradley, M Katherine; Godde, Kanya
2016-01-01
The development of a methodology that estimates the postmortem interval (PMI) from stages of decomposition is a goal for which forensic practitioners strive. A proposed equation (Megyesi et al. 2005) that utilizes total body score (TBS) and accumulated degree days (ADD) was tested using longitudinal data collected from human remains donated to the Forensic Anthropology Research Facility (FARF) at Texas State University-San Marcos. Exact binomial tests examined the rate of the equation to successfully predict ADD. Statistically significant differences were found between ADD estimated by the equation and the observed value for decomposition stage. Differences remained significant after carnivore scavenged donations were removed from analysis. Low success rates for the equation to predict ADD from TBS and the wide standard errors demonstrate the need to re-evaluate the use of this equation and methodology for PMI estimation in different environments; rather, multivariate methods and equations should be derived that are environmentally specific. © 2015 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Burns, R. G.; Meyer, R. W.; Cornwell, K.
2003-12-01
In-basin statistical relations allow for development of regional flood frequency and magnitude equations in the Cosumnes River and Mokelumne River drainage basins. Current equations were derived from data collected through 1975, and do not reflect newer data with some significant flooding. Physical basin characteristics (area, mean basin elevation, slope of longest reach, and mean annual precipitation) were correlated against predicted flood discharges for each of the 5, 10, 25, 50, 100, 200, and 500-year recurrence intervals in a multivariate analysis. Predicted maximum instantaneous flood discharges were determined using the PEAKFQ program with default settings, for 24 stream gages within the study area presumed not affected by flow management practices. For numerical comparisons, GIS-based methods using Spatial Analyst and the Arc Hydro Tools extension were applied to derive physical basin characteristics as predictor variables from a 30m digital elevation model (DEM) and a mean annual precipitation raster (PRISM). In a bivariate analysis, examination of Pearson correlation coefficients, F-statistic, and t & p thresholds show good correlation between area and flood discharges. Similar analyses show poor correlation for mean basin elevation, slope and precipitation, with flood discharge. Bivariate analysis suggests slope may not be an appropriate predictor term for use in the multivariate analysis. Precipitation and elevation correlate very well, demonstrating possible orographic effects. From the multivariate analysis, less than 6% of the variability in the correlation is not explained for flood recurrences up to 25 years. Longer term predictions up to 500 years accrue greater uncertainty with as much as 15% of the variability in the correlation left unexplained.
Laughlin, D.C.; Grace, J.B.
2006-01-01
Recently, efforts to develop multivariate models of plant species richness have been extended to include systems where trees play important roles as overstory elements mediating the influences of environment and disturbance on understory richness. We used structural equation modeling to examine the relationship of understory vascular plant species richness to understory abundance, forest structure, topographic slope, and surface fire history in lower montane forests on the North Rim of Grand Canyon National Park, USA based on data from eighty-two 0.1 ha plots. The questions of primary interest in this analysis were: (1) to what degree are influences of trees on understory richness mediated by effects on understory abundance? (2) To what degree are influences of fire history on richness mediated by effects on trees and/or understory abundance? (3) Can the influences of fire history on this system be related simply to time-since-fire or are there unique influences associated with long-term fire frequency? The results we obtained are consistent with the following inferences. First, it appears that pine trees had a strong inhibitory effect on the abundance of understory plants, which in turn led to lower understory species richness. Second, richness declined over time since the last fire. This pattern appears to result from several processes, including (1) a post-fire stimulation of germination, (2) a decline in understory abundance, and (3) an increase over time in pine abundance (which indirectly leads to reduced richness). Finally, once time-since-fire was statistically controlled, it was seen that areas with higher fire frequency have lower richness than expected, which appears to result from negative effects on understory abundance, possibly by depletions of soil nutrients from repeated surface fire. Overall, it appears that at large temporal and spatial scales, surface fire plays an important and complex role in structuring understory plant communities in old-growth montane forests. These results show how multivariate models of herbaceous richness can be expanded to apply to forested systems. Copyright ?? Oikos 2006.
Simple linear and multivariate regression models.
Rodríguez del Águila, M M; Benítez-Parejo, N
2011-01-01
In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.
A Study of Effects of MultiCollinearity in the Multivariable Analysis
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; (Peter) He, Qinghua; Lillard, James W.
2015-01-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables. PMID:25664257
A Study of Effects of MultiCollinearity in the Multivariable Analysis.
Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W
2014-10-01
A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.
Davidson, Sandra K; Dowrick, Christopher F; Gunn, Jane M
2016-03-15
High rates of persistent depression highlight the need to identify the risk factors associated with poor depression outcomes and to provide targeted interventions to people at high risk. Although social relationships have been implicated in depression course, interventions targeting social relationships have been disappointing. Possibly, interventions have targeted the wrong elements of relationships. Alternatively, the statistical association between relationships and depression course is not causal, but due to shared variance with other factors. We investigated whether elements of social relationships predict major depressive episode (MDE) when multiple relevant variables are considered. Data is from a longitudinal study of primary care patients with depressive symptoms. 494 participants completed questionnaires at baseline and a depression measure (PHQ-9) two years later. Baseline measures included functional (i.e. quality) and structural (i.e. quantity) social relationships, depression, neuroticism, chronic illness, alcohol abuse, childhood abuse, partner violence and sociodemographic characteristics. Logistic regression with generalised estimating equations was used to estimate the association between social relationships and MDE. Both functional and structural social relationships predicted MDE in univariate analysis. Only functional social relationships remained significant in multivariate analysis (OR: 0.87; 95%CI: 0.79-0.97; p=0.01). Other unique predictors of MDE were baseline depression severity, neuroticism, childhood sexual abuse and intimate partner violence. We did not assess how a person's position in their depression trajectory influenced the association between social relationships and depression. Interventions targeting relationship quality may be part of a personalised treatment plan for people at high risk due of persistent depression due to poor social relationships. Copyright © 2015 Elsevier B.V. All rights reserved.
Design of distributed PID-type dynamic matrix controller for fractional-order systems
NASA Astrophysics Data System (ADS)
Wang, Dawei; Zhang, Ridong
2018-01-01
With the continuous requirements for product quality and safety operation in industrial production, it is difficult to describe the complex large-scale processes with integer-order differential equations. However, the fractional differential equations may precisely represent the intrinsic characteristics of such systems. In this paper, a distributed PID-type dynamic matrix control method based on fractional-order systems is proposed. First, the high-order approximate model of integer order is obtained by utilising the Oustaloup method. Then, the step response model vectors of the plant is obtained on the basis of the high-order model, and the online optimisation for multivariable processes is transformed into the optimisation of each small-scale subsystem that is regarded as a sub-plant controlled in the distributed framework. Furthermore, the PID operator is introduced into the performance index of each subsystem and the fractional-order PID-type dynamic matrix controller is designed based on Nash optimisation strategy. The information exchange among the subsystems is realised through the distributed control structure so as to complete the optimisation task of the whole large-scale system. Finally, the control performance of the designed controller in this paper is verified by an example.
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Applying Meta-Analysis to Structural Equation Modeling
ERIC Educational Resources Information Center
Hedges, Larry V.
2016-01-01
Structural equation models play an important role in the social sciences. Consequently, there is an increasing use of meta-analytic methods to combine evidence from studies that estimate the parameters of structural equation models. Two approaches are used to combine evidence from structural equation models: A direct approach that combines…
Multi-Hamiltonian structure of the Born-Infeld equation
NASA Astrophysics Data System (ADS)
Arik, Metin; Neyzi, Fahrünisa; Nutku, Yavuz; Olver, Peter J.; Verosky, John M.
1989-06-01
The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is distinguished among two-dimensional hyperbolic systems by its wealth of such multi-Hamiltonian structures.
Linear quadratic regulators with eigenvalue placement in a horizontal strip
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1987-01-01
A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.
ERIC Educational Resources Information Center
Cheung, Mike W.-L.; Cheung, Shu Fai
2016-01-01
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
New body fat prediction equations for severely obese patients.
Horie, Lilian Mika; Barbosa-Silva, Maria Cristina Gonzalez; Torrinhas, Raquel Susana; de Mello, Marco Túlio; Cecconello, Ivan; Waitzberg, Dan Linetzky
2008-06-01
Severe obesity imposes physical limitations to body composition assessment. Our aim was to compare body fat (BF) estimations of severely obese patients obtained by bioelectrical impedance (BIA) and air displacement plethysmography (ADP) for development of new equations for BF prediction. Severely obese subjects (83 female/36 male, mean age=41.6+/-11.6 years) had BF estimated by BIA and ADP. The agreement of the data was evaluated using Bland-Altman's graphic and concordance correlation coefficient (CCC). A multivariate regression analysis was performed to develop and validate new predictive equations. BF estimations from BIA (64.8+/-15 kg) and ADP (65.6+/-16.4 kg) did not differ (p>0.05, with good accuracy, precision, and CCC), but the Bland- Altman graphic showed a wide limit of agreement (-10.4; 8.8). The standard BIA equation overestimated BF in women (-1.3 kg) and underestimated BF in men (5.6 kg; p<0.05). Two BF new predictive equations were generated after BIA measurement, which predicted BF with higher accuracy, precision, CCC, and limits of agreement than the standard BIA equation. Standard BIA equations were inadequate for estimating BF in severely obese patients. Equations developed especially for this population provide more accurate BF assessment.
A Mulitivariate Statistical Model Describing the Compound Nature of Soil Moisture Drought
NASA Astrophysics Data System (ADS)
Manning, Colin; Widmann, Martin; Bevacqua, Emanuele; Maraun, Douglas; Van Loon, Anne; Vrac, Mathieu
2017-04-01
Soil moisture in Europe acts to partition incoming energy into sensible and latent heat fluxes, thereby exerting a large influence on temperature variability. Soil moisture is predominantly controlled by precipitation and evapotranspiration. When these meteorological variables are accumulated over different timescales, their joint multivariate distribution and dependence structure can be used to provide information of soil moisture. We therefore consider soil moisture drought as a compound event of meteorological drought (deficits of precipitation) and heat waves, or more specifically, periods of high Potential Evapotraspiration (PET). We present here a statistical model of soil moisture based on Pair Copula Constructions (PCC) that can describe the dependence amongst soil moisture and its contributing meteorological variables. The model is designed in such a way that it can account for concurrences of meteorological drought and heat waves and describe the dependence between these conditions at a local level. The model is composed of four variables; daily soil moisture (h); a short term and a long term accumulated precipitation variable (Y1 and Y_2) that account for the propagation of meteorological drought to soil moisture drought; and accumulated PET (Y_3), calculated using the Penman Monteith equation, which can represent the effect of a heat wave on soil conditions. Copula are multivariate distribution functions that allow one to model the dependence structure of given variables separately from their marginal behaviour. PCCs then allow in theory for the formulation of a multivariate distribution of any dimension where the multivariate distribution is decomposed into a product of marginal probability density functions and two-dimensional copula, of which some are conditional. We apply PCC here in such a way that allows us to provide estimates of h and their uncertainty through conditioning on the Y in the form h=h|y_1,y_2,y_3 (1) Applying the model to various Fluxnet sites across Europe, we find the model has good skill and can particularly capture periods of low soil moisture well. We illustrate the relevance of the dependence structure of these Y variables to soil moisture and show how it may be generalised to offer information of soil moisture on a widespread scale where few observations of soil moisture exist. We then present results from a validation study of a selection of EURO CORDEX climate models where we demonstrate the skill of these models in representing these dependencies and so offer insight into the skill seen in the representation of soil moisture in these models.
Lyu, Juncheng; Shi, Hong; Wang, Suzhen; Zhang, Jie
2016-02-01
This research aimed to estimate the effect of perceived social factors in the community stress and problems on the residents' psychopathology such as depression and suicidal behaviors. Subjects of this study were the informants (N=1618) in a psychological autopsy (PA) study with a case-control design. We interviewed two informants (a family member and a close friend) for 392 suicides and 416 living controls, which came from 16 rural counties randomly selected from three provinces of China. Community stress and problems were measured by the WHO SUPRE-MISS scale. Depression was measured by CES-D scale, and suicidal behavior was assessed by NCS-R scale. Multivariable liner and logistic regression models and the Structural Equation Modeling (SEM) were applied to probe the correlation of the depression and the suicidal behaviors with some major demographic variables as covariates. It was found that community stress and problems were directly associated with rural Chinese residents' depression (Path coefficient=0.127, P<0.001). There was no direct correlation between community stress and problem and suicidal behaviors, but community stress and problem can affect suicidal behaviors indirectly through depression. The path coefficient between depression and suicidal behaviors was 0.975. The current study predicts a new research viewpoint, that is, the depression is the intermediate between community stress and problem and suicidal behaviors. It might be an effective route to prevent depression directly and suicidal behaviors indirectly by reducing the community stress and problems. Copyright © 2015 Elsevier Inc. All rights reserved.
Wells, Samantha; Flynn, Andrea; Tremblay, Paul F; Dumas, Tara; Miller, Peter; Graham, Kathryn
2014-05-01
This study extends previous research on masculinity and negative drinking consequences among young men by considering mediating effects of heavy episodic drinking (HED) and alcohol expectancies. We hypothesized that masculinity would have a direct relationship with negative consequences from drinking as well as indirect relationships mediated by HED and alcohol expectancies of courage, risk, and aggression. A random sample of 1,436 college and university men ages 19-25 years completed an online survey, including conformity to masculine norms, alcohol-related expectancies, HED, and negative drinking consequences. Regression analyses and structural equation modeling were used. Six of seven dimensions of masculinity and the alcohol expectancy scales were significantly associated with both HED and negative consequences. In multivariate regression models predicting HED and negative consequences, the playboy and violence dimensions of masculinity and the risk/aggression alcohol expectancy remained significant. HED and the risk-taking dimension of masculinity were also significant in the model predicting negative consequences. The structural equation model indicated that masculinity was directly associated with HED and negative consequences but also influenced negative consequences indirectly through HED and alcohol expectancies. The findings suggest that, among young adult male college and university students, masculinity is an important factor related to both HED and drinking consequences, with the latter effect partly mediated by HED and alcohol expectancies. Addressing male norms about masculinity may help to reduce HED and negative consequences from drinking.
The roles of associative and executive processes in creative cognition.
Beaty, Roger E; Silvia, Paul J; Nusbaum, Emily C; Jauk, Emanuel; Benedek, Mathias
2014-10-01
How does the mind produce creative ideas? Past research has pointed to important roles of both executive and associative processes in creative cognition. But such work has largely focused on the influence of one ability or the other-executive or associative-so the extent to which both abilities may jointly affect creative thought remains unclear. Using multivariate structural equation modeling, we conducted two studies to determine the relative influences of executive and associative processes in domain-general creative cognition (i.e., divergent thinking). Participants completed a series of verbal fluency tasks, and their responses were analyzed by means of latent semantic analysis (LSA) and scored for semantic distance as a measure of associative ability. Participants also completed several measures of executive function-including broad retrieval ability (Gr) and fluid intelligence (Gf). Across both studies, we found substantial effects of both associative and executive abilities: As the average semantic distance between verbal fluency responses and cues increased, so did the creative quality of divergent-thinking responses (Study 1 and Study 2). Moreover, the creative quality of divergent-thinking responses was predicted by the executive variables-Gr (Study 1) and Gf (Study 2). Importantly, the effects of semantic distance and the executive function variables remained robust in the same structural equation model predicting divergent thinking, suggesting unique contributions of both constructs. The present research extends recent applications of LSA in creativity research and provides support for the notion that both associative and executive processes underlie the production of novel ideas.
Computational Methods for Inviscid and Viscous Two-and-Three-Dimensional Flow Fields.
1975-01-01
Difference Equations Over a Network, Watson Sei. Comput. Lab. Report, 19U9. 173- Isaacson, E. and Keller, H. B., Analaysis of Numerical Methods...element method has given a new impulse to the old mathematical theory of multivariate interpolation. We first study the one-dimensional case, which
Modeling an Outbreak of Anthrax
ERIC Educational Resources Information Center
Sturdivant, Rod; Watts, Krista
2010-01-01
This article presents material that has been used as a classroom activity in a calculus-based probability and statistics course. The application was used in the first few lessons of this course. Students had three previous semesters of math, including calculus (single and multivariable), differential equations, and a course in mathematical…
A new multivariate zero-adjusted Poisson model with applications to biomedicine.
Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen
2018-05-25
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolutionary rates for multivariate traits: the role of selection and genetic variation.
Pitchers, William; Wolf, Jason B; Tregenza, Tom; Hunt, John; Dworkin, Ian
2014-08-19
A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (Δz(-)=Gβ), which predicts evolutionary change for a suite of phenotypic traits (Δz(-)) as a product of directional selection acting on them (β) and the genetic variance-covariance matrix for those traits (G ). Despite being empirically challenging to estimate, there are enough published estimates of G and β to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Memon, Aftab Hameed; Rahman, Ismail Abdul
2014-01-01
This study uncovered inhibiting factors to cost performance in large construction projects of Malaysia. Questionnaire survey was conducted among clients and consultants involved in large construction projects. In the questionnaire, a total of 35 inhibiting factors grouped in 7 categories were presented to the respondents for rating significant level of each factor. A total of 300 questionnaire forms were distributed. Only 144 completed sets were received and analysed using advanced multivariate statistical software of Structural Equation Modelling (SmartPLS v2). The analysis involved three iteration processes where several of the factors were deleted in order to make the model acceptable. The result of the analysis found that R 2 value of the model is 0.422 which indicates that the developed model has a substantial impact on cost performance. Based on the final form of the model, contractor's site management category is the most prominent in exhibiting effect on cost performance of large construction projects. This finding is validated using advanced techniques of power analysis. This vigorous multivariate analysis has explicitly found the significant category which consists of several causative factors to poor cost performance in large construction projects. This will benefit all parties involved in construction projects for controlling cost overrun. PMID:24693227
Memon, Aftab Hameed; Rahman, Ismail Abdul
2014-01-01
This study uncovered inhibiting factors to cost performance in large construction projects of Malaysia. Questionnaire survey was conducted among clients and consultants involved in large construction projects. In the questionnaire, a total of 35 inhibiting factors grouped in 7 categories were presented to the respondents for rating significant level of each factor. A total of 300 questionnaire forms were distributed. Only 144 completed sets were received and analysed using advanced multivariate statistical software of Structural Equation Modelling (SmartPLS v2). The analysis involved three iteration processes where several of the factors were deleted in order to make the model acceptable. The result of the analysis found that R(2) value of the model is 0.422 which indicates that the developed model has a substantial impact on cost performance. Based on the final form of the model, contractor's site management category is the most prominent in exhibiting effect on cost performance of large construction projects. This finding is validated using advanced techniques of power analysis. This vigorous multivariate analysis has explicitly found the significant category which consists of several causative factors to poor cost performance in large construction projects. This will benefit all parties involved in construction projects for controlling cost overrun.
An Efficient Numerical Approach for Nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin; Vedula, Prakash
2009-03-01
Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.
Multi-Hamiltonian structure of equations of hydrodynamic type
NASA Astrophysics Data System (ADS)
Gümral, H.; Nutku, Y.
1990-11-01
The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.
Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.
Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs
2009-02-01
This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.
A k-omega-multivariate beta PDF for supersonic combustion
NASA Technical Reports Server (NTRS)
Alexopoulos, G. A.; Baurle, R. A.; Hassan, H. A.
1992-01-01
In an attempt to study the interaction between combustion and turbulence in supersonic flows, an assumed PDF has been employed. This makes it possible to calculate the time average of the chemical source terms that appear in the species conservation equations. In order to determine the averages indicated in an equation, two transport equations, one for the temperature (enthalpy) variance and one for Q, are required. Model equations are formulated for such quantities. The turbulent time scale controls the evolution. An algebraic model similar to that used by Eklund et al was used in an attempt to predict the recent measurements of Cheng et al. Predictions were satisfactory before ignition but were less satisfactory after ignition. One of the reasons for this behavior is the inadequacy of the algebraic turbulence model employed. Because of this, the objective of this work is to develop a k-omega model to remedy the situation.
Describing the Elephant: Structure and Function in Multivariate Data.
ERIC Educational Resources Information Center
McDonald, Roderick P.
1986-01-01
There is a unity underlying the diversity of models for the analysis of multivariate data. Essentially, they constitute a family of models, most generally nonlinear, for structural/functional relations between variables drawn from a behavior domain. (Author)
Goldenberg, Shira M.; Montaner, Julio; Duff, Putu; Nguyen, Paul; Dobrer, Sabina; Guillemi, Silvia; Shannon, Kate
2015-01-01
In light of limited data on structural determinants of access and retention in antiretroviral therapy (ART) among sex workers, we examined structural correlates of ART use among sex workers living with HIV over time. Longitudinal data were drawn from a cohort of 646 female sex workers in Vancouver, Canada (2010–2012) and linked pharmacy records on ART dispensation. We used logistic regression with generalized estimating equations (GEE) to examine correlates of gaps in ART use (i.e., treatment interruptions or delayed ART initiation), among sex workers living with HIV (n=74). Over a 2.5-year period, 37.8% of participants experienced gaps in ART use (i.e., no ART dispensed in a six-month period). In a multivariable GEE model, younger age, migration/mobility, incarceration, and non-injection drug use independently correlated with gaps in ART use. In spite of successes scaling-up ART in British Columbia, younger, mobile, or incarcerated sex workers face persistent gaps in access and retention irrespective of drug use. Community-based, tailored interventions to scale-up entry and retention in ART for sex workers should be further explored in this setting. PMID:26148850
Goldenberg, Shira M; Montaner, Julio; Duff, Putu; Nguyen, Paul; Dobrer, Sabina; Guillemi, Silvia; Shannon, Kate
2016-05-01
In light of limited data on structural determinants of access and retention in antiretroviral therapy (ART) among sex workers, we examined structural correlates of ART use among sex workers living with HIV over time. Longitudinal data were drawn from a cohort of 646 female sex workers in Vancouver, Canada (2010-2012) and linked pharmacy records on ART dispensation. We used logistic regression with generalized estimating equations (GEE) to examine correlates of gaps in ART use (i.e., treatment interruptions or delayed ART initiation), among HIV seropositive participants (n = 74). Over a 2.5-year period, 37.8 % of participants experienced gaps in ART use (i.e., no ART dispensed in a 6-month period). In a multivariable GEE model, younger age, migration/mobility, incarceration, and non-injection drug use independently correlated with gaps in ART use. In spite of successes scaling-up ART in British Columbia, younger, mobile, or incarcerated sex workers face persistent gaps in access and retention irrespective of drug use. Community-based, tailored interventions to scale-up entry and retention in ART for sex workers should be further explored in this setting.
Chen, Yasheng; Zhu, Hongtu; An, Hongyu; Armao, Diane; Shen, Dinggang; Gilmore, John H.; Lin, Weili
2013-01-01
The aim of this study was to characterize the maturational changes of the three eigenvalues (λ1 ≥ λ2 ≥ λ3) of diffusion tensor imaging (DTI) during early postnatal life for more insights into early brain development. In order to overcome the limitations of using presumed growth trajectories for regression analysis, we employed Multivariate Adaptive Regression Splines (MARS) to derive data-driven growth trajectories for the three eigenvalues. We further employed Generalized Estimating Equations (GEE) to carry out statistical inferences on the growth trajectories obtained with MARS. With a total of 71 longitudinal datasets acquired from 29 healthy, full-term pediatric subjects, we found that the growth velocities of the three eigenvalues were highly correlated, but significantly different from each other. This paradox suggested the existence of mechanisms coordinating the maturations of the three eigenvalues even though different physiological origins may be responsible for their temporal evolutions. Furthermore, our results revealed the limitations of using the average of λ2 and λ3 as the radial diffusivity in interpreting DTI findings during early brain development because these two eigenvalues had significantly different growth velocities even in central white matter. In addition, based upon the three eigenvalues, we have documented the growth trajectory differences between central and peripheral white matter, between anterior and posterior limbs of internal capsule, and between inferior and superior longitudinal fasciculus. Taken together, we have demonstrated that more insights into early brain maturation can be gained through analyzing eigen-structural elements of DTI. PMID:23455648
Multi-application controls: Robust nonlinear multivariable aerospace controls applications
NASA Technical Reports Server (NTRS)
Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob
1994-01-01
This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented as a method for analyzing robust performance and the mu-synthesis method will be presented as a method for synthesizing a robust control system. The paper concludes with the author's expectations regarding future applications of robust nonlinear multivariable controls.
NASA Astrophysics Data System (ADS)
Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran
2018-03-01
This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).
Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Prolongation structures of nonlinear evolution equations
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.; Estabrook, F. B.
1975-01-01
A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.
Iterative procedures for space shuttle main engine performance models
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1989-01-01
Performance models of the Space Shuttle Main Engine (SSME) contain iterative strategies for determining approximate solutions to nonlinear equations reflecting fundamental mass, energy, and pressure balances within engine flow systems. Both univariate and multivariate Newton-Raphson algorithms are employed in the current version of the engine Test Information Program (TIP). Computational efficiency and reliability of these procedures is examined. A modified trust region form of the multivariate Newton-Raphson method is implemented and shown to be superior for off nominal engine performance predictions. A heuristic form of Broyden's Rank One method is also tested and favorable results based on this algorithm are presented.
ERIC Educational Resources Information Center
Pallone, Nathaniel J.; Hennessy, James J.; Voelbel, Gerald T.
1998-01-01
A scientifically sound methodology for identifying offenders about whose presence the community should be notified is demonstrated. A stepwise multiple regression was calculated among incarcerated pedophiles (N=52) including both psychological and legal data; a precision-weighted equation produced 90.4% "true positives." This methodology can be…
Wu, Hao
2018-05-01
In structural equation modelling (SEM), a robust adjustment to the test statistic or to its reference distribution is needed when its null distribution deviates from a χ 2 distribution, which usually arises when data do not follow a multivariate normal distribution. Unfortunately, existing studies on this issue typically focus on only a few methods and neglect the majority of alternative methods in statistics. Existing simulation studies typically consider only non-normal distributions of data that either satisfy asymptotic robustness or lead to an asymptotic scaled χ 2 distribution. In this work we conduct a comprehensive study that involves both typical methods in SEM and less well-known methods from the statistics literature. We also propose the use of several novel non-normal data distributions that are qualitatively different from the non-normal distributions widely used in existing studies. We found that several under-studied methods give the best performance under specific conditions, but the Satorra-Bentler method remains the most viable method for most situations. © 2017 The British Psychological Society.
De Bolle, Marleen; Beyers, Wim; De Clercq, Barbara; De Fruyt, Filip
2012-11-01
This study investigated the continuity, pathoplasty, and complication models as plausible explanations for personality-psychopathology relations in a combined sample of community (n = 571) and referred (n = 146) children and adolescents. Multivariate structural equation modeling was used to examine the structural relations between latent personality and psychopathology change across a 2-year period. Item response theory models were fitted as an additional test of the continuity hypothesis. Even after correcting for item overlap, the results provided strong support for the continuity model, demonstrating that personality and psychopathology displayed dynamic change patterns across time. Item response theory models further supported the continuity conceptualization for understanding the association between internalizing problems and emotional stability and extraversion as well as between externalizing problems and benevolence and conscientiousness. In addition to the continuity model, particular personality and psychopathology combinations provided evidence for the pathoplasty and complication models. The theoretical and practical implications of these results are discussed, and suggestions for future research are provided. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method
NASA Astrophysics Data System (ADS)
A-N Nguyen, T.; Nguyen, T.-A.; Vu, T.-D.; Nguyen, K.-T.; K-T Dao, T.; P-H Huynh, K.
2017-06-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.
Finding structure in data using multivariate tree boosting
Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.
2016-01-01
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183
Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C
2018-06-29
A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.
Generalized Multilevel Structural Equation Modeling
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew
2004-01-01
A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…
Alternative bi-Hamiltonian structures for WDVV equations of associativity
NASA Astrophysics Data System (ADS)
Kalayci, J.; Nutku, Y.
1998-01-01
The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.
Sarti, Simone; Zella, Sara
2016-05-01
There is widespread concern that episodes of unemployment and unstable working conditions adversely affect health. We add to the debate by focusing on the relationship between work trajectory and the self-reported health of Italian men and women during the present economic downturn. Relying on Italian data in the EU-SILC project (from 2007 to 2010), our sample includes all individuals aged 30 to 60 in 2010, and uses multivariate binomial regression models for preliminary analyses and the Structural Equations modelling (SEM) to observe the cumulative effects of health status according to different job trajectories. Our main findings show similar pictures for men and women. Individuals who are unemployed, ejected or in precarious occupational positions have a higher risk of worsening their health status during these years. Copyright © 2016 Elsevier Inc. All rights reserved.
Childhood emotional abuse, negative emotion-driven impulsivity, and alcohol use in young adulthood☆
Shin, Sunny H.; Lee, Sungkyu; Jeon, Sae-Mi; Wills, Thomas A.
2015-01-01
Childhood emotional abuse has been linked to problematic alcohol use in later life but there is a paucity of empirically based knowledge about the developmental pathways linking emotional abuse and alcohol use in young adulthood. Using a community sample of young individuals aged 18–25 (N = 268; female 52%), we performed structural equation modeling to investigate whether emotional abuse influences alcohol use through urgent personality trait and to determine pathways for these effects in a multivariate context. We also examined variations in these pathways by four different alcohol use outcomes including frequency of alcohol use, binge drinking, alcohol-related problems, and alcohol use disorders (AUD). The present study found that emotional abuse was related to urgency, which in turn influenced four types of alcohol use. Urgency may play a significant role in linking childhood maltreatment to alcohol use in young adulthood. PMID:25743371
Childhood emotional abuse, negative emotion-driven impulsivity, and alcohol use in young adulthood.
Shin, Sunny H; Lee, Sungkyu; Jeon, Sae-Mi; Wills, Thomas A
2015-12-01
Childhood emotional abuse has been linked to problematic alcohol use in later life but there is a paucity of empirically based knowledge about the developmental pathways linking emotional abuse and alcohol use in young adulthood. Using a community sample of young individuals aged 18-25 (N=268; female 52%), we performed structural equation modeling to investigate whether emotional abuse influences alcohol use through urgent personality trait and to determine pathways for these effects in a multivariate context. We also examined variations in these pathways by four different alcohol use outcomes including frequency of alcohol use, binge drinking, alcohol-related problems, and alcohol use disorders (AUD). The present study found that emotional abuse was related to urgency, which in turn influenced four types of alcohol use. Urgency may play a significant role in linking childhood maltreatment to alcohol use in young adulthood. Copyright © 2015. Published by Elsevier Ltd.
The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.
Congdon, Peter
2011-01-01
Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John; Schmitz, Eric; Hoff, William
1991-01-01
This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
USDA-ARS?s Scientific Manuscript database
Characterizing population genetic structure across geographic space is a fundamental challenge in population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic variability, but geographic information and accompanying metadata is not always easily integrated into t...
Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F
2017-04-01
Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.
Structural hierarchy of autism spectrum disorder symptoms: an integrative framework.
Kim, Hyunsik; Keifer, Cara M; Rodriguez-Seijas, Craig; Eaton, Nicholas R; Lerner, Matthew D; Gadow, Kenneth D
2018-01-01
In an attempt to resolve questions regarding the symptom classification of autism spectrum disorder (ASD), previous research generally aimed to demonstrate superiority of one model over another. Rather than adjudicating which model may be optimal, we propose an alternative approach that integrates competing models using Goldberg's bass-ackwards method, providing a comprehensive understanding of the underlying symptom structure of ASD. The study sample comprised 3,825 individuals, consecutive referrals to a university hospital developmental disabilities specialty clinic or a child psychiatry outpatient clinic. This study analyzed DSM-IV-referenced ASD symptom statements from parent and teacher versions of the Child and Adolescent Symptom Inventory-4R. A series of exploratory structural equation models was conducted in order to produce interpretable latent factors that account for multivariate covariance. Results indicated that ASD symptoms were structured into an interpretable hierarchy across multiple informants. This hierarchy includes five levels; key features of ASD bifurcate into different constructs with increasing specificity. This is the first study to examine an underlying structural hierarchy of ASD symptomatology using the bass-ackwards method. This hierarchy demonstrates how core features of ASD relate at differing levels of resolution, providing a model for conceptualizing ASD heterogeneity and a structure for integrating divergent theories of cognitive processes and behavioral features that define the disorder. These findings suggest that a more coherent and complete understanding of the structure of ASD symptoms may be reflected in a metastructure rather than at one level of resolution. © 2017 Association for Child and Adolescent Mental Health.
Hamiltonian structure of the Lotka-Volterra equations
NASA Astrophysics Data System (ADS)
Nutku, Y.
1990-03-01
The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.
Multivariate control of plant species richness and community biomass in blackland prairie
Weiher, E.; Forbes, S.; Schauwecker, T.; Grace, J.B.
2004-01-01
Recent studies have shown that patterns of plant species richness and community biomass are best understood in a multivariate context. The objective of this study was to develop and evaluate a multivariate hypothesis about how herbaceous biomass and richness relate to gradients in soil conditions and woody plant cover in blackland prairies. Structural equation modeling was used to investigate how soil characteristics and shade by scattered Juniperus virginiana trees relate to standing biomass and species richness in 99 0.25 m2 quadrats collected in eastern Mississippi, USA. Analysis proceeded in two stages. In the first stage, we evaluated the hypothesis that correlations among soil parameters could be represented by two underlying (latent) soil factors, mineral content and organic content. In the second stage, we evaluated the hypothesis that richness and biomass were related to (1) soil properties, (2) tree canopy extent, and (3) each other (i.e. reciprocal effects between richness and biomass). With some modification to the details of the original model, it was found that soil properties could be represented as two latent variables. In the overall model, 51% and 53% of the observed variation in richness and biomass were explained. The order of importance for variables explaining variations in richness was (1) soil organic content, (2) soil mineral content, (3) community biomass, and (4) tree canopy extent. The order of importance for variables explaining biomass was (1) tree canopy and (2) soil organic content, with neither soil mineral content nor species richness explaining significant variation in biomass. Based on these findings, we conclude that variations in richness are uniquely related to both variations in soil conditions and variations in herbaceous biomass. We further conclude that there is no evidence in these data for effects of species richness on biomass.
NASA Astrophysics Data System (ADS)
Anggraeni, Anni; Arianto, Fernando; Mutalib, Abdul; Pratomo, Uji; Bahti, Husein H.
2017-05-01
Rare Earth Elements (REE) are elements that a lot of function for life, such as metallurgy, optical devices, and manufacture of electronic devices. Sources of REE is present in the mineral, in which each element has similar properties. Currently, to determining the content of REE is used instruments such as ICP-OES, ICP-MS, XRF, and HPLC. But in each instruments, there are still have some weaknesses. Therefore we need an alternative analytical method for the determination of rare earth metal content, one of them is by a combination of UV-Visible spectrophotometry and multivariate analysis, including Principal Component Analysis (PCA), Principal Component Regression (PCR), and Partial Least Square Regression (PLS). The purpose of this experiment is to determine the content of light and medium rare earth elements in the mineral monazite without chemical separation by using a combination of multivariate analysis and UV-Visible spectrophotometric methods. Training set created 22 variations of concentration and absorbance was measured using a UV-Vis spectrophotometer, then the data is processed by PCA, PCR, and PLSR. The results were compared and validated to obtain the mathematical equation with the smallest percent error. From this experiment, mathematical equation used PLS methods was better than PCR after validated, which has RMSE value for La, Ce, Pr, Nd, Gd, Sm, Eu, and Tb respectively 0.095; 0.573; 0.538; 0.440; 3.387; 1.240; 1.870; and 0.639.
Gonzales, Mitzi M; Tarumi, Takashi; Eagan, Danielle E; Tanaka, Hirofumi; Vaghasia, Miral; Haley, Andreana P
2012-09-01
Elevated body mass index (BMI) at midlife is associated with increased risk of cognitive decline in later life. The goal of the current study was to assess mechanisms of early brain vulnerability by examining if higher BMI at midlife affects current cognitive performance through alterations in cerebral neurochemistry. Fifty-five participants, aged 40 to 60 years, underwent neuropsychological testing, health screen, and proton magnetic resonance spectroscopy examining N-acetylaspartate, creatine (Cr), myo-inositol (mI), choline, and glutamate concentrations in occipitoparietal gray matter. Concentrations of N-acetylaspartate, choline, mI, and glutamate were calculated as a ratio over Cr and examined in relation to BMI using multivariate regression analyses. Structural equation modeling was used to determine if BMI had an indirect effect on cognition through cerebral metabolite levels. Higher BMI was associated with elevations in mI/Cr (F(5,45) = 3.843, p = .006, β = 0.444, p = .002), independent of age, sex, fasting glucose levels, and systolic blood pressure. Moreover, a χ(2) difference test of the direct and indirect structural equation models revealed that BMI had an indirect effect on global cognitive performance (Δχ(2) = 19.939, df = 2, p < .001). Subsequent follow-up analyses revealed that this effect was specific to memory (Δχ(2) = 22.027, df = 2, p < .001). Higher BMI was associated with elevations in mI/Cr concentrations in the occipitoparietal gray matter and indirectly related to poorer memory performance through mI/Cr levels, potentially implicating plasma hypertonicity and neuroinflammation as mechanisms underlying obesity-related brain vulnerability.
Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.
2007-01-01
Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.
ERIC Educational Resources Information Center
Conner, Kenneth R.; Meldrum, Sean; Wieczorek, William F.; Duberstein, Paul R.; Welte, John W.
2004-01-01
Information on the association of impulsivity and measures of aggression with suicidal ideation in adolescents and young adults is limited. Data were gathered from a community sample of 625 adolescent and young adult males. Analyses were based on multivariate generalized estimating equations. Impulsivity and irritability were associated strongly…
Parametric Surfaces Competition: Using Technology to Foster Creativity
ERIC Educational Resources Information Center
Kaur, Manmohan; Wangler, Thomas
2014-01-01
Although most calculus students are comfortable with the Cartesian equations of curves and surfaces, they struggle with the concept of parameters. A multivariable calculus course is really the time to nail this concept down, once and for all, since it provides an easy way to represent many beautiful and useful surfaces, and graph them using a…
ERIC Educational Resources Information Center
Owen, Steven V.; Feldhusen, John F.
This study compares the effectiveness of three models of multivariate prediction for academic success in identifying the criterion variance of achievement in nursing education. The first model involves the use of an optimum set of predictors and one equation derived from a regression analysis on first semester grade average in predicting the…
USDA-ARS?s Scientific Manuscript database
Prediction equations of energy expenditure (EE) using accelerometers and miniaturized heart rate (HR) monitors have been developed in older children and adults but not in preschool-aged children. Because the relationships between accelerometer counts (ACs), HR, and EE are confounded by growth and ma...
Lizier, Joseph T; Heinzle, Jakob; Horstmann, Annette; Haynes, John-Dylan; Prokopenko, Mikhail
2011-02-01
The human brain undertakes highly sophisticated information processing facilitated by the interaction between its sub-regions. We present a novel method for interregional connectivity analysis, using multivariate extensions to the mutual information and transfer entropy. The method allows us to identify the underlying directed information structure between brain regions, and how that structure changes according to behavioral conditions. This method is distinguished in using asymmetric, multivariate, information-theoretical analysis, which captures not only directional and non-linear relationships, but also collective interactions. Importantly, the method is able to estimate multivariate information measures with only relatively little data. We demonstrate the method to analyze functional magnetic resonance imaging time series to establish the directed information structure between brain regions involved in a visuo-motor tracking task. Importantly, this results in a tiered structure, with known movement planning regions driving visual and motor control regions. Also, we examine the changes in this structure as the difficulty of the tracking task is increased. We find that task difficulty modulates the coupling strength between regions of a cortical network involved in movement planning and between motor cortex and the cerebellum which is involved in the fine-tuning of motor control. It is likely these methods will find utility in identifying interregional structure (and experimentally induced changes in this structure) in other cognitive tasks and data modalities.
Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri
Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and motor functions.
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
ERIC Educational Resources Information Center
Haberman, Shelby J.; von Davier, Matthias; Lee, Yi-Hsuan
2008-01-01
Multidimensional item response models can be based on multivariate normal ability distributions or on multivariate polytomous ability distributions. For the case of simple structure in which each item corresponds to a unique dimension of the ability vector, some applications of the two-parameter logistic model to empirical data are employed to…
Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E
2002-01-01
Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.
Design of linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.
1990-01-01
Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.
Piernas Sánchez, C M; Morales Falo, E M; Zamora Navarro, S; Garaulet Aza, M
2010-01-01
The excess of visceral abdominal adipose tissue is one of the major concerns in obesity and its clinical treatment. To apply the two-dimensional predictive equation proposed by Garaulet et al. to determine the abdominal fat distribution and to compare the results with the body composition obtained by multi-frequency bioelectrical impedance analysis (M-BIA). We studied 230 women, who underwent anthropometry and M-BIA. The predictive equation was applied. Multivariate lineal and partial correlation analyses were performed with control for BMI and % body fat, using SPSS 15.0 with statistical significance P < 0.05. Overall, women were considered as having subcutaneous distribution of abdominal fat. Truncal fat, regional fat and muscular mass were negatively associated with VA/SA(predicted), while the visceral index obtained by M-BIA was positively correlated with VA/SA(predicted). The predictive equation may be useful in the clinical practice to obtain an accurate, costless and safe classification of abdominal obesity.
Thomas, Alyssa S.; Milfont, Taciano L.; Gavin, Michael C.
2016-01-01
Non-compliance with fishing regulations can undermine management effectiveness. Previous bivariate approaches were unable to untangle the complex mix of factors that may influence fishers’ compliance decisions, including enforcement, moral norms, perceived legitimacy of regulations and the behaviour of others. We compared seven multivariate behavioural models of fisher compliance decisions using structural equation modeling. An online survey of over 300 recreational fishers tested the ability of each model to best predict their compliance with two fishing regulations (daily and size limits). The best fitting model for both regulations was composed solely of psycho-social factors, with social norms having the greatest influence on fishers’ compliance behaviour. Fishers’ attitude also directly affected compliance with size limit, but to a lesser extent. On the basis of these findings, we suggest behavioural interventions to target social norms instead of increasing enforcement for the focal regulations in the recreational blue cod fishery in the Marlborough Sounds, New Zealand. These interventions could include articles in local newspapers and fishing magazines highlighting the extent of regulation compliance as well as using respected local fishers to emphasize the benefits of compliance through public meetings or letters to the editor. Our methodological approach can be broadly applied by natural resource managers as an effective tool to identify drivers of compliance that can then guide the design of interventions to decrease illegal resource use. PMID:27727292
Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package
NASA Astrophysics Data System (ADS)
Sulejmanpasic, Tin; Ünsal, Mithat
2018-07-01
We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
Probability distributions for multimeric systems.
Albert, Jaroslav; Rooman, Marianne
2016-01-01
We propose a fast and accurate method of obtaining the equilibrium mono-modal joint probability distributions for multimeric systems. The method necessitates only two assumptions: the copy number of all species of molecule may be treated as continuous; and, the probability density functions (pdf) are well-approximated by multivariate skew normal distributions (MSND). Starting from the master equation, we convert the problem into a set of equations for the statistical moments which are then expressed in terms of the parameters intrinsic to the MSND. Using an optimization package on Mathematica, we minimize a Euclidian distance function comprising of a sum of the squared difference between the left and the right hand sides of these equations. Comparison of results obtained via our method with those rendered by the Gillespie algorithm demonstrates our method to be highly accurate as well as efficient.
RICHARDSON, Lindsey A.; LONG, Cathy; DeBECK, Kora; NGUYEN, Paul; MILLOY, M-J S.; WOOD, Evan; KERR, Thomas H.
2015-01-01
Objective Many people who use illicit drugs (PWUD) face challenges to their financial stability. Resulting activities that PWUD undertake to generate income may increase their vulnerability to violence. We therefore examined the relationship between income generation and exposure to violence across a wide range of income generating activities among HIV-positive and HIV-negative PWUD living in Vancouver, Canada. Methods Data were derived from cohorts of HIV-seropositive and HIV-seronegative PWUD (n=1876) between December 2005 and November 2012. We estimated the relationship between different types of income generation and suffering any kind of violence using bivariate and multivariate generalized estimating equations (GEE), as well as the characteristics of violent interactions. Results Exposure to violence was reported among 977 (52%) study participants over the study period. In multivariate models controlling for socio-demographic characteristics, mental health status, and drug use patterns, violence was independently and positively associated with participation in street-based income generation activities (i.e., recycling, squeegeeing, and panhandling; adjusted odds ratio [AOR]=1.39, 95% confidence interval [CI]=1.23–1.57), sex work (AOR=1.23, 95%CI=1.00–1.50), drug dealing (AOR=1.63, 95%CI=1.44–1.84), and theft and other acquisitive criminal activity (AOR=1.51, 95%CI=1.27–1.80). Engagement in regular, self or temporary employment was not associated with being exposed to violence. Strangers were the most common perpetrators of violence (46.7%) and beatings the most common type of exposure (70.8%). Conclusions These results suggest that economic activities expose individuals to contexts associated with social and structural vulnerability to violence. The creation of safe economic opportunities that minimize vulnerability to violence among PWUD is therefore urgently required. PMID:25691275
Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis
Nicole Labbe; David Harper; Timothy Rials; Thomas Elder
2006-01-01
In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...
The Specific Analysis of Structural Equation Models
ERIC Educational Resources Information Center
McDonald, Roderick P.
2004-01-01
Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…
Equational Sentence Structure in Eskimo.
ERIC Educational Resources Information Center
Hofmann, Th. R.
A comparison of the syntactic characteristics of mathematical equations and Eskimo syntax is made, and a proposal that Eskimo has a level of structure similar to that of equations is described. P:t performative contrast is reanalyzed. Questions and speculations on the formal treatment of this type of structure in transformational grammar, and its…
Bi-Hamiltonian Structure in 2-d Field Theory
NASA Astrophysics Data System (ADS)
Ferapontov, E. V.; Galvão, C. A. P.; Mokhov, O. I.; Nutku, Y.
We exhibit the bi-Hamiltonian structure of the equations of associativity (Witten-Dijkgraaf-Verlinde-Verlinde-Dubrovin equations) in 2-d topological field theory, which reduce to a single equation of Monge-Ampère type $ fttt}=f{xxt;;;;;2 - fxxx}f{xtt ,$ in the case of three primary fields. The first Hamiltonian structure of this equation is based on its representation as a 3-component system of hydrodynamic type and the second Hamiltonian structure follows from its formulation in terms of a variational principle with a degenerate Lagrangian.
Kiang, Tony K L; Ensom, Mary H H
2016-04-01
In settings where free phenytoin concentrations are not available, the Sheiner-Tozer equation-Corrected total phenytoin concentration = Observed total phenytoin concentration/[(0.2 × Albumin) + 0.1]; phenytoin in µg/mL, albumin in g/dL-and its derivative equations are commonly used to correct for altered phenytoin binding to albumin. The objective of this article was to provide a comprehensive and updated review on the predictive performance of these equations in various patient populations. A literature search of PubMed, EMBASE, and Google Scholar was conducted using combinations of the following terms: Sheiner-Tozer, Winter-Tozer, phenytoin, predictive equation, precision, bias, free fraction. All English-language articles up to November 2015 (excluding abstracts) were evaluated. This review shows the Sheiner-Tozer equation to be biased and imprecise in various critical care, head trauma, and general neurology patient populations. Factors contributing to bias and imprecision include the following: albumin concentration, free phenytoin assay temperature, experimental conditions (eg, timing of concentration sampling, steady-state dosing conditions), renal function, age, concomitant medications, and patient type. Although derivative equations using varying albumin coefficients have improved accuracy (without much improvement in precision) in intensive care and elderly patients, these equations still require further validation. Further experiments are also needed to yield derivative equations with good predictive performance in all populations as well as to validate the equations' impact on actual patient efficacy and toxicity outcomes. More complex, multivariate predictive equations may be required to capture all variables that can potentially affect phenytoin pharmacokinetics and clinical therapeutic outcomes. © The Author(s) 2016.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
Xiang, Dan; Verbruggen, Erik; Hu, Yajun; Veresoglou, Stavros D; Rillig, Matthias C; Zhou, Wenping; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Yongliang; Chen, Baodong
2014-12-01
We performed a landscape-scale investigation to compare the arbuscular mycorrhizal fungal (AMF) communities between grasslands and farmlands in the farming-pastoral ecotone of northern China. AMF richness and community composition were examined with 454 pyrosequencing. Structural equation modelling (SEM) and multivariate analyses were applied to disentangle the direct and indirect effects (mediated by multiple environmental factors) of land use on AMF. Land use conversion from grassland to farmland significantly reduced AMF richness and extraradical hyphal length density, and these land use types also differed significantly in AMF community composition. SEM showed that the effects of land use on AMF richness and hyphal length density in soil were primarily mediated by available phosphorus and soil structural quality. Soil texture was the strongest predictor of AMF community composition. Soil carbon, nitrogen and soil pH were also significantly correlated with AMF community composition, indicating that these abiotic variables could be responsible for some of the community composition differences among sites. Our study shows that land use has a partly predictable effect on AMF communities across this ecologically relevant area of China, and indicates that high soil phosphorus concentrations and poor soil structure are particularly detrimental to AMF in this fragile ecosystem. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Mankbadi, Reda R.
2002-01-01
An analysis of the nonlinear development of the large-scale structures or instability waves in compressible round jets was conducted using the integral energy method. The equations of motion were decomposed into two sets of equations; one set governing the mean flow motion and the other set governing the large-scale structure motion. The equations in each set were then combined to derive kinetic energy equations that were integrated in the radial direction across the jet after the boundary-layer approximations were applied. Following the application of further assumptions regarding the radial shape of the mean flow and the large structures, equations were derived that govern the nonlinear, streamwise development of the large structures. Using numerically generated mean flows, calculations show the energy exchanges and the effects of the initial amplitude on the coherent structure development in the jet.
Romain, Ahmed Jerôme; Bernard, Paquito; Hokayem, Marie; Gernigon, Christophe; Avignon, Antoine
2016-03-01
This study aimed to test three factorial structures conceptualizing the processes of change (POC) from the transtheoretical model and to examine the relationships between the POC and stages of change (SOC) among overweight and obese adults. Cross-sectional study. This study was conducted at the University Hospital of Montpellier, France. A sample of 289 overweight or obese participants (199 women) was enrolled in the study. Participants completed the POC and SOC questionnaires during a 5-day hospitalization for weight management. Structural equation modeling was used to compare the different factorial structures. The unweighted least-squares method was used to identify the best-fit indices for the five fully correlated model (goodness-of-fit statistic = .96; adjusted goodness-of-fit statistic = .95; standardized root mean residual = .062; normed-fit index = .95; parsimonious normed-fit index = .83; parsimonious goodness-of-fit statistic = .78). The multivariate analysis of variance was significant (p < .001). A post hoc test showed that individuals in advanced SOC used more of both experiential and behavioral POC than those in preaction stages, with effect sizes ranging from .06 to .29. This study supports the validity of the factorial structure of POC concerning physical activity and confirms the assumption that, in this context, people with excess weight use both experiential and behavioral processes. These preliminary results should be confirmed in a longitudinal study. © The Author(s) 2016.
On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure
NASA Astrophysics Data System (ADS)
Nutku, Y.
1987-11-01
The multi-Hamiltonian structure of a class of nonlinear wave equations governing the propagation of finite amplitude waves is discussed. Infinitely many conservation laws had earlier been obtained for these equations. Starting from a (primary) Hamiltonian formulation of these equations the necessary and sufficient conditions for the existence of bi-Hamiltonian structure are obtained and it is shown that the second Hamiltonian operator can be constructed solely through a knowledge of the first Hamiltonian function. The recursion operator which first appears at the level of bi-Hamiltonian structure gives rise to an infinite sequence of conserved Hamiltonians. It is found that in general there exist two different infinite sequences of conserved quantities for these equations. The recursion relation defining higher Hamiltonian structures enables one to obtain the necessary and sufficient conditions for the existence of the (k+1)st Hamiltonian operator which depends on the kth Hamiltonian function. The infinite sequence of conserved Hamiltonians are common to all the higher Hamiltonian structures. The equations of gas dynamics are discussed as an illustration of this formalism and it is shown that in general they admit tri-Hamiltonian structure with two distinct infinite sets of conserved quantities. The isothermal case of γ=1 is an exceptional one that requires separate treatment. This corresponds to a specialization of the equations governing the expansion of plasma into vacuum which will be shown to be equivalent to Poisson's equation in nonlinear acoustics.
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Canonical structures for dispersive waves in shallow water
NASA Astrophysics Data System (ADS)
Neyzi, Fahrünisa; Nutku, Yavuz
1987-07-01
The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac's theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham-Broer-Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri-Hamiltonian structure.
NASA Astrophysics Data System (ADS)
Gumral, Hasan
Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.
Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2005-01-01
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Fitting ARMA Time Series by Structural Equation Models.
ERIC Educational Resources Information Center
van Buuren, Stef
1997-01-01
This paper outlines how the stationary ARMA (p,q) model (G. Box and G. Jenkins, 1976) can be specified as a structural equation model. Maximum likelihood estimates for the parameters in the ARMA model can be obtained by software for fitting structural equation models. The method is applied to three problem types. (SLD)
A Structural Equation Modeling Analysis of Influences on Juvenile Delinquency
ERIC Educational Resources Information Center
Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake
2014-01-01
This study examined influences on delinquency and recidivism using structural equation modeling. The sample comprised 199,204 individuals: 99,602 youth whose cases had been processed by the South Carolina Department of Juvenile Justice and a matched control group of 99,602 youth without juvenile records. Structural equation modeling for the…
ERIC Educational Resources Information Center
Maslowsky, Julie; Jager, Justin; Hemken, Douglas
2015-01-01
Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith
1990-01-01
A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.
Voxelwise multivariate analysis of multimodality magnetic resonance imaging
Naylor, Melissa G.; Cardenas, Valerie A.; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin
2015-01-01
Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remains a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. PMID:23408378
Hypersonic shock structure with Burnett terms in the viscous stress and heat flux
NASA Technical Reports Server (NTRS)
Chapman, Dean R.; Fiscko, Kurt A.
1988-01-01
The continuum Navier-Stokes and Burnett equations are solved for one-dimensional shock structure in various monatomic gases. A new numerical method is employed which utilizes the complete time-dependent continuum equations and obtains the steady-state shock structure by allowing the system to relax from arbitrary initial conditions. Included is discussion of numerical difficulties encountered when solving the Burnett equations. Continuum solutions are compared to those obtained utilizing the Direct Simulation Monte Carlo method. Shock solutions are obtained for a hard sphere gas and for argon from Mach 1.3 to Mach 50. Solutions for a Maxwellian gas are obtained from Mach 1.3 to Mach 3.8. It is shown that the Burnett equations yield shock structure solutions in much closer agreement to both Monte Carlo and experimental results than do the Navier-Stokes equations. Shock density thickness, density asymmetry, and density-temperature separation are all more accurately predicted by the Burnett equations than by the Navier-Stokes equations.
Various forms of indexing HDMR for modelling multivariate classification problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksu, Çağrı; Tunga, M. Alper
2014-12-10
The Indexing HDMR method was recently developed for modelling multivariate interpolation problems. The method uses the Plain HDMR philosophy in partitioning the given multivariate data set into less variate data sets and then constructing an analytical structure through these partitioned data sets to represent the given multidimensional problem. Indexing HDMR makes HDMR be applicable to classification problems having real world data. Mostly, we do not know all possible class values in the domain of the given problem, that is, we have a non-orthogonal data structure. However, Plain HDMR needs an orthogonal data structure in the given problem to be modelled.more » In this sense, the main idea of this work is to offer various forms of Indexing HDMR to successfully model these real life classification problems. To test these different forms, several well-known multivariate classification problems given in UCI Machine Learning Repository were used and it was observed that the accuracy results lie between 80% and 95% which are very satisfactory.« less
A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering
NASA Technical Reports Server (NTRS)
Carroll, R. L.; Lindorff, D. P.
1973-01-01
An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.
Fixed order dynamic compensation for multivariable linear systems
NASA Technical Reports Server (NTRS)
Kramer, F. S.; Calise, A. J.
1986-01-01
This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.
Ferreira, Fábio S; Pereira, João M S; Duarte, João V; Castelo-Branco, Miguel
2017-01-01
Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately - using standard univariate VBM - and simultaneously, with multivariate analyses. Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities.
Ferreira, Fábio S.; Pereira, João M.S.; Duarte, João V.; Castelo-Branco, Miguel
2017-01-01
Background: Although voxel based morphometry studies are still the standard for analyzing brain structure, their dependence on massive univariate inferential methods is a limiting factor. A better understanding of brain pathologies can be achieved by applying inferential multivariate methods, which allow the study of multiple dependent variables, e.g. different imaging modalities of the same subject. Objective: Given the widespread use of SPM software in the brain imaging community, the main aim of this work is the implementation of massive multivariate inferential analysis as a toolbox in this software package. applied to the use of T1 and T2 structural data from diabetic patients and controls. This implementation was compared with the traditional ANCOVA in SPM and a similar multivariate GLM toolbox (MRM). Method: We implemented the new toolbox and tested it by investigating brain alterations on a cohort of twenty-eight type 2 diabetes patients and twenty-six matched healthy controls, using information from both T1 and T2 weighted structural MRI scans, both separately – using standard univariate VBM - and simultaneously, with multivariate analyses. Results: Univariate VBM replicated predominantly bilateral changes in basal ganglia and insular regions in type 2 diabetes patients. On the other hand, multivariate analyses replicated key findings of univariate results, while also revealing the thalami as additional foci of pathology. Conclusion: While the presented algorithm must be further optimized, the proposed toolbox is the first implementation of multivariate statistics in SPM8 as a user-friendly toolbox, which shows great potential and is ready to be validated in other clinical cohorts and modalities. PMID:28761571
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, K. F.; Belvin, W. Keith
1991-01-01
A second-order form of discrete Kalman filtering equations is proposed as a candidate state estimator for efficient simulations of control-structure interactions in coupled physical coordinate configurations as opposed to decoupled modal coordinates. The resulting matrix equation of the present state estimator consists of the same symmetric, sparse N x N coupled matrices of the governing structural dynamics equations as opposed to unsymmetric 2N x 2N state space-based estimators. Thus, in addition to substantial computational efficiency improvement, the present estimator can be applied to control-structure design optimization for which the physical coordinates associated with the mass, damping and stiffness matrices of the structure are needed instead of modal coordinates.
A Stochastic Diffusion Process for the Dirichlet Distribution
Bakosi, J.; Ristorcelli, J. R.
2013-03-01
The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability ofNcoupled stochastic variables with the Dirichlet distribution as its asymptotic solution. To ensure a bounded sample space, a coupled nonlinear diffusion process is required: the Wiener processes in the equivalent system of stochastic differential equations are multiplicative with coefficients dependent on all the stochastic variables. Individual samples of a discrete ensemble, obtained from the stochastic process, satisfy a unit-sum constraint at all times. The process may be used to represent realizations of a fluctuating ensemble ofNvariables subject to a conservation principle.more » Similar to the multivariate Wright-Fisher process, whose invariant is also Dirichlet, the univariate case yields a process whose invariant is the beta distribution. As a test of the results, Monte Carlo simulations are used to evolve numerical ensembles toward the invariant Dirichlet distribution.« less
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…
ERIC Educational Resources Information Center
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.
2018-01-01
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
ERIC Educational Resources Information Center
Kozan, Kadir
2016-01-01
The present study investigated the relationships among teaching, cognitive, and social presence through several structural equation models to see which model would better fit the data. To this end, the present study employed and compared several different structural equation models because different models could fit the data equally well. Among…
NASA Astrophysics Data System (ADS)
Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault
2017-08-01
Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.
Faria, Franciane Rocha; Faria, Eliane Rodrigues; Cecon, Roberta Stofeles; Barbosa Júnior, Djalma Adão; Franceschini, Sylvia do Carmo Castro; Peluzio, Maria do Carmo Gouveia; Ribeiro, Andréia Queiroz; Lira, Pedro Israel Cabral; Cecon, Paulo Roberto; Priore, Silvia Eloiza
2013-01-01
The aim of this study was to analyze body fat anthropometric equations and electrical bioimpedance analysis (BIA) in the prediction of cardiovascular risk factors in eutrophic and overweight adolescents. 210 adolescents were divided into eutrophic group (G1) and overweight group (G2). The percentage of body fat (% BF) was estimated using 10 body fat anthropometric equations and 2 BIA. We measured lipid profiles, uric acid, insulin, fasting glucose, homeostasis model assessment-insulin resistance (HOMA-IR), and blood pressure. We found that 76.7% of the adolescents exhibited inadequacy of at least one biochemical parameter or clinical cardiovascular risk. Higher values of triglycerides (TG) (P = 0.001), insulin, and HOMA-IR (P < 0.001) were observed in the G2 adolescents. In multivariate linear regression analysis, the % BF from equation (5) was associated with TG, diastolic blood pressure, and insulin in G1. Among the G2 adolescents, the % BF estimated by (5) and (9) was associated with LDL, TG, insulin, and the HOMA-IR. Body fat anthropometric equations were associated with cardiovascular risk factors and should be used to assess the nutritional status of adolescents. In this study, equation (5) was associated with a higher number of cardiovascular risk factors independent of the nutritional status of adolescents. PMID:23762051
Diffusion Processes Satisfying a Conservation Law Constraint
Bakosi, J.; Ristorcelli, J. R.
2014-03-04
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Diffusion Processes Satisfying a Conservation Law Constraint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, J.; Ristorcelli, J. R.
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions
2013-01-01
Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370
ERIC Educational Resources Information Center
Joo, Soohyung; Kipp, Margaret E. I.
2015-01-01
Introduction: This study examines the structure of Web space in the field of library and information science using multivariate analysis of social tags from the Website, Delicious.com. A few studies have examined mathematical modelling of tags, mainly examining tagging in terms of tripartite graphs, pattern tracing and descriptive statistics. This…
ERIC Educational Resources Information Center
Steinley, Douglas; Brusco, Michael J.; Henson, Robert
2012-01-01
A measure of "clusterability" serves as the basis of a new methodology designed to preserve cluster structure in a reduced dimensional space. Similar to principal component analysis, which finds the direction of maximal variance in multivariate space, principal cluster axes find the direction of maximum clusterability in multivariate space.…
Kokkinos, Peter; Kaminsky, Leonard A; Arena, Ross; Zhang, Jiajia; Myers, Jonathan
2017-08-15
Impaired cardiorespiratory fitness (CRF) is closely linked to chronic illness and associated with adverse events. The American College of Sports Medicine (ACSM) regression equations (ACSM equations) developed to estimate oxygen uptake have known limitations leading to well-documented overestimation of CRF, especially at higher work rates. Thus, there is a need to explore alternative equations to more accurately predict CRF. We assessed maximal oxygen uptake (VO 2 max) obtained directly by open-circuit spirometry in 7,983 apparently healthy subjects who participated in the Fitness Registry and the Importance of Exercise National Database (FRIEND). We randomly sampled 70% of the participants from each of the following age categories: <40, 40 to 50, 50 to 70, and ≥70 and used the remaining 30% for validation. Multivariable linear regression analysis was applied to identify the most relevant variables and construct the best prediction model for VO 2 max. Treadmill speed and treadmill speed × grade were considered in the final model as predictors of measured VO 2 max and the following equation was generated: VO 2 max in ml O 2 /kg/min = speed (m/min) × (0.17 + fractional grade × 0.79) + 3.5. The FRIEND equation predicted VO 2 max with an overall error >4 times lower than the error associated with the traditional ACSM equations (5.1 ± 18.3% vs 21.4 ± 24.9%, respectively). Overestimation associated with the ACSM equation was accentuated when different protocols were considered separately. In conclusion, The FRIEND equation predicts VO 2 max more precisely than the traditional ACSM equations with an overall error >4 times lower than that associated with the ACSM equations. Published by Elsevier Inc.
Gonzales, Mitzi M.; Takashi, Tarumi; Eagan, Danielle E.; Tanaka, Hirofumi; Vaghasia, Miral; Haley, Andreana P.
2012-01-01
Objective Elevated body mass index (BMI) at midlife is associated with increased risk of cognitive decline in later life. The goal of the current study was to assess mechanisms of early brain vulnerability by examining if higher BMI at midlife has an effect on current cognitive performance through alterations in cerebral neurochemistry. Methods Fifty-five participants, aged 40–60 years, underwent neuropsychological testing, health screen, and proton magnetic resonance spectroscopy (1H MRS) examining N-acetyl-aspartate (NAA), creatine (Cr), myo-inositol (mI), choline (Cho), and glutamate (Glu) concentrations in occipitoparietal grey matter. Concentrations of NAA, Cho, mI, and Glu were calculated as a ratio over Cr and examined in relation to BMI using multivariate regression analyses. Structural equation modeling was used to determine if BMI had an indirect effect on cognition through cerebral metabolite levels. Results Higher BMI was associated with elevations in mI/Cr (F(5,45)= 3.843, p=0.006, β=0.444, p=0.002), independent of age, sex, fasting glucose levels, and systolic blood pressure. Moreover, a chi-square difference test of the direct and indirect structural equation models revealed that BMI had an indirect effect on global cognitive performance (ΔX2(df=2) =19.939, p<0.001). Subsequent follow-up analyses revealed that this effect was specific to memory (ΔX2(df=2) = 22.027, p<0.001). Conclusions Higher BMI was associated with elevations in mI/Cr concentrations in the occipitoparietal grey matter and indirectly related to poorer memory performance through mI/Cr, potentially implicating plasma hypertonicity and neuroinflammation as mechanisms underlying obesity-related brain vulnerability. PMID:22822230
Buffart, Laurien M; de Bree, Remco; Altena, Martine; van der Werff, Sophie; Drossaert, Constance H C; Speksnijder, Caroline M; van den Brekel, Michiel W; Jager-Wittenaar, Harriët; Aaronson, Neil K; Stuiver, Martijn M
2018-05-01
The purpose of the study is to identify demographic, clinical, lifestyle-related, and social-cognitive correlates of physical activity (PA) intention and behavior in head and neck cancer (HNC) survivors using the theory of planned behavior (TPB). Data from two cross-sectional studies on correlates of PA in HNC survivors were pooled. Both studies used self-reports to assess PA and social-cognitive correlates. Potential correlates were collected via self-report or medical records. Univariable and multivariable multilevel linear mixed-effects models were built to identify correlates of PA intention and PA behavior (Z scores). Structural equation model analyses were conducted to study the full TPB model in one analysis, taking into account relevant covariates. In total, 416 HNC survivors were surveyed. Their mean (SD) age was 66.6 (9.4) years; 64% were men, and 78% were diagnosed with laryngeal cancer. The structural equation model showed that PA intention was significantly higher in HNC survivors with a history of exercising, who had a more positive attitude, subjective norm, and perceived behavioral control. Patients with higher PA intention, higher PBC, a lower age, and without unintentional weight loss or comorbidities had higher PA behavior. The model explained 22.9% of the variance in PA intention and 16.1% of the variance in PA behavior. Despite significant pathways of the TPB model, the large proportion variance in PA intention and behavior remaining unexplained suggests the need for better PA behavior (change) models to guide the development of PA promotion programs, particularly for the elderly. Such programs should be tailored to comorbidities and nutritional status.
Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël
2016-11-01
Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach. Copyright © 2016 Elsevier B.V. All rights reserved.
Beydoun, May A; Gary, Tiffany L; Caballero, Benjamin H; Lawrence, Robert S; Cheskin, Lawrence J; Wang, Youfa
2008-06-01
Recent studies suggest dairy consumption and associated nutrients may be protective against some of the components of the metabolic syndrome (MetS). We examined the association between consumption of a variety of dairy products and their related nutrients with obesity, central obesity, and MetS, and attempted to explain some of the ethnic differences in metabolic outcomes through dairy consumption using national data. Nationally representative indicators of obesity, central obesity, and MetS among US adults were constructed from National Health and Nutrition Examination Survey 1999-2004 data, including direct anthropometric assessments, blood pressure, and laboratory tests. Sample sizes ranged from 4519 for MetS to 14 618 for obesity. Associations between diet (assessed using 24-h recalls) and metabolic and other outcomes were tested using multivariate linear and logistic models and structural equation models. We found a significant inverse association between intake of whole milk, yogurt, calcium, and magnesium and metabolic disorders. Odds ratios for one more daily serving of yogurt and 100 mg Mg for MetS were 0.40 (95% CI: 0.18, 0.89) and 0.83 (95% CI: 0.72, 0.96), respectively. The opposite was found for intakes of cheese, low-fat milk, and phosphorus. Using structural equation models, ethnic differences in some MetS outcomes, such as body mass index and systolic blood pressure, were partly explained by variations in dairy-related nutrients. Various dairy products may have differential associations with metabolic disorders, including obesity. Ethnic differences in dairy consumption may explain in part the ethnic disparities in metabolic disorders in the US population.
Cheung, Ching-Lung; Tan, Kathryn C B; Lam, Karen S L; Cheung, Bernard M Y
2013-09-01
Serum alkaline phosphatase plays a role in vascular calcification. It is found in various tissues, whereas bone-specific alkaline phosphatase (BAP) more specifically reflects mineral metabolism. The relationship of serum alkaline phosphatase (total and bone-specific) with diabetes and metabolic syndrome (MetS), 2 major risk factors of vascular calcification, is largely unknown. We aimed to investigate the relationships between glucose metabolism, components of the MetS, and alkaline phosphatase. This was a cross-sectional study of a nationally representative sample of the U.S. population in 1999 through 2004. Participants were 3773 nondiabetic participants of the National Health and Nutrition Examination Survey 1999-2004. We measured serum BAP and total alkaline phosphatase. In multivariable linear regression, updated homeostasis model assessment (HOMA2) for insulin resistance (β = 0.068), HOMA2 for β-cell function (β = 0.081), insulin (β = 0.065), mean arterial pressure (β = 0.15), and high-density lipoprotein (HDL)-cholesterol (β = 0.209) were positively associated with BAP, whereas HOMA2 for insulin sensitivity (β = -0.065) was negatively associated with BAP. On the other hand, only mean arterial pressure and HDL-cholesterol were significantly associated with total alkaline phosphatase. Moreover, a structural equation model revealed that hypertension, low HDL, and insulin resistance had significant direct effects on serum BAP levels, whereas obesity and inflammation might have indirect effects on serum BAP levels. The overall model showed very good fit to the data (comparative fit index = 0.995, root mean square error of approximation = 0.037, and standardized root mean square residual = 0.006). Glucose metabolism and MetS are significantly related to serum BAP levels. How BAP mediates vascular calcification in diabetes and MetS warrants further studies.
Nock, Nl; Zhang, Lx
2011-11-29
Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487 single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1, collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A, VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (βstd = 0.33 ± 0.05). Using replicate 137 estimates as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant methods are needed in stage 1 to minimize type I and type II error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris
Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less
Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris; ...
2018-04-23
Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less
ERIC Educational Resources Information Center
Petko, Dominik; Prasse, Doreen; Cantieni, Andrea
2018-01-01
Decades of research have shown that technological change in schools depends on multiple interrelated factors. Structural equation models explaining the interplay of factors often suffer from high complexity and low coherence. To reduce complexity, a more robust structural equation model was built with data from a survey of 349 Swiss primary school…
Hong, Sehee; Kim, Soyoung
2018-01-01
There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.
Regression Models For Multivariate Count Data
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2016-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data. PMID:28348500
Regression Models For Multivariate Count Data.
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2017-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.
Extensions to Multivariate Space Time Mixture Modeling of Small Area Cancer Data.
Carroll, Rachel; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Aregay, Mehreteab; Watjou, Kevin
2017-05-09
Oral cavity and pharynx cancer, even when considered together, is a fairly rare disease. Implementation of multivariate modeling with lung and bronchus cancer, as well as melanoma cancer of the skin, could lead to better inference for oral cavity and pharynx cancer. The multivariate structure of these models is accomplished via the use of shared random effects, as well as other multivariate prior distributions. The results in this paper indicate that care should be taken when executing these types of models, and that multivariate mixture models may not always be the ideal option, depending on the data of interest.
NASA Astrophysics Data System (ADS)
Anekawati, Anik; Widjanarko Otok, Bambang; Purhadi; Sutikno
2017-06-01
Research in education often involves a latent variable. Statistical analysis technique that has the ability to analyze the pattern of relationship among latent variables as well as between latent variables and their indicators is Structural Equation Modeling (SEM). SEM partial least square (PLS) was developed as an alternative if these conditions are met: the theory that underlying the design of the model is weak, does not assume a certain scale measurement, the sample size should not be large and the data does not have the multivariate normal distribution. The purpose of this paper is to compare the results of modeling of the educational quality in high school level (SMA/MA) in Sumenep Regency with structural equation modeling approach partial least square with three schemes estimation of score factors. This paper is a result of explanatory research using secondary data from Sumenep Education Department and Badan Pusat Statistik (BPS) Sumenep which was data of Sumenep in the Figures and the District of Sumenep in the Figures for the year 2015. The unit of observation in this study were districts in Sumenep that consists of 18 districts on the mainland and 9 districts in the islands. There were two endogenous variables and one exogenous variable. Endogenous variables are the quality of education level of SMA/MA (Y1) and school infrastructure (Y2), whereas exogenous variable is socio-economic condition (X1). In this study, There is one improved model which represented by model from path scheme because this model is a consistent, all of its indicators are valid and its the value of R-square increased which is: Y1=0.651Y2. In this model, the quality of education influenced only by the school infrastructure (0.651). The socio-economic condition did not affect neither the school infrastructure nor the quality of education. If the school infrastructure increased 1 point, then the quality of education increased 0.651 point. The quality of education had an R2 of 0.418, which indicates that 41.8 percent of variance in the quality of education is explained by the school infrastructure, the remaining 58.2% is explained by the other factors which were not investigated in this work.
Using structural equation modeling to investigate relationships among ecological variables
Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.
2000-01-01
Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0.1258. Natural variability had a positive direct effect on biodiversity of magnitude 0.5347 and a negative indirect effect mediated through growth potential of magnitude -0.1105 yielding a positive total effects of magnitude 0.4242. Sediment contamination had a negative direct effect on biodiversity of magnitude -0.1956 and a negative indirect effect on growth potential via biodiversity of magnitude -0.067. Biodiversity had a positive effect on growth potential of magnitude 0.8432, and growth potential had a positive effect on biodiversity of magnitude 0.3398. The correlation between biodiversity and growth potential was estimated at 0.7658 and that between sediment contamination and natural variability at -0.3769.
Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry
2013-01-01
The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258
Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers
NASA Technical Reports Server (NTRS)
Guruswamy, Guru; VanDalsem, William (Technical Monitor)
1994-01-01
Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
Voxelwise multivariate analysis of multimodality magnetic resonance imaging.
Naylor, Melissa G; Cardenas, Valerie A; Tosun, Duygu; Schuff, Norbert; Weiner, Michael; Schwartzman, Armin
2014-03-01
Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast or modality, frequently structural MRI. By performing an integrated analysis of several modalities, such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to better understand the underlying processes of brain diseases. We compare two voxelwise approaches: (1) fitting multiple univariate models, one for each outcome and then adjusting for multiple comparisons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple comparisons is performed over all voxels jointly to account for the search over the brain. The multivariate model is able to account for the multiple comparisons over outcomes without assuming independence because the covariance structure between modalities is estimated. Simulations show that the multivariate approach is more powerful when the outcomes are correlated and, even when the outcomes are independent, the multivariate approach is just as powerful or more powerful when at least two outcomes are dependent on predictors in the model. However, multiple univariate regressions with Bonferroni correction remain a desirable alternative in some circumstances. To illustrate the power of each approach, we analyze a case control study of Alzheimer's disease, in which data from three MRI modalities are available. Copyright © 2013 Wiley Periodicals, Inc.
A new method for reconstruction of solar irradiance
NASA Astrophysics Data System (ADS)
Privalsky, Victor
2018-07-01
The purpose of this research is to show how time series should be reconstructed using an example with the data on total solar irradiation (TSI) of the Earth and on sunspot numbers (SSN) since 1749. The traditional approach through regression equation(s) is designed for time-invariant vectors of random variables and is not applicable to time series, which present random functions of time. The autoregressive reconstruction (ARR) method suggested here requires fitting a multivariate stochastic difference equation to the target/proxy time series. The reconstruction is done through the scalar equation for the target time series with the white noise term excluded. The time series approach is shown to provide a better reconstruction of TSI than the correlation/regression method. A reconstruction criterion is introduced which allows one to define in advance the achievable level of success in the reconstruction. The conclusion is that time series, including the total solar irradiance, cannot be reconstructed properly if the data are not treated as sample records of random processes and analyzed in both time and frequency domains.
2012-04-01
ER D C/ G SL T R -1 2 -1 5 Pavement -Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified...Berggren (ModBerg) Equation for Computing the Frost Penetration Depth within Pavement Structures G eo te ch n ic al a n d S tr u ct u re s La b or at...April 2012 Pavement -Transportation Computer Assisted Structural Engineering (PCASE) Implementation of the Modified Berggren (ModBerg) Equation for
Acceptance of Prostitution and Its Social Determinants in Canada.
Cao, Liqun; Lu, Ruibin; Mei, Xiaohan
2017-08-01
The nature of collective perception of prostitution is understudied in Canada. Except some rudimentary reports on the percentages of the key legal options, multivariate analysis has never been used to analyze the details of public opinion on prostitution. The current study explores the trend of public attitude toward prostitution acceptability in Canada over a 25-year span and examines the social determinants of the acceptability of prostitution, using structural equation modeling (SEM), which allows researchers to elaborate both direct and indirect effects (through mediating variables) on the outcome variable. Results show that the public has become more acceptant of prostitution over time. In addition, the less religious, less authoritarian, and more educated are more acceptant of prostitution than the more religious, more authoritarian, and less well educated. The effects of religiosity and authoritarianism mediate out the direct effects of age, gender, gender equality, marriage, marriage as an outdated institution, Quebec, race, and tolerance. The findings may serve as a reference point for the law reform regarding the regulation of prostitution in Canada.
Do, Mai; Figueroa, Maria Elena; Lawrence Kincaid, D
2016-09-01
Knowing one's serostatus is critical in the HIV prevention, care and treatment continuum. This study examines the impact of communication programs on HIV testing in South Africa. Data came from 2204 young men and women aged 16-24 who reported to be sexually active in a population based survey. Structural equation modeling was used to test the directions and causal pathways between communication program exposure, HIV testing discussion, and having a test in the last 12 months. Bivariate and multivariate probit regressions provided evidence of exogeneity of communication exposure and the two HIV-related outcomes. One in three sampled individuals had been tested in the last 12 months. Communication program exposure only had an indirect effect on getting tested by encouraging young people to talk about testing. The study suggests that communication programs may create an environment that supports open HIV-related discussions and may have a long-term impact on behavior change.
Amico, K. Rivet; Barta, William; Konkle-Parker, Deborah J.; Fisher, Jeffrey D.; Cornman, Deborah H.; Shuper, Paul A.; Fisher, William A.
2011-01-01
High levels of adherence to antiretroviral therapy (ART) are critical to the management of HIV, yet many people living with HIV do not achieve these levels. There is a substantial body of literature regarding correlates of adherence to ART, and theory-based multivariate models of ART adherence are emerging. The current study assessed the determinants of adherence behavior postulated by the Information–Motivation–Behavioral Skills model of ART adherence in a sample of 149 HIV-positive patients in Mississippi. Structural equation modeling indicated that ART-related information correlated with personal and social motivation, and the two sub-areas of motivation were not intercorrelated. In this Deep South sample, being better informed, socially supported, and perceiving fewer negative consequences of adherence were independently related to stronger behavioral skills for taking medications, which in turn associated with self-reported adherence. The IMB model of ART adherence appeared to well characterize the complexities of adherence for this sample. PMID:17876697
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Cheong R.
The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-ordermore » equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites.« less
Application of two tests of multivariate discordancy to fisheries data sets
Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.
2008-01-01
The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.
Framework based on communicability and flow to analyze complex network dynamics
NASA Astrophysics Data System (ADS)
Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.
2018-05-01
Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.
MILLER, WARREN B.; BARD, DAVID E.; PASTA, DAVID J.; RODGERS, JOSEPH LEE
2010-01-01
In spite of long-held beliefs that traits related to reproductive success tend to become fixed by evolution with little or no genetic variation, there is now considerable evidence that the natural variation of fertility within populations is genetically influenced and that a portion of that influence is related to the motivational precursors to fertility. We conduct a two-stage analysis to examine these inferences in a time-ordered multivariate context. First, using data from the National Longitudinal Survey of Youth, 1979, and LISREL analysis, we develop a structural equation model in which five hypothesized motivational precursors to fertility, measured in 1979–1982, predict both a child-timing and a child-number outcome, measured in 2002. Second, having chosen two time-ordered sequences of six variables from the SEM to represent our phenotypic models, we use Mx to conduct both univariate and multivariate behavioral genetic analyses with the selected variables. Our results indicate that one or more genes acting within a gene network have additive effects that operate through child-number desires to affect both the timing of the next child born and the final number of children born, that one or more genes acting through a separate network may have additive effects operating through gender role attitudes to produce downstream effects on the two fertility outcomes, and that no genetic variance is associated with either child-timing intentions or educational intentions. PMID:20608103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne A.; Berry, David A.; Shultz, Travis R.
A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation andmore » its relationship to the new equations are presented.« less
Stellar Structure Models of Deformed Neutron Stars
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Wigley, David; Weber, Fridolin
Traditional stellar structure models of non-rotating neutron stars work under the assumption that these stars are perfect spheres. This assumption of perfect spherical symmetry is not correct if the matter inside neutron stars is described by an anisotropic model for the equation of state. Certain classes of neutron stars such as Magnetars and neutron stars which contain color-superconducting quark matter cores are expected to be deformed making them oblong spheroids. In this work, we investigate the stellar structure of these deformed neutron stars by deriving stellar structure equations in the framework of general relativity. Using a non-isotropic equation of state model, we solve these structure equations numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure profiles and investigate changes from standard spherical models.
Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2016-01-01
Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.
Synthetic gene frequency maps of man and selective effects of climate
Piazza, A.; Menozzi, P.; Cavalli-Sforza, L. L.
1981-01-01
The world distribution of 39 independent gene frequencies in human populations is analyzed by multivariate techniques and synthetic geographic maps. Most genetic variation is associated with longitude, with South Asia showing a tendency to be central. Also latitude and, more particularly, distance from the equator play a significant role in a way that suggests that climatic factors exercise selective pressures, especially for certain genes. Images PMID:6941316
Model-Based Clustering and Data Transformations for Gene Expression Data
2001-04-30
transformation parameters, e.g. Andrews, Gnanadesikan , and Warner (1973). Aitchison tests: Aitchison (1986) tested three aspects of the data for...N in the Box-Cox transformation in Equation (5) is estimated by maximum likelihood using the observa- tions (Andrews, Gnanadesikan , and Warner 1973...Compositional Data. Chapman and Hall. Andrews, D. F., R. Gnanadesikan , and J. L. Warner (1973). Methods for assessing multivari- ate normality. In P. R
Sequential design of discrete linear quadratic regulators via optimal root-locus techniques
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar
1989-01-01
A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.
Geometric Model of Induction Heating Process of Iron-Based Sintered Materials
NASA Astrophysics Data System (ADS)
Semagina, Yu V.; Egorova, M. A.
2018-03-01
The article studies the issue of building multivariable dependences based on the experimental data. A constructive method for solving the issue is presented in the form of equations of (n-1) – surface compartments of the extended Euclidean space E+n. The dimension of space is taken to be equal to the sum of the number of parameters and factors of the model of the system being studied. The basis for building multivariable dependencies is the generalized approach to n-space used for the surface compartments of 3D space. The surface is designed on the basis of the kinematic method, moving one geometric object along a certain trajectory. The proposed approach simplifies the process aimed at building the multifactorial empirical dependencies which describe the process being investigated.
Khazaee-Pool, Maryam; Pashaei, Tahereh; Jahangiry, Leila; Ponnet, Koen; Gholami, Ali
2017-06-07
It is widely accepted that a healthy lifestyle may decrease the probability of developing cancer. This study aimed to describe a study protocol that makes it possible to explore preventive health lifestyles of Iranian women and their received social support for the purpose of developing cultural strategies to increase breast cancer prevention. A mixed-methods study will be accomplished in two sequential parts. First, a cross-sectional study will be conducted in which 2,250 Iranian women are recruited by using a random multistage cluster sampling of 20 health care centers. Structured face-to-face interviews will be conducted to obtain information on the participants' health lifestyle and perceived social support. Data will be analyzed using both multivariate regression and structural equation modeling techniques. Then, a qualitative study will be conducted among employed women using a purposive sampling design. Data will be collected by means of focus groups and semi-structured interviews and will be analyzed using a conventional content analysis approach. The results of the quantitative and qualitative study will be used to develop breast cancer preventive strategies. Researchers need to acquire knowledge regarding the lifestyle and perceived social support of Iranian women that will foster culturally competent approaches to promote healthy lifestyles to develop breast cancer preventive strategies. Examining breast cancer preventive lifestyles provides valuable information for designing applicable intervention programs for improving women's health.
Analytical description of concentration dependence of surface tension in multicomponent systems
NASA Astrophysics Data System (ADS)
R, Dadashev; R, Kutuev; D, Elimkhanov
2008-02-01
From the basic fundamental thermodynamic expressions the equation of isotherms of the surface tension of a ternary system is received. Various assumptions concerning the concentration dependence of molar areas are usually made when the equation is derived. The dependence of the molar areas is calculated as an additive function of the structure of a volumetric phase or the structure of a surface layer. To define the concentration dependence of the molar areas we used a stricter thermodynamic expression offered by Butler. In the received equation the dependence of molar areas on the structure of the solution is taken into account. Therefore, the equation can be applied for the calculation of surface tension over a wide concentration range of the components. Unlike the known expressions, the equation includes the surface tension properties of lateral binary systems, which makes the accuracy of the calculated values considerably higher. Thus, among the advantages of the offered equation we can point out the mathematical simplicity of the received equation and the fact that the equation includes physical parameters the experimental definition of which does not present any special difficulties.
Linear, multivariable robust control with a mu perspective
NASA Technical Reports Server (NTRS)
Packard, Andy; Doyle, John; Balas, Gary
1993-01-01
The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.
Warton, David I; Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.
Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071
Finite element solution of torsion and other 2-D Poisson equations
NASA Technical Reports Server (NTRS)
Everstine, G. C.
1982-01-01
The NASTRAN structural analysis computer program may be used, without modification, to solve two dimensional Poisson equations such as arise in the classical Saint Venant torsion problem. The nonhomogeneous term (the right-hand side) in the Poisson equation can be handled conveniently by specifying a gravitational load in a "structural" analysis. The use of an analogy between the equations of elasticity and those of classical mathematical physics is summarized in detail.
NASA Astrophysics Data System (ADS)
Zalaletdinov, R. M.
1998-04-01
The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.
Covariance and the hierarchy of frame bundles
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.
1987-01-01
This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.
Noumegni, Steve Raoul; Ama, Vicky Jocelyne Moor; Assah, Felix K; Bigna, Jean Joel; Nansseu, Jobert Richie; Kameni, Jenny Arielle M; Katte, Jean-Claude; Dehayem, Mesmin Y; Kengne, Andre Pascal; Sobngwi, Eugene
2017-01-01
The Absolute cardiovascular disease (CVD) risk evaluation using multivariable CVD risk models is increasingly advocated in people with HIV, in whom existing models remain largely untested. We assessed the agreement between the general population derived Framingham CVD risk equation and the HIV-specific Data collection on Adverse effects of anti-HIV Drugs (DAD) CVD risk equation in HIV-infected adult Cameroonians. This cross-sectional study involved 452 HIV infected adults recruited at the HIV day-care unit of the Yaoundé Central Hospital, Cameroon. The 5-year projected CVD risk was estimated for each participant using the DAD and Framingham CVD risk equations. Agreement between estimates from these equations was assessed using the spearman correlation and Cohen's kappa coefficient. The mean age of participants (80% females) was 44.4 ± 9.8 years. Most participants (88.5%) were on antiretroviral treatment with 93.3% of them receiving first-line regimen. The most frequent cardiovascular risk factors were abdominal obesity (43.1%) and dyslipidemia (33.8%). The median estimated 5-year CVD risk was 0.6% (25th-75th percentiles: 0.3-1.3) using the DAD equation and 0.7% (0.2-2.0) with the Framingham equation. The Spearman correlation between the two estimates was 0.93 ( p < 0.001). The kappa statistic was 0.61 (95% confident interval: 0.54-0.67) for the agreement between the two equations in classifying participants across risk categories defined as low, moderate, high and very high. Most participants had a low-to-moderate estimated CVD risk, with acceptable level of agreement between the general and HIV-specific equations in ranking CVD risk.
Liu, Xin; Sun, Qi; Sun, Liang; Zong, Geng; Lu, Ling; Liu, Gang; Rosner, Bernard; Ye, Xingwang; Li, Huaixing; Lin, Xu
2015-05-14
Equations based on simple anthropometric measurements to predict body fat percentage (BF%) are lacking in Chinese population with increasing prevalence of obesity and related abnormalities. We aimed to develop and validate BF% equations in two independent population-based samples of Chinese men and women. The equations were developed among 960 Chinese Hans living in Shanghai (age 46.2 (SD 5.3) years; 36.7% male) using a stepwise linear regression and were subsequently validated in 1150 Shanghai residents (58.7 (SD 6.0) years; 41.7% male; 99% Chinese Hans, 1% Chinese minorities). The associations of equation-derived BF% with changes of 6-year cardiometabolic outcomes and incident type 2 diabetes (T2D) were evaluated in a sub-cohort of 780 Chinese, compared with BF% measured by dual-energy X-ray absorptiometry (DXA; BF%-DXA). Sex-specific equations were established with age, BMI and waist circumference as independent variables. The BF% calculated using new sex-specific equations (BF%-CSS) were in reasonable agreement with BF%-DXA (mean difference: 0.08 (2 SD 6.64) %, P= 0.606 in men; 0.45 (2 SD 6.88) %, P< 0.001 in women). In multivariate-adjusted models, the BF%-CSS and BF%-DXA showed comparable associations with 6-year changes in TAG, HDL-cholesterol, diastolic blood pressure, C-reactive protein and uric acid (P for comparisons ≥ 0.05). Meanwhile, the BF%-CSS and BF%-DXA had comparable areas under the receiver operating characteristic curves for associations with incident T2D (men P= 0.327; women P= 0.159). The BF% equations might be used as surrogates for DXA to estimate BF% among adult Chinese. More studies are needed to evaluate the application of our equations in different populations.
Investigations of Sayre's Equation.
NASA Astrophysics Data System (ADS)
Shiono, Masaaki
Available from UMI in association with The British Library. Since the discovery of X-ray diffraction, various methods of using it to solve crystal structures have been developed. The major methods used can be divided into two categories: (1) Patterson function based methods; (2) Direct phase-determination methods. In the early days of structure determination from X-ray diffraction, Patterson methods played the leading role. Direct phase-determining methods ('direct methods' for short) were introduced by D. Harker and J. S. Kasper in the form of inequality relationships in 1948. A significant development of direct methods was produced by Sayre (1952). The equation he introduced, generally called Sayre's equation, gives exact relationships between structure factors for equal atoms. Later Cochran (1955) derived the so-called triple phase relationship, the main means by which it has become possible to find the structure factor phases automatically by computer. Although the background theory of direct methods is very mathematical, the user of direct-methods computer programs needs no detailed knowledge of these automatic processes in order to solve structures. Recently introduced direct methods are based on Sayre's equation, so it is important to investigate its properties thoroughly. One such new method involves the Sayre equation tangent formula (SETF) which attempts to minimise the least square residual for the Sayre's equations (Debaerdemaeker, Tate and Woolfson; 1985). In chapters I-III the principles and developments of direct methods will be described and in chapters IV -VI the properties of Sayre's equation and its modification will be discussed. Finally, in chapter VII, there will be described the investigation of the possible use of an equation, similar in type to Sayre's equation, derived from the characteristics of the Patterson function.
Structural analysis and design of multivariable control systems: An algebraic approach
NASA Technical Reports Server (NTRS)
Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen
1988-01-01
The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.
1995-01-01
This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Richter, Stephen
1990-01-01
One well known deficiency of LQG compensators is that they do not guarantee any measure of robustness. This deficiency is especially highlighted when considering control design for complex systems such as flexible structures. There has thus been a need to generalize LQG theory to incorporate robustness constraints. Here we describe the maximum entropy approach to robust control design for flexible structures, a generalization of LQG theory, pioneered by Hyland, which has proved useful in practice. The design equations consist of a set of coupled Riccati and Lyapunov equations. A homotopy algorithm that is used to solve these design equations is presented.
Identification and control of structures in space
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Quinn, R. D.; Norris, M. A.
1984-01-01
The derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) is reported and the equations of motion of a similar structure orbiting the earth are also derived. The structure is assumed to undergo large rigid-body maneuvers and small elastic deformations. A perturbation approach is proposed whereby the quantities defining the rigid-body maneuver are assumed to be relatively large, with the elastic deformations and deviations from the rigid-body maneuver being relatively small. The perturbation equations have the form of linear equations with time-dependent coefficients. An active control technique can then be formulated to permit maneuvering of the spacecraft and simultaneously suppressing the elastic vibration.
Bostanmaneshrad, Farshid; Partani, Sadegh; Noori, Roohollah; Nachtnebel, Hans-Peter; Berndtsson, Ronny; Adamowski, Jan Franklin
2018-10-15
To date, few studies have investigated the simultaneous effects of macro-scale parameters (MSPs) such as land use, population density, geology, and erosion layers on micro-scale water quality variables (MSWQVs). This research focused on an evaluation of the relationship between MSPs and MSWQVs in the Siminehrood River Basin, Iran. In addition, we investigated the importance of water particle travel time (hydrological distance) on this relationship. The MSWQVs included 13 physicochemical and biochemical parameters observed at 15 stations during three seasons. Primary screening was performed by utilizing three multivariate statistical analyses (Pearson's correlation, cluster and discriminant analyses) in seven series of observed data. These series included three separate seasonal data, three two-season data, and aggregated three-season data for investigation of relationships between MSPs and MSWQVs. Coupled data (pairs of MSWQVs and MSPs) repeated in at least two out of three statistical analyses were selected for final screening. The primary screening results demonstrated significant relationships between land use and phosphorus, total solids and turbidity, erosion levels and electrical conductivity, and erosion and total solids. Furthermore, water particle travel time effects were considered through three geographical pattern definitions of distance for each MSP by using two weighting methods. To find effective MSP factors on MSWQVs, a multivariate linear regression analysis was employed. Then, preliminary equations that estimated MSWQVs were developed. The preliminary equations were modified to adaptive equations to obtain the final models. The final models indicated that a new metric, referred to as hydrological distance, provided better MSWQV estimation and water quality prediction compared to the National Sanitation Foundation Water Quality Index. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Robustness analysis of an air heating plant and control law by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.
2014-12-10
This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less
GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems
NASA Astrophysics Data System (ADS)
Öttinger, Hans Christian
2018-04-01
Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.
2006-08-01
equations for the antimicrobial activities and the structural properties of the silanols, the alcohols, and the phenols against four bacteria.........59 4... equations in Table 4-3. ...................................69 ix 4-6 Comparison data of PRESS and RMSPE of different classes of external compounds against...manner as shown in Equation 1-1. Hansch and Fujita derived a correlation model Equation 1-2 based on the linear free energy approach using
Regionalisation of low flow frequency curves for the Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Mamun, Abdullah A.; Hashim, Alias; Daoud, Jamal I.
2010-02-01
SUMMARYRegional maps and equations for the magnitude and frequency of 1, 7 and 30-day low flows were derived and are presented in this paper. The river gauging stations of neighbouring catchments that produced similar low flow frequency curves were grouped together. As such, the Peninsular Malaysia was divided into seven low flow regions. Regional equations were developed using the multivariate regression technique. An empirical relationship was developed for mean annual minimum flow as a function of catchment area, mean annual rainfall and mean annual evaporation. The regional equations exhibited good coefficient of determination ( R2 > 0.90). Three low flow frequency curves showing the low, mean and high limits for each region were proposed based on a graphical best-fit technique. Knowing the catchment area, mean annual rainfall and evaporation in the region, design low flows of different durations can be easily estimated for the ungauged catchments. This procedure is expected to overcome the problem of data unavailability in estimating low flows in the Peninsular Malaysia.
Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan
2017-04-01
L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1 day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.
Zhang, Lucy T.; Yang, Jubiao
2017-01-01
In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541
Zhang, Lucy T; Yang, Jubiao
2016-12-01
In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.
Generalized Appended Product Indicator Procedure for Nonlinear Structural Equation Analysis.
ERIC Educational Resources Information Center
Wall, Melanie M.; Amemiya, Yasuo
2001-01-01
Considers the estimation of polynomial structural models and shows a limitation of an existing method. Introduces a new procedure, the generalized appended product indicator procedure, for nonlinear structural equation analysis. Addresses statistical issues associated with the procedure through simulation. (SLD)
Classification Techniques for Multivariate Data Analysis.
1980-03-28
analysis among biologists, botanists, and ecologists, while some social scientists may refer "typology". Other frequently encountered terms are pattern...the determinantal equation: lB -XW 0 (42) 49 The solutions X. are the eigenvalues of the matrix W-1 B 1 as in discriminant analysis. There are t non...Statistical Package for Social Sciences (SPSS) (14) subprogram FACTOR was used for the principal components analysis. It is designed both for the factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramyan, L.A.; Stepanyants, Yu.A.
1988-04-01
The structure of steady-state two-dimensional solutions of the soliton type with quadratic and cubic nonlinearities and power-law dispersion is analyzed numerically. It is shown that steadily coupled two-dimensional multisolitons can exist for positive dispersion in a broad class of equations, which generalize the Kadomtsev-Petviashvili equation.
Comparison of shock structure solutions using independent continuum and kinetic theory approaches
NASA Technical Reports Server (NTRS)
Fiscko, Kurt A.; Chapman, Dean R.
1988-01-01
A vehicle traversing the atmosphere will experience flight regimes at high altitudes in which the thickness of a hypersonic shock wave is not small compared to the shock standoff distance from the hard body. When this occurs, it is essential to compute accurate flow field solutions within the shock structure. In this paper, one-dimensional shock structure is investigated for various monatomic gases from Mach 1.4 to Mach 35. Kinetic theory solutions are computed using the Direct Simulation Monte Carlo method. Steady-state solutions of the Navier-Stokes equations and of a slightly truncated form of the Burnett equations are determined by relaxation to a steady state of the time-dependent continuum equations. Monte Carlo results are in excellent agreement with published experimental data and are used as bases of comparison for continuum solutions. For a Maxwellian gas, the truncated Burnett equations are shown to produce far more accurate solutions of shock structure than the Navier-Stokes equations.
Solitary waves and nonlinear dynamic coherent structures in magnetic metamaterials
NASA Astrophysics Data System (ADS)
Tankeyev, A. P.; Smagin, V. V.; Borich, M. A.; Zhuravlev, A. S.
2009-03-01
Within the framework of the extended nonlinear Schrödinger equation (ENSE), two types of nonlinear states of magnetization in a ferromagnet-dielectric-metal metamagnetic structure have been obtained and investigated. These states have an internal structure; e.g., a periodic sequence of compound solitons is formed by kink-antikink pairs (shock waves), and coherent periodic breather structures are formed by “bright” quasi-solitons. Conditions have been found under which the envelope of these states is described by a modified Korteweg-de Vries (mKdV) equation. It is shown that the compound solitons are described by an mKdV equation with repulsion, and the breather structures, by an mKdV equation with attraction. It is shown also that the characteristic properties of the solutions are determined by the sign of the group-velocity dispersion rather than by the sign of the group velocity itself. The results obtained can be used for searching new nonlinear dynamic coherent structures, e.g., compound solitons and breathers in high-dispersion magnetic metamaterials.
An integrable family of Monge-Ampère equations and their multi-Hamiltonian structure
NASA Astrophysics Data System (ADS)
Nutku, Y.; Sarioǧlu, Ö.
1993-02-01
We have identified a completely integrable family of Monge-Ampère equations through an examination of their Hamiltonian structure. Starting with a variational formulation of the Monge-Ampère equations we have constructed the first Hamiltonian operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Ampère equations are then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible with the first.
On the structure of nonlinear constitutive equations for fiber reinforced composites
NASA Technical Reports Server (NTRS)
Jansson, Stefan
1992-01-01
The structure of constitutive equations for nonlinear multiaxial behavior of transversely isotropic fiber reinforced metal matrix composites subject to proportional loading was investigated. Results from an experimental program were combined with numerical simulations of the composite behavior for complex stress to reveal the full structure of the equations. It was found that the nonlinear response can be described by a quadratic flow-potential, based on the polynomial stress invariants, together with a hardening rule that is dominated by two different hardening mechanisms.
Nestler, Steffen
2014-05-01
Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.
Klain, Ingi Petitemberte; de Matos, Dihogo Gama; Leitão, José Carlos; Cid, Luís; Moutão, João
2015-01-01
This research aimed to analyze the validity of the relations hypothesized by the theory of self-determination in predicting adherence to physical exercise in fitness academy users and subjects following personal training. A total of 588 persons from Pelotas / RS / Brazil (405 gym users and 183 subjects following personal training) completed the Portuguese version of the three questionnaires, i.e. the Perceived Autonomy Support Climate Exercise Questionnaire, Basic Psychological Needs in the Exercise Scale and Behavioral Regulation in the Exercise Questionnaire −2. The results support the factorial structure of the questionnaires used in this sample. There was a significant multivariate effect of context on self-determination for physical exercise training [Wilks’ λ = 0.934, F (10, 576.000) = 4.03, p < 0.001, η2 = 0.01]. The hypothesized structural equation model, which considered the self-determination theory, showed a good fit to the data (S-B χ2 = 234.703; p= .001; df = 52; χ2/df = 4.514; SRMS = .049; NNFI = .906; CFI = .926; RMSEA = .077; RMSEA 90% CI = .067 − .088). However, in the comparative analysis, the perception of autonomy support, relatedness and competence were significantly higher in the context of personal training, while the amotivation and external regulation were significantly higher in the context of fitness academies. PMID:26240667
Shan, Ming; Le, Yun; Yiu, Kenneth T W; Chan, Albert P C; Hu, Yi
2017-12-01
Over recent years, the issue of corruption in the public construction sector has attracted increasing attention from both practitioners and researchers worldwide. However, limited efforts are available for investigating the underlying factors of corruption in this sector. Thus, this study attempted to bridge this knowledge gap by exploring the underlying factors of corruption in the public construction sector of China. To achieve this goal, a total of 14 structured interviews were first carried out, and a questionnaire survey was then administered to 188 professionals in China. Two iterations of multivariate analysis approaches, namely, stepwise multiple regression analysis and partial least squares structural equation modeling were successively utilized to analyze the collected data. In addition, a case study was also conducted to triangulate the findings obtained from the statistical analysis. The results generated from these three research methods achieve the same conclusion: the most influential underlying factor leading to corruption was immorality, followed by opacity, unfairness, procedural violation, and contractual violation. This study has contributed to the body of knowledge by exploring the properties of corruption in the public construction sector. The findings from this study are also valuable to the construction authorities as they can assist in developing more effective anti-corruption strategies.
Systems of fuzzy equations in structural mechanics
NASA Astrophysics Data System (ADS)
Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej
2008-08-01
Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series,
ERIC Educational Resources Information Center
Okech, David
2012-01-01
Objectives: Using baseline and second wave data, the study evaluated the measurement and structural properties of parenting stress, personal mastery, and economic strain with N = 381 lower income parents who decided to join and those who did not join in a child development savings account program. Methods: Structural equation modeling mean and…
MacNab, Ying C
2016-08-01
This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan
2016-08-01
Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and height diversity through silvicultural operations might constitute an effective approach for enhancing aboveground C storage in these forests.
Bayesian Semiparametric Structural Equation Models with Latent Variables
ERIC Educational Resources Information Center
Yang, Mingan; Dunson, David B.
2010-01-01
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
Structural Equation Modeling of School Violence Data: Methodological Considerations
ERIC Educational Resources Information Center
Mayer, Matthew J.
2004-01-01
Methodological challenges associated with structural equation modeling (SEM) and structured means modeling (SMM) in research on school violence and related topics in the social and behavioral sciences are examined. Problems associated with multiyear implementations of large-scale surveys are discussed. Complex sample designs, part of any…
Hand-Held Calculator Algorithms for Coastal Engineering.
1982-01-01
and water depth at the structure toe, ds. The development of the equation is derived on the solution sheet included with program 104R. Algorithm uses...Limited Design Breaking Wave Height at Structure (AOS logic)... .... ....... ......... .54 6. 105R Wave Transmission - Fuchs’ Equation (RPN logic...58 105A Wave Transmission - Fuchs’ Equation (AOS logic). . . . 61 APPENDIX BLANK PROGRAM FORMS ........ ....................... ... 67 4
An analysis of the vertical structure equation for arbitrary thermal profiles
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1989-01-01
The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.
An analysis of the vertical structure equation for arbitrary thermal profiles
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1987-01-01
The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.
Prediction equations of forced oscillation technique: the insidious role of collinearity.
Narchi, Hassib; AlBlooshi, Afaf
2018-03-27
Many studies have reported reference data for forced oscillation technique (FOT) in healthy children. The prediction equation of FOT parameters were derived from a multivariable regression model examining the effect of age, gender, weight and height on each parameter. As many of these variables are likely to be correlated, collinearity might have affected the accuracy of the model, potentially resulting in misleading, erroneous or difficult to interpret conclusions.The aim of this work was: To review all FOT publications in children since 2005 to analyze whether collinearity was considered in the construction of the published prediction equations. Then to compare these prediction equations with our own study. And to analyse, in our study, how collinearity between the explanatory variables might affect the predicted equations if it was not considered in the model. The results showed that none of the ten reviewed studies had stated whether collinearity was checked for. Half of the reports had also included in their equations variables which are physiologically correlated, such as age, weight and height. The predicted resistance varied by up to 28% amongst these studies. And in our study, multicollinearity was identified between the explanatory variables initially considered for the regression model (age, weight and height). Ignoring it would have resulted in inaccuracies in the coefficients of the equation, their signs (positive or negative), their 95% confidence intervals, their significance level and the model goodness of fit. In Conclusion with inaccurately constructed and improperly reported models, understanding the results and reproducing the models for future research might be compromised.
Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
Ma, Li-Yuan; Zhu, Zuo-Nong
2014-09-01
In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.
Shao, Q; Rowe, R C; York, P
2007-06-01
This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.
NASA Astrophysics Data System (ADS)
Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.
2016-10-01
The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.
MULTIVARIATE LINEAR MIXED MODELS FOR MULTIPLE OUTCOMES. (R824757)
We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of ...
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
Modelling vortex-induced fluid-structure interaction.
Benaroya, Haym; Gabbai, Rene D
2008-04-13
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
Tuning algorithms for fractional order internal model controllers for time delay processes
NASA Astrophysics Data System (ADS)
Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.
2016-03-01
This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.
Structure of Lie point and variational symmetry algebras for a class of odes
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2018-04-01
It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.
Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems
NASA Astrophysics Data System (ADS)
Konopelchenko, B. G.; Ortenzi, G.
2013-12-01
The structure and properties of families of critical points for classes of functions W(z,{\\overline{z}}) obeying the elliptic Euler-Poisson-Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(\\beta ,{\\overline{\\beta }};1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed.
Duarte, João V; Ribeiro, Maria J; Violante, Inês R; Cunha, Gil; Silva, Eduardo; Castelo-Branco, Miguel
2014-01-01
Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Copyright © 2012 Wiley Periodicals, Inc.
van Nie-Visser, Noémi C; Meijers, Judith; Schols, Jos; Lohrmann, Christa; Bartholomeyczik, Sabine; Spreeuwenberg, Marieke; Halfens, Ruud
2014-03-28
Prevalence rates of malnutrition vary considerably internationally, partly due to differences in measurement methodology and instruments. In the present study, the same measurement methodology and instruments were used in The Netherlands, Germany and Austria. The aim of the present study was to investigate whether resident characteristics influence possible differences in malnutrition prevalence between countries. The study followed a cross-sectional, multi-centre design that measured malnutrition in nursing home residents from The Netherlands, Germany and Austria. Resident data were gathered using a standardised questionnaire. Malnutrition was operationalised using BMI, unintentional weight loss and nutritional intake. Data were analysed using an association model. The prevalence rates of malnutrition in The Netherlands, Germany and Austria were 18·3, 20·1 and 22·5 %, respectively. The multivariate generalised estimating equation (GEE) logistic regression analysis showed that sex, age, care dependency, the mean number of diseases and some specific diseases were influencing factors for whether the resident was malnourished or not. The OR of malnutrition in the three countries declined after including the influencing factors resulting from the multivariate GEE analysis. The present study reveals that differences in the prevalence rates of malnutrition in nursing homes in The Netherlands, Germany and Austria are influenced by different resident characteristics. Since other country-related factors could also play an important role in influencing differences in the prevalence rates of malnutrition between the countries (structural and process factors of malnutrition care policy). We recommend the investigation of these factors in future studies.
Reichborn-Kjennerud, Ted; Czajkowski, Nikolai; Neale, Michael C; Ørstavik, Ragnhild E; Torgersen, Svenn; Tambs, Kristian; Røysamb, Espen; Harris, Jennifer R; Kendler, Kenneth S
2007-05-01
The DSM-IV cluster C Axis II disorders include avoidant (AVPD), dependent (DEPD) and obsessive-compulsive (OCPD) personality disorders. We aimed to estimate the genetic and environmental influences on dimensional representations of these disorders and examine the validity of the cluster C construct by determining to what extent common familial factors influence the individual PDs. PDs were assessed using the Structured Interview for DSM-IV Personality (SIDP-IV) in a sample of 1386 young adult twin pairs from the Norwegian Institute of Public Health Twin Panel (NIPHTP). A single-factor independent pathway multivariate model was applied to the number of endorsed criteria for the three cluster C disorders, using the statistical modeling program Mx. The best-fitting model included genetic and unique environmental factors only, and equated parameters for males and females. Heritability ranged from 27% to 35%. The proportion of genetic variance explained by a common factor was 83, 48 and 15% respectively for AVPD, DEPD and OCPD. Common genetic and environmental factors accounted for 54% and 64% respectively of the variance in AVPD and DEPD but only 11% of the variance in OCPD. Cluster C PDs are moderately heritable. No evidence was found for shared environmental or sex effects. Common genetic and individual environmental factors account for a substantial proportion of the variance in AVPD and DEPD. However, OCPD appears to be largely etiologically distinct from the other two PDs. The results do not support the validity of the DSM-IV cluster C construct in its present form.
Sexual dimorphism in relation to big-game hunting and economy in modern human populations.
Collier, S
1993-08-01
Postcranial skeletal data from two recent Eskimo populations are used to test David Frayer's model of sexual dimorphism reduction in Europe between the Upper Paleolithic and Mesolithic. Frayer argued that a change from big-game hunting and adoption of new technology in the Mesolithic reduced selection for large body size in males and led to a reduction in skeletal sexual dimorphism. Though aspects of Frayer's work have been criticized in the literature, the association of big-game hunting and high sexual dimorphism is untested. This study employs univariate and multivariate analysis to test that association by examining sexual dimorphism of cranial and postcranial bones of two recent Alaskan Eskimo populations, one being big-game (whale and other large marine mammal) hunting people, and the second being salmon fishing, riverine people. While big-game hunting influences skeletal robusticity, it cannot be said to lead to greater sexual dimorphism generally. The two populations had different relative sexual dimorphism levels for different parts of the body. Notably, the big-game hunting (whaling) Eskimos had the lower multivariate dimorphism in the humerus, which could be expected to be the structure under greatest exertion by such hunting in males. While the exertions of the whale hunting economic activities led to high skeletal robusticity, as predicted by Frayer's model, this was true of the females as well as the males, resulting in low sexual dimorphism in some features. Females are half the sexual dimorphism equation, and they cannot be seen as constants in any model of economic behavior.
On certain families of rational functions arising in dynamics
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1979-01-01
It is noted that linear systems, depending on parameters, can occur in diverse situations including families of rational solutions to the Korteweg-de Vries equation or to the finite Toda lattice. The inverse scattering method used by Moser (1975) to obtain canonical coordinates for the finite homogeneous Toda lattice can be used for the synthesis of RC networks. It is concluded that the multivariable RC setting is ideal for the analysis of the periodic Toda lattice.
NASA Astrophysics Data System (ADS)
Gregoire, Alexandre David
2011-07-01
The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.
Mohr, Nicholas M; Harland, Karisa K; Shane, Dan M; Ahmed, Azeemuddin; Fuller, Brian M; Torner, James C
2016-12-01
The objective of this study was to evaluate the impact of regionalization on sepsis survival, to describe the role of inter-hospital transfer in rural sepsis care, and to measure the cost of inter-hospital transfer in a predominantly rural state. Observational case-control study using statewide administrative claims data from 2005 to 2014 in a predominantly rural Midwestern state. Mortality and marginal costs were estimated with multivariable generalized estimating equations models and with instrumental variables models. A total of 18 246 patients were included, of which 59% were transferred between hospitals. Transferred patients had higher mortality and longer hospital length-of-stay than non-transferred patients. Using a multivariable generalized estimating equations (GEE) model to adjust for potentially confounding factors, inter-hospital transfer was associated with increased mortality (aOR 1.7, 95% CI 1.5-1.9). Using an instrumental variables model, transfer was associated with a 9.2% increased risk of death. Transfer was associated with additional costs of $6897 (95% CI $5769-8024). Even when limiting to only those patients who received care in the largest hospitals, transfer was still associated with $5167 (95% CI $3696-6638) in additional cost. The majority of rural sepsis patients are transferred, and these transferred patients have higher mortality and significantly increased cost of care. Copyright © 2016 Elsevier Inc. All rights reserved.
Oliveira, Ben; Sridharan, Sivakumar; Farrington, Ken; Davenport, Andrew
2017-07-13
Waste products of metabolism are retained in haemodialysis (HD) patients. Cellular metabolism generates energy, and patients with greater energy expenditure may therefore require more dialysis. To determine the amount of dialysis required, equations estimating resting and total energy expenditure (REE,TEE) are required. We compared estimates of REE in HD patients using established equations with a novel equation recently validated in HD patients (HD equation). TEE was derived from REE (HD equation) and estimates of physical activity obtained by questionnaire. REE and TEE relationships with bioimpedance measured body composition were then determined. We studied 317 HD patients; 195 males (61.5%), 123 diabetic (38.9%), mean age 65.0 ± 15.3 and weight 73.1 ± 16.8 kg. REE from HD Equation was 1509 ± 241 kcal/day, which was greater than for Mifflin St Joer 1384 ± 259, Harris-Benedict 1437 ± 244, Katch-McArdle 1345 ± 232 (all p < 0.05 vs HD Equation), but less than Cunningham 1557 ± 236 kcal/day. Bland Altman mean bias ranged from -263 to 55 kcal/day. TEE was 1727 (1558-1976) kcal/day, and on multi-variable analysis was positively associated with skeletal muscle mass (β 23.3, p < 0.001), employment (β 406.5, p < 0.001), low co-morbidity (β 105.1, p = 0.006), and protein nitrogen appearance (β 2.7, p = 0.015), and negatively with age (β -7.9, p < 0.001), and dialysis vintage (β -121.2, p = 0.002). Most standard equations underestimate REE in HD patients compared to the HD Equation. TEE was greater in those with higher skeletal muscle mass and protein nitrogen appearance, lower co-morbidity, age, and dialysis vintage, and the employed. More metabolically active patients may require greater dialytic clearances. This article is protected by copyright. All rights reserved.
ERIC Educational Resources Information Center
Ellison, William D.; Levy, Kenneth N.
2012-01-01
Using exploratory structural equation modeling and multiple regression, we examined the factor structure and criterion relations of the primary scales of the Inventory of Personality Organization (IPO; Kernberg & Clarkin, 1995) in a nonclinical sample. Participants (N = 1,260) completed the IPO and measures of self-concept clarity, defenses,…
ERIC Educational Resources Information Center
Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.
2018-01-01
Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…
Algebraic features of some generalizations of the Lotka-Volterra system
NASA Astrophysics Data System (ADS)
Bibik, Yu. V.; Sarancha, D. A.
2010-10-01
For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.
Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations
NASA Astrophysics Data System (ADS)
Blossey, R.; Maggs, A. C.; Podgornik, R.
2017-06-01
We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)], 10.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.
Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA
NASA Astrophysics Data System (ADS)
Pope, David
Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.
Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations
NASA Astrophysics Data System (ADS)
Sotoudeh, Zahra
2011-07-01
Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.
Wen, Xiao-Yong; Yang, Yunqing; Yan, Zhenya
2015-07-01
In this paper, a simple and constructive method is presented to find the generalized perturbation (n,M)-fold Darboux transformations (DTs) of the modified nonlinear Schrödinger (MNLS) equation in terms of fractional forms of determinants. In particular, we apply the generalized perturbation (1,N-1)-fold DTs to find its explicit multi-rogue-wave solutions. The wave structures of these rogue-wave solutions of the MNLS equation are discussed in detail for different parameters, which display abundant interesting wave structures, including the triangle and pentagon, etc., and may be useful to study the physical mechanism of multirogue waves in optics. The dynamical behaviors of these multi-rogue-wave solutions are illustrated using numerical simulations. The same Darboux matrix can also be used to investigate the Gerjikov-Ivanov equation such that its multi-rogue-wave solutions and their wave structures are also found. The method can also be extended to find multi-rogue-wave solutions of other nonlinear integrable equations.
Brownian microhydrodynamics of active filaments.
Laskar, Abhrajit; Adhikari, R
2015-12-21
Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.
The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations
NASA Astrophysics Data System (ADS)
Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.
2018-04-01
The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.
Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas
2010-01-01
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822
NASA Astrophysics Data System (ADS)
Kwiatkowski, Mirosław
2015-09-01
The paper presents the results of the research on the application of the LBET class adsorption models with the fast multivariant identification procedure as a tool for analysing the microporous structure of the active carbons obtained by chemical activation using potassium and sodium hydroxides as an activator. The proposed technique of the fast multivariant fitting of the LBET class models to the empirical adsorption data was employed particularly to evaluate the impact of the used activator and the impregnation ratio on the obtained microporous structure of the carbonaceous adsorbents.
OpenMx: An Open Source Extended Structural Equation Modeling Framework
ERIC Educational Resources Information Center
Boker, Steven; Neale, Michael; Maes, Hermine; Wilde, Michael; Spiegel, Michael; Brick, Timothy; Spies, Jeffrey; Estabrook, Ryne; Kenny, Sarah; Bates, Timothy; Mehta, Paras; Fox, John
2011-01-01
OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the "R" statistical programming environment on Windows, Mac OS-X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are…
Application of Exploratory Structural Equation Modeling to Evaluate the Academic Motivation Scale
ERIC Educational Resources Information Center
Guay, Frédéric; Morin, Alexandre J. S.; Litalien, David; Valois, Pierre; Vallerand, Robert J.
2015-01-01
In this research, the authors examined the construct validity of scores of the Academic Motivation Scale using exploratory structural equation modeling. Study 1 and Study 2 involved 1,416 college students and 4,498 high school students, respectively. First, results of both studies indicated that the factor structure tested with exploratory…
ERIC Educational Resources Information Center
Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry
2007-01-01
The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…
Structural Equation Modeling in Assessing Students' Understanding of the State Changes of Matter
ERIC Educational Resources Information Center
Stamovlasis, Dimitrios; Tsitsipis, Georgios; Papageorgiou, George
2012-01-01
In this study, structural equation modeling (SEM) is applied to an instrument assessing students' understanding of the particulate nature of matter, the collective properties and physical changes, such as melting, evaporation, boiling and condensation. The structural relationships among particular groups of items were investigated. In addition,…
ERIC Educational Resources Information Center
Steed, Teneka C.
2013-01-01
Evaluating the psychometric properties of a newly developed instrument is critical to understanding how well an instrument measures what it intends to measure, and ensuring proposed use and interpretation of questionnaire scores are valid. The current study uses Structural Equation Modeling (SEM) techniques to examine the factorial structure and…
ERIC Educational Resources Information Center
Grundmann, Matthias
Following the assumptions of ecological socialization research, adequate analysis of socialization conditions must take into account the multilevel and multivariate structure of social factors that impact on human development. This statement implies that complex models of family configurations or of socialization factors are needed to explain the…
Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.
2016-01-13
We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of α s ln 2(1/x) in the polarization-dependent evolution along with the powers of α s ln(1/x) in the unpolarized evolution which includes saturation efects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-N c and large-N c & N f limits. As a cross-check,more » in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for g 1 structure function derived previously by Bartels, Ermolaev and Ryskin.« less
NASA Astrophysics Data System (ADS)
Dev, A. N.; Deka, M. K.; Sarma, J.; Saikia, D.; Adhikary, N. C.
2016-10-01
The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.
Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C., E-mail: waymire@math.oregonstate.edu
2015-07-15
The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturallymore » arise as a result of this investigation.« less
Does the supersymmetric integrability imply the integrability of Bosonic sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popowicz, Ziemowit
2010-03-08
The answer is no. This is demonstrated for two equations that belong to the supersymmetric Manin-Radul N = 1 Kadomtsev-Petviashvili (MRSKP) hierarchy. The first one is the N = 1 supersymmetric Sawada-Kotera equation recently considered by Tian and Liu. We define the bi-Hamiltonian structure for this equation which however does not reduce in the bosonic limit to the known bi-Hamiltonian structure. The second equation is obtained from the Lax operator of the fifth order in the supersymmetric derivatives which in the bosonic sector reduces to the system of interacted two KdV equations discovered by Drinfeld and Sokolov in 1981 andmore » later rediscovered by Sakovich and Foursov.« less
Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations.
Dascaliuc, Radu; Michalowski, Nicholas; Thomann, Enrique; Waymire, Edward C
2015-07-01
The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.
Pitchers, W. R.; Brooks, R.; Jennions, M. D.; Tregenza, T.; Dworkin, I.; Hunt, J.
2013-01-01
Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders’ equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent work, however, suggests that these matrices are temporally plastic, spatially variable and themselves evolvable. The data available on phenotypic variance-covariance matrix (P) stability is sparse, and largely focused on morphological traits. Here we compared P for the structure of the complex sexual advertisement call of six divergent allopatric populations of the Australian black field cricket, Teleogryllus commodus. We measured a subset of calls from wild-caught crickets from each of the populations and then a second subset after rearing crickets under common-garden conditions for three generations. In a second experiment, crickets from each population were reared in the laboratory on high- and low-nutrient diets and their calls recorded. In both experiments, we estimated P for call traits and used multiple methods to compare them statistically (Flury hierarchy, geometric subspace comparisons and random skewers). Despite considerable variation in means and variances of individual call traits, the structure of P was largely conserved among populations, across generations and between our rearing diets. Our finding that P remains largely stable, among populations and between environmental conditions, suggests that selection has preserved the structure of call traits in order that they can function as an integrated unit. PMID:23530814
A method for analyzing clustered interval-censored data based on Cox's model.
Kor, Chew-Teng; Cheng, Kuang-Fu; Chen, Yi-Hau
2013-02-28
Methods for analyzing interval-censored data are well established. Unfortunately, these methods are inappropriate for the studies with correlated data. In this paper, we focus on developing a method for analyzing clustered interval-censored data. Our method is based on Cox's proportional hazard model with piecewise-constant baseline hazard function. The correlation structure of the data can be modeled by using Clayton's copula or independence model with proper adjustment in the covariance estimation. We establish estimating equations for the regression parameters and baseline hazards (and a parameter in copula) simultaneously. Simulation results confirm that the point estimators follow a multivariate normal distribution, and our proposed variance estimations are reliable. In particular, we found that the approach with independence model worked well even when the true correlation model was derived from Clayton's copula. We applied our method to a family-based cohort study of pandemic H1N1 influenza in Taiwan during 2009-2010. Using the proposed method, we investigate the impact of vaccination and family contacts on the incidence of pH1N1 influenza. Copyright © 2012 John Wiley & Sons, Ltd.
Doing better to do good: the impact of strategic adaptation on nursing home performance.
Zinn, Jacqueline S; Mor, Vincent; Feng, Zhanlian; Intrator, Orna
2007-06-01
To test the hypothesis that a greater commitment to strategic adaptation, as exhibited by more extensive implementation of a subacute/rehabilitation care strategy in nursing homes, will be associated with superior performance. Online Survey, Certification, and Reporting (OSCAR) data from 1997 to 2004, and the area resource file (ARF). The extent of strategic adaptation was measured by an aggregate weighted implementation score. Nursing home performance was measured by occupancy rate and two measures of payer mix. We conducted multivariate regression analyses using a cross-sectional time series generalized estimating equation (GEE) model to examine the effect of nursing home strategic implementation on each of the three performance measures, controlling for market and organizational characteristics that could influence nursing home performance. DATA COLLECTION/ABSTRACTION METHODS: OSCAR data was merged with relevant ARF data. The results of our analysis provide strong support for the hypothesis. From a theoretical perspective, our findings confirm that organizations that adjust strategies and structures to better fit environmental demands achieve superior performance. From a managerial perspective, these results support the importance of proactive strategic leadership in the nursing home industry.
Golding, Janice; Güsewell, Sabine; Kreft, Holger; Kuzevanov, Victor Y; Lehvävirta, Susanna; Parmentier, Ingrid; Pautasso, Marco
2010-05-01
The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity-area and diversity-age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens.
Enriched environment at work: Disassociated from stress and burnout.
Rodriguez, Francisca S; Luck, Tobias; Riedel-Heller, Steffi G
2018-05-22
Enriched environment at work (EEW), in terms of high mental demands at work, may be of great relevance for preventative efforts against cognitive decline and dementia as previous studies have shown. Yet, there is the concern that high EEW mental demands may accelerate stress and cause burnout. The aim of our study was to investigate how EEW mental demands are related to stress and burnout. A convenience sample of employees in the city area of Leipzig, Germany, was asked to fill out the Copenhagen Burnout Inventory and indicate for each EEW mental demand the level experienced, demandingness, and stressfulness. Multivariate linear regression and structural equation modelling suggested that only some EEW mental demands were perceived as stressful when the level of the respective EEW mental demand was high. Higher stressfulness was associated with burnout symptoms - however, high levels of EEW mental demands were not significantly associated with burnout (neither directly nor indirectly). Our findings implied that subjectively perceived stressfulness seems to be a more relevant aspect than the actual level of the demand itself. However, further studies are necessary to validate our findings.
Perturbation theory for cosmologies with nonlinear structure
NASA Astrophysics Data System (ADS)
Goldberg, Sophia R.; Gallagher, Christopher S.; Clifton, Timothy
2017-11-01
The next generation of cosmological surveys will operate over unprecedented scales, and will therefore provide exciting new opportunities for testing general relativity. The standard method for modelling the structures that these surveys will observe is to use cosmological perturbation theory for linear structures on horizon-sized scales, and Newtonian gravity for nonlinear structures on much smaller scales. We propose a two-parameter formalism that generalizes this approach, thereby allowing interactions between large and small scales to be studied in a self-consistent and well-defined way. This uses both post-Newtonian gravity and cosmological perturbation theory, and can be used to model realistic cosmological scenarios including matter, radiation and a cosmological constant. We find that the resulting field equations can be written as a hierarchical set of perturbation equations. At leading-order, these equations allow us to recover a standard set of Friedmann equations, as well as a Newton-Poisson equation for the inhomogeneous part of the Newtonian energy density in an expanding background. For the perturbations in the large-scale cosmology, however, we find that the field equations are sourced by both nonlinear and mode-mixing terms, due to the existence of small-scale structures. These extra terms should be expected to give rise to new gravitational effects, through the mixing of gravitational modes on small and large scales—effects that are beyond the scope of standard linear cosmological perturbation theory. We expect our formalism to be useful for accurately modeling gravitational physics in universes that contain nonlinear structures, and for investigating the effects of nonlinear gravity in the era of ultra-large-scale surveys.
ERIC Educational Resources Information Center
Alibali, Martha W.; Kao, Yvonne S.; Brown, Alayna N.; Nathan, Mitchell J.; Stephens, Ana C.
2009-01-01
This study investigated middle school students' conceptual understanding of algebraic equations. Participants in the study--257 sixth- and seventh-grade students--were asked to solve one set of algebraic equations and to generate story problems corresponding with another set of equations. Structural aspects of the equations, including the number…
Computational Algorithms or Identification of Distributed Parameter Systems
1993-04-24
delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional
Work and retirement among a cohort of older men in the United States, 1966-1983.
Hayward, M D; Grady, W R
1990-08-01
Multivariate increment-decrement working life tables are estimated for a cohort of older men in the United States for the period 1966-1983. The approach taken allows multiple processes to be simultaneously incorporated into a single model, resulting in a more realistic portrayal of a cohort's late-life labor force behavior. In addition, because the life table model is developed from multivariate hazard equations, we identify the effects of sociodemographic characteristics on the potentially complex process by which the labor force career is ended. In contrast to the assumed homogeneity of previous working life table analyses, the present study shows marked differences in labor force mobility and working and nonworking life expectancy according to occupation, class of worker, education, race, and marital status. We briefly discuss the implications of these findings for inequities of access to retirement, private and public pension consumption, and future changes in the retirement process.
Specific prognostic factors for secondary pancreatic infection in severe acute pancreatitis.
Armengol-Carrasco, M; Oller, B; Escudero, L E; Roca, J; Gener, J; Rodríguez, N; del Moral, P; Moreno, P
1999-01-01
The aim of the present study was to investigate whether there are specific prognostic factors to predict the development of secondary pancreatic infection (SPI) in severe acute pancreatitis in order to perform a computed tomography-fine needle aspiration with bacteriological sampling at the right moment and confirm the diagnosis. Twenty-five clinical and laboratory parameters were determined sequentially in 150 patients with severe acute pancreatitis (SAP) and univariate, and multivariate regression analyses were done looking for correlation with the development of SPI. Only APACHE II score and C-reactive protein levels were related to the development of SPI in the multivariate analysis. A regression equation was designed using these two parameters, and empiric cut-off points defined the subgroup of patients at high risk of developing secondary pancreatic infection. The results showed that it is possible to predict SPI during SAP allowing bacteriological confirmation and early treatment of this severe condition.
Multivariate Statistical Modelling of Drought and Heat Wave Events
NASA Astrophysics Data System (ADS)
Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele
2016-04-01
Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A copula is a multivariate distribution function which allows one to model the dependence structure of given variables separately from the marginal behaviour. We firstly look at the structure of soil moisture drought over the entire of France using the SAFRAN dataset between 1959 and 2009. Soil moisture is represented using the Standardised Precipitation Evapotranspiration Index (SPEI). Drought characteristics are computed at grid point scale where drought conditions are identified as those with an SPEI value below -1.0. We model the multivariate dependence structure of drought events defined by certain characteristics and compute return levels of these events. We initially find that drought characteristics such as duration, mean SPEI and the maximum contiguous area to a grid point all have positive correlations, though the degree to which they are correlated can vary considerably spatially. A spatial representation of return levels then may provide insight into the areas most prone to drought conditions. As a next step, we analyse the dependence structure between soil moisture conditions preceding the onset of a heat wave and the heat wave itself.
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
Falcaro, Milena; Pickles, Andrew
2007-02-10
We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.
Hanieh, Sarah; Ha, Tran T; De Livera, Alysha M; Simpson, Julie A; Thuy, Tran T; Khuong, Nguyen C; Thoang, Dang D; Tran, Thach D; Tuan, Tran; Fisher, Jane; Biggs, Beverley-Ann
2015-01-01
Objective To determine which antenatal and early-life factors were associated with infant postnatal growth in a resource-poor setting in Vietnam. Study design Prospective longitudinal study following infants (n=1046) born to women who had previously participated in a cluster randomised trial of micronutrient supplementation (ANZCTR:12610000944033), Ha Nam province, Vietnam. Antenatal and early infant factors were assessed for association with the primary outcome of infant length-for-age z scores at 6 months of age using multivariable linear regression and structural equation modelling. Results Mean length-for-age z score was −0.58 (SD 0.94) and stunting prevalence was 6.4%. Using structural equation modelling, we highlighted the role of infant birth weight as a predictor of infant growth in the first 6 months of life and demonstrated that maternal body mass index (estimated coefficient of 45.6 g/kg/m2; 95% CI 34.2 to 57.1), weight gain during pregnancy (21.4 g/kg; 95% CI 12.6 to 30.1) and maternal ferritin concentration at 32 weeks' gestation (−41.5 g per twofold increase in ferritin; 95% CI −78 to −5.0) were indirectly associated with infant length-for-age z scores at 6 months of age via birth weight. A direct association between 25-(OH) vitamin D concentration in late pregnancy and infant length-for-age z scores (estimated coefficient of −0.06 per 20 nmol/L; 95% CI −0.11 to −0.01) was observed. Conclusions Maternal nutritional status is an important predictor of early infant growth. Elevated antenatal ferritin levels were associated with suboptimal infant growth in this setting, suggesting caution with iron supplementation in populations with low rates of iron deficiency. PMID:25246090
Murphy, Kelle L; Liu, Min; Herzog, Thaddeus A
2017-07-05
Betel nut chewing is embedded within the cultures of South Asia, and Southeast Asia, and the Western Pacific. The determinants of betel nut consumption are complex. Ongoing consumption of betel nut is affected by cultural, social, and drug-specific effects (i.e. dependence). This study's first objective was to assess the psychometric properties (i.e. reliability and validity) of the socio-cultural constructs in a survey developed for betel nut chewers. The study's second objective was to investigate the influence of socio-cultural variables on betel nut chewing behaviors among Chamorro and non-Chamorro Micronesians in Guam. The current study was a secondary analysis of a larger study (N = 600; n = 375 chewers and n = 225 former chewers) that examined socio-cultural factors that influence why chewers chew betel nut, along with assessing chewing behaviors, perceptions of risks, probability of changing behaviors, and methods that could be used to reduce use or quit. The socio-cultural constructs of the survey were analyzed using confirmatory factor analysis and structural equation modeling. The socio-cultural factors were a sufficient fit with data and the instrument is reliable and valid, as indicated by various model fit indices (χ 2 (13) = 18.49 with p = .14, TLI = .99, CFI = 1.00, SRMR = .02, RMSEA = .03 with 90% CIs [.00,.07]). Cronbach's alpha, the sign and magnitude of the factor loadings, the inter-factor correlations, and the large proportion of variance extracted for each factor, all indicate that the instrument is reliable and valid. Additionally, multivariate analyses showed that socio-cultural reasons were important contributing or chewing betel nut. Participants cited chewing because their friends and family members chewed, the behavior is embedded within their culture, and it would be considered rude and disrespectful to not chew. Based on the findings, this study provides important implications pertaining to creating culturally appropriate cessation programs.
Hanieh, Sarah; Ha, Tran T; De Livera, Alysha M; Simpson, Julie A; Thuy, Tran T; Khuong, Nguyen C; Thoang, Dang D; Tran, Thach D; Tuan, Tran; Fisher, Jane; Biggs, Beverley-Ann
2015-02-01
To determine which antenatal and early-life factors were associated with infant postnatal growth in a resource-poor setting in Vietnam. Prospective longitudinal study following infants (n=1046) born to women who had previously participated in a cluster randomised trial of micronutrient supplementation (ANZCTR:12610000944033), Ha Nam province, Vietnam. Antenatal and early infant factors were assessed for association with the primary outcome of infant length-for-age z scores at 6 months of age using multivariable linear regression and structural equation modelling. Mean length-for-age z score was -0.58 (SD 0.94) and stunting prevalence was 6.4%. Using structural equation modelling, we highlighted the role of infant birth weight as a predictor of infant growth in the first 6 months of life and demonstrated that maternal body mass index (estimated coefficient of 45.6 g/kg/m(2); 95% CI 34.2 to 57.1), weight gain during pregnancy (21.4 g/kg; 95% CI 12.6 to 30.1) and maternal ferritin concentration at 32 weeks' gestation (-41.5 g per twofold increase in ferritin; 95% CI -78 to -5.0) were indirectly associated with infant length-for-age z scores at 6 months of age via birth weight. A direct association between 25-(OH) vitamin D concentration in late pregnancy and infant length-for-age z scores (estimated coefficient of -0.06 per 20 nmol/L; 95% CI -0.11 to -0.01) was observed. Maternal nutritional status is an important predictor of early infant growth. Elevated antenatal ferritin levels were associated with suboptimal infant growth in this setting, suggesting caution with iron supplementation in populations with low rates of iron deficiency. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan
2005-01-01
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
ERIC Educational Resources Information Center
van den Putte, Bas; Hoogstraten, Johan
1997-01-01
Problems found in the application of structural equation modeling to the theory of reasoned action are explored, and an alternative model specification is proposed that improves the fit of the data while leaving intact the structural part of the model being tested. Problems and the proposed alternative are illustrated. (SLD)
ERIC Educational Resources Information Center
Kim, Young-Mi; Neff, James Alan
2010-01-01
A model incorporating the direct and indirect effects of parental monitoring on adolescent alcohol use was evaluated by applying structural equation modeling (SEM) techniques to data on 4,765 tenth-graders in the 2001 Monitoring the Future Study. Analyses indicated good fit of hypothesized measurement and structural models. Analyses supported both…
ERIC Educational Resources Information Center
Betoret, Fernando Domenech
2009-01-01
This study examines the relationship between school resources, teacher self-efficacy, potential multi-level stressors and teacher burnout using structural equation modelling. The causal structure for primary and secondary school teachers was also examined. The sample was composed of 724 primary and secondary Spanish school teachers. The changes…
ERIC Educational Resources Information Center
Yavuz, Mustafa
2009-01-01
Discovering what determines students' success in the Secondary Education Institutional Exam is very important to parents and it is also critical for students, teachers, directors, and researchers. Research was carried out by studying the related literature and structural equation modeling techniques. A structural model was created that consisted…
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2014-01-01
Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…
Fitting Data to Model: Structural Equation Modeling Diagnosis Using Two Scatter Plots
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro
2010-01-01
This article introduces two simple scatter plots for model diagnosis in structural equation modeling. One plot contrasts a residual-based M-distance of the structural model with the M-distance for the factor score. It contains information on outliers, good leverage observations, bad leverage observations, and normal cases. The other plot contrasts…
Solving Multi-variate Polynomial Equations in a Finite Field
2013-06-01
Algebraic Background In this section, some algebraic definitions and basics are discussed as they pertain to this re- search. For a more detailed...definitions and basics are discussed as they pertain to this research. For a more detailed treatment, consult a graph theory text such as [10]. A graph G...graph if V(G) can be partitioned into k subsets V1,V2, ...,Vk such that uv is only an edge of G if u and v belong to different partite sets. If, in
The Multidimensional Solitons in a Plasma: Structure Stability and Dynamics
2003-07-20
ax(8 H’ / 8u), (2) into GKP (Generalized Kadomtsev - Petviashvili ) class where of equations , and in the case when 13 4nnT / B 2 << 1 1 1 for 6) < OB= eB...that the soliton elastic collisions can lead to formation of complex structures including the multisoliton bound states. 1. Basic equations Eq. (1) with...scribed by equation 2. Stability of 2D and 3D solutions atu + A(t,u)u =f, f= K 0X Ajudx, (1) To study stability of the GKP equation solutions, we =a 2
Nonlinear ordinary difference equations
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1979-01-01
Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.
Rocket/launcher structural dynamics
NASA Technical Reports Server (NTRS)
Ferragut, N. J.
1976-01-01
The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.
On Structural Equation Model Equivalence.
ERIC Educational Resources Information Center
Raykov, Tenko; Penev, Spiridon
1999-01-01
Presents a necessary and sufficient condition for the equivalence of structural-equation models that is applicable to models with parameter restrictions and models that may or may not fulfill assumptions of the rules. Illustrates the application of the approach for studying model equivalence. (SLD)
Comparing direct and iterative equation solvers in a large structural analysis software system
NASA Technical Reports Server (NTRS)
Poole, E. L.
1991-01-01
Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.
Second-order discrete Kalman filtering equations for control-structure interaction simulations
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.
1991-01-01
A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.
NASA Astrophysics Data System (ADS)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
Maximum entropy and equations of state for random cellular structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivier, N.
Random, space-filling cellular structures (biological tissues, metallurgical grain aggregates, foams, etc.) are investigated. Maximum entropy inference under a few constraints yields structural equations of state, relating the size of cells to their topological shape. These relations are known empirically as Lewis's law in Botany, or Desch's relation in Metallurgy. Here, the functional form of the constraints is now known as a priori, and one takes advantage of this arbitrariness to increase the entropy further. The resulting structural equations of state are independent of priors, they are measurable experimentally and constitute therefore a direct test for the applicability of MaxEnt inferencemore » (given that the structure is in statistical equilibrium, a fact which can be tested by another simple relation (Aboav's law)). 23 refs., 2 figs., 1 tab.« less
Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald
2014-01-01
Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...
A Multivariate Generalizability Analysis of the Multistate Bar Examination
ERIC Educational Resources Information Center
Yin, Ping
2005-01-01
The main purpose of this study is to examine the content structure of the Multistate Bar Examination (MBE) using the "table of specifications" model from the perspective of multivariate generalizability theory. Specifically, using MBE data collected over different years (six administrations: three from the February test and three from July test),…
NASA Astrophysics Data System (ADS)
Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan
2018-05-01
Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.
Equating with Miditests Using IRT
ERIC Educational Resources Information Center
Fitzpatrick, Joseph; Skorupski, William P.
2016-01-01
The equating performance of two internal anchor test structures--miditests and minitests--is studied for four IRT equating methods using simulated data. Originally proposed by Sinharay and Holland, miditests are anchors that have the same mean difficulty as the overall test but less variance in item difficulties. Four popular IRT equating methods…
Network structure of multivariate time series.
Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito
2015-10-21
Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.
An alternative to the breeder's and Lande's equations.
Houchmandzadeh, Bahram
2014-01-10
The breeder's equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) - E(Z0) to the selection differential S = E(ZW) - E(Z0) through a simple proportionality relation R = h(2)S, where the heritability coefficient h(2) is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R' = j(2)S' can be derived, regardless of the parental genotype distribution. Here R' = E(Z1) - μ and S' = E(ZW) - μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j(2) is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande's equation Δ(z) = GP(-1)S. The linearity coefficient of the alternative equation are not changed by Gaussian selection.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
NASA Astrophysics Data System (ADS)
Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie; Benna, Mehdi; Kofman, Wlodek; Herique, Alain
We investigate the inverse problem of imaging the internal structure of comet 67P/ Churyumov-Gerasimenko from radiotomography CONSERT data by using a coupled regularized inversion of the Helmholtz equations. A first set of Helmholtz equations, written w.r.t a basis of 3D Hankel functions describes the wave propagation outside the comet at large distances, a second set of Helmholtz equations, written w.r.t. a basis of 3D Zernike functions describes the wave propagation throughout the comet with avariable permittivity. Both sets are connected by continuity equations over a sphere that surrounds the comet. This approach, derived from GPS water vapor tomography of the atmosphere,will permit a full 3D inversion of the internal structure of the comet, contrary to traditional approaches that use a discretization of space at a fraction of the radiowave wavelength.
NASA Astrophysics Data System (ADS)
Bizzi, S.; Surridge, B.; Lerner, D. N.:
2009-04-01
River ecosystems represent complex networks of interacting biological, chemical and geomorphological processes. These processes generate spatial and temporal patterns in biological, chemical and geomorphological variables, and a growing number of these variables are now being used to characterise the status of rivers. However, integrated analyses of these biological-chemical-geomorphological networks have rarely been undertaken, and as a result our knowledge of the underlying processes and how they generate the resulting patterns remains weak. The apparent complexity of the networks involved, and the lack of coherent datasets, represent two key challenges to such analyses. In this paper we describe the application of a novel technique, Structural Equation Modelling (SEM), to the investigation of biological, chemical and geomorphological data collected from rivers across England and Wales. The SEM approach is a multivariate statistical technique enabling simultaneous examination of direct and indirect relationships across a network of variables. Further, SEM allows a-priori conceptual or theoretical models to be tested against available data. This is a significant departure from the solely exploratory analyses which characterise other multivariate techniques. We took biological, chemical and river habitat survey data collected by the Environment Agency for 400 sites in rivers spread across England and Wales, and created a single, coherent dataset suitable for SEM analyses. Biological data cover benthic macroinvertebrates, chemical data relate to a range of standard parameters (e.g. BOD, dissolved oxygen and phosphate concentration), and geomorphological data cover factors such as river typology, substrate material and degree of physical modification. We developed a number of a-priori conceptual models, reflecting current research questions or existing knowledge, and tested the ability of these conceptual models to explain the variance and covariance within the dataset. The conceptual models we developed were able to explain correctly the variance and covariance shown by the datasets, proving to be a relevant representation of the processes involved. The models explained 65% of the variance in indices describing benthic macroinvertebrate communities. Dissolved oxygen was of primary importance, but geomorphological factors, including river habitat type and degree of habitat degradation, also had significant explanatory power. The addition of spatial variables, such as latitude or longitude, did not provide additional explanatory power. This suggests that the variables already included in the models effectively represented the eco-regions across which our data were distributed. The models produced new insights into the relative importance of chemical and geomorphological factors for river macroinvertebrate communities. The SEM technique proved a powerful tool for exploring complex biological-chemical-geomorphological networks, for example able to deal with the co-correlations that are common in rivers due to multiple feedback mechanisms.
Model Comparison of Nonlinear Structural Equation Models with Fixed Covariates.
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan
2003-01-01
Proposed a new nonlinear structural equation model with fixed covariates to deal with some complicated substantive theory and developed a Bayesian path sampling procedure for model comparison. Illustrated the approach with an illustrative example using data from an international study. (SLD)
Multi-Hamiltonian structure of Plebanski's second heavenly equation
NASA Astrophysics Data System (ADS)
Neyzi, F.; Nutku, Y.; Sheftel, M. B.
2005-09-01
We show that Plebanski's second heavenly equation, when written as a first-order nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri's theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions.
USING STRUCTURAL EQUATION MODELING TO INVESTIGATE RELATIONSHIPS AMONG ECOLOGICAL VARIABLES
This paper gives an introductory account of Structural Equation Modeling (SEM) and demonstrates its application using LISREL< with a model utilizing environmental data. Using nine EMAP data variables, we analyzed their correlation matrix with an SEM model. The model characterized...
Symmetries and BI-Hamiltonian Structures of 2+1 Dimensional Systems,
1986-01-01
and 0 aisociated with the Kadomtsev - 12 12 Petviashvili (KP) equation 2 -1qtq + 6qqx+ 3aD-q, (1.2) we have developed the theory associated with...generalized to equations in muLtidimensions. Applications to physically relevant equations like the Kadomcsev- Petviashvili equation are illustrated...integro-differenrial evo- lucion equations like the Benjamin-Ono equation are shown to be also described by this generalized V theory. IDSTEBO STP8 3
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrom, George I.; Hameiri, Eliezer
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less
Multivariate analysis in thoracic research.
Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego
2015-03-01
Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.
Abstract numeric relations and the visual structure of algebra.
Landy, David; Brookes, David; Smout, Ryan
2014-09-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.
Empirical tests of a theory of language, mathematics, and matter.
Abler, William L
2008-01-01
In an earlier paper (Abler, 2006), I proposed a theory of language, especially sentences, based on the symmetrical structure of the equation. Here, I use the structure of equations to deduce neural structures (e.g., mirror neurons or intra-cellular macromolecules, or crystals, or resonations) that might generate them. Ultimately, the properties described are a consequence of dimensional properties of matter
NASA Technical Reports Server (NTRS)
Jaggard, Dwight L.; Engheta, Nader; Pelet, Philippe; Liu, John C.; Kowarz, Marek W.; Kim, Yunjin
1989-01-01
The electromagnetic properties of a structure that is both chiral and periodic are investigated using coupled-mode equations. The periodicity is described by a sinusoidal perturbation of the permittivity, permeability, and chiral admittance. The coupled-mode equations are derived from physical considerations and used to examine bandgap structure and reflected and transmitted fields. Chirality is observed predominantly in transmission, whereas periodicity is present in both reflection and transmission.
W-algebra for solving problems with fuzzy parameters
NASA Astrophysics Data System (ADS)
Shevlyakov, A. O.; Matveev, M. G.
2018-03-01
A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.
Trajectory Control for Very Flexible Aircraft
2006-10-30
aircraft are coupled with the aeroelastic equations that govern the geometrically nonlinear structural response of the vehicle. A low -order strain...nonlinear structural formulation, the finite state aerodynamic model, and the nonlinear rigid body equations together provide a low -order complete...nonlinear aircraft analysis tool. Due to the inherent flexibility of the aircraft modeling, the low order structural fre- quencies are of the same order
Achana, Felix A; Cooper, Nicola J; Bujkiewicz, Sylwia; Hubbard, Stephanie J; Kendrick, Denise; Jones, David R; Sutton, Alex J
2014-07-21
Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments across multiple outcome measures while accounting for the correlation structure between outcomes. The standard NMA model is extended to multiple outcome settings in two stages. In the first stage, information is borrowed across outcomes as well across studies through modelling the within-study and between-study correlation structure. In the second stage, we make use of the additional assumption that intervention effects are exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe storage of other household products, and possession of poison centre control telephone number) in households with children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations. Univariate and the first stage multivariate models produced broadly similar point estimates of intervention effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified for the between-study covariance structure. The second stage multivariate analyses produced more precise effect estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on outcomes not directly considered by the studies included in the analysis. Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.
PDEMOD: Software for control/structures optimization
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Zimmerman, David
1991-01-01
Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.
Analyzing Mixed-Dyadic Data Using Structural Equation Models
ERIC Educational Resources Information Center
Peugh, James L.; DiLillo, David; Panuzio, Jillian
2013-01-01
Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…
Titman, Andrew C; Lancaster, Gillian A; Colver, Allan F
2016-10-01
Both item response theory and structural equation models are useful in the analysis of ordered categorical responses from health assessment questionnaires. We highlight the advantages and disadvantages of the item response theory and structural equation modelling approaches to modelling ordinal data, from within a community health setting. Using data from the SPARCLE project focussing on children with cerebral palsy, this paper investigates the relationship between two ordinal rating scales, the KIDSCREEN, which measures quality-of-life, and Life-H, which measures participation. Practical issues relating to fitting models, such as non-positive definite observed or fitted correlation matrices, and approaches to assessing model fit are discussed. item response theory models allow properties such as the conditional independence of particular domains of a measurement instrument to be assessed. When, as with the SPARCLE data, the latent traits are multidimensional, structural equation models generally provide a much more convenient modelling framework. © The Author(s) 2013.
Quantization of wave equations and hermitian structures in partial differential varieties
Paneitz, S. M.; Segal, I. E.
1980-01-01
Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation—e.g., of the form □ϕ + m2ϕ + gϕp = 0—admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923
He, Tung-Hsien; Chang, Shan-Mao; Chen, Shu-Hui Eileen; Gou, Wen Johnny
2012-02-01
This study applied structural equation modeling (SEM) techniques to define the relations among trichotomous goals (mastery goals, performance-approach goals, and performance-avoidance goals), self-efficacy, use of metacognitive self-regulation strategies, positive belief in seeking help, and help-avoidance behavior. Elementary school students (N = 105), who were learning English as a foreign language, were surveyed using five self-report scales. The structural equation model showed that self-efficacy led to the adoption of mastery goals but discouraged the adoption of performance-approach goals and performance-avoidance goals. Furthermore, mastery goals increased the use of metacognitive self-regulation strategies, whereas performance-approach goals and performance-avoidance goals reduced their use. Mastery goals encouraged positive belief in help-seeking, but performance-avoidance goals decreased such belief. Finally, performance-avoidance goals directly led to help-avoidance behavior, whereas positive belief assumed a critical role in reducing help-avoidance. The established structural equation model illuminated the potential causal relations among these variables for the young learners in this study.
Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass
NASA Astrophysics Data System (ADS)
Zupan, E.; Zupan, D.
2018-01-01
In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.
NASA Astrophysics Data System (ADS)
Cannon, Alex J.
2018-01-01
Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin, particularly for annual maxima of the FWI distribution and spatiotemporal autocorrelation of precipitation fields.
Recursion Operators and Bi-Hamiltonian Structures in Multidimensions II,
1986-07-01
a Symmifetry (1.2). For example the Kadomtsev - Petviashvili (KP) equation and the Davey-Stewartson (DS) equation admit two such hierarchies of...Degasperis, Nuovo Cimento, 398, 1 (1977). [16] P. Caudrey, Discrete and Periodic Spectral Transforms Related to the Kadomtsev - Petviashvili Equation ...these equations possess infinitely many time dependent symmetries and constants of motion. The master symmetries T for these equations are simply derived
A comparative study of serial and parallel aeroelastic computations of wings
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.
1994-01-01
A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.
Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo
2017-05-01
A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor \\widehat{g}(r)≡ { \\widehat{g}_{μ ν }(r)} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x≡ { g,π } obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.
NASA Astrophysics Data System (ADS)
Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan
2017-10-01
In this paper, with the help of Wolfram Mathematica 9 we employ the powerful sine-Gordon expansion method in investigating the solution structures of the two well known nonlinear evolution equations, namely; Calogero-Bogoyavlenskii-Schiff and Kadomtsev-Petviashvili hierarchy equations. We obtain new solutions with complex, hyperbolic and trigonometric function structures. All the obtained solutions in this paper verified their corresponding equations. We also plot the three- and two-dimensional graphics of all the obtained solutions in this paper by using the same program in Wolfram Mathematica 9. We finally submit a comprehensive conclusion.
Initial singularity and pure geometric field theories
NASA Astrophysics Data System (ADS)
Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.
2018-01-01
In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.
Regularized Moment Equations and Shock Waves for Rarefied Granular Gas
NASA Astrophysics Data System (ADS)
Reddy, Lakshminarayana; Alam, Meheboob
2016-11-01
It is well-known that the shock structures predicted by extended hydrodynamic models are more accurate than the standard Navier-Stokes model in the rarefied regime, but they fail to predict continuous shock structures when the Mach number exceeds a critical value. Regularization or parabolization is one method to obtain smooth shock profiles at all Mach numbers. Following a Chapman-Enskog-like method, we have derived the "regularized" version 10-moment equations ("R10" moment equations) for inelastic hard-spheres. In order to show the advantage of R10 moment equations over standard 10-moment equations, the R10 moment equations have been employed to solve the Riemann problem of plane shock waves for both molecular and granular gases. The numerical results are compared between the 10-moment and R10-moment models and it is found that the 10-moment model fails to produce continuous shock structures beyond an upstream Mach number of 1 . 34 , while the R10-moment model predicts smooth shock profiles beyond the upstream Mach number of 1 . 34 . The density and granular temperature profiles are found to be asymmetric, with their maxima occurring within the shock-layer.
Fluid flow in porous media using image-based modelling to parametrize Richards' equation.
Cooper, L J; Daly, K R; Hallett, P D; Naveed, M; Koebernick, N; Bengough, A G; George, T S; Roose, T
2017-11-01
The parameters in Richards' equation are usually calculated from experimentally measured values of the soil-water characteristic curve and saturated hydraulic conductivity. The complex pore structures that often occur in porous media complicate such parametrization due to hysteresis between wetting and drying and the effects of tortuosity. Rather than estimate the parameters in Richards' equation from these indirect measurements, image-based modelling is used to investigate the relationship between the pore structure and the parameters. A three-dimensional, X-ray computed tomography image stack of a soil sample with voxel resolution of 6 μm has been used to create a computational mesh. The Cahn-Hilliard-Stokes equations for two-fluid flow, in this case water and air, were applied to this mesh and solved using the finite-element method in COMSOL Multiphysics. The upscaled parameters in Richards' equation are then obtained via homogenization. The effect on the soil-water retention curve due to three different contact angles, 0°, 20° and 60°, was also investigated. The results show that the pore structure affects the properties of the flow on the large scale, and different contact angles can change the parameters for Richards' equation.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2013-01-01
Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.
Fach, S; Sitzenfrei, R; Rauch, W
2009-01-01
It is state of the art to evaluate and optimise sewer systems with urban drainage models. Since spill flow data is essential in the calibration process of conceptual models it is important to enhance the quality of such data. A wide spread approach is to calculate the spill flow volume by using standard weir equations together with measured water levels. However, these equations are only applicable to combined sewer overflow (CSO) structures, whose weir constructions correspond with the standard weir layout. The objective of this work is to outline an alternative approach to obtain spill flow discharge data based on measurements with a sonic depth finder. The idea is to determine the relation between water level and rate of spill flow by running a detailed 3D computational fluid dynamics (CFD) model. Two real world CSO structures have been chosen due to their complex structure, especially with respect to the weir construction. In a first step the simulation results were analysed to identify flow conditions for discrete steady states. It will be shown that the flow conditions in the CSO structure change after the spill flow pipe acts as a controlled outflow and therefore the spill flow discharge cannot be described with a standard weir equation. In a second step the CFD results will be used to derive rating curves which can be easily applied in everyday practice. Therefore the rating curves are developed on basis of the standard weir equation and the equation for orifice-type outlets. Because the intersection of both equations is not known, the coefficients of discharge are regressed from CFD simulation results. Furthermore, the regression of the CFD simulation results are compared with the one of the standard weir equation by using historic water levels and hydrographs generated with a hydrodynamic model. The uncertainties resulting of the wide spread use of the standard weir equation are demonstrated.
Gaussian windows: A tool for exploring multivariate data
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1990-01-01
Presented here is a method for interactively exploring a large set of quantitative multivariate data, in order to estimate the shape of the underlying density function. It is assumed that the density function is more or less smooth, but no other specific assumptions are made concerning its structure. The local structure of the data in a given region may be examined by viewing the data through a Gaussian window, whose location and shape are chosen by the user. A Gaussian window is defined by giving each data point a weight based on a multivariate Gaussian function. The weighted sample mean and sample covariance matrix are then computed, using the weights attached to the data points. These quantities are used to compute an estimate of the shape of the density function in the window region. The local structure of the data is described by a method similar to the method of principal components. By taking many such local views of the data, we can form an idea of the structure of the data set. The method is applicable in any number of dimensions. The method can be used to find and describe simple structural features such as peaks, valleys, and saddle points in the density function, and also extended structures in higher dimensions. With some practice, we can apply our geometrical intuition to these structural features in any number of dimensions, so that we can think about and describe the structure of the data. Since the computations involved are relatively simple, the method can easily be implemented on a small computer.
Feng, Ji-Feng; Chen, Sheng; Yang, Xun
2017-09-08
We initially proposed a useful and novel prognostic model, named CCS [Combination of c-reactive protein (CRP) and squamous cell carcinoma antigen (SCC)], for predicting the postoperative survival in patients with esophageal squamous cell carcinoma (ESCC). Two hundred and fifty-two patients with resectable ESCC were included in this retrospective study. A logistic regression was performed and yielded a logistic equation. The CCS was calculated by the combined CRP and SCC. The optimal cut-off value for CCS was evaluated by X-tile program. Univariate and multivariate analyses were used to evaluate the predictive factors. In addition, a novel nomogram model was also performed to predict the prognosis for patients with ESCC. In the current study, CCS was calculated as CRP+6.33 SCC according to the logistic equation. The optimal cut-off value was 15.8 for CCS according to the X-tile program. Kaplan-Meier analyses demonstrated that high CCS group had a significantly poor 5-year cancer-specific survival (CSS) than low CCS group (10.3% vs. 47.3%, P <0.001). According to multivariate analyses, CCS ( P =0.004), but not CRP ( P =0.466) or SCC ( P =0.926), was an independent prognostic factor. A nomogram could be more accuracy for CSS (Harrell's c-index: 0.70). The CCS is a usefull and independent predictive factor in patients with ESCC.
Griffin, Brian M.; Larson, Vincent E.
2016-11-25
Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less
Likhvantseva, V G; Sokolov, V A; Levanova, O N; Kovelenova, I V
2018-01-01
Prediction of the clinical course of primary open-angle glaucoma (POAG) is one of the main directions in solving the problem of vision loss prevention and stabilization of the pathological process. Simple statistical methods of correlation analysis show the extent of each risk factor's impact, but do not indicate the total impact of these factors in personalized combinations. The relationships between the risk factors is subject to correlation and regression analysis. The regression equation represents the dependence of the mathematical expectation of the resulting sign on the combination of factor signs. To develop a technique for predicting the probability of development and progression of primary open-angle glaucoma based on a personalized combination of risk factors by linear multivariate regression analysis. The study included 66 patients (23 female and 43 male; 132 eyes) with newly diagnosed primary open-angle glaucoma. The control group consisted of 14 patients (8 male and 6 female). Standard ophthalmic examination was supplemented with biochemical study of lacrimal fluid. Concentration of matrix metalloproteinase MMP-2 and MMP-9 in tear fluid in both eyes was determined using 'sandwich' enzyme-linked immunosorbent assay (ELISA) method. The study resulted in the development of regression equations and step-by-step multivariate logistic models that can help calculate the risk of development and progression of POAG. Those models are based on expert evaluation of clinical and instrumental indicators of hydrodynamic disturbances (coefficient of outflow ease - C, volume of intraocular fluid secretion - F, fluctuation of intraocular pressure), as well as personalized morphometric parameters of the retina (central retinal thickness in the macular area) and concentration of MMP-2 and MMP-9 in the tear film. The newly developed regression equations are highly informative and can be a reliable tool for studying of the influence vector and assessment of pathogenic potential of the independent risk factors in specific personalized combinations.
Maximum Likelihood Estimation of Nonlinear Structural Equation Models.
ERIC Educational Resources Information Center
Lee, Sik-Yum; Zhu, Hong-Tu
2002-01-01
Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)
Investigating Supervisory Relationships and Therapeutic Alliances Using Structural Equation Modeling
ERIC Educational Resources Information Center
DePue, Mary Kristina; Lambie, Glenn W.; Liu, Ren; Gonzalez, Jessica
2016-01-01
The authors used structural equation modeling to examine the contribution of supervisees' supervisory relationship levels to therapeutic alliance (TA) scores with their clients in practicum. Results showed that supervisory relationship scores positively contributed to the TA. Client and counselor ratings of the TA also differed.
Using Structural Equation Modeling To Fit Models Incorporating Principal Components.
ERIC Educational Resources Information Center
Dolan, Conor; Bechger, Timo; Molenaar, Peter
1999-01-01
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Structural Equations and Causal Explanations: Some Challenges for Causal SEM
ERIC Educational Resources Information Center
Markus, Keith A.
2010-01-01
One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…
On the structure of the master equation for a two-level system coupled to a thermal bath
NASA Astrophysics Data System (ADS)
de Vega, Inés
2015-04-01
We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).
NASA Astrophysics Data System (ADS)
Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen
2018-05-01
The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.
Hydrodynamic Coherence and Vortex Solutions of the Euler-Helmholtz Equation
NASA Astrophysics Data System (ADS)
Fimin, N. N.; Chechetkin, V. M.
2018-03-01
The form of the general solution of the steady-state Euler-Helmholtz equation (reducible to the Joyce-Montgomery one) in arbitrary domains on the plane is considered. This equation describes the dynamics of vortex hydrodynamic structures.
Study of solution procedures for nonlinear structural equations
NASA Technical Reports Server (NTRS)
Young, C. T., II; Jones, R. F., Jr.
1980-01-01
A method for the redution of the cost of solution of large nonlinear structural equations was developed. Verification was made using the MARC-STRUC structure finite element program with test cases involving single and multiple degrees of freedom for static geometric nonlinearities. The method developed was designed to exist within the envelope of accuracy and convergence characteristic of the particular finite element methodology used.
ERIC Educational Resources Information Center
Caldas, Stephen J.; Cornigans, Linda
2015-01-01
This study used structural equation modeling to conduct a first and second order confirmatory factor analysis (CFA) of a scale developed by McDonald and Moberg (2002) to measure three dimensions of social capital among a diverse group of middle- and upper-middle-class elementary school parents in suburban New York. A structural path model was…
On the Model-Based Bootstrap with Missing Data: Obtaining a "P"-Value for a Test of Exact Fit
ERIC Educational Resources Information Center
Savalei, Victoria; Yuan, Ke-Hai
2009-01-01
Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine…
ERIC Educational Resources Information Center
Furnham, Adrian; Guenole, Nigel; Levine, Stephen Z.; Chamorro-Premuzic, Tomas
2013-01-01
This study presents new analyses of NEO Personality Inventory-Revised (NEO-PI-R) responses collected from a large British sample in a high-stakes setting. The authors show the appropriateness of the five-factor model underpinning these responses in a variety of new ways. Using the recently developed exploratory structural equation modeling (ESEM)…
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Rajiyah, H.
1991-01-01
Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.
Moayyeri, Alireza; Hart, Deborah J; Snieder, Harold; Hammond, Christopher J; Spector, Timothy D; Steves, Claire J
2016-02-01
Little is known about the extent to which aging trajectories of different body systems share common sources of variance. We here present a large twin study investigating the trajectories of change in five systems: cardiovascular, respiratory, skeletal, morphometric, and metabolic. Longitudinal clinical data were collected on 3,508 female twins in the TwinsUK registry (complete pairs:740 monozygotic (MZ), 986 dizygotic (DZ), mean age at entry 48.9 ± 10.4, range 18-75 years; mean follow-up 10.2 ± 2.8 years, range 4-17.8 years). Panel data on multiple age-related variables were used to estimate biological ages for each individual at each time point, in linear mixed effects models. A weighted average approach was used to combine variables within predefined body system groups. Aging trajectories for each system in each individual were then constructed using linear modeling. Multivariate structural equation modeling of these aging trajectories showed low genetic effects (heritability), ranging from 2% in metabolic aging to 22% in cardiovascular aging. However, we found a significant effect of shared environmental factors on the variations in aging trajectories in cardiovascular (54%), skeletal (34%), morphometric (53%), and metabolic systems (53%). The remainder was due to environmental factors unique to each individual plus error. Multivariate Cholesky decomposition showed that among aging trajectories for various body systems there were significant and substantial correlations between the unique environmental latent factors as well as shared environmental factors. However, there was no evidence for a single common factor for aging. This study, the first of its kind in aging, suggests that diverse organ systems share non-genetic sources of variance for aging trajectories. Confirmatory studies are needed using population-based twin cohorts and alternative methods of handling missing data.
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
Traa, Marjan J; Braeken, Johan; De Vries, Jolanda; Roukema, Jan A; Slooter, Gerrit D; Crolla, Rogier M P H; Borremans, Monique P M; Den Oudsten, Brenda L
2015-09-01
This study evaluated the following: (a) levels of sexual, marital, and general life functioning for both patients and partners; (b) interdependence between both members of the couple; and (c) longitudinal change in sexual, marital, and general life functioning and longitudinal stress-spillover effects in these three domains from a dyadic perspective. Couples (n = 102) completed the Maudsley Marital Questionnaire preoperatively and 3 and 6 months postoperatively. Mean scores were compared with norm scores. A multivariate general linear model and a multivariate latent difference score - structural equation modeling (LDS-SEM), which took into account actor and partner effects, were evaluated. Patients and partners reported lower sexual, mostly similar marital, and higher general life functioning compared with norm scores. Moderate to high within-dyad associations were found. The LDS-SEM model mostly showed actor effects. Yet the longitudinal change in the partners' sexual functioning was determined not only by their own preoperative sexual functioning but also by that of the patient. Preoperative sexual functioning did not spill over to the other two domains for patients and partners, whereas the patients' preoperative general life functioning influenced postoperative change in marital and sexual functioning. Health care professionals should examine potential sexual problems but have to be aware that these problems may not spill over to the marital and general life domains. In contrast, low functioning in the general life domain may spill over to the marital and sexual domains. The interdependence between patients and partners implies that a couple-based perspective (e.g., couple-based interventions/therapies) to coping with cancer is needed. Copyright © 2015 John Wiley & Sons, Ltd.
From differential to difference equations for first order ODEs
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Walker, Kevin P.
1991-01-01
When constructing an algorithm for the numerical integration of a differential equation, one should first convert the known ordinary differential equation (ODE) into an ordinary difference equation. Given this difference equation, one can develop an appropriate numerical algorithm. This technical note describes the derivation of two such ordinary difference equations applicable to a first order ODE. The implicit ordinary difference equation has the same asymptotic expansion as the ODE itself, whereas the explicit ordinary difference equation has an asymptotic that is similar in structure but different in value when compared with that of the ODE.
Space station rotational equations of motion
NASA Technical Reports Server (NTRS)
Rheinfurth, M. H.; Carroll, S. N.
1985-01-01
Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Du, Dianlou
2010-08-01
The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.
NASA Astrophysics Data System (ADS)
Jia, Xiaoliang; An, Haizhong; Sun, Xiaoqi; Huang, Xuan; Gao, Xiangyun
2016-04-01
The globalization and regionalization of crude oil trade inevitably give rise to the difference of crude oil prices. The understanding of the pattern of the crude oil prices' mutual propagation is essential for analyzing the development of global oil trade. Previous research has focused mainly on the fuzzy long- or short-term one-to-one propagation of bivariate oil prices, generally ignoring various patterns of periodical multivariate propagation. This study presents a wavelet-based network approach to help uncover the multipath propagation of multivariable crude oil prices in a joint time-frequency period. The weekly oil spot prices of the OPEC member states from June 1999 to March 2011 are adopted as the sample data. First, we used wavelet analysis to find different subseries based on an optimal decomposing scale to describe the periodical feature of the original oil price time series. Second, a complex network model was constructed based on an optimal threshold selection to describe the structural feature of multivariable oil prices. Third, Bayesian network analysis (BNA) was conducted to find the probability causal relationship based on periodical structural features to describe the various patterns of periodical multivariable propagation. Finally, the significance of the leading and intermediary oil prices is discussed. These findings are beneficial for the implementation of periodical target-oriented pricing policies and investment strategies.
Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.
2003-01-01
The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…
A Bayesian Approach for Analyzing Longitudinal Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum
2011-01-01
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Multiplicity Control in Structural Equation Modeling
ERIC Educational Resources Information Center
Cribbie, Robert A.
2007-01-01
Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…
A Structural Equation Modelling Approach for Massive Blended Synchronous Teacher Training
ERIC Educational Resources Information Center
Kannan, Kalpana; Narayanan, Krishnan
2015-01-01
This paper presents a structural equation modelling (SEM) approach for blended synchronous teacher training workshop. It examines the relationship among various factors that influence the Satisfaction (SAT) of participating teachers. Data were collected with the help of a questionnaire from about 500 engineering college teachers. These teachers…
Using Mixed-Effects Structural Equation Models to Study Student Academic Development.
ERIC Educational Resources Information Center
Pike, Gary R.
1992-01-01
A study at the University of Tennessee Knoxville used mixed-effect structural equation models incorporating latent variables as an alternative to conventional methods of analyzing college students' (n=722) first-year-to-senior academic gains. Results indicate, contrary to previous analysis, that coursework and student characteristics interact to…
The structure of shock wave in a gas consisting of ideally elastic, rigid spherical molecules
NASA Technical Reports Server (NTRS)
Cheremisin, F. G.
1972-01-01
Principal approaches are examined to the theoretical study of the shock layer structure. The choice of a molecular model is discussed and three procedures are formulated. These include a numerical calculation method, solution of the kinetic relaxation equation, and solution of the Boltzmann equation.
Nested Structural Equation Models: Noncentrality and Power of Restriction Test.
ERIC Educational Resources Information Center
Raykov, Tenko; Penev, Spiridon
1998-01-01
Discusses the difference in noncentrality parameters of nested structural equation models and their utility in evaluating statistical power associated with the pertinent restriction test. Asymptotic confidence intervals for that difference are presented. These intervals represent a useful adjunct to goodness-of-fit indexes in assessing constraints…
Anti-Transgender Prejudice: A Structural Equation Model of Associated Constructs
ERIC Educational Resources Information Center
Tebbe, Esther N.; Moradi, Bonnie
2012-01-01
This study aimed to identify theoretically relevant key correlates of anti-transgender prejudice. Specifically, structural equation modeling was used to test the unique relations of anti-lesbian, gay, and bisexual (LGB) prejudice; traditional gender role attitudes; need for closure; and social dominance orientation with anti-transgender prejudice.…
Local Influence Analysis of Nonlinear Structural Equation Models
ERIC Educational Resources Information Center
Lee, Sik-Yum; Tang, Nian-Sheng
2004-01-01
By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…
Commentary: Are Three Waves of Data Sufficient for Assessing Mediation?
ERIC Educational Resources Information Center
Reichardt, Charles S.
2011-01-01
Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…
On Nonequivalence of Several Procedures of Structural Equation Modeling
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Chan, Wai
2005-01-01
The normal theory based maximum likelihood procedure is widely used in structural equation modeling. Three alternatives are: the normal theory based generalized least squares, the normal theory based iteratively reweighted least squares, and the asymptotically distribution-free procedure. When data are normally distributed and the model structure…
Effects of Employing Ridge Regression in Structural Equation Models.
ERIC Educational Resources Information Center
McQuitty, Shaun
1997-01-01
LISREL 8 invokes a ridge option when maximum likelihood or generalized least squares are used to estimate a structural equation model with a nonpositive definite covariance or correlation matrix. Implications of the ridge option for model fit, parameter estimates, and standard errors are explored through two examples. (SLD)
Multiplicity Control in Structural Equation Modeling: Incorporating Parameter Dependencies
ERIC Educational Resources Information Center
Smith, Carrie E.; Cribbie, Robert A.
2013-01-01
When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…
A Structural Equation Model of Expertise in College Physics
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Carr, Martha
2009-01-01
A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…
A Structural Equation Model of Conceptual Change in Physics
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Sinatra, Gale M.
2011-01-01
A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…
An Examination of Statistical Power in Multigroup Dynamic Structural Equation Models
ERIC Educational Resources Information Center
Prindle, John J.; McArdle, John J.
2012-01-01
This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…
Structural Equation Modeling Reporting Practices for Language Assessment
ERIC Educational Resources Information Center
Ockey, Gary J.; Choi, Ikkyu
2015-01-01
Studies that use structural equation modeling (SEM) techniques are increasingly encountered in the language assessment literature. This popularity has created the need for a set of guidelines that can indicate what should be included in a research report and make it possible for research consumers to judge the appropriateness of the…
Errors of Inference in Structural Equation Modeling
ERIC Educational Resources Information Center
McCoach, D. Betsy; Black, Anne C.; O'Connell, Ann A.
2007-01-01
Although structural equation modeling (SEM) is one of the most comprehensive and flexible approaches to data analysis currently available, it is nonetheless prone to researcher misuse and misconceptions. This article offers a brief overview of the unique capabilities of SEM and discusses common sources of user error in drawing conclusions from…
Bayesian Data-Model Fit Assessment for Structural Equation Modeling
ERIC Educational Resources Information Center
Levy, Roy
2011-01-01
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…
Multilevel Analysis of Structural Equation Models via the EM Algorithm.
ERIC Educational Resources Information Center
Jo, See-Heyon
The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…
A Methodological Review of Structural Equation Modelling in Higher Education Research
ERIC Educational Resources Information Center
Green, Teegan
2016-01-01
Despite increases in the number of articles published in higher education journals using structural equation modelling (SEM), research addressing their statistical sufficiency, methodological appropriateness and quantitative rigour is sparse. In response, this article provides a census of all covariance-based SEM articles published up until 2013…
Partial Least Squares Structural Equation Modeling with R
ERIC Educational Resources Information Center
Ravand, Hamdollah; Baghaei, Purya
2016-01-01
Structural equation modeling (SEM) has become widespread in educational and psychological research. Its flexibility in addressing complex theoretical models and the proper treatment of measurement error has made it the model of choice for many researchers in the social sciences. Nevertheless, the model imposes some daunting assumptions and…
Aerodynamic parameter estimation via Fourier modulating function techniques
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1995-01-01
Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.
Analysis of cohort studies with multivariate and partially observed disease classification data.
Chatterjee, Nilanjan; Sinha, Samiran; Diver, W Ryan; Feigelson, Heather Spencer
2010-09-01
Complex diseases like cancers can often be classified into subtypes using various pathological and molecular traits of the disease. In this article, we develop methods for analysis of disease incidence in cohort studies incorporating data on multiple disease traits using a two-stage semiparametric Cox proportional hazards regression model that allows one to examine the heterogeneity in the effect of the covariates by the levels of the different disease traits. For inference in the presence of missing disease traits, we propose a generalization of an estimating equation approach for handling missing cause of failure in competing-risk data. We prove asymptotic unbiasedness of the estimating equation method under a general missing-at-random assumption and propose a novel influence-function-based sandwich variance estimator. The methods are illustrated using simulation studies and a real data application involving the Cancer Prevention Study II nutrition cohort.
An algorithmic approach to solving polynomial equations associated with quantum circuits
NASA Astrophysics Data System (ADS)
Gerdt, V. P.; Zinin, M. V.
2009-12-01
In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.
Homotopy approach to optimal, linear quadratic, fixed architecture compensation
NASA Technical Reports Server (NTRS)
Mercadal, Mathieu
1991-01-01
Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.
1990-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.
1992-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
A curve fitting method for solving the flutter equation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Cooper, J. L.
1972-01-01
A curve fitting approach was developed to solve the flutter equation for the critical flutter velocity. The psi versus nu curves are approximated by cubic and quadratic equations. The curve fitting technique utilized the first and second derivatives of psi with respect to nu. The method was tested for two structures, one structure being six times the total mass of the other structure. The algorithm never showed any tendency to diverge from the solution. The average time for the computation of a flutter velocity was 3.91 seconds on an IBM Model 50 computer for an accuracy of five per cent. For values of nu close to the critical root of the flutter equation the algorithm converged on the first attempt. The maximum number of iterations for convergence to the critical flutter velocity was five with an assumed value of nu relatively distant from the actual crossover.
Nonlinear model of a rotating hub-beams structure: Equations of motion
NASA Astrophysics Data System (ADS)
Warminski, Jerzy
2018-01-01
Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.
Strauss, Alex; Smith, Kevin G
2013-01-01
The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates) sp.) for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a). Our goal was to generate hypotheses toward answering the question, "Why does Bd not occur in all apparently suitable habitats?" Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds). We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion) revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations.
Strauss, Alex; Smith, Kevin G.
2013-01-01
The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates) sp.) for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a). Our goal was to generate hypotheses toward answering the question, “Why does Bd not occur in all apparently suitable habitats?” Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds). We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion) revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations. PMID:24086681
Botha-Scheepers, S; Riyazi, N; Kroon, H M; Scharloo, M; Houwing-Duistermaat, J J; Slagboom, E; Rosendaal, F R; Breedveld, F C; Kloppenburg, M
2006-11-01
Using the International Classification of Functioning, Disability and Health as framework, we evaluated modifying effects of illness perceptions and mental health on the association between impairments in body structures and functions due to osteoarthritis (OA) and limitation in activities in the lower extremities. Self-reported limitation in activities was assessed by the Western Ontario and McMaster Universities OA index (WOMAC) function subscale in 316 patients with knee or hip pain or evidence of OA on knee or hip radiographs. Body structures and functions were evaluated during clinical and radiological assessments. Illness perceptions and mental health were assessed with the revised Illness Perception Questionnaire (IPQ-R) and the mental component summary score of the RAND 36-item Health Survey, respectively. For each patient an expected WOMAC function score was calculated, using an equation based on a multivariate model of the association of body structures and functions with limitation in activities. The median (interquartile) self-reported WOMAC function score was 22.2 (9.6-43.5). Ninety-one patients reported more and 120 patients reported less limitation in activities than expected. Patients with lumbar spine degeneration, physical or exercise therapy and high IPQ-R identity, consequences and chronic timeline scores had an increased risk to report more limitation in activities than the expected range. Low IPQ-R identity, consequences and emotional representation scores and better mental health were associated with reporting less limitation in activities than the expected range. Illness perceptions and mental health modify the association between self-reported limitation in activities and calculated limitation in activities based on impairments in body structures and functions due to OA.
Rhodes, Darson L; Kirchofer, Gregg; Hammig, Bart J; Ogletree, Roberta J
2013-05-01
This study examined the impact of professional preparation and class structure on sexuality topics taught and use of practice-based instructional strategies in US middle and high school health classes. Data from the classroom-level file of the 2006 School Health Policies and Programs were used. A series of multivariable logistic regression models were employed to determine if sexuality content taught was dependent on professional preparation and /or class structure (HE only versus HE/another subject combined). Additional multivariable logistic regression models were employed to determine if use of practice-based instructional strategies was dependent upon professional preparation and/or class structure. Years of teaching health topics and size of the school district were included as covariates in the multivariable logistic regression models. Findings indicated professionally prepared health educators were significantly more likely to teach 7 of the 13 sexuality topics as compared to nonprofessionally prepared health educators. There was no statistically significant difference in the instructional strategies used by professionally prepared and nonprofessionally prepared health educators. Exclusively health education classes versus combined classes were significantly more likely to have included 6 of the 13 topics and to have incorporated practice-based instructional strategies in the curricula. This study indicated professional preparation and class structure impacted sexuality content taught. Class structure also impacted whether opportunities for students to practice skills were made available. Results support the need for continued advocacy for professionally prepared health educators and health only courses. © 2013, American School Health Association.
NASA Astrophysics Data System (ADS)
Poyatos, Rafael; Sus, Oliver; Badiella, Llorenç; Mencuccini, Maurizio; Martínez-Vilalta, Jordi
2018-05-01
The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and processes. Spatially explicit datasets with information on intraspecific trait variability are rare but offer great promise in improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data imputation. Here we compare statistical imputation approaches, using varying levels of environmental information, for five plant traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass per area and wood density) in a spatially explicit plant trait dataset of temperate and Mediterranean tree species (Ecological and Forest Inventory of Catalonia, IEFC, dataset for Catalonia, north-east Iberian Peninsula, 31 900 km2). We simulated gaps at different missingness levels (10-80 %) in a complete trait matrix, and we used overall trait means, species means, k nearest neighbours (kNN), ordinary and regression kriging, and multivariate imputation using chained equations (MICE) to impute missing trait values. We assessed these methods in terms of their accuracy and of their ability to preserve trait distributions, multi-trait correlation structure and bivariate trait relationships. The relatively good performance of mean and species mean imputations in terms of accuracy masked a poor representation of trait distributions and multivariate trait structure. Species identity improved MICE imputations for all traits, whereas forest structure and topography improved imputations for some traits. No method performed best consistently for the five studied traits, but, considering all traits and performance metrics, MICE informed by relevant ecological variables gave the best results. However, at higher missingness (> 30 %), species mean imputations and regression kriging tended to outperform MICE for some traits. MICE informed by relevant ecological variables allowed us to fill the gaps in the IEFC incomplete dataset (5495 plots) and quantify imputation uncertainty. Resulting spatial patterns of the studied traits in Catalan forests were broadly similar when using species means, regression kriging or the best-performing MICE application, but some important discrepancies were observed at the local level. Our results highlight the need to assess imputation quality beyond just imputation accuracy and show that including environmental information in statistical imputation approaches yields more plausible imputations in spatially explicit plant trait datasets.
Potyrailo, Radislav A
2017-08-29
For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.
Multivariate normative comparisons using an aggregated database
Murre, Jaap M. J.; Huizenga, Hilde M.
2017-01-01
In multivariate normative comparisons, a patient’s profile of test scores is compared to those in a normative sample. Recently, it has been shown that these multivariate normative comparisons enhance the sensitivity of neuropsychological assessment. However, multivariate normative comparisons require multivariate normative data, which are often unavailable. In this paper, we show how a multivariate normative database can be constructed by combining healthy control group data from published neuropsychological studies. We show that three issues should be addressed to construct a multivariate normative database. First, the database may have a multilevel structure, with participants nested within studies. Second, not all tests are administered in every study, so many data may be missing. Third, a patient should be compared to controls of similar age, gender and educational background rather than to the entire normative sample. To address these issues, we propose a multilevel approach for multivariate normative comparisons that accounts for missing data and includes covariates for age, gender and educational background. Simulations show that this approach controls the number of false positives and has high sensitivity to detect genuine deviations from the norm. An empirical example is provided. Implications for other domains than neuropsychology are also discussed. To facilitate broader adoption of these methods, we provide code implementing the entire analysis in the open source software package R. PMID:28267796
Crystal structure optimisation using an auxiliary equation of state
NASA Astrophysics Data System (ADS)
Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron
2015-11-01
Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.
Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion
NASA Astrophysics Data System (ADS)
Parra-Rivas, P.; Gomila, D.; Gelens, L.; Knobloch, E.
2018-04-01
The origin, stability, and bifurcation structure of different types of bright localized structures described by the Lugiato-Lefever equation are studied. This mean field model describes the nonlinear dynamics of light circulating in fiber cavities and microresonators. In the case of anomalous group velocity dispersion and low values of the intracavity phase detuning these bright states are organized in a homoclinic snaking bifurcation structure. We describe how this bifurcation structure is destroyed when the detuning is increased across a critical value, and determine how a bifurcation structure known as foliated snaking emerges.
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal
2012-06-01
Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.
Hamiltonian structures for systems of hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Olver, Peter J.; Nutku, Yavuz
1988-07-01
The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.
Using Theoretical Descriptions in Structure Activity Relations. 3. Electronic Descriptors
1988-08-01
Activity Relationships (QSAR) have been used successfully in the past to develop predictive equations for several biological and physical properties...Linear Free Energy Relationships (,FF.3) and is based on work by Hammet in which he derived electronic descriptors for the dissociation of substituted...structure of a compound and its activity in a system. Several different structural descriptors have been used in QSAR equations . These range from
NASA Technical Reports Server (NTRS)
Thorne, K. S.; Zytkow, A. N.
1976-01-01
The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."
Causal discovery and inference: concepts and recent methodological advances.
Spirtes, Peter; Zhang, Kun
This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.
NASA Astrophysics Data System (ADS)
Hinze, Ralf
Programmers happily use induction to prove properties of recursive programs. To show properties of corecursive programs they employ coinduction, but perhaps less enthusiastically. Coinduction is often considered a rather low-level proof method, in particular, as it departs quite radically from equational reasoning. Corecursive programs are conveniently defined using recursion equations. Suitably restricted, these equations possess unique solutions. Uniqueness gives rise to a simple and attractive proof technique, which essentially brings equational reasoning to the coworld. We illustrate the approach using two major examples: streams and infinite binary trees. Both coinductive types exhibit a rich structure: they are applicative functors or idioms, and they can be seen as memo-tables or tabulations. We show that definitions and calculations benefit immensely from this additional structure.
Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C
2015-01-01
We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, James J; Williams, L Keoki; Buu, Anne
2017-08-24
A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.
NASA Astrophysics Data System (ADS)
Kanzaki, Yasushi
Many kinds of water products have been offered commercially suggesting some strange efficacy beyond our scientific knowledge even now at which various advanced scientific and technological research have been highly promoted. However, it seems quite obvious that such a strange efficacy must be nonexistent. If such efficacy were really existing, it must be solved by some suitable scientific procedure. In this study, the extraction of paeoniflorin from paeoniae radix was examined by varying the kind of extracting water. Then, the result was analyzed using multivariate analysis where the effect on the extraction was assumed to be ascribed to the ionic species dissolved in each water examined. The dissolved species were analyzed by chemical and instrumental analyses. According to the multivariate analysis, the amount of extracted paeoniflorin (Y) was presented by the following regression equation. The result shows that pH, [Ca2+], and [HCO3 -] were significant parameters and the combination of Ca2+ and HCO3 - affected negatively on the extraction of paeoniflorin.
Y=28.11-0.71 pH-0.0034[Ca2+]-0.93[HCO3 -]
where [Ca2+] is the concentration of calcium ion and [HCO3 -] is that of bicarbonate ion.
Frankenstein, Lutz; Zugck, Christian; Nelles, Manfred; Schellberg, Dieter; Katus, Hugo; Remppis, Andrew
2008-04-01
The 6-minute walk test (6MWT) is an established prognostic tool in chronic heart failure. The strong influence of height, weight, age, and sex on 6MWT distance may be accounted for by using percentage achieved of predicted value rather than uncorrected 6MWT values. The study included 1069 patients (862 men) with a mean age 55.2 +/- 11.7 years and mean left ventricular ejection fraction of 29% +/- 10%, attending the heart failure clinic of the University of Heidelberg between 1995 and 2005. The predictive power and accuracy of 6MWT and achieved percentage values according to all available published equations for mortality and mortality or transplant combined were tested separately for each sex. The percentage values varied largely between equations. For all equations, women in New York Heart Association (NYHA) functional class I had higher values than men. Although the 6MWT significantly discriminated all NYHA classes for both sexes, only 1 equation discriminated all NYHA classes. No significant differences in the area under the receiver operating-characteristic curve were noted between achieved percentage values and 6MWT. Despite strong univariate significance, achieved percentage values did not retain multivariate significance. The 6MWT was independent from N-terminal brain natriuretic propeptide, NYHA, left ventricular ejection fraction, and peak oxygen uptake. We confirmed 6MWT to be a strong and independent risk predictor for both sexes. Because the prognostic power of 6MWT is not enhanced using percentage achieved of published reference equations, we suggest recalibration of these reference values rather than discarding this approach.
An Alternative to the Breeder’s and Lande’s Equations
Houchmandzadeh, Bahram
2013-01-01
The breeder’s equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) − E(Z0) to the selection differential S = E(ZW) − E(Z0) through a simple proportionality relation R = h2S, where the heritability coefficient h2 is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R′ = j2S′ can be derived, regardless of the parental genotype distribution. Here R′ = E(Z1) − μ and S′ = E(ZW) − μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j2 is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande’s equation Δz¯=GP−1S. The linearity coefficient of the alternative equation are not changed by Gaussian selection. PMID:24212080
A Simultaneous Equation Demand Model for Block Rates
NASA Astrophysics Data System (ADS)
Agthe, Donald E.; Billings, R. Bruce; Dobra, John L.; Raffiee, Kambiz
1986-01-01
This paper examines the problem of simultaneous-equations bias in estimation of the water demand function under an increasing block rate structure. The Hausman specification test is used to detect the presence of simultaneous-equations bias arising from correlation of the price measures with the regression error term in the results of a previously published study of water demand in Tucson, Arizona. An alternative simultaneous equation model is proposed for estimating the elasticity of demand in the presence of block rate pricing structures and availability of service charges. This model is used to reestimate the price and rate premium elasticities of demand in Tucson, Arizona for both the usual long-run static model and for a simple short-run demand model. The results from these simultaneous equation models are consistent with a priori expectations and are unbiased.